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Abstract

We formalize some known categorical equivalences to
give a rigorous treatment of smooth representations of
p-adic general linear groups, as ungraded modules over
quiver Hecke algebras of type A.

Graded variants of RSK-standard modules are con-
structed as a new basis for Grothendieck groups of
quiver Hecke algebras. Exporting recent results from
the p-adic setting, we describe an effective method for
construction and classification of simple modules as
quotients of modules induced from maximal homoge-
nous data.

It is established that the products involved in
the Robinson-Schensted—-Knuth construction fit the
Kashiwara-Kim notion of normal sequences of real
modules. We deduce that RSK-standard modules have
simple heads, devise a formula for the shift of grading
between RSK-standard and simple self-dual modules,
and establish properties of their decomposition matrix,
thus confirming expectations for p-adic groups raised in
a previous work of the author with Lapid.

We lay the ground for a subsequent work that exhibits
the RSK construction as a generalization the better
explored Specht construction, when inflated from cyclo-
tomic quotient algebras.
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1 | INTRODUCTION

This work stands at a crossroads of two domains in representation theory. One deals with smooth
complex representations of a family of locally compact groups GL,(F), where F is a p-adic
field. The other studies modules over quiver Hecke algebras (also known as Khovanov-Lauda-
Rouquier algebras) associated to Cartan data of type Ay . By adopting a categorical point of view
and exploiting known equivalences between those settings, we are able to answer recently posed
questions about the nature of some finite-length representations on both sides.

The representation theory of p-adic general linear groups plays a major role in the celebrated
Langlands program. An early step toward the program’s local goals was the ground-breaking
Zelevinsky classification [53], which suggested a combinatorial construction of all irreducible
representations of GL,(F) building upon given supercuspidal data. While the original local Lang-
lands reciprocity for these groups is by now well-understood, an effective description of possible
indecomposable objects in this non-semisimple category remains an intriguing task that reaches
beyond the traditional scope of the Langlands program (see [35] for a possible visionary direc-
tion). Our work continues an exploration of a new method suggested in [14] for a systematic
construction of classes of representations of interest.

Quiver Hecke algebras were introduced in [24, 25, 46], as a means of categorifying quantum
groups. Namely, a choice of a simple Lie algbera g gives rise to a family of associative algebras
{R(B)}g, whose finite-dimensional module categories, when put together, provide a monoidal
abelian category. The Grothendieck ring of the resulting category is then identified with an
integral form of the positive part of the quantum group U(g).

The quiver Hecke construction stood as an algebraic explication of previously known geometric
categorifications, such as the one in [39], for quantum groups (see [52] for details). In particu-
lar, questions on the multiplicative structure of Uq(g)Jr relative to its dual canonical basis are
lifted to questions on the monoidal structure of explicitly defined categories. In recent years, this
approach lead, for example (see [23]), to an improved understanding of such structures through
the axiomatic framework of cluster algebras.

The two areas of study described above become highly interrelated, when the Lie type g = 81y
(or, more conveniently 8l ) is taken. A middle link between the two settings is the represen-
tation theory of affine Hecke algebras. It is classically established, and more modernly proved
[4, 19] for our cases, that the representation theory of a suitable affine Hecke algebra should
mimic smooth representations of a p-adic group with fixed supercuspidal data (a Bernstein
block). We explicate the known results for our groups of interest into a functor, which we call
the Bernstein equivalence.

On the other hand, from the outset of the theory of quiver Hecke algebras, it was known that
in type A their representation theory largely coincides with that of affine Hecke algebras. In fact,
it was shown [5] that taking natural (cyclotomic) quotients of both kinds of algebras, results in
isomorphic algebras. Following [47], we take a functorial view on this identification, which we
call the Rouquier equivalence.

An inherent feature of quiver Hecke algebras is that they are graded. In fact, the graded struc-
ture on their modules stands as a categorification of the algebraic quantization parameter in
the quantum group. Namely, the integral form of U,(g)* comes with a Z[g, q~']-algebra struc-
ture, which is viewed as shifts of grading on modules in the Grothendieck ring realization. This
structure remains practically hidden in the setting of representations of p-adic groups.

In the first part of this work, we formalize both Bernstein and Rouquier functors, and compose
them together (Theorem 3.10) into an explicit equivalence of monoidal categories. This formalism
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706 | GUREVICH

provides rigorous tools for the conceptual treatment of finite-dimensional representation theory
of quiver Hecke algebras of type A, as a gradation, or quantization, of the smooth finite-length
representation theory of GL,,(F).

It should be noted that throughout this article all base fields are assumed to be complex, while
g € C, whenever relevant, is not a root of unity.

1.1 | Irreducible representations

The quantization point of view fits well with the accumulated knowledge on the collection of
irreducible objects in categories of both kinds. The various bases for Uy(8!,,)* may be natu-
rally parameterized by representations of the A -quiver (for example, [36, 38]), which are set in a
clear bijection with the multisegments used in the Zelevinsky classification. Since simple modules
of type A quiver Hecke algebras categorify the dual canonical basis, the same parameterization
should hold in that setting.

Indeed, such a classification of simple modules, generalizing Zelevinsky, was conducted
directly by Kleshchev—-Ram in [31]. Moreover, they constructed families of finite-length proper
standard modules (later generalized in [7, 41]) categorifying Poincaré-Birkhoff-Witt bases
for the quantum group, and, from our point of view, serving as a graded version of the
Langlands/Zelevinsky standard representations for p-adic groups.

One well-understood family of simple modules for quiver Hecke algebras is that of homogeneous
modules, that is, modules concentrated at a single degree of their grading. These were treated
in [30] and were classified for type A algebras. Unsurprisingly, the p-adic groups literature is
independently familiar with the class of irreducible representations appearing when transferring
results through the above mentioned equivalences. These were coined as ladder representations
[32], after the shape of the Zelevinsky multisegments describing them.

On the p-adic side, the class of ladder representations is known to be especially accessible (for
example, [26]), while frequently appearing in applications of the theory (such as in the study of
harmonic analysis, with the building blocks of the unitary spectrum of GL,(F) being composed
of specific (Speh) ladder representations [49]).

1.2 | Graded RSK-standard modules

Exporting notions developed in [14], we may now ask: Is there an efficient, or insightful, method
of constructing all simple modules for quiver Hecke algebras using the class of homogeneous
simple modules?

This question relates to a new model suggested in [14] for the construction of irreducible
representations of GL,(F), which is based on the combinatorial Robinson-Schensted-Knuth cor-
respondence. Let us briefly describe it here in the language of quiver Hecke algebra modules,
while deferring most details to Section 5.

Given a simple module L of a quiver Hecke algebra R() of type Ay, the Kleshchev—-Ram clas-
sification (up to some choices) provides a multisegment m parameterizing L. While m should be
viewed as a positive element of the root lattice of 81, for sake of introduction let us treat it as a
multi-set of pairs of integers:

m= {(al’ bl)’ ’(an’ bn)} >

with a; < b;, for all i.
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Applying the RSK algorithm (for example, [28]) on this multi-set, one produces a pair of semi-
standard Young tableaux (P,,, Q,,) of equal shapes. Alternatively, the information encoded in the
resulting bi-tableau may be written as a tuple

RSK(m) =(14,...,1,),

so that each I, is a (ladder) multisegment itself, read out of the ith pair of rows in (P,,;, Q).

The simple modules E, ..., E, corresponding to (I, ..., I, ) under the Kleshchev-Ram classifi-
cation now become homogenous representations of corresponding quiver Hecke algebras.

With these data in place, we define the RSK-standard module associated with the multisegment
m to be the finite-dimensional R()-module

I'(m) =E 0 0B (—d(m)),

given by the convolution product, where (—d(m)) denotes a suitable shift of grading.
Passing through our composed functor of the Bernstein and Rouquier equivalences, we may
now state a quiver Hecke algebra version of the main result of [14].

Theorem 1.1 (Theorem 5.8). Up to a shift of grading, the simple module L classified by the
multisegment m is isomorphic to a quotient module of the RSK-standard module T'(m).

We note that the convolution product constructs I'(m) as induction from a simple homogeneous
module of a parabolic subalgebra (see Subsection 2.1) P = R(f, ..., B,) < R(B). It follows from
[16, section 4] (again functorially transferring results to a graded version) that P is the maximal
parabolic subalgebra, for which L (the simple module classified by m) may occur as a subquotient
of amodule induced from a homogeneous module of P. In other words, there may not be a product
of less than w simple homogenous terms that will give rise to a construction of L.

In this sense, a RSK-standard module may be thought as the module realizing the ‘shortest
distance’ of the class of homogenous modules to a given simple module.

1.3 | Main results

Several conjectures were raised in [14] regarding the nature of the RSK-standard modules in
the p-adic setting, suggesting further favorable properties of the new construction. In this
work, we apply the gained advantage of transition into the graded setting to prove some of
these expectations.

First, Theorem 1.1 raises the question of whether the constructed irreducible quotient of I'(m)
is unique, that is, whether RSK-standard modules have simple heads.

In Theorem 7.9, we positively answer the stronger graded variant of this question, thus making
the structure of RSK-standard modules considerably more transparent. We prove that the graded
multiplicity of the simple quotient L, of I'(m) is 1. Moreover, the graded multiplicity of any other
subquotient of I'(m) must consist of positive degrees.

The resulting picture is a familiar trait seen in transition matrices between PBW-bases
and canonical bases in quantum groups. Hence, the role of RSK-standard modules is further
established as a fitting alternative to the proper standard modules categorifying PBW-bases.
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Using our functorial gateway through its other end, we settle in Corollary 7.12 some analo-
gous originally posed questions on RSK-standard modules for the context of representations of
p-adic groups.

Moreover, a simple consequence of our work (Corollary 7.10) is that RSK-standard module
present a basis for the suitable graded Grothendieck group of finite-dimensional quiver Hecke
algebra modules (in particular, when decategorifying, a new basis for the positive part of the
quantum group). This is again a supporting evidence for the validity of the analogous statement
conjectured in the p-adic setting.

Finally, we reach an appealing formula (Theorem 7.11) for the constant d(m) used to normalize
the grading shift on a RSK-standard module.

Let us draw attention to the similarity of this formula to that of the dimension of a Springer
fiber for the symmetric group [48] parameterized by the shape of the bi-tableau of RSK(m). We
suggest a further search for possible relations of the RSK construction to a geometric Springer-
type approach.

1.4 | Methods

The key tool used in the proof of Theorem 7.9 is the concept of normal sequences.

The theory developed in the works of Kang-Kashiwata-Kim-Oh [22, 23] has put the notion
of real simple modules on the front lines of study: Those are simple modules L of quiver Hecke
algebras, for which LoL remains simple. The analogous notion was investigated in depth in the
p-adic setting [34], under the name of square-irreducible representations.

For a real simple module L and any simple module M of the suitable quiver Hecke algebra, the
product LoM has a simple head that is given by H(h), where H is self-dual. The numeric invariant
A(L, M) = —h is a useful outcome of the graded setting approach to our set of problems.

Kashiwara-Kim [21] have called a sequence of real simple modules L, ...,L; normal, if it
satisfies certain compatibility properties, that can be easily stated in terms of the A-invariant.

In the case of a normal sequence, the product L;o --- oL, has a simple head, among further
favorable properties that are established in Proposition 7.7.

Nevertheless, a systematic production of such favorable product modules and of the normal
sequences that give rise to them, seems not to be a trivial task. We show that the RSK mechanism
is in fact an efficient tool for that goal.

For a multisegment m, its RSK transform RSK(m) = (I, ..., [) is defined inductively, so that
RSK(M) = (1,, ..., 1), for another multisegment f11. Now, given the homogeneous (real) simple
module L = E; corresponding to [;, and the simple head M of ['(#i), we produce a combinatorial
formula (Corollary 6.7) for the number A(L, M).

It then follows that the sequence of homogenous modules &, ..., 2, used to define I'(m)
is normal.

1.5 | Links with the Specht construction
In a subsequent work of the author [17], it is shown that the RSK construction developed here

may be viewed as a generalization of the Specht construction for cyclotomic Hecke algebras [12],
and its graded variant [9].

8519017 SUOWIWOD A1) 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn oS3 Joj Arig1T8UljUQ /8|1 UO (SUonIpUOD-pUR-SWLBIALI0D A8 | 1M Ae.q 1 pul|UO//:SdNy) SUONIPUOD pUe Wi | 8U1 89S [7202/80/0T] U0 ARliqi 8UlUO AB|IM ‘S69ZT SW(ZTTT 0T/I0p/W00 A8 1M AReIq 1 pUIUO™D0SYRWPUO |//:SdNy WoJj pepeo|umoq ‘Z ‘€202 ‘0S.L691T



QUIVER HECKE ALGEBRAS AND RSK | 709

Specifically, the classification of simple modules [1, 15] of the cyclotomic quotients of affine
Hecke algebras and the analogous quotients of quiver Hecke algebras, often follows the lines of
the Zelevinsky approach, with a reducible Specht module standing in place of a (proper) standard
module. When this picture is inflated to the (full) quiver Hecke algebra representation category,
a comparison between the Kleshchev-Ram/Zelevinsky construction and the Specht construction
asks to be performed.

Indeed, works of Vazirani [51] and Kang-Park [29] have studied similar questions. Their results
can now be explained through the lens of the RSK construction and our results, since inflated
Specht modules turn out to be special cases of RSK-standard modules.

Moreover, our Theorem 7.9 may be specialized to the context of graded multiplicities treated
in [6], while the formula of Theorem 7.11 is consistent in the special Specht cases with the shift
formula of [27, Theorem 8.2], for inflated graded Specht modules.

1.6 | Structure

We first survey in Section 2 the basics of the (necessary cases of the) representation theory of quiver
Hecke algebras of type A. Specifically, we recall the Kleshchev—Ram approach to classification of
simple modules.

Section 3 surveys the smooth finite-length representation theory of p-adic GL,,, while putting
together the categorical bridges needed for comparison of our two settings.

Using the established gateway between settings, we single out several curious classes of simple
modules in Section 4.

In Section 5, we recall the RSK construction of [14], export it into the quiver Hecke algebra
domain and develop some of its properties.

The degree computations of Section 6 is the technical heart of this work. Its aim is to show that
the A-invariant is well-behaved relative to the RSK inductive process.

Finally, we develop some properties of normal sequences in Section 7 and apply them on the
RSK construction.

2 | QUIVER HECKE ALGEBRAS

Let usrecall the basics of the representation theory of quiver Hecke algebras. We will largely follow
the standard conventions as in [5, 23, 31, 40].

Our description will cover algebras of type A solely. More precisely, the general construction
of quiver Hecke algebras depends on a choice of Lie-theoretic data as an input. The algebras
appearing in our discussion are the ones associated with the data of the Lie algebra 8 .

We take the Cartan datum (Z, -) as a set labeled by integers T = («;);c, (simple roots), and an
integer valued symmetric bilinear form «, 8 — («, ) on the free abelian group Q = Z[] (root
lattice) given by

2 0=
0 li—jl>1
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710 | GUREVICH

We denote the positive cone Q, = Y., Z,,a; € Q. For 81,3, € Q,, we write 8, < 8, whenever

By — B € Q.
Let B = Y, c;a; € Q. be fixed. Its height is defined as |8| = ) ;; ¢; € Z.
We denote the finite set of tuples

Zﬁ = {V = (vl,...,vlﬁl) (= I|:3| : avl + -+ avw — ﬁ} .

The quiver Hecke algebra (or Khovanov-Lauda-Rouquier algebra) related to § is defined
to be the associative complex algebra R(B), which is generated by {e(")},c7s, (V1. Y8}
{1, ... P51}, subject to the relations

e)e(v') = {f)(”) :;: Y e =1,
velh

yie(w) = e(v)y;, Pe(v) =e(s;- )y, Vi,
Vv =y, Vi.j, iy =9y, forli—jl>1,

yii =y, forj € {i,i+1},

—e(v) v =viy,

, (yi'QDi - zpiyi+1)e(7/) = {0 v, ;é Vir1 ’

e(v) v =viy,

i — Yiyie(v) = {0 Vi Vi

e(v) (Vg1 Vigo) = (a0, ), fort €z

@i ¥itbivr — Piigape) =4 —e(») (v, V4, vi40) = (@, 4, ), fort € Z,
0 otherwise

Wi = Yig1)e() i, Vig1) = (@, o44q), fort € 2
2 - = Yipe(») i) = (o, a,), fort €z
Pre(v) = .
Vi = Vi

e(v) otherwise

Here, 5; - v € 7 denotes an action of a simple transposition, that is, a switch of v; with v, ;.
The algebra R(3) becomes (Z-)graded, when setting the degrees

deg(e(v)) =0, deg(y;) =2, deg(®ie(v)) =—(v;,v;41)

on the generators.

We write R() — mod (R(8) — gmod) for the abelian category of (graded) finite dimensional left
modules over R(f3).

Let Irr(B3) (glrr(B3)) be the set of isomorphism classes of simple modules in R(8) — mod (R(S) —
gmod).

For a graded module M = (M,),c, € R(8) — gmod and an integer k, we write

M(k) = (M;_;);cz € R(B) — gmod

to be the shifted module.
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We write M +— M8 for the grading-forgetful functor R(8) — gmod — R(B) — mod.
Let us note that the forgetful functor gives an evident identification

DBrez HOMp gy gmod(M, N(k)) = Hompg)_0a(M'E, N, ey

for any M, N € R(3) — gmod.

The algebra R(f) possesses an anti-involution r given as an identity on all generators in the
definition of the algebra. For M € R() — gmod, the complex dual space M* becomes a graded
left R(8)-module through .

For a simple M € glrr(B), it is known that there is a (unique) integer k, such that (M (k))* =
M(k). Furthermore, each M € Irr() has a unique, up to shift, graded structure.

Thus, we will often treat Irr(3) as a subset of glrr(3), that is, the isomorphism classes of self-dual
simple modules in R(3) — gmod.

Given M € R(B) — gmod, we write [M] € Z,[gIrr(8)] as a formal sum of the Jordan-Holder
series of M. Taking shifts into account, we may write it as a sum

M= Y Y my L]

Lelrr(B) i€z

Given any L € Irr(B3) (viewed as a self-dual graded module) and M € R() — gmod, we define the
graded multiplicity of L in M as the Laurent polynomial

mM,L)(q@) = Y, m;q' € Z50lq.q ']

iez

2.1 | Restriction and induction
Following the formalism of [40], given 8 = (8, ..., Bx) € (Q,)¥, we set the graded algebra

R(B) = R(B)) ® -~ ® R(B,) .

The sets Irr(3) C glrr(3) and graded multiplicities in R(8) — gmod are defined analogously. Note,

that H;‘zl Irr(B;) = Irr(B) is a natural bijection given by taking the outer tensor product of
simple modules. -
Setting i(8) = B, + -+ + fB), we have a natural embedding of algebras ¢5 : R(8) — R(«(B)), as in

[40, section 2.2]. .
Forv; € 1P, i =1,..., k, we have the natural concatenation operation vy # --- x v, € T i® . We
then obtain an idempotent element

eB):= D e(w;x - kv) €RUP)) .

velfii=1,..k

Evidently, (5(1) = ¢(B) holds, for the identity element 1 € R(f).
Thus, the embedding of algebras gives rise to an exact restriction functor

Resg : R(i(é)) —gmod — R([_%) —gmod, Resg(M)= e(E)M .
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712 | GUREVICH

Given L € Irr(8) and M € R(i(8)) — gmod, we shortcut notation to
m(M,L)(q) := m(Resg(M),L)(q) ,

for the graded multiplicity in R(i(8)) — gmod.
The restriction functor commits both a left-adjoint induction functor

Indﬁ : R(E) —gmod — R(i(ﬁ)) —gmod, IndE(M) = R(i(ﬁ)) ®‘/3(R(E)) M,
and a right-adjoint co-induction functor
colndg : R(B) —gmod — R(i(B)) —gmod, colndg(M) = HomR(ﬁ)(R(i(ﬁ)),M) .

(See, for example, [40].)
k . .
More generally, when § = 65, ..., 5},1],... , 5’1‘, s 5’rf1k) € (Q+)Zi:1 ™Mi is such that 2;";1 5;. =B,
forall 1 <i < k, we have

~ k k
R(8) = R(S}, ..., 5},11) ® - ®R(SY,....8,, ) = R(B),
and the functors
Res§ : R(8) — gmod — R(8)—gmod, Indg, coIndg : R(8) —gmod — R(B) — gmod

are naturally defined.
Given M; € R(8;) — gmod, fori = 1,... k, we write the induction operation as a product

M10 oo OMk = Indﬁ(Ml ® ® Mk) .
This product equips the larger abelian category
D = ®peo, R(B) — gmod
with a monoidal structure.
Restriction, induction and co-induction functors may still be defined for categories of ungraded
modules. In particular, the category
D = ®pc, R(B) — mod
retains the monoidal structure of D.
In particular, we note that the functor fgt : D — D is monoidal.
2.2 | Mackey theory
LetB € (Q +)k andy € (Q +)l be given, for which i(5) = i(y) holds. Then, the composition functor
Res, olndg

is well-defined, and admits the following typical Mackey-theory description.
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Let M(B, ) be the collection of k X I-matrices § = (; ;) of elements in Q, such that §; ; + --- +
8;; = B; holds, forall 1 <i<k,and §; ; + -+ + & ; = y; holds, forall 1 < j < L.
For 8 € M(8,y), we define the integer

deg(é) = - Z (51',]', 5i;’j/) . (2)

1i<i’<k, 1€ < j<l

Each & € M(, y) gives rise to two tuples
érow = (51’1, veey 51’1, 52,1, weey 52,1, weey 5]{,1’ weey 61{,1) N

col
é = (51,1, ey 5k,1, 51’2, cee sy 5]{’2, cee sy 51’1, ceey 5k’l)

in (Q,)¥.. There is an obvious isomorphism of algebras t5 : R(§"%) — R(5°") by permuting the
factors. We set

Ts : R(§"™%) — gmod — R(§°") — gmod

to be the functor obtained from pushing a module through t5 and shifting its degree by deg(5).
We set a functor

Ks : R(E) —gmod — R(Z) —gmod, KsM)= Indgwl(Ta(Resgmw(M ).

Proposition 2.1. (Restatement of [7, Theorem 2.1]) For every graded R(S)-module M, the R(y)-
module Res,(Indg(M)) has a filtration of submodules, whose composition factors are given by

{Ks(M )}5EMEE,Z)'

2.3 | Kleshchev-Ram classification and multisegments

Let us now describe the classification of

Irrp = Useo, Irr(B)

as obtained in [31]. When specialized to this case, it may be viewed as a graded version of the
classical Zelevinsky classification of [53] (See Subsection 3.2).

For each pair of integers i < j, we denote the element A(i, j) = a; + o1 + - +a; € Q. We
refer to Seg = {A(i, j)}i; € Q. as the set of segments (positive roots).

For a segment A = A(i, j) € Seg, we write i = b(A) and j = e(A) for its begin and end points.

Let < denote the total lexicographical order on Seg, so that A; < A,, if b(A;) < b(A,) holds, or
that both b(A;) = b(A,) and e(A;) < e(A,) hold.

Similarly, let <, denote the right lexicographical order on Seg, defined as <, but with the roles
of b(A) and e(A) reversed.

We refer to elements of the free abelian monoid

M = Z,[Seg]

as multisegments.
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We will abuse notation by referring to the set of segments Seg, both as a subset of 9, and of
Q... depending on context. For example, A(1,1) + A(2, 2), A(1, 2) € I are distinct multisegments.
Yet, A(1,1) + A(2,2) = A(1,2) holds as an equation in Q.

There is a natural additive map wt : I — Q_, defined by wt(A) = A, for each A € Seg.

Each A € Seg is attached with a segment module’ L, € Irr(A). It may be characterized as the
unique self-dual 1-dimensional R(A)-module, for which there exists v = (v, ..., V| A|) € T2 with
V1 = Qy(a), SO that e(v)Ly # 0.

Each m € I can be uniquely written as m = Zﬁ;l D;A;, for segments A; <, ... <, A, in Seg.

In these terms, the Kleshchev-Ram classification attaches to m € I the proper standard
module

KR(m) 1= [P0 oL < @) A <p2k> > € R(wi(m) - gmod .

Here L°P = Lo --- oL denotes the pth induction product of a module with itself.

Theorem 2.2. [31, Theorem 7.2] The head (or co-socle, that is, maximal semisimple quotient) of
KR(m), denoted as L,,, is simple and self-dual. The resulting map

M- Irrp,, me Ly
is a bijection.
For m € I, we set
b(m) = praya)) + = + PkQpa,)> €M) = PrQea)) + - + Preay) € Qs

and write |[m| = |b(m)| = |e(m)], that is, the number of segments used to define m.
For L = L,, € Irrp, we also write b(L) = b(m), e(L) = e(m) and wt(L) = wt(m).

Remark 2.3. (See also [17, Remark 2.4]) The Kleshchev—-Ram construction of a proper standard
module out of a given multisegment m € I is less canonical than how it may appear in our
current presentation. More precisely, the construction depends on a choice of a total order on the
set T (that is, on Z).* Our definition of KR(m) takes the order given by a; > « . fori < j.

In particular, in the language of [31], L,; ; is the cuspidal module corresponding to the good

Lyndon word (« s Qs s a;), relative to this fixed order.

3 | REPRESENTATIONS OF p-ADIC GL,

Let F be afixed p-adic field. We are interested in the smooth representation theory of the sequence
of locally compact groups G,, := GL,(F).

 Cuspidal module in the language of [31]. We refrain from using this terminology here, because of the involvement of
supercuspidal representations of p-adic groups in the discussion of Section 3.

#The more general procedure as extended in [8] depends on a choice of a (convex) order on the set of positive roots, that
is, on Seg.
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For a p-adic group G (such as G,)), we write G — mod for the abelian category of finite-length
(typically infinite-dimensional) smooth representations of G over the complex field. We write
Irr(G) for the set of isomorphism classes of irreducible representations in G — mod.

Let us recall the basic inductive mechanisms for construction and study of representations in
G, —mod. Most of the tools applied in our discussion stem from the classical texts [10, 53]. See,
for example, [33] for a modern exposition.

We say that a tuple of positive integers n = (ny, ..., n,) isa composition of n and write n = i(n), if
n=ny + - + n,. We denote by M,, the subgroup of G;(,;) isomorphic to G,, X --- X G,,_consisting
of matrices which are diagonal by blocks of size n, ..., n, and by P, the subgroup of Gy(,) generated
by M,, and the upper unitriangular matrices. A standard parabolic subgroup of G,, is a subgroup
of the form P, with i(n) = n and its standard Levi factor is M,,.

We write iﬂ_ ‘M, - mod — Gi(ﬂ) — mod for the exact (normalized) parabolic induction functor
associated to P,,.

Forr; € Gni_— mod, i =1,...,r, we write

Ty X X T, 1= i(n1 n,)(7T1 X Xm=r)e Gn1+---+n,. —mod .

.....

The induction functor i, admits a left-adjoint functor
r, ! Gy, —mod - M, —mod

known as the Jacquet functor.

An irreducible representation 7 € Irr(G,,) is called supercuspidal, if r,(7) = 0, for all n with
n = i(n) and M,, # G,,. We write cusp,, C Irr(G,,) for the set of supercuspidal irreducible repre-
sentations. N

For any n, let 4* = | det |}, s € C denote the family of one-dimensional representations of G,,,
where | - | is the absolute value of F. For 7 € G,, — mod, we write 7u’ := 7 @ u* € G,, — mod.

3.1 | Block decomposition

Given p € cusp,, and an integer d > 1, let Irrf 4 E1r(G,,q) be the set of all irreducible
subquotients of representations of the form

(puk1) x -+ x (ppkd)

for any choice of integers k, ..., k; € Z.
For a pair (p, d), we define the simple line block C(p, d) to be the Serre subcategory of G,,,; — mod
consisting of those representations 77 whose irreducible subquotients all belong to Irrf, a4
Following the general theory of Bernstein blocks ([2]), we may decompose the category of finite-
length representations as a sum of abelian categories

Gn - mod = ®®E§8nc® N

where each summand stands as a product (in the sense of Deligne [11, section 5]) of certain
simple line blocks of smaller groups:

Co = C(py,dy) X -+ X C(py, d,.) .
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Here, p; € cusp,,, i = 1,...,r satisfy ZLI m;d; = n and the equivalence’ is given by parabolic

.....

.....

particular, we see that the set of irreducible representations in Cg is naturally described as

Irrg = Irr? | X - X Irr?
e Pl’dl pr’dr

In the above sense, simple line blocks contain essentially all of the information encoded in the
categories G,, — mod.

Moreover, simple line blocks are well-aligned relative to the parabolic induction and
Jacquet functors. Namely, for any p € cusp,, and d = (md,, ..., md,), those functors restrict to
well-defined pair of adjoint functors between the categories

id e
Clp,d) X X Clpydy) = Cloydy + - +4d,). 3)
«— Iy

For these reasons, it is useful to consider the sum of categories

e
c; = EBO Clp,m)
n=

(summing blocks of representations of different groups) and its set of irreducible representations
Z _ | 00 VA
Irrp =Ll Irrp,n .

Givenrw € Irrf,n, there exist integers ky, ..., k,, € Z, for which 7 appears as a sub-representation
of puk1 x -+ x pukn. The sequence k, ..., k,, is uniquely determined by 7, up to a permutation. The
resulting S, -orbit (relative to the usual symmetric group action) on Z" is called the supercuspidal
support” supp, () of 7.

For sake of compatibility with other notions appearing in our discussion, let us identify S,,-
orbits on 7" with the elements of Q, of height n, that is, an orbit represented by (ky, ..., k,;) will
correspond to A, + o+, €Q,.In this sense, we will write suppp(n) €Q, formre Irrf.

We have a further decomposition of categories of finite-length representations according to
their supercuspidal support.

Namely, let C/f be the full subcategory of C(p, |3|) consisting of representations all of whose
irreducible subquotients 7 satisfy supp,(7) = . Then, we can decompose as

C(p,n) = @ Cﬁ, o=@og.
BEQ,|BI=n

Summing over representation categories of groups of different ranks, we obtain a canonical
decomposition

z _ B
C,O - @ﬁeQJGC :

T Note, that it is not claimed that any choice of s, ..., o, produces an equivalence, but rather the existence of such for any
0eB,.

#We adopt a combinatorial point of view on the general notion of the supercuspidal support of an irreducible smooth
representation of a p-adic group.
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For@ = (B;, ..., B,) € (Q,)", we may view

° o

C :=Cﬁ1><---><C§r

(e
as a Serre subcategory of M,, — mod, where n = (m|g,|, ..., m|B,|) (o € cusp,,).
The parabolic induction functor i, restricts to a functor

. BB
IE.CP_)CP .

In simpler notation, that means that for any given 7; € c? Li=1,..,r, we have

Ty X e X 7, € COFHr

3.2 | Equivalences of categories

The link between the representation theories of the quiver Hecke algebras of Section 2 and the
p-adic groups of this section, passes through the notion of affine Hecke algebras (of type A). Let
us recall the basic properties of these intermediate categories.

Given n € Z,, and a parameter g € C (which for our needs will be assumed to be non-root of
unity), the root datum of GL,, gives rise to the (extended) affine Hecke algebra H(n, q): This is the
complex algebra generated by T, ..., T,,_; and invertible y,, ..., y,,, subject to the relations

T, T T =Ty TiTiyy, V1<i<n-—2
(T, —q)(T;+1)=0, Vigi<n-—1
ILT; =T,T; V[j—il>1
Vivi =Y¥is Vi<i,jsn
Tiy,T; = qyitq; Vigign-—1
Ty =y;T;, Vj#i,i+1.

For a composition n = (n,,...,n,) of n, the algebra H(n,q) := H(n,,q) ® - ® H(n,,q) is
naturally embedded as

ty - H(n,q) = H(n,q),

by sending the generators T, y; of H(n;,q) to Toyteetn;_y+is Yy ooty +1 D H (1, Q).

We denote by M (respectively, M) the category of finite-dimensional modules over the
algebra H(n, q) (respectively, H(n,q)).

We have a straightforward decomposition (again, in the sense of the Deligne product of abelian
categories)

9 _ s\ 9 q
My = My X XMy, “
of the abelian category, and an exact induction functor

Indz . Mg - Mz , Indz(M) = H(n,q) ®IE(H(ﬂ,q)) M.
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.....

polynomials gives rise to a weight space decomposition of the form
M = ®X€(CX)nMX .

Here, M,, for y = (x;, ..., x,,), denotes the common generalized eigenspace of P, in M, given by
the character y; — y;.

Recall that the center Z(H(n, q)) is given by the symmetric Laurent polynomials in P, [37,
Proposition 3.11]. In particular, the complex central characters of H(n, q) are given by orbits of the
action of S,, (symmetric group) on (C*)".

Hence, the full sub-category M%, for a given y € (CX)"/S,, of modules M € M} that
decompose as M = @, M, is a Serre subcategory.

Alternatively, picking a representative y, € y and viewing it as a character of H((1, ..., 1), q),
M;’_( may be described as the full subcategory of M consisting of representations all of whose

.....

Similarly, for n = (n,, ..., n,), the central characters of H(n, q) are parameterized by S, X - X
Sy, -orbits on (C)®W = (CX)™M X --- X (CX)". For such given central character y = (yy, ..., x,) of
H(n, q), we write

MG =ML x o x ML
L X1 Ar

for the Serre subcategory of M, defined relative to the decomposition (4).
We may think of the natural map

P2 (©) (S, X X8, ) = (€S

between orbit spaces, as a map from the spectrum of Z(H(n, q)) to the spectrum of Z(H(i(n), q)).
For y € (C¥)®@/ (Sp, X -+ X S, ), restricting Ind} to a subcategory, gives an exact functor

q . 49 q
Ind)_( : Ml - Mi(p .

q

For such y and a module M € Mi(n),

the space

q .
Res)_((M) 1= eaxeng

is invariant under the action of the subalgebra t,,(H(n, q)). Thus, we may view

q . 49 q
Res)_( : Mi(l) - M)_(

as an exact restriction functor, which is right-adjoint to the induction functor Ind?(.

We denote by MZ’Z the Serre subcategory of M;! consisting of modules in which y;’s all act
with eigenvalues that are integer powers of q. In other words,

Z
M = ey s, M5 -
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3.21 | Rouquier’s equivalence

The assignment
G g @) = a + -+ €Q

sets a natural bijection between (g%)"/S,, and elements of Q, of height n. Thus, we may view
elements of the latter set as central characters of H(n, q). More precisely, for a given 8 € Q, we
may write )_(5 for the corresponding character of the algebra Z(H(|3|, q)).

Theorem 3.1. [47, Theorem 3.11] For each 8 € Q, and a non-root of unity g € C*, there is an
equivalence of abelian categories

. a4
Rg: ./\/lyi3 — R(B) —mod .

Fora module M € M’j_( , Rg(M) is defined by an action of R(B) on the same underlying complex
i

vector space of M.
Moreover, the equivalence is compatible with weight space decompositions, in the sense that for
V=, V) € 17, we have e(VRp(M) = M, , where y, = ("1, ..., q"#!).

A tuple B=(B,...B) €(Q,) defines a central character xg=(xg,...xg) Of
H((B1l, -5 18,1, ). Extending the equivalences of Theorem 3.1 to tensor f)roducts of algebras,
we obtain an equivalence of abelian categories

Ry : Mg(é—»R(ﬁ)—mod.

Note, that i(xg) = X;) clearly holds.
Rougquier’s equivalences become compatible with restriction functors in the following sense.

Proposition 3.2. For 8 = (8, ..., 5,) € (Q.), we have the identity

ReSEORi(E) = REORCS%

of functors.

Proof. The explicit description of the equivalence functor in [47, Theorem 3.11] is compatible with
restriction on generators of algebras on both sides. O

Since adjoint functors are uniquely defined, we obtain a similar result for the induction
operation.

Corollary 3.3. For 3 = (B, ....,) € (Q,)", we have an isomorphism
— Tnd?

of functors. In particular, for given modules M, € ML and M, € M

9 wehave an isomorphism
xpy X8,

of modules
Rp,+p,(Indg, g, (M I M) = Ry, (My)oR g, (M)
in R(B; + B,) — mod.
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3.2.2 | Bernstein’s equivalence

Let us recall and explicate some known connections between the representation categories of
p-adic general linear groups and affine Hecke algebras.

To that end, we should temporarily expand our scope to include representations of
infinite-length. Let G,, — Mod (respectively, M,, — Mod) denote the category of all smooth G,,-
representations (respectively, M, -representations) and Nl (respectively, N,!) the category of
(possibly infinite-dimensional) H(n, q)-modules (respectively, H(n, q)-modules).

A functor

Indz : Ng - N,

is defined as in the finite-dimensional case.

For a given p € cusp,, and an integer d > 1, we define the simple Bernstein block B(p,d)
to be the full subcategory of G,,; — Mod consisting of those representations whose irreducible
subquotients all belong to Irrg’ = Ugee Irr s

Clearly, B(p,d) contains C(p,d) as a full subcategory. Parabolic induction may be defined in
the general context of smooth representations. In particular, the analogous functors to (3) are
well- defined in the context simple Bernstein blocks in place of simple line blocks
Irr(G g, ) X -+ X Ir1(G,y,q ). With this view in mind, we ’rnay similarly define the simple Bern-
stein block B(p (dy, .. d »)) as the full subcategory of M4, . ma)—Mod consisting of those
representations whose irreducible subquotients all belong to Irr X +ee X Irrp g,

The following is a major outcome of the type-theory approach to representations of p-adic

groups.

Theorem 3.4. (Bushnell-Kutzko [4]) For any (p,d) as above, there is an explicit equivalence of
abelian categories between B(p, d) and N° dq" .
Here, q, € Z.,, is a certain power of the residue characteristic of the p-adic field defining G,,.

Restricting the Bushnell-Kutzko equivalences to finite-length representations naturally pro-
duce equivalences between C(p,d) and MZ’Z. We will outline a construction of such an
equivalence through a second approach due to Bernstein [3] and Heiermann [19]. This approach
will provide an easier access to compatibility properties with induction functors, which is crucial
for our needs.

An object 7 in an abelian category C is called a generator, if the resulting functor Hom(r, «) from
C toright modules over A, := Hom(r, 7r) (an associative algebra) is an equivalence of categories.

Proposition 3.5. (Bernstein) For p € cusp,, and an integer d > 1, set n = (m, ..., m) with i(n) =
md. Suppose that 7 is a finitely generated generator in B(p, (1, ..., 1)), a subcategory of M,, — Mod.
Then, i,(7) is a finitely generated generator for B3(p, d).

For p € cusp,, and a choice of a generator o = o, in B(p, 1), itis clear that ¥4 = o [{ --- K o
will be a generator for the corresponding category B(p, (1, ..., 1)). Thus, by Proposition 3.5 there
is an exact equivalence functor

fd,d . B(p’ d) - MOd_A(O" d) )
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where Mod — A(o, d) stands for the category of right modules over the finitely generated complex
associative algebra

..............

Suppose further that d = (md,...,md,) is a composition with i(d) = md and write gj =
(m, ..., m) with i(gj) = md;, for every 1 < j <r. Then,

0'4 . igl(ggdl) @ vee & igr(o-lzdl)

clearly becomes a generator for the category B(p,(d;,...,d,)). In other words, we see an exact
equivalence

foa © Blp,(dy,....d,)) - Mod—A(0,d),
where
A(o,d) := Hom(c%,0%) = A(0,d) ® - ® A(0,d,) .
iz =iy 1 A(o,d) > A(0,d) .
In particular, we obtain an induction functor

Indf_i : Mod — A(0,d) » Mod — A(o,d), Indf_i(M) =M ®ig(A(a,o_i)) A(o,d) .

Proposition 3.6. (Roche [44, 5.3]) The functor diagram

fa.g

B, (d,,...,d,) Mod — A(o, d)
iQ Indz s
B(p, d) fou Mod — Ac, d)

commuites.

In the approach outlined thus far, a link between representations of p-adic groups and affine
Hecke algebras appears through the following result of Heiermann.
Proposition 3.7. (Heiermann [19]) For a suitable choice of a generator o = g, as above and any
integer d > 1, there are explicit isomorphisms of complex algebras

P

hoq @ A(o,d) = H(d,q,),

for a positive integer q, > 1.
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Moreover, the isomorphisms are compatible with the induction embeddings, in the sense that the
diagrams
hu,dl ®-- '®hs,dr

A(Gs Q) > H((dl7 seey dr)’ qp)

=
q
"

A(o,d) - ~ H(d,q,)
commute, for alld = (md,, ..., md,), with i(d) = md.

In particular, the isomorphism h,, 4 from the above proposition induces an exact equivalence’
of categories f, 4 : Mod — A(c,d) — Nj” . Finally, composing it with the Bernstein equivalence
reproduces a desired equivalence

q
Hp,d = f)g,d°fa,d 2 B(p,d) - J\/'d” ,

such as the one obtained in Theorem 3.4, through separate techniques.
Similarly, for d = (mmd,, ..., md,) with i(d) = md, we get an equivalence

. q
Hoa : Blo.(dynd) = NG

by composing h, g ® -+ ® h, g With f, 4.
The combination of Propositions 3.6 and 3.7 now implies a full compatibility of those
equivalences with induction functors.

Corollary 3.8. The functor diagram

Ha,d
B(ps (dl’ (L] dr)) N(le,.‘.,dy)
li Il’lCl(d1 11111 dy) N
Ho,d P
B(pa d) . Nd

commutes.
Proposition 3.9. Foreach 8 € Q,, the functor H, g restricts to an equivalence

H

. B qp
P,ﬁ . Cp d MY{B

between abelian categories with finite-length objects.

TA transition between right and left modules is achieved by noting that the relations used to define H(n,q) are
symmetric, hence, give rise to a canonical anti-automorphism of the affine Hecke algebra. The observation that this anti-

induction functors involved.
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Similarly, for 8 = (By, ..., B,) € (Q,)', the functor H,, (g, .|s,1) Festricts to an equivalence

H

) 4p
P’é . Cp —)MXE

Proof. As detailed in [18, Proposition 3.2], for s € C*, the functor }, ; takes the irreducible rep-
resentation pu® to the character y; — qz of H(q,, 1). This is the content of the desired statement
for the case of |3] = 1.
For general (3, the statement now follows easily from Corollary 3.8 and the characterizations of
all of the involved subcategories by induction functors. [l
Finally, for given p € cusp,, and § € Q. , composing the Bernstein and Rouquier equivalences,
we obtain a direct link between smooth representations of p-adic groups and modules over quiver
Hecke algebras.
Theorem 3.10. For p € cusp,, and § € Q,, there is an exact functor

&5 1=RgoH, 5 : Co - R(f)—mod ,

which gives an equivalence of abelian categories.
Summing £, := @peq, £, 5 gives an equivalence between Cf and D.

Similarly,

B
EP’E = REOH’O’E . C; - R(E) — mod
becomes an equivalence of abelian categories.

Proposition 3.11. For p € cusp, the equivalence functor £, is monoidal.

In particular, for representations w; € ij andm, € ng’ we have an isomorphism
£P,ﬁ1+ﬁz(7rl X 1y) = gp,ﬁl (7'[1)05;),52(71'2)
of R(B, + B,)-(ungraded)-modules.

Proof. Corollaries 3.3 and 3.8. O

3.3 | Irreducible representations

For a given p € cusp,,, the equivalence £, gives rise to a bijection between the sets Irrf and Irrp
(See Section 2). The resulting bijection identifies the Zelevinsky classification with the Kleshchev-
Ram description of 2.2.

Explicitly, for a segment A = A(a, b) € Seg, the induced representation

pu X pu X e x pu € €3
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has a unique irreducible quotient, which we write as Z(A) € Irrf p_as1- CoOnsequently, by
Proposition 3.11, 8P(Z(A)) € Irr(A) becomes an irreducible quotient of

5a°5a+1° °5b ’

where §; 1= Ly ;) = é‘p(p,ui) is the unique simple R(¢;)-module.

It follows that £ o (Z(A)) = Lngt

Now, for a multisegment m = Z;‘zl A; € M with A €, ... €, A in Seg, it follows from
Proposition 3.11 that in R(wt(m)) — mod,

is the (ungraded) segment module.

EN(Z(A) X -+ X Z(Ay)) = KR(m)'e"

holds.
Hence, the unique irreducible quotient Z(m) € C;,Vt(m) of Z(A;) X -+ X Z(A}) must satisfy

£,(Z(m)) = L

m?

as ungraded isomorphism classes in Irr(wt(m)).

4 | SPECIAL CLASSES OF MODULES

Given segments A;, A, € Seg, we write A; < A,, if b(A;) < b(A,), e(A;) <e(A,) and e(A;) =

b(A,) — 1 hold. We say that the pair of segments (A;, A,) is linked, if either A} < A,,or A, < A;.
It is known that L, oL, is a simple module, if and only if, the pair (A, A,) is not linked. (For

example, by applying the £, functor and deducing the fact from standard Zelevinsky theory.)

4.1 | Indicator modules

Let us formalize a point of view, which is often recurring in various treatments in literature, such
as [16, 29, 51].
For a choice of integers b, > ... > b, > a, we set a multisegment

m(a;by,...,b) =A(a,b)) + - + Aa, b)) € M .

We call such multisegments left-aligned.
For a left-aligned multisegment m = m(a; by, ..., b;), we define the simple module

k
V(m) = V(a ; bl’ ey bk) = LA(a,b])o e OLA(a,bk)< <2> > € gIrr(Wt(m)) >

and write b(m(a; by, ..., by)) = a.

Every 0 # m € I clearly admits a unique decompositionas m = my; + .-+ + m;, wherem;, i =
1,...,1 are left-aligned multisegments, such that b(m;) < --- < b(m;).

Following [16], we define the indicator module

LY = V(m) K - K V(m) € glrr(f(m))
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where f(m) = (wt(m,), ..., wt(m;)), and set
Z(m) = Indﬁ(Lfg) € R(wt(m)) — gmod .
For M = L,, € Irrp, we also write M® = L2,

Lemmad4.1. Suppose that A <, A, areunlinked segments, thatis, A} £ A, and A, £ A,. We have

El

L. oL, = Ly, oLy, (1) b(A)) = b(Ay) ore(A)) = e(Ay)
Aa7A = Ly oLy, otherwise

in R(wt(A, + A,)) — gmod.

Proof. The module L oL, , = KR(A; + A,) is simple. It follows from Theorem 2.2 that L, oL, =
Ly, 1, is self-dual. From [40, Theorem 2.2], we obtain

Ly oLy, = LZZ °L21<(A1’A2)> =Ly, 0L (A1, A7) ,
and the statement follows from a simple computation of the bilinear form on Q. O

Lemma 4.2. Forevery m € I, the isomorphism class of the proper standard module KR (m) is not
affected by changing the order <, into < in its definition.
Moreover, KR(m) and Z(m) are isomorphic in R(wt(m)) — gmod.

Proof. The first statement is a simple corollary of Lemma 4.1.

As for the second statement, both modules in question may be presented as a convolution
product of the same segment modules defined by m.

Reversing the product order, Lemma 4.1 also implies that

r
V(a > bl’ ey bk) = LA(a,bk)o cee OLA(a,b1)< <2> > N

wherer =#{(i#j : b, = bj}, forany b, > ... > b, > a.
The isomorphism is now evident when comparing both constructions. O

Corollary 4.3. For every simple graded self-dual module M € Irry, the indicator module M®
appears as a submodule of Resg(M), for an appropriate j.

Proof. By Lemma 4.2, M appears as a quotient of Indg(M ®). The statement follows from an
adjunction of functors. B O

4.2 | Spherical modules

We say that a graded self-dual simple module L =L, € Irrp, for m = A, + - + A, € M, is a
spherical module, if all pairs of segments (A;, A j), i,j=1,..,k,are not linked.

By exactness of induction functors, it follows that L, € Irr is spherical, if and only if, its
associated proper standard module KR(m) is simple, that is, KR(m) = L ..
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It is evident that for each § € Q_, there is a unique spherical self-dual
LSPR(B) = Lyyspig) € Trr(B) .

In other words, m®P"(8) € M is the unique spherical multisegment with wt(mSP*(8)) = 8.

A representation of a p-adic group 7 € Irr(G,,) is said to be spherical if it has a non-zero vector
invariant under the action of a maximal compact subgroup K,, < G,,.

For p € cusp,,, by the Zelevinsky classification, an irreducible representation Z(m) € Cf is
spherical, if and only if, m = mSP*(B) [50]. In other words, our definition of spherical modules
in Irrp, is made so that the equivalence £, respects sphericity.

Proposition 4.4. For 8 = (B, ..., ) € QX, and asimple module L = L, [X --- K L € glrr(pB), the
graded multiplicity h

m(Indg(L), L°P h(i(ﬁ (@)
is either a monomial q", when Ll.fgt = LSPh([a’i) foralli =1,...,k, or the zero polynomial, otherwise.

Proof. Forany my, ..., m € Irrf, itis known that the parabolic induction representation 7z X -+ X

Ty € Cg contains a spherical irreducible subquotient, if and only if, all 74, ..., 7 are spherical.
Moreover, a spherical irreducible quotient may appear at most once in the Jordan-Holder series
of the induced representation (see, for example, [43, Lemma 4.1]).

Thus, for any choice of p € cusp,,, applying the equivalence £, and using its monoidality as in
Proposition 3.11, shows that (the ungraded multiplicity) commits’.

m(Indé(L),LS"h(i(E)))(l) €1{0,1},

fgt

and that it is non-zero only when Ligt, ,Lk

are all spherical. O

4.3 | Homogeneous modules

Amodule M = (M,;);c, € R(ax) — gmod is called homogeneous, if it is concentrated at one degree,
that is, M; = {0}, for all i # iy,.

In [30], all homogenous modules in Irr;, were classified. As it turned out, passing through
the equivalence &, identifies the notion of irreducible homogeneous modules with that of ladder
representations in CZ.

Let us recall the classification in the terms that are more familiar in the p-adic groups literature.

For two sequences of integers A = (4; > ... > 1,) and u = (¢; > ... > y,.), which satisfy 4; < y;,
for 1 < i < r, we set the (ladder) multisegment

m(/L ,Ll) = A(ll’ M= 1) + ot A(/lr’ My = 1) e M,

T An alternative argumentation would be to apply the well-known Zelevinsky involution in the p-adic setting, which
exchanges the notion of spherical irreducible representations with that of Whittaker-generic representations. Same
properties for the latter notion are classical results of [45].
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and define

E(A, 1) 1= Ly € Irr(wi(m(4, w))) .

Here, as in the rest of this work, we treat the notation A(a, a — 1) as the zero element in Q..

Representations of the form Z(m(4, u)) are the ladder representations for p-adic groups. It
follows from the study in [26], that the Kleshchev—-Ram construction coincides with that of lad-
der representations. Thus, by [30, Theorem 3.6], the collection {£(4, w)}; , exhausts all self-dual
irreducible homogeneous modules in D.

One particularly convenient property of the homogeneous class is that their restrictions are
homogenous as well, and are easily described. The following may be viewed as a combined
statement of [30, section 3.4] and [26].

Proposition 4.5. Given 8 € (Q +)", and a homogeneous module B(A, i) € Irr(i(B)) with A = (4, >
w>A)and u = (U > ... > W), we have

RessEL )= @ EC L WREC VYR REAYY,

pl, k-1

as a graded R(B)-module.

Here the sum is taken over all possible sequences v = (vi > > vi) of integers, such that 1; <
le. <. ‘Vj.(_l < uj holds for every 1 < j <r, and that the resulting representation is in R([_i) -
gmod.

A special case of a homogeneous module is a segment module: E((a), (b + 1)) = Ly, p)- In this
case, we see from Proposition 4.5 that Resg(Ly(q ) is either 0 or an irreducible module given by

Laep) M Laey -1 B+ B Laae,—1) » )

forintegersa <c¢; <..<c, <b+1

5 | RSK FOR MULTISEGMENTS

We recall the combinatorial algorithms associated with the Robinson-Schensted-Knuth corre-
spondence, in a form adapted to our setting.

Given segments A, A, € Seg, we write A; < A,,ifb(A;) < b(A,) and e(A;) < e(A,) hold. This
is a strict partial order on Seg.

In these terms, we say that a multisegment

k
O;éI:ZAieim

i=0

is a ladder multisegment, if A; < A;_;, for i =1, ..., k. (This is an equivalent description to the
collection of multisegments of the form m(4, 1) discussed in Subsection 4.3.)

‘We write Lad C 90t for the collection of all ladder multisegments.

For any 0 # m € IN, we set its width w(m) to be the minimal number of ladder multisegments
L, s Lymy € Lad, for which we can decompose as m = [; + -+ + L.
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We write
M\ =M, M=0£meM : wm)=i}.
i=1

Note, that Lad = ;.
Suppose that a multisegment

0O#m=) A€M
iel
and a ladder multisegment
[=)'A;€lad
jel

are given. We may write J = {jy, ... ji}, with A; < ... < 4.
We say that the pair (I, m) is permissible"', if for every choice of indices iy, ..., i,,, € I, for which
A; < ... <A holds (sub-ladder of m), there is an injective increasing function

¢l m)— (1,1},

for which Ai, < Ajw) holds, for all 1 <t < m (in other words, b(Ai[) <b(A; )< e(AiI) <

0]
ey

Here we denote A = A(a — 1,b — 1) € Seg, for a segment A = A(a, b) € Seg.

Let 2 C Lad X be the collection of permissible pairs.

In further refinement, we write 2 = J:2, 2(;, where 2; C Lad xIR; are the permissible pairs
(L, m), with w(m) = i.

Proposition 5.1. [14, Proposition 2.4] There is a bijection
K:Im\{o} >,
which is explicitly given by the Knuth-Viennot implementation of the RSK correspondence.

The combinatorial algorithm defining £, which was described in detail in [14, section 2.2.2], is
a manifestation of the Knuth algorithm from [28].

Proposition 5.2. The restriction of the map K to the subset IMM;, for i > 2, results in a bijection
K, : M - A;_; CLadxI;_; .
Proof. As was discussed in [14, Remark 4.4], the width w(m) of a multisegment m € I may be

given a combinatorial interpretation using the results of [16]. Standard properties of the Knuth
map then imply that w(m’) = w(m) — 1, whenever X(m) = ([, m’). O

T A slightly different formulation was used in [14]. The equivalence of conditions is a straightforward exercise.
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Given a multisegment m € ¢, we may apply the map Knuth-Viennot map recursively:
K£(m) = (4, my), Kmy) =, m,), .., Kmy_,) ={,;_;,1;) €A, CLadxLad .
We take the resulting d ladder multisegments
RSK(m) = (1,,L,,...,1;) € Lad?

as the RSK-transform of m.
Let us reformulate the information encoded in RSK(m) into a combinatorial presentation.
Recall (Subsection 4.3) that ladder multisegments segments are uniquely described as

Ii = m(ci,di) y
fori =1,...,d, and given tuples of integers

¢ = (ci,l > L > ci,l,-)’ d; = (di,l > > di,ﬂi) :

We know (again, by [14, Proposition 2.4]) that (I;, [ j) e U, forall 1 <i< j<d.Itthen easily
follows from the permissibility condition that 4, > ... > 1, and that CLj=Cpj > e holds, for each
index j.

In particular, we obtain a pair of (inverted") semi-standard Young tableaux*

Pm — Cl,l C1,2 .es Cl,&z es Cl,ll , Qm — dl’l dl’z e dl,lz es dl’ﬂ’l
C2,1 C2,2 CZ,/lz dZ,l dz’z d2,/12
Ck,l Ck,ﬂ.k dk,l dk,lk

of equal shape, whose rows are given by the partition A(m) = (4, ..., 4,) of the integer |[;| +
e gl

Proposition 5.3. Forany 0 # m € I with RSK(m) = (I, ..., ;), we have the equalities
b(m) = b)) + .- +b(Ly), e(m)=-e(l})+ - +ely)

inQ,.
In particular, A(m) is a partition of the integer |m|.

Proof. 1t follows directly from the Knuth algorithm description (or from the description of K’
explicated in the next section) that for X(m) = ({;, m’), we have

b(m) = b(l;) + b(m’), e(m)=-e(l;)+e(m').

Since RSK(m') = (L,, ..., [ 1), the statement follows inductively. O

T Strictly descending rows, and weakly descending columns.

#Note, that our current convention is slightly different from that of [14]: Our d; j stands for d; ; + 1 in the conventions of
that source.
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5.1 | Algorithm description

In this work, we will be interested in a (equally explicit) description of the inverse map X’ : A —
M \ {0} to K. Let us describe the map, whose algorithmic description appeared in the proof of [14,
Proposition 2.4] (based on [13, chapter 4.2]), in detail.

Let (I, m) € A be given.

Again, we write m = 3, A;jand [ = 3, A; € Lad for disjoint index sets I, J.

Let us denote J = {j;, ... j,}, With A; < ... <A; .

We also assume that I is linearly ordered by a fixed relation <, satisfying

b(Ail )= b(AiZ)

e(Ail) < e(Aiz) ’ ©

b(Ai1)>b(Ai2) or {

foralli; > i,inlI.
For each i € I, we take note of the number

’ N . N
b[,m(l) =max{t : A; < Ajt} .
Next, for each i € I, we define
by (D) = min{bg,m(ik) —k :3i=ip...i €lsuchthatA; <A ,r=0,...,k—1}.

For convenience, we extend the domain of the function dy ,, to I UJ, by setting d ,,, (j,) = ¢.
Let o be a permutation on the index set I UJ, given by its decomposition into the following
disjoint cycles:

(15 v r Bgs Ji)s
foreach 1 <t < I, where
{iy > .. > ibu{jd =0 (0.

Fori € IUJ, we write iy = o(i).
We can now set a new multisegment

K'(m)y= ) A*em,

ieluJ

by defining A* = A(b(4)), e(A;,)) € Seg.”

Example 5.4. Suppose that [=A; +A; + Aj, for A; = A4,7), A = A(2,5) and Aj =
A(0, 3). Suppose that

m = A0,4) + A(0,2) + A(L, 5) + A(1,2) + A(1,2) + A(3,4) .

It can be verified that ([, m) € 2.

 Note the slight difference in notation from [14].
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Following the algorithm for X’ we may write m = Zle A withiy > iy > i3 > iy > is > ig and
see the following data:

i | i i i iy i i
A AB,4) A(L,2) A(L,2) A(L,5) A0,2) A(0,4)
[ .
by (D 1 2 2 2 3 2
by () 1 2 2 1 3 2

Then, the permutation o on I UJ is defined in cycle notation as
0 = (i1l j1)(iai3i5) (s )3) -
The resulting multisegment in given as

K'(,m)=A(3,5 +AQ,7) + A4, 4) + A(1,2) + A(L,4) + A0, 5) + A(2,2) +

+A(0,3) + A0,2) .

51.1 | Properties of K’

Note, that e(A;) < e(Ai#) = e(Af), for alli € I, while e(Aj#) <e(h)), forjel.
Fori € IUJ,wesetiV = o~ "(i), where r > 1 is the minimal power for which

L
e(Ao_r(i)) # e(Ao_r(i))

holds, or iV = jbx,m(i)’ if such power does not exist.

Note that e(Alf’Q) = e(A)).

When i,i¥ € I, we have i < (i¥), < i¥ and e(A;) = e(A(iV)#).

When i, iy, (i,)" € I, we have i, <i < (iy)Y and either e(A(i#)v) =e(p) < e(Ai#) or E(A(i#)v) <
e(q) = e(Ai#)-

Lemma 5.5. Leti € I be an index and n an integer, with dy ,,(i) < n < b;m(i). Then, there exists
i(n) € I, such that A,y < A; and dy , (i(n)) = n.

Proof. Let us write m = b; @D =D (D), and p =n — by, () <m.

Suppose that A; < ... < A; <A, are segments, such that i, =i and b;’m(ik) = b () +k
Since b; m(i) < b; m(ik), we must have m < k.

Now, we set i(n) := i,. Then, by ,(i(n)) < b; (i) = (k — p) = n. Yet, it also follows from the
definition of the depth function that by ,, (i) < h}’m(i(n)) - p. O

A particular simple corollary is that the equality
oy () = min(b;,m(i), PG —1:seLA; <A @)

holds, foralli € I.
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Lemma 5.6.

(1) Leti,i" €I be indices, such that e(A;) = e(Ay) and b(4;) < b(Ay) < b(Aw). Then, by, (i") =
Dy () and A% = A,

(2) Leti e Jand i’ €1 be indices, such that e(A;) = e(Ay) and b(Ay) < b(Av). Then, by, (i") =
bI,m(i)-

(3) Leti e IUJ and i’ € I be indices, such that b(A;) = b(Ay) and e(A;) < e(Ay) < e(A,-# ). Then,
O () =D (D and Ay, = Ay.

Proof. Once the equality by, (i’) = d(,,(i) is established, the rest of the statements will
easily follow.

In cases (1) and (3), the inequalities b(A;) < b(A;) and e(A;) < e(Ay) imply that by, (i) <
By (D). The same is implied by e(A) = e(4;) in case (2).

Fix j = jb[,m(i)' Since b(A;v) < b(A;) and e(Ai#) < e(4)) hold, the assumed inequalities imply

in all cases that Ay < A;. Hence, D;’m(i’) > by (D).

Assume now the contrary, that is, dy ,,,(i") < b ,,(i). Then, by Lemma 5.5, there is an index
iy € I, for which A; < Ay and by, (i) = Dy, (D).

In cases (1) and (2), the relations

e(d;) <e(Ay) =e(h)
b(A,) < b(Ay) < b(A)

become a contradiction to the minimality property defining iV.
In case (3), a similar contradiction to the defining property of iy, is deduced from

e(d;) <e(Ap) <e(d;)
b(Ail) < b(Ay) =b(4)) ' Cl

51.2 | Reminderon K

While our technical concern in this work surrounds the algorithmic definition of K’, a reader may
argue that its inverse K deserves the protagonist role, being the building block of the inductive
RSK-transform with which we ultimately deal. In fact, as discussed in length in [14, section 2.2.3
and Appendix A], a characterization of the image of the map RSK is not a trivial task, a fact
further undermining the focus on K’.

Thus, for clarity and completeness, let us also repeat the description of the inverse algorithm
for K. It will not be needed for the rest of this work.

Letm = ), A; € M be given, with the index set I ordered as in (6). We define d,,, : I — Z,
by

b, (1) = max{k : Jiy,...,i; =i €I such that Aim < Ai,"’ =0,..,k—1}.

Let o be a permutation on I, given by its decomposition into the disjoint cycles (ii, s iét), for
each 0 <t < d := max;g d,,(i), where

{il >..> ié[} =2'(0).

We set j, := i}, and record the set of indices J = {jo, ..., js} C I.
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Fori € I, we write i* = o~1(i).
‘We can now set

K(m)=(,m)eA,

by defining m’ = Ziel\] A(b(A)),e(A)) € Mand [ = Z?:o A(b(A;,), e(Aj,y#)) € Lad.

5.2 | RSK-standard modules

Let ({, m) € A be a permissible pair, and n = K£’'([, m).

The ladder multisegment [ = m(4, i) gives rise to a homogeneous representation E(4, 1) =
L, € Irrp, while m, n give rise to L,,,L, € Irrp, through the Kleshchev-Ram procedure of
Subsection 2.3.

The key result [14, Theorem 4.3] may be imported to the quiver Hecke algebra setting in the
following form.

Theorem 5.7. For (I, m) € U, there is integer A(, m) € Z, so that L,C/(I,m)(—K(I, m)) is the head
OfLIOLm'

Proof. The homogeneous module L, is known to be square-irreducible (or, real) (Proposition 7.2)
in the sense that LyoL, is irreducible.

Hence, LioL,, has a simple head S (—=A(l, m)), for S € Irrp. (See Section 7 for further details.)

Fixing any p € cusp,,, we may write Z(l), Z(m), Z(n) € Irrz. By [14, Theorem 4.3], Z(n) is the
head of Z(I) X Z(m). Applying &, and using Proposition 3.11, we see that £,(Z(n)) must appear
as a quotient module of (L;oL,, ).

From the identity (1), we must have S8 =~ L, in D. O

Consider now any module L,,, € Irrp, given by a multisegment m € 9 of width w = w(m).
Let

RSK(m) = (ly,..,[,) € Lad®
be its RSK-transform.
Taking record of the multisegments m = my, my,...,m,_;, m, =0 IM, so that m;_; =
K(L;, m;), we set the integer
d(m) = Ay, m) + -+ A(l,_j, m,_) .
We define the RSK-standard module associated with m to be
I'(m) := Lyo-- oLIw(m)(—d(m)) € R(wt(m)) — gmod .

Theorem 5.8. The self-dual simple module L., appears as a quotient module of T'(m).

Proof. The quotient is produced by a consecutive application of Theorem 5.7 on Ly Ly, taking
into the account the definition of the RSK-transform. O

8519017 SUOWIWOD A1) 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn oS3 Joj Arig1T8UljUQ /8|1 UO (SUonIpUOD-pUR-SWLBIALI0D A8 | 1M Ae.q 1 pul|UO//:SdNy) SUONIPUOD pUe Wi | 8U1 89S [7202/80/0T] U0 ARliqi 8UlUO AB|IM ‘S69ZT SW(ZTTT 0T/I0p/W00 A8 1M AReIq 1 pUIUO™D0SYRWPUO |//:SdNy WoJj pepeo|umoq ‘Z ‘€202 ‘0S.L691T



734 | GUREVICH

6 | DEGREE COMPUTATION

Let (Y, m) € A be a permissible pair as before, and n = K’'(I, m). We would like to produce an
explicit formula for the number A(X, m) appearing in Theorem 5.7.
The main feature that will facilitate this computation is the following multiplicity-one result.

Proposition 6.1. The graded multiplicity m(LoL,,, L? )q) € Z.4lq,q '] is a monomial.
In other words, there is a unique integer x = x(I, m), for which L? (x) appears as a subquotient of
Resé(n)(LI oL,,), and its ungraded multiplicity in the Jordan-Holder series of Resé(n)(L[ oL,,)felis 1.

The equality

q“t™ = m(LoLy, LY)(g) =
= m(LyoLy, Ly)(q) - m(Ly, LE)(q) + Y mLoLy, M)(q) - m(M,L®)(q)
L,2Melrr(wt(n))

of Laurent polynomials follows. Taking Corollary 4.3 into account, we may write
m(L,,L®) =1+P(q),

for P(q) € ZZO[q,q_l]. Hence, from positivity of coefficients involved, we must have g*(“™ =
m(LyoL,,,L,)(q) and

—A(l,m) = x(l,m) .

We are left with a computation of the degree x(I, m), that will be performed in Subsection 6.2.

6.1 | Proof of Proposition 6.1

Let us take a choice of segments A, ..., Ay € Seg with b(A;) < ... < b(A,), a homogeneous module
E € Irrp, and a multisegment 0 # n € IN.

We write n = n; + --- + n; as a sum of left-aligned multisegments n; € I with a; = b(n;)
satisfying a; < ... < a;, as in Subsection 4.1. We write y = f(n) = (wt(n;), ..., wt(n,)).

Let us consider the module o

M=ERLy, K KLy €Irr(B),

for 8 = (Wt(E), Ay, ..., Ag).
Let us assume that i(8) = i(y) holds.
With the notations of Subsection 2.2, let M(TT, n) € M(S, y) be subset of § € M(B, y) for which

K;(IT) # 0 (that is, Resé (M) # 0). Then, by Proposition 2.1,

6rnw

[Res,(Indg ()] = Y [K5(ID)]

seM(I1,n)

holds in the Grothendieck group of R(y) — gmod.
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Lemma 6.2.

.....

g < sand1 < r < tsatisfying b(Aq) < a,, we have Sq’r =0.
(2) Suppose that b(n) = Apay) + o+ Apay + b(B).
Then, for all § = (Sq’r) € M(IL,n) and all 1 < q < s and r that satisfy b(Aq) = a,, we have
é,,#0.
q,r

Proof. Letusfixd = (§ q,,) € M(IT, n). For afixed 1 < g < s, let r be the maximal index for which
) qro # 0. From (5), we know that § qr 18 @ segment, with b(8 q’,,o) = b(A,). Thus, wt(nro) contains
Ap(a,)» implying a, < b(A,), which proves (1).

Suppose now that the assumption in (2) holds. Let 1 < r < ¢ be fixed, and write

99 + 1, q +my =1} =1{q 1 b(Ag) = a,}.

Note that the height |n, | must equal either m, or m, + 1 by assumption.

Recall that wt(n,) = §;, + -+ + & . Considering (1), we see that |n,| is the multiplicity of o,
il’l 5qr’r + 5qr+1’r + b + 5qr+mr_1’r + 50,7"

In case §,, does not contain a,, , all m segments &, ., 8y 11, - 8g 4m 1, MUst be non-zero.

. B
Otherwise, let us recall that Res’;
(50,1 ’50,2 """ 5O,t

also know that a > aj, forall o, < 5S+1,j.

Considering the description of possible non-zero restrictions of homogeneous modules in
Proposition 4.5, we first deduce that the multiplicity of a, in &, is 1. Moreover, a, must
appear as a begin point of a segment in the multisegment [ € Lad, for which E = L;. This
implies |n,| = m, + 1, which brings us again to the implication that each one of the segments
8g,rs0g,+1,r> -+ » Oq,+m,—1,, Must be non-zero. O

)(E) # 0 is homogeneous. Since § € M(I1, n), we

With same notations in place, suppose now that the multisegment m = A; + .-+ + A and the
ladder multisegment [ = A; + -+ A; € Lad, for which E = L, constitute a permissible pair
(X, m) € A. Suppose further that n = K£'(I, m).

We may assume that I = {1,...,s} and J = {j,, ..., j;} satisfy the assumptions of Subsection 5.1
(in particular, I is ordered according to condition (6)), and adopt the notations of that section for
the RSK algorithm.

Recall that b(n) = b(m) + b(Y).

In particular, we may write m = my + -+ + m,, with either m, =0 or m, a left-aligned
multisegment, such that b(m,) = a,.

For every 1 < g < s, let r(q) be the unique index satistying a, ) = b(4,), that is,

m, = Z TAVHS

q:r(@)=r

Proposition 6.3. There is a unique 6 = (5, ,) € M(IL, n), for which the graded multiplicity
m(K5(H),L?)(q) is non-zero.

Moreover, the Laurent polynomial m(Indﬁ(H),L?)(q) = m(Ka(H),Lf)(q), for that unique 6, is
a monomial.

Concretely, we have

K5(I1) = (8;0Ly, ) B+ [ (B 0Ly XN 4
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where

8
Res’; H)=E -XE,,
Go 8oty = E1 B DI &,

.....

and N = deg(5) — ('";”) —_ ('";fl).
Proof. It follows from Theorem 5.7, Theorem 2.2 and Corollary 4.3, that m(EoKR(m), L?)(q), and
hence, m(Indg(10), L;@)(q), are non-zero.

By Proposition 2.1, it follows that § € M(II, n) with m(K5(IT), L? )(q) # 0, exists. We are left to
prove its uniqueness.

Suppose that§ = (5q,,) € M(I1, n) with non-zero graded multiplicity m(K s(IT), L? )(g)is given,
and E,, ..., &, € Irrp are as in the statement.

By formula (5), we know that foreach1 < g <s, 8
b(A,) = a,4 and e(A;) <e(Ay).

We will show that 6q’r =0, forall 1 < g < s and r # r(q). In other words, we claim that for all
1<q<s,Aq=A;.

Uniqueness will then follow, since &, , = wt(n,) — wt(m,) will be imposed, forall 1 < r < t.

Assume the contrary, that is, 5‘10”’0 = A with ry # r(q,), is non-trivial.

We may select 1 < g, < s to be the maximal index for which such r, exists, and r, to be the
maximal such index. Again, by Lemma 6.2 we know that r, < r(qy).

We write x = b(A)and y = e(Aqo). Then, x < e(A) < y.

Note, that e(A:JO) = x —1 < y. Hence,

qr(@) = A} € Segis a segment with b(A}) =

AN
ay <wim )= Y A f=witm D= D Sue) ®)
q : r(q)=r(qy) q : r(q)=r(qy)

Now, let us consider the index q; = (q,)¥ € I UJ. We set a, = b(Aql) (that is, r; = r(q;), in
caseq; €1.)

Recall that e(Ag'l) = e(AqO) =y. If q; € I, we have e(Aql) < y. Otherwise q; € J and Aq"1 <
Wt(nrl) — Wt(m,1 ). In either case, we obtain

a

y < Wt(nrl) - Wt(mrl) . (9)

By definition of the i — iV operation, we know that r(q,) < r(g,). It follows from maximality
of g, that

Wi, ) =08y, + X, yuq - (10)
q:r(Q=r

Now, the spherical module Lnr1 , up to a shift of grading, was assumed to appear as a subquotient
of a product involving E, . By Proposition 4.4, that means that &, must be a spherical module.

Recalling the description in Proposition 4.5, we see that means E, = Ly, for a multisegment
V=AY + -+ A% € Lad, such thate(A? ) +1 < b(A?), forall1<i<p-1.

Considering (8), (9), (10), we see that the equality r(q,) = r; would have implied 2a, < & =
wt(l"), which is a contradiction.
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Hence, r(q,) < r; and by maximality of g,, we have A; = Ay, for all g with r(g) =r,. In
particular, as an equation in Q, (as opposed to ), we have

A + 3y g, DBy + 1 e(AF), Fj €U, b4)) = a,

wi(l) = wt(n,, ) —wt(m,, ) = {Zq Sr(Q)=ry Alelag) +1, e(A;))

Do’
Suppose first that y < e(AZO). Noting again thaty = e(Agl), we see that such situation can hap-

The containment (9) implies a, < wt(L"). Let p, be the index for which a, <A

pen only when y = e(qu) < e(Aq"z), for an index g, with r(g,) = ry. This is a contradiction to
Lemma 5.6(1).

Otherwise, y = e(AZO). From the containment (8), we also have a,, < wt(I"”), where Eriqe) =
Ly». Using Proposition 4.5 again, these facts point on an existence of an index r(q,) < r, < ry, for
whicha,; < B(""), where E,, = Ly». Reasoning as in the previous case, we see that there must
be anindex g, withr(g,) = r,andy = e(AqZ) < e(A‘q’z). This gives a contradiction to Lemma 5.6(1).

The formula for N follows from the fact that, forall 1 <r < ¢,

|m, |
Ly, =V(m,) = o4, r(q)=rLAtI<< 2r ’

where the product is taken with indices in ascending order.
Finally, the fact that K5(IT) is a monomial follows again from Proposition 4.4. [

Note, that EoL,;, is a quotient module of ZoKR(m), which, up to a shift of grading, equals to
Indg(IT). By Proposition 6.3, we see that m(EoLm,L?)(q) must be a monomial (non-vanishing

follows from Theorem 5.7, as in the proof of Proposition 6.3).
Proposition 6.1 is now a consequence of the Kleshchev-Ram construction (Theorem 2.2).

6.2 | Computing x([, m)

Given (I, m) € A and n = K’'({, m) with all previous associated notations in place, we would like
to obtain a combinatorial formula for the degree

x=x{,m),

for which L, (x) appears as a subquotient of the restriction of LjoL,,.

Let § = (8,,) € M(IL, n) be the matrix supplied by Proposition 6.3, and &, ..., E; € Irry, the
homogeneous modules as in the statement of said proposition.

Forall1 <r <, let n, be the degree for which L, (n,) appearsin E oL, .

Let us recall that the parameterization

m= ZAi
iel

is still given with the index set I taken according to condition (6).
By Lemma 4.2, we know that

KR(m) = Indﬁ(n)<<|”2‘1|> ot <|n21tl>> ’
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and that m(KR(m), L,)(q) = 1. Hence, by Proposition 6.3,
x=n; + - +n,+degd), 1)
where deg(6) is as in formula (2).

Lemma 6.4. Let V, = V(a;b,,..,b;),V, =V(a; b;, ..., b!) be given graded simple modules (as
defined in Subsection 4.1), and L = L, € Irry, a given segment module, for which V,(m) appears as
a subquotientin LoV.

Then, its degree is given as

m=—-#{1<i<k : b(A)<b;<e(r)}.
Proof. We write A = A(c, d). Let us denote the set of indices
A={1<i<k : c<b;<d},

and i; = min A, if A # @, ori; = k + 1 otherwise.
Ifc —1 & {by, ..., by}, considering the equality

A =wt(m(a;b!,..,b)) —wt(m(a;by,...,by)),
we must have c = a, A = {i; <i < k}and ! = k + 1. In this case, by Lemma 4.1 we have

k .
LOV] = LA(a,bl)o ene OLA(a’bil—l)OLOLA(avbil)o eee OLA(a,bk)<(2> + ll - 1> =

Since |A| = k —i; + 1, the statement follows.
Otherwise, let i, be the smallest index for which b; = ¢ —1. We have A = {i; <i <i,}. Then,
by Lemma 4.1,

k
LoVy & Laap))® -+ oL, _°LoLa@p,)® ** *La@bof <2>> =
N k
= Laap)©  °Laap, y°LoLatap,)°La@b,)® + °Lawb,_)°La@b, )°  *La@p (| 5 | = I -
Recall now (formula (5)), that L [X] La, 5, ) appears as a subrepresentation of the restriction of
bi,

La(a,q)- By adjunction, that means that Ly, 4) appears as a quotient of LoL,, . ). Hence, from
9! ’ b4 12
exactness of the convolution product, V,(—|A|) appears in LoV. [l

Let us now attach a few easily computable integer parameters to the permissible pair (I, m) €
2.

First, for any pair of multisegments

ky ke
= 1 _ 2
ml—ZAi, m, =) A€M,
i=1 i=1
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we define the number
Clmy, my) = #{(i,j) : b(A) =e(dAD) +1}.

We recall that [ = }};.; A; € Lad is given with J = {j;,..., j;}, so that all assumptions and
notations of the algorithm in Subsection 5.1 are in place.
In particular, we recall that

n=KCm)= ) Ar.

ieluJ

We keep track of the following sets of indices:

v(l,m)y = {1, 1) €1XT © b(A;) < b(Ay), e(A,) < e(A¥) = e(a;))},
v(l,m), = {(i, ) €IXT © b(&;) < b(A,), e(A) = e(A,) < e(a®)},
v(,m); ={(;, /) ETXT : b(a;) < bA)), e(A*) = e(a,)} .

In these terms, we set the integer
D(, m) = [v(L, m);| — [v(L, m),| + [v(L, m)s] .
Proposition 6.5. For a permissible pair (I, m) € 2, we have x(I, m) = C(I, m) — D(L, m).

Proof. Letus decompose I = U!_,I,,sothatl, ={g €l : r(q) =r}and m, = Zielr A;. Then,

— & !
n, = ZAi +A,,
iel,

where A; = A%, if there exists j € J, such that b(A j) = a,. If such j, does not exist, we treat A; as
an empty segment (thatis, 0 € Q).
Thus, forall1 <r <t,

Wi(E,) = wi(n,) —wt(m,) = ). A(e(A,) +1, e(AM) +41€Q, . (12)
q€l,

By the description of Proposition 6.3, we have

deg® =- ) (Wi(E, ) wi(m,)).

1<r<ry<t

We can write deg(5) = d; + d, with

do=- Y D (A, Ay +1,e(at)),

1<r <<t qq EI’l s qzeIr2

== 3 2 (8.0

1<r <<t eIr1
A straightforward computation (see, for example, [16, Lemma 5.2]) shows now that

dy ==, m); | + [v(L, m),| ,
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where

v(L,m), . =v({,m); n {i,i')€IxI : b(A)<b(Ay)}.
Similarly,

dy = —|v(l,m); .| +C(I,m),

where

v, m); . =v(,m); n {(i,i') €IxI : b(A) <b(Ay)}.
By the identity (11), it is left to show that

ny + - +n, =~ m); \ v, m); | — [v({,m); \ v(I,m); | . 13)

Let us fix 1 < r < t. We have seen in the proof of Proposition 6.3 that E, € Irrj, must be a
spherical module. It then follows, as in that proof, that

Er = LA(I,Q .o OLA; s
for segments A?, ...,A; € Seg, with e(A;’H) +1< b(Alf’), foralll1 <i<p.
Hence, we are left with determining the degree n,, for which L,, (n,) appears as a subquotient
in
LA;o oLA;oLmr .

Taking (12) into account and computing successively with Lemma 6.4, we obtain

no=nl— Y #g €1, 1 e(dy) <e(d,) <e(dP)}, (14)
G €l

where

' {—#{qelr De(A) <e(AD} AL#0 5)

, :
0 Al =0

Finally, we invoke Lemma 5.6(3) to show that the weak inequalities in the formulae (14) and
(15) can in fact be written as equalities. Hence, Equation (13) clearly follows. O

Proposition 6.6. For a permissible pair (I, m) € 2, we have
D, m)=|m]|.
Proof. Fori € I, we write
v([,m) = ([, m), n{i}x D), v([,m), = v, m), n({i} x ), v(I, m); = (L, m); n({i} xJ),

and Dy(L, m) = [v([, m)} | — |v(L, m)} | + [v(L, m)}|. Hence, D(, m) = ¥, ; D;(L, m).
We will prove that D;(, m) = 1, for each i € I. Let us fix i, € I for the rest of the proof.
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Let JUJ = U, 4C, be the cycle decomposition of the set I UJ relative to the permutation
defining n = K'({, m). In particular, we set iy € Cy .

We further divide v(L, m)i? into the disjoint subsets v(L, m);f’“ = (L, m)Z’ N {ip} x C,), foru =
1,2,3, and similarly write D; (I, m) = ¥ cc_Dj o(I, m), for

Dy ol m) = (L, w2 | = o m) ) + (L, m)27)

Let us first consider D; ., (I, m). We may write C,, = {i', ..., ik, jo}, with i' > ... > i¥ indices in
I'and j, €J.
Recall that b(A;1) > ... > b(A;s), and that e(A;) < e(Af:) = e(Ay+1), for 1 <r < k — 1. A partic-

i,0p
2

Moreover, when (i)"Y € I, we easily see that v(L, m)il‘)’“ = {(ip)"}, while v({, m);"’o‘U is empty, as
a consequence of e(A;;) < e(A(iO)v) < e(AiO).

ular consequence is that ([, m)."° must be empty.

Otherwise, (i)"Y = j, € J would mean that v(l, m)il"’o{0 is empty, while v(L, m);‘)’a" = {j,}. Either
way, we obtain that Dio,ao(l, m) =1.
Let a # a € A be fixed. We are left to show that

D; (L, m)=0. 16)

We write again C,, = {il, ..., i j_}, with iL>.> i indicesinI and j, = i € J.Letr, be the
maximal index for which b(AiO) < b(A;2) holds, or r, = —1if no such index exists.

i,

In case that e(Ai&) * e(AiO) holds, forall 1 < r < r, + 1, it is evident that v(I, m),)”, u = 1,2,3
are all empty, and (16) follows.
Otherwise, r, > 0 and we can set 1 < r; < r, + 1 < r; to be the indices which satisfy

frirn<r<ri=4{: e(Ai(rx) = e(AiO)} .

We first claim that b(A; ) < b(Ay3). Indeed, a reversed inequality would imply a contradiction to

Lemma 5.6(1) and the fact that i, ¢ C,, since either (i;f)v = j, or i;l < (i;})v, and

b(Aigs) <b(4) < b(Ai:f) <b(An-1) < b(A(i?)v) )

We then see that v(, m)ilo’a U (L, m)i;’a = {i’’ ™"}, In particular, |v(L, m)ilo’“| + |v(L, m)i;’al =
1. To reach (16), we are left to show that |v(L, m);‘”al =1.
Ifry <k, ore(Ak) <e(A; )hold, we see that (I, m)g”“ = {i"s}.

Finally, let us assume that r; = k_ and that
e(d),) = e(dpa) = e(dy).

This is where Lemma 5.6(2) is invoked to give a contradiction, since, as before, b(Aio) <
b(A(l-;S)v)- I:‘

Let us summarize the insight on RSK-standard modules obtained through the computation of
this section.
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Corollary 6.7. For any ([, m) € 2, the integer A(l, m) appearing in Theorem 5.7 satisfies

—A(l,m) =C(, m)— |m| .

7 | NORMAL SEQUENCES

Let us recall the theory of normal sequences, as developed in [21, 23].
For any non-zero modules M;, M, € D, there is a well-defined non-zero R-matrix map

RM]J\,I2 : M;oM, - M,oM; ,

which is an intertwiner of ungraded quiver Hecke algebra modules. In fact, there is a unique
integer A = A(M;,M,) € Z, for which

Ry m, @ MyoM, — MyoM(—A) ,

is an intertwiner (of graded modules) in D.
It is evident that A(M,(k;), M,(k,)) = A(M;, M,) holds, for any shifts of degree k,, k, € Z.
Let us further recall some properties of the invariant A.

Proposition 7.1.
(1) [23, Lemma 3.1.5] For M € Irrp, and any non-zero modules N, ... N, € D, we have

A(M,Njo - oN,) = AM,N,) + - + A(M,N,) .

(2) [23, Proposition 3.2.8] For M, M, € D and any subquotient module N of M,, we have

A(Ml’MZ) 2 A(MI,N) .
A simple module L € Irrp, is said to be square-irreducible (or real), if LoL is a simple module.
Proposition 7.2. Homogeneous modules in Irrp, are square-irreducible.

Proof. The analogous fact for representations of p-adic groups is known by [33, Proposition 5.15]
(or as part of the general criteria for square-irreducibility in [34]). The statement follows from an
application of a functor of the form &,. O

Given a square-irreducible module L and any M € Irrp, the product LoM has a simple
head (unique simple quotient module) [22, Theorem 3.2], whose isomorphism class is given as
N{(=A(L, M)), for a self-dual N € Irr, and an integer A(L, M) € Z.

In light of Proposition 7.2, this definition of A(L,M) generalizes the notion defined in
Theorem 5.7.

For (L, M) as above, the identity [23, Lemma 3.1.4]

AL, M) = 2A(L, M) — (wt(L), wt(M)) a7

holds.
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Following [21], we say that a tuple (L,, ..., L) of square-irreducible modules in Irry, is a normal
sequence, if the composition of R-matrices

.....

does not vanish (as a map from the space of Lo -+ oL, to that of L; 0 -+ oL;).

Proposition 7.3. [21, Lemma 2.6] For a normal sequence (L, ..., L), the product L,o --- oL, hasa

.....

Proposition 7.4. Let (L, ..., L;) be a tuple of square-irreducible modules in Irrp.
The following are equivalent.

(1) Thetuple (L, ..., L) is a normal sequence.
(2) Thetuple (L,,...,Ly) is a normal sequence, and the identity

A(LlsH) = A(LI’LZ) + -+ A(L19Lk)

holds, for H € Irrp, such that H(h) is the simple head of Lo -+ oL,.
(3) Thetuple (L,, ..., L;) is a normal sequence, and the identity

ALy, H) = ALy, Ly) + - + ALy, Ly)
holds, for H € Irrp, such that H(h) is the simple head of Lo -+ oL,.

Proof. The equivalence of (1) and (2) is [21, Lemma 2.7], together with the observation that
A(Ly,H) = A(Ly, H(h)).
Conditions (2) and (3) are equivalent because of the relation (17), the fact that

Wt(H) = Wt(L,o -+ oLy) = Wt(L,) + -+ + Wt(L;) ,
and linearity of the form (, ) on Q. O

Corollary 7.5. For a normal sequence (L, ..., L), let H{h) be the simple head of Lo --- oL, with
H € Irrp. Then,

h=- Y AUL,L).

1<i<jgk

Proof. The formula for h follows by inductively applying the identity in condition (3) of
Proposition 7.4. O

Let us recall the favorable behavior of the invariant A in the square-irreducible case.
Note first, that A(L, L) = 0 for square-irreducible L € Irry,.

Lemma 7.6. [23, Theorem 4.1.1, Corollary 4.2.3] For given square-irreducible L € Irr;, and any
M € Irrp, let N € glrry, be the simple head of LoM.
Then,

A(L,N) = AL, LoM) = A(L, M)
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holds, and for any simple subquotient S(s) of ker(LoM — N), with S € Irrp, we have

A(L,S) < A(L,M) and —s < A(L,M).

Proposition 7.7. Let (L, ..., L) be a normal sequence, and H(h) be the simple head of the product
Lo oL, with H € Irrp,.
Then, we have

m(Lyo - oL, H)(q) = q" .

In other words, H appears only once in the Jordan-Holder series of (Lo -+ oL )8,
Furthermore, for any H 2L € Irrp, the powers appearing in the Laurent polynomial
m(L,o -+ oLy, L)(q) are strictly greater than h.

Proof. We prove by induction on the product length k.

Clearly, (L,, ..., L;) is a normal sequence. Hence, by Proposition 7.3, L,o --- oL; has a simple
head H'(h"), with H' € Irrp, and b’ € Z.

By Proposition 7.1(1) and the condition in Proposition 7.4(2), we see that

AL, H") = A(Ly,Ly0 -+ oLy) . (18)

Since L, is square-irreducible, H(h) must be the unique simple quotient of L,oH’(h’), and
h=h —ALy,H).

Let T, CT, & Lo - oL, be submodules, so that T, /T, = L(¢) for L € Irrp. It is enough to
show that L 2 H, and that # > h.

Either ker(L,o --- oL, — L,oH'(h’)) or ker(L,oH’(h’'y — H(h)) must contain L{#) as subquo-
tient module.

In the latter case, Lemma 7.6 implies that # > h and A(L,,L) < A(L,,H), proving L 2 H.

In the former case, by exactness of the convolution product, there must exist a subquotient
module L'{#") of ker(L,o --- oL, — H'(h')), with L' € Irr;, and the power ¢ — £’ appearing in
the Laurent polynomial m(L,oL’, L)(q).

The induction hypothesis now implies that L' ¢ H' and that £’ > h'.

By Proposition 7.1(2) and (18), we see that A(L,,L") < A(L;, H'), which by the identity (17)
implies A(L,,L’) < A(L;, H"). Now, by Lemma 7.6,

£—h>¢—-¢">-N1L,,L")>-N(1Ly,H),

and the inequality £ > h follows.
In case that L does not appear as a quotient of (L, oL’)#., it follows again from Lemma 7.6 that

A(Ll’L) < A(LlaL,) < A(LI’H,) = A(LI’H) 3

and L ¢ H is seen to hold again.
Finally, we are left with the case that L(#) is a quotient of L,oL’(#’). The injectivity [22,
Corollary 3.7] of the map N — head(L,oN) on isomorphism classes in Irr; now implies L 2

H. O

Remark 7.8. The bound on subquotient shift degrees in the statement of Lemma 7.6 was proved
using the geometric insight (see [20; 42, Lemma 7.5]) coming from a realization of quiver Hecke
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algebras as extension algebras of perverse sheaves (a la [52]). We are unaware of an alternative
purely algebraic argument.

Hence, we note that parts of Proposition 7.7, though not the simplicity of heads, covertly rely
on the underlying geometry of quiver varieties.

7.1 | Applications for RSK-standard modules

Theorem 7.9. Let L, € Irry, be a simple module, with m € IN. Let
RSK(m) = (1y,...,[,) € Lad®
be its RSK-transform, and
I'(m) = Lyo- oL[w(—d(m)) € R(wt(m)) — gmod

its associated RSK-standard module.

Then, L,, is the head (that is, the unique irreducible quotient) of T(m), and it appears only once
in the Jordan-Holder series of T(m)8t (that is, m(T(m), L,,)(q) = 1).

Moreover, for any L., 2L € Irrp, the graded multiplicity m(I'(m),L)(q), if non-zero, is a
polynomial with zero constant term.

Proof. By Propositions 7.3, 7.7 and Theorem 5.8, it is enough to show that (LII,... ,LIm) is a
normal sequence.
Let m’ € I be the multisegment, for which £(m) = (I;, m’). Then, RSK(m') = (I,,..., 1)
Arguing inductively by Proposition 7.4, it is enough to show the equality

Ay, m') = A, L) + - + A, L) - 19)

Note, that the map n — C(l;, n) from I to Z is clearly additively and depends only on e(n).
Hence, from Proposition 5.3, we see that

CUy,m) = C(Ly, Ly + - + 1) = CUy, L) + - + C(L,, L) - (20)

Recall that (1;,1;) € A, for all 2 <i < w [14, Proposition 2.4]. Thus, Equation (19) follows by
substituting the formula of Corollary 6.7 and applying (20) together with Proposition 5.3 once
more. O

Corollary 7.10. Given 8 € Q., the collection of RSK-standard modules {T'(m)}con, wiim)=g IS @
basis for the Grothendieck group of R(8) — gmod, taken as a vector space over the field Q(q) (with q
acting by shift of degree).

Proof. Expanding RSK-standard modules according to the basis given by Irr(8), we see by
Theorem 7.9 that the transition matrix has a determinant with a non-zero value at g = 0. [
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Theorem 7.11. For 0 # m € IN, the shift of degree defining T'(m) is explicitly read from the data
RSK(m) through the formula

d(m) = — Z/l;f(/lj. —-D+#HE ) 1 di=co for (i, jHwithi < i'},
j=1

where (P, Q) = ((ci’j), (di’j)) is the pair of Young tableaux describing RSK(m), and (17,43, ...)
is the conjugate partition to A(m) (that is, the column shape of P, Q,,,)-

Proof. Since T'(m) is defined by a normal sequence (as described in the proof of Theorem 7.9),
we can use Corollary 7.5 to reach an expression for d(m). Indeed, substituting the formula in
Corollary 6.7 gives

()
dm)==YG-DIGI+ D CE,L), (1)
i=2 I<i<j<w
where RSK(m) = (L4, ..., 1,).
Since A(m) = (L], ..., [L,]), the first part of the sum above may be dually expressed as
- 2@ -1
=1

by standard counting arguments.
Equality between the second parts of the formula appearing in the statement and of Equation
(21) follows directly from the definition of the terms involved. O

Transferring the statement of Theorem 7.9 into the p-adic setting using the equivalences of
Subsection 3.2, settles the natural conjectures posed in [14] regarding the p-adic version of RSK-
standard modules.

Corollary 7.12. Let p € cusp,, be a supercuspidal representation, and & = Z(m) € Irrf any irre-

ducible representation, given by a multisegment 0 # m € IN through the Zelevinsky classification.
Let

RSK(m) = (ly,...,[,) € Lad®
be the RSK-transform of m, and
T(m) :=zZ() x - xZ(1,) € CZ
its associcited RSK-standard module.
Then, I'(m) has a unique irreducible subrepresentation described by Z(m). The isomorphism class

Z(m) appear only once in the Jordan-Hélder series of the representation T(m).

Proof. By Theorem 3.10 and Proposition 3.11, &, (T(m)) = T'(m)'e. The result then follows from
Theorem 7.9 and the description of morphism spaces as in (1). O
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