Hastac: an Algorithm for Developing a Tree of Cuts, and its Relation
to Neural Networks

James T. Linnemann®, David Bowser-Chao, James Hughes

Michigan State University, Department of Physics, East Lansing, MI 4882}, USA

We describe Hastac, a C++ program for finding criteria for separating signal and back-
ground samples by means of a tree of cuts on linear combinations of variables. The
method is quite fast, and not only allows near-optimal rejection for a given efficiency,
but identification of the most significant variables from a large set candidate variables.
A mapping to feed-forward neural nets is possible, offering an excellent starting point
for further refinement. Results are presented for test distributions where the answers
are known. An interpretation of feed-forward neural nets in terms of hyperplanes is
developed.

1 Hastac, a Tree of Hyperplane Cuts

A tree! of cuts describes successively refined separation of an initial mixed sample
of events into two classes, signal (s) and background (b), much as in a game of 20
questions. Each node of the tree represents a cut; events passing the cut are de-
scribed as s-enhanced; those which fail are b-enhanced. Each subsample is subjected
to more tests. The full tree consists of ¢ cuts, and partitions the sample into ¢ + 1
regions (called leaves in this context). The cuts used in Hastac are hyperplanes. A
point z is classed as s if the signed distance from the hyperplane is positive:

d=(h-z—c)>0 (1)

where ¢ = 7 - ®g, with z; any point on the hyperplane, and # is a unit normal to
the hyperplane pointing to the signal-enhanced region.

A tree built of such hyperplane cuts is a generalization of the usual (hyperrect-
angle) cuts. The tree nodes are directly geometrical; examining the hyperplanes
used in decision nodes can identify useful variables. As we shall see, there are also
useful relations between the tree and feed-forward neural nets.

The tree is grown by starting with training samples of pure s and b. 2000
events each were used for training the tree (and comparison methods). A decision
hyperplane for a node is chosen by adjusting # and ¢ to optimize s/b” in its s-
enhanced leaf. In practice, tree classification performance is improved by taking
(during optimization) a continuous approximation to the step function

. n-x—c
G(n-m—c)ag(T)
1+ tanh
ofy) = ~HEE) (2
n-x;—cC n-x —c
i€S i€B

“linnemann@msupa.pa.msu.edu

This continuous approximation is equivalent to estimating the projection of the
probability distributions for s and b by using a smoothing kernel? K(d — d;) =
cosh_z(%) along the projection direction 7. Using the kernel estimate rather
than the raw data helps avoid over-training. The continuous approximation also
allows application of optimization methods using derivatives.

This optimization is repeated on both leaves of the node. The method is 5-10
times faster than neural net training because the successive subsamples are smaller
and smaller.

2 Comparison with Optimum Performance and other Methods

The performance of a classifier can be rigorously tested by comparing it to the best
possible test, the Neyman-Pearson test®. This test is equivalent to cutting on the
single variable
P(x|s)P(s)
u(z) = . (3)
P(z|s)P(s) + P(z|b)P(b)

u is defined so that it ranges between 0 and 1. When % = .5, the point is equally
likely to be s or b. This cut defines a (possibly complicated) contour along the
decision surface u(z) in hyperspace. The tree attempts to fit the contour with
hyperplanes; other methods approximate contours or the surface by other means.
The performance of the best test may be computed by calculating the distribution
of u for the known signal and background distributions. The performance of a
specific cut may be characterized by

€ :/u1 P(uls)du; eb:/ulP(u|b)du (4)

o o

s/bis proportional to €, /ey, the factor by which a cut improves s/b from its original
value of N,/N,. Thus, the rejection vs efficiency performance can be summarized
by the plot €, /ey vs €.

The tree leaves have varying degrees of signal enhancement. Ordering them in
descending s/b allows presentation of the performance of the tree as a classifier by
defining €, = s/N, and €, = b/Ny,. This comparison with the optimum for all ¢, is a
bit unnatural for the tree, as it is now required to fit many decision contours with
hyperplanes instead of just one. For these tests, the tree was forced to generate up
to 200 leaves.

The comparison with the optimum for the tree (and other methods?*) was done
by fixing the parameters of the classifier with the training samples with standard
control parameters and testing on an independent sample of 2000 each s and &
events.

Test Distributions All distributions chosen for the test were 3-dimensional. Ta-
ble 1 gives their characteristics. The first 4 distributions have 3 independent distri-
butions. The first 3 distributions correspond to the ”poor separation” case of ref.
5. CLEAN is FAR with s and b reversed. FRAC is a sawtooth in f; the z,y, 2

projections are flat, but peaks in s/b lie along z +y + z = %, % RING has clearly

2

Table 1: Test distributions

SAME s flat(1.1) Normal(0,1.2) LogNormal(0,1.3)

b flat(1.1) Normal(0,1.2) LogNormal(0,1.3)
NEAR s flat(1.1) N(0,1.2) LNor(0,1.3)

b flat(1.4) N(0,1.5) LNoz(0,1.6)
FAR s N(0,1.1) N(0,1.2) LNoz(0,1.3)

b N(2,1.7) N(.3,1.8) LNoz(.4,1.9)
CLEAN s N(.2,1.7) N(.3,1.8) LNor(.4,1.9)

b N(0,1.1) N(0,1.2) LNoz(0,1.3)
FRAC® s |f—-5);f=(z+y+2)modl, zy,2¢c(0,1)

b b5—|f— .5
RING s torus(7 = 1,0,,0, = .3) in (2,y)

b torus(7 = 1, 0,0, = .3) in (2, 2)

distinguishable regions and regions of equal s and b density. The corresponding
author (JTL) is interested in hearing of other useful test distributions.

Results Typical results are shown in Fig. 1. For CLEAN, all methods somewhat
underperform the optimum in the high €, region, and all have worse problems in
the low €, region. For FRAC, PDE is unable to achieve high rejection, mainly
because it has a tendency to oversmooth sharp features such as found in FRAC.
The Neural Net also had trouble, needing a higher setting of learning parameters
to follow the difficult shape. The tree, while not fully optimal, does a better job
than PDE of tracing the optimal curve, which in this instance is calculable: €, /¢, =
%(l—l—m)— 1. Our conclusion is that Hastac’s algorithm needs tuning to better
subdivide s-enhanced regions, and to have the objective function also consider the
situation in the b-enhanced leaf. An earlier version of Hastac was shown' to be
competitive to Neural Nets on realistic problems. Generally, the problems at small
€; warn that adequate statistics are needed to measure high rejection: count s and
b in the signal region and compute error bars for the expected rejection, just as you
would for classic cuts!

3 Transcription of a Tree to a Feedforward Neural Net

A completed decision tree may be mapped into a 2 hidden-layer feedforward neural
net” as follows. All nodes in the neural net start out with 7"~ 0, that is as step
function units. The first hidden layer consists of ¢ units each testing one hyperplane
used by the corresponding tree node. The second layer consists of ¢ + 1 units each
representing a leaf path. The weights for the connections to first hidden layer are
+1 if the path to a leaf required a s-enhanced decision from the corresponding tree
node, —1 if a b-enhanced decision was required, and 0 if the tree node decision was
irrelevant to the leaf. The output node is connected to the second hidden layer
with weights 1 for all s-enhanced leaves. If the resulting net is to be used without
alteration to implement the tree (rather inefficiently), the b-enhanced leaves could be

3

:)
i © ° ¢ O
o]] ° e O
* » * o o O
i 6 | o o FRAC
o [o o DD
20 L Clean R WD
. o \D
5L @ e * PDE
LS o . R
,‘ 5 P Lt * ey O Optimum
1 L
*
LN o * PDE 4 * %D% * & 0 Tree
(J=| . * R
" O Optimum % & ® NeuralNet
‘ = @)
*
|@ O Tree 3
0 o, -
O&% @ Neural Net

0.2 0.4 0.6 0.8 1

Figure 1: €5/€p, vs €5 for CLEAN and FRAC

omitted from the second layer. A more interesting use of the transcription would
be to take the resulting net as a starting point for net training, with the nodes
converted from step function units to sigmoids of finite temperature. A more radical
alternative would be to ignore the second hidden layer and use the node hyperplane
directions as starting points for the training of a 1-layer net with sigmoidal units,
since the intent of the tree was to locate good hyperplane directions.

4 Geometric Interpretation of Feedforward Neural Net

A single layer feed-forward neural net may be described as follows. D inputs are
combined in M hidden units with outputs

Y = g(wy -2 — ay) (5)

where g is a sigmoidal function (2). The hidden layer outputs are then combined
by the output unit
w(z) =g(W-Y — 4) (6)

From our study of the tree algorithm, we can rewrite the weight vectors as
w_;g :fb/Tk ar :Ck/Tk. (7)

The first expression defines T and #; the second defines c¢;. That is, we can
understand the operation of the hidden layers as picking a hyperplane direction
and position to maximize signal and background separation. The purpose of the
choice of hyperplane direction is to do a tomographic projection of the s and &
distributions and fit (s/(s+5)?) with a sigmoid of transition width Tj;. The hidden
layer weights contain information on the useful variables which is just as geometrical
as that in the tree decision nodes hyperplane directions!

What about output layers? One way of looking at it is that it merely repeats
the process in the space of the extracted features Y; € (0,1), again telling which

4

features are important. An interesting symmetry becomes apparent when we realize
that one can force the weights Wy positive by demanding that the hidden layer
hyperplanes all be oriented towards the good-signal region, that is, that Yz = 1
always be s-enhanced. The symmetry Y3z — 1 —Y; is

W — —Wg, ag — —ag

Wi — —Wg, A—A-W, (8)

In the Wy > 0 orientation, we may view the output node as a soft voting machine,
with A as the number of weighted projections which, if driven to 1.0, would force
u to u > .5, the s-enhanced region. This symmetry shows that the net has 2™
completely equivalent states for the learning algorithm to seek.

With this perspective, we also gain some insight into the number of hidden
nodes needed. M must be at least the number of projections needed to pick up
important features (and correlations) of the distributions to be separated. However,
this number may be boosted further if the profile along an important projection is
not well represented by a single step function; multiple transition points cx may be
needed for one projection direction 7.

Acknowledgments

The presenter (JTL) thanks Alberto Santoro, CBPF/LAFEX, MSU, and the NSF
for assistance in attending this conference.

References

1. David Bowser-Chao and Debra L. Dzialo, Phys. Rev. D 47, 1900 (1993); D.
Chao et. al., MSU-HEP /50327, hep-ph/9503453; J. Friedman, IEEE Trans.
on Comp. p404 (1977); L. Breiman et. al. Classification and Regression Trees
(Chapman & Hall, 1984); J. Dorfan, Mark II Note, 1979.

2. D. W. Scott, Multivariate Density Estimation (John Wiley, 1992); L. Holm-
strdm et. al., Comp. Phys. Comm., to be published. The cosh™? kernel
resembles a Gaussian, but has longer tails.

3. W.T. Eadie et. al., Statistical Methods in Ezperimental Physics (North Hol-
land, 1971), p 224; S. Brandt Statistical and Computational Methods in Data
Analysis (North Holland, 1970), p 174. u(z) is closely related to 7/(1+ r) in
the notation ref. 5.

4. The P.D.E. (probability density estimation) program was provided by P. Vi-
rador and H. Miettinen?; Harrison Prosper ran JetNet3.0 for the Neural Net
trials.

5. J. Linnemann, ” How Hard Should you Cut when the Data Sample is Finite?”,
these proceedings.

6. L. Garrido et. al. Comp. Phys. Comm. 84, 297 (1994)

7. R. P. Brent, ”"Fast Training Algorithms for Multi-layer Neural Nets,” Aus-
tralian National Laboratory report (unpublished); see also J. Hertz et al,
Introduction to the Theory of Neural Computation (Addison Wesley 1991) p
159 which claims a mapping into a 1-layer network.

5

