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Abstract
We formalize some known categorical equivalences to
give a rigorous treatment of smooth representations of
𝑝-adic general linear groups, as ungraded modules over
quiver Hecke algebras of type 𝐴.
Graded variants of RSK-standard modules are con-

structed as a new basis for Grothendieck groups of
quiver Hecke algebras. Exporting recent results from
the 𝑝-adic setting, we describe an effective method for
construction and classification of simple modules as
quotients of modules induced from maximal homoge-
nous data.
It is established that the products involved in

the Robinson–Schensted–Knuth construction fit the
Kashiwara–Kim notion of normal sequences of real
modules. We deduce that RSK-standard modules have
simple heads, devise a formula for the shift of grading
between RSK-standard and simple self-dual modules,
and establish properties of their decomposition matrix,
thus confirming expectations for 𝑝-adic groups raised in
a previous work of the author with Lapid.
We lay the ground for a subsequent work that exhibits

the RSK construction as a generalization the better
explored Specht construction, when inflated from cyclo-
tomic quotient algebras.
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QUIVER HECKE ALGEBRAS AND RSK 705

1 INTRODUCTION

This work stands at a crossroads of two domains in representation theory. One deals with smooth
complex representations of a family of locally compact groups 𝐺𝐿𝑛(𝐹), where 𝐹 is a 𝑝-adic
field. The other studies modules over quiver Hecke algebras (also known as Khovanov–Lauda–
Rouquier algebras) associated to Cartan data of type 𝐴𝑁 . By adopting a categorical point of view
and exploiting known equivalences between those settings, we are able to answer recently posed
questions about the nature of some finite-length representations on both sides.
The representation theory of 𝑝-adic general linear groups plays a major role in the celebrated

Langlands program. An early step toward the program’s local goals was the ground-breaking
Zelevinsky classification [53], which suggested a combinatorial construction of all irreducible
representations of 𝐺𝐿𝑛(𝐹) building upon given supercuspidal data. While the original local Lang-
lands reciprocity for these groups is by now well-understood, an effective description of possible
indecomposable objects in this non-semisimple category remains an intriguing task that reaches
beyond the traditional scope of the Langlands program (see [35] for a possible visionary direc-
tion). Our work continues an exploration of a new method suggested in [14] for a systematic
construction of classes of representations of interest.
Quiver Hecke algebras were introduced in [24, 25, 46], as a means of categorifying quantum

groups. Namely, a choice of a simple Lie algbera 𝔤 gives rise to a family of associative algebras
{𝑅(𝛽)}𝛽 , whose finite-dimensional module categories, when put together, provide a monoidal
abelian category. The Grothendieck ring of the resulting category is then identified with an
integral form of the positive part of the quantum group 𝑈𝑞(𝔤).
The quiverHecke construction stood as an algebraic explication of previously known geometric

categorifications, such as the one in [39], for quantum groups (see [52] for details). In particu-
lar, questions on the multiplicative structure of 𝑈𝑞(𝔤)+ relative to its dual canonical basis are
lifted to questions on the monoidal structure of explicitly defined categories. In recent years, this
approach lead, for example (see [23]), to an improved understanding of such structures through
the axiomatic framework of cluster algebras.
The two areas of study described above become highly interrelated, when the Lie type 𝔤 = 𝔰𝔩𝑁

(or, more conveniently 𝔰𝔩∞) is taken. A middle link between the two settings is the represen-
tation theory of affine Hecke algebras. It is classically established, and more modernly proved
[4, 19] for our cases, that the representation theory of a suitable affine Hecke algebra should
mimic smooth representations of a 𝑝-adic group with fixed supercuspidal data (a Bernstein
block). We explicate the known results for our groups of interest into a functor, which we call
the Bernstein equivalence.
On the other hand, from the outset of the theory of quiver Hecke algebras, it was known that

in type 𝐴 their representation theory largely coincides with that of affine Hecke algebras. In fact,
it was shown [5] that taking natural (cyclotomic) quotients of both kinds of algebras, results in
isomorphic algebras. Following [47], we take a functorial view on this identification, which we
call the Rouquier equivalence.
An inherent feature of quiver Hecke algebras is that they are graded. In fact, the graded struc-

ture on their modules stands as a categorification of the algebraic quantization parameter in
the quantum group. Namely, the integral form of 𝑈𝑞(𝔤)+ comes with a ℤ[𝑞, 𝑞−1]-algebra struc-
ture, which is viewed as shifts of grading on modules in the Grothendieck ring realization. This
structure remains practically hidden in the setting of representations of 𝑝-adic groups.
In the first part of this work, we formalize both Bernstein and Rouquier functors, and compose

them together (Theorem 3.10) into an explicit equivalence of monoidal categories. This formalism
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706 GUREVICH

provides rigorous tools for the conceptual treatment of finite-dimensional representation theory
of quiver Hecke algebras of type 𝐴, as a gradation, or quantization, of the smooth finite-length
representation theory of 𝐺𝐿𝑛(𝐹).
It should be noted that throughout this article all base fields are assumed to be complex, while

𝑞 ∈ ℂ, whenever relevant, is not a root of unity.

1.1 Irreducible representations

The quantization point of view fits well with the accumulated knowledge on the collection of
irreducible objects in categories of both kinds. The various bases for 𝑈𝑞(𝔰𝔩∞)+ may be natu-
rally parameterized by representations of the𝐴∞-quiver (for example, [36, 38]), which are set in a
clear bijectionwith themultisegments used in the Zelevinsky classification. Since simplemodules
of type 𝐴 quiver Hecke algebras categorify the dual canonical basis, the same parameterization
should hold in that setting.
Indeed, such a classification of simple modules, generalizing Zelevinsky, was conducted

directly by Kleshchev–Ram in [31]. Moreover, they constructed families of finite-length proper
standard modules (later generalized in [7, 41]) categorifying Poincaré–Birkhoff–Witt bases
for the quantum group, and, from our point of view, serving as a graded version of the
Langlands/Zelevinsky standard representations for 𝑝-adic groups.
Onewell-understood family of simplemodules for quiverHecke algebras is that ofhomogeneous

modules, that is, modules concentrated at a single degree of their grading. These were treated
in [30] and were classified for type 𝐴 algebras. Unsurprisingly, the 𝑝-adic groups literature is
independently familiar with the class of irreducible representations appearing when transferring
results through the above mentioned equivalences. These were coined as ladder representations
[32], after the shape of the Zelevinsky multisegments describing them.
On the 𝑝-adic side, the class of ladder representations is known to be especially accessible (for

example, [26]), while frequently appearing in applications of the theory (such as in the study of
harmonic analysis, with the building blocks of the unitary spectrum of 𝐺𝐿𝑛(𝐹) being composed
of specific (Speh) ladder representations [49]).

1.2 Graded RSK-standard modules

Exporting notions developed in [14], we may now ask: Is there an efficient, or insightful, method
of constructing all simple modules for quiver Hecke algebras using the class of homogeneous
simple modules?
This question relates to a new model suggested in [14] for the construction of irreducible

representations of𝐺𝐿𝑛(𝐹), which is based on the combinatorial Robinson–Schensted–Knuth cor-
respondence. Let us briefly describe it here in the language of quiver Hecke algebra modules,
while deferring most details to Section 5.
Given a simple module 𝐿 of a quiver Hecke algebra 𝑅(𝛽) of type 𝐴𝑁 , the Kleshchev–Ram clas-

sification (up to some choices) provides a multisegment𝔪 parameterizing 𝐿. While𝔪 should be
viewed as a positive element of the root lattice of 𝔰𝔩∞, for sake of introduction let us treat it as a
multi-set of pairs of integers:

𝔪 = {(𝑎1, 𝑏1), … , (𝑎𝑛, 𝑏𝑛)} ,

with 𝑎𝑖 ⩽ 𝑏𝑖 , for all 𝑖.

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12695, W

iley O
nline L

ibrary on [10/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QUIVER HECKE ALGEBRAS AND RSK 707

Applying the RSK algorithm (for example, [28]) on this multi-set, one produces a pair of semi-
standard Young tableaux (𝑃𝔪,𝑄𝔪) of equal shapes. Alternatively, the information encoded in the
resulting bi-tableau may be written as a tuple

(𝔪) = (𝔩1, … , 𝔩𝜔) ,

so that each 𝔩𝑖 is a (ladder) multisegment itself, read out of the 𝑖th pair of rows in (𝑃𝔪,𝑄𝔪).
The simple modules Ξ1, … , Ξ𝜔 corresponding to (𝔩1, … , 𝔩𝜔) under the Kleshchev–Ram classifi-

cation now become homogenous representations of corresponding quiver Hecke algebras.
With these data in place, we define theRSK-standardmodule associatedwith themultisegment

𝔪 to be the finite-dimensional 𝑅(𝛽)-module

Γ(𝔪) = Ξ1◦⋯◦Ξ𝜔⟨−𝑑(𝔪)⟩ ,
given by the convolution product, where ⟨−𝑑(𝔪)⟩ denotes a suitable shift of grading.
Passing through our composed functor of the Bernstein and Rouquier equivalences, we may

now state a quiver Hecke algebra version of the main result of [14].

Theorem 1.1 (Theorem 5.8). Up to a shift of grading, the simple module 𝐿 classified by the
multisegment𝔪 is isomorphic to a quotient module of the RSK-standard module Γ(𝔪).

Wenote that the convolution product constructsΓ(𝔪) as induction froma simple homogeneous
module of a parabolic subalgebra (see Subsection 2.1) 𝑃 = 𝑅(𝛽1, … , 𝛽𝜔) < 𝑅(𝛽). It follows from
[16, section 4] (again functorially transferring results to a graded version) that 𝑃 is the maximal
parabolic subalgebra, for which 𝐿 (the simple module classified by𝔪) may occur as a subquotient
of amodule induced from ahomogeneousmodule of𝑃. In otherwords, theremay not be a product
of less than 𝜔 simple homogenous terms that will give rise to a construction of 𝐿.
In this sense, a RSK-standard module may be thought as the module realizing the ‘shortest

distance’ of the class of homogenous modules to a given simple module.

1.3 Main results

Several conjectures were raised in [14] regarding the nature of the RSK-standard modules in
the 𝑝-adic setting, suggesting further favorable properties of the new construction. In this
work, we apply the gained advantage of transition into the graded setting to prove some of
these expectations.
First, Theorem 1.1 raises the question of whether the constructed irreducible quotient of Γ(𝔪)

is unique, that is, whether RSK-standard modules have simple heads.
In Theorem 7.9, we positively answer the stronger graded variant of this question, thus making

the structure of RSK-standard modules considerably more transparent. We prove that the graded
multiplicity of the simple quotient 𝐿𝔪 of Γ(𝔪) is 1. Moreover, the graded multiplicity of any other
subquotient of Γ(𝔪)must consist of positive degrees.
The resulting picture is a familiar trait seen in transition matrices between PBW-bases

and canonical bases in quantum groups. Hence, the role of RSK-standard modules is further
established as a fitting alternative to the proper standard modules categorifying PBW-bases.
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708 GUREVICH

Using our functorial gateway through its other end, we settle in Corollary 7.12 some analo-
gous originally posed questions on RSK-standard modules for the context of representations of
𝑝-adic groups.
Moreover, a simple consequence of our work (Corollary 7.10) is that RSK-standard module

present a basis for the suitable graded Grothendieck group of finite-dimensional quiver Hecke
algebra modules (in particular, when decategorifying, a new basis for the positive part of the
quantum group). This is again a supporting evidence for the validity of the analogous statement
conjectured in the 𝑝-adic setting.
Finally, we reach an appealing formula (Theorem 7.11) for the constant 𝑑(𝔪) used to normalize

the grading shift on a RSK-standard module.
Let us draw attention to the similarity of this formula to that of the dimension of a Springer

fiber for the symmetric group [48] parameterized by the shape of the bi-tableau of(𝔪). We
suggest a further search for possible relations of the RSK construction to a geometric Springer-
type approach.

1.4 Methods

The key tool used in the proof of Theorem 7.9 is the concept of normal sequences.
The theory developed in the works of Kang–Kashiwata–Kim–Oh [22, 23] has put the notion

of real simple modules on the front lines of study: Those are simple modules 𝐿 of quiver Hecke
algebras, for which 𝐿◦𝐿 remains simple. The analogous notion was investigated in depth in the
𝑝-adic setting [34], under the name of square-irreducible representations.
For a real simple module 𝐿 and any simple module𝑀 of the suitable quiver Hecke algebra, the

product 𝐿◦𝑀 has a simple head that is given by𝐻⟨ℎ⟩, where𝐻 is self-dual. The numeric invariant
Λ̃(𝐿,𝑀) = −ℎ is a useful outcome of the graded setting approach to our set of problems.
Kashiwara–Kim [21] have called a sequence of real simple modules 𝐿1, … , 𝐿𝑘 normal, if it

satisfies certain compatibility properties, that can be easily stated in terms of the Λ̃-invariant.
In the case of a normal sequence, the product 𝐿1◦⋯◦𝐿𝑘 has a simple head, among further

favorable properties that are established in Proposition 7.7.
Nevertheless, a systematic production of such favorable product modules and of the normal

sequences that give rise to them, seems not to be a trivial task. We show that the RSKmechanism
is in fact an efficient tool for that goal.
For a multisegment𝔪, its RSK transform(𝔪) = (𝔩1, … , 𝔩𝜔) is defined inductively, so that

(𝔪̂) = (𝔩2, … , 𝔩𝜔), for another multisegment 𝔪̂. Now, given the homogeneous (real) simple
module 𝐿 = Ξ1 corresponding to 𝔩1, and the simple head𝑀 of Γ(𝔪̂), we produce a combinatorial
formula (Corollary 6.7) for the number Λ̃(𝐿,𝑀).
It then follows that the sequence of homogenous modules Ξ1, … , Ξ𝜔 used to define Γ(𝔪)

is normal.

1.5 Links with the Specht construction

In a subsequent work of the author [17], it is shown that the RSK construction developed here
may be viewed as a generalization of the Specht construction for cyclotomic Hecke algebras [12],
and its graded variant [9].
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QUIVER HECKE ALGEBRAS AND RSK 709

Specifically, the classification of simple modules [1, 15] of the cyclotomic quotients of affine
Hecke algebras and the analogous quotients of quiver Hecke algebras, often follows the lines of
the Zelevinsky approach, with a reducible Specht module standing in place of a (proper) standard
module. When this picture is inflated to the (full) quiver Hecke algebra representation category,
a comparison between the Kleshchev–Ram/Zelevinsky construction and the Specht construction
asks to be performed.
Indeed, works of Vazirani [51] and Kang–Park [29] have studied similar questions. Their results

can now be explained through the lens of the RSK construction and our results, since inflated
Specht modules turn out to be special cases of RSK-standard modules.
Moreover, our Theorem 7.9 may be specialized to the context of graded multiplicities treated

in [6], while the formula of Theorem 7.11 is consistent in the special Specht cases with the shift
formula of [27, Theorem 8.2], for inflated graded Specht modules.

1.6 Structure

We first survey in Section 2 the basics of the (necessary cases of the) representation theory of quiver
Hecke algebras of type 𝐴. Specifically, we recall the Kleshchev–Ram approach to classification of
simple modules.
Section 3 surveys the smooth finite-length representation theory of 𝑝-adic 𝐺𝐿𝑛, while putting

together the categorical bridges needed for comparison of our two settings.
Using the established gateway between settings, we single out several curious classes of simple

modules in Section 4.
In Section 5, we recall the RSK construction of [14], export it into the quiver Hecke algebra

domain and develop some of its properties.
The degree computations of Section 6 is the technical heart of this work. Its aim is to show that

the Λ̃-invariant is well-behaved relative to the RSK inductive process.
Finally, we develop some properties of normal sequences in Section 7 and apply them on the

RSK construction.

2 QUIVER HECKE ALGEBRAS

Let us recall the basics of the representation theory of quiverHecke algebras.Wewill largely follow
the standard conventions as in [5, 23, 31, 40].
Our description will cover algebras of type 𝐴 solely. More precisely, the general construction

of quiver Hecke algebras depends on a choice of Lie-theoretic data as an input. The algebras
appearing in our discussion are the ones associated with the data of the Lie algebra 𝔰𝔩∞.
We take the Cartan datum (, ⋅) as a set labeled by integers  = (𝛼𝑖)𝑖∈ℤ (simple roots), and an

integer valued symmetric bilinear form 𝛼, 𝛽 ↦ (𝛼, 𝛽) on the free abelian group 𝑄 = ℤ[] (root
lattice) given by

(𝛼𝑖, 𝛼𝑗) =

⎧⎪⎨⎪⎩
2 𝑖 = 𝑗

−1 |𝑖 − 𝑗| = 1
0 |𝑖 − 𝑗| > 1 , ∀𝑖, 𝑗 ∈ ℤ .
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710 GUREVICH

We denote the positive cone 𝑄+ =
∑
𝑖∈𝐼 ℤ⩾0𝛼𝑖 ⊆ 𝑄. For 𝛽1, 𝛽2 ∈ 𝑄+, we write 𝛽1 ⩽ 𝛽2 whenever

𝛽2 − 𝛽1 ∈ 𝑄+.
Let 𝛽 =

∑
𝑖∈𝐼 𝑐𝑖𝛼𝑖 ∈ 𝑄+ be fixed. Its height is defined as |𝛽| = ∑

𝑖∈𝐼 𝑐𝑖 ∈ ℤ.
We denote the finite set of tuples

𝛽 = {𝜈 = (𝜈1, … , 𝜈|𝛽|) ∈ |𝛽| ∶ 𝛼𝜈1 +⋯ + 𝛼𝜈|𝛽| = 𝛽} .
The quiver Hecke algebra (or Khovanov–Lauda–Rouquier algebra) related to 𝛽 is defined

to be the associative complex algebra 𝑅(𝛽), which is generated by {𝔢(𝜈)}𝜈∈𝛽 , {𝑦1, … , 𝑦|𝛽|},
{𝜓1, … , 𝜓|𝛽|−1}, subject to the relations

𝔢(𝜈)𝔢(𝜈′) =

{
𝔢(𝜈) 𝜈 = 𝜈′

0 𝜈 ≠ 𝜈′
,

∑
𝜈∈𝛽

𝔢(𝜈) = 1 ,

𝑦𝑖𝔢(𝜈) = 𝔢(𝜈)𝑦𝑖 , 𝜓𝑖𝔢(𝜈) = 𝔢(𝑠𝑖 ⋅ 𝜈)𝜓𝑖 , ∀𝑖 ,

𝑦𝑖𝑦𝑗 = 𝑦𝑖𝑦𝑗 , ∀𝑖, 𝑗 , 𝜓𝑖𝜓𝑗 = 𝜓𝑗𝜓𝑖 , for |𝑖 − 𝑗| > 1 ,
𝑦𝑗𝜓𝑖 = 𝜓𝑖𝑦𝑗 , for 𝑗 ∉ {𝑖, 𝑖 + 1} ,

(𝑦𝑖+1𝜓𝑖 − 𝜓𝑖𝑦𝑖)𝔢(𝜈) =

{
𝔢(𝜈) 𝜈𝑖 = 𝜈𝑖+1

0 𝜈𝑖 ≠ 𝜈𝑖+1
, (𝑦𝑖𝜓𝑖 − 𝜓𝑖𝑦𝑖+1)𝔢(𝜈) =

{
−𝔢(𝜈) 𝜈𝑖 = 𝜈𝑖+1

0 𝜈𝑖 ≠ 𝜈𝑖+1
,

(𝜓𝑖+1𝜓𝑖𝜓𝑖+1 − 𝜓𝑖𝜓𝑖+1𝜓𝑖)𝔢(𝜈) =

⎧⎪⎨⎪⎩
𝔢(𝜈) (𝜈𝑖, 𝜈𝑖+1, 𝜈𝑖+2) = (𝛼𝑡, 𝛼𝑡+1, 𝛼𝑡), for 𝑡 ∈ ℤ
−𝔢(𝜈) (𝜈𝑖, 𝜈𝑖+1, 𝜈𝑖+2) = (𝛼𝑡, 𝛼𝑡−1, 𝛼𝑡), for 𝑡 ∈ ℤ
0 otherwise

,

𝜓2𝑖 𝔢(𝜈) =

⎧⎪⎪⎨⎪⎪⎩

(𝑦𝑖 − 𝑦𝑖+1)𝔢(𝜈) (𝜈𝑖, 𝜈𝑖+1) = (𝛼𝑡, 𝛼𝑡+1), for 𝑡 ∈ ℤ
−(𝑦𝑖 − 𝑦𝑖+1)𝔢(𝜈) (𝜈𝑖, 𝜈𝑖+1) = (𝛼𝑡, 𝛼𝑡−1), for 𝑡 ∈ ℤ
0 𝜈𝑖 = 𝜈𝑖+1

𝔢(𝜈) otherwise

.

Here, 𝑠𝑖 ⋅ 𝜈 ∈ 𝛽 denotes an action of a simple transposition, that is, a switch of 𝜈𝑖 with 𝜈𝑖+1.
The algebra 𝑅(𝛽) becomes (ℤ-)graded, when setting the degrees

deg(𝔢(𝜈)) = 0, deg(𝑦𝑖) = 2, deg(𝜓𝑖𝔢(𝜈)) = −(𝜈𝑖, 𝜈𝑖+1)

on the generators.
Wewrite 𝑅(𝛽) − mod (𝑅(𝛽) − gmod) for the abelian category of (graded) finite dimensional left

modules over 𝑅(𝛽).
Let Irr(𝛽) (gIrr(𝛽)) be the set of isomorphism classes of simple modules in 𝑅(𝛽) − mod (𝑅(𝛽) −

gmod).
For a graded module𝑀 = (𝑀𝑖)𝑖∈ℤ ∈ 𝑅(𝛽) − gmod and an integer 𝑘, we write

𝑀⟨𝑘⟩ = (𝑀𝑖−𝑘)𝑖∈ℤ ∈ 𝑅(𝛽) − gmod
to be the shifted module.
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QUIVER HECKE ALGEBRAS AND RSK 711

We write𝑀 ↦ 𝑀fgt for the grading-forgetful functor 𝑅(𝛽) − gmod → 𝑅(𝛽) − mod.
Let us note that the forgetful functor gives an evident identification

⊕𝑘∈ℤ Hom𝑅(𝛽)−gmod(𝑀,𝑁⟨𝑘⟩) = Hom𝑅(𝛽)−mod(𝑀fgt, 𝑁fgt) , (1)

for any𝑀,𝑁 ∈ 𝑅(𝛽) − gmod.
The algebra 𝑅(𝛽) possesses an anti-involution 𝜏 given as an identity on all generators in the

definition of the algebra. For 𝑀 ∈ 𝑅(𝛽) − gmod, the complex dual space 𝑀∗ becomes a graded
left 𝑅(𝛽)-module through 𝜏.
For a simple 𝑀 ∈ gIrr(𝛽), it is known that there is a (unique) integer 𝑘, such that (𝑀⟨𝑘⟩)∗ ≅

𝑀⟨𝑘⟩. Furthermore, each𝑀 ∈ Irr(𝛽) has a unique, up to shift, graded structure.
Thus, wewill often treat Irr(𝛽) as a subset of gIrr(𝛽), that is, the isomorphism classes of self-dual

simple modules in 𝑅(𝛽) − gmod.
Given 𝑀 ∈ 𝑅(𝛽) − gmod, we write [𝑀] ∈ ℤ⩾0[gIrr(𝛽)] as a formal sum of the Jordan-Hölder

series of𝑀. Taking shifts into account, we may write it as a sum

[𝑀] =
∑

𝐿∈Irr(𝛽)

∑
𝑖∈ℤ

𝑚𝐿,𝑖[𝐿⟨𝑖⟩] .
Given any 𝐿 ∈ Irr(𝛽) (viewed as a self-dual graded module) and𝑀 ∈ 𝑅(𝛽) − gmod, we define the
graded multiplicity of 𝐿 in𝑀 as the Laurent polynomial

𝑚(𝑀, 𝐿)(𝑞) =
∑
𝑖∈ℤ

𝑚𝐿,𝑖𝑞
𝑖 ∈ ℤ⩾0[𝑞, 𝑞

−1] .

2.1 Restriction and induction

Following the formalism of [40], given 𝛽 = (𝛽1, … , 𝛽𝑘) ∈ (𝑄+)𝑘, we set the graded algebra

𝑅(𝛽) = 𝑅(𝛽1) ⊗⋯⊗ 𝑅(𝛽𝑘) .

The sets Irr(𝛽) ⊆ gIrr(𝛽) and graded multiplicities in 𝑅(𝛽) − gmod are defined analogously. Note,
that

∏𝑘
𝑖=1 Irr(𝛽𝑖) ≅ Irr(𝛽) is a natural bijection given by taking the outer tensor product of

simple modules.
Setting 𝑖(𝛽) = 𝛽1 +⋯ + 𝛽𝑘, we have a natural embedding of algebras 𝜄𝛽 ∶ 𝑅(𝛽) → 𝑅(𝜄(𝛽)), as in

[40, section 2.2].
For 𝜈𝑖 ∈ 𝛽𝑖 , 𝑖 = 1, … , 𝑘, we have the natural concatenation operation 𝜈1 ∗ ⋯ ∗ 𝜈𝑘 ∈ 

𝑖(𝛽). We
then obtain an idempotent element

𝔢(𝛽) ∶=
∑

𝜈𝑖∈
𝛽𝑖 𝑖=1,…,𝑘

𝔢(𝜈1 ∗ ⋯ ∗ 𝜈𝑘) ∈ 𝑅(𝑖(𝛽)) .

Evidently, 𝜄𝛽(1) = 𝔢(𝛽) holds, for the identity element 1 ∈ 𝑅(𝛽).
Thus, the embedding of algebras gives rise to an exact restriction functor

Res𝛽 ∶ 𝑅(𝑖(𝛽)) − gmod → 𝑅(𝛽) − gmod , Res𝛽(𝑀) = 𝔢(𝛽)𝑀 .
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712 GUREVICH

Given 𝐿 ∈ Irr(𝛽) and𝑀 ∈ 𝑅(𝑖(𝛽)) − gmod, we shortcut notation to

𝑚(𝑀, 𝐿)(𝑞) ∶= 𝑚(Res𝛽(𝑀), 𝐿)(𝑞) ,

for the graded multiplicity in 𝑅(𝑖(𝛽)) − gmod.
The restriction functor commits both a left-adjoint induction functor

Ind𝛽 ∶ 𝑅(𝛽) − gmod → 𝑅(𝑖(𝛽)) − gmod , Ind𝛽(𝑀) = 𝑅(𝑖(𝛽)) ⊗𝜄𝛽(𝑅(𝛽)) 𝑀 ,

and a right-adjoint co-induction functor

coInd𝛽 ∶ 𝑅(𝛽) − gmod → 𝑅(𝑖(𝛽)) − gmod , coInd𝛽(𝑀) = Hom𝑅(𝛽)(𝑅(𝑖(𝛽)),𝑀) .

(See, for example, [40].)
More generally, when 𝛿 = (𝛿1

1
, … , 𝛿1𝑚1

, … , 𝛿𝑘
1
, … , 𝛿𝑘𝑚𝑘

) ∈ (𝑄+)
∑𝑘
𝑖=1 𝑚𝑖 is such that

∑𝑚𝑖
𝑗=1
𝛿𝑖
𝑗
= 𝛽𝑖 ,

for all 1 ⩽ 𝑖 ⩽ 𝑘, we have

𝑅(𝛿) ≅ 𝑅(𝛿11, … , 𝛿
1
𝑚1
) ⊗⋯⊗ 𝑅(𝛿𝑘1 , … , 𝛿

𝑘
𝑚𝑘
) ↪ 𝑅(𝛽) ,

and the functors

Res
𝛽

𝛿
∶ 𝑅(𝛽) − gmod → 𝑅(𝛿) − gmod , Ind

𝛽

𝛿
, coInd

𝛽

𝛿
∶ 𝑅(𝛿) − gmod → 𝑅(𝛽) − gmod

are naturally defined.
Given𝑀𝑖 ∈ 𝑅(𝛽𝑖) − gmod, for 𝑖 = 1, … 𝑘, we write the induction operation as a product

𝑀1◦⋯◦𝑀𝑘 = Ind𝛽(𝑀1 ⊗⋯⊗𝑀𝑘) .

This product equips the larger abelian category

 = ⊕𝛽∈𝑄+𝑅(𝛽) − gmod

with a monoidal structure.
Restriction, induction and co-induction functorsmay still be defined for categories of ungraded

modules. In particular, the category

̂ = ⊕𝛽∈𝑄+𝑅(𝛽) − mod

retains the monoidal structure of.
In particular, we note that the functor fgt ∶ → ̂ is monoidal.

2.2 Mackey theory

Let 𝛽 ∈ (𝑄+)𝑘 and 𝛾 ∈ (𝑄+)𝑙 be given, for which 𝑖(𝛽) = 𝑖(𝛾) holds. Then, the composition functor

Res𝛾◦Ind𝛽

is well-defined, and admits the following typical Mackey-theory description.
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QUIVER HECKE ALGEBRAS AND RSK 713

Let𝑀(𝛽, 𝛾) be the collection of 𝑘 × 𝑙-matrices 𝛿 = (𝛿𝑖,𝑗) of elements in𝑄+, such that 𝛿𝑖,1 +⋯ +
𝛿𝑖,𝑙 = 𝛽𝑖 holds, for all 1 ⩽ 𝑖 ⩽ 𝑘, and 𝛿1,𝑗 +⋯ + 𝛿𝑘,𝑗 = 𝛾𝑗 holds, for all 1 ⩽ 𝑗 ⩽ 𝑙.
For 𝛿 ∈ 𝑀(𝛽, 𝛾), we define the integer

deg(𝛿) = −
∑

1⩽𝑖<𝑖′⩽𝑘, 1⩽𝑗′<𝑗⩽𝑙

(
𝛿𝑖,𝑗, 𝛿𝑖′,𝑗′

)
. (2)

Each 𝛿 ∈ 𝑀(𝛽, 𝛾) gives rise to two tuples

𝛿𝑟𝑜𝑤 = (𝛿1,1, … , 𝛿1,𝑙, 𝛿2,1, … , 𝛿2,𝑙, … , 𝛿𝑘,1, … , 𝛿𝑘,𝑙) ,

𝛿𝑐𝑜𝑙 = (𝛿1,1, … , 𝛿𝑘,1, 𝛿1,2, … , 𝛿𝑘,2, … , 𝛿1,𝑙, … , 𝛿𝑘,𝑙)

in (𝑄+)𝑘𝑙. There is an obvious isomorphism of algebras 𝑡𝛿 ∶ 𝑅(𝛿
𝑟𝑜𝑤) → 𝑅(𝛿𝑐𝑜𝑙) by permuting the

factors. We set

𝑇𝛿 ∶ 𝑅(𝛿
𝑟𝑜𝑤) − gmod → 𝑅(𝛿𝑐𝑜𝑙) − gmod

to be the functor obtained from pushing a module through 𝑡𝛿 and shifting its degree by deg(𝛿).
We set a functor

𝐾𝛿 ∶ 𝑅(𝛽) − gmod → 𝑅(𝛾) − gmod , 𝐾𝛿(𝑀) = Ind
𝛾

𝛿𝑐𝑜𝑙
(𝑇𝛿(Res

𝛽

𝛿𝑟𝑜𝑤
(𝑀))) .

Proposition 2.1. (Restatement of [7, Theorem 2.1]) For every graded 𝑅(𝛽)-module 𝑀, the 𝑅(𝛾)-
module Res𝛾(Ind𝛽(𝑀)) has a filtration of submodules, whose composition factors are given by
{𝐾𝛿(𝑀)}𝛿∈𝑀(𝛽,𝛾).

2.3 Kleshchev–Ram classification and multisegments

Let us now describe the classification of

Irr = ⊔𝛽∈𝑄+ Irr(𝛽)

as obtained in [31]. When specialized to this case, it may be viewed as a graded version of the
classical Zelevinsky classification of [53] (See Subsection 3.2).
For each pair of integers 𝑖 ⩽ 𝑗, we denote the element Δ(𝑖, 𝑗) = 𝛼𝑖 + 𝛼𝑖+1 +⋯ + 𝛼𝑗 ∈ 𝑄+. We

refer to Seg = {Δ(𝑖, 𝑗)}𝑖⩽𝑗 ⊆ 𝑄+ as the set of segments (positive roots).
For a segment Δ = Δ(𝑖, 𝑗) ∈ Seg, we write 𝑖 = 𝑏(Δ) and 𝑗 = 𝑒(Δ) for its begin and end points.
Let ≤ denote the total lexicographical order on Seg, so that Δ1 ⩽ Δ2, if 𝑏(Δ1) < 𝑏(Δ2) holds, or

that both 𝑏(Δ1) = 𝑏(Δ2) and 𝑒(Δ1) ⩽ 𝑒(Δ2) hold.
Similarly, let ⩽𝑟 denote the right lexicographical order on Seg, defined as ≤, but with the roles

of 𝑏(Δ) and 𝑒(Δ) reversed.
We refer to elements of the free abelian monoid

𝔐 = ℤ⩾0[Seg]

asmultisegments.
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714 GUREVICH

We will abuse notation by referring to the set of segments Seg, both as a subset of𝔐, and of
𝑄+, depending on context. For example,Δ(1, 1) + Δ(2, 2), Δ(1, 2) ∈ 𝔐 are distinctmultisegments.
Yet, Δ(1, 1) + Δ(2, 2) = Δ(1, 2) holds as an equation in 𝑄+.
There is a natural additive map wt ∶ 𝔐 → 𝑄+, defined by wt(Δ) = Δ, for each Δ ∈ Seg.
Each Δ ∈ Seg is attached with a segment module† 𝐿Δ ∈ Irr(Δ). It may be characterized as the

unique self-dual 1-dimensional 𝑅(Δ)-module, for which there exists 𝜈 = (𝜈1, … , 𝜈|Δ|) ∈ Δ with
𝜈1 = 𝛼𝑒(Δ), so that 𝔢(𝜈)𝐿Δ ≠ 0.
Each𝔪 ∈𝔐 can be uniquely written as𝔪 =

∑𝑘
𝑖=1 𝑝𝑖Δ𝑖 , for segments Δ1 <𝑟 … <𝑟 Δ𝑘 in Seg.

In these terms, the Kleshchev–Ram classification attaches to 𝔪 ∈𝔐 the proper standard
module

KR(𝔪) ∶= 𝐿
◦𝑝1
Δ1

◦⋯◦𝐿◦𝑝𝑘
Δ𝑘

⟨(
𝑝1
2

)
+⋯ +

(
𝑝𝑘
2

)⟩
∈ 𝑅(wt(𝔪)) − gmod .

Here 𝐿◦𝑝 = 𝐿◦⋯◦𝐿 denotes the 𝑝th induction product of a module with itself.

Theorem 2.2. [31, Theorem 7.2] The head (or co-socle, that is, maximal semisimple quotient) of
KR(𝔪), denoted as 𝐿𝔪, is simple and self-dual. The resulting map

𝔐→ Irr , 𝔪 ↦ 𝐿𝔪

is a bijection.

For𝔪 ∈𝔐, we set

𝔟(𝔪) = 𝑝1𝛼𝑏(Δ1) +⋯ + 𝑝𝑘𝛼𝑏(Δ𝑘), 𝔢(𝔪) = 𝑝1𝛼𝑒(Δ1) +⋯ + 𝑝𝑘𝛼𝑒(Δ𝑘) ∈ 𝑄+ ,

and write |𝔪| = |𝔟(𝔪)| = |𝔢(𝔪)|, that is, the number of segments used to define𝔪.
For 𝐿 = 𝐿𝔪 ∈ Irr, we also write 𝔟(𝐿) = 𝔟(𝔪), 𝔢(𝐿) = 𝔢(𝔪) and wt(𝐿) = wt(𝔪).

Remark 2.3. (See also [17, Remark 2.4]) The Kleshchev–Ram construction of a proper standard
module out of a given multisegment 𝔪 ∈𝔐 is less canonical than how it may appear in our
current presentation. More precisely, the construction depends on a choice of a total order on the
set  (that is, on ℤ).‡ Our definition of KR(𝔪) takes the order given by 𝛼𝑖 > 𝛼𝑗 , for 𝑖 < 𝑗.
In particular, in the language of [31], 𝐿Δ(𝑖,𝑗) is the cuspidal module corresponding to the good

Lyndon word (𝛼𝑗, 𝛼𝑗−1, … , 𝛼𝑖), relative to this fixed order.

3 REPRESENTATIONS OF 𝒑-ADIC 𝑮𝑳𝒏

Let𝐹 be a fixed𝑝-adic field.We are interested in the smooth representation theory of the sequence
of locally compact groups 𝐺𝑛 ∶= 𝐺𝐿𝑛(𝐹).

†Cuspidal module in the language of [31]. We refrain from using this terminology here, because of the involvement of
supercuspidal representations of 𝑝-adic groups in the discussion of Section 3.
‡ The more general procedure as extended in [8] depends on a choice of a (convex) order on the set of positive roots, that
is, on Seg.
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QUIVER HECKE ALGEBRAS AND RSK 715

For a 𝑝-adic group 𝐺 (such as 𝐺𝑛), we write 𝐺 −mod for the abelian category of finite-length
(typically infinite-dimensional) smooth representations of 𝐺 over the complex field. We write
Irr(𝐺) for the set of isomorphism classes of irreducible representations in 𝐺 −mod.
Let us recall the basic inductive mechanisms for construction and study of representations in

𝐺𝑛 −mod. Most of the tools applied in our discussion stem from the classical texts [10, 53]. See,
for example, [33] for a modern exposition.
We say that a tuple of positive integers𝑛 = (𝑛1, … , 𝑛𝑟) is a composition of𝑛 andwrite 𝑛 = 𝑖(𝑛), if

𝑛 = 𝑛1 +⋯ + 𝑛𝑟. We denote by𝑀𝑛 the subgroup of 𝐺𝑖(𝑛) isomorphic to 𝐺𝑛1 ×⋯ × 𝐺𝑛𝑟 consisting
ofmatriceswhich are diagonal by blocks of size𝑛1, … , 𝑛𝑟 and by𝑃𝑛 the subgroup of𝐺𝑖(𝑛) generated
by𝑀𝑛 and the upper unitriangular matrices. A standard parabolic subgroup of 𝐺𝑛 is a subgroup
of the form 𝑃𝑛 with 𝑖(𝑛) = 𝑛 and its standard Levi factor is𝑀𝑛.
Wewrite 𝐢𝑛 ∶ 𝑀𝑛 −mod → 𝐺𝑖(𝑛) − mod for the exact (normalized) parabolic induction functor

associated to 𝑃𝑛.
For 𝜋𝑖 ∈ 𝐺𝑛𝑖 − mod, 𝑖 = 1, … , 𝑟, we write

𝜋1 ×⋯ × 𝜋𝑟 ∶= 𝐢(𝑛1,…,𝑛𝑟)(𝜋1 ⊠⋯⊠𝜋𝑟) ∈ 𝐺𝑛1+⋯+𝑛𝑟 − mod .

The induction functor 𝐢𝑛 admits a left-adjoint functor

𝐫𝑛 ∶ 𝐺𝑖(𝑛) − mod → 𝑀𝑛 −mod

known as the Jacquet functor.
An irreducible representation 𝜋 ∈ Irr(𝐺𝑛) is called supercuspidal, if 𝐫𝑛(𝜋) = 0, for all 𝑛 with

𝑛 = 𝑖(𝑛) and 𝑀𝑛 ≠ 𝐺𝑛. We write cusp𝑛 ⊆ Irr(𝐺𝑛) for the set of supercuspidal irreducible repre-
sentations.
For any 𝑛, let 𝜇𝑠 = | det |𝑠

𝐹
, 𝑠 ∈ ℂ denote the family of one-dimensional representations of 𝐺𝑛,

where | ⋅ |𝐹 is the absolute value of 𝐹. For 𝜋 ∈ 𝐺𝑛 −mod, we write 𝜋𝜇𝑠 ∶= 𝜋 ⊗ 𝜇𝑠 ∈ 𝐺𝑛 − mod.
3.1 Block decomposition

Given 𝜌 ∈ cusp𝑚 and an integer 𝑑 ⩾ 1, let Irrℤ
𝜌,𝑑
⊆ Irr(𝐺𝑚𝑑) be the set of all irreducible

subquotients of representations of the form

(𝜌𝜇𝑘1) ×⋯ × (𝜌𝜇𝑘𝑑) ,

for any choice of integers 𝑘1, … , 𝑘𝑑 ∈ ℤ.
For a pair (𝜌, 𝑑), we define the simple line block(𝜌, 𝑑) to be the Serre subcategory of𝐺𝑚𝑑 − mod

consisting of those representations 𝜋 whose irreducible subquotients all belong to Irrℤ
𝜌,𝑑
.

Following the general theory of Bernstein blocks ([2]), wemay decompose the category of finite-
length representations as a sum of abelian categories

𝐺𝑛 −mod = ⊕Θ∈𝔅𝑛Θ ,

where each summand stands as a product (in the sense of Deligne [11, section 5]) of certain
simple line blocks of smaller groups:

Θ ≅ (𝜌1, 𝑑1) ×⋯ × (𝜌𝑟, 𝑑𝑟) .
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716 GUREVICH

Here, 𝜌𝑖 ∈ cusp𝑚𝑖 , 𝑖 = 1, … , 𝑟 satisfy
∑𝑟
𝑖=1 𝑚𝑖𝑑𝑖 = 𝑛 and the equivalence

† is given by parabolic
induction. In other words, the functor 𝐢(𝑚1𝑑1,…,𝑚𝑟𝑑𝑟) becomes an equivalence of categories
when restricted to (𝜌1, 𝑑1) ×⋯ × (𝜌𝑟, 𝑑𝑟), viewed as a subcategory of𝑀(𝑚1𝑑1,…,𝑚𝑟𝑑𝑟) − mod. In
particular, we see that the set of irreducible representations in Θ is naturally described as

IrrΘ = Irr
ℤ
𝜌1,𝑑1

×⋯ × Irrℤ
𝜌𝑟,𝑑𝑟

.

In the above sense, simple line blocks contain essentially all of the information encoded in the
categories 𝐺𝑛 −mod.
Moreover, simple line blocks are well-aligned relative to the parabolic induction and

Jacquet functors. Namely, for any 𝜌 ∈ cusp𝑚 and 𝑑 = (𝑚𝑑1, … ,𝑚𝑑𝑟), those functors restrict to
well-defined pair of adjoint functors between the categories

(𝜌, 𝑑1) ×⋯ × (𝜌, 𝑑𝑟)
𝐢𝑑 ⟶

⟵ 𝐫𝑑
(𝜌, 𝑑1 +⋯ + 𝑑𝑟) . (3)

For these reasons, it is useful to consider the sum of categories

ℤ𝜌 =

∞⨁
𝑛=0

(𝜌, 𝑛)

(summing blocks of representations of different groups) and its set of irreducible representations

Irrℤ𝜌 = ⊔
∞
𝑛=0 Irr

ℤ
𝜌,𝑛 .

Given𝜋 ∈ Irrℤ𝜌,𝑛, there exist integers 𝑘1, … , 𝑘𝑛 ∈ ℤ, for which𝜋 appears as a sub-representation
of𝜌𝜇𝑘1 ×⋯ × 𝜌𝜇𝑘𝑛 . The sequence 𝑘1, … , 𝑘𝑛 is uniquely determined by𝜋, up to a permutation. The
resulting 𝑆𝑛-orbit (relative to the usual symmetric group action) on ℤ𝑛 is called the supercuspidal
support‡ supp𝜌(𝜋) of 𝜋.
For sake of compatibility with other notions appearing in our discussion, let us identify 𝑆𝑛-

orbits on ℤ𝑛 with the elements of 𝑄+ of height 𝑛, that is, an orbit represented by (𝑘1, … , 𝑘𝑛) will
correspond to 𝛼𝑘1 +⋯ + 𝛼𝑘𝑛 ∈ 𝑄+. In this sense, we will write supp𝜌(𝜋) ∈ 𝑄+, for 𝜋 ∈ Irr

ℤ
𝜌 .

We have a further decomposition of categories of finite-length representations according to
their supercuspidal support.
Namely, let 𝛽𝜌 be the full subcategory of (𝜌, |𝛽|) consisting of representations all of whose

irreducible subquotients 𝜋 satisfy supp𝜌(𝜋) = 𝛽. Then, we can decompose as

(𝜌, 𝑛) =
⨁

𝛽∈𝑄+,|𝛽|=𝑛 
𝛽
𝜌 , 𝜎 = ⊕𝜎𝛽 .

Summing over representation categories of groups of different ranks, we obtain a canonical
decomposition

ℤ𝜌 = ⊕𝛽∈𝑄+
𝛽
𝜌 .

†Note, that it is not claimed that any choice of 𝜌1, … , 𝜌𝑟 produces an equivalence, but rather the existence of such for any
Θ ∈ 𝔅𝑛 .
‡We adopt a combinatorial point of view on the general notion of the supercuspidal support of an irreducible smooth
representation of a 𝑝-adic group.
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QUIVER HECKE ALGEBRAS AND RSK 717

For 𝛽 = (𝛽1, … , 𝛽𝑟) ∈ (𝑄+)𝑟, we may view


𝛽

𝜌 ∶= 
𝛽1
𝜌 ×⋯ × 

𝛽𝑟
𝜌

as a Serre subcategory of𝑀𝑛 −mod, where 𝑛 = (𝑚|𝛽1|, … ,𝑚|𝛽𝑟|) (𝜌 ∈ cusp𝑚).
The parabolic induction functor 𝐢𝑛 restricts to a functor

𝐢𝛽 ∶ 
𝛽

𝜌 → 
𝑖(𝛽)

𝜌 .

In simpler notation, that means that for any given 𝜋𝑖 ∈ 
𝛽𝑖
𝜌 , 𝑖 = 1, … , 𝑟, we have

𝜋1 ×⋯ × 𝜋𝑟 ∈ 
𝛽1+⋯+𝛽𝑟
𝜌 .

3.2 Equivalences of categories

The link between the representation theories of the quiver Hecke algebras of Section 2 and the
𝑝-adic groups of this section, passes through the notion of affine Hecke algebras (of type 𝐴). Let
us recall the basic properties of these intermediate categories.
Given 𝑛 ∈ ℤ>0 and a parameter 𝑞 ∈ ℂ (which for our needs will be assumed to be non-root of

unity), the root datum of 𝐺𝐿𝑛 gives rise to the (extended) affine Hecke algebra𝐻(𝑛, 𝑞): This is the
complex algebra generated by 𝑇1, … , 𝑇𝑛−1 and invertible 𝑦1, … , 𝑦𝑛, subject to the relations

𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1, ∀1 ⩽ 𝑖 ⩽ 𝑛 − 2

(𝑇𝑖 − 𝑞)(𝑇𝑖 + 1) = 0, ∀1 ⩽ 𝑖 ⩽ 𝑛 − 1

𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖, ∀|𝑗 − 𝑖| > 1
𝑦𝑖𝑦𝑗 = 𝑦𝑗𝑦𝑖, ∀1 ⩽ 𝑖, 𝑗 ⩽ 𝑛

𝑇𝑖𝑦𝑖𝑇𝑖 = 𝑞𝑦𝑖+1, ∀1 ⩽ 𝑖 ⩽ 𝑛 − 1

𝑇𝑖𝑦𝑗 = 𝑦𝑗𝑇𝑖, ∀𝑗 ≠ 𝑖, 𝑖 + 1 .

For a composition 𝑛 = (𝑛1, … , 𝑛𝑟) of 𝑛, the algebra 𝐻(𝑛, 𝑞) ∶= 𝐻(𝑛1, 𝑞) ⊗⋯⊗𝐻(𝑛𝑟, 𝑞) is
naturally embedded as

𝜄𝑛 ∶ 𝐻(𝑛, 𝑞) → 𝐻(𝑛, 𝑞) ,

by sending the generators 𝑇̃𝑖 , 𝑦̃𝑖 of𝐻(𝑛𝑗, 𝑞) to 𝑇𝑛1+⋯+𝑛𝑗−1+𝑖, 𝑦𝑛1+⋯+𝑛𝑗−1+𝑖 in𝐻(𝑛, 𝑞).
We denote by 

𝑞
𝑛 (respectively, 

𝑞
𝑛) the category of finite-dimensional modules over the

algebra𝐻(𝑛, 𝑞) (respectively,𝐻(𝑛, 𝑞)).
We have a straightforward decomposition (again, in the sense of the Deligne product of abelian

categories)


𝑞
𝑛 =

𝑞
𝑛1
×⋯ ×

𝑞
𝑛𝑟

(4)

of the abelian category, and an exact induction functor

Ind
𝑞
𝑛 ∶

𝑞
𝑛 → 

𝑞
𝑛 , Ind

𝑞
𝑛(𝑀) = 𝐻(𝑛, 𝑞) ⊗𝜄𝑛(𝐻(𝑛,𝑞)) 𝑀 .
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718 GUREVICH

For𝑀 ∈
𝑞
𝑛, the subalgebra𝑃𝑛 = ℂ[𝑦

±1
1
, … 𝑦±1𝑛 ] = 𝜄(1,…,1)(𝐻((1, … , 1), 𝑞)) < 𝐻(𝑛, 𝑞) of Laurent

polynomials gives rise to a weight space decomposition of the form

𝑀 = ⊕𝜒∈(ℂ×)𝑛𝑀𝜒 .

Here,𝑀𝜒 , for 𝜒 = (𝜒1, … , 𝜒𝑛), denotes the common generalized eigenspace of 𝑃𝑛 in𝑀, given by
the character 𝑦𝑖 ↦ 𝜒𝑖 .
Recall that the center 𝑍(𝐻(𝑛, 𝑞)) is given by the symmetric Laurent polynomials in 𝑃𝑛 [37,

Proposition 3.11]. In particular, the complex central characters of𝐻(𝑛, 𝑞) are given by orbits of the
action of 𝑆𝑛 (symmetric group) on (ℂ×)𝑛.
Hence, the full sub-category 

𝑞

𝜒
, for a given 𝜒 ∈ (ℂ×)𝑛∕𝑆𝑛, of modules 𝑀 ∈

𝑞
𝑛 that

decompose as𝑀 = ⊕𝜒∈𝜒𝑀𝜒 , is a Serre subcategory.
Alternatively, picking a representative 𝜒0 ∈ 𝜒 and viewing it as a character of 𝐻((1, … , 1), 𝑞),


𝑞

𝜒
may be described as the full subcategory of 𝑞

𝑛 consisting of representations all of whose
subquotients appear as subquotients in Ind𝑞

(1,…,1)
(𝜒0).

Similarly, for 𝑛 = (𝑛1, … , 𝑛𝑟), the central characters of𝐻(𝑛, 𝑞) are parameterized by 𝑆𝑛1 ×⋯ ×

𝑆𝑛𝑟 -orbits on (ℂ
×)𝑖(𝑛) ≅ (ℂ×)𝑛1 ×⋯ × (ℂ×)𝑛𝑟 . For such given central character 𝜒 = (𝜒1, … , 𝜒𝑟) of

𝐻(𝑛, 𝑞), we write


𝑞
𝜒 =

𝑞

𝜒1
×⋯ ×

𝑞

𝜒𝑟

for the Serre subcategory of𝑞
𝑛, defined relative to the decomposition (4).

We may think of the natural map

𝑖 ∶ (ℂ×)𝑖(𝑛)∕(𝑆𝑛1 ×⋯ × 𝑆𝑛𝑟 ) → (ℂ
×)𝑖(𝑛)∕𝑆𝑖(𝑛)

between orbit spaces, as a map from the spectrum of 𝑍(𝐻(𝑛, 𝑞)) to the spectrum of 𝑍(𝐻(𝑖(𝑛), 𝑞)).
For 𝜒 ∈ (ℂ×)𝑖(𝑛)∕(𝑆𝑛1 ×⋯ × 𝑆𝑛𝑟 ), restricting Ind

𝑞
𝑛 to a subcategory, gives an exact functor

Ind
𝑞
𝜒 ∶

𝑞
𝜒 →

𝑞

𝑖(𝜒)
.

For such 𝜒 and a module𝑀 ∈
𝑞

𝑖(𝑛)
, the space

Res
𝑞
𝜒(𝑀) ∶= ⊕𝜒∈𝜒𝑀𝜒

is invariant under the action of the subalgebra 𝜄𝑛(𝐻(𝑛, 𝑞)). Thus, we may view

Res
𝑞
𝜒 ∶

𝑞

𝑖(𝜒)
→

𝑞
𝜒

as an exact restriction functor, which is right-adjoint to the induction functor Ind𝑞𝜒 .

We denote by 
𝑞,ℤ
𝑛 the Serre subcategory of 𝑞

𝑛 consisting of modules in which 𝑦𝑖 ’s all act
with eigenvalues that are integer powers of 𝑞. In other words,


𝑞,ℤ
𝑛 = ⊕𝜒∈(𝑞ℤ)𝑛∕𝑆𝑛

𝑞

𝜒
.
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QUIVER HECKE ALGEBRAS AND RSK 719

3.2.1 Rouquier’s equivalence

The assignment

(𝑞𝑖1 , … , 𝑞𝑖𝑛 ) ∈ (𝑞ℤ)𝑛 ↦ 𝛼𝑖1 +⋯ + 𝛼𝑖𝑛 ∈ 𝑄

sets a natural bijection between (𝑞ℤ)𝑛∕𝑆𝑛 and elements of 𝑄+ of height 𝑛. Thus, we may view
elements of the latter set as central characters of 𝐻(𝑛, 𝑞). More precisely, for a given 𝛽 ∈ 𝑄+ we
may write 𝜒𝛽 for the corresponding character of the algebra 𝑍(𝐻(|𝛽|, 𝑞)).
Theorem 3.1. [47, Theorem 3.11] For each 𝛽 ∈ 𝑄+ and a non-root of unity 𝑞 ∈ ℂ×, there is an
equivalence of abelian categories

𝛽 ∶
𝑞

𝜒𝛽
→ 𝑅(𝛽) − mod .

For a module𝑀 ∈
𝑞

𝜒𝛽
,𝛽(𝑀) is defined by an action of 𝑅(𝛽) on the same underlying complex

vector space of𝑀.
Moreover, the equivalence is compatible with weight space decompositions, in the sense that for

𝜈 = (𝜈1, … , 𝜈|𝛽|) ∈ 𝛽 , we have 𝔢(𝜈)𝛽(𝑀) = 𝑀𝜒𝜈 , where 𝜒𝜈 = (𝑞
𝜈1 , … , 𝑞𝜈|𝛽|).

A tuple 𝛽 = (𝛽1, … , 𝛽𝑟) ∈ (𝑄+)
𝑟 defines a central character 𝜒𝛽 = (𝜒𝛽1 , … , 𝜒𝛽𝑟 ) of

𝐻((|𝛽1|, … , |𝛽𝑟|), 𝑞). Extending the equivalences of Theorem 3.1 to tensor products of algebras,
we obtain an equivalence of abelian categories

𝛽 ∶
𝑞
𝜒𝛽
→ 𝑅(𝛽) − mod .

Note, that 𝑖(𝜒𝛽) = 𝜒𝑖(𝛽) clearly holds.
Rouquier’s equivalences become compatible with restriction functors in the following sense.

Proposition 3.2. For 𝛽 = (𝛽1, … , 𝛽𝑟) ∈ (𝑄+)𝑟, we have the identity

Res𝛽◦𝑖(𝛽) = 𝛽◦Res
𝑞

𝛽

of functors.

Proof. The explicit description of the equivalence functor in [47, Theorem 3.11] is compatible with
restriction on generators of algebras on both sides. □

Since adjoint functors are uniquely defined, we obtain a similar result for the induction
operation.

Corollary 3.3. For 𝛽 = (𝛽1, … , 𝛽𝑟) ∈ (𝑄+)𝑟, we have an isomorphism

𝑖(𝛽)◦Ind𝛽 = Ind
𝑞

𝛽
◦𝛽

of functors. In particular, for given modules𝑀1 ∈
𝑞

𝜒𝛽1
and𝑀2 ∈

𝑞

𝜒𝛽2
, we have an isomorphism

of modules

𝛽1+𝛽2(Ind(𝛽1,𝛽2)(𝑀1 ⊠𝑀2)) ≅ 𝛽1(𝑀1)◦𝛽2(𝑀2)

in 𝑅(𝛽1 + 𝛽2) − mod.
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720 GUREVICH

3.2.2 Bernstein’s equivalence

Let us recall and explicate some known connections between the representation categories of
𝑝-adic general linear groups and affine Hecke algebras.
To that end, we should temporarily expand our scope to include representations of

infinite-length. Let 𝐺𝑛 −Mod (respectively, 𝑀𝑛 −Mod) denote the category of all smooth 𝐺𝑛-
representations (respectively, 𝑀𝑛-representations) and 

𝑞
𝑛 (respectively,  𝑞

𝑛 ) the category of
(possibly infinite-dimensional)𝐻(𝑛, 𝑞)-modules (respectively,𝐻(𝑛, 𝑞)-modules).
A functor

Ind
𝑞
𝑛 ∶

𝑞
𝑛 → 

𝑞
𝑛

is defined as in the finite-dimensional case.
For a given 𝜌 ∈ cusp𝑚 and an integer 𝑑 ⩾ 1, we define the simple Bernstein block (𝜌, 𝑑)

to be the full subcategory of 𝐺𝑚𝑑 −Mod consisting of those representations whose irreducible
subquotients all belong to Irrℂ

𝜌,𝑑
= ∪𝑠∈ℂ Irr

ℤ
𝜌𝜇𝑠,𝑑

.
Clearly, (𝜌, 𝑑) contains (𝜌, 𝑑) as a full subcategory. Parabolic induction may be defined in

the general context of smooth representations. In particular, the analogous functors to (3) are
well-defined in the context simple Bernstein blocks in place of simple line blocks.
The irreducible smooth representations of 𝑀(𝑚𝑑1,…,𝑚𝑑𝑟) are naturally identified with

Irr(𝐺𝑚𝑑1) ×⋯ × Irr(𝐺𝑚𝑑𝑟 ). With this view in mind, we may similarly define the simple Bern-
stein block (𝜌, (𝑑1, … , 𝑑𝑟)) as the full subcategory of 𝑀(𝑚𝑑1,…,𝑚𝑑𝑟) − Mod consisting of those
representations whose irreducible subquotients all belong to Irrℂ

𝜌,𝑑1
×⋯ × Irrℂ

𝜌,𝑑𝑟
.

The following is a major outcome of the type-theory approach to representations of 𝑝-adic
groups.

Theorem 3.4. (Bushnell-Kutzko [4]) For any (𝜌, 𝑑) as above, there is an explicit equivalence of
abelian categories between (𝜌, 𝑑) and

𝑞𝜌
𝑑
.

Here, 𝑞𝜌 ∈ ℤ>1 is a certain power of the residue characteristic of the 𝑝-adic field defining 𝐺𝑛.

Restricting the Bushnell–Kutzko equivalences to finite-length representations naturally pro-
duce equivalences between (𝜌, 𝑑) and 

𝑞,ℤ

𝑑
. We will outline a construction of such an

equivalence through a second approach due to Bernstein [3] and Heiermann [19]. This approach
will provide an easier access to compatibility properties with induction functors, which is crucial
for our needs.
An object𝜋 in an abelian category is called a generator, if the resulting functorHom(𝜋, ∙) from

 to right modules over𝐴𝜋 ∶= Hom(𝜋, 𝜋) (an associative algebra) is an equivalence of categories.

Proposition 3.5. (Bernstein) For 𝜌 ∈ cusp𝑚 and an integer 𝑑 ⩾ 1, set 𝑛 = (𝑚,… ,𝑚) with 𝑖(𝑛) =
𝑚𝑑. Suppose that 𝜏 is a finitely generated generator in (𝜌, (1, … , 1)), a subcategory of𝑀𝑛 −Mod.
Then, 𝐢𝑛(𝜏) is a finitely generated generator for (𝜌, 𝑑).

For 𝜌 ∈ cusp𝑚 and a choice of a generator 𝜎 = 𝜎𝜌 in (𝜌, 1), it is clear that 𝜎⊠𝑑 = 𝜎 ⊠⋯⊠𝜎
will be a generator for the corresponding category (𝜌, (1, … , 1)). Thus, by Proposition 3.5 there
is an exact equivalence functor

𝔣𝜎,𝑑 ∶ (𝜌, 𝑑) → Mod − 𝐴(𝜎, 𝑑) ,
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QUIVER HECKE ALGEBRAS AND RSK 721

whereMod − 𝐴(𝜎, 𝑑) stands for the category of right modules over the finitely generated complex
associative algebra

𝐴(𝜎, 𝑑) ∶= Hom𝑀(𝑚,…,𝑚) (𝐢(𝑚,…,𝑚)(𝜎
⊠𝑑), 𝐢(𝑚,…,𝑚)(𝜎

⊠𝑑)) .

Suppose further that 𝑑 = (𝑚𝑑1, … ,𝑚𝑑𝑟) is a composition with 𝑖(𝑑) = 𝑚𝑑 and write 𝑑
𝑗
=

(𝑚,… ,𝑚) with 𝑖(𝑑
𝑗
) = 𝑚𝑑𝑗 , for every 1 ⩽ 𝑗 ⩽ 𝑟. Then,

𝜎𝑑 ∶= 𝐢𝑑1
(𝜎⊠𝑑1) ⊠⋯⊠ 𝐢𝑑𝑟 (𝜎

⊠𝑑1)

clearly becomes a generator for the category (𝜌, (𝑑1, … , 𝑑𝑟)). In other words, we see an exact
equivalence

𝔣𝜎,𝑑 ∶ (𝜌, (𝑑1, … , 𝑑𝑟)) → Mod − 𝐴(𝜎, 𝑑) ,

where

𝐴(𝜎, 𝑑) ∶= Hom(𝜎𝑑, 𝜎𝑑) ≅ 𝐴(𝜎, 𝑑1) ⊗⋯⊗𝐴(𝜎, 𝑑𝑟) .

Since 𝐢𝑑(𝜎𝑑) = 𝐢(𝑚,…,𝑚)(𝜎⊠𝑑), the functor 𝐢𝑑 gives an embedding of endomorphism algebras

𝐢𝐴
𝑑
= 𝐢𝑑 ∶ 𝐴(𝜎, 𝑑) → 𝐴(𝜎, 𝑑) .

In particular, we obtain an induction functor

Ind𝜎
𝑑
∶ Mod − 𝐴(𝜎, 𝑑) → Mod − 𝐴(𝜎, 𝑑) , Ind𝜎

𝑑
(𝑀) = 𝑀 ⊗𝐢𝐴

𝑑
(𝐴(𝜎,𝑑)) 𝐴(𝜎, 𝑑) .

Proposition 3.6. (Roche [44, 5.3]) The functor diagram

commutes.

In the approach outlined thus far, a link between representations of 𝑝-adic groups and affine
Hecke algebras appears through the following result of Heiermann.

Proposition 3.7. (Heiermann [19]) For a suitable choice of a generator 𝜎 = 𝜎𝜌 as above and any
integer 𝑑 ⩾ 1 , there are explicit isomorphisms of complex algebras

ℎ𝜎,𝑑 ∶ 𝐴(𝜎, 𝑑) → 𝐻(𝑑, 𝑞𝜌) ,

for a positive integer 𝑞𝜌 > 1.
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722 GUREVICH

Moreover, the isomorphisms are compatible with the induction embeddings, in the sense that the
diagrams

commute, for all 𝑑 = (𝑚𝑑1, … ,𝑚𝑑𝑟), with 𝑖(𝑑) = 𝑚𝑑.

In particular, the isomorphism ℎ𝜎,𝑑 from the above proposition induces an exact equivalence†

of categories 𝔥𝜎,𝑑 ∶ Mod − 𝐴(𝜎, 𝑑) →
𝑞𝜌
𝑑
. Finally, composing it with the Bernstein equivalence

reproduces a desired equivalence

𝜌,𝑑 ∶= 𝔥𝜎,𝑑◦𝔣𝜎,𝑑 ∶ (𝜌, 𝑑) →
𝑞𝜌
𝑑
,

such as the one obtained in Theorem 3.4, through separate techniques.
Similarly, for 𝑑 = (𝑚𝑑1, … ,𝑚𝑑𝑟) with 𝑖(𝑑) = 𝑚𝑑, we get an equivalence

𝜌,𝑑 ∶ (𝜌, (𝑑1, … , 𝑑𝑟)) →
𝑞𝜌

(𝑑1,…,𝑑𝑟)
,

by composing ℎ𝜎,𝑑1 ⊗⋯⊗ ℎ𝜎,𝑑𝑟 with 𝔣𝜎,𝑑.
The combination of Propositions 3.6 and 3.7 now implies a full compatibility of those

equivalences with induction functors.

Corollary 3.8. The functor diagram

commutes.

Proposition 3.9. For each 𝛽 ∈ 𝑄+, the functor𝜌,|𝛽| restricts to an equivalence
𝜌,𝛽 ∶ 

𝛽
𝜌 →

𝑞𝜌

𝜒𝛽

between abelian categories with finite-length objects.

†A transition between right and left modules is achieved by noting that the relations used to define 𝐻(𝑛, 𝑞) are
symmetric, hence, give rise to a canonical anti-automorphism of the affine Hecke algebra. The observation that this anti-
automorphism is compatible with embeddings of the form 𝜄(𝑑1,…,𝑑𝑟) makes the identification trivial with respect to the
induction functors involved.
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QUIVER HECKE ALGEBRAS AND RSK 723

Similarly, for 𝛽 = (𝛽1, … , 𝛽𝑟) ∈ (𝑄+)𝑟, the functor𝜌,(|𝛽1|,…,|𝛽𝑟|) restricts to an equivalence
𝜌,𝛽 ∶ 

𝛽

𝜌 →
𝑞𝜌
𝜒𝛽
.

Proof. As detailed in [18, Proposition 3.2], for 𝑠 ∈ ℂ×, the functor 𝜌,1 takes the irreducible rep-
resentation 𝜌𝜇𝑠 to the character 𝑦1 ↦ 𝑞𝑠𝜌 of 𝐻(𝑞𝜌, 1). This is the content of the desired statement
for the case of |𝛽| = 1.
For general 𝛽, the statement now follows easily from Corollary 3.8 and the characterizations of

all of the involved subcategories by induction functors. □

Finally, for given 𝜌 ∈ cusp𝑚 and 𝛽 ∈ 𝑄+, composing the Bernstein and Rouquier equivalences,
we obtain a direct link between smooth representations of 𝑝-adic groups andmodules over quiver
Hecke algebras.

Theorem 3.10. For 𝜌 ∈ cusp𝑚 and 𝛽 ∈ 𝑄+, there is an exact functor

𝜌,𝛽 ∶= 𝛽◦𝜌,𝛽 ∶ 
𝛽
𝜌 → 𝑅(𝛽) − mod ,

which gives an equivalence of abelian categories.
Summing 𝜌 ∶= ⊕𝛽∈𝑄+𝜌,𝛽 gives an equivalence between ℤ𝜌 and ̂.

Similarly,

𝜌,𝛽 ∶= 𝛽◦𝜌,𝛽 ∶ 
𝛽

𝜌 → 𝑅(𝛽) − mod

becomes an equivalence of abelian categories.

Proposition 3.11. For 𝜌 ∈ cusp, the equivalence functor 𝜌 is monoidal.
In particular, for representations 𝜋1 ∈ 

𝛽1
𝜌 and 𝜋2 ∈ 

𝛽2
𝜌 , we have an isomorphism

𝜌,𝛽1+𝛽2(𝜋1 × 𝜋2) ≅ 𝜌,𝛽1(𝜋1)◦𝜌,𝛽2(𝜋2)

of 𝑅(𝛽1 + 𝛽2)-(ungraded)-modules.

Proof. Corollaries 3.3 and 3.8. □

3.3 Irreducible representations

For a given 𝜌 ∈ cusp𝑚, the equivalence 𝜌 gives rise to a bijection between the sets Irrℤ𝜌 and Irr
(See Section 2). The resulting bijection identifies the Zelevinsky classificationwith theKleshchev–
Ram description of 2.2.
Explicitly, for a segment Δ = Δ(𝑎, 𝑏) ∈ Seg, the induced representation

𝜌𝜇𝑎 × 𝜌𝜇𝑎+1 ×⋯ × 𝜌𝜇𝑏 ∈ Δ𝜌

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12695, W

iley O
nline L

ibrary on [10/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



724 GUREVICH

has a unique irreducible quotient, which we write as 𝑍(Δ) ∈ Irrℤ
𝜌,𝑏−𝑎+1

. Consequently, by
Proposition 3.11, 𝜌(𝑍(Δ)) ∈ Irr(Δ) becomes an irreducible quotient of

𝛿𝑎◦𝛿𝑎+1◦⋯◦𝛿𝑏 ,

where 𝛿𝑖 ∶= 𝐿Δ(𝑖,𝑖) = 𝜌(𝜌𝜇
𝑖) is the unique simple 𝑅(𝛼𝑖)-module.

It follows that 𝜌(𝑍(Δ)) ≅ 𝐿
fgt

Δ
is the (ungraded) segment module.

Now, for a multisegment 𝔪 =
∑𝑘
𝑖=1 Δ𝑖 ∈ 𝔐 with Δ1 ⩽𝑟 … ⩽𝑟 Δ𝑘 in Seg, it follows from

Proposition 3.11 that in 𝑅(wt(𝔪)) − mod,

𝜌(𝑍(Δ1) ×⋯ × 𝑍(Δ𝑘)) ≅ KR(𝔪)
fgt

holds.
Hence, the unique irreducible quotient 𝑍(𝔪) ∈ 

wt(𝔪)
𝜌 of 𝑍(Δ1) ×⋯ × 𝑍(Δ𝑘)must satisfy

𝜌(𝑍(𝔪)) = 𝐿
fgt
𝔪 ,

as ungraded isomorphism classes in Irr(wt(𝔪)).

4 SPECIAL CLASSES OFMODULES

Given segments Δ1, Δ2 ∈ Seg, we write Δ1 ≺ Δ2, if 𝑏(Δ1) < 𝑏(Δ2), 𝑒(Δ1) < 𝑒(Δ2) and 𝑒(Δ1) ⩾
𝑏(Δ2) − 1 hold. We say that the pair of segments (Δ1, Δ2) is linked, if either Δ1 ≺ Δ2, or Δ2 ≺ Δ1.
It is known that 𝐿Δ1◦𝐿Δ2 is a simple module, if and only if, the pair (Δ1, Δ2) is not linked. (For

example, by applying the 𝜌 functor and deducing the fact from standard Zelevinsky theory.)

4.1 Indicator modules

Let us formalize a point of view, which is often recurring in various treatments in literature, such
as [16, 29, 51].
For a choice of integers 𝑏1 ⩾ … ⩾ 𝑏𝑘 ⩾ 𝑎, we set a multisegment

𝔪(𝑎 ; 𝑏1, … , 𝑏𝑘) = Δ(𝑎, 𝑏1) +⋯ + Δ(𝑎, 𝑏𝑘) ∈ 𝔐 .

We call such multisegments left-aligned.
For a left-aligned multisegment𝔪 = 𝔪(𝑎 ; 𝑏1, … , 𝑏𝑘), we define the simple module

∇(𝔪) = ∇(𝑎 ; 𝑏1, … , 𝑏𝑘) = 𝐿Δ(𝑎,𝑏1)◦⋯◦𝐿Δ(𝑎,𝑏𝑘)

⟨(
𝑘

2

)⟩
∈ gIrr(wt(𝔪)) ,

and write 𝑏(𝔪(𝑎 ; 𝑏1, … , 𝑏𝑘)) = 𝑎.
Every 0 ≠𝔪 ∈𝔐 clearly admits a unique decomposition as𝔪 = 𝔪1 +⋯ +𝔪𝑙, where𝔪𝑖, 𝑖 =

1, … , 𝑙 are left-aligned multisegments, such that 𝑏(𝔪1) < ⋯ < 𝑏(𝔪𝑙).
Following [16], we define the indicator module

𝐿⊗𝔪 = ∇(𝔪1) ⊠⋯⊠∇(𝔪𝑙) ∈ gIrr(𝛽(𝔪)) ,
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QUIVER HECKE ALGEBRAS AND RSK 725

where 𝛽(𝔪) = (wt(𝔪1), … ,wt(𝔪𝑙)), and set

Σ(𝔪) = Ind𝛽(𝐿
⊗
𝔪) ∈ 𝑅(wt(𝔪)) − gmod .

For𝑀 = 𝐿𝔪 ∈ Irr, we also write𝑀⊗ = 𝐿
⊗
𝔪.

Lemma 4.1. Suppose thatΔ1 <𝑟 Δ2 are unlinked segments, that is,Δ1 ⊀ Δ2 andΔ2 ⊀ Δ1. We have

𝐿Δ2◦𝐿Δ1 ≅

{
𝐿Δ1◦𝐿Δ2 ⟨−1⟩ 𝑏(Δ1) = 𝑏(Δ2) or 𝑒(Δ1) = 𝑒(Δ2)
𝐿Δ1◦𝐿Δ2 otherwise

,

in 𝑅(wt(Δ1 + Δ2)) − gmod.

Proof. Themodule 𝐿Δ1◦𝐿Δ2 = KR(Δ1 + Δ2) is simple. It follows fromTheorem 2.2 that 𝐿Δ1◦𝐿Δ2 =
𝐿Δ1+Δ2 is self-dual. From [40, Theorem 2.2], we obtain

𝐿Δ1◦𝐿Δ2 ≅ 𝐿
∗
Δ2
◦𝐿∗Δ1⟨(Δ1, Δ2)⟩ = 𝐿Δ2◦𝐿Δ1⟨(Δ1, Δ2)⟩ ,

and the statement follows from a simple computation of the bilinear form on 𝑄. □

Lemma 4.2. For every𝔪 ∈𝔐, the isomorphism class of the proper standardmoduleKR(𝔪) is not
affected by changing the order <𝑟 into < in its definition.
Moreover, KR(𝔪) and Σ(𝔪) are isomorphic in 𝑅(wt(𝔪)) − gmod.

Proof. The first statement is a simple corollary of Lemma 4.1.
As for the second statement, both modules in question may be presented as a convolution

product of the same segment modules defined by𝔪.
Reversing the product order, Lemma 4.1 also implies that

∇(𝑎 ; 𝑏1, … , 𝑏𝑘) ≅ 𝐿Δ(𝑎,𝑏𝑘)◦⋯◦𝐿Δ(𝑎,𝑏1)

⟨(
𝑟

2

)⟩
,

where 𝑟 = #{(𝑖 ≠ 𝑗 ∶ 𝑏𝑖 = 𝑏𝑗}, for any 𝑏1 ⩾ … ⩾ 𝑏𝑘 ⩾ 𝑎.
The isomorphism is now evident when comparing both constructions. □

Corollary 4.3. For every simple graded self-dual module 𝑀 ∈ Irr, the indicator module 𝑀⊗
appears as a submodule of Res𝛽(𝑀), for an appropriate 𝛽.

Proof. By Lemma 4.2, 𝑀 appears as a quotient of Ind𝛽(𝑀⊗). The statement follows from an
adjunction of functors. □

4.2 Spherical modules

We say that a graded self-dual simple module 𝐿 = 𝐿𝔪 ∈ Irr, for 𝔪 = Δ1 +⋯ + Δ𝑘 ∈ 𝔐, is a
sphericalmodule, if all pairs of segments (Δ𝑖, Δ𝑗), 𝑖, 𝑗 = 1, … , 𝑘, are not linked.
By exactness of induction functors, it follows that 𝐿𝔪 ∈ Irr is spherical, if and only if, its

associated proper standard module KR(𝔪) is simple, that is, KR(𝔪) ≅ 𝐿𝔪.
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726 GUREVICH

It is evident that for each 𝛽 ∈ 𝑄+, there is a unique spherical self-dual

𝐿𝑆𝑝ℎ(𝛽) = 𝐿𝔪𝑆𝑝ℎ(𝛽) ∈ Irr(𝛽) .

In other words,𝔪𝑆𝑝ℎ(𝛽) ∈ 𝔐 is the unique spherical multisegment with wt(𝔪𝑆𝑝ℎ(𝛽)) = 𝛽.
A representation of a 𝑝-adic group 𝜋 ∈ Irr(𝐺𝑛) is said to be spherical if it has a non-zero vector

invariant under the action of a maximal compact subgroup 𝐾𝑛 < 𝐺𝑛.
For 𝜌 ∈ cusp𝑚, by the Zelevinsky classification, an irreducible representation 𝑍(𝔪) ∈ 

𝛽
𝜌 is

spherical, if and only if,𝔪 = 𝔪𝑆𝑝ℎ(𝛽) [50]. In other words, our definition of spherical modules
in Irr is made so that the equivalence 𝜌 respects sphericity.

Proposition 4.4. For 𝛽 = (𝛽1, … , 𝛽𝑘) ∈ 𝑄𝑘+, and a simplemodule 𝐿 = 𝐿1 ⊠⋯⊠𝐿𝑘 ∈ gIrr(𝛽), the
graded multiplicity

𝑚(Ind𝛽(𝐿), 𝐿
𝑆𝑝ℎ(𝑖(𝛽)))(𝑞)

is either a monomial 𝑞𝑟, when 𝐿fgt
𝑖
≅ 𝐿𝑆𝑝ℎ(𝛽𝑖) for all 𝑖 = 1, … , 𝑘, or the zero polynomial, otherwise.

Proof. For any 𝜋1, … , 𝜋𝑘 ∈ Irrℤ𝜌 , it is known that the parabolic induction representation 𝜋1 ×⋯ ×

𝜋𝑘 ∈ 
𝛽
𝜌 contains a spherical irreducible subquotient, if and only if, all 𝜋1, … , 𝜋𝑘 are spherical.

Moreover, a spherical irreducible quotient may appear at most once in the Jordan-Hölder series
of the induced representation (see, for example, [43, Lemma 4.1]).
Thus, for any choice of 𝜌 ∈ cusp𝑚, applying the equivalence 𝜌 and using its monoidality as in

Proposition 3.11, shows that (the ungraded multiplicity) commits†.

𝑚(Ind𝛽(𝐿), 𝐿
𝑆𝑝ℎ(𝑖(𝛽)))(1) ∈ {0, 1} ,

and that it is non-zero only when 𝐿fgt
1
, … , 𝐿

fgt

𝑘
are all spherical. □

4.3 Homogeneous modules

Amodule𝑀 = (𝑀𝑖)𝑖∈ℤ ∈ 𝑅(𝛼) − gmod is called homogeneous, if it is concentrated at one degree,
that is,𝑀𝑖 = {0}, for all 𝑖 ≠ 𝑖𝑀 .
In [30], all homogenous modules in Irr were classified. As it turned out, passing through

the equivalence 𝜌 identifies the notion of irreducible homogeneous modules with that of ladder
representations in ℤ𝜌 .
Let us recall the classification in the terms that aremore familiar in the𝑝-adic groups literature.
For two sequences of integers 𝜆 = (𝜆1 > … > 𝜆𝑟) and 𝜇 = (𝜇1 > … > 𝜇𝑟), which satisfy 𝜆𝑖 ⩽ 𝜇𝑖 ,

for 1 ⩽ 𝑖 ⩽ 𝑟, we set the (ladder) multisegment

𝔪(𝜆, 𝜇) = Δ(𝜆1, 𝜇1 − 1) +⋯ + Δ(𝜆𝑟, 𝜇𝑟 − 1) ∈ 𝔐,

†An alternative argumentation would be to apply the well-known Zelevinsky involution in the 𝑝-adic setting, which
exchanges the notion of spherical irreducible representations with that of Whittaker-generic representations. Same
properties for the latter notion are classical results of [45].
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QUIVER HECKE ALGEBRAS AND RSK 727

and define

Ξ(𝜆, 𝜇) ∶= 𝐿𝔪(𝜆,𝜇) ∈ Irr(wt(𝔪(𝜆, 𝜇))) .

Here, as in the rest of this work, we treat the notation Δ(𝑎, 𝑎 − 1) as the zero element in 𝑄+.
Representations of the form 𝑍(𝔪(𝜆, 𝜇)) are the ladder representations for 𝑝-adic groups. It

follows from the study in [26], that the Kleshchev–Ram construction coincides with that of lad-
der representations. Thus, by [30, Theorem 3.6], the collection {Ξ(𝜆, 𝜇)}𝜆,𝜇 exhausts all self-dual
irreducible homogeneous modules in.
One particularly convenient property of the homogeneous class is that their restrictions are

homogenous as well, and are easily described. The following may be viewed as a combined
statement of [30, section 3.4] and [26].

Proposition 4.5. Given 𝛽 ∈ (𝑄+)𝑘 , and a homogeneous moduleΞ(𝜆, 𝜇) ∈ Irr(𝑖(𝛽))with 𝜆 = (𝜆1 >
… > 𝜆𝑟) and 𝜇 = (𝜇1 > … > 𝜇𝑟), we have

Res𝛽(Ξ(𝜆, 𝜇)) =
⨁

𝜈1,…,𝜈𝑘−1

Ξ(𝜈𝑘−1, 𝜇) ⊠ Ξ(𝜈𝑘−2, 𝜈𝑘−1) ⊠⋯⊠Ξ(𝜆, 𝜈1) ,

as a graded 𝑅(𝛽)-module.
Here the sum is taken over all possible sequences 𝜈𝑖 = (𝜈𝑖

1
> … > 𝜈𝑖𝑟) of integers, such that 𝜆𝑗 ⩽

𝜈1
𝑗
⩽ … ⩽ 𝜈𝑘−1

𝑗
⩽ 𝜇𝑗 holds for every 1 ⩽ 𝑗 ⩽ 𝑟, and that the resulting representation is in 𝑅(𝛽) −

gmod.

A special case of a homogeneous module is a segment module: Ξ((𝑎), (𝑏 + 1)) = 𝐿Δ(𝑎,𝑏). In this
case, we see from Proposition 4.5 that Res𝛽(𝐿Δ(𝑎,𝑏)) is either 0 or an irreducible module given by

𝐿Δ(𝑐𝑘,𝑏) ⊠ 𝐿Δ(𝑐𝑘−1,𝑐𝑘−1) ⊠⋯⊠𝐿Δ(𝑎,𝑐1−1) , (5)

for integers 𝑎 ⩽ 𝑐1 ⩽ … ⩽ 𝑐𝑘 ⩽ 𝑏 + 1.

5 RSK FORMULTISEGMENTS

We recall the combinatorial algorithms associated with the Robinson–Schensted–Knuth corre-
spondence, in a form adapted to our setting.
Given segmentsΔ1, Δ2 ∈ Seg, we write Δ1 ≪ Δ2, if 𝑏(Δ1) < 𝑏(Δ2) and 𝑒(Δ1) < 𝑒(Δ2) hold. This

is a strict partial order on Seg.
In these terms, we say that a multisegment

0 ≠ 𝔩 =

𝑘∑
𝑖=0

Δ𝑖 ∈ 𝔐

is a ladder multisegment, if Δ𝑖 ≪ Δ𝑖−1, for 𝑖 = 1, … , 𝑘. (This is an equivalent description to the
collection of multisegments of the form𝔪(𝜆, 𝜇) discussed in Subsection 4.3.)
We write Lad ⊆ 𝔐 for the collection of all ladder multisegments.
For any 0 ≠𝔪 ∈𝔐, we set its width 𝜔(𝔪) to be the minimal number of ladder multisegments

𝔩1, … , 𝔩𝜔(𝔪) ∈ Lad, for which we can decompose as𝔪 = 𝔩1 +⋯ + 𝔩𝜔(𝔪).
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728 GUREVICH

We write

𝔐⧵ {0} =

∞⋃
𝑖=1

𝔐𝑖 , 𝔐𝑖 = {0 ≠𝔪 ∈𝔐 ∶ 𝜔(𝔪) = 𝑖} .

Note, that Lad = 𝔐1.
Suppose that a multisegment

0 ≠𝔪 =
∑
𝑖∈𝐼

Δ𝑖 ∈ 𝔐

and a ladder multisegment

𝔩 =
∑
𝑗∈𝐽

Δ𝑗 ∈ Lad

are given. We may write 𝐽 = {𝑗1, … 𝑗𝑙}, with Δ𝑗𝑙 ≪ … ≪ Δ𝑗1 .
We say that the pair (𝔩,𝔪) is permissible†, if for every choice of indices 𝑖1, … , 𝑖𝑚 ∈ 𝐼, for which

Δ𝑖𝑚 ≪ … ≪ Δ𝑖1 holds (sub-ladder of𝔪), there is an injective increasing function

𝜙 ∶ {1, … ,𝑚} → {1, … , 𝑙} ,

for which
←

Δ𝑖𝑡 ≺ Δ𝑗𝜙(𝑡) holds, for all 1 ⩽ 𝑡 ⩽ 𝑚 (in other words, 𝑏(Δ𝑖𝑡 ) ⩽ 𝑏(Δ𝑗𝜙(𝑡) ) ⩽ 𝑒(Δ𝑖𝑡 ) ⩽
𝑒(Δ𝑗𝜙(𝑡) ).)

Here we denote
←

Δ = Δ(𝑎 − 1, 𝑏 − 1) ∈ Seg, for a segment Δ = Δ(𝑎, 𝑏) ∈ Seg.
Let𝔄 ⊆ Lad×𝔐 be the collection of permissible pairs.
In further refinement, we write 𝔄 =

⋃∞
𝑖=1 𝔄𝑖 , where 𝔄𝑖 ⊆ Lad×𝔐𝑖 are the permissible pairs

(𝔩,𝔪), with 𝜔(𝔪) = 𝑖.

Proposition 5.1. [14, Proposition 2.4] There is a bijection

 ∶ 𝔐 ⧵ {0} → 𝔄 ,

which is explicitly given by the Knuth–Viennot implementation of the RSK correspondence.

The combinatorial algorithm defining, which was described in detail in [14, section 2.2.2], is
a manifestation of the Knuth algorithm from [28].

Proposition 5.2. The restriction of the map to the subset𝔐𝑖 , for 𝑖 ⩾ 2, results in a bijection

𝑖 ∶ 𝔐𝑖 → 𝔄𝑖−1 ⊆ Lad×𝔐𝑖−1 .

Proof. As was discussed in [14, Remark 4.4], the width 𝜔(𝔪) of a multisegment𝔪 ∈𝔐 may be
given a combinatorial interpretation using the results of [16]. Standard properties of the Knuth
map then imply that 𝜔(𝔪′) = 𝜔(𝔪) − 1, whenever(𝔪) = (𝔩,𝔪′). □

†A slightly different formulation was used in [14]. The equivalence of conditions is a straightforward exercise.
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QUIVER HECKE ALGEBRAS AND RSK 729

Given a multisegment𝔪 ∈𝔐𝑑, we may apply the map Knuth–Viennot map recursively:

(𝔪) = (𝔩1,𝔪1), (𝔪1) = (𝔩2,𝔪2), … ,(𝔪𝑑−2) = (𝔩𝑑−1, 𝔩𝑑) ∈ 𝔄1 ⊆ Lad×Lad .

We take the resulting 𝑑 ladder multisegments

(𝔪) = (𝔩1, 𝔩2, … , 𝔩𝑑) ∈ Lad
𝑑

as the RSK-transform of𝔪.
Let us reformulate the information encoded in (𝔪) into a combinatorial presentation.

Recall (Subsection 4.3) that ladder multisegments segments are uniquely described as

𝔩𝑖 = 𝔪(𝑐𝑖, 𝑑𝑖) ,

for 𝑖 = 1, … , 𝑑, and given tuples of integers

𝑐𝑖 = (𝑐𝑖,1 > … > 𝑐𝑖,𝜆𝑖 ), 𝑑𝑖 = (𝑑𝑖,1 > … > 𝑑𝑖,𝜆𝑖 ) .

We know (again, by [14, Proposition 2.4]) that (𝔩𝑖, 𝔩𝑗) ∈ 𝔄, for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑑. It then easily
follows from the permissibility condition that 𝜆1 ⩾ … ⩾ 𝜆𝑑, and that 𝑐1,𝑗 ⩾ 𝑐2,𝑗 ⩾ … holds, for each
index 𝑗.
In particular, we obtain a pair of (inverted†) semi-standard Young tableaux‡

of equal shape, whose rows are given by the partition 𝜆(𝔪) = (𝜆1, … , 𝜆𝑑) of the integer |𝔩1| +
⋯ + |𝔩𝑑|.
Proposition 5.3. For any 0 ≠𝔪 ∈𝔐 with(𝔪) = (𝔩1, … , 𝔩𝑑), we have the equalities

𝔟(𝔪) = 𝔟(𝔩1) +⋯ + 𝔟(𝔩𝑑), 𝔢(𝔪) = 𝔢(𝔩1) +⋯ + 𝔢(𝔩𝑑)

in 𝑄+.
In particular, 𝜆(𝔪) is a partition of the integer |𝔪|.

Proof. It follows directly from the Knuth algorithm description (or from the description of ′
explicated in the next section) that for(𝔪) = (𝔩1,𝔪′), we have

𝔟(𝔪) = 𝔟(𝔩1) + 𝔟(𝔪
′), 𝔢(𝔪) = 𝔢(𝔩1) + 𝔢(𝔪

′) .

Since(𝔪′) = (𝔩2, … , 𝔩𝑑), the statement follows inductively. □

† Strictly descending rows, and weakly descending columns.
‡Note, that our current convention is slightly different from that of [14]: Our 𝑑𝑖,𝑗 stands for 𝑑𝑖,𝑗 + 1 in the conventions of
that source.
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730 GUREVICH

5.1 Algorithm description

In this work, we will be interested in a (equally explicit) description of the inverse map′ ∶ 𝔄 →
𝔐 ⧵ {0} to. Let us describe themap, whose algorithmic description appeared in the proof of [14,
Proposition 2.4] (based on [13, chapter 4.2]), in detail.
Let (𝔩,𝔪) ∈ 𝔄 be given.
Again, we write𝔪 =

∑
𝑖∈𝐼 Δ𝑖 and 𝔩 =

∑
𝑗∈𝐽 Δ𝑗 ∈ Lad for disjoint index sets 𝐼, 𝐽.

Let us denote 𝐽 = {𝑗1, … 𝑗𝑙}, with Δ𝑗𝑙 ≪ … ≪ Δ𝑗1 .
We also assume that 𝐼 is linearly ordered by a fixed relation <, satisfying

𝑏(Δ𝑖1) > 𝑏(Δ𝑖2) or

{
𝑏(Δ𝑖1) = 𝑏(Δ𝑖2)

𝑒(Δ𝑖1) ⩽ 𝑒(Δ𝑖2)
, (6)

for all 𝑖1 > 𝑖2 in 𝐼.
For each 𝑖 ∈ 𝐼, we take note of the number

𝔡′
𝔩,𝔪
(𝑖) = max{𝑡 ∶

←

Δ𝑖 ≪ Δ𝑗𝑡 } .

Next, for each 𝑖 ∈ 𝐼, we define

𝔡𝔩,𝔪(𝑖) = min{𝔡
′
𝔩,𝔪
(𝑖𝑘) − 𝑘 ∶ ∃𝑖 = 𝑖0, … , 𝑖𝑘 ∈ 𝐼 such that Δ𝑖𝑟+1 ≪ Δ𝑖𝑟 , 𝑟 = 0, … , 𝑘 − 1} .

For convenience, we extend the domain of the function 𝔡𝔩,𝔪 to 𝐼 ∪ 𝐽, by setting 𝔡𝔩,𝔪(𝑗𝑡) = 𝑡.
Let 𝜎 be a permutation on the index set 𝐼 ∪ 𝐽, given by its decomposition into the following

disjoint cycles:

(𝑖1, … , 𝑖𝑠, 𝑗𝑡),

for each 1 ⩽ 𝑡 ⩽ 𝑙, where

{𝑖1 > … > 𝑖𝑠} ∪ {𝑗𝑡} = 𝔡
−1
𝔩,𝔪
(𝑡) .

For 𝑖 ∈ 𝐼 ∪ 𝐽, we write 𝑖# = 𝜎(𝑖).
We can now set a new multisegment

′(𝔩,𝔪) =
∑
𝑖∈𝐼∪𝐽

Δ♣
𝑖
∈ 𝔐,

by defining Δ♣
𝑖
= Δ(𝑏(Δ𝑖), 𝑒(Δ𝑖#)) ∈ Seg.

†

Example 5.4. Suppose that 𝔩 = Δ𝑗1 + Δ𝑗2 + Δ𝑗3 , for Δ𝑗1 = Δ(4, 7), Δ𝑗2 = Δ(2, 5) and Δ𝑗3 =
Δ(0, 3). Suppose that

𝔪 = Δ(0, 4) + Δ(0, 2) + Δ(1, 5) + Δ(1, 2) + Δ(1, 2) + Δ(3, 4) .

It can be verified that (𝔩,𝔪) ∈ 𝔄.

†Note the slight difference in notation from [14].
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QUIVER HECKE ALGEBRAS AND RSK 731

Following the algorithm for′ we may write𝔪 =
∑6
𝑡=1 Δ𝑖𝑡 with 𝑖1 > 𝑖2 > 𝑖3 > 𝑖4 > 𝑖5 > 𝑖6 and

see the following data:

𝑖 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6

Δ𝑖 Δ(3, 4) Δ(1, 2) Δ(1, 2) Δ(1, 5) Δ(0, 2) Δ(0, 4)

𝔡′
𝔩,𝔪
(𝑖) 1 2 2 2 3 2

𝔡𝔩,𝔪(𝑖) 1 2 2 1 3 2

Then, the permutation 𝜎 on 𝐼 ∪ 𝐽 is defined in cycle notation as

𝜎 = (𝑖1𝑖4𝑗1)(𝑖2𝑖3𝑖6𝑗2)(𝑖5𝑗3) .

The resulting multisegment in given as

′(𝔩,𝔪) = Δ(3, 5) + Δ(1, 7) + Δ(4, 4) + Δ(1, 2) + Δ(1, 4) + Δ(0, 5) + Δ(2, 2) +

+Δ(0, 3) + Δ(0, 2) .

5.1.1 Properties of′

Note, that 𝑒(Δ𝑖) ⩽ 𝑒(Δ𝑖#) = 𝑒(Δ
♣
𝑖
), for all 𝑖 ∈ 𝐼, while 𝑒(Δ𝑗#) ⩽ 𝑒(Δ𝑗), for 𝑗 ∈ 𝐽.

For 𝑖 ∈ 𝐼 ∪ 𝐽, we set 𝑖∨ = 𝜎−𝑟(𝑖), where 𝑟 ⩾ 1 is the minimal power for which

𝑒(Δ♣
𝜎−𝑟(𝑖)

) ≠ 𝑒(Δ𝜎−𝑟(𝑖))

holds, or 𝑖∨ = 𝑗𝔡𝔩,𝔪(𝑖), if such power does not exist.
Note that 𝑒(Δ♣

𝑖∨
) = 𝑒(Δ𝑖).

When 𝑖, 𝑖∨ ∈ 𝐼, we have 𝑖 ⩽ (𝑖∨)# < 𝑖∨ and 𝑒(Δ𝑖) = 𝑒(Δ(𝑖∨)#).
When 𝑖, 𝑖#, (𝑖#)∨ ∈ 𝐼, we have 𝑖# < 𝑖 ⩽ (𝑖#)∨ and either 𝑒(Δ(𝑖#)∨) = 𝑒(Δ𝑖) < 𝑒(Δ𝑖#) or 𝑒(Δ(𝑖#)∨) <

𝑒(Δ𝑖) = 𝑒(Δ𝑖#).

Lemma 5.5. Let 𝑖 ∈ 𝐼 be an index and 𝑛 an integer, with 𝔡𝔩,𝔪(𝑖) < 𝑛 ⩽ 𝔡′𝔩𝔪(𝑖). Then, there exists
𝑖(𝑛) ∈ 𝐼, such that Δ𝑖(𝑛) ≪ Δ𝑖 and 𝔡𝔩,𝔪(𝑖(𝑛)) = 𝑛.

Proof. Let us write𝑚 = 𝔡′
𝔩,𝔪
(𝑖) − 𝔡𝔩,𝔪(𝑖), and 𝑝 = 𝑛 − 𝔡𝔩,𝔪(𝑖) ⩽ 𝑚.

Suppose that Δ𝑖𝑘 ≪ … ≪ Δ𝑖1 ≪ Δ𝑖0 are segments, such that 𝑖0 = 𝑖 and 𝔡
′
𝔩,𝔪
(𝑖𝑘) = 𝔡𝔩,𝔪(𝑖) + 𝑘.

Since 𝔡′
𝔩,𝔪
(𝑖) ⩽ 𝔡′

𝔩,𝔪
(𝑖𝑘), we must have𝑚 ⩽ 𝑘.

Now, we set 𝑖(𝑛) ∶= 𝑖𝑝. Then, 𝔡𝔩,𝔪(𝑖(𝑛)) ⩽ 𝔡′𝔩,𝔪(𝑖𝑘) − (𝑘 − 𝑝) = 𝑛. Yet, it also follows from the
definition of the depth function that 𝔡𝔩,𝔪(𝑖) ⩽ 𝔡𝔩,𝔪(𝑖(𝑛)) − 𝑝. □

A particular simple corollary is that the equality

𝔡𝔩,𝔪(𝑖) = min(𝔡
′
𝔩,𝔪
(𝑖), {𝔡𝔩,𝔪(𝑠) − 1 ∶ 𝑠 ∈ 𝐼, Δ𝑠 ≪ Δ𝑖}) (7)

holds, for all 𝑖 ∈ 𝐼.
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732 GUREVICH

Lemma 5.6.

(1) Let 𝑖, 𝑖′ ∈ 𝐼 be indices, such that 𝑒(Δ𝑖) = 𝑒(Δ𝑖′ ) and 𝑏(Δ𝑖) < 𝑏(Δ𝑖′ ) ⩽ 𝑏(Δ𝑖∨). Then, 𝔡𝔩,𝔪(𝑖′) =
𝔡𝔩,𝔪(𝑖) and Δ

♣
𝑖′
= Δ𝑖′ .

(2) Let 𝑖 ∈ 𝐽 and 𝑖′ ∈ 𝐼 be indices, such that 𝑒(Δ𝑖) = 𝑒(Δ𝑖′ ) and 𝑏(Δ𝑖′ ) ⩽ 𝑏(Δ𝑖∨). Then, 𝔡𝔩,𝔪(𝑖′) =
𝔡𝔩,𝔪(𝑖).

(3) Let 𝑖 ∈ 𝐼 ∪ 𝐽 and 𝑖′ ∈ 𝐼 be indices, such that 𝑏(Δ𝑖) = 𝑏(Δ𝑖′ ) and 𝑒(Δ𝑖) < 𝑒(Δ𝑖′ ) ⩽ 𝑒(Δ𝑖#). Then,
𝔡𝔩,𝔪(𝑖

′) = 𝔡𝔩,𝔪(𝑖) and Δ𝑖# = Δ𝑖′ .

Proof. Once the equality 𝔡𝔩,𝔪(𝑖′) = 𝔡𝔩,𝔪(𝑖) is established, the rest of the statements will
easily follow.
In cases (1) and (3), the inequalities 𝑏(Δ𝑖) ⩽ 𝑏(Δ𝑖′ ) and 𝑒(Δ𝑖) ⩽ 𝑒(Δ𝑖′ ) imply that 𝔡𝔩,𝔪(𝑖′) ⩽

𝔡𝔩,𝔪(𝑖). The same is implied by 𝑒(Δ𝑖′ ) = 𝑒(Δ𝑖) in case (2).
Fix 𝑗 = 𝑗𝔡𝔩,𝔪(𝑖). Since 𝑏(Δ𝑖∨) ⩽ 𝑏(Δ𝑗) and 𝑒(Δ𝑖#) ⩽ 𝑒(Δ𝑗) hold, the assumed inequalities imply

in all cases that
←

Δ𝑖′ ≪ Δ𝑗 . Hence, 𝔡′𝔩,𝔪(𝑖
′) ⩾ 𝔡𝔩,𝔪(𝑖).

Assume now the contrary, that is, 𝔡𝔩,𝔪(𝑖′) < 𝔡𝔩,𝔪(𝑖). Then, by Lemma 5.5, there is an index
𝑖1 ∈ 𝐼, for which Δ𝑖1 ≪ Δ𝑖′ and 𝔡𝔩,𝔪(𝑖1) = 𝔡𝔩,𝔪(𝑖).
In cases (1) and (2), the relations{

𝑒(Δ𝑖1) < 𝑒(Δ𝑖′ ) = 𝑒(Δ𝑖)

𝑏(Δ𝑖1) < 𝑏(Δ𝑖′ ) ⩽ 𝑏(Δ𝑖∨)

become a contradiction to the minimality property defining 𝑖∨.
In case (3), a similar contradiction to the defining property of 𝑖# is deduced from{

𝑒(Δ𝑖1) < 𝑒(Δ𝑖′ ) ⩽ 𝑒(Δ𝑖#)

𝑏(Δ𝑖1) < 𝑏(Δ𝑖′ ) = 𝑏(Δ𝑖)
.

□

5.1.2 Reminder on

While our technical concern in this work surrounds the algorithmic definition of′, a readermay
argue that its inverse  deserves the protagonist role, being the building block of the inductive
RSK-transform with which we ultimately deal. In fact, as discussed in length in [14, section 2.2.3
and Appendix A], a characterization of the image of the map  is not a trivial task, a fact
further undermining the focus on′.
Thus, for clarity and completeness, let us also repeat the description of the inverse algorithm

for. It will not be needed for the rest of this work.
Let𝔪 =

∑
𝑖∈𝐼 Δ𝑖 ∈ 𝔐 be given, with the index set 𝐼 ordered as in (6). We define 𝔡𝔪 ∶ 𝐼 → ℤ⩾0

by

𝔡𝔪(𝑖) = max{𝑘 ∶ ∃𝑖0, … , 𝑖𝑘 = 𝑖 ∈ 𝐼 such that Δ𝑖𝑟+1 ≪ Δ𝑖𝑟 , 𝑟 = 0, … , 𝑘 − 1} .

Let 𝜎 be a permutation on 𝐼, given by its decomposition into the disjoint cycles (𝑖𝑡
1
, … , 𝑖𝑡𝑠𝑡

), for
each 0 ⩽ 𝑡 ⩽ 𝑑 ∶= max𝑖∈𝐼 𝔡𝔪(𝑖), where

{𝑖𝑡1 > … > 𝑖
𝑡
𝑠𝑡
} = 𝔡−1𝔪 (𝑡) .

We set 𝑗𝑡 ∶= 𝑖𝑡1, and record the set of indices 𝐽 = {𝑗0, … , 𝑗𝑑} ⊆ 𝐼.
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QUIVER HECKE ALGEBRAS AND RSK 733

For 𝑖 ∈ 𝐼, we write 𝑖# = 𝜎−1(𝑖).
We can now set

(𝔪) = (𝔩,𝔪′) ∈ 𝔄,

by defining𝔪′ =
∑
𝑖∈𝐼⧵𝐽 Δ(𝑏(Δ𝑖), 𝑒(Δ𝑖#)) ∈ 𝔐 and 𝔩 =

∑𝑑
𝑡=0 Δ(𝑏(Δ𝑗𝑡 ), 𝑒(Δ(𝑗𝑡)#)) ∈ Lad.

5.2 RSK-standard modules

Let (𝔩,𝔪) ∈ 𝔄 be a permissible pair, and 𝔫 = ′(𝔩,𝔪).
The ladder multisegment 𝔩 = 𝔪(𝜆, 𝜇) gives rise to a homogeneous representation Ξ(𝜆, 𝜇) =

𝐿𝔩 ∈ Irr, while 𝔪,𝔫 give rise to 𝐿𝔪, 𝐿𝔫 ∈ Irr through the Kleshchev–Ram procedure of
Subsection 2.3.
The key result [14, Theorem 4.3] may be imported to the quiver Hecke algebra setting in the

following form.

Theorem 5.7. For (𝔩,𝔪) ∈ 𝔄, there is integer Λ̃(𝔩,𝔪) ∈ ℤ, so that 𝐿′(𝔩,𝔪)⟨−Λ̃(𝔩,𝔪)⟩ is the head
of 𝐿𝔩◦𝐿𝔪.

Proof. The homogeneous module 𝐿𝔩 is known to be square-irreducible (or, real) (Proposition 7.2)
in the sense that 𝐿𝔩◦𝐿𝔩 is irreducible.
Hence, 𝐿𝔩◦𝐿𝔪 has a simple head 𝑆⟨−Λ̃(𝔩,𝔪)⟩, for 𝑆 ∈ Irr. (See Section 7 for further details.)
Fixing any 𝜌 ∈ cusp𝑚, we may write 𝑍(𝔩), 𝑍(𝔪), 𝑍(𝔫) ∈ Irrℤ𝜌 . By [14, Theorem 4.3], 𝑍(𝔫) is the

head of 𝑍(𝔩) × 𝑍(𝔪). Applying 𝜌 and using Proposition 3.11, we see that 𝜌(𝑍(𝔫)) must appear
as a quotient module of (𝐿𝔩◦𝐿𝔪)fgt.
From the identity (1), we must have 𝑆fgt ≅ 𝐿𝔫 in ̂. □

Consider now any module 𝐿𝔪 ∈ Irr, given by a multisegment 𝔪 ∈𝔐 of width 𝜔 = 𝜔(𝔪).
Let

(𝔪) = (𝔩1, … , 𝔩𝜔) ∈ Lad
𝜔

be its RSK-transform.
Taking record of the multisegments 𝔪 = 𝔪0,𝔪1,… ,𝔪𝜔−1,𝔪𝜔 = 0 ∈ 𝔐, so that 𝔪𝑖−1 =

(𝔩𝑖,𝔪𝑖), we set the integer

𝑑(𝔪) = Λ̃(𝔩1,𝔪1) +⋯ + Λ̃(𝔩𝜔−1,𝔪𝜔−1) .

We define the RSK-standardmodule associated with𝔪 to be

Γ(𝔪) ∶= 𝐿𝔩1◦⋯◦𝐿𝔩𝜔(𝔪)⟨−𝑑(𝔪)⟩ ∈ 𝑅(wt(𝔪)) − gmod .
Theorem 5.8. The self-dual simple module 𝐿𝔪 appears as a quotient module of Γ(𝔪).

Proof. The quotient is produced by a consecutive application of Theorem 5.7 on 𝐿𝔩1 , … , 𝐿𝔩𝜔 , taking
into the account the definition of the RSK-transform. □
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734 GUREVICH

6 DEGREE COMPUTATION

Let (𝔩,𝔪) ∈ 𝔄 be a permissible pair as before, and 𝔫 = ′(𝔩,𝔪). We would like to produce an
explicit formula for the number Λ̃(𝔩,𝔪) appearing in Theorem 5.7.
The main feature that will facilitate this computation is the following multiplicity-one result.

Proposition 6.1. The graded multiplicity𝑚(𝐿𝔩◦𝐿𝔪, 𝐿
⊗
𝔫 )(𝑞) ∈ ℤ⩾0[𝑞, 𝑞

−1] is a monomial.
In other words, there is a unique integer 𝜅 = 𝜅(𝔩,𝔪), for which 𝐿⊗𝔫 ⟨𝜅⟩ appears as a subquotient of

Res𝛽(𝔫)(𝐿𝔩◦𝐿𝔪), and its ungraded multiplicity in the Jordan-Hölder series of Res𝛽(𝔫)(𝐿𝔩◦𝐿𝔪)fgt is 1.

The equality

𝑞𝜅(𝔩,𝔪) = 𝑚(𝐿𝔩◦𝐿𝔪, 𝐿
⊗
𝔫 )(𝑞) =

= 𝑚(𝐿𝔩◦𝐿𝔪, 𝐿𝔫)(𝑞) ⋅𝑚(𝐿𝔫, 𝐿
⊗
𝔫 )(𝑞) +

∑
𝐿𝔫≇𝑀∈Irr(wt(𝔫))

𝑚(𝐿𝔩◦𝐿𝔪,𝑀)(𝑞) ⋅𝑚(𝑀, 𝐿
⊗
𝔫 )(𝑞)

of Laurent polynomials follows. Taking Corollary 4.3 into account, we may write

𝑚(𝐿𝔫, 𝐿
⊗
𝔫 ) = 1 + 𝑃(𝑞) ,

for 𝑃(𝑞) ∈ ℤ⩾0[𝑞, 𝑞−1]. Hence, from positivity of coefficients involved, we must have 𝑞𝜅(𝔩,𝔪) =
𝑚(𝐿𝔩◦𝐿𝔪, 𝐿𝔫)(𝑞) and

−Λ̃(𝔩,𝔪) = 𝜅(𝔩,𝔪) .

We are left with a computation of the degree 𝜅(𝔩,𝔪), that will be performed in Subsection 6.2.

6.1 Proof of Proposition 6.1

Let us take a choice of segmentsΔ1,… , Δ𝑠 ∈ Segwith 𝑏(Δ1) ⩽ … ⩽ 𝑏(Δ𝑠), a homogeneousmodule
Ξ ∈ Irr, and a multisegment 0 ≠ 𝔫 ∈ 𝔐.
We write 𝔫 = 𝔫1 +⋯ + 𝔫𝑡 as a sum of left-aligned multisegments 𝔫𝑖 ∈ 𝔐 with 𝑎𝑖 = 𝑏(𝔫𝑖)

satisfying 𝑎1 < … < 𝑎𝑡, as in Subsection 4.1. We write 𝛾 = 𝛽(𝔫) = (wt(𝔫1), … ,wt(𝔫𝑡)).
Let us consider the module

Π = Ξ⊠ 𝐿Δ1 ⊠⋯⊠𝐿Δ𝑠 ∈ Irr(𝛽) ,

for 𝛽 = (wt(Ξ), Δ1, … , Δ𝑠).
Let us assume that 𝑖(𝛽) = 𝑖(𝛾) holds.
With the notations of Subsection 2.2, let𝑀(Π,𝔫) ⊆ 𝑀(𝛽, 𝛾) be subset of 𝛿 ∈ 𝑀(𝛽, 𝛾) for which

𝐾𝛿(Π) ≠ 0 (that is, Res
𝛽

𝛿𝑟𝑜𝑤
(𝑀) ≠ 0). Then, by Proposition 2.1,

[Res𝛾(Ind𝛽(Π))] =
∑

𝛿∈𝑀(Π,𝔫)

[𝐾𝛿(Π)]

holds in the Grothendieck group of 𝑅(𝛾) − gmod.
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QUIVER HECKE ALGEBRAS AND RSK 735

Lemma 6.2.

(1) Each matrix in 𝛿 = (𝛿𝑞,𝑟)𝑞=0,…,𝑠 ,𝑟=1,…,𝑡 ∈ 𝑀(Π, 𝔫) is triangular, in the sense that for every 1 ⩽
𝑞 ⩽ 𝑠 and 1 ⩽ 𝑟 ⩽ 𝑡 satisfying 𝑏(Δ𝑞) < 𝑎𝑟, we have 𝛿𝑞,𝑟 = 0.

(2) Suppose that 𝔟(𝔫) = 𝛼𝑏(Δ1) +⋯ + 𝛼𝑏(Δ𝑠) + 𝔟(Ξ).
Then, for all 𝛿 = (𝛿𝑞,𝑟) ∈ 𝑀(Π, 𝔫) and all 1 ⩽ 𝑞 ⩽ 𝑠 and 𝑟 that satisfy 𝑏(Δ𝑞) = 𝑎𝑟, we have
𝛿𝑞,𝑟 ≠ 0.

Proof. Let us fix 𝛿 = (𝛿𝑞,𝑟) ∈ 𝑀(Π, 𝔫). For a fixed 1 ⩽ 𝑞 ⩽ 𝑠, let 𝑟0 be the maximal index for which
𝛿𝑞,𝑟0 ≠ 0. From (5), we know that 𝛿𝑞,𝑟0 is a segment, with 𝑏(𝛿𝑞,𝑟0 ) = 𝑏(Δ𝑞). Thus,wt(𝔫𝑟0) contains
𝛼𝑏(Δ𝑞), implying 𝑎𝑟0 ⩽ 𝑏(Δ𝑞), which proves (1).
Suppose now that the assumption in (2) holds. Let 1 ⩽ 𝑟 ⩽ 𝑡 be fixed, and write

{𝑞𝑟, 𝑞𝑟 + 1, … , 𝑞𝑟 + 𝑚𝑟 − 1} = {𝑞 ∶ 𝑏(Δ𝑞) = 𝑎𝑟} .

Note that the height |𝔫𝑟|must equal either𝑚𝑟 or𝑚𝑟 + 1 by assumption.
Recall that wt(𝔫𝑟) = 𝛿0,𝑟 +⋯ + 𝛿𝑠,𝑟. Considering (1), we see that |𝔫𝑟| is the multiplicity of 𝛼𝑎𝑟

in 𝛿𝑞𝑟,𝑟 + 𝛿𝑞𝑟+1,𝑟 +⋯ + 𝛿𝑞𝑟+𝑚𝑟−1,𝑟 + 𝛿0,𝑟.
In case 𝛿0,𝑟 does not contain 𝛼𝑎𝑟 , all𝑚 segments 𝛿𝑞𝑟,𝑟, 𝛿𝑞𝑟+1,𝑟, … , 𝛿𝑞𝑟+𝑚𝑟−1,𝑟 must be non-zero.

Otherwise, let us recall that Res
𝛽

(𝛿0,1,𝛿0,2,…,𝛿0,𝑡)
(Ξ) ≠ 0 is homogeneous. Since 𝛿 ∈ 𝑀(Π, 𝔫), we

also know that 𝑎 ⩾ 𝑎𝑗 , for all 𝛼𝑎 ⩽ 𝛿𝑠+1,𝑗 .
Considering the description of possible non-zero restrictions of homogeneous modules in

Proposition 4.5, we first deduce that the multiplicity of 𝛼𝑎𝑟 in 𝛿0,𝑟 is 1. Moreover, 𝑎𝑟 must
appear as a begin point of a segment in the multisegment 𝔩 ∈ Lad, for which Ξ = 𝐿𝔩. This
implies |𝔫𝑟| = 𝑚𝑟 + 1, which brings us again to the implication that each one of the segments
𝛿𝑞𝑟,𝑟, 𝛿𝑞𝑟+1,𝑟, … , 𝛿𝑞𝑟+𝑚𝑟−1,𝑟 must be non-zero. □

With same notations in place, suppose now that the multisegment𝔪 = Δ1 +⋯ + Δ𝑠 and the
ladder multisegment 𝔩 = Δ𝑗1 +⋯ + Δ𝑗𝑡 ∈ Lad, for which Ξ = 𝐿𝔩, constitute a permissible pair
(𝔩,𝔪) ∈ 𝔄. Suppose further that 𝔫 = ′(𝔩,𝔪).
We may assume that 𝐼 = {1, … , 𝑠} and 𝐽 = {𝑗1, … , 𝑗𝑡} satisfy the assumptions of Subsection 5.1

(in particular, 𝐼 is ordered according to condition (6)), and adopt the notations of that section for
the RSK algorithm.
Recall that 𝔟(𝔫) = 𝔟(𝔪) + 𝔟(𝔩).
In particular, we may write 𝔪 = 𝔪1 +⋯ +𝔪𝑡, with either 𝔪𝑟 = 0 or 𝔪𝑟 a left-aligned

multisegment, such that 𝑏(𝔪𝑟) = 𝑎𝑟.
For every 1 ⩽ 𝑞 ⩽ 𝑠, let 𝑟(𝑞) be the unique index satisfying 𝑎𝑟(𝑞) = 𝑏(Δ𝑞), that is,

𝔪𝑟 =
∑

𝑞 ∶ 𝑟(𝑞)=𝑟

Δ𝑞 .

Proposition 6.3. There is a unique 𝛿 = (𝛿𝑟,𝑞) ∈ 𝑀(Π, 𝔫), for which the graded multiplicity
𝑚(𝐾𝛿(Π), 𝐿

⊗
𝔫 )(𝑞) is non-zero.

Moreover, the Laurent polynomial 𝑚(Ind𝛽(Π), 𝐿
⊗
𝔫 )(𝑞) = 𝑚(𝐾𝛿(Π), 𝐿

⊗
𝔫 )(𝑞), for that unique 𝛿, is

a monomial.
Concretely, we have

𝐾𝛿(Π) = (Ξ1◦𝐿𝔪1) ⊠⋯⊠ (Ξ𝑡◦𝐿𝔪𝑡 )⟨𝑁⟩ ,
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736 GUREVICH

where

Res
𝛽

(𝛿0,1,𝛿0,2,…,𝛿0,𝑡)
(Ξ) = Ξ1 ⊠⋯⊠Ξ𝑡 ,

and𝑁 = deg(𝛿) −
(|𝔪1|
2

)
− … −

(|𝔪𝑡|
2

)
.

Proof. It follows from Theorem 5.7, Theorem 2.2 and Corollary 4.3, that𝑚(Ξ◦KR(𝔪), 𝐿⊗𝔫 )(𝑞), and
hence,𝑚(Ind𝛽(Π), 𝐿

⊗
𝔫 )(𝑞), are non-zero.

By Proposition 2.1, it follows that 𝛿 ∈ 𝑀(Π, 𝔫) with𝑚(𝐾𝛿(Π), 𝐿
⊗
𝔫 )(𝑞) ≠ 0, exists. We are left to

prove its uniqueness.
Suppose that 𝛿 = (𝛿𝑞,𝑟) ∈ 𝑀(Π, 𝔫)with non-zero gradedmultiplicity𝑚(𝐾𝛿(Π), 𝐿

⊗
𝔫 )(𝑞) is given,

and Ξ1, … , Ξ𝑡 ∈ Irr are as in the statement.
By formula (5), we know that for each 1 ⩽ 𝑞 ⩽ 𝑠, 𝛿𝑞,𝑟(𝑞) = Δ′𝑞 ∈ Seg is a segment with 𝑏(Δ

′
𝑞) =

𝑏(Δ𝑞) = 𝑎𝑟(𝑞) and 𝑒(Δ′𝑞) ⩽ 𝑒(Δ𝑞).
We will show that 𝛿𝑞,𝑟 = 0, for all 1 ⩽ 𝑞 ⩽ 𝑠 and 𝑟 ≠ 𝑟(𝑞). In other words, we claim that for all

1 ⩽ 𝑞 ⩽ 𝑠, Δ𝑞 = Δ′𝑞.
Uniqueness will then follow, since 𝛿0,𝑟 = wt(𝔫𝑟) − wt(𝔪𝑟) will be imposed, for all 1 ⩽ 𝑟 ⩽ 𝑡.
Assume the contrary, that is, 𝛿𝑞0,𝑟0 = Δ with 𝑟0 ≠ 𝑟(𝑞0), is non-trivial.
We may select 1 ⩽ 𝑞0 ⩽ 𝑠 to be the maximal index for which such 𝑟0 exists, and 𝑟0 to be the

maximal such index. Again, by Lemma 6.2 we know that 𝑟0 < 𝑟(𝑞0).
We write 𝑥 = 𝑏(Δ) and 𝑦 = 𝑒(Δ𝑞0). Then, 𝑥 ⩽ 𝑒(Δ) ⩽ 𝑦.
Note, that 𝑒(Δ′𝑞0) = 𝑥 − 1 < 𝑦. Hence,

𝛼𝑦 ⩽ wt(𝔪𝑟(𝑞0)) −
⎛⎜⎜⎝

∑
𝑞 ∶ 𝑟(𝑞)=𝑟(𝑞0)

Δ′𝑞

⎞⎟⎟⎠ = wt(𝔪𝑟(𝑞0)) −
⎛⎜⎜⎝

∑
𝑞 ∶ 𝑟(𝑞)=𝑟(𝑞0)

𝛿𝑞,𝑟(𝑞)

⎞⎟⎟⎠. (8)

Now, let us consider the index 𝑞1 = (𝑞0)∨ ∈ 𝐼 ∪ 𝐽. We set 𝑎𝑟1 = 𝑏(Δ𝑞1) (that is, 𝑟1 = 𝑟(𝑞1), in
case 𝑞1 ∈ 𝐼.)
Recall that 𝑒(Δ♣𝑞1) = 𝑒(Δ𝑞0) = 𝑦. If 𝑞1 ∈ 𝐼, we have 𝑒(Δ𝑞1) < 𝑦. Otherwise 𝑞1 ∈ 𝐽 and Δ

♣
𝑞1
⩽

wt(𝔫𝑟1) − wt(𝔪𝑟1). In either case, we obtain

𝛼𝑦 ⩽ wt(𝔫𝑟1) − wt(𝔪𝑟1) . (9)

By definition of the 𝑖 ↦ 𝑖∨ operation, we know that 𝑟(𝑞0) ⩽ 𝑟(𝑞1). It follows from maximality
of 𝑞0 that

wt(𝔫𝑟1) = 𝛿0,𝑟1 +
∑

𝑞 ∶ 𝑟(𝑞)=𝑟1

𝛿𝑞,𝑟(𝑞) . (10)

Now, the sphericalmodule 𝐿𝔫𝑟1 , up to a shift of grading, was assumed to appear as a subquotient
of a product involving Ξ𝑟1 . By Proposition 4.4, that means that Ξ𝑟1 must be a spherical module.
Recalling the description in Proposition 4.5, we see that means Ξ𝑟1 = 𝐿𝔩′ , for a multisegment

𝔩′ = Δ◦
1
+⋯ + Δ◦𝑝 ∈ Lad, such that 𝑒(Δ

◦
𝑖+1
) + 1 < 𝑏(Δ◦

𝑖
), for all 1 ⩽ 𝑖 ⩽ 𝑝 − 1.

Considering (8), (9), (10), we see that the equality 𝑟(𝑞0) = 𝑟1would have implied 2𝛼𝑦 ⩽ 𝛿𝑠+1,𝑟1 =
wt(𝔩′), which is a contradiction.
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QUIVER HECKE ALGEBRAS AND RSK 737

Hence, 𝑟(𝑞0) < 𝑟1 and by maximality of 𝑞0, we have Δ′𝑞 = Δ𝑞, for all 𝑞 with 𝑟(𝑞) = 𝑟1. In
particular, as an equation in 𝑄+ (as opposed to𝔐), we have

wt(𝔩′) = wt(𝔫𝑟1) − wt(𝔪𝑟1) =

{
Δ♣
𝑗
+
∑
𝑞 ∶ 𝑟(𝑞)=𝑟1

Δ(𝑒(Δ𝑞) + 1, 𝑒(Δ
♣
𝑞 )) , ∃𝑗 ∈ 𝐽, 𝑏(Δ𝑗) = 𝑎𝑟1∑

𝑞 ∶ 𝑟(𝑞)=𝑟1
Δ(𝑒(Δ𝑞) + 1, 𝑒(Δ

♣
𝑞 ))

.

The containment (9) implies 𝛼𝑦 ⩽ wt(𝔩′). Let 𝑝0 be the index for which 𝛼𝑦 ⩽ Δ◦𝑝0 .
Suppose first that 𝑦 < 𝑒(Δ◦𝑝0). Noting again that 𝑦 = 𝑒(Δ

♣
𝑞1
), we see that such situation can hap-

pen only when 𝑦 = 𝑒(Δ𝑞2) < 𝑒(Δ
♣
𝑞2
), for an index 𝑞2 with 𝑟(𝑞2) = 𝑟1. This is a contradiction to

Lemma 5.6(1).
Otherwise, 𝑦 = 𝑒(Δ◦𝑝0). From the containment (8), we also have 𝛼𝑦 ⩽ wt(𝔩′′), where Ξ𝑟(𝑞0) =

𝐿𝔩′′ . Using Proposition 4.5 again, these facts point on an existence of an index 𝑟(𝑞0) < 𝑟2 < 𝑟1, for
which 𝛼𝑦+1 ⩽ 𝐵(𝔩′′′), where Ξ𝑟2 = 𝐿𝔩′′′ . Reasoning as in the previous case, we see that there must
be an index 𝑞2with 𝑟(𝑞2) = 𝑟2 and 𝑦 = 𝑒(Δ𝑞2) < 𝑒(Δ

♣
𝑞2
). This gives a contradiction to Lemma 5.6(1).

The formula for 𝑁 follows from the fact that, for all 1 ⩽ 𝑟 ⩽ 𝑡,

𝐿𝔪𝑟 = ∇(𝔪𝑟) = ◦𝑞 ∶ 𝑟(𝑞)=𝑟𝐿Δ𝑞

⟨(|𝔪𝑟|
2

)⟩
,

where the product is taken with indices in ascending order.
Finally, the fact that 𝐾𝛿(Π) is a monomial follows again from Proposition 4.4. □

Note, that Ξ◦𝐿𝔪 is a quotient module of Ξ◦KR(𝔪), which, up to a shift of grading, equals to
Ind𝛽(Π). By Proposition 6.3, we see that 𝑚(Ξ◦𝐿𝔪, 𝐿

⊗
𝔫 )(𝑞) must be a monomial (non-vanishing

follows from Theorem 5.7, as in the proof of Proposition 6.3).
Proposition 6.1 is now a consequence of the Kleshchev–Ram construction (Theorem 2.2).

6.2 Computing 𝜿(𝖑,𝖒)

Given (𝔩,𝔪) ∈ 𝔄 and 𝔫 = ′(𝔩,𝔪)with all previous associated notations in place, we would like
to obtain a combinatorial formula for the degree

𝜅 = 𝜅(𝔩,𝔪) ,

for which 𝐿𝔫⟨𝜅⟩ appears as a subquotient of the restriction of 𝐿𝔩◦𝐿𝔪.
Let 𝛿 = (𝛿𝑞,𝑟) ∈ 𝑀(Π, 𝔫) be the matrix supplied by Proposition 6.3, and Ξ1, … , Ξ𝑡 ∈ Irr the

homogeneous modules as in the statement of said proposition.
For all 1 ⩽ 𝑟 ⩽ 𝑡, let 𝑛𝑟 be the degree for which 𝐿𝔫𝑟⟨𝑛𝑟⟩ appears in Ξ𝑟◦𝐿𝔪𝑟 .
Let us recall that the parameterization

𝔪 =
∑
𝑖∈𝐼

Δ𝑖

is still given with the index set 𝐼 taken according to condition (6).
By Lemma 4.2, we know that

KR(𝔪) ≅ Ind𝛽(Π)

⟨(|𝔪1|
2

)
+⋯ +

(|𝔪𝑡|
2

)⟩
,
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738 GUREVICH

and that𝑚(KR(𝔪), 𝐿𝔪)(𝑞) = 1. Hence, by Proposition 6.3,

𝜅 = 𝑛1 +⋯ + 𝑛𝑡 + deg(𝛿) , (11)

where deg(𝛿) is as in formula (2).

Lemma 6.4. Let ∇1 = ∇(𝑎 ; 𝑏1, … , 𝑏𝑘), ∇2 = ∇(𝑎 ; 𝑏′1, … , 𝑏
′
𝑙
) be given graded simple modules (as

defined in Subsection 4.1), and 𝐿 = 𝐿Δ ∈ Irr a given segment module, for which∇2⟨𝑚⟩ appears as
a subquotient in 𝐿◦∇1.
Then, its degree is given as

𝑚 = −#{1 ⩽ 𝑖 ⩽ 𝑘 ∶ 𝑏(Δ) < 𝑏𝑖 ⩽ 𝑒(Δ)} .

Proof. We write Δ = Δ(𝑐, 𝑑). Let us denote the set of indices

𝐴 = {1 ⩽ 𝑖 ⩽ 𝑘 ∶ 𝑐 < 𝑏𝑖 ⩽ 𝑑} ,

and 𝑖1 = min𝐴, if 𝐴 ≠ ∅, or 𝑖1 = 𝑘 + 1 otherwise.
If 𝑐 − 1 ∉ {𝑏1, … , 𝑏𝑘}, considering the equality

Δ = wt(𝔪(𝑎 ; 𝑏′1, … , 𝑏
′
𝑙
)) − wt(𝔪(𝑎 ; 𝑏1, … , 𝑏𝑘)) ,

we must have 𝑐 = 𝑎, 𝐴 = {𝑖1 ⩽ 𝑖 ⩽ 𝑘} and 𝑙 = 𝑘 + 1. In this case, by Lemma 4.1 we have

𝐿◦∇1 ≅ 𝐿Δ(𝑎,𝑏1)◦⋯◦𝐿Δ(𝑎,𝑏𝑖1−1)
◦𝐿◦𝐿Δ(𝑎,𝑏𝑖1 )

◦⋯◦𝐿Δ(𝑎,𝑏𝑘)⟨(𝑘2
)
+ 𝑖1 − 1⟩ ≅

≅ ∇2⟨−𝑘 + 𝑖1 − 1⟩ .
Since |𝐴| = 𝑘 − 𝑖1 + 1, the statement follows.
Otherwise, let 𝑖2 be the smallest index for which 𝑏𝑖2 = 𝑐 − 1. We have 𝐴 = {𝑖1 ⩽ 𝑖 < 𝑖2}. Then,

by Lemma 4.1,

𝐿◦∇1 ≅ 𝐿Δ(𝑎,𝑏1)◦⋯◦𝐿Δ(𝑎,𝑏𝑖1−1)
◦𝐿◦𝐿Δ(𝑎,𝑏𝑖1 )

◦⋯◦𝐿Δ(𝑎,𝑏𝑘)⟨(𝑘2
)⟩ ≅

≅ 𝐿Δ(𝑎,𝑏1)◦⋯◦𝐿Δ(𝑎,𝑏𝑖1−1)
◦𝐿◦𝐿Δ(𝑎,𝑏𝑖2 )

◦𝐿Δ(𝑎,𝑏𝑖1 )
◦⋯◦𝐿Δ(𝑎,𝑏𝑖2−1)

◦𝐿Δ(𝑎,𝑏𝑖2+1)
◦⋯◦𝐿Δ(𝑎,𝑏𝑘)⟨(𝑘2

)
− |𝐼|⟩ .

Recall now (formula (5)), that 𝐿 ⊠ 𝐿Δ(𝑎,𝑏𝑖2 ) appears as a subrepresentation of the restriction of
𝐿Δ(𝑎,𝑑). By adjunction, that means that 𝐿Δ(𝑎,𝑑) appears as a quotient of 𝐿◦𝐿Δ(𝑎,𝑏𝑖2 ). Hence, from
exactness of the convolution product, ∇2⟨−|𝐴|⟩ appears in 𝐿◦∇1. □

Let us now attach a few easily computable integer parameters to the permissible pair (𝔩,𝔪) ∈
𝔄.
First, for any pair of multisegments

𝔪1 =

𝑘1∑
𝑖=1

Δ1𝑖 , 𝔪2 =

𝑘2∑
𝑖=1

Δ2𝑖 ∈ 𝔐 ,
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QUIVER HECKE ALGEBRAS AND RSK 739

we define the number

𝐶(𝔪1,𝔪2) = #{(𝑖, 𝑗) ∶ 𝑏(Δ
1
𝑖 ) = 𝑒(Δ

2
𝑗) + 1} .

We recall that 𝔩 =
∑
𝑗∈𝐽 Δ𝑗 ∈ Lad is given with 𝐽 = {𝑗1, … , 𝑗𝑡}, so that all assumptions and

notations of the algorithm in Subsection 5.1 are in place.
In particular, we recall that

𝔫 = ′(𝔩,𝔪) =
∑
𝑖∈𝐼∪𝐽

Δ♣
𝑖
.

We keep track of the following sets of indices:

𝜈(𝔩,𝔪)1 = {(𝑖1, 𝑖2) ∈ 𝐼 × 𝐼 ∶ 𝑏(Δ𝑖1) ⩽ 𝑏(Δ𝑖2), 𝑒(Δ𝑖2) < 𝑒(Δ
♣
𝑖2
) = 𝑒(Δ𝑖1)} ,

𝜈(𝔩,𝔪)2 = {(𝑖1, 𝑖2) ∈ 𝐼 × 𝐼 ∶ 𝑏(Δ𝑖1) < 𝑏(Δ𝑖2), 𝑒(Δ𝑖1) = 𝑒(Δ𝑖2) < 𝑒(Δ
♣
𝑖2
)} ,

𝜈(𝔩,𝔪)3 = {(𝑖1, 𝑗) ∈ 𝐼 × 𝐽 ∶ 𝑏(Δ𝑖1) ⩽ 𝑏(Δ𝑗), 𝑒(Δ
♣
𝑗
) = 𝑒(Δ𝑖1)} .

In these terms, we set the integer

𝐷(𝔩,𝔪) = |𝜈(𝔩,𝔪)1| − |𝜈(𝔩,𝔪)2| + |𝜈(𝔩,𝔪)3| .
Proposition 6.5. For a permissible pair (𝔩,𝔪) ∈ 𝔄, we have 𝜅(𝔩,𝔪) = 𝐶(𝔩,𝔪) − 𝐷(𝔩,𝔪).

Proof. Let us decompose 𝐼 = ∪𝑡
𝑟=1
𝐼𝑟, so that 𝐼𝑟 = {𝑞 ∈ 𝐼 ∶ 𝑟(𝑞) = 𝑟} and𝔪𝑟 =

∑
𝑖∈𝐼𝑟
Δ𝑖 . Then,

𝔫𝑟 =
∑
𝑖∈𝐼𝑟

Δ♣
𝑖
+ Δ′𝑟 ,

where Δ′𝑟 = Δ
♣
𝑗
, if there exists 𝑗 ∈ 𝐽, such that 𝑏(Δ𝑗) = 𝑎𝑟. If such 𝑗𝑟 does not exist, we treat Δ′𝑟 as

an empty segment (that is, 0 ∈ 𝑄+).
Thus, for all 1 ⩽ 𝑟 ⩽ 𝑡,

wt(Ξ𝑟) = wt(𝔫𝑟) − wt(𝔪𝑟) =
∑
𝑞∈𝐼𝑟

Δ(𝑒(Δ𝑞) + 1, 𝑒(Δ
♣
𝑞 )) + Δ

′
𝑟 ∈ 𝑄+ . (12)

By the description of Proposition 6.3, we have

deg(𝛿) = −
∑

1⩽𝑟1<𝑟2⩽𝑡

(wt(Ξ𝑟2), wt(𝔪𝑟1)) .

We can write deg(𝛿) = 𝑑1 + 𝑑2 with

𝑑1 = −
∑

1⩽𝑟1<𝑟2⩽𝑡

∑
𝑞1∈𝐼𝑟1 , 𝑞2∈𝐼𝑟2

(Δ𝑞1 , Δ(𝑒(Δ𝑞2) + 1, 𝑒(Δ
♣
𝑞2
))) ,

𝑑2 = −
∑

1⩽𝑟1<𝑟2⩽𝑡

∑
𝑞1∈𝐼𝑟1

(Δ𝑞1 , Δ
′
𝑟2
)) .

A straightforward computation (see, for example, [16, Lemma 5.2]) shows now that

𝑑1 = −|𝜈(𝔩,𝔪)1,<| + |𝜈(𝔩,𝔪)2| ,
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740 GUREVICH

where

𝜈(𝔩,𝔪)1,< = 𝜈(𝔩,𝔪)1 ∩ {(𝑖, 𝑖
′) ∈ 𝐼 × 𝐼 ∶ 𝑏(Δ𝑖) < 𝑏(Δ𝑖′ )} .

Similarly,

𝑑2 = −|𝜈(𝔩,𝔪)3,<| + 𝐶(𝔩,𝔪) ,
where

𝜈(𝔩,𝔪)3,< = 𝜈(𝔩,𝔪)3 ∩ {(𝑖, 𝑖
′) ∈ 𝐼 × 𝐼 ∶ 𝑏(Δ𝑖) < 𝑏(Δ𝑖′ )} .

By the identity (11), it is left to show that

𝑛1 +⋯ + 𝑛𝑡 = −|𝜈(𝔩,𝔪)1 ⧵ 𝜈(𝔩,𝔪)1,<| − |𝜈(𝔩,𝔪)3 ⧵ 𝜈(𝔩,𝔪)3,<| . (13)

Let us fix 1 ⩽ 𝑟 ⩽ 𝑡. We have seen in the proof of Proposition 6.3 that Ξ𝑟 ∈ Irr must be a
spherical module. It then follows, as in that proof, that

Ξ𝑟 = 𝐿Δ◦
1
◦⋯◦𝐿Δ◦𝑝 ,

for segments Δ◦
1
, … , Δ◦𝑝 ∈ Seg, with 𝑒(Δ

◦
𝑖+1
) + 1 < 𝑏(Δ◦

𝑖
), for all 1 ⩽ 𝑖 ⩽ 𝑝.

Hence, we are left with determining the degree 𝑛𝑟, for which 𝐿𝔫𝑟⟨𝑛𝑟⟩ appears as a subquotient
in

𝐿Δ◦
1
◦⋯◦𝐿Δ◦𝑝◦𝐿𝔪𝑟 .

Taking (12) into account and computing successively with Lemma 6.4, we obtain

𝑛𝑟 = 𝑛
′
𝑟 −

∑
𝑞1∈𝐼𝑟

#{𝑞2 ∈ 𝐼𝑟 ∶ 𝑒(Δ𝑞1) < 𝑒(Δ𝑞2) ⩽ 𝑒(Δ
♣
𝑞1
)} , (14)

where

𝑛′𝑟 =

{
−#{𝑞 ∈ 𝐼𝑟 ∶ 𝑒(Δ𝑞) ⩽ 𝑒(Δ

′
𝑟)} Δ

′
𝑟 ≠ 0

0 Δ′𝑟 = 0
. (15)

Finally, we invoke Lemma 5.6(3) to show that the weak inequalities in the formulae (14) and
(15) can in fact be written as equalities. Hence, Equation (13) clearly follows. □

Proposition 6.6. For a permissible pair (𝔩,𝔪) ∈ 𝔄, we have

𝐷(𝔩,𝔪) = |𝔪| .
Proof. For 𝑖 ∈ 𝐼, we write

𝜈(𝔩,𝔪)𝑖1 = 𝜈(𝔩,𝔪)1 ∩ ({𝑖} × 𝐼), 𝜈(𝔩,𝔪)
𝑖
2 = 𝜈(𝔩,𝔪)2 ∩ ({𝑖} × 𝐼), 𝜈(𝔩,𝔪)

𝑖
3 = 𝜈(𝔩,𝔪)3 ∩ ({𝑖} × 𝐽) ,

and 𝐷𝑖(𝔩,𝔪) = |𝜈(𝔩,𝔪)𝑖
1
| − |𝜈(𝔩,𝔪)𝑖

2
| + |𝜈(𝔩,𝔪)𝑖

3
|. Hence, 𝐷(𝔩,𝔪) = ∑

𝑖∈𝐼 𝐷𝑖(𝔩,𝔪).
We will prove that 𝐷𝑖(𝔩,𝔪) = 1, for each 𝑖 ∈ 𝐼. Let us fix 𝑖0 ∈ 𝐼 for the rest of the proof.
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QUIVER HECKE ALGEBRAS AND RSK 741

Let 𝐼 ∪ 𝐽 = ∪𝛼∈𝐶𝛼 be the cycle decomposition of the set 𝐼 ∪ 𝐽 relative to the permutation
defining 𝔫 = ′(𝔩,𝔪). In particular, we set 𝑖0 ∈ 𝐶𝛼0 .
We further divide 𝜈(𝔩,𝔪)𝑖0𝑢 into the disjoint subsets 𝜈(𝔩,𝔪)

𝑖0,𝛼
𝑢 = 𝜈(𝔩,𝔪)

𝑖0
𝑢 ∩ ({𝑖0} × 𝐶𝛼), for 𝑢 =

1, 2, 3, and similarly write 𝐷𝑖0(𝔩,𝔪) =
∑
𝛼∈𝐶𝛼

𝐷𝑖0,𝛼(𝔩,𝔪), for

𝐷𝑖0,𝛼(𝔩,𝔪) = |𝜈(𝔩,𝔪)𝑖0,𝛼
1

| − |𝜈(𝔩,𝔪)𝑖0,𝛼
2

| + |𝜈(𝔩,𝔪)𝑖0,𝛼
3

| .
Let us first consider 𝐷𝑖0,𝛼0(𝔩,𝔪). We may write 𝐶𝛼0 = {𝑖

1, … , 𝑖𝑘, 𝑗0}, with 𝑖1 > … > 𝑖𝑘 indices in
𝐼 and 𝑗0 ∈ 𝐽.
Recall that 𝑏(Δ𝑖1) ⩾ … ⩾ 𝑏(Δ𝑖𝑠 ), and that 𝑒(Δ𝑖𝑟 ) ⩽ 𝑒(Δ

♣
𝑖𝑟
) = 𝑒(Δ𝑖𝑟+1), for 1 ⩽ 𝑟 ⩽ 𝑘 − 1. A partic-

ular consequence is that 𝜈(𝔩,𝔪)𝑖0,𝛼0
2

must be empty.
Moreover, when (𝑖0)∨ ∈ 𝐼, we easily see that 𝜈(𝔩,𝔪)

𝑖0,𝛼

1
= {(𝑖0)

∨}, while 𝜈(𝔩,𝔪)𝑖0,𝛼0
3

is empty, as
a consequence of 𝑒(Δ♣

𝑗0
) ⩽ 𝑒(Δ(𝑖0)∨) < 𝑒(Δ𝑖0).

Otherwise, (𝑖0)∨ = 𝑗0 ∈ 𝐽wouldmean that 𝜈(𝔩,𝔪)
𝑖0,𝛼0
1

is empty, while 𝜈(𝔩,𝔪)𝑖0,𝛼0
3

= {𝑗0}. Either
way, we obtain that 𝐷𝑖0,𝛼0(𝔩,𝔪) = 1.
Let 𝛼0 ≠ 𝛼 ∈  be fixed. We are left to show that

𝐷𝑖0,𝛼(𝔩,𝔪) = 0 . (16)

Wewrite again 𝐶𝛼 = {𝑖1𝛼, … , 𝑖
𝑘𝛼
𝛼 , 𝑗𝛼}, with 𝑖1𝛼 > … > 𝑖

𝑘𝛼
𝛼 indices in 𝐼 and 𝑗𝛼 = 𝑖0𝛼 ∈ 𝐽. Let 𝑟2 be the

maximal index for which 𝑏(Δ𝑖0) ⩽ 𝑏(Δ𝑖𝑟2𝛼 ) holds, or 𝑟2 = −1 if no such index exists.

In case that 𝑒(Δ𝑖𝑟𝛼 ) ≠ 𝑒(Δ𝑖0) holds, for all 1 ⩽ 𝑟 ⩽ 𝑟2 + 1, it is evident that 𝜈(𝔩,𝔪)
𝑖0,𝛼
𝑢 , 𝑢 = 1, 2, 3

are all empty, and (16) follows.
Otherwise, 𝑟2 ⩾ 0 and we can set 1 ⩽ 𝑟1 ⩽ 𝑟2 + 1 ⩽ 𝑟3 to be the indices which satisfy

{𝑟 ∶ 𝑟1 ⩽ 𝑟 ⩽ 𝑟3} = {𝑟 ∶ 𝑒(Δ𝑖𝑟𝛼 ) = 𝑒(Δ𝑖0)} .

We first claim that 𝑏(Δ𝑖0) ⩽ 𝑏(Δ𝑖𝑟3𝛼 ). Indeed, a reversed inequality would imply a contradiction to
Lemma 5.6(1) and the fact that 𝑖0 ∉ 𝐶𝛼, since either (𝑖

𝑟3
𝛼 )
∨ = 𝑗𝛼 or 𝑖

𝑟1
𝛼 < (𝑖

𝑟3
𝛼 )
∨, and

𝑏(Δ
𝑖
𝑟3
𝛼
) < 𝑏(Δ𝑖0) ⩽ 𝑏(Δ𝑖

𝑟2
𝛼
) ⩽ 𝑏(Δ

𝑖
𝑟1−1
𝛼
) ⩽ 𝑏(Δ

(𝑖
𝑟3
𝛼 )
∨) .

We then see that 𝜈(𝔩,𝔪)𝑖0,𝛼
1
∪ 𝜈(𝔩,𝔪)

𝑖0,𝛼

3
= {𝑖

𝑟1−1
𝛼 }. In particular, |𝜈(𝔩,𝔪)𝑖0,𝛼

1
| + |𝜈(𝔩,𝔪)𝑖0,𝛼

3
| =

1. To reach (16), we are left to show that |𝜈(𝔩,𝔪)𝑖0,𝛼
2

| = 1.
If 𝑟3 < 𝑘𝛼 or 𝑒(Δ𝑖𝑘𝛼𝛼

) < 𝑒(Δ𝑗𝛼 ) hold, we see that 𝜈(𝔩,𝔪)
𝑖0,𝛼

2
= {𝑖𝑟3 }.

Finally, let us assume that 𝑟3 = 𝑘𝛼 and that

𝑒(Δ𝑗𝛼 ) = 𝑒(Δ𝑖𝑘𝛼𝛼
) = 𝑒(Δ𝑖0) .

This is where Lemma 5.6(2) is invoked to give a contradiction, since, as before, 𝑏(Δ𝑖0) ⩽
𝑏(Δ

(𝑖
𝑟3
𝛼 )
∨). □

Let us summarize the insight on RSK-standard modules obtained through the computation of
this section.
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742 GUREVICH

Corollary 6.7. For any (𝔩,𝔪) ∈ 𝔄, the integer Λ̃(𝔩,𝔪) appearing in Theorem 5.7 satisfies

−Λ̃(𝔩,𝔪) = 𝐶(𝔩,𝔪) − |𝔪| .
7 NORMAL SEQUENCES

Let us recall the theory of normal sequences, as developed in [21, 23].
For any non-zero modules𝑀1,𝑀2 ∈ , there is a well-defined non-zero R-matrixmap

𝑅𝑀1,𝑀2 ∶ 𝑀1◦𝑀2 → 𝑀2◦𝑀1 ,

which is an intertwiner of ungraded quiver Hecke algebra modules. In fact, there is a unique
integer Λ = Λ(𝑀1,𝑀2) ∈ ℤ, for which

𝑅𝑀1,𝑀2 ∶ 𝑀1◦𝑀2 → 𝑀2◦𝑀1⟨−Λ⟩ ,
is an intertwiner (of graded modules) in.
It is evident that Λ(𝑀1⟨𝑘1⟩,𝑀2⟨𝑘2⟩) = Λ(𝑀1,𝑀2) holds, for any shifts of degree 𝑘1, 𝑘2 ∈ ℤ.
Let us further recall some properties of the invariant Λ.

Proposition 7.1.

(1) [23, Lemma 3.1.5] For𝑀 ∈ Irr and any non-zero modules𝑁1,…𝑁𝑘 ∈ , we have

Λ(𝑀,𝑁1◦⋯◦𝑁𝑘) = Λ(𝑀,𝑁1) +⋯ + Λ(𝑀,𝑁𝑘) .

(2) [23, Proposition 3.2.8] For𝑀1,𝑀2 ∈  and any subquotient module𝑁 of𝑀2, we have

Λ(𝑀1,𝑀2) ⩾ Λ(𝑀1,𝑁) .

A simple module 𝐿 ∈ Irr is said to be square-irreducible (or real), if 𝐿◦𝐿 is a simple module.

Proposition 7.2. Homogeneous modules in Irr are square-irreducible.

Proof. The analogous fact for representations of 𝑝-adic groups is known by [33, Proposition 5.15]
(or as part of the general criteria for square-irreducibility in [34]). The statement follows from an
application of a functor of the form 𝜌. □

Given a square-irreducible module 𝐿 and any 𝑀 ∈ Irr, the product 𝐿◦𝑀 has a simple
head (unique simple quotient module) [22, Theorem 3.2], whose isomorphism class is given as
𝑁⟨−Λ̃(𝐿,𝑀)⟩, for a self-dual 𝑁 ∈ Irr, and an integer Λ̃(𝐿,𝑀) ∈ ℤ.
In light of Proposition 7.2, this definition of Λ̃(𝐿,𝑀) generalizes the notion defined in

Theorem 5.7.
For (𝐿,𝑀) as above, the identity [23, Lemma 3.1.4]

Λ(𝐿,𝑀) = 2Λ̃(𝐿,𝑀) − (wt(𝐿), wt(𝑀)) (17)

holds.
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QUIVER HECKE ALGEBRAS AND RSK 743

Following [21], we say that a tuple (𝐿1, … , 𝐿𝑘) of square-irreducible modules in Irr is a normal
sequence, if the composition of R-matrices

𝑅𝐿1,…,𝐿𝑘 ∶= 𝑅𝐿𝑘−1,𝐿𝑘◦⋯◦(𝑅𝐿2,𝐿𝑘◦⋯◦𝑅𝐿2,𝐿3)◦(𝑅𝐿1,𝐿𝑘◦⋯◦𝑅𝐿1,𝐿2)

does not vanish (as a map from the space of 𝐿1◦⋯◦𝐿𝑘 to that of 𝐿𝑘◦⋯◦𝐿1).

Proposition 7.3. [21, Lemma 2.6] For a normal sequence (𝐿1, … , 𝐿𝑘), the product 𝐿1◦⋯◦𝐿𝑘 has a
simple head, given by the image of 𝑅𝐿1,…,𝐿𝑘 .

Proposition 7.4. Let (𝐿1, … , 𝐿𝑘) be a tuple of square-irreducible modules in Irr.
The following are equivalent.

(1) The tuple (𝐿1, … , 𝐿𝑘) is a normal sequence.
(2) The tuple (𝐿2, … , 𝐿𝑘) is a normal sequence, and the identity

Λ(𝐿1,𝐻) = Λ(𝐿1, 𝐿2) +⋯ + Λ(𝐿1, 𝐿𝑘)

holds, for𝐻 ∈ Irr, such that𝐻⟨ℎ⟩ is the simple head of 𝐿2◦⋯◦𝐿𝑘 .
(3) The tuple (𝐿2, … , 𝐿𝑘) is a normal sequence, and the identity

Λ̃(𝐿1,𝐻) = Λ̃(𝐿1, 𝐿2) +⋯ + Λ̃(𝐿1, 𝐿𝑘)

holds, for𝐻 ∈ Irr, such that𝐻⟨ℎ⟩ is the simple head of 𝐿2◦⋯◦𝐿𝑘 .

Proof. The equivalence of (1) and (2) is [21, Lemma 2.7], together with the observation that
Λ(𝐿1,𝐻) = Λ(𝐿1,𝐻⟨ℎ⟩).
Conditions (2) and (3) are equivalent because of the relation (17), the fact that

wt(𝐻) = wt(𝐿2◦⋯◦𝐿𝑘) = wt(𝐿2) +⋯ + wt(𝐿𝑘) ,

and linearity of the form ( , ) on 𝑄. □

Corollary 7.5. For a normal sequence (𝐿1, … , 𝐿𝑘), let 𝐻⟨ℎ⟩ be the simple head of 𝐿1◦⋯◦𝐿𝑘 with
𝐻 ∈ Irr. Then,

ℎ = −
∑

1⩽𝑖<𝑗⩽𝑘

Λ̃(𝐿𝑖, 𝐿𝑗) .

Proof. The formula for ℎ follows by inductively applying the identity in condition (3) of
Proposition 7.4. □

Let us recall the favorable behavior of the invariant Λ in the square-irreducible case.
Note first, that Λ(𝐿, 𝐿) = 0 for square-irreducible 𝐿 ∈ Irr.

Lemma 7.6. [23, Theorem 4.1.1, Corollary 4.2.3] For given square-irreducible 𝐿 ∈ Irr and any
𝑀 ∈ Irr, let𝑁 ∈ gIrr be the simple head of 𝐿◦𝑀.
Then,

Λ(𝐿,𝑁) = Λ(𝐿, 𝐿◦𝑀) = Λ(𝐿,𝑀)
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744 GUREVICH

holds, and for any simple subquotient 𝑆⟨𝑠⟩ of ker(𝐿◦𝑀 → 𝑁), with 𝑆 ∈ Irr, we have
Λ(𝐿, 𝑆) < Λ(𝐿,𝑀) and − 𝑠 < Λ̃(𝐿,𝑀).

Proposition 7.7. Let (𝐿1, … , 𝐿𝑘) be a normal sequence, and𝐻⟨ℎ⟩ be the simple head of the product
𝐿1◦⋯◦𝐿𝑘 , with𝐻 ∈ Irr.
Then, we have

𝑚(𝐿1◦⋯◦𝐿𝑘,𝐻)(𝑞) = 𝑞
ℎ .

In other words,𝐻 appears only once in the Jordan-Hölder series of (𝐿1◦⋯◦𝐿𝑘)
fgt.

Furthermore, for any 𝐻 ≇ 𝐿 ∈ Irr, the powers appearing in the Laurent polynomial
𝑚(𝐿1◦⋯◦𝐿𝑘, 𝐿)(𝑞) are strictly greater than ℎ.

Proof. We prove by induction on the product length 𝑘.
Clearly, (𝐿2, … , 𝐿𝑘) is a normal sequence. Hence, by Proposition 7.3, 𝐿2◦⋯◦𝐿𝑘 has a simple

head𝐻′⟨ℎ′⟩, with𝐻′ ∈ Irr and ℎ′ ∈ ℤ.
By Proposition 7.1(1) and the condition in Proposition 7.4(2), we see that

Λ(𝐿1,𝐻
′) = Λ(𝐿1, 𝐿2◦⋯◦𝐿𝑘) . (18)

Since 𝐿1 is square-irreducible, 𝐻⟨ℎ⟩ must be the unique simple quotient of 𝐿1◦𝐻′⟨ℎ′⟩, and
ℎ = ℎ′ − Λ̃(𝐿1,𝐻

′).
Let 𝑇1 ⊆ 𝑇2 ⊊ 𝐿1◦⋯◦𝐿𝑘 be submodules, so that 𝑇2∕𝑇1 ≅ 𝐿⟨𝓁⟩ for 𝐿 ∈ Irr. It is enough to

show that 𝐿 ≇ 𝐻, and that 𝓁 > ℎ.
Either ker(𝐿1◦⋯◦𝐿𝑘 → 𝐿1◦𝐻

′⟨ℎ′⟩) or ker(𝐿1◦𝐻′⟨ℎ′⟩→ 𝐻⟨ℎ⟩)must contain 𝐿⟨𝓁⟩ as subquo-
tient module.
In the latter case, Lemma 7.6 implies that 𝓁 > ℎ and Λ(𝐿1, 𝐿) < Λ(𝐿1,𝐻), proving 𝐿 ≇ 𝐻.
In the former case, by exactness of the convolution product, there must exist a subquotient

module 𝐿′⟨𝓁′⟩ of ker(𝐿2◦⋯◦𝐿𝑘 → 𝐻
′⟨ℎ′⟩), with 𝐿′ ∈ Irr and the power 𝓁 − 𝓁′ appearing in

the Laurent polynomial𝑚(𝐿1◦𝐿′, 𝐿)(𝑞).
The induction hypothesis now implies that 𝐿′ ≇ 𝐻′ and that 𝓁′ > ℎ′.
By Proposition 7.1(2) and (18), we see that Λ(𝐿1, 𝐿′) ⩽ Λ(𝐿1,𝐻′), which by the identity (17)

implies Λ̃(𝐿1, 𝐿′) ⩽ Λ̃(𝐿1,𝐻′). Now, by Lemma 7.6,

𝓁 − ℎ′ > 𝓁 − 𝓁′ ⩾ −Λ̃(𝐿1, 𝐿
′) ⩾ −Λ̃(𝐿1,𝐻

′) ,

and the inequality 𝓁 > ℎ follows.
In case that 𝐿 does not appear as a quotient of (𝐿1◦𝐿′)fgt, it follows again from Lemma 7.6 that

Λ(𝐿1, 𝐿) < Λ(𝐿1, 𝐿
′) ⩽ Λ(𝐿1,𝐻

′) = Λ(𝐿1,𝐻) ,

and 𝐿 ≇ 𝐻 is seen to hold again.
Finally, we are left with the case that 𝐿⟨𝓁⟩ is a quotient of 𝐿1◦𝐿′⟨𝓁′⟩. The injectivity [22,

Corollary 3.7] of the map 𝑁 ↦ head(𝐿1◦𝑁) on isomorphism classes in Irr now implies 𝐿 ≇
𝐻. □

Remark 7.8. The bound on subquotient shift degrees in the statement of Lemma 7.6 was proved
using the geometric insight (see [20; 42, Lemma 7.5]) coming from a realization of quiver Hecke
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QUIVER HECKE ALGEBRAS AND RSK 745

algebras as extension algebras of perverse sheaves (à la [52]). We are unaware of an alternative
purely algebraic argument.
Hence, we note that parts of Proposition 7.7, though not the simplicity of heads, covertly rely

on the underlying geometry of quiver varieties.

7.1 Applications for RSK-standard modules

Theorem 7.9. Let 𝐿𝔪 ∈ Irr be a simple module, with𝔪 ∈𝔐. Let

(𝔪) = (𝔩1, … , 𝔩𝜔) ∈ Lad
𝜔

be its RSK-transform, and

Γ(𝔪) = 𝐿𝔩1◦⋯◦𝐿𝔩𝜔⟨−𝑑(𝔪)⟩ ∈ 𝑅(wt(𝔪)) − gmod
its associated RSK-standard module.
Then, 𝐿𝔪 is the head (that is, the unique irreducible quotient) of Γ(𝔪), and it appears only once

in the Jordan-Hölder series of Γ(𝔪)fgt (that is,𝑚(Γ(𝔪), 𝐿𝔪)(𝑞) = 1).
Moreover, for any 𝐿𝔪 ≇ 𝐿 ∈ Irr, the graded multiplicity 𝑚(Γ(𝔪), 𝐿)(𝑞), if non-zero, is a

polynomial with zero constant term.

Proof. By Propositions 7.3, 7.7 and Theorem 5.8, it is enough to show that (𝐿𝔩1 , … , 𝐿𝔩𝜔) is a
normal sequence.
Let𝔪′ ∈ 𝔐 be the multisegment, for which(𝔪) = (𝔩1,𝔪

′). Then,(𝔪′) = (𝔩2, … , 𝔩𝜔).
Arguing inductively by Proposition 7.4, it is enough to show the equality

Λ̃(𝔩1,𝔪
′) = Λ̃(𝔩1, 𝔩2) +⋯ + Λ̃(𝔩1, 𝔩𝜔) . (19)

Note, that the map 𝔫 ↦ 𝐶(𝔩1, 𝔫) from 𝔐 to ℤ is clearly additively and depends only on 𝔢(𝔫).
Hence, from Proposition 5.3, we see that

𝐶(𝔩1,𝔪
′) = 𝐶(𝔩1, 𝔩2 +⋯ + 𝔩𝜔) = 𝐶(𝔩1, 𝔩2) +⋯ + 𝐶(𝔩1, 𝔩𝜔) . (20)

Recall that (𝔩1, 𝔩𝑖) ∈ 𝔄, for all 2 ⩽ 𝑖 ⩽ 𝜔 [14, Proposition 2.4]. Thus, Equation (19) follows by
substituting the formula of Corollary 6.7 and applying (20) together with Proposition 5.3 once
more. □

Corollary 7.10. Given 𝛽 ∈ 𝑄+, the collection of RSK-standard modules {Γ(𝔪)}𝔪∈𝔐, wt(𝔪)=𝛽 is a
basis for the Grothendieck group of 𝑅(𝛽) − gmod, taken as a vector space over the field ℚ(𝑞) (with 𝑞
acting by shift of degree).

Proof. Expanding RSK-standard modules according to the basis given by Irr(𝛽), we see by
Theorem 7.9 that the transition matrix has a determinant with a non-zero value at 𝑞 = 0. □
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746 GUREVICH

Theorem 7.11. For 0 ≠𝔪 ∈𝔐, the shift of degree defining Γ(𝔪) is explicitly read from the data
(𝔪) through the formula

𝑑(𝔪) = −
∑
𝑗⩾1

𝜆∗𝑗 (𝜆
∗
𝑗 − 1) + #{(𝑖, 𝑗) ∶ 𝑑𝑖,𝑗 = 𝑐𝑖′,𝑗′ , for (𝑖

′, 𝑗′) with 𝑖 < 𝑖′} ,

where (𝑃𝔪,𝑄𝔪) = ((𝑐𝑖,𝑗), (𝑑𝑖,𝑗)) is the pair of Young tableaux describing (𝔪), and (𝜆∗
1
, 𝜆∗
2
, …)

is the conjugate partition to 𝜆(𝔪) (that is, the column shape of 𝑃𝔪,𝑄𝑚).

Proof. Since Γ(𝔪) is defined by a normal sequence (as described in the proof of Theorem 7.9),
we can use Corollary 7.5 to reach an expression for 𝑑(𝔪). Indeed, substituting the formula in
Corollary 6.7 gives

𝑑(𝔪) = −

𝜔∑
𝑖=2

(𝑖 − 1)|𝔩𝑖| + ∑
1⩽𝑖<𝑗⩽𝜔

𝐶(𝔩𝑖, 𝔩𝑗) , (21)

where(𝔪) = (𝔩1, … , 𝔩𝜔).
Since 𝜆(𝔪) = (|𝔩1|, … , |𝔩𝜔|), the first part of the sum above may be dually expressed as

−
∑
𝑗⩾1

𝜆∗𝑗 (𝜆
∗
𝑗 − 1)

by standard counting arguments.
Equality between the second parts of the formula appearing in the statement and of Equation

(21) follows directly from the definition of the terms involved. □

Transferring the statement of Theorem 7.9 into the 𝑝-adic setting using the equivalences of
Subsection 3.2, settles the natural conjectures posed in [14] regarding the 𝑝-adic version of RSK-
standard modules.

Corollary 7.12. Let 𝜌 ∈ cusp𝑚 be a supercuspidal representation, and 𝜋 = 𝑍(𝔪) ∈ Irrℤ𝜌 any irre-
ducible representation, given by a multisegment 0 ≠𝔪 ∈𝔐 through the Zelevinsky classification.
Let

(𝔪) = (𝔩1, … , 𝔩𝜔) ∈ Lad
𝜔

be the RSK-transform of𝔪, and

Γ̃(𝔪) ∶= 𝑍(𝔩1) ×⋯ × 𝑍(𝔩𝜔) ∈ ℤ𝜌

its associated RSK-standard module.
Then, Γ̃(𝔪) has a unique irreducible subrepresentation described by𝑍(𝔪). The isomorphism class

𝑍(𝔪) appear only once in the Jordan-Hölder series of the representation Γ̃(𝔪).

Proof. By Theorem 3.10 and Proposition 3.11, 𝜌(Γ̃(𝔪)) ≅ Γ(𝔪)fgt. The result then follows from
Theorem 7.9 and the description of morphism spaces as in (1). □
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