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Abstract. Some general techniques and theorems on the spacetime locality of
the antifield formalism are illustrated in the familiar cases of the free scalar field,
electromagnetism and Yang-Mills theory. Common misconceptions in the field
are corrected.

1 Introduction

The antifield-BRST formalism [1] provides a powerful approach to the quantiza-
tion of gauge systems. Its geometric and algebraic features have been clarified
in [2, 3, 4], where it was shown how the general BRST construction implements
gauge invariance in cohomology. The crucial equation of the theory, namely the
TTmaster equation”, was in particular justified and derived from this point of
view. A general exposition of these ideas with pedagogical emphasis may be
found in [5].

A major feature of the theory is that the solution of the master equation
is determined perturbatively as a power series in the antifields. As it has been
shown in (2, 3], the rationale for introducing the antifields is that these provide a
resolution of the algebra of functionals of on-shell field configurations. Namely,
the antifields are there to implement the equations of motion when one passes
to the BRST cohomology. The resolution associated with the antifields is called
“Koszul-Tate” resolution, because it is patterned after a construction due to
Koszul [6], supplemented, when the equations of motion are not independent,
by the introduction of further variables killing unwanted homology along lines
due to Tate [7]. The acyclicity of the Koszul-Tate differential in stricly positive
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resolution degree is crucial for the existence of the higher order terms in the
perturbative expansion of the solution of the master equation. [We assume
some familiarity with the general ideas of the antifield formalism; we refer to [5]
for a detailed exposition].

The analysis presented in [3] did not address the question of the spacetime
locality of the construction. More precisely, it did not address the question as té
whether the acyclicity of the Koszul-Tate differential in stricly positive resolution
degree still holds in the space of local functionals. A few years ago, that question
has been investigated and completely solved [8] (see also [5], chapters 12 and 17).
The purpose of this paper is to make it clear how the approach developed in [8]
works and does indeed solve the issue of locality by illustrating it in the familiar
cases of the Klein-Gordon field, the electromagnetic field and the Yang-Mills
field.

We shall analyse only the specific question of locality of the Koszul-Tate
complex. The reference {5] contains a discussion as to why this complex is so
useful in the quantization of gauge systems.

2 Definitions

Consider a field theory with field variables ¢*. We shall deal with both local func-
tionals and local functions of ¢?. Local functions are functions of ¢* and a finite
number of their derivatives, which may also involve the spacetime coordinates
explicitly. So, a local function is given by

f(-"”u"l51 #¢1 Oy, Ilk(ﬁz) (1)

Local functionals are integrals of local functions. Hence,

Fl§] = / (@8, 0u s Oy ) (2)

is a local functional.

The appropriate way to deal with local functions is well known and has been
used quite a lot in the algebraic study of anomalies. The corresponding math-
ematical framework is the one of jet bundle theory (see e.g. [9, 10]). However,
in order to keep the discussion simple, we shall not adopt here the jet bundle
terminology. This is permissible because we shall assume that spacetime is R%,
so that there are no global subtleties.

Let VO be the space with coordinates (z #'). More generally, let V¥ be
the space with coordinates (z,¢%,,¢", .. Oy .. uk¢’) If f is a smooth local
function, then there exists k such that f G C°°(V’°) For this reason, the V¥’s
are the natural spaces in which to analyze locality. These spaces arose first in
the geometric study of differential equations, which can naturally be regarded
as representing surfaces in the V*’s. In that context, the spaces V¥ are called
k-th jet bundles and are denoted by J*(E).

We stress that the jet bundle spaces are quite familiar not only in mathe-
matics but also in physics since these are the spaces in which the Lagrangians of
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local field theories live. These spaces are finite dimensional for each k. For this
reason, all the standard algebraic tools of the antifield formalism (contracting ho-
motopy, counting operators, recursive introduction of the antifields of antifields
by successive killing of unwanted cohomology, model for the exterior derivative
along the gauge orbits, antibracket cohomology, role of zeroth order terms - see
[5]) are available in the jet bundle spaces without functional complications.

In order to discuss local functionals, it is useful to consider the algebra A; =
C®(V*) ® Aldz*] of exterior forms on R™ with coefficients that are functions
on Vk,

W€ A ©w=3wy ., (2,¢,0,8 ... 0p.. u8") d& A .. Adz¥ (3)
One can define a differential d : Ay — Ag1 as follows,
dw =X dwy,. . u; A dz¥t A ... Adzhi (4)

where d acting on a function f € A; is defined by

of
o = 60:“ )
oTf _ f Of 5 i of i
don = 8ar T 0 T T 50y, e O ©

One crucial property of d is that

/dw=0 (7)

(we assume here and throughout that the boundary conditions are such that the
surface terms appearing in the equations vanish. If not, one must carefully keep
track of the relevant surface integrals).

Conversely let p be a n-form such that [ p = 0 for all field configurations.
Then p = dw (see e.g. [5]). Accordingly, two local functions determine the same
local functional if and only if they differ by a d-exact term. For that reason,
one can, following Gel’fand and Dorfman [11], identify local functionals with the
quotient space H™(d) of local n-forms (which are automatically closed) modulo
exact ones.

The Lagrangian £(¢*,8,¢%, ..., dy,. .4, ¢*) of the theory is a smooth function
on V*. The equations of mo’clon1

5L _ oL oL oc

o = og e T s ey ©

together with their derivatives 8,(6£/8¢*) = 0, 8, p,(6L/6¢*) = 0 ... determine
surfaces X; in V*. For a fixed &, only a finite number of equations are relevant.
The surfaces X, are called “stationary surfaces”.

1From now on, we shall drop the suffix T on 87: 8, always stands for 87 .
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In the antifield formalism, the algebra C™(%;) of smooth functions on Iy
plays an important role because it is related to the observables [5]. The Koszul-
Tate construction provides a resolution of C*®(X;) for each k. The idea is to
view C*®(X;) as the quotient algebra C*(V*)/N}, where N} is the ideal of
functions of C°(V*) that vanish on X;. The Koszul-Tate differential is such
that the elements of A are exact, i.e., are pure boundaries.

3 The Koszul-Tate differential for the massless
scalar field

To illustrate the construction, we consider first the massless Klein-Gordon the-
ory. One has a single scalar field ¢ with Lagrangian

1
L= 50,099 ®)
The equations of motion are
Ap=8,0"¢ =0. (10)

In VO, the equations of motion imply no relation and ¥ is empty: two functions
f and g in V° coincide “on-shell” (i.e., when the equations of motion hold) if
and only if they are identical. Similarly, there is no relation in V. One has
to go to V2 to see the first effect of the equations of motion, which restrict the
second derivatives of ¢. The surface I is defined by A¢ = 0 in V2. Then, in
V3, 3 is the surface A¢ = 0, 8,A¢ = 0. More generally, the surface Ty, in V¥
is defined by the equations

Tk :Ad=0,...,A8,,..0,,_,6=0. (11)

The equations of motion (11) are independent in V*. This is most easily seen
by introducing a new coordinate system in V*  which has the left hand side of
the equations (11) as independent coordinates. One such coordinate system is
given by

¢3 u¢> m1m2¢a m10¢; A(b’ m1 M — 3mk¢> L. Mg 10¢: Bl k- 2A¢( )

12

One can easily verify that any function f on V* that vanishes on j (f ~ 0)
takes the form,

Fx0& f=hAd+h*O,A¢+ ...+ W1 #2A8, .0, ,6  (13)

where the h’s are functions on V¥ (see for instance [5], chapter 1 with ¢,, =0
replaced by (11)).

In order to construct a resolution of C*°(Z}), one introduces one independent
odd generator for each (independent) equation (11). That is, one considers the
differential algebra C®°(V*) @ Al¢*,8,9", ..., 0y, ...04,_, @] with differential

69 =0,6¢" = Ag, (14)
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extended to the derivatives of the field and “antifield” ¢* so as to commute with
Oy,
60uy..n; 0 = 0,604,...u; ¢" = Ouy..n; O (15)

One defines also the antighost number through
antigh(¢) = 0, antigh(¢*) = 1. (16)

By (14), (15), every equation of motion is §-exact and so, is identified with zero
when one passes to the §-homology. More precisely, standard arguments from
homological algebra show that

Hy(8) = C®(Sx), H;(6) =0for j #0. (17)

This result may be derived by observing that the coordinates of C®°(V*) ®
Ng*, 8,9, ..., 0y, ...0u,_,9*] split into three groups (zi, 2z, JPy) such that §
takes the form

6z, =0, 6Py = 24, 626, =0 (18)
or equivalently 5
6= Zaﬁ. (19)

Explicitly, the coordinates z; stand for the field ¢ and its derivatives with at
most one g, the z, stand for A¢ and its derivatives, while the P, stand for ¢*
and its derivatives. A contracting homotopy may be defined through

ox; =0,0P,=0,024 =P, ©0=’Pa-2—-, (20)
02y
ie.,
Is} 0 0
oc=¢" + 6,¢" +. 40,0, 0 21
Vo T 58,89 o Oua¥ g Ay

where the derivatives with respect to d,,...,, A¢ are computed in the coordinates
(12) of V¥. One has

06+6c =N (22)
where N 5 5
N='Pa‘é—75‘;+zagz (23)

is the operator counting the number of P, and z,. The relation (22) crucially
uses the derivation property of 8/9z,. It follows from (22) and (23) that P, and
2z drop from the homology of § (“they belong to the contractible part of the
complex”), which is given by the functions of z; ([5], sections 8.3.2 and 9.A.2.
The G, ’s there play the role of the equations of motion here). Since the functions
of z; are the functions on ¥y and have antighost number equal to zero, formula
(17) is established.
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The argument is valid for any k, i.e. for any local function involving the
derivatives of the field and antifield up to an arbitrarily high (but finite) order.
One sometimes summarize (17) by saying that § is acyclic in the space of local
functions.

It should be noted that even though covariant-looking, the contracting ho-
motopy (21) is not covariant. For instance, one finds

0‘(6”6,, ¢) = 5#06u0¢* . (24)

Nevertherless, one can show that the homology of § in the algebra of Lorentz
invariant functions is trivial for positive k; that is, if 6f = 0 and antigh(f) =
k # 0, where f is Lorentz invariant, then f = §g where g may also be taken to
be Lorentz invariant. This can be proved either by redefining the homotopy, or
equivalently, by following the methods of [12], theorem 2.

We close this section by a few remarks concerning incorrect statements that
have been made in the literature.

1. First, it should be stressed that f ~ 0 does not imply f = hA¢ with A a local
function. Rather, f may also involve the derivatives of A, i.e., one has the full
expansion (13).

2. The homotopy o given by (21) is well defined everywhere because the equa-
tions of motion are simple. For more general theories, however, a globally de-
fined homotopy constructed along the above lines may just simply not exist.
This is because obstructions for defining the derivation 8/8(6£/6¢) may be
present (one needs to tell what is kept fixed when differentiating with respect
to 6L£/8¢"). Attempts for using a formula similar to (21) would then necessarily
fail. This would show up in non convergence of power series, etc., which must
be handled carefully. One way to handle correctly this problem is to introduce
partitions of unity, as in [5], appendix 9A.

To make this point clear, consider the Lagrangian L = L{q) where the func-
tion h(q) = dL/dgq is such that (i) h{g) = —1for ¢ < —1; (ii) A{g) =1 for ¢ > 1;
and (iii) h(q) interpolates in a smooth way from —1 to +1 between —1 to +1
and vanishes only at the origin where h'(0) = 1. It is clear that it is impossible
to define df /dh for all functions f’s (with d/dh a derivation) since this would
imply in particular that dg/dh is well-defined and such that (dg/dh)(dh/dg) =1,
in contradiction with dh/dg = 0 for ¢ < —1 or ¢ > 1. It turns out not to be nec-
essary, however, to define df /dh in the open sets where b # 0. Indeed, in those
sets (“of type V” according to [5]), any §-closed function f is trivially é-exact,
f = 6(g* f/h). The proof of acyclicity of § proceeds by patching the V-sets with
an open set covering the origin by means of a partition of unity.

One may also construct polynomial counterexamples. For instance, the La-
grangian

1, 854 1,
== = ¢ +5 25
| L{g)= 4" +3¢ + 39 +5¢ (25)
for a real variable g leads to the equation of motion h(gq) = dL/dq = (g +
5)(¢® + 1) = 0, whose sole solution is ¢ = —5. The equation of motion is regular

(k'(g) # 0 on-shell), but yet, one cannot define dg/dh everywhere since dh/dgq
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has two real roots. One may build other counteramples based on a non trivial
topology of the stationary surface.

4 The Koszul-Tate differential for the electro-
magnetic field

We now turn to the electromagnetic case. The equations of motion are

£P=%~a Fre =0 (26)

and define a surface in V2. The new feature compared with the previous situation
is that the derived equations

BuLP = 0,8, L° =0, . (27)

in V3, V4, ... are no longer independent. Because of the gauge invariance of the
electromagnetic field Lagrangian, one has rather (identically)

8,L° = 0,8,,(8,£°) = 0... (28)

(for any field configuration). For that reason, one needs “antifields of anti-
fields” J[3, 5].

We start with V2. There are clearly no relations among the equations £ = 0
in V2 since one can solve these equations for n of the coordinates in V2 (we work
in n dimensions). Namely, one can solve £L* = 0 for 8y Ay and £° = 0 for O3 Ao
(say). Hence, if one defines in C*(V?) ® A(A**) the differential

8A, = 0,60,A4, = 0,80,, A, = 0,64 = §,F"* (29)

one gets that Hy(6) = 0 for k # 0 and Hy(6) = C*(X2). To verify this state-
ment, one repeats the argument of the previous section and splits the variables of
the complex in three groups. The coordinates A,, 8,4,, 8,- A* ((p,o) # (0,0))
and 9,,4° ((p,0) # (1,1)) are of the z,-type, the coordinates £ are of the z,-
type, while the A** are of the P,-type. The appropriate contracting homotopy
in C®(V?) ® A(A**) reads
g 9
g=A EYTh (30)

Thus, only the variables not constrained by the equations of motion, namely, 4,
0pAy, 0ps A* ((p,0) # (0,0)) and 8,,4° ((p,0) # (1,1)) remain in homology.
The other variables drop out.

Turn now to C°(V?) ® \(A**,8,A*"), with differential § (29) extended to
the derivatives so that

68, = 8,6 (31)

ie.,
60psa Ay =0, 68,A*H = 8,(8,F"*) (32)
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The equations 8, F** = 0 and 8,8,F** = 0 are not independent in V3 since
they are subject to the (single) condition 8,L? = 0. There are no other identity
in V' because one can solve n” +n — 1 of the n% +n equations £# =0, 9,L£° =0
for n? +n — 1 independent variables, namely 8gp Ay, (from L£* = 0), 811 Ay (from
L® = 0), 8,00Ar (from 8,L* = 0) and 8,11 Ap (from 8,L° = 0). The derivative
0011 A® cannot be determined from 8,£° = 0, which is not an independent
equation (8oL = —8;L*). Hence, in V3, there are n2 + n — 1 independent
equations and 1 dependent one.

Because the equations of motion in V? are not independent, there is one
non trivial cycle at antighost number 1, namely 0,A*. Thus, H;(6) # 0 in
C®(V3) ® A(A**,8,A™). In order to achieve acyclicity of the Koszul-Tate
differential, one needs to introduce one further even variable, denoted by C*
and called “antifield of antifield” [5], with grading

antighC* = 2. (33)

This new variable must kill the non trivial cycle 8,4*# in homology, so that one
defines
6C* = 0,A*. (34)

Once C* is introduced, one can redefine the variables of the differential complex
C*®(V3)® C[A*,8,A*,C*] in such a way that é takes again the characteristic
form? '

bx; =0, 6Py = 24, 624 =0, (35)
which makes manifest that H.(§) = C™(z;). The variables z; have antighost
number zero and parametrize X3. They are explicitly given by A, 0,A,, Ops Ak
((p,0) # (0,0)), 8ps40 ((p,0) # (1,1)), Opor Ar (with at most one time deriva-
tive) and dppp Ao (with (p,o,v) # (k,1,1) even up to a permutation). The
variables P, are A*#, 8,A** 8, A*® and C*. The variables 2, are the left hand
sides of the equations of motion £, 8,L*,8;L° and §,A*".

The same pattern goes on with the higher order derivatives. In C®(V¥) ®
ClA™,8,A% ..., 8p, ... pu_y A*,C*, ..., 8p, ... p,_sC*], one may introduce new co-
ordinates as follows:

(i) Coordinates of z;-type : A and its derivatives with at most one 8p; Ao and its
derivatives except 85, ,...s,, Ao With at least two 0;. These variables parametrize
Yk

(ii) Coordinates of zo-type: £LF and its derivatives; L£° and its spatial derivatives;
0,A*" and its derivatives.

(iii) Coordinates of P,-type : A** and its derivatives; A*® and its spatial deriva-
tives; C* and its derivatives.

Thus, again, Ho(§) = C*®(V*) and H,(6) = 0, m # 0. The contracting
homotopy has the standard form

6
— "7 — 36
g = aaza ? ( )

2From now on, we shall use the notation C[A*#,8,A**,C*] for the algebra
/\(A*“, 8p,A**) ® R[C*]. The symmetry properties are taken care of by the gradings of A™#
(odd) and C* (even).
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where the sum runs over all the z,’s. At each stage, one can separate the
equations £ = 0 and their derivatives into independent ones and dependent ones
without going out of the spaces V¥, i.e., in a manner compatible with spacetime
locality. Statements to the contrary are thus wrong.

It is true that the dependent equations at order k+ 1 are not just the deriva-
tives of the dependent equations at order k. One cannot separate the n equations
LP = 0 into two groups, so that the independent (respectively, dependent) equa-
tions would simply be all the derivatives of the equations of the first (respectively
second) group. To achieve this property, one would have to make a non local
split. But a split with this property is not necessary once one formulates the
problem in terms of the standard spaces V* of jet bundle theory, as appropriate
for dealing with locality.

Similarly, although we have not done it, one could define a Lorentz-invariant
homotopy by decomposing the derivatives of the fields along the irreducible
representations of the Lorentz group. Hence, acyclicity of the Koszul-Tate dif-
ferential also holds in the algebra of Lorentz-invariant local functions. This
same result can equivalently be established along the lines of [12], by using the
facts that § commutes with the representation and that the Lorentz group is
semi-simple.

5 The Koszul-Tate differential for the Yang-
Mills field

The Yang-Mills case can be treated in the same manner. This is because the
terms with the highest (second) order derivatives of the gauge potential in the
Yang-Mills equations of motion are exactly the same as in the Abelian case.
Hence, the change of variables such that the left hand sides of the equations of
motion and their derivatives are new coordinates is still permissible, and one can
proceed as above.

For instance, in V3, one would take as new variables AL, 0,43, 0p55 A,
((p,0) # (0,0)), 8,5548, ((p,0) # (1,1)) and LE. The expression of GgoAL
in terms of L¥ is the same as in the abelian case up to terms containing lower
order derivatives (which are independent coordinates in the previous space V?).
A similar analysis holds for higher order derivatives.

We leave it to the reader to check also that an analogous derivation can
be performed for p-form gauge fields. The only difference is that one needs
this time more antifields for antifields because the reducibility equations are not
independent.



145

6 Acyclicity of Koszul-Tate differential and lo-
cal functionals
The above sections establish the acyclicity of § in the space of local functions.

Does this property also hold in the space of local functionals? That is, if f is a
n-form such that

6/]‘ =0, antighf > 1 (37)

/f=5/g (38)

for some n-form g? [f and g are n-forms with coefficients that are local functions].
Equivalently, in terms of the integrands, does

does one have

§f = dj, antighf > 1 (39)

imply
f=6g+dk (40)

for some n-form g and n — 1-form k? The presence of the d-exact terms in (39),
(40) follows from (7) and must be taken into account. Failure to do so would be
incorrect. The extra d-terms in (39) and (40) show that the relevant cohomology
when dealing with local functionals is the cohomology of § modulo d in the space
of local n-forms. The corresponding cohomological spaces are denoted Hy(6/d).

As pointed out in [8], the answer to this question is in general negative.
Constants of the motion define non trivial solutions of H;(6/d). Indeed, the
equation §f + dj with antighf = —1 and antighj = 0 defines a conserved
current j. If f is trivial (of the form (40)), then j is a trivial conserved current
(j = —6k + dm). Since there exist in general non trivial conserved currents,
Hy(6/d) is not empty.

However, if f involves the ghosts® - which is the case encountered in homo-
logical perturbation theory -, then (39) does imply (40). To see this, consider
first the case where f is linear in the ghosts. By making integrations by parts if
necessary, one can assume that f does not involve the derivatives of the C,

f = A.C%, antighh, = 0. (41)

Then, 6§f = §(a)C%. I 8f = dj, then 6f and dj must separately vanish
because dj would otherwise necessarily involve derivatives of the ghosts. Thus
8)\q = 0, which implies A\, = 6o since Hy(8) = 0 in the space of local functions.
Consequently, f = (6pq)C® = 6(u,C?), which is the sought-for result. How to
formalize the argument so that it applies also to forms f that are non linear
in the ghosts is done in [8]. Thus, acyclicity of § holds in the space of local
functionals involving both the antifields and the ghosts.

3ow the ghosts are introduced may be found for example in {5]. The ghosts will be
denoted by C* and are annihilated by the differential 6. Once the ghosts are introduced, the
cohomology of 6 is given by C™(5;) ® A(C*,8,C*..).
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7 Conclusion

We have illustrated in this paper how to handle locality in the case of the
antifield-antibracket formalism for gauge field theories. The tools involve both
standard homological algebraic techniques applied to finitely generated alge-
bras and ideas from jet bundle theory. We have shown in particular how the
equations of motion for electromagnetism and Yang-Mills theory can split into
independent and dependent ones in the “jet bundle” spaces V*. The tools illus-
trated here have been used recently to prove a long-standing conjecture on the
renormalization of Yang-Mills models [13].

We close this letter with two observations :
(1) The method of homological perturbation theory is quite general and does not
depend on the precise form of the differential algebra on which the derivations
act, provided these derivations fulfill the properties explained in [5] (chapter 8).
Thus, one may modify the algebra of local functions by imposing restrictions
if one wishes to do so. For instance, the well-known theorem that a BRST co-
homological class is determined by its component of order zero in the antifields
is quite standard and follows from the general principles of homological per-
turbation theory (see again [5], chapter 8, proof of main theorem and section
8.4.4).
(ii) Similarly, one may consider field theories for which the equations of motion
are not “regular”, in the sense that their gradients would vanish on the stationary
surface. A theory with equation of motion 6£'/6¢ = ¢? = 0 (rather than the
equivalent equation 6£/6¢ = ¢ = 0) would provide such an example. This case
does not arise in usual gauge theories, as we have just seen, but does occur in, say,
Siegel formulation of chiral bosons [14]. Again, a lot of work already exists on this
subject, especially in the Hamiltonian context. The algebraic framework is well
developed. The real question is, however, what is the physical meaning of the
BRST construction in those cases. The relation between the BRST cohomology
and the cohomology of the geometrical longitudinal derivative on the stationary
surface may no longer hold (this is why the BRST analysis performed in chapters
9 and 10 of [5] excludes these somewhat pathological cases). To the author, the
question has not been fully resolved.
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