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The scattering of the Dirac fermions by the black-holes with spherical symmetry is
studied by applying the method of partial wave analysis. The analytical expressions for
the phase shifts and analytical formulas for the differential scattering cross section are
written down for the fermion scattering from Schwarzschild, Reissner-Nordsrtom and
Bardeen black holes. A brief comment about the principal features of these cases is
outlined.
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1. Introduction

In this paper we want to present a comparative study of the scattering of
Dirac fermions by black-holes with spherical symmetry. For that we choose the
Schwarzschild, the Reissner-Nordsrtom and Bardeen black holes, which were each
analysed separately in our previous works ' *.
cally the scattering of fermions by these three types of black holes can be found for

Other works that studied numeri-

example in Refs. 5-19.

The main steps for solving the Dirac equation in the geometries that describe
black-holes with spherical symmetry are detailed. We obtain the scattering modes
resulted solving the Dirac equation in the asymptotic zone of the black hole, which
help us to obtain the phase shifts and the analytical expression of the differential
scattering cross section. The differential scattering cross section will be analysed in
terms of the relevant parameters such as the mass of the black hole and the charge
of the black hole and scattering angle. From the analytical expression for the cross
section the zero mass limit can be obtained.

We begin in the second section with the basic notions about the Dirac equation
in geometries that describe black holes with spherical symmetry. The third section
is dedicated to the phase shifts obtained using the partial wave analysis and in
the fourth section we make a graphical analysis of the cross section in terms of
scattering angle.

2. Dirac Equation and Black Holes

In this work we are discussing fermion scattering by black holes with spherical
symmetry that have the following generic metric

2
ds* = h(r)dt* — % — 1 (d6” + sin® 0d¢?) (1)
T
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In the case of Schwarzschild, electrically charged Reissner-Nordsrtom and (regular)
Bardeen black holes the function h(r) reads:
2M 2M  Q? 2Mr?
h =1-— h =1-—+ = h =1l-— (2

(T)S r 5 (T)RN r + 7'27 (T)B (T2+Q3n)3 ( )
where M is the mass of each black hole; @ is the total electric charge and @, is
the nonlinear magnetic monopole charge?".

It can be shown (for details see our previous papers!2:4:23)
tion, iy*Dgtp — mi = 0, in the black holes geometries given by eq. (1) can be
reduced to only a radial equation, namely

myR0) + V() —h(r) g+ BR[| _ [ FEL0)
W)L+ £V —my) + V) )\ 5,00 Fon(r)
where f*(r) are two radial wave function and V(r) = eQ/r. The angular part

of the Dirac equation is contained into the standard 4-component angular spinors
@iﬁ(ﬂ, ¢)2. Thus the particle-like solutions with energy E can be expressed as

that the Dirac equa-

(3)

—iEt

i {0 (0.0) + [0, . 0,0) ) (@)

wE,j,m,K(tv T, 07 ¢) = W

The separation of angular variables as in eq. (4) was possible by using the Cartesian
gauge (see egs. (1)—(4) in Ref. 2). In this gauge the Dirac equation is manifestly
covariant under rotations.

The radial equation (3) can not be solved analytically for any of the three black
holes (2) and up to now a combination of analytical and numerical methods was
used to solve it and to compute numerical phase shifts as was done for ex. in Ref. 6
for Schwarzschild BH or in Ref. 19 for Bardeen BH.

2.1. Scattering modes

In the following we will briefly show how to obtain analytical phase shifts by finding
(approximative) analytical scattering modes resulted from solving the Dirac equa-
tion in the asymptotic zone of the black hole as done in Refs. 1-4. One starts by
changing the variable r to a Novikov-like one, namely

= F (5)

with 4 the radius of the outer black hole horizon. For Schwarzschild BH z = r
and ry = rg = 2M; for Reissner-Nordsrtém BH 2z = r and r,. = M + /M? — Q%;
while for Bardeen BH z = /72 + Q3%, and r; has a more complicated analytical
expression not given here.

By rewriting eq. (3) in terms of the new variable 2 and making a Taylor ex-
pansion with respect to 1/2 one can show, after discarding the O(1/x?) terms and
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higher, that in the asymptotic zone of the black hole the new equation becomes

bE+E et -3ern) () o
we-p-Lec-p  fL-8 fi u@)
where p =rym, e =r E and
e for Schwarzschild black hole one has:
(=%, B=c ri=2M (7)

e for Reissner-Nordstrom black hole:
1 _
§:§u<1—T—), B=c—eQ, r+=M-=%=\/M?2—-Q> (8)
T+

e for regular Bardeen black hole:
M
cn(i-2), pe 0
T+

The scattering mode solutions (with € > u) of eq. (6) can be found in terms of
Whittaker functions 2423

fH(z) —i/pFei/u+e Cf 1M, (2iva?) + CF 1w, (2iva?)
f(x) VE— L Ne—n Cy LM, (2iva?)+ Cy 1W,_ . (2iva?)
(10)
were v = /&2 — p2. The four integration constants Cli, C2i are not independent,

satisfying the following relations!23:

C;  s—iq cy 1
_ o 11
ct  k—iNT Cf K — i\ (11)

and were the following parameters are used:

s=/K2 T (- B2 p:l:::F%*iCL q:@, A:w (12)

2.2. Analytical Phase Shifts

Applying the partial wave method on the scattering modes (10) as done in Refs.
1,2,4 we obtained for the first time in the literature analytical expressions for the
phase shifts associated to the scattering of Dirac fermions by black holes, namely:

S, = 0200 — K= Z:A P(l+s— ZQ) eiml=s) (13)
s—iq) I'(1+s+iq)

Using these phase shifts one can now calculate analytical expressions for the differ-

ential scattering cross section

0~ 0P +19(0)P (14)
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were the scalar amplitudes f(f) and g() are defined in terms of Legendre polyno-

mials?? and the phase shifts e

F0)=>" 5 [(1+1)(e*=1= — 1) +1(e*® — 1)] PP(cos®)
=0 : (15)
g(0) =" 7 [e20-1-1 — ¢%%] Pl(cosh)

The above infinite series have a singularity present at # = 0 that can not be removed.
This makes the scattering section to be divergent in the forward direction. However,
by using a method first proposed in Ref. 24 one can define new reduced series for
f(0) and g(0) (see eqs. (72)—(75) in Ref. 1 for more details) that converge more
quickly.

3. Main Results and Brief Comments

In this section we perform a graphical analysis of the cross section in terms of the
scattering angle. The relevant parameters in our analysis are the black hole mass
M, the fermion mass m, fermion speed v, the charge of the black hole @ and the
scattering angle 6.

50007 ™ 5000,
E] E]
= 10004 =
k] S 10004
o o
s 500 s
= = 5001
e’ e’
= =
1004
50 T T T ? 100+ T T T ?
04m 0.6m 087 n 047 067 087 n
0 (rad) 6 (rad)

Fig. 1. Differential scattering cross section for fermion scattering by a Schwarzschild black hole
(left panel), respectively for a Bardeen black hole (right panel).

In Fig. 1, we make a comparative study of the differential scattering cross sec-
tion for fermion scattering by a Schwarzschild black hole and a Bardeen black hole.
Our graphical results prove that the cross section has a oscillatory behaviour which
become more pronounced as we increase the product of masses mM in the case of
scattering on Schwarzschild black hole. When the scattering angle approaches the
value € = 0 the cross section increase proving that the forward scattering is domi-
nant. In the case of Bardeen black hole the differential cross section depend on the
ratio between the charge of the magnetic monopole and the black hole mass and we
observe a variation of the differential cross section when we modify the ratio Q,,,/M.
In both cases the differential cross section have a maximum for § = 7, which prove
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Fig. 2. Differential scattering cross section for fermion scattering by a Reisnner-Nordstrom black
hole (left panel). Scattering of massless fermions (right panel).

that the backward scattering is also relevant. In the case of Schwarzschild black
hole the backward scattering become important as the parameter mM increase.
The results presented in Fig. 2, shows the dependence of the differential scat-
tering cross section for fermions scattered by a Reisnner-Nordsrtom black hole on
the scattering angle. Here we analyse the case of massive fermions as well as the
case when the mass of the fermion is zero. In the case of scattering of massive
fermions we observe the differential scattering cross section variation in terms of
the charge of the black hole and the charge of the fermion in comparison with the
scattering on Schwarzschild black hole (left panel). When the charge of the black
hole and the fermion charge have the same sign, the backward scattering become
important because of the electrostatic repulsion between charges. For scattering of
fermions with zero mass we observe the variation of the differential scattering cross
section in terms of the ratio /M and that in the backward direction the differential

scattering cross section is vanishing.

4. Conclusions

The principal conclusion is that the scattering processes analyzed here can be stud-
ied by using exclusively analytical methods with suitable asymptotic conditions. In
this manner we complete the previous studies which combine analytical and numer-
ical methods obtaining new results and a synthetic overview over the considered
processes, pointing out that these are described by similar formulas.
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