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Abstract

We consider three-dimensional statistical systems at phase coexistence in the half-volume with boundary
conditions leading to the presence of an interface. Working slightly below the critical temperature, where
universal properties emerge, we show how the problem can be studied analytically from first principles,
starting from the degrees of freedom (particle modes) of the bulk field theory. After deriving the passage
probability of the interface and the order parameter profile in the regime in which the interface is not bound
to the wall, we show how the theory accounts at the fundamental level also for the binding transition and its
key parameter.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

An important problem in the theory of statistical systems close to criticality is that of provid-
ing a fundamental treatment of phenomena involving different length scales. The divergence of
the correlation length & as the critical temperature 7. is approached is at the origin of universal-
ity, namely the existence of quantities such as critical exponents whose values only depend on
global properties (internal symmetries and space dimensionality). Field theory then emerges as
the natural framework for the quantitative study of universality classes (see e.g. [1,2]). In partic-
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ular, the scaling dimensions of the fields, which determine the critical exponents, are related to
the behavior of correlation functions at distances much smaller than &£. On the other hand, below
T,, in a system with discrete internal symmetry, suitable boundary conditions lead to the pres-
ence of an interface separating two coexisting phases. The phenomenon requires a length scale
R — the linear size of the interface — which is much larger than &, since on shorter scales bulk
fluctuations do not allow the emergence of the two distinct phases. There is no doubt that slightly
below T, the full description of the system with the interface should be obtained supplementing
with the required boundary conditions the field theory of the bulk (i.e. homogeneous) system.
In practice, however, it is far from obvious how to derive analytical results that simultaneously
encode scaling and interfacial properties, which are related to short and large distance effects,
respectively.

It has been recently shown [3] how the problem can be dealt with within the particle descrip-
tion of field theory. Indeed, the bulk field theory possesses a complete basis of particle states that
allow to write the configurational sums in momentum space, and this also in the case of boundary
conditions that induce the presence of an interface. The required condition R >> & then projects
the calculation to a low energy limit in which the geometry of the system plays a main role. The
interface and its fluctuations emerge as due to the propagation of particle modes distributed along
a string with a density related to the interfacial tension. At the same time, the dependence on crit-
ical exponents is automatically encoded. In particular, the mass of the particle modes coincides
with the inverse correlation length, and scales for ' — 7, with the exponent v.

In this paper we show how the formalism extends to the case of an interface whose fluctuations
are constrained by the presence of a wall. We show how the presence of the wall is implemented
in momentum space and how it affects the dependence on the distance from the wall of the order
parameter profile resulting from the fluctuations of the interface. We then consider the case in
which the tuning of a boundary field can induce the binding of the interface to the wall, and show
that the particle formalism naturally accounts for the binding transition and its key parameter.

The paper is organized as follows. In the next section we show how the problem of the in-
terface in presence of the wall is implemented starting from the particle modes of the bulk field
theory. In section 3 we use the formalism to determine the order parameter profile and the pas-
sage probability of the interface. Section 4 is then devoted to the binding transition induced
by a sufficiently attractive wall-interface interaction, while section 5 contains some concluding
remarks.

2. Interface in presence of a wall

The universal properties of an interface in presence of a wall that we consider in this paper find
their simplest implementation within the three-dimensional Ising model defined by the reduced
Hamiltonian

1
H=—o ;sisj, (1)
iJ

where the spin variable located at site i of a cubic lattice takes the values s; = %1, and (i, j)
means that the sum is performed over all pairs of nearest-neighbor sites. We consider values of
the temperature 7 below the critical value 7., namely in the regime in which the spin reversal
symmetry of the Hamiltonian (1) is spontaneously broken and the absolute value of the magne-
tization is |(s;)| = M > 0, where (- --) denotes the average over all spin configurations weighted
by e~ . More precisely, we consider temperatures only slightly below 7, in such a way that
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Fig. 1. Geometry considered in the theoretical derivation, with L — oo and R much larger than the bulk correlation
length &. One configuration of the interface is shown.

the large correlation length (it diverges as & >~ |T — T.|™" as T — T,) allows to take the contin-
uum limit. The latter defines an Euclidean (translationally and rotationally invariant in the three
dimensions) field theory that we call the bulk field theory [1,2]. This Euclidean field theory can
also be seen as the analytic continuation to imaginary time of a quantum field theory defined in
two space and one time dimensions. Denoting by r = (x, y, z) a point in Euclidean space, we
will identify z as the imaginary time direction. In the continuum the discrete spin variables s; are
replaced by the spin field s (7).

In order to study the interfacial problem of our interest, we consider the system in the half-
volume x > 0, with the spins on the wall x = 0 fixed to the values s; = 1 for |z] < R/2
and s; = —1 for |z| > R/2, where R is much larger than the bulk correlation length &. De-
noting by (---)4_ configurational averages with these boundary conditions, it is clear that
xlilfoo(s(x, y,0))+— is —M for R finite and M for R infinite. Hence, one expects the pres-

ence of an interface pinned along the boundary-condition-changing lines z = £R/2 on the wall
(Fig. 1), separating an inner phase with positive magnetization from an outer phase with nega-
tive magnetization, and whose average distance from the wall at z = 0 diverges with R. In the
following we will show how this result indeed emerges within the field theoretical description of
the problem.

For this purpose, we recall that the bulk field theory admits a particle description. The particles
correspond to the excitations modes with respect to the ground state (vacuum) of the quantum
field theory, and should not be confused with the molecules of a fluid. Since the rotational invari-
ance of the bulk Euclidean theory is mapped into relativistic invariance of the quantum theory in
(2+1) dimensions, the energy E}, of a particle mode with mass m and momentum p = (px, py)

obeys the relativistic dispersion relation Ep = /p? +m?2. A complete basis onto which generic
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excitations can be expanded is provided by the asymptotic n-particle states |p1, p2, ..., Pn) of
the bulk theory (see e.g. [4] for an introduction). These states are eigenstates of the energy and
momentum operators H and P of the quantum theory, with eigenvalues ) 7, Ep, and > |, p;,
respectively. The operators H and P also act as generators of space-time translations, and for a
generic field ®(r) we have

q)(r) — eiXR\r-‘:-l‘)’Py"l‘ZH q)(o) e—ixRx—iny—zH i (2)

In field theory, interfaces' are produced by the propagation of particles between the pinning
points [6—8,3], in the present case the lines z = =R/2 at x = 0. Translation invariance in the y
direction implies that the number N of propagating particles is extensive in that direction, and is
therefore infinite. In order to regulate our expressions, we will denote by L the size of the system
in the y direction, always understanding that N o« L — oo. The interface is then spanned by the
propagation in the imaginary time direction z of an excitation (a string) containing N /L particles
per unit length. The propagation occurs between states |B(+R/2)) = eigH |B(0)) that we can
expand over the basis of particle states of the bulk theory in the form

N
dp; iR/Z[;Ep[
|BGER/2) = \/_fl'[(zn)QE F®1. i pr) €

N
X8 (Zpy,,) Prs PN+ e (3)

i=1
where f(py, ..., py) is an amplitude, the delta function enforces translation invariance in the y
direction, and the state normalization (p|q) = (27)> Ep 3(p — q) is adopted. For reasons that will
become clear in a moment, the contribution that we write explicitly in (3) is that of the particles
with the lowest mass. The latter is denoted by m and determines the large distance decay of the
bulk spin-spin correlation function as (s(r)s(0)) ~ e~""| a relation that implies

E=1/m. “

Correlation functions of fields located in the region |z| < R/2 of the system with the inter-
face will be computed between the states | B(—R/2)) and |B(R/2)). It follows that the partition
function is given by

Z._ =(B(R/2)|B(—R/2)) = (B(0)le*#|B(0))

x N 7R<Nm+§: ﬁ)

L dp: >

21 /1_[ (Znﬁzm FLCIREN JOle (ZPy,i) e = (5)
i=1

i=1

where in the last line we exploited the fact that the limit of large R forces all momenta to be
small, and used the regularization §(0) = L/2n following from 274 (p) = f ¢'PYdy. Here and in
the following the symbol ~ indicates omission of terms subleading for large R.

So far we took into account that the interface runs between the pinning axes, but not the pres-
ence at x = 0 of a wall that the interface cannot cross. This information has to be carried by
the function f(py, ..., py), which plays the role of emission/absorption amplitude of the parti-
cles at the pinning axes. We then impose that none of the particles stays at x = 0, namely that

1 As well as other inhomogeneities, see [5].
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f (1, ..., py) vanishes when at least one of the momentum components p, ; vanishes. Taking
into account that the particles in (3) play a symmetric role, and that f(p;, ..., py) should be
analytic in the limit of small momenta required for the calculations at large R, we write

N
f(p11~-~7pN):f01_[px,i7 piw--,pN_)O, (6)
i=1

where fy is a constant. Plugging this expression in (5) we obtain

, Lifol2e BNm 27m\N [2zR ;
+- (2m)2(N+D) R2 Nm )
This result shows, in particular, how a state with a particle of mass m replaced by one of mass
m’ > m contributes to the large R expansion a term further suppressed by a factor e =~k
The interfacial tension o is the free energy per unit area contributed by an interface whose

size is infinite in both the y and the z directions. Since the limit L — oo of the size in the y
direction is understood, we have

1
=— lim —InZi_=km’=—, 8
O T RN IR T T ®)

where

_ N¢
T L

is dimensionless, and then universal. Since we expect and will show in the next section that the
average distance of the interface from the wall increases with R, the presence of the wall does
not affect the interfacial tension. Hence, the Monte Carlo determination 0£2 = k = 0.1084(11)
obtained for the three-dimensional Ising model in absence of the wall [9] continues to hold. It
follows that the average interparticle distance L/N = &£/« in the y direction is approximately
ten correlation lengths, meaning that the interparticle interaction is negligible. This is nicely
consistent with our finding that in the large R limit the particle propagation between the pinning
axes is only subject to translation invariance in the y direction (delta function in (3)) and to the
presence of the wall (expression (6)).

K

®

3. Order parameter profile
The expectation value of a field ®(r) at z = 0 is given by

1
Go(x)=(P(x,y,0)1- = Z (B(R/2)|®(x,y,0)|B(=R/2))
N

N N
| fol> e~ RNm / dp;  dg
Z. N 1—[ Q7)2m 2n)2m Px,i qx,i ; Dy.i ;q},z

i=1

N N
— RS 2D +ix Y (pri—gr)
i=1 i=1

x e Fo @1 Pr a1 o Q). (10)

where we used (2) to extract the coordinate dependence, the large R limit has again been taken,
and the matrix element
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Fo(p1,...,pnlA1, .-, qN) = (P1, ..., PNIDO)|q1, ..., gN) (11
= (p19"'»pN|<D(O)|qls "'9qN)C
+ 27)2m8(P1 — q1) (P2, .., PN |PO)|q2, ..., qN)e + - -

is evaluated for small momenta. The second equality expresses the decomposition of the ma-
trix elements into connected (subscript ¢) and disconnected parts produced by annihilations of
particles on the left with particles on the right [4]; the dots indicate that one has to take into
account all possible annihilations. Since the form of (10) implies that each power of momentum
contributes a factor R~!/2, and each annihilation in (11) yields a delta function §(p; — q;), and
then a factor R, the leading contribution to (10) for large R is produced by the maximal number
of annihilations. On the other hand, N annihilations just leave a constant Cg, so that the lead-
ing x-dependence is obtained from N — 1 annihilations, which can be performed in N!N ways.
Taking all this into account, we arrive at the expression

2

Gopx)~Cop + W

R 2y a2y _
/dpdqpx gx 8(py — qy) Fo(plg) e PO+ x (pr—qx)
(12)

where Fg (plq) = (p|®(0)|q).. In particular, we see that, if Fg(p|q) behaves for small momenta
as momentum to the power agp, G (x) — Cop will behave as R~ (+ae)/2

The matrix elements (11) refer to the bulk theory and do not depend on the geometry consid-
ered for the interfacial problem. For the spin field s(r) the functional form

¢
F @Il = Prode =0 (13)
X

X

was deduced in [3]. When inserting this expression in (12) it is convenient to get rid of the pole

by differentiating with respect to x. Performing the momentum integrations and integrating back

in x with the boundary conditions 11111 Gy(x) = —M and G4(0) = M then gives the order
X—> 100

parameter (or magnetization) profile

2 2
~ I -n" _
Gs(x) M+2M|:ﬁne erf(n):|, (14)
with
_ |2 (15)
"=\ Re"

and ¢; = 4iM/k. Using (2) the calculation can be straightforwardly extended to a generic z €
(—R/2, R/2). The effect is that in (14) 7 is replaced by x =n/+/1 — (2z/R)2.

The result (14) admits a simple probabilistic interpretation once we look at this leading con-
tribution in the large R expansion as due to an interface that sharply separates two pure phases.
Then the magnetization at a point r = (x, 0, 0) within a configuration in which the interface
intersects the x-axis at a point u# can be written as

sxlu)=MO(u —x)—M6O(x —u), (16)

where 6(x) is the step function that vanishes for x < 0 and equals 1 for x > 0. If p(u) du is the
probability that the interface intersects the x-axis in the interval (u, u + du), then the average
magnetization can be written as
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—1r

Fig. 2. Order parameter profile Gs(x)/M (Eq. (14), continuous curve) and passage probability p(x)/p(~/RE/2)
(Eq. (18), dashed curve).

+o00 +o00 X
s(x) = / du p(u) s(xju) =M / dup(u)—M/dup(u). (17)
0 X 0

This expression coincides with (14) for a passage probability density

N A g
px)=4 TR , (18)

which correctly satisfies p(x) > 0 and f0+oo dx p(x) = 1. p(x) is maximal at n = 1 (Fig. 2),
showing that the average distance of the interface from the wall increases as ﬁ In addition,
p(0) = 0 verifies in real space the impenetrability of the wall that we imposed in momentum
space through the condition (6).

The probabilistic interpretation also illustrates that the fluctuations of the interface in the y
direction do not affect the leading term of the local magnetization in the large R expansion. Then
it is not surprising that the profile (14) is analogous to that known in two dimensions [10—12],
i.e. in absence of the y direction.? It must be noted, however, that the factor /2 in (15) is absent
in two dimensions. This is due to the fact that in two dimensions the particle modes of the Ising
model below T, are topological excitations (they are kinks, see e.g. [4]). Since the spin field is
topologically neutral, the lightest state to which it couples is a two-particle (kink-antikink) one
(see [14] and, for a review, [15]). It follows that in two dimensions the relation (4) is replaced
by & = 1/2m, and this difference propagates in the results expressed in terms of the correlation
length.

It must also be observed that the impenetrability of the wall is the only boundary effect that
we took into account in our theoretical derivation. In actual measurements (in particular in simu-
lations on the lattice) the value of the order parameter close enough to the wall will be affected by
the specific nature of the interaction between the wall and the bulk degrees of freedom. Hence,
the results (14) and (18) hold for x larger than few correlation lengths. Since the main interfacial
effects occur around x o /R, and R >> &, they are not affected by boundary details, unless we
consider the generalization of the next section.

2 The fluctuations in the y direction should show up at leading order in the large R expansion of the spin-spin correla-
tion function, which in two dimensions was obtained in [13].
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4. Binding transition

The system settings considered so far lead to an interface whose average distance from the
wall diverges as VR. On the other hand, the introduction of a tunable boundary field can lead
to a wall-interface interaction sufficiently attractive to determine a binding of the interface to
the wall. Conversely, the passage from the binding to the fluctuating regime corresponds to a
transition that is most often referred to as “wetting” transition (see [16—18] for reviews). This
terminology refers to a liquid-vapor interface, the liquid phase being that in contact with the
wall.

As we now explain, the particle formalism naturally accounts also for the binding transition.
We saw that in the limit relevant for phase separation (linear size of the interface much larger
than the bulk correlation length &) the interfacial properties are determined by low energy particle
modes whose mutual interaction is negligible due to a large average separation. The interaction
of a particle with the wall can be characterized within the scattering framework, in which an
incoming particle has momentum p = (p, <0, py). At low energy the interaction with the wall
is elastic and the particle bounces back with momentum p = (—py, py), the component p, being
conserved due to translation invariance in the y direction. The relation E* = p® 4 m? defines the
parameter § such that

E =mcoshf, (19)
Ip| = m sinh 8 . (20)

If the particle-wall interaction is sufficiently attractive, the particle will bind to the wall and, as
usual in scattering theory [19,20], the bound state corresponds to a value Ey < m of the energy,
namely to p> < 0, or 8 = i6 with 6 € (0, ). It follows that in the bound regime the contribution
of the interface to the energy per unit length is %m cos By = o cos by, where we used (8) and (9).
Hence, if e is the energy per unit length associated to the wall, the energy per unit length of the
wall-interface bound state is

e=e+ocosty. 20

The value of the binding angle 6y depends on the strength of the particle-wall interaction, and
the unbinding transition occurs at 8y = 0, when the binding energy per unit length o (1 — cos6p)
vanishes.

Remarkably, (21) accounts for the basic relation of the phenomenological wetting theory [16],
namely the equilibrium condition for a liquid drop on the wall, in which ¢ and e are the wall-
vapor and wall-liquid surface tensions, respectively, and 6y is the angle that the drop forms with
the wall (Fig. 3). The wetting transition occurs at 6y = 0, when the drop spreads on the wall.

Consider now the dependence of 6y on the parameters of the system. The wall contributes to
the Euclidean action of the theory a term A f dydz ®p(0, y, 7). Since the action is dimensionless,
if X p is the scaling dimension of the boundary field ®p, the coupling % has the dimension of a
mass (or inverse length) to the power 2 — X p. Hence, 6y is a function of the dimensionless com-
bination 4/ m2 X8 where m = 1/&€ ~ (T, — T)". For h fixed, the condition 6y = 0 determines
the unbinding (or wetting) transition temperature Ty, (h) < T¢. It is clear that for T sufficiently
close to T, namely for a mass m sufficiently small, the near-critical fluctuations become too
strong and the particles have to be unbounded, so that the bound regime corresponds to T < T,.
We also see that the interface is unbound for & = oo, which corresponds to the boundary field
considered in the previous sections.



G. Delfino, M. Sorba and A. Squarcini Nuclear Physics B 967 (2021) 115396

Fig. 3. In field theory a drop on the wall corresponds to the unbinding and recombination of a wall-interface bound state.
The contact angle 0 vanishes at the unbinding transition.

It is customary (see [17,18]) to characterize the transition through the exponent «s defined for
T — T, by

(1 — cosBp) o (T, — T)>™%s , (22)

and the transition is said to be continuous if g < 1. The terminology refers to the continuity of
the first derivative of (22) at T, taking into account that the contact angle 6y is phenomenolog-
ically set to zero in the unbound regime T,, < T < T,. We can get insight on the exponent «g
recalling that, as usual in scattering theory, the bound state corresponds to a pole at E = Eg in
the scattering amplitude of the particle on the wall. Then general analytical properties of the am-
plitude [19,20] tell us that when we move from the bound to the unbound regime, namely when
T increases through T, the pole does not disappear, but slides through a square root branch
point at £ = m into a second sheet of the complex energy plane. Within the parametrization
E = m cos 6 this corresponds to a continuation from positive to negative values’ of 6y, namely
to

b0 < (T, — 1), n=0,1,2,... (23)
in the vicinity of Ty,. Comparison with (22) then yields
os=—4n. (24)

Clearly, the generic case is expected to correspond to n = 0, and then to ag = 0. As reviewed in
[18], this value agrees with numerical simulations within the Ising model” [22].

3 Such a continuation is regularly exploited in the context of exact scattering solutions, see [21].
4 We also notice that the value s ~ —5 deduced from a phenomenological renormalization group approach (see [18]
and references therein) is reminiscent of the case n =1, i.e. g = —4.
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A second exponent Bg < 0 describes the divergence of the distance of the interface from the
boundary,

lx (T, —T)P, (25)

as T — T, . In the scattering framework  is related to the decay e /! of the wave function for

a distance x — oo from the wall in the bound regime. Such a behavior can be seen as originating
from the plane wave ¢!”** and the imaginary value of the momentum in the bound regime:
|p| = im sin 6y from (20). Close to T,,, where 6 is small, one could naively argue / o< 1/m6y, and
infer s = as/2 — 1 from comparison with (22) and (25). «s = 0 then leads to 85 = —1, a value
that has been observed experimentally [23]. However, experimental systems include long range
interactions that are not present in our framework. The safest comparison is that with simulations
within the nearest-neighbor Ising model,” which are consistent with / [In(T,, — T)| (see [22]
and the discussion in [25]). This indicates that the fact that p, — O does not imply |[p| — O
cannot be forgotten. The implication holds instead in two dimensions [26] (i.e. in absence of the
y direction), where the values g = 0 and Bs = —1 indeed correspond to the exact Ising lattice
solution of [11,27].

5. Conclusion

In this paper we have shown how the universal properties of phase separation in presence of
a wall in three dimensions can be derived in terms of the particle modes that are the elementary
degrees of freedom of the bulk field theory. The interface emerges as due to the propagation in
imaginary time of particles distributed along a string. We implemented the presence of the wall
within the configurational sum in momentum space and showed how this leads to the expected
properties of the passage probability of the interface in coordinate space. The theory relates the
interfacial tension to the particle density along the string, and shows how the propagation of the
particles between the pinning axes is affected by the presence of the wall, while the interaction
among the particles is negligible due to a large average interparticle distance.

We also showed that the particle formalism naturally describes, via scattering theory, the tran-
sition to the regime in which the interface is bound to the wall by a sufficiently strong attractive
interaction. The temperature dependence of the wall-interface binding energy is carried by a pa-
rameter 6 that originates from the relativistic dispersion relation of the particle modes and finally
provides the contact angle of phenomenological wetting theory.
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