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Abstract: In this review, we summarize recent studies on nuclear matter and finite nuclei based on
parity doublet models. We first construct a parity doublet model (PDM), which includes the chiral
invariant mass 1 of nucleons together with the mass generated by the spontaneous chiral symmetry
breaking. We then study the density dependence of the symmetry energy in the PDM, which shows
that the symmetry energy is larger for smaller chiral inavariant mass. Then, we investigate some
finite nuclei by applying the Relativistic Continuum Hartree-Bogoliubov (RCHB) theory to the PDM.
We present the root-mean-square deviation (RMSD) of the binding energies and charge radii, and
show that my = 700 MeV is preferred by the nuclear properties. Finally, we modify the PDM by
adding the isovector scalar meson 4¢(980), and show that the inclusion of the a((980) enlarges the
symmetry energy of the infinite nuclear matter.

Keywords: parity doublet model; chiral invariant mass; isovector scalar meson; finite nuclei; nuclear
matter; symmetry energy

1. Introduction

Spontaneous chiral symmetry breaking plays an important role in low-energy hadron
physics, contributing substantially to the generation of hadron masses and the manifestation
of mass differences between chiral partners. In recent decades, there has been a growing
focus on investigating the restoration of chiral symmetry in hot and dense matter. Nucleon
masses will be changed in such extreme conditions, which provides hints for us towards a
further understanding to the mass of hadrons and further understanding to the dynamics
of the strongly interacting matter.

In the traditional linear sigma model, the entire nucleon mass is generated from the
spontaneous chiral symmetry breaking, in which the chiral partner to ordinary nucleon is
the nucleon itself. When the chiral symmetry is restored, the nucleon and its chiral partner
will be degenerate in mass. However, increasing evidence from the lattice calculations [1,2]
show that, with increasing temperature, the mass of negative parity baryon decreases to be
degenerate with the mass of positive baryon at the critical temperature.

The Parity Doublet Model (PDM) was proposed in Ref. [3] as an extended linear
sigma model with parity doubling structure to model the parity doubling of nucleon.
In the PDM, the excited nucleon, such as N(1535), is regarded as the chiral partner to
the ordinary nucleon, in which the spontaneous symmetry breaking generates the mass
difference between them. By considering the symmetry properties of the chiral partner, the
PDM predicts that the masses of the parity partners are degenerate into a finite mass, the
so-called chiral invariant mass 1, when the chiral symmetry is restored. In addition to the
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lattice simulations mentioned above, a recent analysis based on the QCD sum rules [4] also
supports the existence of the chiral invariant mass. Therefore, quantitative and qualitative
study of the chiral invariant mass will help us to understand the origin of hadron masses.

Studying the chiral invariant mass m is an essential measure to the origin of the mass
of a nucleon. There are several analyses to determine the value of mg by studying the
nucleon properties in vacuum. For example, the analysis in Ref. [5] shows that 11 is smaller
than 500 MeV using the decay width of N(1535), while Ref. [6] includes higher derivative
interaction, which makes the large m consistent with the decay width.

Chiral symmetry is expected to be partially restored in the high density region,
the study of which will provide some information on the chiral invariant mass. Ac-
tually, the PDM is applied to study high density matter in several analyses, such as
in Refs. [7-40]. Recently, in Refs. [33,35,37,38,40], the EoS of neutron star (NS) matter
constructed from an extended PDM [19] was connected to the one from the NJL-type
quark model, following Refs. [41,42]. The analysis of Ref. [33] used the observational
data of NS given in Refs. [43—48] to put a constraint on the chiral invariant mass mg as
600 MeV < my < 900 MeV, which was updated in Refs. [37,38] to 400 MeV < my < 700 MeV
by considering the effect of anomaly, as well as new data analysis [49-51]. Ref. [40] showed
that mp ~ 850 MeV with the consideration of central compact object (CCO) within the
supernova remnant HESS J1731-347 [52].

In recent decades, increasing attention is paid to the effect of isovector-scalar ¢(980)
meson (also called the § meson) on asymmetric matter such as NS because it accounts
for the attractive force in the isovector channel. References [53-63] use Walecka-type
relativistic mean-field (RMF) models, and Refs. [64,65] use density-dependent RMF models
to study the effect of 1p(980) meson to the symmetry energy as well as to the EoS of
asymmetric matter. It was pointed that the existence of ap meson increases the symmetry
energy [53,55,56,59-63], and that it stiffens the NS EoS [54-56,58,59] and asymmetric matter
EoS [65]. Therefore, the a9(980) meson is influential for the study of asymmetric matter.
Recently, in Ref. [66], the effect of 4¢(980) in neutron star is studied in the PDM and
the constraint to the chiral invariant mass is obtained as 580 MeV < my < 860 MeV. In
particular, this work shows that the a9(980) meson has large influence to the symmetry
energy at density larger than saturation density. Therefore, it is expected that further
experimental constraints on the symmetry energy will provide hints to the chiral invariant
mass and the origin of the mass of a nucleon.

To put an additional constraint on the value of the chiral invariant mass, the properties
of stable nuclei were studied in Ref. [67] with the PDM in the frame work of a self-consistent
relativistic mean field theory. For the nuclear structure calculations, the Relativistic Contin-
uum Hartree-Bogoliubov (RCHB) theory [68] was employed. It was found in Ref. [67] that
the calculated binding energies and charge radii of selected fifteen nuclei are closest to the
experimental values when mgy = 700 MeV.

In this review, we summarize the recent works on the study of chiral invariant mass in
infinite nuclear matter in Ref. [66] and finite nuclei in Ref. [67]. In Section 2.1, we introduce a
PDM including ay meson based on the chiral U(2); x U(2)g symmetry with U(1) 4 anomaly
included. Then, as a first step, we drop the gy meson and construct the infinite nuclear
matter using mean field approximation in Sections 2.2-2.4. In Section 3, the construction
of finite nuclei in mean field model using Relativistic Continuum Hartree-Bogoliubov
(RCHB) theory is introduced. After a brief introduction on the construction of finite nuclei,
the finite nuclei are constructed using PDM, as in Ref. [67], and the method to constrain
the value of chiral invariant mass using experimental data of finite nuclei are discussed.
Some results on the specific nuclei, such as the nuclei properties and effective mass of a
nucleon in finite nuclei, are also shown. In Section 4, we review an extension of the PDM by
including the isovector scalar meson a¢(980) performed in Ref. [66]. We also compute the
results for the extended PDM without vector meson mixing interaction for comparison. The
symmetry energy for these models are compared to the PDM without 2y meson introduced
in Section 2. Finally, a summary is given in Section 5.
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2. Dense Nuclear Matter with Parity Doublet Model
2.1. A Parity Doublet Model with U(2); x U(2)r Symmetry

Here, we introduce the parity doublet model (PDM) based on the U(2); x U(2)g chiral
symmetry constructed in Ref. [66]. The Lagrangian is given by

L=LN+Lpm+ Ly, 1)

where Ly is for the nucleons, £ for the scalar and pseudoscalar mesons and Ly for the
vector mesons.

In L)y, the scalar meson field M is introduced as the (2,2)_, representation under the
SU(2); xSU(2)r xU(1) 4 symmetry, which transforms as

M — e 204g; Mgtk , 2)
where gr 1 € SU(2)g 1 and e=24 € U(1) 4. We parameterize M as
M=[oc+ir-T]—[ay-T+in], 3)

where 0, 7T, 4y, 17 are fields for the sigma meson, pions, the lightest isovector scalar meson
a9(980) and 1 meson, respectively, and T are the Pauli matrices. The vacuum expectation

value (VEV) of M is
0
o) = (7 ), @

where 0y = (0|c|0) is the VEV of the ¢ field, which is equal to the pion decay constant
fr =93 MeV in vacuum. The explicit form of the Lagrangian £ is given by

Ly = thr [a},MaﬂM*] Vi, )

where V) is the potential for M. In the present model, V), is taken as [66]

i + Ag a2
Vv = — ——tr[M"M] + ?tr[(M M)?]

2
—m’jTﬁ’tr[M+M*]—g{detM+detM+}, (6)

where we included all the terms invariant under SU(2); x SU(2)g xU(1) 4 symmetry up
to the sixth order in M fields. The six-point interaction terms are introduced to reproduce
the nuclear saturation properties following Ref. [19]. The term proportional to m? is the
explicit chiral symmetry breaking term due to the non-zero current quark masses, which
generates the mass of pion. The last term is introduced to account for the U(1) 4 anomaly.

For vector mesons, the iso-triplet p meson and iso-singlet w meson are included based
on the hidden local symmetry (HLS) [69-71] to account for the repulsive force in the hadronic
matter. The HLS is introduced by performing polar decomposition of the field M as

M = ZISeg, 7)

3
where S = 0+ Y a(b)’rb /2 is the 2 x 2 matrix field for scalar mesons. The fields ¢ r
b=1

transform as '
ZLRr = hohplr gt ge™%4, 8)
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with ki, € U(l)yys and hp € SUQ2)y;s. Here, et for ¢ and e~"4 for ¢g. In the unitary
gauge of the HLS, ¢; r are parameterized as

¢r =¢1 = exp(iP/fxr), )

3
where P = 5+ ) 7t%1,/2 is the 2 x 2 matrix field for pseudoscalar mesons. In the HLS,
a=1
vector mesons are introduced as the gauge bosons of the HLS. They transform as

8w
— hppuht + LIPS 11
P pPully g, Mot (11)

3
where wy, and p, = ) pZ T, /2 are the gauge fields for SU(2)y s and U(1)r s, respectively,
a=1

and g and g, are the corresponding gauge coupling constants.
To construct the Lagrangian invariant under the HLS, it is convenient to define the
covariantized Maurer-Cartan 1-forms:

¥ = o [DVerh — D' 12
Al = %[DH@R@*a +Drel], (13)

where the covariant derivatives of {1 g are given by

DFEp = M8 —igppt' 8L — igwwt S + IS LM — i AV, (14)
DFZR = oV'CR —igpp!CR — igww!' R + iGRR! +ifrAY, (15)

with £F, R* and A* being the external gauge fields corresponding to SU(2); xSU(2)g xU(1) 4
global symmetry. We note that mesons do not carry the baryon number, so that the external
gauge field corresponding to U(1) baryon number does not appear in the above covariant
derivative. We also note that the covariant derivative acting on the baryon fields includes
the external gauge field .A*.)

By using these 1-forms, the HLS-invariant Lagrangian including the interaction terms
among the nucleons and the vector mesons is given by

Ly = aynn [MN”@Z&HVCLNU + Nlr')’yg;ri&ungNlr]

+avnn [Nzl’Y”é'}Lz@Hy@Rsz + Nzﬂ”'?z&Hy?LNzr}

+ aoNN Z [Nilfyytr[&Hy]Nil + Nirr)’%tr[&ﬂy]Nir}
i=1,2 (16)

2 2 2
My TR My mp NI 1 " 1 w
+ —-tr|al & + | —— — —— | tr]|a) |tr|& — ——=trjw™w — ——tr
2,2 [H 1) <8ng 2gp2> [H] (@] 8902 [ m 25,7 (0" pyuv]

2 1, u. e in 10, ., R
+ Awp(avnn + aonn) adyn [Ztr[aplltxw]tr[av}tr[av] ~1 {tr[aﬁ’]tr[auy]} ,
where o' and w#" are the field strengths of the p meson and the w meson, given by

Puv =Oupy — dvpy — igp [Py, ov]
Wyy =0y wy — dywy, . 17)

We note that the last term in Equation (16) is a mixing term of p and w mesons, as
introduced in Ref. [66] to the a9 model to reduce the slope parameter, following Ref. [37].
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As we will show in Section 4.3, when we just add the effect of 47(980) meson to the PDM
without this vector meson mixing term, the slope parameter becomes too large compared
with the recent constraints as summarized in Ref. [72].
Finally, the baryonic Lagrangian £y based on the parity doubling structure [3,5] is
given by
Ly = Nli')/]’l’DMNl + Nzi’)/VDyNz
— mo[N175N2 — NpysNi]
— g1[NyMNy, + Ny, M Ny ]

— 22[Noy MNy + Ny M Ny, ],

(18)

where N;, = H%N,’ (N;; = 1375 N;) (i = 1,2) is the right-handed (left-handed) component
of the nucleon fields N;, and the covariant derivatives of the nucleon fields are defined as

DFNypop = (0" —ilF —iVF +iA")Ny o,

19
DFNyy g = (o —iRF —iV! —iAF) Ny, 1, 1
where V¥ is the external gauge field corresponding to the U(1) baryon number. By diagonal-
izing Ly, we obtain two baryon fields N and N_ corresponding to the positive parity and
negative parity nucleon fields, respectively. Their masses in vacuum are obtained as [3,5]

v 1
m(iac) =5 [\/(g1 + §2)203 +4m3 £ (g1 — §2)00 | - (20)

In the present work, N and N_ are identified as N(939) and N(1535), respectively.

2.2. Dense Nuclear Matter in PDM with Mean Field Approximation

To construct the nuclear matter from the model introduced in the previous section,
we adopt the mean-field approximation following Ref. [19]. As a first step, we reduce the
effect of 2((980) meson and vector meson mixing interaction to study the dense nuclear
matter. The effect of 2((980) meson and vector meson mixing will be studied in Section 4.

The meson fields are then given by

o(x) =0, 7(x)—0, dy(x)—0, n5(x)—0, (21)

and then, the mean field for M becomes

(M) = (g 2) - 22)

Now, the potential V), is written in terms of the meson mean fields as

Vi =— %02 + %04 — %06 — M3, fr0. @3

Here, the parameters are defined as

_ _ 1
e =i+ 3K,

Ay = Ag1 — Ay, (24)
A6 = Ag1 + Ae2 + Ag3.

In the mean-field approximation, the vector meson fields are taken as

wy(x) — wdyo, pL(x) — 00,003, (25)



Symmetry 2024, 16, 1238

6 of 33

according to the rotational symmetry and isospin symmetry. Subsequently, the Lagrangian
of the vector mesons is expressed in terms of the mean fields as

Ly *ngNZNzx]'Y WNyj — gpNNZNa]'7 > PNuc] + Zm w + 5 pp (26)
aj
with
8wNN = (A4VNN + A0NN) 8w - (27)
8poNN = AVNN&p - (28)

We note that, as we stated in the beginning of this subsection, we take A, = 0 to turn off
the vector meson mixing interaction for the moment.
Then, the thermodynamic potential for the nucleons is written as

ke 43
On=-2 ) /f(z}; [;4] w“j], (29)

a==%,j==%

where o« = + denotes the parity and j = =+ the iso-spin of nucleons. y;‘ is the effective
chemical potential, given by

i = (i — §wNNW) + %(VI — 8oNNP) , (30)

and w,; is the energy of the nucleon defined as w,; = /(7)* + (m} /) with j and my;

being the momentum and the effective mass of the nucleon. The effective mass m:} % is

given by
P 1 242 2
My = 5 \/(gl +82)%0% +4mg§+a(g1 — $2)0| (31)
The entire thermodynamic potential for hadronic matter is expressed as
2
Qp = 0N — %az + %04 — %06 — M2 fro — %mi,wz — 1rrzpp -Qp, (32)

where we subtracted the potential at the vacuum

=2
QOE_& nT f?t_i T nfn (33)

2.3. Nuclear Saturation Properties

Nuclear properties at the saturation density 19 = 0.16 fm~3 are very important to be
satisfied in nuclear physics. At the saturation, the energy per nucleon of the infinite sym-
metric nuclear matter is minimized. There are several fundamental nuclear properties at
the saturation density: the binding energy By, the nuclear incompressibility Ky, the nuclear
symmetry energy So, and the slope parameter L. In the present work, the model parameters
are determined such that the saturation properties of the nuclear matter are reproduced.

We first obtain the pressure of hadronic matter P from the thermodynamic potential
in Equation (86) as

P(up, 1) = —Qu(pp, pp; 0 = 0p,w = wo, p = Po) , (34)

where yp and y; are the chemical potentials for the baryon number and the isospin number,
and oy, wo and py are the solutions of the stationary conditions of Qy, given by

Ny _ M0 _,

oo ' dw ' oo =0 %
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From the pressure P, we define the baryon number density #p and the isospin density
nras

oP oP
np=-~—, Np==—. 36
B G 1= 5 (36)
They are related to the proton number density 7, and the neutron number density 7, as
1 1
ng =np+ny, nI:EnP—Enn. (37)

As usual, from these densities and the pressure, we obtain the energy density € via the
Legendre transformation as

6(713,711) = —P+4upng +unj . (38)

It is convenient to define the energy per nucleon as

w(x,s) = B (39)
np
where )
np —np ny
= — = 4
: 3710 ;0 ng ( 0)

At the saturation density np = ng, the symmetric nuclear matter (n; = 0) forms
the most stable state with minimized energy. In other words, w(x, ) is stationary when
(x,8) = (0,0), with w(0,0) < 0. Then,

Jw Jdw ong  Jdw Ing 1
ow| owdnyy 1 41
36 lo~ np 35 " an; 35 lo 2”1’0 O )
ow 3p
= == = 42
dxlo mnglo 0, (42)
where means that the derivatives are evaluated at (x,6) = (0,0). These imply that the

0
pressure P and isospin chemical potential y are zero at the saturation density. The binding

energy By is obtained as
€
BOZ*W(O,O)Z**‘ +mN=*ﬂB’ +my (43)
nplo 0

In this review, we take By = —16 MeV as an input.
Expanding w(x, §) around the stationary point (x,d) = (0,0), we obtain
1%w| , 1%w| , 1 Bw

_ 107w 1w 1 2 3
w(x,6) =w(0,0) + 292 | t 5552 . + 5 55952 ’0x5 +0(x°) "

= —Bp+ %Koxz + (So + Lox)52 + O(x3) ,

where Ky, Sg, and L are called as the incompressibility, the symmetry energy, and the slope
parameter at the saturation density, respectively.

The incompressibility K, represents the curvature of w(x, ) in the direction of the
baryon number density. It corresponds to the rate of increase of the baryon chemical
potential yp with respect to np around the saturation density. Ky is calculated as

0%w ? (e ougp
Ko= 5| =9—(— )| == . 45
0= 3x2 o ”Oan% (ﬂB)‘o "09np lo (#5)
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We note that K corresponds to the hardness of the (symmetric) matter around the saturation
density; the larger Ky corresponds to the larger pressure at high baryon density. Thus, it is
called the incompressibility of nuclear matter because a larger Ky corresponds to a matter
that is more resistant to compression. The generally accepted values are Ky = 240 £ 40 (see
recent review [73] for detailed discussion and summary of the values of Kp). In this review,
the results are mainly computed with Ky = 215, 240 MeV for comparison.

The symmetry energy Sy is defined to be the slope of w(x,¢) in the isospin density
direction around ny as

_1827,() Tl% 82(€>‘ :7’10% (46)
0

S = T = = — — — - ‘ .

0= 27962 0 8 an% ng 8 dnglop

The symmetry energy is the energy that arises from the asymmetry of the matter. If we

ignore the O(x?®) contribution in Equation (44), the symmetry energy at the saturation
density Sy can be approximated by

So =~ w(0,1) —w(0,0), 47)

which is the energy difference between pure neutron matter and symmetric matter. Then,
the term Sy0% can be seen as the energy arises from the difference of 1, and n, (the
asymmetry of the matter) around the saturation density. For later convenience, we define
the symmetry energy at arbitrary baryon density np as

_ lazw(x, d)

0=0

This S(np) approximately corresponds to the energy difference between pure neutron
matter and symmetric matter at np:

S(np) = w(x,1) —w(x,0). (49)

The value of Sy is well-studied with little ambiguity. In this review, Sy is taken to be 31 MeV.
Finally, the slope parameter L is given by

1 %w ‘ _ 85(113)‘
20x062lp  ox

The slope parameter approximates the slope of the symmetry energy in the direction of
baryon number density around the saturation density. The larger Ly results in the larger
symmetry energy S(ng) at higher density. Due to the experimental difficulties, the value of
Ly possesses large uncertainty and has been discussed for many years. The recent accepted
values are Ly = 57.7 + 19 MeV, as summarized in Ref. [72].

2.4. Determination of Model Parameters

In the present model, the model parameters are fitted to reproduce the nuclear satura-
tion properties, as well as physical masses and the decay constant in vacuum. Under the
mean field approximation in Section 2.2, there are seven parameters to be determined for a
given value of the chiral invariant mass 1,:

81/ g2/ Flgl A4/ /\6/ ngN/ gpNN (51)

The vacuum expectation value of ¢ is taken to be 0y = f,; with the pion decay constant
fr =93 MeV. The Yukawa coupling constants g; and g» are determined by fitting them
to the nucleon masses in vacuum given in Equation (20), with m = my = 939 MeV and
m_ = myn+ = 1535 MeV for fixed value of the chiral invariant mass m,. The values of
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;z?,, A4, A6, SwNN, and goNN are determined by the saturation properties shown in Table 1
together with the stationary condition of the potential in vacuum given by

B2 fr— Aafo + Aefo +mifr=0. (52)

For the meson masses, we use the values listed in Table 2. We should note that there is a
relatively large uncertainty in the incompressibility, so we use Ky = 215 and 240 MeV as
inputs for studying the dependence. The determined values of the parameters for a fixed
value of mg are summarized in Table 3.

Table 1. Saturation properties that are used to determine the model parameters: saturation density
ng, binding energy By, incompressibility Ky, and symmetry energy So.

no [fm—3] Bo [MeV] Ko [MeV] So [MeV]
0.16 16 215, 240 31

Table 2. Values of meson masses and pion decay constant in the vacuum in unit of MeV.

M My my fr

140 783 776 93

Table 3. Values of g1, g, ﬁ%,, Ay, As, wNN, §oNN for mg = 600-900 MeV, Ky = 215,240 MeV.

mo [MeV] 600 700 800 900

91 8.427 7.762 6.941 5.921

9 14.836 14.171 13.349 12.329

i/ f2 23.377 20.979 13.346 2.502

Ko = 215MeV Ag 42.368 38.92 26.128 6.673
Aef2 16.79 15.739 10.58 1.969

SwNN 8.902 7.055 5.471 3.389

SoNN 7.896 8.16 8.314 8.442

91 8.427 7.762 6.941 5.921
9 14.836 14.171 13.349 12.329

i/ f2 21.821 18.842 11.692 1.537

Ko = 240 MeV Ag 39.367 34.583 22.577 4.388
Aef2 15.344 13.54 8.683 0.649

SwNN 9.132 7.305 5.66 3.522

SoNN 7.854 8.13 8.298 8.436

The slope parameter Lj is computed as an output, and the resultant values are shown
in Table 4. We note that the computed Ly is slightly larger than the recently accepted
values Ly = 57.7 £ 19 MeV, as summarized in Ref. [72]. We also observe that the value of
incompressibility has little effect on Ly, even with a large Ky = 260 MeV.

Table 4. Slope parameter Ly computed as a output from the model with Ky = 215,240,260 MeV.
Sp = 31 MeV.

moy [MeV] 600 700 800 900
Ko =215MeV Ly [MeV] 85.91 82.87 81.32 80.15
Ko =240MeV Ly [MeV] 86.25 83.04 81.33 80.08
Ko =260MeV Lo [MeV] 86.45 83.14 81.33 80.03

The dependence of Ly on S is compared in Table 5. We observe that the value of S
have a relatively large impact on the value of L.
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Table 5. Slope parameter Ly with Sg = 24,31,36 MeV. Ky = 215 MeV.
mp [MeV] 600 700 800 900
Sy = 24 MeV Lo [MeV] 64.91 61.87 60.32 59.15
So = 31 MeV Lo [MeV] 85.91 82.87 81.32 80.15
Sop = 36 MeV Lo [MeV] 100.91 97.87 96.32 95.15

3. Finite Nuclei

In the previous section, we observed that the parity doublet model reproduces reason-
ably the nuclear matter saturation properties with the chiral invariant nucleon mass 1y in
the range of 600-900 MeV. In this section, we study the properties of nuclei in self-consistent
relativistic mean field theory to see if the parity doublet model can explain some nuclear
properties, and to find out the value of the chiral invariant mass preferred by nuclear
structures. As a first step, we use the PDM without the a4y meson, focusing on the properties
of stable nuclei. Nuclear properties in the PDM with the gy meson is being studied and the
results will be reported elsewhere.

Before we investigate the properties of nuclei using the PDM, we first describe how
one obtains the nuclear energy density functional based on the relativistic mean field theory
and the corresponding equation of motion for nucleons and mesons. We also discuss,
in brief, how to solve the equation of motion, especially for exotic nuclei in which the
continuum effect is important. For this, we closely follow the description in Ref. [68], where
a Walecka-type model was adopted. The Relativistic Continuum Hartree-Bogoliubov
(RCHB) theory [68] is an extension of the relativistic mean field theory in a self-consistent
way with both bound and (discretized) continuum states.

The starting Lagrangian is given by

. 1-7 1
L= Plig = M= o0 — gt — 8o —eA— 3}1/J+§8”(78H(7—U(0)
1=, = . 1
— OOy + Uo(wp) = R - Ry + Up(0n) — 7 FuvFuv s (53)

where O, RM and Fy,y are the field strength tensors of the w meson, p meson and electro-
magnetic field, respectively and

1 1 1
U(o) = -mzo® + 5820“3 + 18304 ,

2
1 2 ] 1 2
U (wy) = Emwwuaﬁ + ZCg,(wwa‘) ,
- 1 22 - 1 e AVA P
U (py) = 5 MoPpf” 1d3(PMP ), p=p-T. (54)

We refer to Table 2 in Ref. [68] for the value of the masses and coupling constants in
the above Lagrangian that were determined by studying the properties of nuclear matter
and a few doubly magic nuclei with no-sea and mean-field approximations. After taking
the mean field approximation on the above Lagrangian and performing the Legendre
transformation, we obtain the corresponding mean field Hamiltonian Hgyp and the energy
density functional Erpp = (®|Hrvmr|P). Here, | D) is the ground state of a nucleus with

A

the mass number A, |®) = [ ]cf[0), and ¢} is the creation operator of the nucleon field,
a=1
(x) = Y Ya(x)cq. Then, the expectation value of the Hamiltonian with the mean field
a

approximation reads
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Ermr(p, ¢) = (P|Hrmr| D)
o o 1—7
= [ @XTHBG - P+ M+ 800+ guPewo + it + A= )p]
. 1., 1. 1 e =
+/ d3x[—§8106i0+ Uy (o) + 10”0,7 — Uy (wp) + 1RZ] -Rij — Uy (pg)
1 ..

—ZPOJFOJ-] , (55)

where p is the density matrix, ¢ represents bosonic fields, and v* = (B, f&). Here, we
assumed that the mean field is time-independent. Also, we have applied the fact that the
spatial components of the vector fields are zero in a system with the time reversal symmetry.
By performing variations on Egyr with respect to p and ¢, we obtain the equations for the
nucleon and bosons [68].

hpi(¥) = €9i(X) , (56)
where the Dirac Hamiltonian hp is given by
hp =a-p+ B[M+S(X)]+ V(%) (57)
with the scalar S(¥) and vector V(X) potentials given by
5(%) = goo(X),

V() = gueo(T) + 8103 () + el — 1) Ao(T)

In general, the equations of motion for the nucleon moving in the mean field potentials
are solved by using the harmonic oscillator basis. However, for exotic nuclei, whose density
profile can have a long tail, it is preferable to solve the equations in coordinate space and
adopt a basis which can treat the asymptotic behavior of the nucleon wave function. In
Ref. [68], the Woods—Saxon basis was used to solve the equations of motion for the nucleon.

Similarly, by doing variations on Eryr with respect to ¢, we obtain the equations for
the bosons [68],

— 20 + Uy (0) = —gop3,
—vzwo + UZU (WO) = ZwPw ,
— %05 + Uy (05) = pp3,

—T2Ag = epe. (58)
where
ps = Tr[Bp],
pw = Trlp],
p3 = Tr[mp],
pe = Tr[(1—1)p]. (59)

Using Equation (58) in Equation (55), one can obtain the total energy of the system as

1—T3

oo 1
E = /d?’xTr[/%('y-erM)erE(ggﬁa+gwwo+gpp8T3+Ao 5 p]

+ [ @x(Us(0) — Ualwn) — Up(ef) — 5(etis (@) — wollly(wo) — p3UH(e3))]. (60)
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Now, we move onto the PDM without the a9 meson. To pin down the value of m, we
study the properties of nuclei using the parity doublet model without the ag meson in the
framework of a self-consistent relativistic mean field theory.

Using the Lagrangian of the parity doublet model without the gy meson in
Equation (1), we obtain the equations of motion (EoM) for the stationary mean fields
o, wy, pg and Ag [67],

amy (o)

(-2 +m2)((®) = -NENE L

—N
o= )>
( 3frAs +10 an6)

+ (A1 +10£26) (0(7))°

+5fA6 (0 (%))" + A (0 (%)), (61)

(= V2+m ) @) = gunwN'(@N(), 62)
N 3

(=92 +m2)(pd(®) = gwN'(®TNE), (63)

~PAE) = NI ON). 69

Note here that we take the shift ¢ — f; 4 o, since the scalar field in the parity doublet
model is a chiral partner of the pion field, whose vacuum expectation value in free space is
fr, while that of the widely used scalar field in nuclear structure studies is zero in free space.
Since we are interested in finite nuclei, we will not consider the EoM for the parity partner
of the nucleon, N*(1535), which does not form its Fermi sea near the saturation density.
In addition, since our primary goal here is to see if the parity doublet model can explain
some basic nuclear properties, such as the binding energy with a reasonable value of the
chiral invariant mass, we will not consider pairing correlations, which are essential for
odd-even staggering in nuclear properties. For instance, according to the semi-empirical
mass formula, the contribution from the pairing term to the binding energy per nucleon of
%N is only about 0.03 MeV.

The EoM for the nucleon is given by

(@ 7+ pmy((0() + V(X)]Ni(%) = iNi(¥), (65)
where N; is the single-particle wave function, and

3 _
V() = g () + gowr(ed@) 5+ e a0(3)) (66

With assuming the spherical shape of the nucleus, we can solve Equations (61)-(65)
simultaneously to obtain the energy

E= / BrH(T). (67)

After subtracting out the vacuum contribution, we write the Hamiltonian density
H(X) in the mean field approximation as

L&}

3
o 1-
N (=i, + miy )N + g (0) NN + goan (03N 2N + e(Ag) NT=—2 N
1
2

2

B (fat (o) - fn]+—{<fn (0))* fn]——[m (@) = f&] = w2 flo)

— S fwo)? — () (68)
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Then, the binding energy (BE) per nucleon is given by
E
BE/A:—Z—Q—mN. (69)

To put an additional constraint on the value of the chiral invariant mass, using the
model parameters summarized in Table 3, we calculate the binding energies per nucleon
and charge radii of selected nuclei: 160, 40Cq, 48Ca, 8Ni, 70Ge, 82Se, 92Mo, 112Sn, 126G,
138B4, 154gm, 170Ey, 1821A7, 202pP}, and 208Pb [67]. Before we compare our results for the
binding energies and charge radii with the experiments, we show the nucleon density
profile, mean-field value and effective nucleon mass in a nucleus with different values
of the chiral invariant mass to visualize how the chiral invariant mass affects them. We
first plot the nucleon density profile in 1'2Sn and 2°Sn for different values of the chiral
invariant mass in Figure 1. It is interesting to see that 112Sn has a depleted central density
and, therefore, can be a candidate of bubble nuclei, which was also observed in the previous
studies based on relativistic mean field models; for example, see Ref. [74].

—— mg = 600 MeV —— mp = 600 MeV
= mg = 700 MeV —— mg = 700 MeV
mg = 800 MeV mg = 800 MeV

0.20 0.20 4

—— mg = 900 MeV

—— mp = 900 MeV

ng(r) (fm=3)
ng(r) (fm=3)

0 2 4 6 8 10
r(fm) r(fm)

Figure 1. Nucleon density profile in 125 (left) and 126Sn (right) calculated with Ky = 215 MeV.
In Figure 2, we present the value of (¢) and (wy) in 1'2Sn and '2°Sn for different values

of the chiral invariant mass. As expected, the value of (¢) decreases and (wy) increases as
r — 0, from zero density to the saturation density.

100 100
—— mg = 600 MeV
= mg = 700 MeV

mg = 800 MeV
—— mg = 900 MeV

—— mp = 600 MeV
= mg = 700 MeV

mg = 800 MeV
—— mg = 900 MeV

—//

80

(]

60

80

(o)
60

40 40

20
{wo)

r(fm) r(fm)

Figure 2. (¢) and (wp) in 1?Sn (left) and 12°Sn (right) with Ko = 215 MeV.

The effective neutron and proton masses in '2Sn and 12°Sn are shown in Figure 3,
where the effective mass is defined as the energy of the nucleon at rest:

* NN
e = i+ g (wo) — E2 % (o),

* NN
m;eff) = my, + gwNN (wo) + ng<Po> :

As observed in Ref. [67], the neutron—proton mass difference becomes larger in a nucleus
with larger isospin asymmetry.
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©
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125,
1265

©
=
o

©
w
=3

910

Effective Nucleon Masses (MeV)

12 14

Figure 3. Neutron and proton effective masses in 11?Sn and 126Sn with K, = 215 MeV. Here, solid
(dashed) lines are for the neutron (proton).

Now, as in Ref. [67], we compare our results with experiments to check which value of
the chiral invariant mass reproduces the experimental results well. In Tables 6 and 7, we
present the binding energies per nucleon and the charge radii as well as the root-mean-
square deviation (RMSD) with mg = 600, 700, 800, 900 MeV for selected nuclei: 60, 4°Ca,
48Ca, 58Ni, 70Ge, 8288, 92M0, 112511, 126811, 138Ba, 15451’1’1, 170EI‘, 182W, 202Pb, and ZOSPb [67] It
can be seen from Tables 6 and 7 that the case with my = 700 MeV has the smallest RMS
deviation both in the binding energies and charge radii. Therefore, as concluded in Ref. [67],
my = 700 MeV is preferred by the nuclear properties of selected isotopes.

Table 6. Binding energy per nucleon and the charge radius (R¢) with the parameter set in Table 3 for
K = 215 MeV. The table is taken from Ref. [67].

my (MeV) 600 700 800 900 Exp.
160 7.489 7.781 7.298 5.698 7.976
40Ca 8.063 8.301 7.942 6.693 8.551
48Ca 7.978 8.134 7.757 6.541 8.667
58N 7.685 7.841 7.473 6.308 8.732
Ge 8.044 8.239 7.932 6.866 8.722
82Ge 8.066 8.219 7.910 6.881 8.693
2Mo 7.993 8.123 7.822 6.828 8.658
BE/A (MeV) l2g, 7911 8.050 7.774 6.844 8.514
1266 7.980 8.070 7.802 6.909 8.443
138Ba 7.920 8.028 7.764 6.890 8.393
1545m 7.821 7.958 7.724 6.894 8.227
170y 7.733 7.837 7.618 6.830 8.112
182y 7.616 7.707 7.494 6.726 8.018
202pp, 7.468 7.535 7.310 6.549 7.882
208pp, 7.496 7.552 7.321 6.558 7.867
RMS deviation 0.573 0.438 0.727 1.734 -
160 2.845 2.763 2.772 2.796 2.699
40Ca 3.546 3.469 3.473 3.479 3.478
48Ca 3.585 3.521 3.525 3.527 3.478
58N 3.912 3.848 3.856 3.863 3.776
Ge 4.085 4.013 4.013 4.008 4.041
82Ge 4.209 4.145 4.144 4.135 4.140
2Mo 4.401 4.339 4.344 4.344 4.315
Rc (fm) 12g, 4671 4.608 4.609 4.602 4.594
12651 4.754 4.697 4.698 4.688 4.685
138Ba 4.920 4.862 4.861 4.849 4.838
1545m 5.111 5.045 5.039 5.022 5.105
170y 5.242 5.178 5.175 5.160 5.279
1827 5.364 5.301 5.298 5.286 5.356
202pp, 5.549 5.493 5.493 5.481 5471
208pp, 5.584 5.531 5.532 5.519 5.501

RMS deviation 0.082 0.046 0.049 0.056 -
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Table 7. Binding energy per nucleon and the charge radius (R¢) with the parameter set in Table 3 for
K = 240 MeV. The table is taken from Ref. [67].

my (MeV) 600 700 800 900 Exp.
160 7.087 7.280 6.792 5.093 7.976
40Ca 7.736 7.906 7.538 6.191 8.551
48Ca 7.676 7.768 7.378 6.061 8.667
58N 7.391 7.486 7.108 5.849 8.732
0Ge 7.761 7.900 7.584 6.429 8.722
82Ge 7.799 7.899 7.580 6.462 8.693
92Mo 7.741 7.821 7.507 6.424 8.658
BE/A (MeV) 112gp 7.668 7.760 7.474 6.460 8.514
126G 7.757 7.801 7.516 6.536 8.443
1388, 7.695 7.758 7.482 6.526 8.393
1545 7.596 7.691 7.447 6.540 8.227
170gy 7.526 7.587 7.354 6.484 8.112
182y 7418 7.466 7.237 6.387 8.018
202pp 7.277 7.303 7.062 6.221 7.882
208py, 7.306 7.322 7.075 6.232 7.867
RMS deviation 0.827 0.737 1.047 2.147 -
160 2.877 2.792 2.790 2.803 2.699
40Ca 3.572 3.491 3.485 3.479 3.478
48Ca 3.605 3.537 3.532 3.522 3.478
58Ni 3.932 3.863 3.861 3.855 3.776
0Ge 4104 4.028 4.018 4.001 4.041
82Ge 4223 4.154 4.145 4125 4.140
92Mo 4.418 4.351 4.347 4.335 4315
Rc (fm) 112gp 4.684 4.616 4.608 4.591 4.594
126G 4.764 4.703 4.695 4.675 4.685
138Ba 4928 4.865 4.856 4.834 4.838
154gm 5.117 5.045 5.031 5.004 5.105
170gy 5.250 5.181 5.169 5.144 5.279
182y 5.374 5.305 5.294 5.270 5.356
202py, 5.555 5.493 5.485 5.462 5471
208py, 5.588 5.529 5.521 5.499 5.501
RMS deviation 0.097 0.052 0.053 0.062 -

With my = 700 MeV, we try to improve our results of nuclear properties. For this, we
use the following nuclear matter properties as inputs,

E
S MmN =-163MeV, 1ng=016 fm 3,
Ko =215MeV, Sy =30MeV, (70)

and determine the model parameters again given in Table 8 [67]. With the new parameter set in
Table 8, we calculate the properties of selected nuclei and compare our results with experiments
and the ones obtained in RCHB with PC-PK1 [75,76] in Table 9. As in Table 9, our results are
in quantitative agreement with experiments. As stated in Ref. [67], pairing correlations are not
included in our current results, which will be improved in our future publications.

Table 8. Parameter set with the inputs in Equation (70). All the parameters are dimensionless except 1.

81 $2 SWNN SpNN Aslfx Aq Aef2  m, [MeV]
7.762 14171 7.036 3.958 21135  39.332 1599  382.140
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Table 9. Binding energy per nucleon and the charge radius (R¢) with the parameters in Table 8.

BE/A [MeV] Rc [fm]

PDM RCHB Exp. PDM RCHB Exp.

160 8.040 7.956 7.976 2.757 2.768 2.699

40Ca 8.574 8.577 8.551 3.464 3.481 3.478
48Ca 8.419 8.654 8.667 3.517 3.494 3.478
58N 8.118 8.691 8.732 3.843 3.737 3.776
0Ge 8.521 8.650 8.722 4.010 4.001 4.041
82Ge 8.513 8.664 8.693 4142 4.125 4.140

2Mo 8.408 8.662 8.658 4335 4310 4315
265 8.339 8.489 8.514 4.605 4582 4.594
126G 8.372 8.447 8.443 4.695 4.683 4.685
138B4 8.329 8.406 8.393 4.860 4.848 4.838
154G 8.263 8.149 8.227 5.042 5.062 5.105
170Ey 8.140 8.000 8.112 5.176 5.224 5.279
182y 8.007 7.927 8.018 5.299 5.342 5.356
202py, 7.837 7.869 7.882 5.491 5.490 5.471
208pp 7.860 7.875 7.867 5.529 5.518 5.501

RMS deviation 0.204 0.05 — 0.045 0.031 —

4. Effect of ag Meson to Nuclear Matter

In the previous sections, we omitted the effect of the 2y meson when we studied nuclear
matter and finite nuclei. However, the isovector scalar meson may play an important role in
the asymmetric matter, such as neutron star matter and neutron-rich nuclei. In this section,
we study the effect of the a9 meson on nuclear properties such as symmetry energy and
slope parameter. As we will see, the 19 meson stiffens the matter strongly and causing a
large slope parameter Ly. We include also the vector meson mixing interaction to effectively
reduce the slope parameter and study the effect of it.

4.1. Dense Nuclear Matter with ag(980)

To construct the nuclear matter with ay(980), we adopt the mean-field approximation
by taking ’
o(x) — o, m(x) =0, ap(x) — adj, n(x) — 0. (71)

Then, the mean field for M becomes

o= (75" L0, 72)

o+a

Now;, the potential V), is written in terms of the meson mean fields as

-2 2
_ Py 2 Fao M4 o4y 7420
Vm = a4 2a+4(0+a)+20a
_ A

6

- m%fﬂ” ’

(05 +150%a% + 15042 + a®) + Ay (02a* + o*a?) 73)

where the parameters are defined as

e =i+

i=pP—-sK=p;—K,

Ay =AMy — Ay, (74)
T4 =3Ag1 — Mg,
Ae = Ag1 + Ae2 + A3,

=

/
4
)\6 = 5/\62 +2/\63 .
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In the present model, A is taken as a free parameter to examine the effect of Ag and
Ag3 interactions, which are of sub-leading order in the large N. expansion. Given that the
Ay term is suppressed by 1/N, compared to the A¢ term in the large N, expansion, we
assume |A;| < |Ag| holds. Consequently, we consider Af = 0, £A; to assess the impact of
the sub-leading order six-point interactions on the symmetry energy. By default, we first
set /\’6 = 0. In the end of Sections 4.3 and 4.4, we investigate the impact of /\'6 on the results
by comparing the cases with Ay = 0, +As.

In the mean-field approximation, the vector meson fields are taken as

wy(x) = wdyo,  PY(x) — pdu0dis, (75)

according to the rotational symmetry and isospin symmetry. Subsequently, the Lagrangian
of the vector mesons is expressed in terms of the mean fields as

] -
Ly == gunn ) Ny @Naj = gonn ) Nujy" o Ny

Y “ (76)
+ %mi}wz + %mipz + Awpganngonnw P’ -
with
SwNN = (VNN + 20NN 8w / (77)
$oNN = AVNNEp - (78)

It is crucial to note that A, > 0 is required to realize w = p = 0 in vacuum. To show
it, we start from the vector meson potential in vacuum given as

_ 1 oo 15, 2 2 9209
W = —5meyw” — S1mpp” = Awp8uNNEpNNW P - (79)
The vacuum expectation values of the vector meson fields are chosen at the stationary point

of Vi with minimal energy. The stationary conditions are given by

aVy
e wlmg, + ZAWchzuNNggNsz] =0,
Vv 2 2 2 2 (80)
o0 plmp +2Awp8unNgonnw ] =0,
leading to two distinct stationary points,
2 2
m m
(w?,p%) = (0,0), (= S ) (81)
ZAWPg(ZuNNg,ZJNN ZAwﬂgczuNNggNN
Then, the values of potential at stationary points are
0, for (w?,0%) = (0,0),
V = 2,2 2 82
1% mwmp , fOI' ((JJZ, p2) — mp mﬁ, ( )

o2 o2 - 2 2 - 2 )
4 wp8NNEONN 2Awp&uNNSpNN ’ 2Awp8uNNSpNN

In the present model, vanishing vacuum expectation values of the vector meson fields are
required at zero density due to the Lorentz-invariance of the vacuum. Consequently, we
must require A, > 0 here, such that (w?, pz) = (0,0) minimizes the effective potential Vy
in vacuum.

Then, the thermodynamic potential for the nucleons is written as

ke 43 .
ov--2 ¥ [T 2k [yj _w“j], (53)
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where o = £ denotes the parity and j = =+ the iso-spin of nucleons (j = + for proton and
j = — for neutron). ‘u]* is the effective chemical potential given by

i = (i — §wNNwW) + %(#1 — SoNNP) (84)

and w,; is the energy of the nucleon defined as w,; = |/(7)% + (m;zj)z, where jj and m;; are

the momentum and the effective mass of the nucleon. The effective mass m j is given by

My = % [\/(gl +82)2(0 — ja)? + 4mg + a (g1 — g2) (0 — ja)] : (85)

We note that the masses of proton and neutron become non-degenerate in the asymmetric
matter due to the non-zero mean field of a((980).
The entire thermodynamic potential for hadronic matter is expressed as

Op = Qn

g 2 a2 M a4 7422

—7‘7(7 2“a+4(¢7 +a)+70a
5 28 (00 + 150%a* + 150%a% + a®) + Ay (0%a* + o*a?) (86)

1
— iy fr0 — 5’”2 w? - *mpP wpgfuNNS;ZJNNWZPZ
— o,
where we subtracted the potential at the vacuum

QO__ifﬁ“' fn_i T 7rf7r (87)

4.2. Determination of Model Parameters

In the present model, there are seven parameters in the meson potential, y2, 42 = 2 — K,
Ag, Y4, Ae, /\’6, and A, in addition to the meson masses 1y, 1., m,, and the pion decay
constant f. We also have four parameters, g1, $2, gwnN, and g,nn for the couplings of
mesons to baryons. As in Section 2, we use the physical values of three masses i, m,,,
and m,, together with the pion decay constant f as listed in Table 2. In addition, we use
the masses of 4¢(980) and 1 mesons listed in Table 10 as inputs. Similarly to Section 2, we
determine the values of 2, A4, Ag and g.,nn from the saturation properties: the saturation
density ng, the binding energy By, and the incompressibility Ky summarized in Table 1,
combined with the vacuum condition given in Equation (52). g1 and g are determined
from the vacuum mass of nucleon N(939) and its parity partner N*(1535). The resultant
values are same as those shown in Table 3. Then, the parameters K and -y4 are determined
from the meson masses and the other parameters as

K= m%—m%
m2, + (5A6 — 2A¢) fa + iz
vy = ap ( 6 h 6)f7'( Vﬂ/ (88)

fa
where m;; and m,, are the masses of 7 and a,.

Table 10. Values of masses of 49(980) and 1 mesons in unit of MeV.

mug m”
980 550
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As we stated in the previous subsection, we take Ay = 0 for a while. The resultant
values of fi2 and 74 corresponding to a given my are presented in Table 11.

Table 11. Values of parameters ﬁ% and <4 for several choices of my and Ky with A/é =0.

mo [MeV] 600 700 800 900
2,62
_ 2/f —9.40 —11.79 ~19.43 —30.27
Ko = 215 MeV N 185.59 177.94 144.51 90.62
2,62
_ 2/ f ~10.95 ~13.93 —21.08 —31.24
Koy = 240 MeV ﬂw T 176.81 164.81 133.38 83.05

To demonstrate the effect of ayp(980) on the matter, we consider both the 2y model with
vector-meson mixing (Awp 7 0) and that without the mixing (Awp = 0). In the ag model
without vector meson mixing, parameter g,ny is determined from the symmetry energy
at the saturation density Sp, while the slope parameter L is computed from the model as
an output.

Table 12 shows the values of g,nN together with Ly. We note that the slope parameters
are much larger than the recently accepted value Ly = 57.7 £ 19 MeV [72]. We also note
that the effect of Ky on the value of L is larger when we include the gy meson into the
model. The value of Ly with different Sy is shown in Table 13.

Table 12. The values of g,nN and slope parameter Ly in the a9 model without vector meson mixing,
for several choices of my and Ky with /\’6 = 0. Sp = 31 MeV.

o [MeV] 600 700 800 900
Ko=215Mev | SN 1122(5.5124 11015.22()1 997'.9045 887'.9605
Ko=240MeV ) SR, 1o 10878 o567 $75
Ko=200MeV ) SHUR 11321'?9 1 .1435 99§?866 887?735

Table 13. Values of g,nn and slope parameter L in the a9 model without vector meson mixing, for
several choices of my and Sy with A’6 = 0. Ky = 215 MeV.

o [MeV] 600 700 800 900

So=24Mev | SN 5914 841 7605 6665
So = 31 MeV Logfﬁlevv] 1122(5?4 1(1)},51 997'.9(;15 8?25
So=36MeV | SN ey 1o 11102'?085 18'29?5

For making the slope parameter consistent with Ly = 57.7 & 19 MeV, we include
the vector meson mixing interaction, which allows us to reduce L. In the a2y model with
vector meson mixing, the parameters ¢,nn and A, are determined by fitting them to the
symmetry energy So, as well as the slope parameter L. To reproduce the matter for recent
accepted value of Ly = 57.7 £ 19 MeV, we compute our results for Ly = 40-80 MeV. The
resultant parameters are shown in Tables 14 and 15. Here, we only show the results for

& = 0 because the values of the parameters for A = £\ are similar to the values listed in
Tables 14 and 15.
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Table 14. Values of g, for several choices of 1, Lo, with Ag = 0. Vector meson mixing is considered.

mo [MeV] 600 700 800 900
Lo = 40 MeV 15.34 13.78 12.59 11.42
Lo =50 MeV 14.88 13.27 11.97 10.72
Ko =215MeV Ly = 60 MeV 14.46 12.81 11.44 10.13
Lo =70MeV 14.08 12.39 10.97 9.63
Lo = 80 MeV 13.72 12.02 10.55 9.19
Lo = 40 MeV 15.63 13.96 12.68 11.41
Ly =50 MeV 15.14 13.42 12.04 10.7
Ko =240MeV Ly = 60 MeV 14.69 12.94 11.49 10.11
Ly =70 MeV 14.28 12.51 11.0 9.6
Lo =80 MeV 13.9 12.11 10.58 9.16

Table 15. Values of A, for several choices of g, Lo, with /\’6 = 0. Vector meson mixing is considered.

mo [MeV] 600 700 800 900
Lo = 40 MeV 0.0254 0.0818 0.3191 2.8164
Lo =50 MeV 0.0222 0.0693 0.2632 2.2253
Ko =215MeV Ly = 60 MeV 0.0191 0.0567 0.2072 1.6342
Lo =70 MeV 0.0159 0.0442 0.1513 1.0431
Lo = 80 MeV 0.0127 0.0316 0.0954 0.4519
Lo = 40 MeV 0.0252 0.0761 0.2914 2.4593
Lo = 50 MeV 0.0223 0.065 0.2418 1.9443
Ko =240MeV Lo = 60 MeV 0.0194 0.054 0.1921 1.4293
Lo =70 MeV 0.0165 0.0429 0.1424 0.9142
Lo =80 MeV 0.0135 0.0318 0.0927 0.3992

4.3. Effect of ay(980) to Symmetry Energy in Model Without Vector Meson Mixing

The a¢(980) meson should affect the properties of the matter via the asymmetry of the
matter. Therefore, we expect that symmetry energy is essential to study the effect of a¢(980)
meson to the matter. In the following, we study how the inclusion of the a((980) meson
affects the symmetry energy.

In the present model, the symmetry energy S(np) for a given density np is expressed as

_ "B O
S(ns) = 8 any lu;=0
* )2 2 * * (89)
_ (K® g (8NN/2)7  np m omi,
6}1*4- 2 m% 4 .uj- onj ”120,

where p’ = py) ‘nlzo = Uy ’nI:O is the effective chemical potential for N(939) in the sym-

metric matter, k% = ,/(p})% — (mjp)z‘m:o =/ (u5)? - (min)z‘n,:o the corresponding

Fermi momentum, m* = m* ] = m | _, the mass. In Equation (89), there are three
+ +P nr =0 +nln 170

contributions to the symmetry energy: the nucleon contribution, the p meson contribution,

and the ap meson contribution.

The nucleon contribution Sy(np) is given by

SN(TIB)E 6]/{* ,
+

which arises from the effective kinetic contribution of nucleons. Figure 4 shows Sy(np)
for my = 600-900 MeV with Ky = 215, 240 MeV. It is observed that Sy (np) increases with
density, as the effective kinetic energy of nucleons rises with density. Additionally, it is
noted that Sy (np) is larger for smaller m due to the stiffening of matter for smaller . It
can be also seen that Sy (np) is larger for larger Ky. However, the change in Ky has little
effect on Sy (np). We note that, since Sy (np) arises from the effective kinetic contribution
of a nucleon, Sy(np) is not affected by the inclusion of 4y meson.
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—— mg = 600 MeV =2
261 __ ) = 700 Mev
mgo = 800 MeV
241 —— mg = 900 MeV

N
N

Sn(ng) (MeV)
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— Ky=215MeV  --- Ky=240MeV —-— Ky=260 MeV

Figure 4. Nucleon contribution Sy (np) for mg = 600-900 MeV. Solid, dashed, and dash-dot curves
represent Sy (np) with Ko = 215,240,260 MeV, respectively.

The contribution from the a¢(980) meson is expressed as

4 ony ln=0" 1)

Figure 5 shows S;, computed in the present model. We note that S, is negative and, thus,
reduces the total symmetry energy S(ng). This is because agf;” ln,—0 is always positive,
as shown in Figure 6. Intuitively, this can be understood from the dependence of m* ,
on the mean field a given in Equation (85). If we vary the mean field a, m? , will also
change correspondingly. However, the effective chemical potential 4}, does not depend on
the mean field a directly, as we can see from Equation (84). This change in the effective

mass m’ , due to the mean field a leads to a change in the momentum of the neutron

kin = y/(u3)? — (m%,)?. When ny = (n, — n,)/2 is increased for a fixed np, the density

of the neutron n, and, thus, the momentum k, is decreased. Accordingly, the effective

mass of the neutron is increasing as nj increase, causing a positive agjl”

a9 (980) meson contribution S, (np) reduces the total symmetry energy S(ng) in the present
model. We also find that the a((980) effect on the symmetry energy is stronger for smaller 1.
This is because the coupling constants of a(980) meson to the nucleon, g; and g», are larger
for smaller mg, as shown in Table 3. As a result, the symmetry energy becomes larger by
a9 (980) meson more when m is smaller. In addition, we note that the 4¢(980) effect on the

|n,—0- Therefore, the

symmetry energy is decreasing as the density increases since ag",jl “],,—0 decreases. We also
observe that Ky has a larger effect on S,, due to the effect of Ky on the coupling constants of
ag meson, as indicated in Tables 3 and 11. Since the effect of the 4y meson becomes smaller
as the density increases, S,, becomes less negative and spreads at higher densities. We
also note that the difference of S,, with different Ky becomes smaller as mg increase due to
a weaker ap meson effect. Notice that this contribution does not exist in models without

the ay meson.
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Figure 5. 19 meson contribution to the symmetry energy Sy, (np) for mg = 600-900 MeV. Solid,
dashed, and dash-dot curves represent S, (n5) with Ky = 215,240, 260 MeV, respectively.
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Figure 6. ang**l” ;=0 for my = 600-900 MeV. Solid, dashed, and dash-dot curves represent ag"n%" [n;=0

with Ko = 215, 240,260 MeV, respectively.

The p meson contribution is given by
(92)

This shows that the contribution is always positive and, thus, provides repulsive force to
the matter. Figure 7 shows the behavior of S, (np) for mg = 600-900 MeV with Ky = 215,
240 MeV. It is noteworthy that S,(np) is directly proportional to the baryon density ng,
rendering it an increasing function with density. We also note that S,(np) exhibits larger
values for heavier m. This is understood as follows: at the saturation density, the symmetry
energy Sy is fixed to be 31 MeV. Since the total symmetry energy is given by Equation (89),
a larger mg corresponds to a smaller Sy/(719) and, consequently, a larger S,(n9). This larger
Sp(no) yields a larger coupling constant g, for larger mg. As a result, Sy(np) is larger
for larger my at density higher than the saturation density. Figure 7 also shows that K has
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little effect on S,. We note that Sy and Sy, is determined from K. Then, we obtain S, (1p)
from Sp, Sy and S,,,. Since Sy and S, are larger as Ky increases, these two contributions
compensate with S, to maintain Sy = 31 MeV at ng = ng. Thus, S, is smaller as Ky
increases, which is opposite to Sy and S;,. We also observe that the value of S, for the
present model is very large compared with the value of model without 29 meson. This is
because the p meson coupling is much larger in the present model due to the attractive
interaction of 4¢(980) when comparing to the model without ayp meson.

801 — my = 600 MeV
—— mg = 700 MeV

| mg = 800 MeV
70 — mp = 900 MeV

Sp(ng) (MeV)
U
o

401
30
201
1.0 1.2 1.4 1.6 1.8 2.0
nB/no
—— Kp=215MeV --- Ky=240MeV —.— K,=260 MeV

Figure 7. p meson contribution S,(np) in ag model for ny = 600-900 MeV and A = 0. Solid, dashed,
and dash-dot curves represent S, (1) with Ky = 215,240,260 MeV, respectively.

Based on the above properties of three contributions, the symmetry energy can be
understood as a result of the competition between the repulsive p meson interaction and
the attractive a4(980) interaction, in addition to the kinetic contribution from the nucleons.
On the other hand, in the model without a9 meson, only repulsive contributions exist.
Since the symmetry energy at the saturation density is fixed as Sp = 31 MeV in the both
models with and without a9(980) meson, the p meson coupling g,nn is strengthened by
the existence of the attractive 4((980) contribution in the model with 4y comparing to the
model without ag. Actually, it is clear from Tables 3 and 12 that g,y is larger in the ag
model than in the no-ag model for a fixed my. Figure 8 shows the symmetry energy for
mgy = 600-900 MeV and Ky = 215 MeV, with the results of the model with 4y meson and
without ap meson are shown in solid curve and dashed curve, respectively. We observe
that the symmetry energy is indeed stiffened by the existence of 1¢(980). Furthermore, the
difference of the symmetry energy between the models is larger for smaller 1 because the
coupling to the a9 meson is stronger, as indicated by Table 3. At ng = 2n¢, the symmetry
energy S(2ny) is enlarged by a((980) meson as large as ~60% or more in the present model
depending on the choice of input parameters.

In Figure 9, we compare the total symmetry energy with different choices of Ky, and
the results show that the symmetry energy is not sensitive to the value of Kj because the
effect of Ky to the total symmetry energy is canceled by the compensation between Sy, S,
and S,.

The effect of Sy to the total symmetry energy S(np) is also studied. Figure 10 shows
the difference of the symmetry energy S(np) — So. We note that Sy has large impact to the
symmetry energy, since Sy affects the determination of g,nN. As expected, larger So results
in larger S(np).

In addition, we investigate the effect of higher-order terms in the large N, expansion
for the six-point interaction on the symmetry energy by taking A; = +A4. The results of
the symmetry energies with different values of A are shown in Figure 11. We can see
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that the difference between the symmetry energies for models with the same i is small,
which indicates that the effect of A on the symmetry energy is small. Notice also that the
difference becomes smaller for larger m, due to a smaller a¢(980) effect.

5(ng) (MeV)

90{ — mo = 600 MeV

—— mo = 700 MeV
mgo = 800 MeV

80 1 mo = 900 MeV

70 A

60 -

50 -

40 -

30- T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0

ng/ng

— with a¢(980) —-— without a¢(980)

Figure 8. Symmetry energy S(ng) for my = 600-900 MeV, K = 215 MeV, and A = 0. Solid curves
represent the S(np) of the model, including a¢(980) with A, = 0, while the dash-dot curves show the
results of the model without a(980).

S(ng) (MeV)

— mg = 600 MeV R
901 — m;, = 700 Mev %
mgo = 800 MeV
801 —— mgp = 900 MeV
70
60
50 -
40 -
30- T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0
ng/ng
— Ko=215MeV === Ky=240MeV  —:-= Ky=260 MeV

Figure 9. Symmetry energy S(ng) for my = 600-900 MeV, A; = 0, with different choices of Ky com-
pared. Solid, dashed, and dash-dot curves represent S(np) with Ky = 215,240,260 MeV, respectively.
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Figure 10. Difference of the symmetry energy S(np) — Sp in ap model for my = 600-900 MeV and
/\’6 = 0. Ko = 215 MeV. Solid, dashed, and dash-dot curves represent Sp(ng) with Sp = 24,31,
36 MeV, respectively.

— mg = 600 MeV Rd
9041 — Mo = 700 MeV Ve
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Figure 11. Symmetry energy S(np) for ny = 600-900 MeV and Ky = 215 MeV, with the effect of A
compared. Solid, dash-dot, and dotted curves show the S(np) with A’6 = 0, Ag, and —Ag, respectively.

4.4. Symmetry Energy of ag Model with Vector Meson Mixing

As we see from the previous sections, PDM predicts a rather large slope parameter L,
which does not seem compatible with the recently accepted value of Ly = 57.7 - 19 MeV. In
particular, the model with ay meson predicts a very large Lo, as well as the symmetry energy
at density np > ng. In order to soften the matter to reproduce the accepted value of Ly, we
include the w-p vector mixing term to reduce the stiffness of the matter in our model. In this
section, we study the symmetry energy with vector meson mixing interaction.
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In the current model, the symmetry energy S(np) for a given density np is expressed
as follows:

_ "oy
S(nB) 8 anI ny=0
* * * 93
_(k)?  mp (8oNN/2)? g miom, (93)
ou’ 2 m§+(2/\wpgﬁ,NNg5NNn%/mﬁ,) 4 pr ong ln=o

Similarly to Equation (89), the symmetry energy is divided into sum of three contributions:
the nucleon contribution Sy (1), p meson contribution S, (1), and ag meson contribution
Say(np). Notably, the nucleon contribution and ap meson contribution are unaffected by
the vector meson mixing, since their related parameters are determined from symmetric
matter properties. Therefore, the results of Sy(np) and S, (1) are the same as given in
Figures 4 and 5.

On the other hand, the p meson contribution receives a correction from the vector
meson mixing interaction as

Sp(np) =

2
(8oNN/2) } (94)

7
2 bmd + (2Awpglnn&onnTE /M)

where the p meson appears to have an effective mass (11)% = m3 + (2Awpgh NN g%NNn% /md)
exhibiting density-dependence. We note that the w meson influences the symmetry en-
ergy through 21, giNNgﬁNNn%/ m¢, in the denominator. Given that A,y > 0, as shown
in Section 4.1, the w-p mixing term always reduces the symmetry energy. The density de-
pendence of S, is illustrated in Figure 12. It is observed that S, increases with rising 1
in the low-density region, but decreases in the high-density region. This is understood as
follows: in the low-density region where 15 >> 2Awpg%, yn8onn s/ ey, the density depen-
dence of Sy(np) is primarily determined by the pre-factor ng. In the high density region,
on the other hand, the denominator is dominated by 21, g4w NN gf) NNn% /m?, which leads to
Sp(n B) « 1/np. As a result, the behavior of Sp smoothly transforms from ~ ng —~ 1/np.
We also observe that the value of Ky has larger influence to S,(1p) due to the vector meson
mixing. S,(np) receives a extra correction from g.,nyn coming from the vector meson mixing
as we read from Equation (94). Since the repulsive g, nn coupling increase as Ko becomes
larger, S, ~ 1/g% \y is smaller with larger K, and further spread at higher densities.

— mg = 600 MeV

504 — mop = 700 MeV
mgy = 800 MeV

— mo = 900 MeV

45 ~

Sp(ng) (MeV)

251

1.0 1.2 1.4 1.6 1.8 2.0
ng/no
— Ko =215 MeV --=- Kp=240 MeV —:— Ko =260 MeV

Figure 12. p meson contribution S, (ng) in a9 model for mg = 600-900 MeV, /\’6 =0,and Ly = 60 MeV.
Solid, dashed, and dash-dot curves represent S, (1) with Ko = 215,240,260 MeV, respectively.
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Figure 13 shows the total symmetry energy S(ng) for my = 600-900 MeV and
Ly = 60 MeV. For comparison, we also show the results of the no-ap model with vec-
tor meson mixing by dashed curves, as retrieved from Ref. [66]. We note that when the
vector meson mixing is included, the slope of the symmetry energy is reduced in the high
density region. We also observe that, in most cases, the symmetry energy is stiffened by
the existence of 49(980), and the difference of the symmetry energy between two models
is larger for smaller myg. In the case of large m, such as my = 900 MeV where the 4((980)
meson effect is small, the softening effect of A, term overrides the stiffening effect from the
a9(980) meson. As a result, the symmetry energy S(np) is reduced even after the inclusion
of ap meson. A similar reduction in the symmetry energy in the intermediate density region
was also reported in Ref. [56], which includes both the scalar meson mixing and the vector
meson mixing interactions in an RMF model with the presence of isovector-scalar meson.

65
—— mg = 600 MeV
| —— mo =700 MeV
60 mo = 800 MeV
— mg = 900 MeV

30 T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0

nB/no
— with a¢(980) —-— without ap(980)

Figure 13. Symmetry energy S(np) in 49 model with vector meson mixing for my = 600-900 MeV,
/\'6 =0, Ko = 215MeV, and Ly = 60 MeV. Solid curves represent the S(ng) of the model, including
a9 (980) with A}, = 0, while the dash-dot curves show the results of the model without a,(980).

In Figure 14, we study the Ky dependence of the symmetry energy. Similarly to the
models introduced in the previous sections, Kj has very little effect to the symmetry energy.
Due to the extra correction of the vector meson mixing to Sy, the effect of Kj is further
suppressed due to the compensation of the effect of Ky to Sy, Sy, and Sp.

In particular, the results of my = 700 MeV and Ly = 60 MeV from the present model is
compared to the results of other mean field models such as FSU-06.7 [56] and B. Liu et al. [63],
and density dependent RMF models such as DD-ME¢ [65] in Figure 15. We observe that the
vector meson mixing reduces the symmetry energy at high density similarly to the model
with density dependent couplings without vector meson mixing interaction. In addition,
our ap model without vector meson mixing predicts a large symmetry energy similarly to
the RMF model without vector meson mixing, while the symmetry energy in models with
vector meson mixing is effectively reduced.
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Figure 14. K dependence of the symmetry energy S(np) in the 49 model with vector meson mixing
for A'6 =0, and Ly = 60 MeV. Solid, dashed, and dash-dot curves represent S(np) with Ky = 215,240,

260 MeV, respectively.
65 -
—a— MM-DEbS ,
—— FSU-66.7 ,
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Figure 15. Comparison of the symmetry energy S(np) of the present model with the ones of other
models. The results from density dependent RMF model DD-MES§ [65] and RMF model from
B. Liu et al. [63] and FSU-66.7 [56] are compared. The results from present model shown in the figure
takes the typical value of my = 700 MeV, /\'6 =0, Ky = 215 MeV, and Ly = 60 MeV for result with
vector meson mixing.

Finally, we compare the symmetry energy in the models with different A in Figure 16.
As expected, the effect to symmetry energy is smaller than the effect of m, because Ay
interactions are of sub-leading order in large N, expansion.
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Figure 16. Symmetry energy S(ng) for my = 600-900 MeV, Ky = 215 MeV, and Ly = 60 MeV with
the effect of )\’6 compared. Solid, dash-dot, and dotted curves show the S(np) with A'6 =0,+Aq.

5. Summary

In this review, we summarized the recent studies on infinite nuclear matter and fi-
nite nuclei based on parity doublet models (PDMs). We first introduced a PDM, which
is constructed in Ref. [19]. Under the mean field approximation, the nuclear proper-
ties such as slope parameter and symmetry energy were computed. In particular, we
observed that the slope parameter is relatively larger than the recently accepted value
Ly = 57.7£19 MeV [72]. We also investigated the impact of the value of Ky to the model.
We found that the value of Ky has little impact to the matter properties, such as the sym-
metry energy and slope parameter Ly in the model without a9 meson. We also studied the
effect of Sy to the slope parameter Ly. We find that the value of Sy will affect the value of
Ly significantly.

We then considered the properties of some stable nuclei in the mean field approxima-
tion to pin down the value of the chiral invariant mass preferred by the nuclear binding
energies and charge radii. We found that our results are closest to the experiments when
we take my = 700 MeV. We also calculated the neutron and proton masses in a nucleus
and observed, as expected, that the neutron—proton mass difference becomes larger in an
isospin asymmetric nucleus.

Then, we studied the effect of isovector scalar meson a4(980) to the matter. The isovec-
tor scalar meson provides the attractive force in the isovector channel, and is important in
the asymmetric matter. We found that the inclusion of a((980) has a very strong influence
on the symmetry energy and slope parameter. We observed that the symmetry energy
at densities ng > ny is largely enhanced by the existence of 43(980). By analyzing the
different contributions to the symmetry energy, we concluded that this enhancement is
originated from the strengthening of the p meson coupling g,nn. The a¢(980) meson
generates the attractive force in the isovector channel, which requires the repulsive force
from p meson to be larger for reproducing the saturation property. As a result, a larger
repulsive p interaction increases the symmetry energy at densities ng > ny. However, we
also observed that this stiffening of nuclear matter produces a large slope parameter that is
much larger than the recently accepted value suggested by other studies. Therefore, we
introduced the w-p mixing interaction to reduce the slope parameter in the model. It was
found that the symmetry energy at density ng > n is reduced after the inclusion of w-p
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mixing interaction. Furthermore, we observed that the w-p mixing interaction modifies the
density dependence of the symmetry energy at density ng > ny. We also observed that
the value of K has relatively large impact on the 4y contribution to symmetry energy Sy,
and Ly due to the effect of Ky to the a9 meson. However, similarly to the case of model
without the ap meson, Ky has limited effect to the total symmetry energy S(np) because of
the compensation of the Ky effect between Sy, Sy, and S,. The effect is further suppressed
when vector meson mixing effect is included. We also investigated the effect of Sy to
the total symmetry energy. As expected, the value of Sy has large impact to the p meson
coupling ¢,nn and thus the symmetry energy. There are also some microscopic nuclear
force models in, e.g., Refs. [77-79]. It would be also interesting to compare the result of the
present model to the results of these models.

We expect that future experiments on the study of symmetry energy at higher densities
will provide further constraints on the chiral invariant mass of the nucleon. We also expect
that a9 (980) will have a significant influence on asymmetric nuclei. It would be interesting
to study finite nuclei using the extended PDM including the a(980) meson, which may
give new information to constraints on the chiral invariant mass of the nucleon and the
behavior of nucleon mass in dense matter. We leave this as future project.
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