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Abs t r ac t .  Some general techniques and theorems on the spacetime locality of 
the antifield formalism are illustrated in the familiar cases of the free scalar field, 
electromagnetism and Yang-Mills theory. Common misconceptions in the field 
are corrected. 

1 I n t r o d u c t i o n  

The antifield-BRST formalism [1] provides a powerful approach to the quantiza- 
tion of gauge systems. Its geometric and algebraic features have been clarified 
in [2, 3, 4], where it was shown how the general BRST construction implements 
gauge invariance in cohomology. The crucial equation of the theory, namely the 
TTmaster equation", was in particular justified and derived from this point of 
view. A general exposition of these ideas with pedagogical emphasis may be 
found in [5]. 

A major feature of the theory is that the solution of the master equation 
is determined perturbatively as a power series in the antifields. As it has been 
shown in [2, 3], the rationale for introducing the antifields is that these provide a 
resolution of the algebra of functionals of on-shell field configurations. Namely, 
the antifields are there t o  implement the equations of motion when one passes 
to the BRST cohomology. The resolution associated with the antifields is called 
"Koszul-Tate" resolution, because it is patterned after a construction due to 
Koszul [6], supplemented, when the equations of motion are not independent, 
by the introduction of further variables killing unwanted homology along lines 
due to Tate [7]. The acyclicity of the Koszul-Tate differential in stricly positive 



137 

resolution degree is crucial for the existence of the higher order terms in the 
perturbative expansion of the solution of the master equation. [We assume 
some familiarity with the general ideas of the antifield formalism; we refer to [5] 
for a detailed exposition]. 

The analysis presented in [3] did not address the question of the spacetime 
locality of the construction. More precisely, it did not address the question as t6 
whether the acyclicity of the Koszul-Tate differential in stricly positive resolution 
degree still holds in the space of local functionals. A few years ago, that question 
has been investigated and completely solved [8] (see also [5], chapters 12 and 17). 
The purpose of this paper is to make it clear how the approach developed in [8] 
works and does indeed solve the issue of locality by illustrating it in the familiar 
cases of the Klein-Gordon field, the electromagnetic field and the Yang-Mills 
field. 

We shall analyse only the specific question of locality of the Koszul-Tate 
complex. The reference [5] contains a discussion as to why this complex is so 
useful in the quantization of gauge systems. 

2 Def in i t ions  

Consider a field theory with field variables ¢i. We shall deal with both local func- 
tionals and local functions of ¢i. Local functions are functions of ¢i and a finite 
number of their derivatives, which may also involve the spacetime coordinates 
explicitly. So, a local function is given by 

f (  x~, ¢i, 0~¢i, ..., 9 , 1  ']'~k ¢~)" (1) 

Local functionals are integrals of local functions. Hence, 

F[¢ i] = / f(x~' ¢~, 0,¢ ~, ..., O~l...,~¢i)dnx (2) 

is a local functional. 
The appropriate way to deal with local functions is well known and has been 

used quite a lot in the algebraic study of anomalies. The corresponding math- 
ematical framework is the one of jet bundle theory (see e.g. [9, 10]). However, 
in order to keep the discussion simple, we shall not adopt here the jet bundle 
terminology. This is permissible because we shall assume that spacetime is R n, 
so that there are no global subtleties. 

Let V ° be the space with coordinates (x, ¢i). More generally, let V k be 
the space with coordinates (x,¢i ,0~¢ ~,...,0~1...~,~¢~). If f is a smooth local 
function, then there exists k such that f E C°°(vk). For this reason, the Vk's 
are the natural spaces in which to analyze locality. These spaces arose first in 
the geometric study of differential equations, which can naturally be regarded 
as representing surfaces in the Vk's. In that context, the spaces V k are called 
k-th jet bundles and are denoted by Jk(E). 

We stress that the jet bundle spaces are quite familiar not only in mathe- 
matics but also in physics since these are the spaces in which the Lagrangians of 
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local field theories live. These spaces are finite dimensional for each k. For this 
reason, all the standard algebraic tools of the antifield formalism (contracting ho- 
motopy, counting operators, recursive introduction of the antifields of antifields 
by successive killing of unwanted cohomology, model for the exterior derivative 
along the gauge orbits, antibracket cohomology, role of zeroth order terms - see 
[5]) are available in the jet bundle spaces without functional complications. 

In order to discuss local functionals, it is useful to consider the algebra Ak -= 
Cc~(V k) ® A[dx ~'] of exterior forms on R n with coefficients that  are functions 
on V I¢, 

w e Ak ¢:~.w = ~wz,1...vj(x,¢~,Olj¢i,...,O~l...l~j,¢i)dx vl h . . . h d x  ~'j (3) 

One can define a differential d : Ak ---* Ak+l as follows, 

do., = ~ dw m...~j A dx m A ... A dx ~'~ (4) 

where d acting on a function f E Ak is defined by 

o T f  , . 
df = ~ x "  ax , (5) 

o T f  _ Of  + Of  o#¢i Of  0 i 
o=. - ox--; b-~ + + a ( o . ,  .~)¢~ " " " ~ " ¢  (6) 

One crucial property of d is that 

f d~ = 0 (7) 

(we assume here and throughout that the boundary conditions are such that  the 
surface terms appearing in the equations vanish. If not, one must carefully keep 
track of the relevant surface integrals). 

Conversely let p be a n-form such that f p --- 0 for all field configurations. 
Then p = dw (see e.g. [5]). Accordingly, two local functions determine the same 
local functional if and only if they differ by a d-exact term. For that  reason, 
one can, following Gel'land and Dorfman [11], identify local functionals with the 
quotient space Hn(d)  of local n-forms (which are automatically closed) modulo 
exact ones. 

The Lagrangian £(¢ i ,  0~,¢i, ..., 0m...~,¢i) of the theory is a smooth function 
on V s. The equations of motion 1 

~L _ OL 0 0 £  1 s Of., (8) 
e¢, - o¢~ "~(b~-.¢,) +"" + ( - )  0 . ,  . .  0 (o .~ . . . ¢ , ) '  

together with their derivatives 0,  (6L /6¢  i) = O, Om~, ~ (6L /6¢  i) = 0 ... determine 
surfaces P'k in V k. For a fixed k, only a finite number of equations are relevant. 
The surfaces Nk are called "stationary surfaces". 

1From now on, we shall drop the suffix T on 0T: 0~ always stands for 0 T. 
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In the antifield formalism, the algebra C°°(~k) of smooth functions on ~k 
plays an important role because it is related to the observables [5]. The Koszul- 
Tate construction provides a resolution of C~(~a)  for each k. The idea is to 
view C°°(~k) as the quotient algebra C°°(V~)/.A/'k, where Ark is the ideal of 
functions of C°°(V k) that vanish on ~k- The Koszul-Tate differential is such 
that the elements of A/'k are exact, i.e., are pure boundaries. 

3 T h e  K o s z u l - T a t e  d i f f e r e n t i a l  f o r  t h e  m a s s l e s s  

s c a l a r  f i e l d  

To illustrate the construction, we consider first the massless Klein-Gordon the- 
ory. One has a single scalar field ¢ with Lagrangian 

The equations of motion are 

Z: --- -~0~¢0~¢  (9) 

zx¢ = 0 ,o ,¢  = 0. (10) 

In V °, the equations of motion imply no relation and So is empty: two functions 
f and g in V ° coincide "on-shell" (i.e., when the equations of motion hold) if 
and only if they are identical. Similarly, there is no relation in V 1. One has 
to go to V 2 to see the first effect of the equations of motion, which restrict the 
second derivatives of ¢. The surface •2 is defined by A¢ = 0 in V 2. Then, in 
V 3, ~3 is the surface A¢ = 0, D,A¢ = 0. More generally, the surface ~k in V k 
is defined by the equations 

Ek: h e  = 0, ..., A0,1...0,~_2¢ = 0. (11) 

The equations of motion (11) are independent in V k. This is most easily seen 
by introducing a new coordinate system in V k, which has the left hand side of 
the equations (11) as independent coordinates. One such coordinate system is 
given by 

¢, 0~¢, Omlm~¢, 0~0¢, ~¢,..., 0m~. . .~_~¢,  0~i...,~_,0¢, 0~,...,~_~A¢. 
(12) 

One can easily verify that any function f on V k that vanishes on Ek ( f  ~ 0) 
takes the form, 

f ~ 0 ¢:> f = hA¢ + h~O~A¢ + ... + h~'~'"'~-~AO,1...O,k_2¢ (13) 

where the h's are functions on V k (see for instance [5], chapter 1 with Cm = 0 
replaced by (11)). 

In order to construct a resolution of C ~ (Ek), one introduces one independent 
odd generator for each (independent) equation (11). That is, one considers the 
differential algebra C°°(Vk) ® Ale*, 0~¢*, ..., 0~, 1 ...0~_2 ¢*] with differential 

~¢ = 0, ~¢* = ~¢, (14) 
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extended to the derivatives of the field and "antifield" ¢* so as to commute with 
0,, 

~0~1...~ ¢ = 0, ~0~,...~ ¢* = 0~...~ ~¢. (15) 

One defines also the antighost number through 

ant igh(¢)  = 0, ant igh(¢*)  = 1. (16) 

By (14), (15), every equation of motion is 5-exact and so, is identified with zero 
when one passes to the 5-homology. More precisely, standard arguments from 
homological algebra show that 

Ho(5) = C°°(Ek) ,  Hi (5)  = 0 for j ¢ 0. (17) 

This result may be derived by observing that the coordinates of C ° ° ( V  ~) ® 
A[¢*, 0u¢*, ..., 0u~...0u~_~¢*] split into three groups (xi ,  za, J P ~ )  such that 
takes the form 

5xi = 0, 5P~ = z~, ~z~ = 0 (18) 

or equivalently 
0 

= za OPt"  (19) 

Explicitly, the coordinates xi  stand for the field ¢ and its derivatives with at 
most one 00, the za stand for A¢ and its derivatives, while the Pa stand for ¢* 
and its derivatives. A contracting homotopy may be defined through 

0 
ax i  = O, aP~ = O, az~ = P~ ¢> a = P~ Oz~ ' (20) 

i.e., 

0 0 0 
0 * (21) ~ = ¢ *  0(~¢) + "¢ o(o,~¢)--+ ... + 0,1...o,~_ ~ ¢* o(o,1... ,~_~¢) 

where the derivatives with respect to 0ul...~ A¢ are computed in the coordinates 
(12) of V k. One has 

a5 + 5a = N (22) 

where N 
0 0 

N =  V~O-~ + z~ ~-~z ~ (23) 

is the operator counting the number of P~ and za. The relation (22) crucially 
uses the derivation property of O/Oz~. It follows from (22) and (23) that P~ and 
za drop from the homology of ~ ("they belong to the contractible part of the 
complex"), which is given by the functions of xi  ([5], sections 8.3.2 and 9.A.2. 
The Ga's there play the role of the equations of motion here). Since the functions 
of xi  are the functions on ~k and have antighost number equal to zero, formula 
(17) is established. 
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The argument is valid for any k, i.e. for any local function involving the 
derivatives of the field and antifield up to an arbitrarily high (but finite) order. 
One sometimes summarize (17) by saying that ~ is acyclic in the space of local 
functions. 

It should be noted that even though covariant-looking, the contracting ho- 
motopy (21) is not covariant. For instance, one finds 

a(c3~,0~¢) = ~0~0¢*.  (24) 

Nevertherless, one can show that the homology of ~ in the algebra of Lorentz 
invariant functions is trivial for positive k; that is, if ~f = 0 and antigh(f) = 
k ¢ 0, where f is Lorentz invariant, then f = ~g where g may also be taken to 
be Lorentz invariant. This can be proved either by redefining the homotopy, or 
equivalently, by following the methods of [12], theorem 2. 

We close this section by a few remarks concerning incorrect statements that 
have been made in the literature. 
1. First, it should be stressed that f ~ 0 does not imply f = hA¢ with h a local 
function. Rather, f may also involve the derivatives of A¢, i.e., one has the full 
expansion (13). 
2. The homotopy a given by (21) is well defined everywhere because the equa- 
tions of motion are simple. For more general theories, however, a globally de- 
fined homotopy constructed along the above lines may just simply not exist. 
This is because obstructions for defining the derivation 0/0(5£:/~¢ i) may be 
present (one needs to tell what is kept fixed when differentiating with respect 
to ~/:/~¢i). Attempts for using a formula similar to (21) would then necessarily 
fail. This would show up in non convergence of power series, etc., which must 
be handled carefully. One way to handle correctly this problem is to introduce 
partitions of unity, as in [5], appendix 9A. 

To make this point clear, consider the Lagrangian L = L(q) where the func- 
tion h(q) = dL/dq is such that (i) h(q) = - 1  for q <_ -1 ;  (ii) h(q) = 1 for q >_ 1; 
and (iii) h(q) interpolates in a smooth way from - 1  to +1 between - 1  to +1 
and vanishes only at the origin where hi(0) = 1. It is clear that it is impossible 
to define df/dh for all functions f ' s  (with d/dh a derivation) since this would 
imply in particular that dq/dh is well-defined and such that (dq/dh)(dh/dq) = 1, 
in contradiction with dh/dq = 0 for q < - 1  or q >_ 1. It turns out not to be nec- 
essary, however, to define df/dh in the open sets where h ¢ 0. Indeed, in those 
sets ("of type V" according to [5]), any ~-closed function f is trivially ~-exact, 
f = ~(q*f/h). The proof of acyclicity of ~ proceeds by patching the V-sets with 
an open set covering the origin by means of a partition of unity. 

One may also construct polynomial counterexamples. For instance, the La- 
grangian 

1 4 5 ~  1 2 L(q)=-~q +-~q + ~q +5q  (25) 

for a real variable q leads to the equation of motion h(q) - dL/dq = (q + 
5)(q 2 + 1) = 0, whose sole solution is q -- -5 .  The equation of motion is regular 
(h~(q) ~ 0 on-shell), but yet, one cannot define dq/dh everywhere since dh/dq 
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has two real roots. One may build other counteramples based on a non trivial 
topology of the stationary surface. 

4 T h e  K o s z u l - T a t e  differential  for the  e lec tro-  
m a g n e t i c  field 

We now turn to the electromagnetic case. The equations of motion are 

6£ 
F-'P =- 6Ap = c9uF"P -- 0 (26) 

and define a surface in V s. The new feature compared with the previous situation 
is that  the derived equations 

G £  p = 0, G . , ~ £  p = 0, ... (27) 

in V 3, V 4, ... are no longer independent. Because of the gauge invariance of the 
electromagnetic field Lagrangian, one has rather (identically) 

OpZ:p - 0, ( G  -- o... (2s) 

(for any field configuration). For that reason, one needs "antifields of anti- 
fields"J[3, 5]. 

We start with V s. There are clearly no relations among the equations £:P = 0 
in V ~ since one can solve these equations for n of the coordinates in V 2 (we work 
in n dimensions). Namely, one can solve/:k = 0 for COooAk and £0 = 0 for 011Ao 
(say). Hence, if one defines in C°°(V 2) ® A(A *~) the differential 

6Au = 0, 5OpA# = 0, 60p,,A~, = 0, hA *~ = O~,F ~'~ (29) 

one gets that Hk(6) = 0 for k ~ 0 and H0(6) = C°°(~2). To verify this state- 
ment, one repeats the argument of the previous section and splits the variables of 
the complex in three groups. The coordinates A, ,  OpAl, OpaA k ((p, a) ¢ (0, 0)) 
and Op~A ° ((p, a) ~ (1, 1)) are of the x~-type, the coordinates £P are of the Za- 
type, while the A *~' are of the 7)a-type. The appropriate contracting homotopy 
in C°°(Y 2) ® A(A *~) reads 

0 
a = A*" Of_.~'" (30) 

Thus, only the variables not constrained by the equations of motion, namely, Au, 
OoAu, Op~A k ((p,o') ¢ (0,0)) and Oo~A ° ((p,a) ¢ (1,1)) remain in homology. 
The other variables drop out. 

Turn now to C°°(V3) ® A(A *u, OpA*U), with differential 5 (29) extended to 
the derivatives so that 

50~ = 0,~i (31) 

i.e., 
60p,~ad~ = O, ~OpA *g" = Op(cOvF V') (32) 



143 

The equations OvF ~ = 0 and OaOvF v~ = 0 are not independent in V 3 since 
they are subject to the (single) condition Opf~ p = O. There are no other identity 
in V 3 because one can solve n 2 + n -  1 of the n 2 + n  equations f.P = O, Ouf~P = 0 
for n 2 + n - 1 independent variables, namely OooAk (from/:~ = 0), 011A0 (from 
/:0 = 0), OpooAk (from Op£ ~ = 0) and 0811Ao (from 0,/~ ° = 0). The derivative 
0011A ° cannot be determined from 00/: ° = 0, which is not an independent 
equation (Oof~ ° = --Okf~k). Hence, in V a, there are n 2 + n - 1 independent 
equations and 1 dependent one. 

Because the equations of motion in V 3 are not independent, there is one 
non trivial cycle at antighost number 1, namely OpA*". Thus, Hi(if) ¢ 0 in 
C¢~(V 3) ® A(A*~,OpA*~). In order to achieve acyclicity of the Koszul-Tate 
differential, one needs to introduce one further even variable, denoted by C* 
and called "antifield of antifield" [5], with grading 

antighC* = 2. (33) 

This new variable must kill the non trivial cycle OpA *p in homology, so that  one 
defines 

*C* = OaA*'. (34) 

Once C* is introduced, one can redefine the variables of the differential complex 
C°°(V 3) ® C[A *~', OaA*~ , C*] in such a way that  tf takes again the characteristic 
form 2 

~ixi = 0, ~:P~ = z~, /iz~ = 0, (35) 

which makes manifest that  H,(lf) = C°°(x~). The variables xi have antighost 
number zero and parametrize Z3. They are explicitly given by Au, OpAl,, OpaAk 
((p, a) ¢ (0, 0)), Op~Ao ((p, a) ¢ (1, 1)), Op~Ak (with at most one time deriva- 
tive) and OpavAo (with (p, ~, u) ¢ (k, 1, 1) even up to a permutation). The 
variables ~o are A *~, OaA *k, OkA *° and C*. The variables z~ are the left hand 
sides of the equations of motion f-P, Oaf~ k, Okf~ ° and OpA *p. 

The same pattern goes on with the higher order derivatives. In C°°(V k) ® 
C[A *~, OpA *~, ..., Opl...pk_2A *~, C*, ..., Op,...p~_~C*], one may introduce new co- 
ordinates as follows: 
(i) Coordinates of x~-type : Ak and its derivatives with at most one 00; A0 and its 
derivatives except O~l~2...~Ao with at least two 01. These variables parametrize 

~k. 
(ii) Coordinates of za-type: /:k and its derivatives;/:0 and its spatial derivatives; 
OpA *p and its derivatives. 
(iii) Coordinates of Pa-type : A *k and its derivatives; A *° and its spatial deriva- 
tives; C* and its derivatives. 

Thus, again, Ho(tf) = C°°(V k) and Hrn(~) = O, m ¢ O. The contracting 
homotopy has the standard form 

a = :P~ 0 (36) 
(~ZO ~ ' 

2From now on, we shall use the notation U[A*~,OpA*~,C *] for the algebra 
A(A *~', OpA*~') ® R[C*]. The symmetry properties are taken care of by the gradings of A*~' 
(odd) and C* (even). 
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where the sum runs over all the z~'s. At each stage, one can separate the 
equations £P = 0 and their derivatives into independent ones and dependent ones 
without going out of the spaces V k, i.e., in a manner compatible with spacetime 
locality. Statements to the contrary are thus wrong. 

It is true that  the dependent equations at order k + 1 are not just the deriva- 
tives of the dependent equations at order k. One cannot separate the n equations 
X:P -- 0 into two groups, so that the independent (respectively, dependent) equa- 
tions would simply be all the derivatives of the equations of the first (respectively 
second) group. To achieve this property, one would have to make a non local 
split. But a split with this property is not necessary once one formulates the 
problem in terms of the standard spaces V k of jet bundle theory, as appropriate 
for dealing with locality. 

Similarly, although we have not done it, one could define a Lorentz-invariant 
homotopy by decomposing the derivatives of the fields along the irreducible 
representations of the Lorentz group. Hence, acyclicity of the Koszul-Tate dif- 
ferential also holds in the algebra of Lorentz-invariant local functions. This 
same result can equivalently be established along the lines of [12], by using the 
facts that  5 commutes with the representation and that the Lorentz group is 
semi-simple. 

5 The  Koszul -Tate  differential for the  Yang- 
Mills  field 

The Yang-Mills case can be treated in the same manner. This is because the 
terms with the highest (second) order derivatives of the gauge potential in the 
Yang-Mills equations of motion are exactly the same as in the Abelian case. 
Hence, the change of variables such that the left hand sides of the equations of 
motion and their derivatives are new coordinates is still permissible, and one can 
proceed as above. 

a A a a For instance, in V 3, one would take as new variables A~,~p ~,OpjaA k 
((p,o') ¢ (0,0)), Opg~A~, ((p,o-) ¢ (1, 1)) and /:~. The expression of OooA~ 
in terms of L:a k is the same as in the abelian case up to terms containing lower 
order derivatives (which are independent coordinates in the previous space V2). 
A similar analysis holds for higher order derivatives. 

We leave it to the reader to check also that an analogous derivation can 
be performed for p-form gauge fields. The only difference is that one needs 
this time more antifields for antifields because the reducibility equations are not 
independent. 



145 

6 Acyc l ic i ty  of  Koszu l -Tate  differential and lo- 
cal funct ionals  

The above sections establish the acyclicity of 5 in the space of local functions. 
Does this property also hold in the space of IocM functionals? That  is, if f is a 
n-form such that  

5 ] f : O, antighf >_ 1 (37) 
J 

does one have 

I f = s l y  (38) 

for some n-form g? [f and g are n-forms with coefficients that  are local functions]. 
Equivalently, in terms of the integrands, does 

5f  = dj, antighf > 1 (39) 

imply 
] = ~g + dk (40) 

for some n-form g and n - 1-form k? The presence of the d-exact terms in (39), 
(40) follows from (7) and must be taken into account. Failure to do so would be 
incorrect. The extra d-terms in (39) and (40) show that  the relevant cohomology 
when dealing with local functionals is the cohomology of 5 modulo d in the space 
of local n-forms. The corresponding cohomological spaces are denoted Ilk (5/d). 

As pointed out in [8], the answer to this question is in general negative. 
Constants of the motion define non trivial solutions of Hl(~f/d). Indeed, the 
equation 5f  + dj with antighf = - 1  and antighj = 0 defines a conserved 
current j .  If f is trivial (of the form (40)), then j is a trivial conserved current 
(j = - S k  + din). Since there exist in general non trivial conserved currents, 
Hl(5/d) is not empty. 

However, if f involves the ghosts 3 - which is the case encountered in homo- 
logical perturbation theory -, then (39) does imply (40). To see this, consider 
first the case where f is linear in the ghosts. By making integrations by parts if 
necessary, one can assume that  f does not involve the derivatives of the C a, 

f = ~ C  a, an t igh~  = O. (41) 

Then, 6f  = 6(Aa)C ~. If 6f = dj, then 6f 
because dj would otherwise necessarily involve 
5Aa = 0, which implies As = 5#~ since H~(6) = 
Consequently, f = (6]za)C a = 6(tzaC~), which 

and dj must separately vanish 
derivatives of the ghosts. Thus 
0 in the space of local functions. 
is the sought-for result. How to 

formalize the argument so that  it applies also to forms f that  are non linear 
in the ghosts is done in [8]. Thus, acyclicity of ~f holds in the space of local 
functionMs involving both the antifields and the ghosts. 

3How the ghosts are introduced may be found for example in [5]. The ghosts will be 
denoted by C a and are annihilated by the differential ~f. Once the ghosts are introduced, the 
cohomology of ~ is given by C ~ ( ~ )  ® A(c ~ ,opc c~ ...). 
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7 Conclusion 

We have illustrated in this paper how to handle locality in the case of the 
antifield-antibracket formalism for gauge field theories. The tools involve both 
standard homological algebraic techniques applied to finitely generated alge- 
bras and ideas from jet bundle theory. We have shown in particular how the 
equations of motion for electromagnetism and Yang-Mills theory can split into 
independent and dependent ones in the "jet bundle" spaces V k. The tools illus- 
trated here have been used recently to prove a long-standing conjecture on the 
renormalization of Yang-Mills models [13]. 

We close this letter with two observations : 
(i) The method of homological perturbation theory is quite general and does not 
depend on the precise form of the differential algebra on which the derivations 
act, provided these derivations fulfill the properties explained in [5] (chapter 8). 
Thus, one may modify the algebra of local functions by imposing restrictions 
if one wishes to do so. For instance, the well-known theorem that a BRST co- 
homological class is determined by its component of order zero in the antifields 
is quite standard and follows from the general principles of homological per- 
turbation theory (see again [5], chapter 8, proof of main theorem and section 
8.4.4). 
(ii) Similarly, one may consider field theories for which the equations of motion 
are not "regular", in the sense that their gradients would vanish on the stationary 
surface. A theory with equation of motion ~/:~/~¢ = ¢2 = 0 (rather than the 
equivalent equation ~£:/~¢ = ¢ = 0) would provide such an example. This case 
does not arise in usual gauge theories, as we have just seen, but does occur in, say, 
Siegel formulation of chiral bosons [14]. Again, a lot of work already exists on this 
subject, especially in the Hamiltonian context. The algebraic framework is well 
developed. The real question is, however, what is the physical meaning of the 
BRST construction in those cases. The relation between the BRST cohomology 
and the cohomology of the geometrical longitudinal derivative on the stationary 
surface may no longer hold (this is why the BRST analysis performed in chapters 
9 and 10 of [5] excludes these somewhat pathological cases). To the author, the 
question has not been fully resolved. 
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