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Abstract
Despite its being one of Roger Penrose’s greatest contributions to spacetime physics,
there is a dearth of philosophical literature on twistor theory.Theone exception to this is
Bain (2006)—but although excellent, there remainsmuch to be said on the foundations
and philosophy of twistor theory. In this article, we (a) present for philosophers an
introduction to twistor theory, (b) consider how the spacetime–twistor correspondence
interacts with the philosophical literature on theoretical equivalence, and (c) explore
the bearing which twistor theory might have on philosophical issues such as the status
of dynamics, the geometrisation of physics, spacetime ontology, the emergence of
spacetime, and symmetry-to-reality inferences. We close with an elaboration of a
variety of further opportunities for philosophical investigation into twistor theory.

Keywords Twistor theory · General relativity · Theoretical equivalence ·
Geometrisation · Unification · Spacetime emergence

1 Introduction

Contemporary philosophy of spacetime has many facets. As one example: there are
famous andwell-explored debates regarding the ontological status of spacetime: is this
a fundamental entity in its own right (per the substantivalist), or, rather, is spacetime
somehow reducible to material entities and relations between said entities (per the
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relationalist)?1 And as another: there are debates regarding the geometrisation of
physics: what does it mean to geometrise a particular physical theory or effect, and
what are the merits of doing so?2

Sometimes, these debates are broadly orthogonal to one another. For example: sub-
stantivalists and relationalists can debate over the ontological status of the spacetime
manifold in general relativity in light of the hole argument (re-introduced into the
philosophy literature by Earman and Norton (1987)3), but the verdict here is largely
independent of questions of geometrisation.4 And to take another example: one can talk
of the geometrisation of Newtonian gravity in Newton-Cartan theory (see e.g. (Fried-
man, 1983; Knox, 2013)) without calling into question the reality (or otherwise) of
the spacetime manifold.

This being said, there are also natural points of convergence between these topics.
One such point—the point which, indeed, will constitute our exclusive focus in this
article—is twistor theory, developed initially by Roger Penrose (1967). The guiding
idea behind twistor theory is that conformally invariant field theory dynamics on a
spacetime manifold can be mapped to geometrical statements on an alternative space
known as ‘twistor space’, and vice versa. (For recent reviews of twistor theory, see
Adamo (2018); Atiyah et al. (2017).) Via this map, physical theories not only appear to
be purged of their commitment to the basic structure of the spacetimemanifold, but also
appear to be geometrised in a quite radical sense. In physics and mathematics, twistors
have found multifarious applications—for example, to string theory, holography, to
the evaluation of perturbation series (see e.g. (Atiyah et al., 2017)), and to the general
project of unification in physics (see e.g. (Woit, 2021)).However,within the philosophy
of physics, the significance of twistor theory remains lamentably under-explored.

To our knowledge, the only published discussion of twistor theory in the philosophy
literature is due to Bain (2006).5 Although we will engage with Bain’s excellent dis-
cussion quite substantially in what follows, in our view there remains much regarding
twistor theory which warrants greater foundational scrutiny; moreover, there remains
space in the market for a more accessible introduction to twistors for philosophers.6

With all of this in mind, then, the structure of this article is as follows. In §2,
we provide a clear route into twistor theory for philosophers of physics (it should

1 Of course, there is a variety of ways of making more precise the difference between substantivalism and
relationalism—see e.g. (Baker, 2021; Dasgupta, 2011; Earman, 1977; North, 2021; Pooley, 2013a)—but
for now, this characterisation is sufficient.
2 For literature on this issue, see Dürr (2020); Kalinowski (1988); Lehmkuhl (2009).
3 For some philosophical pre-history of the hole argument, see Weatherall (2020).
4 Or at least, isn’t connected in any particularly straightforward way. Perhaps one can argue that it is the
geometrisation of gravity in general relativity—in the sense that this is amanifestation of spacetime curvature
(although see Lehmkuhl (2014) for some contrary thoughts)—which leads to its general covariance, and
thereby to the hole argument raising its head. However, every link in this chain of connections here is
difficult and controversial: see e.g. (Norton et al., 2023) for discussion.
5 There is also (March, 2023), which is approximately contemporaneous with our article; however, since
that piece focuses on non-relativistic twistor theory and its foundational applications, we will not discuss it
further here.
6 Since this already involves a significant amount of work, we limit ourselves to what Bain (2006) refers
to as ‘stone age’ twistor theory (i.e., the theory in the period 1967–80), while noting that contemporary
twistor theory has even broader applications, on which see e.g. (Atiyah et al., 2017).
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be stressed that this constitutes but one such route—we discuss this more below). In
§3, we assess the spacetime–twistor correspondence from the point of view of the
modern philosophical literature on theoretical equivalence, in particular categorical
equivalence. In §4, we further explore the philosophical and foundational significance
of twistor theory with respect to questions of (i) dynamics—is it true that twistor
theory is purged of dynamics, as is sometimes claimed?; (ii) geometrisation—in what
sense does twistor theory offer a novel approach to the geometrisation of physical
theories?; (iii) ontology—what comprise the metaphysical commitments of a theory
set on twistor space?; (iv) the emergence of spacetime—does twistor theory offer
any novel outlook on this issue?; and (v) symmetry principles—does twistor theory
present interesting and novel challenges to Earman’s famous symmetry principles, as
presented in Earman (1989)? All of this achieved, we close this article in §5.

2 Mathematics of twistors

In this section, we present for philosophers (i) the mathematics of twistor space and
some particular paths to the construction of that space (§2.1), and (ii) the Penrose
transformations, which map fields in spacetime (and their dynamics) to geometrical
statements in twistor space (§2.2). With these preliminaries in hand, we will be in a
position to assess in detail in §§3–4 the philosophical significance of twistor theory.

In order to make our exposition as digestible as possible, we attempt here to syn-
thesise aspects of the various expositions of twistor theory found in the standard texts
(Penrose & Rindler, 1988a, b; Ward & Wells, 1990), the more informal treatments
(Huggett & Tod, 1985; Adamo, 2018), and the recent major review article (Atiyah et
al., 2017). Throughout the article, we use notation consistent with Adamo (2018).

Beforewe begin, one further aspect of the twistor theory literature should be flagged
for the aspiring philosopher of twistors: much of the literature works in coordinates,
and generally we will follow suit. Most of the time, the constructions can be lifted
to a coordinate-free description, but this is rarely addressed explicitly. We will see an
example of this shortly.

2.1 Twistor space

There are at least three equivalent ways of defining twistors:7

1. twistors as α-planes,
2. twistors as spinors for the conformal group,
3. twistors as solutions to the twistor equation.

We turn our attention first to approach (3). And to write down the twistor equation,
we should first discuss spinors. These also matter in their own right: as pointed out in
Penrose and Rindler (1988b, p. 43, emphasis added),

7 Equivalent in 4-dimensional flat space, at least: see Atiyah (2017, p. 11), although even there this is not
substantiated.
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two-component spinor calculus is a very specific calculus for studying the struc-
ture of space-time manifolds. Indeed, the four-dimensionality and (+ − −−)

signature of space-time, together with the desirable global properties of ori-
entability, time-orientability, and existence of spin structure, may all, in a sense,
be regarded as derived from two-component spinors, rather than just given.
However [...] there is still only a limited sense in which these properties can be
so regarded, because the manifold of space-time points itself has to be given
beforehand, even though the nature of this manifold is somewhat restricted by
its having to admit the appropriate kind of spinor structure. If we were to attempt
to take totally seriously the philosophy that all the space-time concepts are to be
derived frommore primitive spinorial ones, thenwewould have to find someway
in which the space-time points themselves can be regarded as derived objects.
Spinor algebra by itself is not rich enough to achieve this, but a certain extension
of spinor algebra, namely twistor algebra, can indeed be taken as more primitive
than space-time itself.

In light of the above, we will shortly provide a short exposition of spinor algebra and
calculus, following the presentation by Fatibene and Francaviglia (2003).

In addition to this, it is worth noting that we here consider from the outset (unlike
some other treatments) complexified Minkowski spaceCM as our base space, in place
of themore familiar realMinkowski spaceM. This is partly for purposes of brevity and
partly because “[t]wistors [...] are essentially complex objects. To get a proper under-
standing of twistor geometry, it is therefore necessary to consider complex geometry
and, in particular, the [complexification of Minkowski space]” Penrose and Rindler
(1988b, p. 306, emphasis in original). Complexified Minkowski space is simply the
manifold CM = (

C
4, η

)
with the metric η obtained by holomorphic extension of the

real Minkowski metric.8,9 Note in particular that this is not a case of Wick rotation
since all four coordinates are allowed to range over all complex numbers. Note also
that this space will play a double role: first in constructing twistors, and later in the
correspondence between twistorial objects and fields defined on spacetime. To recover
the field as defined on real spacetime, it suffices to restrict complexified spacetime to
the subset of real spacetime points, so we will typically not do this explicitly in what
follows.10

Our first goal is to define spinor bundles on our base manifold, such that we can
then define spinor fields as their smooth sections. This is in complete analogy to how

8 This means simply that the coordinates in the expression for the metric ds2 = dt2 − dx2 − dy2 − dz2

are allowed to take complex values. Note in particular that this does not make this metric Hermitian. See
Penrose and Rindler (1988b, p. 64).
9 At this point we could still treat CM as a vector space (or an affine space) rather than as a manifold but
soon we will require techniques from differential geometry, so in anticipation we define it as a manifold
right off the bat. The reader should be aware that the mathematical literature often vacillates between the
vector space and manifold descriptions. Luckily, there is an obvious manifold structure on CM: a standard
topology is defined using the Euclidean inner product, and the maximal atlas extends from the identity
global coordinate chart.
10 This is the point at which complexified spacetime differs from complex spacetime, according to the usage
in Penrose and Rindler (1988b, pp. 127–8). Complex spacetimes have no privileged subset designated as
the ‘real’ spacetime. Twistor theory is sometimes also constructed on complex spacetimes.
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we construct a tangent bundle in order to then define vector fields. The difference is
that while 2π -rotations of coordinate frames act as the identity on vector components,
(famously) they flip the sign of spinor components and we instead need a 4π -rotation
to return to the identity. This suggests that rather than an SO(1, 3)-principal bundle we
need instead a Spin(1, 3)-principal bundle, where Spin(m, n) is the universal double
cover of SO(m, n). How this is implemented formally is reviewed in Fatibene and
Francaviglia (2003, §9); here we wish merely to draw attention to the underlying
geometric structures. We have:

Definition 2.1 (Fatibene and Francaviglia (2003), §9.2) A spin structure
(
�̄,�

)
on a

d-dimensional Lorentzian manifold (M, g) is

(i) (spin bundle) a Spin(1, d − 1)-principal bundle �̄, and
(ii) (frame bundle) a principal bundle morphism � : �̄ → F , where F is the

orthonormal frame bundle, i.e. an SO(1, d − 1)-bundle on (M, g).

In the case in which (M, g) isCM, there is a unique spin structure. Here the frame
bundle is an SO(4,C)-bundle onCMwith universal double cover Spin(4,C), recalling
that there is no such thing as signature for complex metrics. We can define the trivial
frame bundle F = C

4 × SO(4,C) and the trivial spin bundle �̄ = C
4 × Spin(4,C).

This will be seen to define a spin structure on CM with � given by the double cover
Spin(4,C) → SO(4,C).

Spinor fields are then defined as smooth sections of the vector bundle Eλ = �̄×λV
where λ is a representation of SO(4,C). We are interested only in the component of
the Lie group connected to the identity so we may work on the Lie algebra level.
We have that so(4,C) ∼= sl(2,C) × sl(2,C), as can be checked easily using Dynkin
diagrams. Representations of sl(2,C) are classified by j ∈ Z/2. Spinor fields in the
( 12 , 0) representation will be denoted σα , where α is an abstract index, i.e. the index
denotes only the rank of the object and in particular never assumes any numerical
values. At any point of the manifold, a spinor field has two components in a given
coordinate frame so we write informally σα = (σ 0, σ 1) with σ 0, σ 1 ∈ C. We also
have ‘conjugate spinors’ in the representation

(
0, 1

2

)
which are denoted σ α̇ . Finally

we have the dual spinors σα , which are sections of the dual bundle E(
1
2 ,0

)∗, and the

conjugate duals.
As with vectors, we can take tensor products to obtain objects of higher rank. We

adopt the common convention that the order among the dotted and undotted indices
does not matter, thus e.g. σα

α̇ = σ α̇
α . There is a way to identify vectors with two-

index spinors and we write informally va = vαα̇ , where va is a vector. To motivate
this, recall that vectors transform in the ( 12 ,

1
2 ) representation of sl(2,C) × sl(2,C).

Following Adamo (2018, § 1.2) and Ward (1990, § 4.2), associate to every vector
va = (v0, v1, v2, v3) ∈ CM—seen here as a vector space—a matrix

vαα̇ := 1√
2

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
. (2.1.1)

Incidentally, in flat spacetime, every point is associated with a vector which is then
manifestly represented as a spinor–conjugate spinor pair.
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With objects of higher rank, the prescription is simply to replace every tensorial
index with a pair of spinorial indices, exactly one of which should be dotted. One
makes much use of symmetrised and antisymmetried indices,11 so it is important to
note that skewing over more than two spinor indices always gives zero, essentially
because spin space is two-dimensional.12 We also make a choice of a non-zero skew
two-index spinor εαβ which allows for the identification of spinors and dual spinors in
the following way: σα = σβεβα and σα = εαβσβ . Note that, unlike the metric tensor,
εαβ is skew so index placement matters. The usual convention is summarised by the
mnemonic ‘adjacent indices, descending to the right’. The Levi-Civita connection ∇a

on M can be extended to a connection on spin bundles ∇αα̇ and we write informally
∇αα̇ = ∇a .13 In a particular coordinate frame, this amounts to ∇αα̇ = ∂

∂xa where
xαα̇ = xa is the position vector relative to some origin. Finally, this allows us to write
down the ‘twistor equation’,

∇ (α
α̇ ωβ) = 0, (2.1.2)

where brackets denote symmetrisation and of course ∇α̇
α = εαβ∇βα̇ . Solutions to

Eq. 2.1.2 can be found by proceeding á la Penrose and Rindler (1988b, pp. 45–6).
First, consider the object∇α̇

α∇β̇
βωγ , whereωγ solves the twistor equation. The object

is skew in the indices βγ :

∇α̇
α∇β̇

βωγ = ∇α̇
α∇β̇

(βωγ ) − ∇α̇
α∇β̇

γ ωβ = −∇α̇
α∇β̇

γ ωβ . (2.1.3)

In flat space, derivatives commute so the object is also skew in αγ . Hence it is skew
in all three indices αβγ , meaning that it vanishes since (recall) spinorial objects can
only be non-trivially skew in up to two indices. Therefore, ∇β̇

βωγ is constant. Since
it is skew in the indices βγ , it has to be proportional to the unique skew two-index
spinor εβγ . Hence

∇βα̇ωγ = −iεβ
γ μα̇ , (2.1.4)

where μα̇ is a constant spinor and −i is inserted for later convenience. Integrating
Eq. 2.1.4 then yields the general solution to the twistor equation

ωα = λα − i xαα̇μα̇ , (2.1.5)

with λα a constant of integration and xαα̇ the position vector relative to some origin.
The solutions of the twistor equation are determined fully by the spinors λα and μα̇ ,
i.e. by four complex numbers. Now define twistor space T to be the vector space of
the solutions to the twistor equation, making it a 4-dimensional complex vector space

11 It is perhaps instructive to illustrate what permuting abstract indices amounts to. Tensors can be defined
uniquely by their action on vectors and covectors. Consider a tensor Tab which maps from the set of pairs of
vectors to an algebraic field. For any two vectors va , ua , we can define Tba via Tba(va , ua) = Tab(u

a , va),
i.e. by flipping which argument is passed to which ‘slot’. Such contractions are more commonly written
Tbavbua = Tabu

avb .
12 To see this, expand the antisymmetrisation in any spin frame and realise that out of any three indices,
two will necessarily be numerically equal, as in Penrose and Rindler (1988a, p. 136).
13 See Huggett and Tod (1985, p. 28), although strictly they claim this only for real manifolds.

123



European Journal for Philosophy of Science             (2025) 15:2 Page 7 of 35     2 

coordinatised by the two spinors λα and μα̇ as in Huggett and Tod (1985, p. 54). A
twistor Z A ∈ T can be written as14

Z A = (ωα, μα̇) , (2.1.6)

and is also coordinatised by four complex numbers so we write informally Z A =
(Z1, Z2, Z3, Z4) with Z1, Z2, Z3, Z4 ∈ C.

We can establish a correspondence between (complex) spacetime points and
twistors by considering the points at which the field ωα vanishes. This yields the
so-called ‘incidence relation’ (also sometimes called the ‘Klein correspondence’15)

λα = i xαα̇μα̇. (2.1.7)

For a given twistor Z A = (λα, μα̇), what is the locus of spacetime points xαα̇ that
satisfies the incidence relation? It can be shown—see Huggett and Tod (1985, p. 56)—
that this locus is a 2-plane with the additional properties that
1. every tangent is null,
2. any two tangents are orthogonal,
3. the tangent bivector is self-dual.16

Such an object is referred to as an ‘α-plane’. Now it is clear how definition (1) links to
definition (3). Notice also that Eq. 2.1.7 is invariant under rescalings of the twistor by
a non-zero complex number. This motivates the definition of projective twistor space
PT, coordinatised by the homogeneous coordinates Z1 : Z2 : Z3 : Z4.17 Commonly,
PT is referred to as ‘twistor space’ whereas T is called ‘non-projective twistor space’.
Since we had T ∼= C

4, then also PT ∼= CP
3.

It is useful to divide PT into three subspaces PT+, PN, and PT
− depending upon

whether the twistor ‘norm’

‖Z A‖ = Z̄2Z0 + Z̄3Z1 + Z̄0Z2 + Z̄1Z3 (2.1.8)

is positive, negative or zero. One can show from the incidence relation that a null
twistor (‖Z A‖ = 0, i.e. Z A ∈ PN) corresponds to a real null geodesic (light ray) in
M, i.e. that the twistor space of real Minkowski space is PN.18

14 Note that Adamo (2018) has Z A = (λα, μα̇) here. We take this to be a typographic error.
15 Note, though, that typically the terminology ‘Klein correspondence’ is reserved for the context in which
one is working with compactified complexified Minkowski space CMC , more on which below.
16 ‘Self-duality’ is a notion that appears all over the literature on twistor theory, so let us be clear about
what it means. Recall the Hodge star operator, familiar from e.g. the construction of the dual Faraday tensor
in classical electrodynamics. On 2-forms, the action of the operator is simply Fab 	→ ∗Fab = 1

2 εab
cd Fcd ,

where ε is a choice of non-zero skew 4-index tensor that represents a choice of orientation. Since ∗∗ = −1,
the eigenspace of the operator decomposes into the subspace with eigenvalue +i (self-dual two-forms) and
that with eigenvalue −i (anti-self-dual two-forms). The operator generalises to arbitrary k-forms.
17 A brief refresher on projective spaces. Given a real vector space V, we can construct the projective
space PV by identifying nonzero real multiples of vectors, i.e. PV = {[v] : v′ ∈ [v] if v′ = λv for λ ∈
R \ 0}. Projective spaces have a natural manifold structure. But clearly homogeneous coordinates are not
a coordinate system, as they are many-to-one: indeed there is no global coordinate system for projective
spaces, as is typical of manifolds.
18 See (Adamo, 2018, § 2.1).
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There is one complication that we have not yet dealt with. Looking at the incidence
relation Eq. 2.1.7, it is clear that if μα̇ = 0, then λα also vanishes but then the
entire twistor vanishes, meaning that it cannot be represented using homogeneous
coordinates. Unless, that is, xαα̇ is allowed to be infinity. We can indeed achieve this
through compactification, so what we have actually shown is that CP3 is the twistor
space for compactified complexified Minkowski space CMC :

PT := PT(CMC ) = CP
3 . (2.1.9)

If we instead wish to work with the twistor space for CM, we simply have to remove
the points in the full twistor space corresponding to spacetime infinity: PT(CM) =
{(λα, μα̇) ∈ CP

3 : μα̇ �= 0}. This gives a subset of the full twistor space which is
commonly written19

PT(CM) = CP
3 − CP

1 . (2.1.10)

There is another way of looking at this, presented in Adamo (2018, § 2.3). Notice
that the full twistor space PT = CP

3 represents the entire class of conformally flat
spacetimes, essentially because the twistor equation is conformally invariant. To pick
out the desired conformal structure, one introduces an object called the infinity bi-
twistor IAB . In this way, one can for example show that the twistor space of Euclidean
anti-de Sitter spacetime (a conformally flat spacetime) is PT+.20

In the midst of all this formalism, it is easy to lose sight of what the underlying idea
behind twistors is supposed to be. Recall that the original goal was to unify spacetime
and spinor degrees of freedom. The natural object to consider, then, is

G2(C
4) = {2-complex-dimensional subspaces of C4} (2.1.11)

which is called the ‘Grassmannian’. Here,C4 is to be understood as a vector space, but
in fact G2(C

4)will have a canonical manifold structure. Since spinors are represented
locally by two complex numbers, and (complexified) spacetime points by four, the
Grasmannian seemingly provides the spinor degrees of freedom at each point of com-
plexified spacetime. The Grasmannian also has a canonical manifold structure, and in
fact we have G2(C

4) = CM
C . Compactified complexified spacetime CMC provides

spinor degrees of freedom for each point ofC4. Then, asWoit (2021, p. 16) puts it, “[a]
space-time point is thus aC2 inC4 which tautologically provides the spinor degree of
freedom at that point. The spinor bundle S is the tautological two-dimensional com-
plex vector bundle over [G2(C

4)] whose fiber Sm at a point m ∈ [G2(C
4)] is the C2

that defines the point.” To link to twistors, we proceed along the lines of Ward (1990,
§1.2), and first define the ‘flag manifold’

Fd1...dn := {(S1, . . . , Sn) : S jare d j -dimensional subspaces of T

and S1 ⊂ · · · ⊂ Sn} (2.1.12)

19 E.g. in Atiyah (2017 p. 7).
20 The reader will notice that we do not discuss definition (2) from the list. This is because we think that it
does not contribute to the questions raised in this article, although it is useful to know it exists for the sake
of completeness.
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We use these flag manifolds to define complex manifolds of twistor geometry.
Consider three special twistor manifolds (twistor manifolds because the vector space
chosen to construct the flagmanifold is the twistor spaceT), F12, F1 and F2.We define
two maps α and β such that

F1
α← F12

β→ F2. (2.1.13)

These mappings are projection mappings and Eq. 2.1.13 is called a ‘double fibra-
tion’. A correspondence between F1 and F2 is an assignment of a subspace c(p) ⊂ F2
for each subspace p of F1 (since F1 is a collection of subspaces), where c = α−1◦β.21

A double fibrationEq. 2.1.13 always yields a correspondence betweenF1 andF2. Now,
since F1 is a collection of 1-complex-dimensional subspaces of T, by definition it is
a projective space. So F1 = PT. F2 is a collection of 2-complex-dimensional spaces.
So from what we have remarked in this section, F2 = G2(C

4) = CM
C . We denote

F12 simply as F. F is nothing but the correspondence space between PT and CM
C .

So one could rewrite the double fibration Eq. 2.1.13 as

PT
α← F

β→ CM
C . (2.1.14)

The double fibration Eq. 2.1.14 allows us to transform from PT to CMC and vice-
versa; it is therefore a geometrical statement of the incidence relation Eq. 2.1.7.

2.2 Penrose transformations

‘Penrose transformation’ is anumbrella termdenoting the transformations from twisto-
rial (geometric) objects to solutions of various (dynamical) classical field theories
defined on a spacetime manifold, and vice versa. The original (‘the’) Penrose trans-
formation describes solutions of the massless free (non-interacting) field equation of
arbitrary rank and will be discussed in §2.2.1. This can be extended (under some con-
ditions) to gauge potentials generating these fields in what is known as the ‘Sparling
transform’. Another case of interest to high energy physics is the ‘Ward transform’,
which pertains Yang-Mills theories, again under some rather limiting conditions lead-
ing to what is called the ‘Googly problem’. In this article, we will skip over these
transformations; however, an accessible account is given by Adamo (2018). We will,
however, in §2.2.2 sketch a proof of ‘Kerr’s theorem’,which relates shear-free null con-
gruences inCM and homogeneous, holomorphic functions onPT. Finally we describe
in §2.2.3 the ‘non-linear graviton’: a construction due to Penrose that describes solu-
tions to the Einstein field equations, again only in some limited cases.22

2.2.1 Zero rest-mass Penrose transform (ZRMPT)

To set the stage for the original Penrose transformation—the ‘zero rest-mass Penrose
transformation’ (ZRMPT)—wefirst provide a short discussion of classical field theory

21 This ‘correspondence’ is a generalisation of a function in the sense that it maps objects in the domain to
subsets of the range.
22 For further philosophical discussion of these transformations, see Bain (2006).
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and in particular of massless (zero rest-mass) fields. A simple (and hopefully familiar)
example is that of a Maxwell field in classical electrodynamics. The field strength
tensor in spinor indices is

Fαα̇ββ̇ = ∂αα̇Aββ̇ − ∂ββ̇ Aαα̇. (2.2.1)

It is easy to observe that this is antisymmetric in αα̇ and ββ̇. This antisymmetry
can be attained if Fαα̇ββ̇ is symmetric in the dotted indices and antisymmetric in the
undotted indices or vice versa. This property of the field strength tensor results in the
decomposition

Fαα̇ββ̇ = εαβF
′
α̇β̇

+ εα̇β̇ F̃αβ. (2.2.2)

Here, F ′
α̇β̇

and F̃αβ are the ‘self dual’ (SD) and ‘anti-self dual’ (ASD) parts of the

field strength tensor, respectively.23 It should be remarked upon that in the context of
classical fields, this decomposition is not the most natural: both F ′ and F̃ are complex
since we have F± = 1

2 (F ∓ i ∗ F) as can be verified easily. Further, if the overall field
F is to be real—as it is, classically—then the two components have to be complex
conjugates of each other, as is likewise verified easily. With a view to quantum theory,
however, these components represent the right- and left-handed photons respectively
and are indeed independent of each other since F is complex. The first source-free
Maxwell equation in terms of spinor indices is then given as

∂αα̇Fαα̇ββ̇ = 0. (2.2.3)

On substituting the decomposition given by Eq. 2.2.2 into the Maxwell equation Eq.
2.2.3, we get

∂α̇
β F

′
α̇β̇

+ ∂α

β̇
F̃αβ = 0. (2.2.4)

The Bianchi identity in terms of SD/ASD decomposition of the field strength is
given as

∂α̇
β F

′
α̇β̇

− ∂α

β̇
F̃αβ = 0. (2.2.5)

Eq. 2.2.4 and Eq. 2.2.5 give rise to the zero rest-mass (ZRM) equations in the case of
the electromagnetic field (spin 1, helicity +1,-1):

∂α̇
β F

′
α̇β̇

= 0, (2.2.6)

∂α

β̇
F̃αβ = 0. (2.2.7)

So we obtain free-field equations expressed entirely in terms of SD and ASD compo-
nents of the field strength tensor. F̃αβ (undotted indices) is a ZRM field of negative
helicity and F ′

α̇β̇
(dotted indices) is a ZRM field of positive helicity.

We obtain a similar set of ZRM equations in the case of the linearised vacuum
gravitational field resulting froma similar decompositionof theWeyl tensorϕabcd . This

23 See footnote 16.
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decomposition contains components that encode the SD and ASD parts of the Weyl
curvature. We obtain the following equations (after linearizing—i.e. after replacing
the covariant derivative with a partial derivative):

∂α̇
β ϕ′

α̇β̇γ̇ φ̇
= 0, (2.2.8)

∂α

β̇
ϕαβγφ = 0. (2.2.9)

In general, a ZRM field φ of helicity h (having 2|h| dotted or undotted indices,
depending on whether it is a negative or positive helicity field), obeys the differential
equations

∂βα̇1φα̇1...α̇2|h| = 0 (h > 0), (2.2.10)

∂α1β̇φα1...α2|h| = 0 (h < 0). (2.2.11)

One of the key properties of ZRM equations is that they are conformally invariant
(Adamo,2018,§3.1).24 Also, it is worth noting that conformal invariance is encoded in
twistor space. So this motivates the construction of ZRM fields in terms of twistorial
objects. From the incidence relation Eq. 2.1.7, we observe that a fixed point in CM

corresponds to a twistor line (X ∼= CP
1) in PT. So in order to express a field which

is local on CM in terms of twistorial objects, it is natural to integrate over X ∼= CP
1

and excise the CP
1 degrees of freedom. The following is one natural such integral

construction (considering a negative helicity field):

φα1...α2|h|(x) =
∫

X
Dμ ∧ μα1 . . . μα2|h| fX (Z A). (2.2.12)

There is a lot to explain in order to justify the above construction. Here Dμ (=
μαdμα) is a holomorphic differential form onCP1: Dμ ∈ �(1,0)(PT,O(2)) (i.e. (1, 0)
form on PT), homogeneous of projective weight 2.25 We wedge it with μα1 . . . μα2|h|
because μα is the most natural choice to account for the 2|h| indices on the LHS.
Ignoring for now the f term in the integrand, the ingredients that we have discussed
so far make the integrand a (1, 0) form of homogeneity 2|h| + 2. But, in order for the
integral to make sense, the integrand should be a (1, 1) form of homogeneity 0 (the
homogeneity necessarily has to be zero for the integral to be well-defined, because we
are integrating over the projective space). So we add an extra ingredient f (Z A) (where
the subscript X denotes f being restricted to the twistor line over which the integral
is performed) in order to make the integral consistent and well-defined. Thus f ∈
�(0,1)(PT,O(−2|h|−2)). So, after constructing an integral that is consistent andwell-
defined, the obvious question we ask is whether Eq. 2.2.12 satisfies the ZRM equation
Eq. 2.2.11. It turns out that this is indeed the case, given that f is a holomorphic
function (i.e. independent of the conjugated twistor variables). This holomorphicity

24 Following Wald (1984), a field equation for � is conformally invariant of conformal weight s ∈ R

provided that � is a solution with metric gab iff �s� is a solution with metric �2gab .
25 By projective weight 2, we mean f (r Z A) = r2 f (Z A)).
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condition on PT can be expressed as ∂̄ f = 0, where ∂̄ is the Dolbeault operator,
the generealisation of the exterior derivative to complex manifolds.26 However, there
are some trivial solutions of which one wishes to dispose. Note that ∂̄2 = 0, as for
the exterior derivative. This implies that f = ∂̄g also satisfies the holomorphicity
condition ∂̄ f = 0. However, on substituting f = ∂̄g into the integral Eq. 2.2.12, the
ZRM field vanishes identically. So we should exclude functions f of the form f = ∂̄g
from the space of functions f that are holomorphic. So, we conclude that

f ∈
{
h ∈ �(0,1)(PT,O(−2|h| − 2)) : ∂̄h = 0, h �= ∂̄g

}
(2.2.13)

in order for the integral Eq. 2.2.12 to represent a nontrivial ZRM field. Further, from
the linearity of the integral, we know that any two functions that differ by an ∂̄-
exact form will evaluate to the same field, so we wish to treat them as equivalent. So
we are working with a cohomology group ker∂̄/im∂̄ , in this case the first Dolbeault
cohomology group, H (0,1)(PT,O(−2|h| − 2)).27

We can carry out a similar procedure for ZRM fields of positive helicity. What we
have shown here is that helicity h ZRM fields onCM can be specified by cohomology
classes on twistor space. One can prove that this holds the other way around as well—
see e.g. (Eastwood et al., 1981)—although we will not go into the details here. The
final result is an isomorphism relation between helicity h ZRM fields on CM and
Dolbeault cohomology classes on twistor space:

Helicity h ZRM fields onCM ∼= H (0,1)(PT,O(2h − 2)). (2.2.14)

In fact, the isomorphism is for any U ⊂ M
C open and convex, as verified in Ward

(1990, §§ 7.1–2), which also specifies precisely inwhat sense this is an isomorphism.28

We refer to this construction as the ‘zero rest-mass Penrose transform’ (ZRMPT). If we
are interested in solutions on real Minkowski spaceM, we can find a solution on CM
an restrict it to real coordinates, but there is a caveat: since the d’Alembertian (‘wave’)
operator is hyperbolic, we need to extend our solution space to generalised functions
in order to recover the well-known non-smooth solutions to the wave equation. More
discussion on this point can be found in Ward (1990, § 7.4). At the end of the day, we
obtain the Penrose transformation:

Helicity h ZRM fields onM ∼= H (0,1)
A (PN,O(2h − 2)), (2.2.15)

where A denotes that we are working with distributions, i.e. generalised functions.
This is Eq. 7.4.10 in Ward and Wells (1990). Note that, unlike for Eq. 2.2.14, Ward

26 See Adamo (2018, p. 15) for more details.
27 This is also isomorphic to the first Čech cohomology group Ȟ1(U,O(−2|h| − 2)), which is a sheaf
cohomology. The isomorphism goes through via Dolbeault’s theoremwith U a good open cover of PT—see
Maddock (2009).
28 In particular, the result to which we refer is Theorem 7.2.3. Note that this result is expressed in terms
of sheaf cohomology, which we are free to convert to Dolbeault cohomology via Dolbeault’s theorem
discussed in footnote 27. In addition, instead of talking about the set of ZRM fields, one talks about sections
of sheaves �(Z) in order to define a sense of isomorphism.
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and Wells (1990) do not prove (indeed, do not even claim) that Eq. 2.2.15 is an
isomorphism, in the above sense. For an isomorphism between real Minkowski space
and twistor space, one would need to use second cohomologies—see Ward (1990,
Thm. 7.4.5). This makes it less obvious that to recover fields on real Minkowski
space it is sufficient to restrict the constructions on complexified Minkowski space,
as claimed by e.g. (Adamo, 2018) and as discussed above. Still, one can work with
second cohomologies and presumably recover the desired results in that way. We
discuss some of these issues further in §3.

2.2.2 Kerr’s theorem

Kerr’s theorem establishes a correspondence between holomorphic functions on
twistor space and shear-free null congruences in Minkowski space. A null congru-
ence is a set of non-intersecting null geodesics in an open region U , such that there is
a geodesic passing through each point inU . The tangent vectors to these null geodesics
define a vector field Ka (up to a scale) and so a spinor field μα (also up to a scale).
Then the geodesic equation in terms of the spinor field μα is given as

μαKa∇aμα ≡ μαμβμ̄β̇∇ββ̇μα = 0. (2.2.16)

Notice, in spinorial terms, that the directional derivative is along the μβμ̄β̇ direction
since the geodesic is in the μβμ̄β̇ direction. The shear of the null congruence is given
as29

σ = μαμβλ̄β̇∇ββ̇μα, (2.2.17)

with the spinor λα satisfying μαλα = 1 and μβμ̄β̇∇ββ̇λα = 0. If the congruence is
shear-free, then σ = 0, in which case we can combine the two equations to obtain an
equation for a shear-free congruence,

μαμβ∇ββ̇μα = 0. (2.2.18)

(In what follows, we use ‘adapted’ coordinates, replacing covariant derivatives
with partial derivatives.) Solving for spaces with conformal curvature has certain
difficulties discussed in (1985, p. 49); in line with that work we now proceed to work
with conformally flat spacetimes. In order to solve Eq. 2.2.17, we pick a constant and
normalized dyad (κα, ρβ ) and coordinatise μα as

μα = t(κα + Lρα); L = μ0/μ1 = −μ1/μ0. (2.2.19)

On substituting in Eq. 2.2.18, we obtain

∂0α̇L − L∂1α̇L = 0. (2.2.20)

29 We don’t prove this here—for details, see Huggett and Tod (1985).
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Recalling Eq. 2.1.1, we can write these equations in Minkowski coordinates repre-
sented by a pair of SL(2,C) Weyl spinors:

xαα̇ =
(
t + z x + iy
x − iy t − z

)
=

(
τ ς

ς̄ ω

)
. (2.2.21)

Then we obtain the equations:

∂L

∂τ
− L

∂L

∂ς̄
= 0 (α̇ = 0), (2.2.22)

∂L

∂ς
− L

∂L

∂ω
= 0 (α̇ = 1). (2.2.23)

Using the method of characteristics to solve these equations, we arrive at

F(Lτ + ς̄ , Lς + τ̄ , L) = 0. (2.2.24)

The solution of our equations is determined byEq. 2.2.24.Making use of Eq. 2.2.19,
we can rewrite Eq. 2.2.24 in terms of a homogeneous holomorphic function of four
variables, as

f
(
−i xαα̇μα, μα

)
= 0. (2.2.25)

So we see that a shear-free null congruence is determined by a homogeneous holo-
morphic function of four variables. This should certainly tempt one to invoke twistors
in the analysis. Consider the point on PN, Z A = (πα, μα̇), where πα = xαα̇μα̇ (xαα̇

being real). Consider the zero locus of an analytic function on twistor space, f (Z A),
given by

f (Z A) = 0. (2.2.26)

The intersection set of the surface traced out by the zero set and PN is given by

f (i xαα̇μα̇, μα̇) = 0, (2.2.27)

where again xαα̇ is real. So, clearly from the above analysis each point belonging to
the intersection set defines a null geodesic in the direction of μαμ̄α̇ , passing through
xαα̇ and the intersection set defines a shear-free null congruence in the Minkowski
space. This result is what is known as Kerr’s theorem.

2.2.3 The nonlinear graviton

So far, we have discussed two different Penrose transformations in the context of
conformally flat spacetime physics. One can extend such transformations to space-
times with conformal curvature, although typically this is not straightforward. The
twistors are well-defined for conformally flat spacetimes (i.e. ϕαβγ δ = 0 and
ϕ̄α̇β̇γ̇ δ̇ = 0) because the solutions of the twistor equation are constrained by the

condition ϕαβγ δω
δ = 0. We can impose the conditions ϕαβγ δ = 0 and ϕ̄α̇β̇γ̇ δ̇ �= 0
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on the complexified spacetime. Note that such a condition cannot be imposed on real
spacetime because the dotted and the undotted Weyl spinors are complex conjugates
and thus not independent of each other. In the complex picture, we can treat the dotted
and undotted Weyl spinors as independent quantities and thus can impose the above
conditions. This requires that the Weyl tensor is anti-self-dual and thus we define a
spacetime M which is referred to as anti-self-dual. For such an M, it is possible to
construct a projective twistor space PT (note that this is not the same as the projective
twistor space PT). We do not sketch a proof of the construction in this section, but we
formally state the twistor correspondence known as the ‘non-linear graviton Penrose
transform’ (for a proof, see Huggett and Tod (1985)). The statement is this: from a
solutionM of vacuum Einstein equations with anti-self-dual Weyl curvature, we can
construct a four dimensional complex manifold T, equipped with the following:

1. a ‘homogeneity operator’ ϒ = μα˙ ∂
∂μα˙ ,

2. a projection π on the dotted spin space ,
3. 2-forms τ = εα̇β̇dπα̇ ∧ dπβ̇ and μ = εαβXαα̇Y ββ̇πα̇πβ̇ (where X and Y are

tangent vectors to fibre of T containing a particular α-plane) on each fibre over
the dotted spin space ,

4. a four-parameter family of holomorphic curveswhich are compact andhave normal
bundle O(1) ⊕ O(1) in PT.

3 Theoretical equivalence

So much for the technical background on twistor theory. In this section, we explore
the sense in which a theory set on twistor space is ‘equivalent’ to a relativistic theory
set on a Lorentzian spacetime (in particular CM, for reasons discussed below); to
do this, we draw on philosophers’ recent work on theoretical equivalence, and on
different ways of cashing out this notion, with particular attention given to categorical
equivalence (since, being theweakest ‘mainstream’ notion of theoretical equivalence, a
failure of categorical equivalence implies also a failure of other notions of theoretical
equivalence—e.g., definitional equivalence or Morita equivalence—see Weatherall
(2019a, b)).30,31 For the sake of keeping the discussion tractable while nevertheless
seeking to make an interesting philosophical point, most of our considerations in this
section focus upon the case of the zero rest-mass Penrose transformations (ZRMPTs),
introduced in the previous section. Specifically, in §3.1, we provide some background

30 For a recent generalisation of the notion of categorical equivalence to theory kinematics, see March
(2024b).
31 A referee has correctly pointed out to us that in e.g. the physics literature on dualities, ‘equivalence’ is
often cashed out in terms of sameness of correlation functions, etc. (See e.g. Read (2016) for discussion
on this.) We agree; however, there are three points to make here. First: this understanding of equivalence
has to do primarily with empirical equivalence, since (say) correlation functions are (in the terminology
of Van Fraassen (1980)) the ‘empirical substructures’ of the relevant models; this notion of equivalence is
weaker than theoretical or physical equivalence. Second: understanding equivalence in terms of ‘sameness
of correlation functions’ makes sense only in the context of quantum theories, which are not our concern
here. Third: sinceWeatherall (2016a) cashes out theoretical equivalence as categorical equivalence such that
empirical consequences are retained via the translation functors, the categorical equivalence programme
can in fact subsume this particular understanding of empirical substructures.
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to the existing philosophical literature on categorical equivalence, and in §3.2 we
consider categorical equivalence in the case of ZRMPTs.

3.1 Background on categorical equivalence

Weatherall (2016a) has proposed a criterion of equivalence of physical theories,
according to which two given theories are equivalent just in case (a) their associated
categories of models are equivalent, and (b) the functors realising this equivalence
preserve empirical content. The category of models associated with a theory T is a
category the objects of which are models of T , and the morphisms of which relate
models regarded as having the ‘same structure’.32

Two categoriesA andB are equivalent if and only if there exist functors F : A → B
and G : B → A such that FG ∼= 1B, and GF ∼= 1A. Equivalently, the categorical
equivalence of A and B amounts to the existence of a functor relating them which is:

Full: For all objects a, b ∈ A, the map ( f : a → b) 	→
(F( f ) : F(a) → F(b)) induced by F is surjective.

Faithful: For all objects a, b ∈ A, the map ( f : a → b) 	→
(F( f ) : F(a) → F(b)) induced by F is injective.

Essentially surjective: For every object x ∈ B, there is some object a ∈ A and
arrows f : F(a) → x and f −1 : x → F(a) such that
f ◦ f −1 = 1x .

A functor ‘forgets structure*’ just in case it is not full; ‘forgets stuff’ just in case it
is not faithful, and ‘forgets properties’ just in case it is not essentially surjective.33

3.2 Categorical equivalence andmassless free fields

With this lightning-speed review of categorical equivalence in hand, in this subsection
we now apply to twistor theory the kinds of considerations on categorical equivalence
propounded by Nguyen et al. (2020). In particular, we are interested in whether the
twistor-theoretic formulation of field theory is categorically equivalent to the standard
spacetime formulation, or whether there is a way twistors in which can realise the
latter with less overall structure*.34

Recall from the discussion in §2.2.1 of the ZRMPT that there is a one-to-one
correspondence between helicity h ZRM fields on CM and Dolbeault cohomology
classes on PT. Since the correspondence is an isomorphism for Eq. 2.2.14 but not for
Eq. 2.2.15, we focus on the former in what follows. That is to say: in this subsection
we consider only the categorical equivalence of a field theory set on CM and twistor
space; clearly, this sense of equivalence is not as directly pertinent to questions of

32 This will be an interpretative matter—see e.g. (March, 2024a). For relevant background on category
theory, see Mac Lane (1998).
33 For more detail on the interpretation of ‘structure*’, ‘stuff’, and ‘properties’, see Baez et al. (2004).
Here, we follow Nguyen et al. (2020) in writing ‘structure*’ rather than just ‘structure’, to make clear that
the term is being deployed in a technical sense.
34 Since amount of structure* is a functor-relative notion, there might exist one functor which preserves
structure* and another which does not.
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which of two theories is most apt to describe the actual world, although note that
theories which involve computations on CM do still have operational and empirical
significance—consider, e.g., theories obtained via Wick rotation.

The fact that one obtains the same field from any choice of class representative
leads one to conjecture that this choice is related to the usual gauge freedom wherein
the same field is generated by an entire class of gauge potentials. This is supported
by Sparling (1990, p. 173), which holds that the “freedom in the choice of solutions
[of the ZRM equation] corresponds precisely to the gauge freedom [in the gauge
potential]”—although for certain specific reasons we will see below that this claim is
in fact problematic. Recall from Ward (1990, §7.2)35 that the potential for a negative

helicity field φα1α2...α2|h| is a spinor field ψ
α̇2...α̇2|h|
α1 such that

∇α1(α̇1ψ
α̇2...α̇2|h|)
α1 = 0, (3.2.1)

φα1α2...α2|h| = ∇α̇2|h|(α2|h| · · · ∇α̇2α2)ψ
α̇2...α̇2|h|
α1 , (3.2.2)

where the symmetrisation in Eq. 3.2.2 is to be performed over the undotted indices.
Notice the gauge symmetry

ψ
α̇2...α̇2|h|
α1 → ψ

α̇2...α̇2|h|
α1 + ∇(α̇2

α1
γ α̇3...α̇2|h|), (3.2.3)

where γ α̇3...α̇2|h| is any spinor field.
Now we are in a position to define our categories. We consider affine complex-

ified Minkowski space CM and its twistor space PT. Let Twist be the category of
all the individual members of the equivalence classes from Eq. 2.2.14. Let the mor-
phisms be provided by the ∂̄-exact forms relating individual members of a class. Then
morphisms exist only between members of a given equivalence class. For a given
helicity h, the models are then given by

(
PT, ∂̄, f

)
, where f is any representative

f ∈ [ f ] ∈ H0,1 (PT,O(2h − 2)). For completeness, consider also the category
Class whose objects

(
PT, ∂̄, [ f ]

)
are provided by entire equivalence classes and the

only morphisms are the identity arrows.36 Conversely, the category Field has objects
(CM, φ), where φ solves the helicity h ZRM field equation, and the morphisms are
given by diffeomorphisms37 χ : CM → CM that preserve the field: χ∗φ = φ. In
addition, construct the category Gauge with objects being the gauge potentials ψ

generating the helicity h field φ via Eq. 3.2.2, and the arrows being provided by both
the diffeomorphisms that preserve the gauge potential and the gauge transformations
themselves.

We note that there is some disagreement in the literature about whether diffeomor-
phisms should be part of the models. In response toWeatherall (2016b) who considers
them as such, Nguyen et al. (2020) omit them, stating that the focus of their article is on
gauge structure simpliciter. It seems, however, that in order to establish something like

35 Although note that this section in particular is riddled with misprints.
36 These categories are analogous to those used by Nguyen et al. (2020) for classical electromagnetism.
37 Of course, a diffeomorphism of manifolds generates a unique isometry of (pseudo-)Riemannian mani-
folds so these terms are often used interchangeably. Here we stick to the more evocative ‘diffeomorphism’.

123



    2 Page 18 of 35 European Journal for Philosophy of Science             (2025) 15:2 

theory equivalence, one should carefully consider which models are treated as repre-
senting the same physical state by the theory. If one considers Leibniz equivalence to
be part of the theory formulation, one rather should consider diffeomorphically-related
models as such.Without committing to this view, we elect to include diffeomorphisms
at this point, in order to try to obtain the strongest form of equivalence possible.

Let us summarise in the following table:

Ob Mor

Twist
(
PT, ∂̄, f

)
f 	→ f + ∂̄g

Class
(
PT, ∂̄, [ f ]

)
[ f ] 	→ [ f ]

Field (CM, φ) φ 	→ χ∗φ

Gauge (CM, ψ) ψ 	→ χ∗ψ , ψ 	→ ψ + ∇γ

We now look for the following functors:

−→ Twist Class

Field FT FC
Gauge GT GC

Let us first construct FC . Let the action on objects be provided by the ZRMPT, that
is FC : (CM, φ) 	→ (

PT, ∂̄, [ f ]
)
such that the cohomology class [ f ] generates the

field φ such as in §2.2.1. The only arrows in Class are identities so we map all the
diffeomorphisms of a given field to the same identity acting on the cohomology class
onto which the fields map. There is a question of well-definedness: do all diffeomor-
phically related fields map to the same cohomology class? Indeed they do, because
we choose precisely those diffeomorphisms that preserve the field.

Proposition 3.1 FC is a functor.

Proof The objects have been provided. Identity and composition are both easy to verify
because all the arrows in Field are identities in the sense of category theory. ��
We now propose:

Proposition 3.2 FC forgets stuff.

Proof We need to show that FC is not faithful. Consider a field φ ∈ Ob(Field) and the
associated FCφ,φ : homField (φ, φ) → homClass (FCφ, FCφ), FCφ,φ : φ 	→ FCφ. It is
clear that FCφ,φ is not injective since there is only one identity on FCφ ≡ [ f ] whereas
there are in general several diffeomorphisms preserving a given field on spacetime. It
follows that FC is not faithful. ��

A short philosophical intermezzo: here it is clear how the choice of arrowsmakes or
breaks equivalence. One is reminded of Weatherall (2016b) and the response offered
byNguyen et al. (2020).Weatherall considers the isometries to be structure-preserving
maps between models of classical electromagnetism, whereas Nguyen et al. dispense
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with them in favour of focussing exclusively on the issue of gauge. We are of the
opinion that such a step is more significant than it is perhaps made out to be, as the
argument is strongly dependent upon which arrows are available in which category.
So: are there any additional structure-preserving maps on twistor space that we might
want to consider? We have diffeomorphisms on twistor space, but there is apparently
no canonical way tomap them to spacetime isometries.38,39 Anotherway of seeing this
is as a problem of the category-theoretic method of establishing equivalence, in that
there is a degree of arbitrariness involved in how arrows are defined. Alternatively, this
is a strength of the approach since it allows one to very precisely define which models
are treated as equivalent in an ‘interpretation’ of a theory by carefully selecting the
arrows.40 For well-understood theories, however, relatively uncontroversial choices of
arrows can be made which then allows the approach to derive relatively undisputable
results, such as the equivalence of standard GR and Einstein algebras (Rosenstock et
al., 2015). Perhaps, then, this limitation is only applicable to novel theories with less
established standards of equivalence. We’ll return below to issues related to these.

A similar story can be told about GC . Map all potential fields generating the same
gauge field to the cohomology class related to it via the ZRMPT. Then map all arrows
between different gauge potentials (diffeomorphisms, gauge transformations) to the
identity on the cohomology class related to the gauge potentials via the gauge field
they generate.

Proposition 3.3 GC is a functor.

Proof As above. ��
Proposition 3.4 GC forgets stuff.

Proof Much like above. ��
Let us now construct FT . Let a field be mapped to any single representative of

the cohomology class related to it via the ZRMPT.41 As to how diffeomorphisms
should be mapped to ∂̄-exact forms, this is in general unclear, and indeed there is
no obvious way of encoding spacetime isometries in terms of twistors.42 Certainly,
twistor space has its own structure-preserving maps but they allegedly do not have an
obvious relation to spacetime diffeomorphisms. We might then wish to consider the
category Field’ which is just Field stripped of diffeomorphisms (by which we mean:
take one arbitrary representative of each equivalence class of diffeomorphism-related
models—this would be one way of making good on Nguyen et al. (2020) dispensing

38 We are grateful to Lionel Mason for conversations on this point.
39 The only substantial paper on this topic is Davidov (2023), which considers diffeomorphisms between
twistor spaces for two elements of a conformal class of metrics, and concludes these diffeomorphisms must
be the identity map. Since we are interested in breaking such conformal classes by introducing an infinity
twistor—see discussion below Eq. 2.1.10—we will not engage with these results further here.
40 For another illustration of this, see March (2024a).
41 Here we potentially require the axiom of choice, because there is no canonical representative of the
class.
42 Again, we are grateful to Lionel Mason for discussion on this point.
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with isometries, as mentioned above). Of course, identities have to remain in order
to satisfy the category axioms. Then we wish to construct a functor F ′

T :Field’ →
Twist. We will map fields to cohomology classes as before, and map the identities to
identities.

Proposition 3.5 F ′
T is a functor.

Proof As above.

Proposition 3.6 F ′
T forgets structure*.

Proof By construction, we never map to any of the ∂̄-exact form transformations.
So F ′

T a,a′ : homField
(
a, a′) → homClass

(
F ′
T a, F ′

T a
′) is not surjective. In fact,

homField
(
a, a′) is even empty for a �= a′ since our only morphisms are identities.

Hence F ′
T is not full. ��

As forGT , wewill againwant to purgeGauge of diffeomorphisms to obtainGauge’
and we now look for G ′

T : Gauge’ → Twist. In order to establish equivalence, we
need a way of mapping gauge transformations to ∂̄-exact forms. One sometimes finds
the claim in the literature that there is a canonical such map for h > 0—for example,
Adamo (2018) calls this map the ‘Sparling transform’. This is claimed by Adamo
(2018) to be demonstrated in Sparling (1990) but we were not able to recover the
result from that paper. Instead, the only explicit constructions which we were able
to obtain are for the case h = 1 in Adamo (2018, pp. 27–8) and for the case h = 2
in Mason and Skinner (2010). In the absence of a general construction, we will here
consider only the case h = 1 as a ‘proof of concept’.

Let us provide a brief account of the construction. Let f ∈ [ f ] ∈ H0,1(PT,O(0))
be a cohomology class representative. To obtain the gauge potential at some spacetime
point x , consider the restriction of f to the line X ∼= CP

1 ∈ PT related to this space-
time point via the Klein correspondence. Then f |X ∈ [ f |X ] ∈ H0,1(X ,O(0)). But
H0,1(X ,O(0)) ∼= H0,1(CP1,O(0)) since diffeomorphic manifolds have isomorphic
cohomology, and it turns out that the latter is empty. Therefore f |X is exact and we
can write f |X = ∂̄|Xh(x, λ, λ̂) for some h of homogeneity degree zero in λ, λ̂ which
are the holomorphic and the antiholomorphic coordinates on the CP1 subspace. Now,
since f ∈ H0,1(PT,O(0)), it can only depend on x via xαα̇λα (this simply follows
from the incidence relation Eq. 2.1.7). Now consider

∂̄|X (λα∂αα̇h) = λα∂αα̇∂̄|Xh = λα∂αα̇ f |X ∝ λαλα = 0 , (3.2.4)

recalling that λα is the homogeneous coordinate on CP1 and hence λαλα = 0. Using
the extended Liouville’s theorem,43 we conclude that the function λα∂αα̇h must take
the form

λα∂αα̇h = λαAαα̇(x), (3.2.5)

43 The statement of the extended Liouville theorem is as follows: If g is a holomorphic function and for
sufficiently large z, |g(z)| � A + B|z|k , where A and B are positive constants and k ∈ N, then g is a
polynomial of degree at most k. In our case, the holomorphicity of the function λα∂αα̇h is ensured by Eq.
3.2.4 and one can prove that the bound exists for k = 1. So the function can be a linear polynomial of λα .
The coefficient is imposed by the index structure to be of the form Aαα̇(x) and can only depend on x and
not on λ, since the RHS has to be a linear polynomial in λ.
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where Aαα̇ is the Maxwellian gauge potential.
In light of this, there is a map from Dolbeault-exact (0, 1)-forms on PT and

gauge potentials Aαα̇ on CM. This suffices to establish the existence of a map
(G ′

T )
−1 : Twist → Gauge’. There do, however, remain open two issues. First: it

is not completely clear that a different choice of Dolbeault-exact (0, 1)-form on PT

would yield a different gauge potential on CM—so it remains open whether this map
is one-one. And second: it also remains openwhether anymapG ′

T : Gauge’ → Twist
is one-one—that, is, whether gauge potentials can be mapped one-one to elements of
the relevant class of forms on PT. As far as we can tell, there is no particularly natural
such map which one can identify with such properties. In principle, one could try
to construct such a map by fiat: to associate Dolbeault-exact (0, 1)-forms to gauge
transformations, it suffices to specify arbitrary choices for each such mapping, but
since both spaces are continua there must exist a bijection between them. This would
presumably yield a functor that establishes equivalence between the two categories,
but one would be hard-pressed to conclude that this is an interesting case of theoretical
equivalence since the choice of functor is so arbitrary. It could be seen as a method-
ological drawback of categorical approaches to theoretical equivalence that one can
define such fiat constructions in the cases of continua and suitably simple categories,
but one should note that proponents of categorical equivalence are careful to point out
that one should expect there to be a natural enough functor establishing a purported
equivalence, rather than one that is simply based on the equal cardinality of both sides,
and then made to respect the internal structure of the theory also by fiat. Preserving
internal structure by fiat, however, will only be possible for similar enough structures,
e.g. in the case of Gauge’ and Twist we are dealing with groupoids44 defined on con-
tinua so it is not inconceivable that there is an equivalence-generating functor between
them, whereas in general one would not obtain this level of similarity between two
categories representing two distinct theories.

In any case, so much for the h = 1 case. One could apply the same technique
to the other cases of twistor correspondence, such as the correspondence for Yang-
Mills, and the non-linear graviton for the sourceless Einstein equation. Stepping back
somewhat, the situation regarding the equivalence of spacetime and twistor space
physics, as we see it, is this. First: such equivalence is only relative to a choice of
Penrose transformation—and often, such transformations (e.g. the ZRMPT which we
have considered here) are somewhat restricted in scope (in the sense that they do not
pertain to the entire solution space of GR—note indeed that the ZRMPT considers
fields on CM and so in fact has more to do with SR than GR!). Second: even focusing
on a specific Penrose transformation, whether there indeed is equivalence—in the
sense of categorical equivalence—will depend upon particular choices as to how to
formulate spacetime physics and twistor space physics: as illustrated above in our
specific choices of categories on each case, and the problems for demonstrations
of equivalence between Gauge’ and Twist. In our opinion, therefore, any ab initio
declarations of the equivalence of spacetime physics and twistor space physics should
be tempered with a certain degree of caution.

44 Groupoids are categories with all morphisms invertibile.
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4 Philosophical issues

Having now presented the relevant background on twistor theory, as well as some regi-
mentation of the spacetime–twistor correspondence using the resources of categorical
equivalence, we turn now to an exploration of five topics pertaining to twistor theory
and its philosophical significance. In §4.1, we consider the issue of whether there
are dynamics on twistor space—a claim which one often finds denied in the existing
literature; see e.g. (Bain, 2006). In §4.2, we explore the sense in which the move to
twistor space offers a novel form of ‘geometrisation’ of a physical theory. In §4.3, we
try to understand the ontology of twistor space on its own terms. In §4.4, we assess
whether twistor theory presents a case of spacetime emergence in physics. Finally,
in §4.5, we consider how twistor theory interacts with some ‘symmetry principles’
which are widely discussed in the philosophy of physics.

4.1 Dynamics on twistor space

According to Bain’s (2006) account of twistor theory, Penrose transformations can
be said to ‘geometrise away’ dynamics. Specifically, Bain writes that “the dynamical
information represented by the differential equations in the tensor formalism gets
encoded in geometric structures in the twistor formalism. Advocates of the twistor
formalism emphasize this result—they observe that, in the twistor formalism, there are
no dynamical equations; there is just geometry” (Bain, 2006, p. 40). Be that as it may,
this is simply not something that appears to be widely claimed by twistor advocates:
the claim, for example, is not found in Penrose and Rindler (1988a, b); Ward and
Wells (1990); Penrose (2005). Still, Bain’s claim appears prima facie plausible and is
certainly worthy of attention.

The key notion to unpack here is, of course, that of ‘dynamics’. The way in which
Bain uses the word seems to be tied closely to the use of a derivative operator in a
physical theory. For example, he talks about the “dynamical role” of the manifold
having to do with “the support structure on which derivative operators are defined”
(Bain, 2006, p. 39). Later in his article, he adopts a somewhat different stance saying
that the dynamical role of the manifold is “a local back-drop on which differential
equations can be defined that govern the dynamical behavior of fields” (Bain, 2006,
p. 47). That is to say, rather than dynamics having to do with a derivative operator
per se, dynamical equations are some class of differential equations, i.e. equations
deploying a derivative operator. But then the question of what we take dynamics to
be is not really addressed beyond saying that they are a kind of differential equation.
In fact, there are several ways of characterising ‘dynamics’, as has been discussed by
e.g. Linnemann and Read (2021). These are:45

1. Dynamics as some representation of a system evolving diachronically.

45 Cf. (Read & Cheng, 2022).
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2. Dynamics cashed out in terms of quantities which vary between possibilities
according to the theory, á la Curiel (2016).46

3. Dynamics as having to do with hyperbolic (rather than e.g. elliptic) differential
equations.

(The relations between all three of these notions are not entirely straightforward—see
Linnemann and Read (2021).) The question to be addressed here is this: does a theory
set on twistor space have ‘dynamics’ in any of the above three senses?

Sense (1) can be dealt with fairly swiftly. Time does not feature explicitly in twistor
theory so with that goes any hope of grounding its dynamics in temporal evolution.
Indeed, the twistor programme regards twistors as pre-spatiotemporal (see §4.4), so
this is hardly surprising. Now, of course, there are questions lurking in the background
here regarding what it means to identify (perhaps by way of functionalist considera-
tions) time in a given physical theory—various options here are canvassed byCallender
(2017). However, we take it that in none of these senses of time is present in a theory
set in twistor space as defined in the previous section. For example (to take Callender’s
preferred functional definition of time) there are no equations in such theories which
admit of well-posed Cauchy problems—at least to our knowledge.

Indeed, since it is only hyperbolic partial differential equations which admit of
well-posed Cauchy problems, this suffices to address also sense (3) above, and so just
leaves sense (2)—more can be said about this. Curiel (2016) differentiates kinematical
equations from dynamical equations by their “particular form” being invariant across
possibilities according to the theory. An example makes this clear: consider the four
equations of Maxwellian electrodynamics:

�∇ × �E = −∂t �B,

�∇ · �B = 0,

�∇ · �E = ρ,

�∇ × �B = �J + ∂t �E . (4.1.1)

The first two equations here have the same form no matter the application, making
them kinematical, whereas the third and the fourth require one to substitute for the
charge density and the current density respectively in order to fix their form, making
them dynamical. One worry with calling twistor theory ‘non-dynamical’ according to
this criterion, though, is that we have so far only translated vacuum electrodynamics
in the twistor formalism. In vacuo, we have ρ, �J = 0, thereby making all the four
equations kinematical in the strict sense. How could we then possibly expect to obtain
dynamics if we already started from a system that is not dynamical?47

On the other side of the samecoin is the following fairly natural point.Agiven theory
set in spacetime (for the time being assuming conformal invariance, so that theory is

46 There are various ways in which this might be expounded—see Linnemann and Read (2021). For an
alternative approach to identifying dynamical possibilities according to a theory to that offered by Curiel
(2016), see March (2024b).
47 This worry will not apply on the understanding of the kinematics/dynamics distinction offered byMarch
(2024b).
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presumed to be amenable to a Penrose transformation) will in general have many
solutions (conformally inequivalent to one another), and it needn’t be the case that all
such solutions—qua models of spacetime geometry—map to the same twistor space
geometries (indeed this won’t be the case, if the spacetime models are conformally
inequivalent). That however means—pace Bain—that theories set in twistor space
do have dynamics according to criterion (2)—because not all dynamical possibilities
of twistor theory will be equivalent: some quantities will vary between possibilities
according to the theory. Of course, we are not claiming that criterion (2) should be
endorsed—ultimately, our point here is just that the ‘no dynamics’ claim becomes
delicate, once one attempts to cash out more precisely what’s meant by ‘dynamics’.

4.2 Geometrisation

Related closely to the question of whether there are dynamics on twistor space is that
of whether, in any precise sense, twistor theory ‘geometrises’ a given set of dynamics
on spacetime. Again, for Bain (2006) it seems that twistor theory offers prospects for a
novel form of geometrisation of a physical theory—as he writes, “the local dynamics
in the spacetime formulation gets encoded in a global “static” geometric structure in
the twistor description” (p. 47).

In order to get clearer on the sense (if any) in which twistor theory ‘geometrises’ a
physical theory formulated in spacetime, we of course first need to get clearer on what
it means to ‘geometrise’ a physical theory. On this, surprisingly little has been writ-
ten in the existing philosophical literature—exceptions are Dürr (2020); Kalinowski
(1988); Lehmkuhl (2009); we’ll begin with the tripartite classification of degrees of
geometrisation debeloped by Lehmkuhl (2009), and summarised succinctly by Dürr
(2020) as follows:

• Strength-1 geometrisation dresses up field theories in geometric clothing.
The fiber bundle formulation of electromagnetism is a case in point: while
in such a representation everything looks geometric, we have prima facie
little reason to regard the theory as describing anything inherently related to
spacetime geometry.

• In strength-2 geometrisation, physical degrees of freedom can be accounted
for in terms of geometric properties (e.g. topology, curvature, or torsion) of
augmented spacetime structure. An example is Weyl’s (1918, 1919) unified
field theory. In it, the electromagnetic field is reconceptualised (“strength-2
geometrised”) as a manifestation of what Weyl called “length curvature” of
a non-Riemannian spacetime (i.e. a spacetime in whose geometry parallel
transport of vectors alters their length).

• Strength-3 geometrisation, paradigmatically instantiated byGR’s geometric
interpretation, is essentially eliminative: a geometric theory of strength-3
reduces physical degrees of freedom tomanifestations of (a universal) inertial
structure—a preferred path structure of “natural”, uncaused/default motion
that, for instance, force-free test particles trace out. Dürr (2020, p. 6)

In our own words, we’d put the classification like this: strength-1 geometrisation
regards writing physical theories in (differential-)geometric formalism; strength-
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2 geometrisation regards reconceptualising physical effects/forces/etc. in terms of
(novel) geometrical effects; strength-3 geometrisation regards reducing physical
effects/forces/etc. to existing geometric quantities (e.g., curvature of a Levi-Civita
connection in the case of gravity in GR). The question to be addressed now is this:
does the geometrisation in the case of twistor theory amount to geometrisation in any
of the above three senses, or is it in fact a novel form of geometrisation (of course
assuming that we have a case of geometrisation here at all!)?

The kind of geometrisation offered by twistor theory is clearly more than merely
strength-1—although it is true that twistor theory is articulated using differen-
tial/algebraic geometrical methods, there is good reason to think that there is more
at stake than just this. With respect to strength-2 geometrisation, however, it is not
obvious to us that it is correct to view the geometric setting of twistor space as an
augmented version of a more traditional spacetime setting (e.g., Minkowski space,
possibly complexified), for the geometric arena of twistor space PT is clearly sim-
ply different from e.g. CM. With respect to strength-3 geometrisation, on the other
hand, it seems to us that this notion is at least in some sense satisfied by the twisto-
rial equivalents of spacetime theories, for—as already explained above—facts about
spacetime dynamics are encoded in geometrical facts about cohomology classes on
twistor space.48 Note, though, that the kind of geometrisation at play here is rather
more extreme and thoroughgoing than what Lehmkuhl (2009) and Dürr (2020) seem
to have in mind when it comes to strength-3 geometrisation—for in the case of the
transition from a spacetimemodel to a twistor spacemodel, it is notmerely (as inDürr’s
GR-inspired example) that forces such as gravity are absorbed into a new derivative
operator; rather, all dynamics are absorbed into facts about twistor geometry. This
demonstrates that there is some ambiguity in the scope of strength-3 geometrisation;
twistor geometrisation (and here we concur with the spirit of what Bain (2006) writes)
appears to lie at the more extreme end of what it would mean to strength-3 geometrise
a theory.

4.3 Ontology of twistor space

What would an interpretation of twistor theory ‘on its own terms’—what de Haro
(2019) might call an ‘internal interpretation’—look like?49 In this subsection, we
address this question with particular attention directed towards the status of spacetime
in (the physical interpretation of the models of) twistor theory. Clearly, there are

48 That said, it bears stressing that the claim that the map to twistor space constitutes a case of strength-3
geometrisation can’t be exactly correct, since there is no straightforward sense in which these geometrical
facts on twistor space count as ‘inertial structure’.
49 Roughly, for de Haro, an internal interpretation of a given theory does not invoke specific structure
unavailable in that theoryper se; not so for an external interpretation. Presumably, it is internal interpretations
whichWeatherall (2018) has in mind when he asserts that general relativity and hole-diffeomorphic models
thereof ‘do not generate a philosophical problem’; for critical engagement with this claim, see Pooley and
Read (2021). Of course, mention of the hole argument here invites questions as to how this would pan out
in twistor theory; we’ll return to these questions below.
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broader questions at play in the background here: interpreted per se, does twistor
theory invite a substantivalist or a relationalist ontology?50

Regarding the status of spacetime in twistor theory, Bain (2006) writes that “the
twistor constructions indicate that the differentiablemanifold is not essential” (p. 46)—
by this, we take Bain to mean that twistor theory interpreted per se does not invite
a commitment to a manifold of points. We confess that we find it a little difficult to
make sense of this claim, for a couple of reasons. First: twistor space PT is still built
upon the mathematical structure of differentiable manifolds; hence, interpreted unto
itself it does not appear that the theory liberates us from a commitment to (the physical
correlates of) such structures. Second, and relatedly: we have seen above that—at least
in certain restricted contexts—one might argue that there is an equivalence between a
proper subset of themodels of relativistic spacetime theories andmodels formulated in
twistor space.51 But in that case, there is a sense in which twistor theory is committed
to (spacetime) differentiable manifold structure after all. Perhaps—to be charitable—
all Bain has in mind here is that with twistor space PT in hand and armed with various
Penrose transformations, one need not treat the spacetime formulation of a physical
theory as being ontologically fundamental.

Compare here the case of the equivalence between models of GR and Einstein
algebras.52 In that case, one side of the ‘duality’ (i.e., the Einstein algebras side) does
not involve a differentiable manifold (at least in any direct sense); the interpretation
of those models therefore—Rosenstock et al. (2015) claim—invites a relationalist
ontology; by contrast, of course,models ofGRdo involve a differentiablemanifold and
so invite a substantivalist ontology.53 With respect to the first of the above two points,
then, the GR–twistor relation is clearly disanalogous to the GR–algebras case, for the
‘alternative’ formulation still helps itself to a differentiable manifold. And with regard
to the second of the above two points: one can profess a certain ambivalence about
the status of manifold points in GR given the existence of an equivalence formulation
of the theory in terms of Einstein algebras (cf. (Rosenstock et al., 2015)); clearly, one
cannot do this in the twistor case, if the twistor space formalism invites itself to the
same kinds of mathematical objects anyway!

So, vis-à-vis the status of spacetime in twistor theory, we are somewhat sceptical
of claims made by Bain (2006). Nevertheless, in his defence, it is worth registering

50 For background on the substantivalism/relationalism debate more generally, see Pooley (2013b).
51 Note here that we have moved to considering the correspondence between twistor theory and the general
theory of relativity—a correspondence already acknowledged to be delicate and piecemeal in §2. This poses
a further obstacle to any straightforward ontological fundamentality claimmadeon the basis of twistor theory
in the context of general relativity, as we will discuss further below.
52 This equivalence was first presented by Geroch (1972), before being taken up in the context of the
philosophical debate regarding substantivalism and relationalism by Earman (1977). More recently, Rosen-
stock et al. (2015) proved a categorical equivalence between models of GR and Einstein algebras; Wu and
Weatherall (2023) demonstrate that this equivalence breaks down when one liberalises the models of GR
by dropping the Hausdorff condition. Bain (2006) also assesses the case of Einstein algebras alongside the
case of twistor theory.
53 Here, following Earman and Norton (1987), we have in mind manifold substantivalism, which is the
position that it is the differentiable manifold in a model of a physical theory which represents physical
spacetime.
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that those working in the mathematics of twistor theory do sometimes make similar
claims. For example, Atiyah et al. (2017) write that

[i]n the twistor approach, space-time is secondary with events being derived
objects that correspond to compact holomorphic curves in a complex threefold-
the twistor space. (Atiyah et al., 2017, p. 1)

On this, we say the following. First, one has to distinguish the fact that point events—
e.g., intersections ofworldlines—in the spacetime formulation aremapped tonon-local
(i.e., extended) objects in twistor space; true enough, however, this does not detract
from the fact that—as explained above—twistor theory remains committed to (the
physical correlate of) a differentiable manifold of points. Second, one must recall
lessons from Teh (2013) made in the case of dualities: the existence of a mathematical
mapping between two theories does not in itself invite any metaphysical asymmetry
between the two—thus, the above claim that the spacetime formulation is subordinate
to the twistorial formulation seems prima facie to be specious. On this latter issue,
Bain writes the following:

The tensor formalismsuggests a commitment to local fields and spacetimepoints,
whereas the twistor formalism suggests a commitment to twistors, which them-
selves admit diverse interpretations. The traditional realist might respond by
claiming that the Penrose Transformation just shows that solutions to certain
field equations behave in spacetime as if they were geometric/algebraic struc-
tures that quantify over twistors. In other words, we should not read the twistor
formalism literally—it merely amounts to a way of encoding the behavior of
the real objects, which are fields in spacetime, and which are represented more
directly in the tensor formalism. In other words, we should only be semantic
realists with respect to the tensor formalism. This strategy smacks a bit of ad
hocness. All things being equal [...], what, we may ask, privileges the tensor
formalism over the twistor formalism? (Bain, 2006, p. 50)

What Bain is countenancing here is a (‘traditional realist’) position according to which
the spacetime formulation is preferred over the twistor formulation. In fact, we agree
with Bain that, in the absence of further details/argument, such a position would seem
to be just as ad hoc (and contrary to the morals of Teh (2013)) as the twistors-first
view adumbrated by Atiyah et al. (2017) in the above-quoted passage. That said, we
do think that there are ways in which one might be able to break this interpretative
symmetry/impasse in one manner or another—for example, one could appeal to (i)
functionalism á la Knox (2017), (ii) considerations of surplus ‘gauge’ degrees of
freedom (see e.g. Weatherall (2016b)), (iii) considerations to do with the existence of
dynamics in one formulation versus the other (which could be regarded as the sine
qua non of physical theorising)—cf. §4.1, (iv) descriptive/explanatory power.

Let us go into a little more detail here. On (i), recall that, for Knox (2011, 2013),
if one theory can be mapped to another theory which better picks out a “structure
of local inertial frames”, then that latter theory offers the superior roster of ontolog-
ical commitments with which to associate even the former theory. In the case of the
GR–twistor correspondence, the lack of dynamical equations on the twistor side, as
discussed above, militates in favour of an interpretation per Knox on which even in the
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twistor space context, it is really the spacetime interpretationwhich is fundamental. On
(ii), if one has an interpretation of the twistor space setting according to which objects
in the cohomology classes are distinct (see §3), then one might be able to argue that
the twistor space setting has more gauge freedom than the spacetime setting, thereby
favouring the latter over the former. On (iii), if one maintains that there are indeed no
dynamics in the twistor space context, then this might again weigh in favour of the
spacetime interpretation. And on (iv), of course ultimately explanatory considerations
will depend upon the definition of scientific explanation in play (see Woodward and
Ross (2021) for a survey of the options here), but one thing which can be said imme-
diately is that the piecemeal nature of the map from the GR solution space to models
of twistor theory via various Penrose transformations might also be taken to detract
from thinking that the latter is somehow more fundamental, ontologically speaking,
than the former.

4.4 Emergence of spacetime

In the literature on twistor theory, it is often claimed that spacetime is supposed to
be emergent from some underlying twistor space ontology.54 As one representative
example of this among many, Penrose writes that in twistor theory,

spacetime points are deposed from their primary role in physical theory. Space-
time is taken to be a (secondary) construction from the more primitive twistor
notions. Penrose (2005, p. 962)

(We have, indeed, already seen something of this in the previous subsection.) Give the
preponderance of statements of this kind, it is worth pausing on whether it really is
plausible to understand general relativistic spacetime as ‘emerging’ from some more
fundamental twistorial depiction of reality—or whether, instead, ‘emergence’ might
be an inappropriate classification of what is going on here. Moreover, one can go on
to ask: if ‘emergence’ is indeed inappropriate here, what would in fact be a suitable
categorization?

Before proceeding further on these issues, it will help to fix terminology; we will
follow the lead of Castellani and de Haro (2020). First, let us say that a duality is
“a bijective map between the states and quantities of two theoretical descriptions,
such that the dynamics and the values of the quantities are preserved” (Castellani
and de Haro, 2020, p. 199).55 Second, let us say that one has a case of emergence in
physics when there are entities which “arise out of more fundamental entities and yet
are ‘novel’ or ‘irreducible’ with respect to them” (O’Connor & Wong, 2005).56 One
might also wish to distinguish strong from weak cases of emergence. The former “is
the lack of derivability in principle—the theory simply lacks the resources to derive

54 Related to this, there is a by-now quite large philosophical literature on the emergence of spacetime in
quantum gravity—see e.g. (Huggett & Wüthrich, 2013) for an introduction.
55 For further philosophical literature on dualities, see e.g. (de Haro & Butterfield, 2017) and references
therein.
56 Following (Castellani & de Haro, 2020), we focus in this section exclusively upon what has come to be
known as ‘epistemic emergence’, which regards novelty ‘in the description’ rather than ‘in the world’. For
further philosophical background on emergence in general, see e.g. (Batterman, 2009).
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whatever is emergent from it” (Castellani and de Haro, 2020, p. 201); the latter is
“the lack of derivability in practice-some derivations may be available, but they are
difficult to carry out within the theory’smethods or resources, so that the situation is, in
practice, as if one was dealing with strong emergence” (Castellani and de Haro, 2020,
p. 201). As Castellani and de Haro (2020) correctly go on to point out, if a duality is
exact, then one can at best have a case of weak emergence; if, however, a duality is
approximate, then one can have both weak and strong cases of emergence.57

Turning now to twistor theory, we have seen that, at least in certain circumstances
(more restricted, admittedly, than onemight have initially thought/hoped—recall again
§3), there is an exact, one-to-one correspondence between the twistor space descrip-
tion and the spacetime description; moreover, the correspondence preserves empirical
content. For the relevant particular subsector of GR, then, we seem to have an exact
duality between said subsector and twistor space. For this particular subsector, in turn,
only weak emergence seems to be possible—not strong emergence, as the above pas-
sage from Penrose would seem to suggest. Each Penrose transform (and its inverse)
provides a derivationmechanism and the existence of Penrose transforms clearly elim-
inates the case of strong emergence in twistor theory. Indeed, in the case of twistor
theory, it is not even obvious to us that there is a serious case of weak emergence
here, because the theory has all the required resources to derive the spacetime notions
and all the descriptions have an associated (inverse) Penrose transform that provides
a well-defined mechanism to derive the corresponding spacetime notions.

It’s also not clear to us that any discussion of ‘fundamentality’ in the context of
twistor theory is particularly relevant, because when ones talks about fundamentality
typically one has two theories which one classifies as a ‘top’ theory and a ‘bottom’
theory, and one considers the ‘top’ theory to be less fundamental if it can be derived (at
least partly) from the more fundamental ‘bottom’ theory but not the other way around
(Castellani & de Haro, 2020). But in twistor theory, each Penrose transform is a two-
way implication (i.e. one can also derive the twistorial objects from physical spacetime
notions). And hence it wouldn’t be appropriate to compare the relative fundamentality
of the twistor space and spacetime—as mentioned in the previous subsection, this
point has indeed already been made by Teh (2013) in the context of holography.

From this, what we see is that if twistor proponents are to maintain that it indeed is
the twistor descriptionwhich is fundamental, theywill need to give further justification
for this claim thanwhat has been proffered thus far. Here is one possible such argument
which they might give. Since points in twistor space are supposed to correspond to
light cones (i.e., the trajectories of possible light rays emanating from a point), and
since the latter are sometimes argued to have immediate operational significance (see
e.g. (Ehlers et al., 2012)), one could perhaps argue that, on operationalist grounds,
the twistorial description is to be preferred. Any such reasoning, however, faces some
immediate questions: (i) is the operationalism upon which it is predicated actually
plausible?; (ii) what of the GR solutions which do not have obvious twistor correlates
but which seem to be important for the physical modelling of the actual world? Etc.

57 For further background on exact versus approximate dualities, see de Haro et al. (2016).
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Now, if neither description here is to be regarded as being more fundamental than
the other, then there arise for the scientific realist straightforward issues of underdeter-
mination: what is the structure of the world really like, in those circumstances? Here,
the usual roster of interpretative options arise: one could either try to find some further
reasons which privilege one of the two descriptions, per the above; one could try to
identify the mathematical ‘common core’ of the descriptions (cf. (Le Bihan & Read,
2018)); or one could embrace some kind of geometric conventionalism (on which see
e.g. (Dürr & Read, 2023)). We will leave for another day further exploration of the
merits of each of these options.58

4.5 Symmetry principles

As we have discussed, the twistor equation is conformally invariant, so if we want
to represent metric structure on twistor space, we have to introduce further structure
in the form of the infinity twistor. This allows us to construct the twistor space of
Minkowski space PT(M) = PN. On the other hand, when we study field theory we
have seen that twistor theory only provides convincing examples of correspondence
for conformally invariant field theories such as the massless free field (ZRMPT) and
self-dual Yang-Mills (via the Ward transform), apart from some partial results such as
those presented by Eastwood (1981).

Focussing on the former, we have seen that massless fields onCM correspond one-
to-one to cohomology classes on PT(CM). The more general statement is that this
holds for arbitrary subsets U of CMC and the twistor spaces thereof, pending some
conditions on U as shown by Eastwood et al. (1981). Imagine then that we want to
study themassless free field on the compactified complexifiedMinkowski spaceCMC .
Then we have PT = CP

3. But in fact the first cohomology on this space vanishes so
we can only recover the trivial field. If we instead break the conformal invariance and
consider PT(CM) = CP

3 − CP
1, or even impose PT(M) = PN, we get much more

cohomology and recover a rich variety of fields on M.
But nowwe are in a peculiar situation: we started studying the conformally invariant

zero rest mass equation but ended up breaking the conformal invariance of spacetime
such that we can obtain any interesting solutions. Our spacetime symmetry group
is smaller than our dynamical symmetry group in apparent violation of Earman’s
principle SP1 (Earman, 1989, ch. 3). What does this tell us about twistor theory?
Clearly the problem is that there are no convincing twistor results for non-conformally-
invariant theories. At the end of the day, we want twistor theory to reproduce our
standard description of the world which consists of non conformally invariant field
theory on a manifold with metric structure. But even if we try to move in the realm
of the conformally invariant, it seems that twistor theory forces us to break conformal
invariance on the spacetime side.

58 Of course, twistor theory might also be connected to the emergence of spacetime in a less direct way—
for example, via ambitwistor string compactification (see (Atiyah et al., 2017) for further discussion). Our
thanks to an anonymous referee for inviting us to point this out.
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5 Outlook

In this article, we have presented what we hope is a reasonably accessible introduction
to twistor theory for philosophers (§2). We have then shown that one can bring to bear
recent philosophical work on theoretical equivalence in order to shed some light on the
spacetime–twistor correspondence (§3). Further, we have explored how twistor theory
bears on a range of contemporary issues in the foundations of spacetime theories (§4).
We’ll close now by briefly outlining some further areas for possible research into the
philosophy of twistor theory:

1. Just as philosophers have askedwhether the hole argument (onwhich seeNorton et
al. (2023)) can be generated when one moves from the manifold-based formalism
of general relativity to an algebras-based formalism (see e.g. (Rynasiewicz, 1992)),
onemight likewise ask of the status of the hole argumentwhen onemoves to twistor
theory. Of course, the answer to this question will hinge upon how diffeomor-
phisms in the spacetime formalism translate to maps in the twistor formalism—an
issue which we have already seen in §3 to be rather delicate. Moreover, the issue
will hinge upon whether one can really regard the twistor formalism are more
‘fundamental’ than the spacetime formalism—a matter on which we have already
expressed our scepticism in §4.

2. It would be valuable to probe the extent to which twistor theory can offer any kind
of unification in physics. We’ll illustrate with three examples:

(a) Woit (2021) has proposed that twistor theory provides a novel framework for
gravi-weak unification, and moreover a unification of all the four fundamental
forces. However, there is no physical correlation between the forces being uni-
fied, in the sense that e.g. there is no non-trivial coupling of said forces in some
mutual dynamics. According to Maudlin (1996), this kind of physical correla-
tion (which he calls “nomic correlation”) is one of the key criteria required in
order to regard a theory as being unificatory. So, following Maudlin’s lead, we
would suggest that there is no unification in a ‘true’ physical sense—though,
of course, this ultimately warrants further investigation.

(b) The significance of twistor theory in string theory is becoming increasingly
well-appreciated (in particular see e.g. work on ‘ambitwistor strings’)—see
Atiyah et al. (2017) for a recent survey.

(c) In order to establish the ZRMPT in §2.2.1, we adopted the Dolbeault coho-
mology description, with cohomology classes f (Z A) containing (0, 1)-forms.
However, one can also adopt the Čech cohomology description to establish the
ZRMPT (Huggett & Tod, 1985).59 The cohomology classes of the Čech coho-
mology group contain holomorphic functions. Recall from §2.2.2 that these
holomorphic functions also appear in Kerr’s theorem, where the null set of
some holomophic function defines a shear-free null congruence. So, if we pick
a cohomology class that defines a ZRMfield onCM, its null set will also define
a shear free null congruence on CM. Hence there is a common mathematical
object that describes the two physical notions. Interestingly, there is previ-

59 Cf. footnote 27.

123



    2 Page 32 of 35 European Journal for Philosophy of Science             (2025) 15:2 

ous work which establishes physical correlations between these two notions.
For example, (Robinson, 1961) deals with connections between the Maxwell
field and shear-free null congruences. So one can conjecture that twistor the-
ory might be used to realise such connections between various notions in the
spacetime formalism.

3. There is a dearth of philosophical literature on the geometrical foundations of
spinor fields—one admirable exception being (Pitts, 2012). Given their close rela-
tion to spinors, twistors could well be brought to bear on future foundational
explorations in this direction.

4. In §3 of this article, we focussed on the equivalence of spacetime formulations
and twistor formulations via the ZRMPT. This leaves open for future exploration
such equivalences when one considers e.g. the non-linear graviton, or Yang-Mills
fields on spacetime, etc.
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