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Abstract: In this paper, we express ∑n,m≥1
εn

1εm
2 M

(u)
n M

(v)
m

nrms(n+m)t as a linear combination of alternating multiple

zeta values, where εi ∈ {1,−1} and M
(u)
k ∈ {H

(u)
k , H

(u)
k }, with H

(u)
k and H

(u)
k being harmonic and

alternating harmonic numbers, respectively. These sums include Subbarao and Sitaramachandrarao’s

alternating analogues of Tornheim’s double series as a special case. Our method is based on employing

two different techniques to evaluate the specific integral associated with a 3-poset Hasse diagram.

Keywords: alternating multiple zeta values; generalized alternating harmonic numbers;

Mordell–Tornheim series; alternating Tornheim-type double series; 3-poset integral

MSC: 11M32; 40B05

1. Introduction

Given α = (α1, α2, . . . , αr) as a sequence of positive integers and ε = (ε1, ε2, . . . , εr)
with εi ∈ {1,−1}, and (αr, εr) ̸= (1, 1), an alternating multiple zeta value (AMZV) ζ(α) is
defined as [1–3]

ζ(α; ε) = ∑
1≤k1<k2<···<kr

ε
k1
1 ε

k2
2 · · · εkr

r

k
α1
1 kα2

2 · · · kαr
r

.

We usually put a bar on top of kj if ε j = −1. For example, ζ(2̄, 3, 4̄) = ζ(2, 3, 4;−1, 1,−1).
The numbers |α|r = α1 + α2 + · · ·+ αr and r are called the weight and depth of ζ(α; ε),
respectively. In particular, if εi = 1 for all 1 ≤ i ≤ r, then

ζ(α, ε) = ζ(α) = ∑
1≤k1<k2<···<kr

1

k
α1
1 kα2

2 · · · kαr
r

is the multiple zeta values [4,5]. We let {a}k denote k repetitions of a. For example,
ζ({2}3, 5) = ζ(2, 2, 2, 5) and ζ(2, {3̄}2) = ζ(2, 3̄, 3̄).

The generalized harmonic numbers and the generalized alternating harmonic numbers
are defined as

H
(s)
0 = 0 = H

(s)
0 , H

(s)
n =

n

∑
j=1

1

js
, and H

(s)
n =

n

∑
j=1

(−1)j−1

js
,

where s and n are positive integers. In particular, H
(1)
n = Hn is the classical harmonic

number, and H
(1)
n = Hn is the alternating harmonic number. The well-known formula for

integers q ≥ 2,

∞

∑
n=1

Hn

nq =
(

1 +
q

2

)

ζ(q + 1)−
1

2

q−2

∑
k=1

ζ(k + 1)ζ(q − k)

was systematically developed by Nielsen [6]. This formula was originally discovered by
Euler and later rediscovered by Ramanujan. Another famous formula
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∞

∑
n=1

Hn

nq = ζ(q) log(2)−
q

2
ζ(q + 1)− ζ(q + 1) +

1

2

q

∑
k=1

ζ(k)ζ(q − k + 1).

was proved by Sitaramachandrarao [6,7]. Harmonic numbers are encountered in Feynman
diagram calculations [8], appear in equilibrium analyses [9], and are also applied to the
quicksort algorithm [10], among others. Moreover, series involving harmonic numbers
have applications across various mathematical disciplines and related fields (see [11–16]).

For an r-tuple α = (α1, α2, . . . , αr) of positive integers, the Mordell–Tornheim multiple
zeta values are defined as

ζMT(α1, . . . , αr−1; αr) = ∑
m1,...,mr≥1

1

m
α1
1 · · ·m

αr−1
r−1 (m1 + · · ·+ mr−1)αr

.

The examination of the special values of this function, specifically for r = 3 at positive
integer points, was first undertaken by Tornheim [17] and independently by Mordell [18],
particularly in the case where α1 = α2 = α3. These values were later rediscovered by
Witten [19] in his work on the volume formula for certain moduli spaces pertinent to
theoretical physics. Therefore, we usually refer to this double series as a Tornheim–Witten
double series, a Mordell–Tornheim double series, or simply a Tornheim double series.

Bradley and Zhou [20] demonstrated that this value can be expressed as a linear
combination of multiple zeta values. Recently, the author of [21] gave an explicit formula
for the Mordell–Tornheim multiple zeta values:

ζMT(a1 + 1, . . . , an + 1; s + 1) (1)

= ∑
d1+···+dn=w

di≥0

ζ(a1 + 1, . . . , dn + s + 2) ∑
σ∈Sn

σa

{

n

∏
j=2

(

∑
n
k=j dk − ∑

n
k=j+1 ak

aj

)

}

,

where w = ∑
n
j=1 aj, Sn is the symmetric group of n objects, and σa represents the permuta-

tions induced by σ ∈ Sn on the nonnegative integer set a1, a2, . . . , an.
Subbarao and Sitaramachandrarao [22] introduced the alternating analogues of

Mordell–Tornheim series, which were defined as

R(p, q, r) = ∑
n,m≥1

(−1)n

npmq(n + m)r
, and T(p, q, r) = ∑

n,m≥1

(−1)n+m

npmq(n + m)r
.

They posed the problem to evaluate T(r, r, r) and R(r, r, r) for any positive integer r.
Tsumura [23,24] provided evaluation formulas for T(r, r, r) and R(r, r, r) for any posi-
tive odd integer r. He [25,26] also provided evaluation formulas for T(r, s, t) and R(r, s, t)
for positive integers r, s, t when r + s + t is odd. Zhao [27] expressed them as a linear
combination of alternating double zeta values.

Kuba [28] studied two general Tornheim series:

∑
n,m≥1

H
(a)
n H

(c)
m

nbmd(n + m)s
and ∑

n,m≥1

H
(a)
n+m

nbmd(n + m)s
,

which are generalizations of Tornheim’s double series. Inspired by these insights, in this
paper, we aim to study the following generalized form and express it as a linear combination
of alternating multiple zeta values:

A := ∑
n,m≥1

εn
1εm

2 M
(u)
n M

(v)
m

nrms(n + m)t
,
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where εi ∈ {1,−1} and M
(u)
k ∈ {H

(u)
k , H

(u)
k }. This general form includes both R-series and

T-series as concrete examples. For example, we obtain the formula

∑
n,m≥1

(−1)n+mHn Hm

nm(n + m)

= 2ζ(1, 1, 1, 2) + 4ζ(1, 1, 1, 2) + 2ζ(1, 1, 3) + 4ζ(1, 1, 3) + 4ζ(1, 2, 2) + 2ζ(2, 1, 2)

+4ζ(1, 4) + 2ζ(2, 3),

This paper is organized as follows. In Section 2, we introduce the algebraic structure
for alternating multiple zeta values [29–31] and present a combinatorial generalization of
the iterated integral associated with a 3-poset, represented by a Hasse diagram.

In Section 3, we use the 3-poset integrals to express these two alternating Mordell–
Tornheim series as a linear combination of alternating double zeta values, which are the
same as the expressions given by Zhao [27].

In Section 4, we decompose A-series as a linear combination of S-series (see Equation (15)
for the exact definition), which are power-series expansions of some integrals associated
with a 3-poset Hasse diagram. This leads to the calculation of 21 different types of S-series.
We provide details of the evaluations of these S-series in Sections 5 and 6.

In Section 7, we integrate the S-series expressions from the previous two sections with
the results from Section 3, compiling all the A-series we plan to evaluate.

In the final section, we showcase the practical implications of our findings through
examples like

∑
n,m≥1

(−1)n+m H
(2)
n Hm

nm(n + m)

= 3ζ(1, 1, 2, 2) + 4ζ(1, 2, 1, 2) + 3ζ(2, 1, 1, 2) + 3ζ(1, 1, 4) + 6ζ(1, 3, 2) + ζ(3, 1, 2)

+4ζ(1, 2, 3) + 3ζ(2, 1, 3) + 3ζ(2, 2, 2) + 6ζ(1, 5) + 3ζ(2, 4) + ζ(3, 3).

This paper introduces a method for evaluating a specific 3-poset integral in two
different ways: one approach uses the shuffle relations and their associated Lyndon words,
and the other uses the corresponding infinite-series expansions. Indeed, this method can
be applied not only to double series but also extended to triple series or any finite number
of infinite-series sums. An explanation is provided in the concluding remarks section.

2. Algebraic Settings and Integrals Associated with 3-Posets

Let Q⟨x, y, z⟩ be the Q-algebra of polynomials in three non-commutative variables,
graded by degree, where x, y, and z are each assigned a degree of 1. The algebra Q⟨x, y, z⟩
is identified with the graded Q-vector space H, which is spanned by the monomials in the
variables x, y, and z (see [29–32]).

Let H0 be the subalgebra of H generated by words not beginning with y and not ending
with x. The words in H0 are called “admissible words”.

In other words, the subalgebra H0 is generated by admissible words. Let Z : H0 → R

be the Q-linear map that assigns to each word u1u2 · · · uk in H0, where ui ∈ {x, y, z},
the multiple integral

∫

0<t1<···<tk<1
wu1

(t1)wu2(t2) · · ·wuk
(tk). (2)

Here, wx(t) = dt/(1 − t), wy(t) = dt/t, and wz(t) = −dt/(1 + t). As the word u1u2 · · · uk

is in H0, we always have wu1
(t) ̸= dt/t and wuk

(t) ̸= dt/(1 − t), so the integral converges.
Let us define the bilinear product✁ (the shuffle product) on H by the rules

1✁w = w✁ 1 = w, (3)
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for any word w, and

w1x1✁w2x2 = (w1✁w2x2)x1 + (w1x1✁w2)x2, (4)

for any words w1, w2, any letters xi = x, y, or z (i = 1, 2), and then extend the above
rules to the whole algebra H by linearity. It is known that each of the above products is
commutative and associative [33,34]. We denote the algebras (H0,+,✁) by H0

✁
. By the

standard shuffle product identity of iterated integrals, the evaluation map Z is again an
algebra homomorphism for the multiplication✁ (see [34]):

Z(w1✁w2) = Z(w1)Z(w2). (5)

We introduce a combinatorial generalization of the iterated integral, the integral
associated with a 3-poset. We review the definitions and basic properties of 3-labeled posets
(we call them 3-posets for short in this paper) and the associated integrals (see [35]).

Definition 1. A 3-poset is a pair (X, µX), where X = (X,≤) is a finite partially ordered set (poset
for short) and µX is a map from X to {0, 1,−1}. We often omit µX and simply say “a 3-poset X”.
The µX is called the label map of X.

A 3-poset (X, µX) is called admissible if µX(x) ̸= 1 for all maximal elements x ∈ X and
µX(x) ̸= 0 for all minimal elements x ∈ X.

A 3-poset X is depicted as a Hasse diagram in which an element x with µX(x) = 0,
µX(x) = 1, µX(x) = −1 is represented by ◦, •, ⊚, respectively. For example, the diagram

◦ ◦

• •

⊚

represents the 3-poset X = {x1, x2, x3, x4, x5} with order x1 < x2 < x3 > x4 < x5 and label

(µX(x1), . . . , µX(x5)) = (−1, 1, 0, 1, 0). For convenience, we use
◦

◦a
to represent a circles

arranged in a chain.

Definition 2. For an admissible 3-poset X, we define the associated integral

I(X) =
∫

∆X
∏
x∈X

ωµX(x)(tx), (6)

where

∆X =
{

(tx)x ∈ [0, 1]X
∣

∣ tx < ty if x < y
}

and

ω0(t) =
dt

t
, ω1(t) =

dt

1 − t
, w−1(t) =

−dt

1 + t
.

Note that the admissibility of a 3-poset corresponds to the convergence of the asso-
ciated integral. We also recall an algebraic setup for 3-posets. Let P be the Q-algebra
generated by the isomorphism classes of 3-posets, whose multiplication is given by the
disjoint union of 3-posets. Then, the integral (6) defines a Q-algebra homomorphism
I : P0 → R from the subalgebra P0 of P generated by the classes of admissible 3-posets.
We refer to this type of integral as a 3-poset integral.

There is a Q-linear map W : P → H that transforms a 3-poset into a finite sum of
words in x, y, and z. This transformation is characterized by the following two conditions:
the first condition states that for a totally ordered X = x1 < x2 < · · · < xk, W(X) =
zµ(x1)

zµ(x2)
· · · zµ(xk)

, and the second condition asserts that if a and b are non-comparable
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in X, then W(X) can be expressed as W(Xb
a) + W(Xa

b), where Xb
a represents the 3-poset

obtained from X by adjoining a new relation a < b. This W sends P0 onto H0 and satisfies

I = Z ◦ W : P0 → R. (7)

It is known that 2-posets are special cases of 3-posets (see [35,36]).
Let w1, w2, w3, w4 ∈ {x, z}. We list some useful identities for the algebra (H0,+,✁):

For any nonnegative integers a, b, c, and d, we have

w1ya
✁w2yb (8)

= ∑
b1+b2=b

(

a + b2

a

)

w2yb1 w1ya+b2 + ∑
a1+a2=a

(

a2 + b

b

)

w1ya1 w2ya2+b,

w1yaw2yb
✁w3yc (9)

= ∑
c1+c2+c3=c

(

a + c2

a

)(

b + c3

b

)

w3yc1 w1ya+c2 w2yb+c3

+ ∑
a1+a2=a
c1+c2=c

(

a2 + c1

a2

)(

b + c2

b

)

w1ya1 w3ya2+c1 w2yb+c2

+ ∑
b1+b2=b

(

b2 + c

b2

)

w1yaw2yb1 w3yb2+c,

w1yaw2yb
✁w3ycw4yd (10)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

w3ycw4yd1 w1ya+d2 w2yb+d3

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

w3yc1 w1ya1+c2 w4ya2+d1 w2yb+d2

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

w3yc1 w1ya+c2 w2yb1+c3 w4yb2+d

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

w1ya1 w3ya2+cw4ya3+d1 w2yb+d2

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

w1ya1 w3ya2+c1 w2yb1+c2 w4yb2+d

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

w1yaw2yb1 w3yb2+cw4yb3+d.

Note that the variables in the summand are assumed to be nonnegative integers throughout
this paper. For example, we use the notation ∑a1+a2=a to indicate ∑ a1+a2=a

ai≥0
.

In particular, when w1 = w2 = w3 = w4 = x or z, i.e., wi are the same elements, the
shuffle relations are simplified as follows [21,32]:

xyp
✁ xyq = ∑

d1+d2=p+q

[(

d2

p

)

+

(

d2

q

)]

xyd1 xyd2 , (11)

xya1 xya2 ✁ xyb = ∑
d1+d2+d3
=a1+a2+b

{(

d3

b

)

δd1,a1
+

(

d2

a1

)(

d3

a2

)

+

(

d2

a1 − d1

)(

d3

a2

)}

xyd1 xyd2 xyd3 , (12)
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xya1 xya2 ✁ xyb1 xyb2 = ∑
d1+d2+d3+d4
=a1+a2+b1+b2

{(

d3

a1

)(

d4

a2

)

δd1,b1
+

(

d3

b1

)(

d4

b2

)

δd1,a1
(13)

+

(

d3

a2 + b2 − d4

)(

d4

a2

)[(

d2

b1

)

+

(

d2

b1 − d1

)]

+

(

d3

a2 + b2 − d4

)(

d4

b2

)[(

d2

a1

)

+

(

d2

a1 − d1

)]}

xyd1 xyd2 xyd3 xyd4 .

3. The Formulas for Alternating Mordell–Tornheim Series

In this section, we utilize the 3-poset integrals to represent two alternating Mordell–
Tornheim series, the R-series and T-series, as a linear combination of alternating double
zeta values, consistent with the expressions provided by Zhao [27].

Proposition 1. Given three nonnegative integers a, b, and s, we have

∑
n,m≥1

(−1)n

na+1mb+1(n + m)s+1

= ∑
b1+b2=b

(

a + b2

a

)

ζ(b1 + 1, a + b2 + s + 2) + ∑
a1+a2=a

(

a2 + b

b

)

ζ(a1 + 1, a2 + b + s + 2).

Proof. Let us consider the following 3-poset integral:

L := I















◦
s

◦

◦

◦
a

◦

◦ ◦
b

⊚ •















.

This integral L can be written as

∫

0<u1<u2<···<us+1<1
F(u1)G(u1)

du1

u1

du2

u2
· · ·

dus+1

us+1
,

where

F(u1) =
∫

0<t1<···<ta+1<u1

−dt1

1 + t1

dt2

t2
· · ·

dta+1

ta+1
,

G(u1) =
∫

0<w1<···<wb+1<u1

dw1

1 − w1

dw2

w2
· · ·

dwb+1

wb+1
.

Convert F(u1) and G(u1) into forms that represent infinite series:

F(u1) =
∞

∑
n=1

(−1)nun
1

na+1
, G(u1) =

∞

∑
m=1

um
1

mb+1
.

Then, the 3-poset integral L can be rewritten as

L = ∑
n,m≥1

(−1)n

na+1mb+1

∫

0<u1<···<us+1<1
un+m−1

1 du1
du2

u2
· · ·

dus+1

us+1

= ∑
n,m≥1

(−1)n

na+1mb+1(n + m)s+1
.
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This is exactly the representation of R(a + 1, b + 1, s + 1). On the other hand, using
Equation (7), where I = Z ◦ W : P0 → R and W sends P0 onto H0, we have

L = Z((zya
✁ xyb)ys+1).

By applying Equation (8), we obtain

(zya
✁ xyb)ys+1 = ∑

b1+b2=b

(

a + b2

a

)

xyb1 zya+b2 + ∑
a1+a2=a

(

a2 + b

b

)

zya1 xya2+b.

By applying the Z map to the above shuffle relation, we have

L = ∑
b1+b2=b

(

a + b2

a

)

ζ(b1 + 1, a + b2 + s + 2) + ∑
a1+a2=a

(

a2 + b

b

)

ζ(a1 + 1, a2 + b + s + 2).

Therefore, we conclude our result.

Next, we apply similar methods to handle the T-series. Therefore, we explain only the
important parts and appropriately reduce some of the detailed explanations.

Proposition 2. For any three nonnegative integers a, b, and s, we have

∑
n,m≥1

(−1)n+m

na+1mb+1(n + m)s+1
= ∑

d1+d2=a+b

ζ(d1 + 1, d2 + s + 2)

[(

d2

a

)

+

(

d2

b

)]

.

Proof. Let us consider the following 3-poset integral:

L := I















◦
s

◦

◦

◦
a

◦

◦ ◦
b

⊚ ⊚















,

which has the following infinite-series expansion:

∑
n,m≥1

(−1)n+m

na+1mb+1(n + m)s+1
.

This is exactly the representation of T(a + 1, b + 1; s + 1). On the other hand, using the W
map to transform this 3-poset diagram into H0, we have

L = Z((zya
✁ zyb)ys+1).

By applying Equation (11) and using the Z mapping, we obtain

L = ∑
d1+d2=a+b

ζ(d1 + 1, d2 + s + 2)

[(

d2

a

)

+

(

d2

b

)]

.

Combining the infinite-series expansion of L, we obtain the desired result.

4. The Decomposition Relation of the A-Series

Given α = (a1, a2, a3, a4; s) of positive integers and ε = (ε1, ε2) with εi ∈ {1,−1},
we define

A(α; ε) = ∑
n,m≥1

εn
1εm

2 M
(a1)
n M

(a3)
m

na2 ma4(n + m)s
, (14)
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where M
(u)
k ∈ {H

(u)
k , H

(u)
k }. We simplify the notations according to the following rules:

when εi = −1, we place a bar on top of a2i, denoted as ā2i; if M
(ai)
n = H

(ai)
n , we place a bar

on top of ai, denoted as āi. For example,

A(ā, b, c, d̄; s) = ∑
n,m≥1

(−1)mH
(a)
n H

(c)
m

nbmd(n + m)s
and A(a, b̄, c̄, d̄; s) = ∑

n,m≥1

(−1)m+n H
(a)
n H

(c)
m

nbmd(n + m)s
.

In order to compute the A(α; ε) series, we transform these series into a linear combina-
tion of the S(α; ε) series defined below.

We define

S(α; ε) = ∑
n,m≥1

εn
1εm

2 M
(a1)
n−1M

(a3)
m−1

na2 ma4(n + m)s
, (15)

where M
(u)
k ∈ {1, H

(u)
k , H

(u)
k }. An additional condition for simplifying the notation is that

if M
(ai)
n = 1, we set ai to 0. For example,

S(0, b̄, c, d̄; s) = ∑
n,m≥1

(−1)m+n H
(c)
m−1

nbmd(n + m)s
.

It is evident that both the A-series and S-series exhibit symmetric properties:

A(a, b, c, d; s) = A(c, d, a, b; s), and S(a, b, c, d; s) = S(c, d, a, b; s).

Since H
(a)
n = H

(a)
n−1 +

1
na and H

(a)
n = H

(a)
n−1 +

(−1)n−1

na , we have

A(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)n H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1

= ∑
n,m≥1

(−1)nH
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
+ ∑

n,m≥1

(−1)n+m−1H
(a+1)
n−1

nb+1mc+d+2(n + m)s+1

+ ∑
n,m≥1

(−1)nH
(c+1)
m−1

na+b+2md+1(n + m)s+1
+ ∑

n,m≥1

(−1)n+m−1

na+b+2mc+d+2(n + m)s+1

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1)− S(0, a + b + 2, 0, c + d + 2; s + 1).

Using the same technique, we can transform all the evaluations of A(α; ε) into the
evaluations of S(α; ε). We list them as follows:

A(a + 1, b + 1, c + 1, d + 1; s + 1) (16)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (17)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (18)

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1)− S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (19)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(0, a + b + 2, c + 1, d + 1; s + 1)
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−S(a + 1, b + 1, 0, c + d + 2; s + 1)− S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) (20)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (21)

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1)− S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (22)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(0, a + b + 2, c + 1, d + 1; s + 1)

−S(a + 1, b + 1, 0, c + d + 2; s + 1)− S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) (23)

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(a + 1, b + 1, 0, c + d + 2; s + 1)

−S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) = A(c + 1, d + 1, a + 1, b + 1; s + 1) (24)

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(0, a + b + 2, c + 1, d + 1; s + 1)

−S(a + 1, b + 1, 0, c + d + 2; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1),

A(a + 1, b + 1, c + 1, d + 1; s + 1) (25)

= S(a + 1, b + 1, c + 1, d + 1; s + 1)− S(a + 1, b + 1, 0, c + d + 2; s + 1)

−S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1).

By organizing the above equations and considering their symmetry, we only need to
explore the following 21 types of S(α, ε) series to fully represent all possible A(α, ε) series:

S(a + 1, b + 1, c + 1, d + 1; s + 1), S(a + 1, b + 1, c + 1, d + 1; s + 1),

S(a + 1, b + 1, c + 1, d + 1; s + 1), S(a + 1, b + 1, c + 1, d + 1; s + 1),

S(a + 1, b + 1, c + 1, d + 1; s + 1), S(a + 1, b + 1, c + 1, d + 1; s + 1),

S(a + 1, b + 1, c + 1, d + 1; s + 1), S(a + 1, b + 1, c + 1, d + 1; s + 1),

S(a + 1, b + 1, c + 1, d + 1; s + 1), S(a + 1, b + 1, c + 1, d + 1; s + 1),

S(a + 1, b + 1, 0, d + 1; s + 1), S(a + 1, b + 1, 0, d + 1; s + 1),

S(a + 1, b + 1, 0, d + 1; s + 1), S(a + 1, b + 1, 0, d + 1; s + 1),

S(a + 1, b + 1, 0, d + 1; s + 1), S(a + 1, b + 1, 0, d + 1; s + 1),

S(a + 1, b + 1, 0, d + 1; s + 1), S(a + 1, b + 1, 0, d + 1; s + 1),

and the following three forms:

S(0, b + 1, 0, d + 1; s + 1), S(0, b + 1, 0, d + 1; s + 1), S(0, b + 1, 0, d + 1; s + 1).

The first ten S-series are discussed in the next section, and the subsequent eight S-series
are studied in Section 6. For the last three S-series, it should be noted that

S(0, b + 1, 0, d + 1; s + 1) = ∑
n,m≥1

1

nb+1md+1(n + m)s+1
.

This series is ζMT(b + 1, d + 1; s + 1). We apply Equation (1) and obtain (see Equation (11)
in [21])

ζMT(b + 1, d + 1; s + 1) = ∑
d1+d2=b+d

ζ(d1 + 1, d2 + s + 2)

[(

d2

b

)

+

(

d2

d

)]

. (26)
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Also,

S(0, b + 1, 0, d + 1; s + 1) = ∑
n,m≥1

(−1)n

nb+1md+1(n + m)s+1

which corresponds to R(b + 1, d + 1, s + 1). Its expression is determined by Proposition 1.
Similarly, the series

S(0, b + 1, 0, d + 1; s + 1) = ∑
n,m≥1

(−1)n+m

nb+1md+1(n + m)s+1

is determined by Proposition 2.

5. The First Ten S-Series

First, we calculate the first ten types of the S-series. We demonstrate our method using
S(a + 1, b + 1, c + 1, d + 1; s + 1) as an example. The basic calculation principles for the
remaining nine types follow a similar approach to the one demonstrated.

Theorem 1. Given five nonnegative integers a, b, c, d, and s, we have

∑
n,m≥1

(−1)n+m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
= S(a + 1, b + 1, c + 1, d + 1; s + 1)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2).

Proof. Let

B(u1) =
∫

0<s1<s2<···<sb+1<u1

F(s1)
−ds1

1 + s1

ds2

s2
· · ·

dsb+1

sb+1
,

D(u1) =
∫

0<w1<w2<···<wd+1<u1

G(w1)
−dw1

1 + w1

dw2

w2
· · ·

dwd+1

wd+1
,

where

F(s1) =
∫

0<t1<t2<···<ta+1<s1

dt1

1 − t1

dt2

t2
· · ·

dta+1

ta+1
,

G(w1) =
∫

0<u1<u2<···<uc+1<w1

du1

1 − u1

du2

u2
· · ·

duc+1

uc+1
.

Then, we can express the following 3-poset integral as an iterated integral:
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L = I



























◦
s

◦

◦

◦
b

◦

◦ ◦
d

⊚ ⊚

◦
a

◦

◦ ◦ c
• •



























=
∫

0<u1<u2<···<us+1<1
B(u1)D(u1)

du1

u1

du2

u2
· · ·

dus+1

us+1
.

Transform F(s1) and G(w1) into representations as infinite series:

F(s1) =
∞

∑
k=1

sk
1

ka+1
, G(w1) =

∞

∑
k=1

wk
1

kc+1
.

Substituting this form of F(s1) into B(u1), we have

B(u1) =
∞

∑
k=1

(−1)

ka+1

∫

0<s1<s2<···<sb+1<u1

sk
1

1 + s1
ds1

ds2

s2
· · ·

dsb+1

sb+1

= ∑
1≤k<n

(−1)n+k

ka+1nb+1
un

1 =
∞

∑
n=1

(−1)n+1H
(a+1)
n−1

nb+1
un

1 .

Similarly, we rewrite D(u1) as

D(u1) =
∞

∑
m=1

(−1)m+1H
(c+1)
m−1

md+1
um

1 .

The 3-poset integral L becomes

L = ∑
n,m≥1

(−1)n+m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1

∫

0<u1<u2<···<us+1<1
un+m−1

1 du1
du2

u2
· · ·

dus+1

us+1

= ∑
n,m≥1

(−1)n+m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
= S(a + 1, b + 1, c + 1, d + 1; s + 1).

Applying Equation (7), where I = Z ◦ W : P0 → R and W maps P0 onto H0, we have

L = Z((xyazyb
✁ xyczyd)ys+1).

By Equation (10), we obtain

(xyazyb
✁ xyczyd)ys+1

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

xyczyd1 xya+d2 zyb+d3+s+1

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

xyc1 xya1+c2 zya2+d1 zyb+d2+s+1

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

xyc1 xya+c2 zyb1+c3 zyb2+d+s+1
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+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

xya1 xya2+czya3+d1 zyb+d2+s+1

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

xya1 xya2+c1 zyb1+c2 zyb2+d+s+1

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

xyazyb1 xyb2+czyb3+d+s+1.

Using the Z map to transform the above shuffle relation, we have

L = Z((xyazyb
✁ xyczyd)ys+1)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2).

This is the representation of S(a + 1, b + 1, c + 1, d + 1; s + 1).

For the remaining nine types, we omit the derivation process due to the similarity in
methods and only provide the results. Two of these types use a 3-poset Hasse diagram
that is actually a 2-poset Hasse diagram. Thus, we can use Equation (13) to simplify their
expressions. We discuss these two types at the end of this section.

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(27)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),
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S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(28)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(29)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)n H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(30)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)
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− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)n+m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(31)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(32)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2),

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(33)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)
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+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2).

The remaining two S-series are

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1

= I



























◦
s

◦

◦

◦
b

◦

◦ ◦
d

• •

◦
a

◦

◦ ◦ c
• •



























= Z((xyaxyb
✁ xycxyd)ys+1).

and

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)n+mH
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1

= I



























◦
s

◦

◦

◦
b

◦

◦ ◦
d

⊚ ⊚

◦
a

◦

◦ ◦ c

⊚ ⊚



























= Z((zyazyb
✁ zyczyd)ys+1).

Using Equation (13) rather than Equation (10) simplifies their expressions.

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(34)

= ∑
d1+d2+d3+d4
=a+b+c+d

{(

d3

a

)(

d4

b

)

δd1,c +

(

d3

c

)(

d4

d

)

δd1,a

+

(

d3

b + d − d4

)(

d4

b

)[(

d2

c

)

+

(

d2

c − d1

)]

+

(

d3

b + d − d4

)(

d4

d

)[(

d2

a

)

+

(

d2

a − d1

)]}

ζ(d1 + 1, d2 + 1, d3 + 1, d4 + s + 2).
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S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)n+m H
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1
(35)

= ∑
d1+d2+d3+d4
=a+b+c+d

{(

d3

a

)(

d4

b

)

δd1,c +

(

d3

c

)(

d4

d

)

δd1,a

+

(

d3

b + d − d4

)(

d4

b

)[(

d2

c

)

+

(

d2

c − d1

)]

+

(

d3

b + d − d4

)(

d4

d

)[(

d2

a

)

+

(

d2

a − d1

)]}

ζ(d1 + 1, d2 + 1, d3 + 1, d4 + s + 2).

In fact, Equation (34) has been proved in Theorem 5 in [21].

6. The Following Eight S-Series

To illustrate the derivation process for the last eight types of the S-series, we start
with S(a + 1, b + 1, 0, d + 1; s + 1). The basic steps for deriving the remaining seven types
are similar.

Theorem 2. Given four nonnegative integers a, b, d, and s, we have

∑
n,m≥1

(−1)n H
(a+1)
n−1

nb+1md+1(n + m)s+1
= ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

+ ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2).

Proof. Let

F(s1) =
∫

0<t1<t2<···<ta+1<s1

−dt1

1 + t1

dt2

t2
· · ·

dta

ta
,

and

B(u1) =
∫

0<s1<s2<···<sb+1<u1

F(s1)
−ds1

1 + s1

ds2

s2
· · ·

dsb+1

sb+1
.

We have

L = I



























◦
s

◦

◦

◦
b

◦

◦ ◦
d

⊚ •

◦
a

◦

⊚



























=
∫

0<u1<u2<···<us+1<1
B(u1)D(u1)

du1

u1

du2

u2
· · ·

dus+1

us+1
,

where

D(u1) =
∫

0<w1<w2<···<wd+1<u1

dw1

1 − w1

dw2

w2
· · ·

dwd+1

wd+1
.

Transform F(s1) and D(u1) into representations as infinite series:

F(s1) =
∞

∑
k=1

(−1)k

ka+1
sk

1, D(u1) =
∞

∑
m=1

um
1

md+1
.
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Substituting this form of F(s1) into B(u1), we have

B(u1) =
∞

∑
k=1

(−1)k+1

ka+1

∫

0<s1<s2<···<sb+1<u1

sk
1

1 + s1
ds1

ds2

s2
· · ·

dsb+1

sb+1

= ∑
1≤k<n

(−1)n

ka+1nb+1
un

1 =
∞

∑
n=1

(−1)nH
(a+1)
n−1

nb+1
un

1 .

The 3-poset integral L becomes

L = ∑
n,m≥1

(−1)n H
(a+1)
n−1

nb+1md+1

∫

0<u1<u2<···<us+1<1
un+m−1

1 du1
du2

u2
· · ·

dus+1

us+1

= ∑
n,m≥1

(−1)nH
(a+1)
n−1

nb+1md+1(n + m)s+1
= S(a + 1, b + 1, 0, d + 1; s + 1).

Applying Equation (7), where I = Z ◦ W : P0 → R and W maps P0 onto H0, we have

L = Z((zyazyb
✁ xyd)ys+1).

By Equation (9), we obtain

(zyazyb
✁ xyd)ys+1 = ∑

d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

xyd1 zya+d2 zyb+d3+s+1

+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

zya1 xya2+d1 zyb+d2+s+1

+ ∑
b1+b2=b

(

b2 + d

b2

)

zyazyb1 xyb2+d+s+1.

Using the Z map to transform the above shuffle relation, we have

L = Z((zyazyb
✁ xyd)ys+1) = ∑

n,m≥1

(−1)n H
(a+1)
n−1

nb+1md+1(n + m)s+1

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2).

This is the representation of S(a + 1, b + 1, 0, d + 1; s + 1).

We use a similar method to express the remaining seven types of S(α, ε) as a linear
combination of alternating multiple zeta values:

S(a + 1, b + 1, 0, d + 1; s + 1) (36)

= ∑
n,m≥1

H
(a+1)
n−1

nb+1md+1(n + m)s+1
= ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

+ ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)
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+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (37)

= ∑
n,m≥1

(−1)m H
(a+1)
n−1

nb+1md+1(n + m)s+1
= ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

+ ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (38)

= ∑
n,m≥1

(−1)n+m H
(a+1)
n−1

nb+1md+1(n + m)s+1
= ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

+ ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (39)

= ∑
n,m≥1

H
(a+1)
n−1

nb+1md+1(n + m)s+1
= − ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

− ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (40)

= ∑
n,m≥1

(−1)m H
(a+1)
n−1

nb+1md+1(n + m)s+1
= − ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

− ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (41)

= ∑
n,m≥1

(−1)nH
(a+1)
n−1

nb+1md+1(n + m)s+1
= − ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

− ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2),

S(a + 1, b + 1, 0, d + 1; s + 1) (42)
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= ∑
n,m≥1

(−1)n+m H
(a+1)
n−1

nb+1md+1(n + m)s+1
= − ∑

b1+b2=b

(

b2 + d

b2

)

ζ(a + 1, b1 + 1, b2 + d + s + 2)

− ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
d1+d2=d

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2).

In fact, we can apply Equation (12) to Equations (36) and (38), but the resulting
expressions will not be significantly simplified. Therefore, we leave this to interested
readers (see Theorem 6 in [21]).

7. The Expressions of A-Series

By combining the results from the previous two sections and using Equations (16)
through (25), we can list the expressions for all the A-series. For example, consider

∑
n,m≥1

(−1)m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
= A(a + 1, b + 1, c + 1, d + 1; s + 1).

Applying Equation (18), we find that

A(a + 1, b + 1, c + 1, d + 1; s + 1)

= S(a + 1, b + 1, c + 1, d + 1; s + 1) + S(a + 1, b + 1, 0, c + d + 2; s + 1)

+S(0, a + b + 2, c + 1, d + 1; s + 1) + S(0, a + b + 2, 0, c + d + 2; s + 1).

There are four S-series in the expression. For the first S-series, S(a+ 1, b+ 1, c+ 1, d + 1; s+ 1),
we use Equation (27) and obtain

S(a + 1, b + 1, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)mH
(a+1)
n−1 H

(c+1)
m−1

nb+1md+1(n + m)s+1

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2).

To address the second S-series, S(a + 1, b + 1, 0, c + d + 2; s + 1), Equation (37) is
employed. By substituting d with c + d + 1 in Equation (37) while keeping the other
parameters unchanged, the expression for the second S-series can be derived as follows:

S(a + 1, b + 1, 0, c + d + 2; s + 1) = ∑
n,m≥1

(−1)m H
(a+1)
n−1

nb+1mc+d+2(n + m)s+1
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= ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

+ ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2).

We apply Theorem 2 to the third S-series, S(0, a+ b+ 2, c+ 1, d + 1; s+ 1). The S-series
mentioned in Theorem 2 is written as S(a + 1, b + 1, 0, d + 1; s + 1). Due to symmetry, this
S-series can also be written as S(0, d + 1, a + 1, b + 1; s + 1). To find the expression for the
S-series we need, we can replace the parameters in Theorem 2: change a to c, b to d, and d
to a + b + 1. This results in the required S-series S(0, a + b + 2, c + 1, d + 1; s + 1) being
expressed as follows:

S(0, a + b + 2, c + 1, d + 1; s + 1) = ∑
n,m≥1

(−1)m H
(c+1)
m

na+b+2md+1(n + m)s+1

= ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

+ ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

+ ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2).

Now, w apply the results from Proposition 1 to the fourth S-series. The S-series in
Proposition 1 is S(0, a + 1, 0, b + 1; s + 1). Utilizing symmetry, this S-series can be repre-
sented as S(0, b + 1, 0, a + 1; s + 1). Therefore, by replacing parameter a with c + d + 1
and parameter b with a + b + 1 in Proposition 1, we obtain the desired S(0, a + b +
2, 0, c + d + 2; s + 1), which is expressed as follows:

S(0, a + b + 2, p, c + d + 2; s + 1) = ∑
n,m≥1

(−1)m

na+b+2mc+d+2(n + m)s+1

= ∑
b1+b2=a+b+1

(

c + d + b2 + 1

b2

)

ζ(b1 + 1, c + d + b2 + s + 3)

+ ∑
a1+a2=c+d+1

(

a2 + a + b + 1

a2

)

ζ(a1 + 1, a2 + a + b + s + 3).

By combining the expressions of the four S-series mentioned above, we arrive at the
final representation of A(a + 1, b + 1, c + 1, d + 1; s + 1).

∑
n,m≥1

(−1)m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(43)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)
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+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

+ ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

+ ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

+ ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

+ ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

+ ∑
b1+b2=a+b+1

(

c + d + b2 + 1

b2

)

ζ(b1 + 1, c + d + b2 + s + 3)

+ ∑
a1+a2=c+d+1

(

a2 + a + b + 1

a2

)

ζ(a1 + 1, a2 + a + b + s + 3),

Building upon the demonstrated example, we proceed to transform the required A-series
into four S-series using Equations (16)–(25). Leveraging the representation outcomes from
the preceding two sections and Propositions 1 and 2, with suitable substitutions for the
respective parameters, we derive a representation that converts the four desired S-series
into a linear combination of alternating multiple zeta values. Since the methods are similar,
we no longer demonstrate each step individually. Below, we list the expressions for all
A-series.

∑
n,m≥1

H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(44)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)
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− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

− ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

− ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

− ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

− ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

− ∑
b1+b2=a+b+1

(

c + d + 1 + b2

b2

)

ζ(b1 + 1, c + d + b2 + s + 3)

− ∑
a1+a2=c+d+1

(

a2 + a + b + 1

a2

)

ζ(a1 + 1, a2 + a + b + s + 3),

∑
n,m≥1

(−1)m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(45)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

− ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

− ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)
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− ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

− ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

− ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
d1+d2=a+b+c+d+2

ζ(d1 + 1, d2 + s + 2)

[(

d2

a + b + 1

)

+

(

d2

c + d + 1

)]

,

∑
n,m≥1

(−1)nH
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(46)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

− ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

− ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

− ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

− ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

− ∑
d1+d2=a+b+c+d+2

ζ(d1 + 1, d2 + s + 2)

[(

d2

a + b + 1

)

+

(

d2

c + d + 1

)]

,
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∑
n,m≥1

(−1)n+m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(47)

= − ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

− ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

− ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

− ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

− ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

− ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

− ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

− ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

− ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

− ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

− ∑
b1+b2=c+d+1

(

a + b + 1 + b2

b2

)

ζ(b1 + 1, a + b + b2 + s + 3)

− ∑
a1+a2=a+b+1

(

a2 + c + d + 1

a2

)

ζ(a1 + 1, a2 + c + d + s + 3),

∑
n,m≥1

H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(48)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)
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+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

+ ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

+ ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

+ ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

+ ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

+ ∑
d1+d2=a+b+c+d+2

ζ(d1 + 1, d2 + s + 2)

[(

d2

a + b + 1

)

+

(

d2

c + d + 1

)]

,

∑
n,m≥1

(−1)m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(49)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)
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+ ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)

+ ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

+ ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

+ ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

+ ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=c+d+1

(

a + b + 1 + b2

b2

)

ζ(b1 + 1, a + b + b2 + s + 3)

+ ∑
a1+a2=a+b+1

(

a2 + c + d + 1

a2

)

ζ(a1 + 1, a2 + c + d + s + 3),

∑
n,m≥1

(−1)n+m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1
(50)

= ∑
d1+d2+d3=d

(

a + d2

a

)(

b + d3

b

)

ζ(c + 1, d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a
c1+c2=c
d1+d2=d

(

a1 + c2

a1

)(

a2 + d1

a2

)(

b + d2

b

)

ζ(c1 + 1, a1 + c2 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=b

c1+c2+c3=c

(

a + c2

a

)(

b1 + c3

b1

)(

b2 + d

b2

)

ζ(c1 + 1, a + c2 + 1, b1 + c3 + 1, b2 + d + s + 2)

+ ∑
a1+a2+a3=a

d1+d2=d

(

a2 + c

a2

)(

a3 + d1

a3

)(

b + d2

b

)

ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, b + d2 + s + 2)

+ ∑
a1+a2=a
b1+b2=b
c1+c2=c

(

a2 + c1

a2

)(

b1 + c2

b1

)(

b2 + d

b2

)

ζ(a1 + 1, a2 + c1 + 1, b1 + c2 + 1, b2 + d + s + 2)

+ ∑
b1+b2+b3=b

(

b2 + c

b2

)(

b3 + d

b3

)

ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + s + 2)

+ ∑
b1+b2=b

(

b2 + c + d + 1

b2

)

ζ(a + 1, b1 + 1, b2 + c + d + s + 3)

+ ∑
d1+d2+d3=c+d+1

(

a + d2

a

)(

b + d3

b

)

ζ(d1 + 1, a + d2 + 1, b + d3 + s + 2)

+ ∑
a1+a2=a

d1+d2=c+d+1

(

a2 + d1

a2

)(

b + d2

b

)

ζ(a1 + 1, a2 + d1 + 1, b + d2 + s + 2)

+ ∑
b1+b2=d

(

b2 + a + b + 1

b2

)

ζ(c + 1, b1 + 1, b2 + a + b + s + 3)
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+ ∑
d1+d2+d3=a+b+1

(

c + d2

c

)(

d + d3

d

)

ζ(d1 + 1, c + d2 + 1, d + d3 + s + 2)

+ ∑
a1+a2=c

d1+d2=a+b+1

(

a2 + d1

a2

)(

d + d2

d

)

ζ(a1 + 1, a2 + d1 + 1, d + d2 + s + 2)

+ ∑
d1+d2=a+b+c+d+2

ζ(d1 + 1, d2 + s + 2)

[(

d2

a + b + 1

)

+

(

d2

c + d + 1

)]

.

Because A(a + 1, b + 1, c + 1, d + 1; s + 1) and A(a + 1, b + 1, c + 1, d + 1; s + 1) rely
on 2-poset Hasse diagrams, their expressions are relatively simple. The expression for
A(a + 1, b + 1, c + 1, d + 1; s + 1) is available in Equation (26) in [21]. Consequently, we
only provide the expression for A(a + 1, b + 1, c + 1, d + 1; s + 1) here.

∑
n,m≥1

(−1)n+m H
(a+1)
n H

(c+1)
m

nb+1md+1(n + m)s+1

= ∑
d1+d2+d3+d4
=a+b+c+d

{(

d3

a

)(

d4

b

)

δd1,c +

(

d3

c

)(

d4

d

)

δd1,a +

(

d3

b + d − d4

)(

d4

b

)[(

d2

c

)

+

(

d2

c − d1

)]

+

(

d3

b + d − d4

)(

d4

d

)[(

d2

a

)

+

(

d2

a − d1

)]}

ζ(d1 + 1, d2 + 1, d3 + 1, d4 + s + 2)

+ ∑
d1+d2+d3

=a+b+c+d+1

{(

d3

a + b + 1

)

δd1,c +

(

d3

c + d + 1

)

δd1,a +

(

d2

a

)(

d3

b

)

+

(

d2

c

)(

d3

d

)

+

(

d2

a − d1

)(

d3

b

)

+

(

d2

c − d1

)(

d3

d

)}

ζ(d1 + 1, d2 + 1, d3 + s + 2)

+ ∑
d1+d2=a+b+c+d+2

[(

d2

a + b + 1

)

+

(

d2

c + d + 1

)]

ζ(d1 + 1, d2 + s + 2). (51)

8. Examples and Concluding Remarks

Here, we substitute a = b = c = d = s = 0 into the formulas for the A-series from
the previous section and list the results for reference. We have numerically verified these
equations using Mathematica 13.

∑
n,m≥1

(−1)m Hn Hm

nm(n + m)
(52)

= ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2)

+ζ(1, 1, 3) + ζ(1, 1, 3) + ζ(1, 2, 2) + ζ(2, 1, 2) + ζ(1, 1, 3) + ζ(1, 2, 2)

+ζ(1, 1, 3) + ζ(1, 1, 3) + ζ(1, 2, 2) + ζ(2, 1, 2) + ζ(1, 1, 3) + ζ(1, 2, 2)

+2ζ(1, 4) + ζ(2, 3) + 2ζ(1, 4) + ζ(2, 3),

∑
n,m≥1

Hn Hm

nm(n + m)
(53)

= −
(

3ζ(1, 1, 1, 2) + 2ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(2, 1, 2) + ζ(2, 1, 2)

+ζ(1, 1, 3) + 3ζ(1, 1, 3) + 2ζ(1, 1, 3) + 2ζ(1, 2, 2) + 2ζ(1, 2, 2)

+2ζ(1, 4) + ζ(2, 3) + 2ζ(1, 4) + ζ(2, 3)
)

,

∑
n,m≥1

(−1)m Hn Hm

nm(n + m)
(54)

= −
(

ζ(1, 1, 1, 2) + 2ζ(1, 1, 1, 2) + 3ζ(1, 1, 1, 2) + ζ(2, 1, 2) + ζ(2, 1, 2)

+ζ(1, 1, 3) + 2ζ(1, 1, 3) + 3ζ(1, 1, 3) + 2ζ(1, 2, 2) + 2ζ(1, 2, 2)

+4ζ(1, 4) + 2ζ(2, 3)),
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∑
n,m≥1

(−1)n+mHn Hm

nm(n + m)
(55)

= 6ζ(1, 1, 1, 2) + 6ζ(1, 1, 3) + 4ζ(1, 2, 2) + 2ζ(2, 1, 2) + 4ζ(1, 4) + 2ζ(2, 3),

∑
n,m≥1

(−1)n Hn Hm

nm(n + m)
(56)

= −
(

ζ(1, 1, 1, 2) + 2ζ(1, 1, 1, 2) + 3ζ(1, 1, 1, 2) + ζ(2, 1, 2) + ζ(2, 1, 2)

+3ζ(1, 1, 3) + 2ζ(1, 1, 3) + ζ(1, 1, 3) + 2ζ(1, 2, 2) + 2ζ(1, 2, 2)

+4ζ(1, 4) + 2ζ(2, 3)
)

,

∑
n,m≥1

(−1)n+mHnHm

nm(n + m)
(57)

= −
(

3ζ(1, 1, 1, 2) + 2ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(2, 1, 2) + ζ(2, 1, 2)

+3ζ(1, 1, 3) + 2ζ(1, 1, 3) + ζ(1, 1, 3) + 2ζ(1, 2, 2) + 2ζ(1, 2, 2)

+2ζ(1, 4) + ζ(2, 3) + 2ζ(1, 4) + ζ(2, 3)
)

,

∑
n,m≥1

Hn Hm

nm(n + m)
(58)

= 2ζ(1, 1, 1, 2) + 4ζ(1, 1, 1, 2) + 2ζ(1, 1, 3) + 4ζ(1, 1, 3) + 4ζ(1, 2, 2) + 2ζ(2, 1, 2)

+4ζ(1, 4) + 2ζ(2, 3),

∑
n,m≥1

(−1)m Hn Hm

nm(n + m)
(59)

= 2ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + ζ(1, 1, 1, 2) + 2ζ(1, 1, 1, 2) + ζ(2, 1, 2) + ζ(2, 1, 2)

+2ζ(1, 1, 3) + ζ(1, 1, 3) + ζ(1, 1, 3) + 2ζ(1, 1, 3) + ζ(1, 2, 2) + ζ(1, 2, 2) + ζ(1, 2, 2)

+ζ(1, 2, 2) + 2ζ(1, 4) + ζ(2, 3) + 2ζ(1, 4) + ζ(2, 3),

∑
n,m≥1

(−1)n+mHn Hm

nm(n + m)
(60)

= 2ζ(1, 1, 1, 2) + 4ζ(1, 1, 1, 2) + 2ζ(1, 1, 3) + 4ζ(1, 1, 3) + 4ζ(1, 2, 2) + 2ζ(2, 1, 2)

+4ζ(1, 4) + 2ζ(2, 3).

Since the number of corresponding terms for multiple zeta values increases sig-
nificantly when the parameters are greater than zero, we provide only one additional
example here.

∑
n,m≥1

(−1)n+m H
(2)
n Hm

nm(n + m)
(61)

= 3ζ(1, 1, 2, 2) + 4ζ(1, 2, 1, 2) + 3ζ(2, 1, 1, 2) + 3ζ(1, 1, 4) + 6ζ(1, 3, 2) + ζ(3, 1, 2)

+4ζ(1, 2, 3) + 3ζ(2, 1, 3) + 3ζ(2, 2, 2) + 6ζ(1, 5) + 3ζ(2, 4) + ζ(3, 3).

In this paper, we present a method by evaluating a particular 3-poset integral using
two distinct techniques: one employs the shuffle relations with their corresponding Lyndon
words, and the other utilizes the corresponding infinite-series expansions. For example,
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∑
n,m,k≥1

(−1)m H
(a1+1)
n−1 H

(a2+1)
m−1 H

(a3+1)
k−1

nb1+1mb2+1kb3+1(n + m + k)s+1

= I





































◦s

◦

◦

◦b1 ◦ ◦

◦ ◦

b2

◦ b3

• ⊚ •

◦a1 ◦ ◦

◦ ◦

a2

◦ a3

⊚ • •





































= Z((zya1 xyb1 ✁ xya2 zyb2 ✁ xya3 xyb3)ys+1).

When we express the shuffle relation of the above equation as a sum of Lyndon
words ([29,32]) and then convert it to alternating multiple zeta values using the Z function,
the relationship becomes complex. For example, the above shuffle equation zya1 xyb1 ✁

xya2 zyb2 ✁ xya3 xyb3 can be expressed as a sum of 15 different Lyndon words. The coefficient
of each Lyndon word is made up of a sum of finite products of binomial coefficients.
However, once the shuffle relations are determined, the expressions of alternating multiple
zeta values can be easily obtained.

Using our method, it becomes straightforward to derive the desired representation of
the infinite-series sum as a linear combination of alternating multiple zeta values.
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