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Covariant density functional theory (CDFT) is extremely useful for the investigation of ground state properties
of nuclei all over the periodic table. For the calculations of nuclear spectra the generator coordinate method (GCM)
is used to perform configuration mixing of angular-momentum projected wave functions generated by constrained
self-consistent relativistic mean-field calculations. In this way correlations related to the restoration of broken
symmetries and to fluctuations of collective variables are included. Because of the numerical complexity of such
calculations, additional approximations are implemented to derive, in a fully microscopic way, the parameters ofa
five-dimensional collective Bohr Hamiltonian for vibrational and rotational degrees of freedom. This allows the
calculations of nuclear spectra and it provides a microscopic theory of quantum phase transitions in finite nuclei.

1. Introduction

Nuclear density functional theories provide at present the only microscopic approaches to the nuclear many-body
problem, that can be used over the whole nuclear chart, from relatively light systems to super-heavy nuclei, and
from the valley of p-stability to the particle drip-line [1, 2]. The simplest implementation of this framework is based
on the self-consistent mean-field approach. Here the density functional depends on the one-body density matrix that
corresponds to a single product state. In this approach the many-body problem is effectively mapped onto a one-
body problem, and the exact density functional is approximated by a functional of powers and gradients of ground-
state nucleon densities and currents, representing distributions of matter, spins, momentum and kinetic energy. In
principle this version can incorporate short-range correlations related to the repulsive core of the inter-nucleon
interaction, and long-range correlations mediated by nuclear resonance modes.

The static density functional theory on the mean field level is characterized by symmetry breaking and can only
provide an approximate description of bulk ground-state properties. To calculate excitation spectra and
electromagnetic transition rates in individual nuclei, it is necessary to extend this framework to include collective
correlations related to the restoration of broken symmetries and to fluctuations of collective coordinates.

In recent years several accurate and efficient models and algorithms have been developed that perform the
restoration of symmetries broken by the static nuclear mean field, and take into account fluctuations around the
mean-field minimum. The most effective approach to configuration mixing calculations is the generator coordinate
method [3]. With the simplifying assumption of axial symmetry, GCM configuration mixing of angular-momentum,
and even particle-number projected quadrupole-deformed mean-field states, has become a standard tool in nuclear
structure studies with Skyrme energy density functionals [1], the density-dependent Gogny force [4], and relativistic
density functionals [5, 6]. A variety of structure phenomena have been analyzed using this approach, for instance,
the structure of low-spin deformed and superdeformed collective states [7, 8], shape coexistence in Kr and Pb
isotopes [9, 10], shell closures in the neutron-rich Ca, Ti and Cr isotopes [11] and shape transition in Nd isotopes
[12, 13]. Much more involved and technically difficult is the description of intrinsic quadrupole modes including
triaxial deformations.

Only very recently fully microscopic three-dimensional calculations have been presented for Skyrme [14] and
Gogny [15] mean field models generated by triaxial quadrupole constraints that are projected and mixed by the
generator coordinate method. This method is actually equivalent to a seven-dimensional GCM calculation, mixing
all five degrees of freedom of the quadrupole operator and the gauge angles for protons and neutrons. Here we
report on configuration mixing of angular-momentum projected triaxial relativistic mean-field wave functions based
on covariant density functionals [16].

2. The relativistic generator coordinate method

The generator coordinate method is based on the assumption that, starting from a set of mean-field states |@(q)»
which depend on collective coordinates g, one can build approximate eigenstates of the nuclear Hamiltonian by
linear combination of such states:

) = [ dafu(@I®@)

Detailed discussions of the GCM method can be found in Ref. [3]. To be able to compare theoretical predictions
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with data, it is necessary to construct states with good angular momentum
1
@M =fd E JK () ————— |JMK+,
[wz") qua @ gy VME+a)

o labels collective eigenstates for a give angular momentum J. The details of the 3D angular-momentum projection
in the relativistic case are given in Ref. [17]. The basis states |/MK +,q) are projected from the intrinsic wave
functions |®(q)):
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P,& « is the angular-momentum projection operator:
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Q denotes the set of three Euler angles and D,{,K(ﬂ) are the Wigner functions [18]. The set of intrinsic wave
functions |®(g)), with the generic notation for quadrupole deformation parameters g = (B 7), is generated by
imposing constraints on the axial g and triaxial g, mass quadrupole moments in self-consistent RMF + BCS
calculations. The following calculations are based on the relativistic point coupling model PC-F1 [19]:
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where 1 (r) denotes a Dirac spinor. The local isoscalar and isovector densities and currents
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are calculated in the no-sea approximation, i.e., the summation runs over all occupied states in the Fermi sea. The
occupation factors v of each orbit are determined in the simple BCS approximation, using a d-pairing force. The
pairing contribution to the total energy is given in the this case by

Epaiel, k7] = = Zecnp = f dPrict (Niee(r),

where V, is a constant pairing strength, and k(r) is the pairing tensor.
The weight functions fu] K (g) in the collective GCM wave function are determined from the variation:
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i.e., by requiring that the expectation value of the energy is stationary with respect to an arbitrary variation & £ K,
This leads to the Hill-Wheeler-Griffin (HWG) integral equation [20]:
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With the angular-momentum projected GCM kernel matrices of the Hamiltonian and the norm, respectively. The
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Hamiltonian overlap can be evaluated in coordinate space,
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and the norm overlap is defined by:
n(q.q; Q) = (S(DIR@D]P(@").

The calculation of the overlap matrix elements for the Hamiltonian is simplified by the generalized Wick theorem
[21] that states that the Hamilton overlap matrix elements have the same form as the mean field functional, with the
intrinsic single particle density matrix elements replaced by the corresponding transition density matrix elements
[22].
The first step in the solution of the HWG matrix eigenvalue equation is the diagonalization of the norm overlap
kernel
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)

From the eigenfunctions ui (i), also called “natural states”, one builds the collective Hamiltonian
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which is subsequently diagonalized

The solution of this eigenvalue equation determines both the energies E} and the amplitudes £I¥(q) of collective
states with good angular momentum ‘PéM
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The weight functions fa] K (g) are not orthogonal and therefore cannot be interpreted as collective wave functions for
the deformation variables. The collective wave functions g2 (i) are calculated from the norm overlap eigenstates:
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k

g2 (i) are orthonormal and, therefore, | PAO) Iz can be interpreted as a probability amplitude.

3. The low spin spectrum of **Mg

@ 5= +l Now we show several illustrative configuration

178 — mixing calculations in the nucleus #*Mg. The intrinsic

60 : 60 wave functions have been obtained as solutions of the

: \5010(deg) : ‘}.50 :o(deg) self-consistent relativistic mean-field equations,

PC-F1 N 3 subject to constraint on the triaxial mass quadrupole
: 30 moments.

Fig. 1 shows the self-consistent RMF +BCS

= 10 triaxial energy surface in the -y plane, The panel on

the right displays the projected energy surface with
J = 0. The energy surfaces nicely illustrate the effects
of including triaxial shapes and of the restoration of
Fig. 1. Self-consistent RMF + BCS energy surface (left  rotational symmetry. The mean-field energy surfaces
panel) of Mg in the f-y plane and angular momentum are found to be quite soft with a2 minimum at an axial
projected energy surface with J=0 (right panel). The prolate deformation B =0.5. Projection shifts the
contours join points on the surface with the same energy.  minimum to a triaxial shape with § = 0.5and y = 20°.
The difference between neighboring contours is 1.0 MeV.  The gain in energy from the restoration of rotational
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symmetry is 4.266 MeV. The fact that angular momentum projection leads to triaxial minima in the PES was
already been noted in 3DAMP calculations in the eighties [24] and very similar results have been obtained recently
using the Skyrme functional SLy4 [10].
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Fig. 2. The low-spin level scheme of Mg calculated using the 3DAMP + GCM model and IDAMP + GCM
in comparison with data [28 - 30] The B(E2) values are given in units of e’fm*.

Fig. 2 displays the spectrum of the nucleus Mg, calculated with the 3DAMP + GCM and 1DAMP + GCM
codes. The 3DAMP + GCM and 1DAMP + GCM calculations produce virtually identical results. The level scheme
is in rather good agreement with data, but in both cases the calculated spectra are systematically stretched as
compared to experimental bands. This is because angular-momentum projection is performed only after variation
and, therefore, time-odd components and alignment effects are neglected. Cranking calculations, for instance,
correspond to an approximate angular-momentum projection before variation [25], and lead to an enhancement of
the moments of inertia in better agreement with data [26, 27]. The agreement of the calculated quadrupole transition
probabilities with data in is remarkable, especially considering that the calculation of B(E2) values is parameter-
free, i.e. the transitions are calculated employing bare proton charges.

The nucleus **Mg presents an illustrative test case for the 3DAMP + GCM approach to low-energy nuclear
structure. However, collective phenomena are, of course, much more pronounced in heavy nuclei and, therefore, the
goal is to eventually apply the present approach to rare earth nuclei and the actinide region.

Axially symmetric AMP+GCM calculations are at present routinely performed for heavy nuclei [5], and from
such studies one can estimate that N, = 16 shells have to be included in the oscillator basis for the systems in the
mass region around Pb. Note that the computing time necessary for the evaluation of one overlap matrix element
scales approximately with N,.°. These considerations show that a straightforward application of the existing
3DAMP + GCM codes to heavy nuclei is at the moment not possible. On the other hand, the introduction of
additional approximations can considerably reduce the computing requirements. For instance, the overlap functions
are strongly peaked at ¢ = ¢', and the use of Gaussian overlap approximations has produced excellent results in
many cases. These approximations form the basis for the derivation of a collective Bohr Hamiltonian for quadrupole
degrees of freedom [31, 32] discussed in the next section.

4. Derivation of a collective Bohr Hamiltonian in 5 dimensions

In an alternative approach to five-dimensional quadrupole dynamics that includes rotational symmetry
restoration and takes into account triaxial quadrupole fluctuations, a collective Bohr Hamiltonian is constructed,
with deformation-dependent parameters determined from microscopic self-consistent mean-field calculations. The
collective Hamiltonian can be derived in the Gaussian overlap approximation (GOA) [3] to the full five-dimensional
GCM. With the assumption that the GCM overlap kernels can be approximated by Gaussian functions, the local
expansion of the kernels up to second order in the non-locality transforms the GCM Hill-Wheeler equation into a
second-order differential equation - the Schrodinger equation for the collective Hamiltonian. The kinetic part of this
Hamiltonian contains an inertia tensor and the potential energy is determined by the diagonal elements of the
Hamiltonian kernel, and also includes zero-point energy (ZPE) corrections. The adiabatic time-dependent Hartree-
Fock (ATDHF) theory [33] provides an alternative way to derive a classical collective Hamiltonian and, after re-
quantization, a Bohr Hamiltonian of the same structure is obtained, but with different microscopic expressions for
the inertia parameters.

Here we discuss a new implementation for the solution of a five-dimensional collective Hamiltonian that
describes quadrupole vibrational and rotational degrees of freedom, with parameters determined in the framework of
covariant density functional theory. An initial study along this line was reported in Ref. [41].

The three terms of the classical collective Hamiltonian, expressed in terms of the intrinsic variables g, y and
Euler angles
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denote the contributions from the vibrational kinetic energy:
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the rotational kinetic energy:
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and the collective potential energy Vo, (8,7). The mass parameters Bgg, Bg,, and B, and the moments of inertia
T, depend on the quadrupole deformation variables £ and y.
This Hamiltonian is quantized according to the general Pauli prescription:
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The potential energy contains in addition to the mean field potential ¥(g) correction terms for the zero point
energies of vibrations and rotations.

The single-nucleon wave functions, energies and occupation factors, generated from constrained self-consistent
solutions of the RMF+BCS equations, provide the microscopic input for the parameters of the collective
Hamiltonian. We use for the rotational moments of inertia the Inglis - Belyaev formula
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and for mass parameters of the vibrational degrees of freedom the Cranking approximation
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Further details are given in Ref. [31].
5. A microscopic theory of quantum phase transitions in finite nuclei

The evolution of shell structures governs the variation of ground-state nuclear shapes along isotopic and isotonic
chains. Nuclear structure explores a variety of phenomena related to structural evolution including, for instance, the
reduction of spherical shell gaps and modifications of magic numbers in nuclei far from stability, occurrence of
islands of inversion and coexistence of shapes with different deformations. As the number of nucleons changes from
nucleus to nucleus, in general one observes a gradual evolution of different shapes - spherical, axially deformed,
shapes that are soft with respect to triaxial deformations. These shape transitions reflect the underlying
modifications of single-nucleon shell structure and interactions between valence nucleons. An especially interesting
feature is the possible occurrence of shape phase transitions and critical-point phenomena for particular values of the
number of protons and neutrons. Phase transitions in the equilibrium shapes of nuclei correspond to first- and second
order quantum phase transitions (QPT) between competing ground-state phases induced by variation of a non
thermal control parameter (number of nucleons) at zero temperature. Nuclear quantum phase transitions have been
the subject of extensive experimental and theoretical studies during the past decade. Recent reviews and an
exhaustive bibliography can be found in Refs. [34, 35]. Even though phase transitions in finite systems can be
defined only in the classical limit in which the number of constituents tends to infinity, i.e., the transition is actually
smoothed out in finite systems, there are nevertheless clear experimental signatures of abrupt changes in structure
properties of finite nuclei with the addition or subtraction of only few nucleons. This is another distinct feature of
QPT in atomic nuclei, i.e., the physical control parameter, number of nucleons, can take only discrete integer values.
Expectation values of suitably chosen operators, that as observables characterize the state of a nuclear system, can
be used as order parameters [9]. Theoretical studies of nuclear QPT are typically based on macroscopic geometric
models of nuclear shapes and potentials [36] and/or semi-microscopic algebraic models [35]. In the geometric
framework QPT’s are analyzed in terms of a Bohr collective Hamiltonian for shape variables and can be related to
the concept of critical-point symmetries that provide parameter-independent predictions for excitation spectra and
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electromagnetic transition rates for nuclei at the phase transition point. Alternatively, in the algebraic approach [e.g.,
the interacting boson model (IBM)] different shapes coincide with particular dynamical symmetries of some
algebraic structure, and the phase transition occurs when these symmetries are broken in a specific way. The two
frameworks can be related, for instance, by using the coherent state formalism that allows us to establish a
correspondence between the symmetry limits of the algebraic Hamiltonian and energy functionals expressed in
terms of collective shape variables. In both approaches, geometric and algebraic, the description of QPT is based on
model-specific Hamiltonians that by construction describe shape changes. A shape phase transition is then accessed
by variation of a control parameter. The two best-studied classes of nuclear shape phase transitions, both
theoretically and experimentally, correspond to a second-order QPT between spherical and y-soft shapes and a first-
order QPT between spherical and axially deformed shapes {37 - 38]. The former is a phase transition in one degree
of freedom (the axial deformation ) and, in the IBM language, represents a transition between the U(5) and SU(3)
dynamical symmetries in the limit of large boson number. The critical point of this phase transition, denoted X(5),
does not correspond to a dynamical symmetry in the usual sense. Nevertheless, for the particular case in which the g
and y degrees of freedom are decoupled, an approximate analytic solution at the critical point of phase transition can
be expressed in terms of zeros of Bessel functions of irrational order [37]. Evidence for the empirical realization of
X(5) phase transition was first reported for 52Sm and other N=90 isotones in Ref. [38]. Even though
phenomenological approaches to nuclear QPT have been very successful, and the predicted isotopic trends for
various observables are in very good agreement with data, it would clearly be desirable to have a fully microscopic
description of shape phase transitions, starting from nucleonic degrees of freedom. This is especially important in
view of the fact that the physical control parameter in nuclear QPT is the actual number of nucleons in a nucleus,
rather than a strength parameter of a model-specific, Ising-type Hamiltonian. Several recent studies have reported
microscopic calculations of potential energy surfaces as functions of quadrupole deformation, for a number of
isotopic chains in which the occurrence of shape phase transitions had been predicted. Potentials calculated with a
constraint on the mass quadrupole moment display shape transitions from spherical to deformed configurations.

In Ref. [12] have we analyzed shape transitions in Nd isotopes, using the microscopic model based on relativistic
density functional PC-F1. Starting from constrained self-consistent mean-field calculations of potential energy
curves, the one-dimensional generator coordinate method (GCM) was used to perform configuration mixing of
angular-momentum and particle-number projected relativistic wave functions. It was shown that the microscopic
framework based on universal density functionals, adjusted to nuclear ground-state properties and extended to take
into account correlations related to symmetry restoration and fluctuations of collective variables, describes not only
general features of shape transitions but also the unique behavior of excitation spectra and transition rates at the
critical point of quantum shape phase transition. In particular, the particle-number projected GCM spectra, intra-
band and inter-band B(E2) values for 18,150.132Nd were found in excellent agreement with data and close to the
X(5)-model predictions for **Nd. The self-consistent GCM calculation based on the relativistic density functional
PC-F1 predicted the shape phase transition precisely at the isotope 1%*Nd, in agreement with empirical evidence for
the realization of X(5) in the N =90 rare-earth isotones. X(5) denotes a particular model for a first-order QPT
between spherical and axially deformed shapes, based on the assumption of a separable potential Vg, (8y) = V4(B) +
+ V().

Here we discuss a treatment of this phase

1 transitions in a 3D model allowing for triaxial shapes
[32]. Collective excitation spectra and transition
probabilities are calculated starting from a five-di-
mensional collective Hamiltonian for quadrupole
vibrational and rotational degrees of freedom, with
parameters determined by constrained self-consistent
relativistic mean field calculations with the covariant
density functional PC-F1 [19]. Fig. 3 shows the mean
field potential energy curves for vanishing
y-deformation. Of course, these curves are more
realistic than the infinite square well considered by
Iachello in Ref. [37]. First, although it displays a wide
TV o W W S R P flat minimum in B on the prolate side, the flat bottom
06 04 02 00 02 04 08 of the potential does not start at 8 =0, i.e., the coexis-

B ting shapes do not include the spherical configuration.
In this respect the microscopic potential is closer to
the generalization of the axially symmetric X(5)
solution for the collective Bohr Hamiltonian to the
transition path between X(5) and the rigid-rotor limit,
represented by infinite square-well potentials over a
confined range of f-values [39]. Second, the microscopic potential well has softer walls compared to the X(5)
square well. For the rotational moments of inertia of the collective Hamiltonian we have multiplied the Inglis -
Belyaev values with a common factor determined in such a way that the calculated energy of the 2" state coincides
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Fig. 3. Self-consistent RMF + BCS potential energy
curves of the even-even Nd-isotopes as function of
deformation parameter B. The energies are normalized
with respect to the absolute minimum for a given isotope.
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with the experimental value. In deformed nuclei, to a good approximation, the enhancement of the effective moment
of inertia scales with the relative excitation energies within each band by a common factor but otherwise leaves the
band head of the #-band (0,) unaltered. Of course, this simple relation between the scaling of effective moments of
inertia and excitation energies within each band would be exact only if rotational and vibrational degrees of freedom
were decoupled.

The inclusion of an additional scale parameter in the calculation was necessary because of the well-known fact
that the Inglis - Belyaev (IB) formula predicts effective moments of inertia that are considerably smaller than
empirical values. More realistic values are only obtained if one uses the Thouless - Valatin (TV) formula, but this
procedure is computationally much more demanding, and it has not been implemented in the current version of the
model.

20} 'Nd

1.5}

1.0

Energy (MeV)

05+

0.0

Fig. 4. The spectrum of *°Nd derived from covariant density functional (/eff) and compared with data [40] (middle)
and the X(5)-symmetry predictions (right). The intra-band and inter-band B(E2) values are given in W.u.). The
theoretical spectra are normalized to the experimental energy of the state 2%, and the X(5) transition strengths are
normalized to the experimental B(E2; 2*,—0"}) value.

The resulting excitation spectrum of '**Nd, calculated with the PC-F1 density functional, and the corresponding
intra-band and inter-band B(E2) values, are in good agreement with available data for the ground-state band and the
B- and y-bands, see Fig. 4. The calculation reproduces the excitation energies of the band heads 0*, and 2'; of the -
and y-bands, respectively, and, when the Inglis - Belyaev effective moments of inertia are renormalized to the
empirical value, also the relative excitation energies in all three bands. The parameter-free predictions for the
B(E2)'s reproduce the experimental values not only for intra-band transitions within the ground-state band and the
B-band but also for transitions from the f- and y-bands to the ground-state band, including the measured branching
ratios.

5. Summary and outlook

Among the microscopic approaches to the nuclear many-body problem, the framework of nuclear density
functional theory provides the most complete description of ground-state properties and collective excitations over
the whole nuclide chart. The self-consistent mean-field models based on the density functional framework describe
not only general features of shape transitions but also particular properties of spectra and transition rates at the
critical point of the QPT. However, to calculate excitation spectra and transition probabilities, the self-consistent
mean-field approach has to be extended to include correlations related to restoration of broken symmetries and
fluctuations of collective variables. This can be done either by performing GCM configuration mixing calculations
of projected wave functions or by constructing collective Bohr-type Hamiltonians with deformation-dependent
parameters determined from self-consistent mean-field calculations. The possibility to perform self-consistent
microscopic studies of shape transitions opens a new perspective on the origin of nuclear QPT in various mass
regions. It is therefore important to systematically analyze, also employing different energy-density functionals,
various types of shape phase transitions that have been predicted in several regions of medium-heavy and heavy
nuclei.
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