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Abstract

Galactic-scale tests have proven to be powerful tools in constraining fun-

damental physics in previously under-explored regions of parameter space.

In this thesis we use astrophysical systems to test some of the fundamen-

tal principles governing our current theories of the Universe, through the

development of source-by-source, Monte Carlo-based forward models.

We consider modifications to the propagation of light by one of three

effects: quantum gravity (QG), a non-zero photon mass and a violation

of the Weak Equivalence Principle (WEP). We use spectral lag data of

Gamma Ray Bursts from the BATSE satellite to constrain the photon

mass to be mγ < 4.0× 10−5 h eV/c2 and the QG length scale to be ℓQG <

5.3 × 10−18 h GeV−1 at 95% confidence, WEP to ∆γ < 2.1 × 10−15 at

1σ confidence between photon energies of 25 keV and 325 keV, and we

demonstrate that these constraints are robust to how one models other

contributions to the signal.

We investigate Galileon modified gravity theories by studying the off-

sets between the centre of a galaxy and its host supermassive black hole

(BH). We constrain the Galileon coupling to be ∆G/GN < 0.16 at 1σ

confidence for Galileons with crossover scale rC ≳ H−1
0 . Inspired by the

aforementioned test of modified gravity, we study spatially offset BHs in

the Horizon-AGN simulation and compare these to observations, finding

i) the fraction of spatially offset BHs increases with cosmic time, ii) BHs

live on prograde orbits in the plane of the galaxy with an orbital radius

that decays with time but stalls near z = 0, and iii) the magnitudes of

offsets from the galaxy centres are substantially larger in the simulation

than in observations.

By cross-correlating dark matter density fields inferred from the spatial

distribution of galaxies with gamma ray data from the Fermi Large Area

Telescope, marginalising over uncertainties in this reconstruction, small-

scale structure and parameters describing astrophysical contributions to



the observed gamma ray sky, we place constraints on the dark matter

annihilation cross-sections and decay rates. We rule out the thermal relic

cross-section or s-wave annihilation for all mχ ≲ 7GeV/c2 at 95% confi-

dence if the annihilation produces Z bosons, gluons or quarks less massive

than the bottom quark. We infer a contribution to the gamma ray sky

with the same spatial distribution as dark matter decay at 3.3σ. Al-

though this could be due to dark matter decay via these channels with a

decay rate Γ ≈ 3× 10−28 s−1, we find that a power-law spectrum of index

p = −2.75+0.71
−0.46 is preferred by the data.

Finally, we outline a framework for assessing the reliability of the methods

used in this thesis by constructing and testing more advanced models

using cosmological hydrodynamical simulations. As a case study, we use

the Horizon-AGN simulation to investigate warping of stellar disks and

offsets between gas and stars within galaxies, which are powerful probes

of screened fifth-forces.
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Chapter 1

Introduction

1.1 The Standard Models

The standard models of particle physics and cosmology have been remarkably success-

ful in reproducing decades’ worth of observations across a wide range of environments.

The former is described by the language of quantum field theory; particles are exci-

tations of these fields and can be classified into bosons and fermions based on their

symmetry properties. Interactions between particles under three of the four known

fundamental forces of nature (electromagnetism and the strong and weak nuclear

forces) can be explained as exchanges of gauge bosons. The fourth “force” is cur-

rently understood as being distinct from the other three insofar as it is not really a

force at all. Whereas particle physics can be understood as the evolution of particles

which inhabit a spacetime, we understand gravity to be the curvature of spacetime

itself.

For over a century we have described the interplay between the matter content of

the Universe and the curvature of spacetime by General Relativity (GR). Ostensibly it

is a very simple theory: matter travels through spacetime on geodesics and spacetime

is curved due to the presence of matter. The motivation behind these statements

is the universality of gravity, as captured by the principle of equivalence. There

exist several formulations of the Equivalence Principle, of varying strengths. The

Weak Equivalence Principle (WEP) states that all freely-falling test objects follow the

same trajectories given the same initial conditions, irrespective of their composition or

structure, i.e. the inertial mass and gravitational masses are equal for all objects. The

Einstein Equivalence Principle (EEP) captures our inability to detect the existence of

a gravitational field if restricted to a sufficiently small volume of spacetime; in such a

volume the non-gravitational laws of physics are those of special relativity (SR). The

Strong Equivalence Principle (SEP) takes this further and asserts that all the laws of
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physics reduce to SR in a sufficiently small region of spacetime. These principles are

highly suggestive of a geometric theory; if all free-falling particles move on geodesics

then we can obey the WEP and the local SR-like behaviour can be attributed to local

flatness of a manifold.

Indeed, by viewing spacetime as a manifold with a metric gµν , one can construct

the action for GR

S =
1

16πG

∫
d4x

√−g (R− 2Λ) + Sm, (1.1)

under the assumption that the action is comprised of scalars which depend only on

the metric and its first and second derivatives. Here we have introduced Newton’s

gravitational constant, G, the cosmological constant, Λ, an action for matter, Sm,

and the determinant of the metric, g ≡ det gµν . We also introduced the Ricci scalar,

R ≡ Rµ
µ, where the Ricci tensor, Rµν , is defined in terms of the Riemann tensor,

Rµ
νσρ, as Rµν ≡ Rλ

µλν , where

Rµ
νσρ = ∂σΓ

µ
ρν − ∂ρΓ

µ
σν + Γµ

σλΓ
λ
ρν − Γµ

ρλΓ
λ
σν , (1.2)

and we use the metric connection

Γσ
µν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (1.3)

Since our dynamical degree of freedom is the metric, we can extremise Equation 1.1

with respect to small variations of the metric to obtain the Einstein Field Equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.4)

where the Energy-Momentum Tensor is

Tµν = −2
1√−g

δSm

δgµν
. (1.5)

If one knows the matter content of the Universe (i.e. Tµν), then by solving Equa-

tion 1.4, one also knows the geometry of spacetime (or vice versa). This equation has

passed every experimental test it has thus far encountered: the perihelion precession

of Mercury, the bending of light rays in a gravitation field, gravitational redshift, the

Shapiro time delay, the generation of gravitational waves. One can broadly classify

these phenomena into one of three regimes: small scales (laboratory or Solar Sys-

tem, e.g. lunar laser ranging [10, 11]), cosmological scales (e.g. cosmic microwave

background [12]), or the strong-field regime (e.g. gravitational waves from binary

black holes [13]). Let us now consider the cosmological regime to see what form Tµν

can take in order to explain the evolution of and the formation of structure in the

Universe.
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1.1.1 The concordance cosmological model

The concordance cosmological model (ΛCDM) has been the best-fitting model for

over 20 years. As with many descriptions of the Universe on cosmological scales, it

assumes the Copernican Principle; on sufficiently large scales the Universe is spatially

homogeneous and isotropic. Informally, this is the notion that there is no special place

in the Universe. We can therefore construct spacelike slices of our four-dimensional

spacetime such that our metric is the Friedmann–Lemâıtre–Robertson–Walker metric

[14–20]

ds2 = −dt2 + a2 (t) γijdx
idxj, (1.6)

where γij is a maximally symmetric three-dimensional metric, t is our time coordinate

and a (t) is the scale factor. Throughout this thesis we will only consider flat universes

such that

ds2 = −dt2 + a2 (t)
(
dr2 + r2dΩ2

)
, (1.7)

where r is a radial coordinate and the metric of the two-sphere is dΩ2 = dθ2+sin2 θdϕ2

in usual polar coordinates. One can also introduce the conformal time, η, such that

dt2 = a2 (η) dη2.

For simplicity, let us begin by considering a universe comprised of a single perfect

fluid. A perfect fluid’s Energy-Momentum Tensor can be expressed in terms of its

four-velocity, uµ, as

Tµν = (ρ+ p)uµuν + pgµν , (1.8)

where ρ and p are the rest-frame energy density and isotropic pressure, respectively.

Assuming a simple equation of state p = wρ for constant w, conservation of Tµν leads

to

∇µT
µν = 0 =⇒ ρ ∝ a−3(1+w). (1.9)

Substituting this into Equation 1.4, we obtain the Friedmann equations [14]

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ,

ä

a
= −4πG

3
(ρ+ 3p) , (1.10)

where an overdot refers to a derivative with respect to t. For universes with multiple

components we sum over the right hand side of these equations. Defining the Hubble

parameter, H, to be H0 (the Hubble constant) today, where we set a = 1, the first of

these equations can be written as

(
H

H0

)2

= Ωra
−4 + Ωma

−3 + ΩΛ, (1.11)
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where we have two fluids - radiation (wr = 1/3) and matter (wm = 0) - for which we

define

Ωi ≡
8πG

3H2
0

ρi, (1.12)

and a non-zero cosmological constant, which can be considered as an additional com-

ponent of Tµν with wΛ = −1 and density

ρΛ =
Λ

8πG
. (1.13)

The addition of curvature would give another term on the right hand side of Equa-

tion 1.11 of the form Ωκa
−2.

The end of the 20th century saw the startling discovery that the Universe’s expan-

sion is accelerating [21, 22]. Due to the success of GR, one potential explanation is

that this acceleration is due to a negative pressure component of stress-energy: dark

energy [23]. Our current cosmological model (ΛCDM) assumes this takes the form

of a cosmological constant, hence the introduction of the ΩΛ component above. For

large scale factors, one sees that Equation 1.11 is solved by an era of exponential

expansion, and hence our Universe is accelerating and becoming asymptotically de

Sitter.

Of course, the real Universe is not perfectly homogenous or isotropic and thus we

should add perturbations [24] to Equation 1.7 in order to determine how structure

forms. We can write our perturbed metric as [25]

ds2 = a2 (η)
(
− (1 + 2A) dη2 + 2Bidx

idη + (δij + hij) dx
idxj

)
. (1.14)

Considering scalar perturbations only and working in the Newtonian gauge, this be-

comes [26]

ds2 = a2 (η)
(
− (1 + 2Ψ) dη2 + (1− 2Φ) δijdx

idxj
)
. (1.15)

Given scalar perturbations δρi to the background densities ρi, we define δi ≡ δρi/ρ̄i,

and the peculiar velocities of these fluid perturbations are defined to be v⃗i ≡ ∇⃗vi. To
linear order, and assuming that all components are perfect fluids, the scalar pertur-

bations evolve as [26]

Φ′ = −a
′

a
Φ− 1

2
a2
∑

i

(1 + wi)ρivi, (1.16)

δ′i = (1 + wi)
(
3Φ′ + vik

2
)
, (1.17)

v′i = 3
a′

a

(
wi −

1

3

)
vi −

(
Φ +

wi

1 + wi

δi

)
, (1.18)
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where a prime denotes a derivative with respect to conformal time and k is the

wavenumber for the perturbations. One can also express the potentials algebraically

in terms of the other components via

Φ = Ψ =
1

2k2

∑

i

(
3
ȧ

a
(1 + wi) vi − δi

)
a2ρi, (1.19)

which looks like Poisson’s equation, with an additional velocity-dependent term. We

take the fluid index i to range over i ∈ {r,m,Λ} for radiation wr =
1
3
, matter wm = 0,

and dark energy wΛ = −1 respectively, but in general only perturb the first two of

these. In reality one should describe photons via a distribution function in photon

momentum and not as a perfect fluid, and consider interactions between photons and

baryons, however for the remainder of the thesis we will neglect the contribution from

radiation and thus ignore this detail.

Now that we have the equations of motion which govern the evolution of species

in the Universe, one needs to provide the initial conditions. From observations of

the Cosmic Microwave Background (CMB) [12], it is known that the Universe closely

resembled a Gaussian Random Field in the distant past (such a density distribution

can be achieved through a short period of accelerated expansion; inflation). Therefore,

one can say that the density fluctuations at high redshift (δI, where I stands for initial

conditions (IC)) is (approximately) Gaussian. This is then fully described by the

matter power spectrum, P (k), which defines the statistics of density fluctuations

⟨∆(k)∆∗ (k′)⟩ ≡ (2π)3 P (k) δD (k − k′) , (1.20)

where δD is the Dirac delta function. Note that the process of structure formation

will make the present day density field non-Gaussian (e.g. filaments are typically

associated with higher order statistics). Given some initial form of P (k), one can

solve the perturbation equations in order to predict its form today. From inflationary

theory, one expects the initial power spectrum, PR (k), of the comoving curvature

perturbation, R, to be nearly scale invariant

PR (k) = As

(
k

k⋆

)ns−1

, (1.21)

where k⋆ is a reference wavenumber, and, in the Newtonian gauge,

R = −Φ +Hv, (1.22)

for velocity perturbation v and H ≡ a′/a.
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Until now we have not attempted to distinguish between different types of matter.

Measurements such as the rotation curves of galaxies [27], the CMB [12], gravitational

lensing and large scale structure [28] demonstrate that the total matter budget of our

Universe must contain other particles than those in the Standard Model (SM) (re-

ferred to as baryonic matter). In fact, we find that baryonic matter is sub-dominant:

its cosmological mean density is approximately five times smaller than that of dark

matter (DM) [12]. Furthermore, one must be careful in how one treats baryons since

neutrinos behave very differently to other SM particles.

The current cosmological model is described by only six parameters: the baryonic,

Ωb, and DM, Ωc, density parameters, the Hubble constant, H0, the scalar spectral

index, ns, the curvature fluctuation amplitude, As, and the reionisation optical depth,

τ . All other parameters can be derived from these six, and thus sometimes a different

set of parameters is chosen. For example, instead of As, one often quotes σ8 which is

the root-mean-square density fluctuation when the field is smoothed with a top-hat

filter of radius 8h−1Mpc (and H0 = 100h km s−1Mpc−1).

1.1.2 Extensions to the Standard Models

Despite the phenomenal success of ΛCDM in describing individual observations inde-

pendently, when one compares different cosmological probes we find that the inferred

parameters do not always agree. For example, the inferred value of H0 from local

observations does not match that from the CMB (the Hubble tension) [29] and the

value of σ8 obtained from weak lensing does not agree with that from the CMB [30].

Moreover, there exists small-scale observational inconsistencies such as the cusp-core

or missing satellites problems [31, 32]. Of course, these problems could be due to

unknown systematics or simply a lack of understanding of the complicated baryonic

processes which also affect our measurements and analyses. However, there are also

theoretical challenges to the current model, most notably that almost the entire en-

ergy density of the Universe is comprised of two components which do not appear in

the SM (dark matter and dark energy) and the realisation that dark energy has issues

with radiative instability and UV-sensitivity (the cosmological constant problem [33]).

These considerations suggest that altering some of the assumptions of ΛCDM or the

SM could produce a model which more faithfully reproduces the observed Universe.

In this section we will discuss some of these possibilities.
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1.1.2.1 Theory of Gravity

Although introduced in Section 1.1.1 as a geometric theory, GR can equivalently

be described as the unique Lorentz-invariant, low-energy theory of a massless spin-2

particle [34]. Given our inability to successfully quantise this theory, it is not unrea-

sonable to assume that GR is merely an effective field theory of some UV-complete

description of gravity, and thus, although it performs exceptionally in its range of

validity, this range is limited. Moreover, given the observational and theoretical chal-

lenges of GR, perhaps GR is also not the correct description of gravity on large scales.

In either case, it is interesting to see what the observational impact of breaking the

assumptions of GR is.

Modified gravity theories generically violate the SEP, which refers to the equiva-

lence of free fall independent of an object’s gravitational binding energy or composi-

tion [35]. Despite little success so far in explaining cosmic acceleration [36], studies

of modified gravity are essential as they provide consistent, plausible alternatives to

GR and could relieve some of the current tensions (e.g. [37–40]).

On astrophysical scales, modified gravity theories lead to a fifth fundamental force

[41]. This force is not detected in laboratory or Solar System experiments, so must

be ‘screened’ to remain hidden in these environments. To understand such screening

mechanisms, we will follow the approach of [42] and consider a scalar field, ϕ, which

has a background value ϕ0 and a perturbation φ = ϕ − ϕ0. Assuming a locally flat

spacetime, one would consider a Lagrangian

L =
Z (ϕ0)

2
∂µφ∂

µφ+
m2

ϕ (ϕ0)

2
φ2 − δgµνδT

µν , (1.23)

to second order in φ. The metric perturbation is

δgµν =
β (ϕ0)

mpl

φηµν − γ (ϕ0) ∂µ∂νφ+ δ (ϕ0) ∂µφ∂νφ+ . . . (1.24)

For generality, in our discussion we let Z, mϕ, β, γ and δ be arbitrary functions of the

background field, but for a given theory one can obtain these from the unperturbed

Lagrangian by expanding about a background value, ϕ0. Since we interpret mϕ as the

effective mass of the field, we see that φ has a mass dimension equal to one. Limiting

ourselves to the case of a static background and static matter overdensity δT 00 = ρ,

we have

Kµν (ϕ0) ∂µ∂νφ−m2φ = −β (ϕ0)

mpl

δT, (1.25)

where

Kµν (ϕ0) = Z (ϕ0) η
µν − 2δ (ϕ0) δT

µν . (1.26)
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This looks like a generalised Poisson equation,

Zij∂i∂jφ+ m̃2φ = 8πGNαρ, (1.27)

where ρ is the matter density, GN is Newton’s constant, Zij is a generalised kinetic

coefficient, m̃ is the mass of the scalar and α the strength of its coupling to matter.

This scalar then produces an additional acceleration (the fifth force), which leads to

an effective enhancement of the gravitational force,

GN → GN

(
1 +

∆G

GN

)
= GN

(
1 + 2α2e−mr

)
. (1.28)

In the absence of a screening mechanism, the parameters α andmmust be tuned to

very small values in order to obey Solar System and laboratory tests of gravity [43] (see

[36, 44–46] for reviews of screened modified gravity theories). Screening dynamically

suppresses the kinetic, mass or coupling terms in Equation 1.27 by allowing them to

depend on the background scalar field, resulting in either ‘kinetic’ (e.g. K-mouflage

[47] and Vainshtein [48]) or ‘thin-shell’ (e.g. chameleon [49, 50], symmetron [51] and

dilaton [52]) screening. An alternative mechanism utilises DM-baryon interactions to

produce a DM density-dependent gravitational constant [53].

In ‘thin-shell’ screening, if the mass of the scalar field, m (ϕ0), increases sharply

within a massive object, then the scalar field sourced by this mass is Yukawa sup-

pressed. Instead, only a thin shell of matter near the surface of an object can source

the scalar field in an appreciable manner. If the thin shell has mass ∆M and M is

the total mass of the object, this is equivalent to multiplying β (ϕ0) by ∆M/M in the

equation of motion. Provided ∆M/M ≪ 1, the scalar field is suppressed. For the

case of a modified Poisson equation, φ can be related to the Newtonian potential, Φ,

as
φ

mpl

=
2β (ϕ0)

Z (ϕ0)
Φ, (1.29)

so the scalar field is suppressed compared the Newtonian potential (and therefore

screened) if

|Φ| ≥ ϕ0

2mplβ (ϕout)
, (1.30)

since in a sufficiently dense object φ ≈ −ϕ0, and we have normalised our field such

that Z = 1. Therefore, an object is thin-shell screened if its Newtonian potential is

sufficiently large. Note that the mass of the scalar field is not just a function of density,

but of the background scalar field. In this way, the field can be screened in regions

of large Newtonian potential, even if the matter density is zero (e.g. throughout the

Solar System).
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The ‘kinetic’ mechanisms utilise the observation that if Z is sufficiently large, then

the coupling α will be very small. Since Z is merely a constant at leading order, for

this mechanism we consider higher order terms

Z = 1 + a (ϕ0) r
2
c

□φ
mpl

+ b (ϕ0)
(∂φ)2

Λ̃4
+ c (ϕ0)

□2φ

Λ̃5
+ . . . , (1.31)

where rc is the cross-over scale and Λ̃ is the strong coupling scale. If the term

proportional to □φ dominates, then we have a field that is Vainshtein screened, such

that the field is screened when

∣∣∇2Φ
∣∣ ≥ 1

2β (ϕ0) r2c
, (1.32)

i.e. when the spatial curvature is sufficiently large. The K-mouflage mechanism is

similar but is relevant when the (∂φ)2 term dominates, with the screening criterion

|∇Φ| ≥ Λ2

2β (ϕ0)mpl

. (1.33)

It is clear that one has a similar screening effect when the □2φ term dominates, but

this is governed by ∇4Φ. In all these cases the screening mechanism is due to the

important effects of higher order operators, and therefore in some cases this may be

beyond the validity of an effective field theory approach.

In this thesis we will test one example of both of these screening mechanisms. In

Chapter 4 we will consider Galileon theories: scalar-tensor theories which obey the

Galileon symmetry φ→ φ+ b+ cµx
µ and are Vainshtein screened. When discussing

how to calibrate galactic-scale tests of fundamental physics in Chapter 6, we will use

f(R) gravity as a case study. In these theories one replaces R in Equation 1.1 by

a generic function of the Ricci scalar, which is equivalent to a thin-shell screened

scalar-tensor theory.

1.1.2.2 The Nature of Dark Matter

The actual particle nature of DM is not yet known, despite it having five times the

average density of baryonic matter. Theoretically favourable candidates are weakly

interacting massive particles (WIMPs) [54–56], including, but not limited to, the light-

est supersymmetric particle in supersymmetric theories. In particular, in Chapter 5

we will consider particles of mass mχ which are able to annihilate, with a thermally

averaged cross-section ⟨σv⟩. If these WIMPs are thermal relics of the early Universe,
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then one can compute ⟨σv⟩ from the current abundance of DM. We outline the ap-

proximate calculation below, similar to as found in [57]; see [6] for a more careful

treatment.

As previously discussed, if DM was a perfect fluid with w = 0, then the number

density of DM, n, would depend on the scale factor, a, as n ∝ a−3. Let us now

suppose that DM can self-annihilate to produce SM particles. If this can occur,

then the reverse reaction is also possible, such that the rate of DM depletion can be

expressed as
dn

dt
+ 3Hn = ⟨σv⟩

(
n2
eq − n2

)
, (1.34)

where neq is the number density of DM at chemical equilibrium. For high annihilation

rates, n must approach neq, whereas we have the w = 0 behaviour if the annihilation

rate is low. The transition between these regimes will occur when ⟨σv⟩n2 ∼ Hn.

This crossover is named ‘freezeout’ and happens when the characteristic time scale

for a DM annihilation to occur is of order the Hubble time.

When in equilibrium, one can approximately express the temperature, T , depen-

dence of neq as

neq ∼
{
(mχT )

3
2 e−mχ/T , T ≪ mχ

T 3 , T ≫ mχ.
(1.35)

One therefore sees that freezeout for a non-relativistic DM particle will occur when

(mχT )
3
2 e−mχ/T ⟨σv⟩ ∼ H. (1.36)

Assuming that this occurs during radiation domination, then one can approximate

H ≈ H (x = 1)x−2, where x ≡ mχ/T . One therefore sees that freezout must occur

at x = xf , where

x
1/2
f exp (−xf) ∼

H (x = 1)

m3
χ ⟨σv⟩

, (1.37)

which one can solve to obtain the freezeout temperature, Tf , at a given mχ and ⟨σv⟩.
One can also estimate xf from the current DM density. If nγ denotes the photon

number density, then one can write

mχneq

nγ (xf)
∼ mχH (x = 1)x−2

f

(mχ/xf)
3 ⟨σv⟩

=
H (x = 1)xf
m2

χ ⟨σv⟩
, (1.38)

where we have used the relativistic equation for the photon number density. This is

simply the ratio of the mass density of DM to the number density of photons. Since

both are proportional to a−3 after freezeout, this should match the current value, and

thus we have a second expression for xf at given mχ and ⟨σv⟩.
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For both of the above relations to hold, we require xf ∼ 25, and hence ⟨σv⟩ ∼
10−26 cm3s−1 ifmχ is a few hundred GeV/c2. The canonically quoted value is ⟨σv⟩th =

3×10−26 cm3s−1 [6] (the thermal relic cross-section), and more careful calculation finds

that this is relatively independent of mass.

This is an interesting result, since if the annihilation occurred due to an interaction

with coupling αχ, then one would expect ⟨σv⟩ ∼ α2
χ/m

2
χ. The thermal relic cross-

section at these masses suggests that αχ ∼ 0.01, which is suspiciously similar to the

electroweak coupling of the SM.

1.2 Statistical Methods

1.2.1 Bayesian statistics

There are broadly two goals of cosmological data analysis. Firstly, if one has a physical

model, M1, which is described by some parameters, θ, then one wishes to compare

such a physical model to data, D, to determine which parameters best describe the

data. In essence, one wishes to determine the posterior distribution P (θ|D), i.e. the

probability distribution for θ given the observed data. However, our physical model

M1 does not directly give us this distribution. Instead, we are often in a slightly

different situation where one has a model to predict how likely a set of observations

are given M1 and θ: L (D|θ) (the likelihood model). To determine the posterior from

the likelihood, one must apply Bayes’ theorem

P (θ|D) =
L (D|θ)P (θ)

Z (D)
, (1.39)

where we have introduced the prior P (θ) to describe our a priori knowledge of the

probability of θ. The remaining term in Equation 1.39, Z, provides the normalisation

for the posterior

Z (D) =

∫
L (D|θ)P (θ) dθ, (1.40)

and is known as the Bayesian evidence.

The second purpose of an analysis is to compare two or more different physical

models, e.g. M1 and M2, to ascertain which is a better description of the data. In

the notation of Equations 1.39 and 1.40 we have suppressed the dependence on our

physical model, e.g. Z (D) is actually Z (D|M1). Again, this is not what we are

interested in, but rather the probability of a physical model given data, P (M1|D).

We should therefore apply Bayes’ theorem again to obtain

P (M1|D) =
Z (D|M1)ϖ (M1)

Z (D)
, (1.41)
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where now the denominator is independent of the physical model and we have intro-

duced a prior for this model, ϖ (M1). If one assumes that two physical models are

equally likely a priori (ϖ (M1) = ϖ (M2)), then by computing the Bayes factor

logK = logZ (D|M1)− logZ (D|M2) , (1.42)

one can determine which physical model is preferred by the data (M1 is preferred if

logK > 0).

Although this is the correct way to compare physical models within a Bayesian

framework, there is a clear problem with this method if we do not have a well moti-

vated P (θ). By design, to calculate the Bayesian evidence and thus the Bayes factor,

one must integrate over all parameter space (Equation 1.40), such that we do not

have to choose a set of parameters at which to calculate the posterior. Suppose that

we set a deliberately wide, uniform prior on our parameters, θ. If this is much wider

than the posterior, then if we make our prior twice as wide for each element of θ,

P (θ|D) and its summaries will remain approximately unchanged, however logZ (D)

will be smaller by K log 2, if θ has length K. Now, if we only made this transformation

for one of our physical models, we can artificially change the sign of logK and thus

change which physical model is preferred. In all analyses in this thesis we are in this

situation, and we will thus rely on ‘less Bayesian’ model comparison techniques.

1.2.2 Model comparison

To avoid producing arbitrary complex models, in any form of model comparison there

should be penalty for models with a large number of parameters. Throughout this

thesis, we often use the Bayesian Information Criterion (BIC) [58]

BIC = K logN − 2 log L̂, (1.43)

where K is the number of model parameters, we have N data points, and L̂ is the

maximum likelihood estimate, at which θ = θ̂. To demonstrate why this is appropri-

ate, let us perform the integral in Equation 1.40 using Laplace’s method

Z (D) =

∫
exp (log (L (D|θ)P (θ))) dθ

≈
∫

exp

(
log L̂+

1

2

(
θ − θ̂

)T
H
(
θ − θ̂

))
dθ = L̂

√
(2π)K

|det (H)| ,
(1.44)

where Hij = ∂i∂j [log (L (D|θ)P (θ))] |θ=θ̂. If we now assume a uniform prior and

N ≫ 1, we see that H is the second derivative of E [N log p], where p is the individual
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likelihood for each of ourN independent data points. Hence, |det (H)| = NK |det (I)|,
where I is the Fisher information for a single data point, which, if the likelihood for

a given data point is f , is defined to be

Iij (θ) = E

[(
∂

∂θi
log f

)(
∂

∂θj
log f

)∣∣∣∣θ
]
, (1.45)

where E denotes the expectation value. I is a measure of the information content

an observable random variable has about the parameters describing the distribution

from which the observable is drawn.

For N ≫ 1, we therefore find

logZ (D) ≈ log L̂ − K
2
logN = −2× BIC, (1.46)

to leading order in N . Therefore, (minus half) the BIC approximates the logarithm

of the Bayesian evidence for large N , but is independent of our prior width. The

model which maximises the BIC is preferred under this procedure.

In cases where we have access to the full posterior, as suggested by Handley and

Lemos [59] we set K = d̃, where the Bayesian model dimensionality (BMD) is defined

to be
d̃

2
≡
∫

P (θ|D)

(
log

P (θ|D)

P (θ)

)2

dθ, (1.47)

and can be computed using e.g. the anesthetic software package [60]. Although not

as ‘Bayesian’ as comparing the evidence, we prefer this statistic due to its insensitivity

to the prior.

In Chapter 3 we will also wish to compare two observational distributions to

determine whether they are equivalent, and will do this using the two-sided Kol-

mogorov–Smirnov (KS) test [61]. This test is designed to determine the probability

that two samples have been drawn from the same probability distribution. To perform

the test, we first define the empirical distribution function for a set of observations

{Xi} to be

Fn (x) =
1

n

n∑

i=1

1[−∞,xi] (Xi) , (1.48)

where 1[−∞,xi] (Xi) is 1 for Xi ≤ x and 0 otherwise. For the two-sided KS test we

then compute

Dnm = sup
x

|F1,n (x)− F2,n (x)| , (1.49)

where F1,n, F2,n are the empirical distribution functions for datasets 1 and 2 respec-

tively. Intuitively, one can view this as the maximum difference in the cumulative
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distribution functions of the two sets of observations at fixed x. One then can re-

ject the null hypothesis that the two samples are drawn from the same population

distribution at level α if

Dnm >

√
−1

2
log
(α
2

) n+m

nm
, (1.50)

where there are n (m) observations in dataset 1 (2).

1.2.3 Sampling techniques

It is often not possible to express the posterior distribution in an analytic form, and

thus we wish to find a numerical representation for P (θ|D). This will enable us

to marginalise over a subset of our parameters or find statistical summaries of the

distribution. This can be achieved by sampling from such a distribution to determine

N ≫ 1 samples, {θi : i = 1, . . . , N}. One can then approximate the expectation

value of any function of the parameters, f (θ), as

⟨f (θ)⟩ =
∫

dθ f (θ)P (θ|D) ≈ 1

N

N∑

i=1

f (θi) . (1.51)

The natural question now arises as to how one should generate such samples. In this

section we will summarise two different approaches to this problem.

1.2.3.1 Markov Chain Monte Carlo

The first solution requires one to construct a Markov Chain - a stochastic sequence of

events where the probability of the outcome of next step is determined solely by the

preceding step - such that in the limit of an infinite number of samples, the probability

distribution of the samples stored from each step of the chain converges on the target

distribution, π (x). The aim of a Markov Chain Monte Carlo (MCMC) algorithm is

to obtain the posterior distribution from π (x). We will now outline various choices

for such an algorithm.

1.2.3.2 Metropolis-Hastings Algorithm

Suppose we are at some point in our Markov Chain with parameters x. We now wish

to determine where we should move to in parameter space for the next step in the

chain, x′. The Metropolis-Hastings algorithm begins by assuming the principle of
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detailed balance, i.e. that the probability of being at x and moving to x′ must be

equal to the probability of the reverse process of being at x′ and moving to x:

P (x′|x)P (x) = P (x|x′)P (x′) . (1.52)

There are two stages to determining where to move in parameter space. First, one

must propose moving from x to x′ with probability g (x′|x). Once we have proposed a

move, we will then accept our new sample with a probability given by the acceptance

distribution, A (x′|x), such that

P (x′|x) = g (x′|x)A (x′|x) . (1.53)

Substituting into our requirement for detailed balance, we have

A (x′|x)
A (x|x′)

=
g (x|x′)

g (x′|x)
P (x′)

P (x)
. (1.54)

A simple choice now exists for our acceptance distribution

A (x′|x) = min

(
1,
g (x|x′)

g (x′|x)
P (x′)

P (x)

)
, (1.55)

which clearly allows detailed balance. The samples we store will have a distribution

approaching π (x) = P (x) as we increase the length of our chain. Note that since

we are only interested in the ratio of our posteriors, for this algorithm we only need

to compute the likelihood and prior, and do not require a further calculation of the

evidence, which may be non-trivial.

We are yet to specify the proposal distribution g (x′|x). One can see that the

efficiency of our sampling (the fraction of samples which we accept) is going to depend

strongly on this choice. However, it does not affect the accuracy of our MCMC

chain due to the Metropolis-Hastings acceptance criterion. The appropriate choice is

problem specific. In this thesis we will often use an affine invariant ensemble sampler,

as implemented in the emcee package [62].

Not only do we want a high acceptance rate for efficient computation, but the

aim of the MCMC algorithm is to draw independent samples, otherwise we cannot

compute Equation 1.51. Obviously, the next sample in a chain depends on the previ-

ous sample (by the definition of a Markov Chain), however we want the future steps

in the chain to ‘forget’ about the current state as quickly as possible. To quantify

the independence of the samples, we compute the autocorrelation length; samples

separated by an autocorrelation length are approximately independent.
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1.2.3.3 Hamiltonian Monte Carlo

The trajectory through parameter space for a conventional MCMC algorithm resem-

bles a random walk. As one increases the number of parameters in the physical

model, the increased dimensionality of the space to explore renders such an approach

impractical due to the decreasing efficiency of the sampling. The number of samples

required increases exponentially with the number of parameters; the so-called curse

of dimensionality.

The Hamiltonian Monte Carlo (HMC) algorithm [63] is designed to resolve this

issue by (up to numerical precision) guaranteeing that the next step we propose in

our Markov chain will be accepted. For each parameter in x = (x1, x2, . . .), we now

introduce a conjugate momentum p = (p1, p2, . . .) and define a Hamiltonian for the

system

H =
1

2
piM

−1
ij pj − logP (x) , (1.56)

for some mass matrix Mij, where we sum over repeated indices. This is the Hamil-

tonian for a massive particle moving in a high-dimensional parameter space with a

potential Ψ (x) = − logP (x). We now describe our trajectory in parameter space by

some pseudo-time, τ , such that we obey Hamilton’s equations

dxi
dτ

=
∂H

∂pi
,

dpi
dτ

= −∂H
∂xi

= −∂Ψ(x)

∂xi
. (1.57)

Note that the particle is going to preferentially move to the high likelihood regions,

since this is where the potential is smallest. After allowing our target distribution to

be

π (x) ∝ e−H = P (x) exp

(
−1

2
piM

−1
ij pj

)
, (1.58)

and integrating the equations of motion for the particle from some initial pseudo-time,

τi, to some final pseudo-time, τf , we use the standard Metropolis-Hastings acceptance

criterion (Equation 1.55) to find our acceptance probability

A (x′,p′|x,p) = min [1, exp (−H (x′,p′) +H (x,p))] . (1.59)

By conservation of the Hamiltonian, we are guaranteed to accept our new state,

provided we have no numerical errors. By marginalising over the conjugate momenta,

we obtain our desired distribution, P (x). In practice, this means we only store x after

each step in the chain and can discard the conjugate momenta. To obtain the next

step, one simply needs to draw the initial momenta from the appropriate Gaussian

distribution before integrating the equations of motion.
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The HMC algorithm is therefore particularly efficient for exploring high-dimensions

probability distributions for two reasons: it uses conservation of the Hamiltonian to

ensure a high acceptance rate, and it utilises gradient information of P (x) so that

it is attracted to high-likelihood regions. One needs to tune the mass matrix, Mij,

and integration time, τf − τi, for the problem at hand (in fact τf − τi should be

varied to avoid the impact of resonances), however the method will prove essential in

Section 1.3 when we wish to infer O (106 − 107) parameters.

1.2.3.4 Nested Sampling

One of the main advantages of the MCMCmethods discussed in the preceding sections

is that they rely on the relative probability between two points, and thus one does not

need to compute the evidence. In some situations (e.g. if one needs to compute the

Bayes factor) it is desirable to obtain the evidence, and thus other techniques should

be employed. The aim of nested sampling algorithms is to compute Z (D) itself and,

as a by-product, obtain samples for the posterior.

The basic principle can be seen as follows [64]. Let us first define the prior mass,

X (λ), to be

X (λ) =

∫

L(D|θ)>λ

P (θ) dθ, (1.60)

which is the prior volume for which the likelihood exceeds λ. This must be a monoton-

ically decreasing function of λ and 0 ≤ X (λ) ≤ 1. If one can produce this function’s

inverse, f (X (λ)) = λ, then the evidence will become trivial to compute

Z (D) =

∫ 1

0

f (X) dX. (1.61)

One should therefore find the contours of equal likelihood (to obtain X (λ)) and

then compute this integral. This differs from standard MCMC techniques, since here

we wish to always move in the direction of increasing likelihood as we continue our

exploration of parameter space, whereas we move in both directions with standard

methods. The exact method by which this occurs is sampler-specific; in this thesis

we use both the pymultinest [65–67] and UltraNest1 [68–70] packages.

1.2.4 The likelihood model

As introduced in Section 1.2.1, the likelihood model, L (D|θ), is a model which de-

termines how similar the observed data, D, are to the predicted data given a physical

1https://johannesbuchner.github.io/UltraNest/
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model, M, and its parameters, θ. The form of the likelihood can be informed from

the physical model. For example, if one has a physical model which predicts the

mean and covariance of a Gaussian Random Field, then the appropriate likelihood

is a Gaussian with that mean and covariance. Alternatively, if one is studying the

number of observed photons in pixels across the sky, then one would choose a Poisson

likelihood with a mean predicted by the physical model. The addition of noise can

complicate this scenario, however if one has a model for the form of this noise, e.g.

Gaussian noise, then one can convolve the likelihood for the uncontaminated observ-

able with the noise likelihood to obtain the likelihood of the observed data. In the

astrophysical tests of fundamental physics considered in this thesis, we will often be

in a different situation where one cannot write down a form for L and conclusively

state that it must be the true likelihood. In this case, one should view L just like

M: its form is simply an analysis choice and one should compare different likelihoods

to determine which is most favoured by the data. Not doing so could lead to biased

results, in much the same way as using a sub-optimal M.

This subtlety in the analysis arises when one tries to explicitly write a form for the

likelihood. One can circumvent this challenge through the use of Implicit Likelihood

Inference (ILI), where one avoids this step entirely and the likelihood appears implic-

itly in the analysis (this is also commonly referred to as Likelihood Free Inference

(LFI) or Simulation Based Inference (SBI)). The simplest example of ILI is Approxi-

mate Bayesian Computation (ABC) [71], where one randomly draws parameters from

the prior distribution and computes the predicted data using M. Utilising some def-

inition of the distance between the predicted and observed data, one simply keeps all

samples which lie within a distance ϵ of the observations. The distribution of these

samples gives the posterior. This likelihood-free rejection sampling approach can be-

come unfeasible if one wants to minimise the number of model evaluations or has a

large number of parameters since the rejection rate will often be high. Instead, one

can introduce a more efficient proposal step to reduce the number of simulations (e.g.

Bayesian Optimisation for Likelihood-Free Inference (BOLFI) [72, 73]) or linearise

the physical model (e.g. Simulator Expansion for Likelihood-Free Inference (SELFI)

[74]) to reduce the computational cost of small moves in parameter space. Since one

is often only interested in summaries of the posterior, a more radical approach is to

not compute the posterior at all, but only its mean and covariance through the use

of e.g. moment networks [75].

In this thesis we will commonly use ILI techniques to obtain the posteriors of

intermediate parameters which we will later compare to the data. The ILI technique
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which we will often use is based on Density-Estimation Likelihood-Free Inference

(DELFI) [76–78]. This method aims to fit an estimator of the likelihood or posterior

from data-parameter pairs. Specifically, we will draw parameters θ from their priors,

evaluate a physical model M, and then fit the distribution of these predictions to a

flexible estimator. As in [78], we will typically fit these distributions to a Gaussian

Mixture Model (GMM), although we will always choose a parametrisation whereby

one does not need to apply neural density estimators (unlike [78]). By fitting a GMM

we obtain a continuous representation of the Monte Carlo data, which we will often

convolve with analytic distributions describing parts of the model where a Monte

Carlo procedure is unnecessary.

1.2.5 Forward modelling and field level inference

Cosmology has historically focused on the study of two-point statistics; with limited

observations and computational resources, one can place constraints on cosmological

parameters and models without needing to know the phases of the initial conditions

of the local Universe. For example, in studies of large scale structure, one could

attempt to measure the power spectrum of matter perturbations (Equation 1.20) and

compare the observed P (k) to that expected from theory. Since this will depend

on cosmological parameters, one can place constraints on these values using such

methods.

As we move into an era of increased observational and computing power, one

should question whether we can go beyond this traditional approach. One could try

to measure higher order statistics such as the bispectrum or trispectrum, although

this still discards potentially useful information available when one studies each object

individually. In general, one does not observe the whole sky, and thus one must include

selection effects, which will couple different Fourier modes. Moreover, once we have

obtained a power spectrum or correlation function, it is not obvious what form the

likelihood should take.

Therefore, in this thesis we will always compare data at the ‘field level’ or on an

‘object-by-object’ basis, rather than first computing their summary statistics and will

therefore implicitly capture not just the two-point statistics, but all higher orders too.

It has been shown that tighter constraints on cosmological parameters are possible

using this method than through two-point analyses [79–81], since one does not discard

the information contained in these higher order statistics.

Not only does one need to consider whether to perform an analysis on an object-

by-object basis or at the level of a summary, but there is a second analysis choice
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to make. The observed data will usually be subject to contamination from masks,

selection effects and noise, whereas the simplest physical model will assume ‘perfect’

data, e.g. one can measure the full sky with arbitrary accuracy, with an isotropic

exposure and without noise. One can either attempt to undo the selection effects of

the data to extract the underlying data, or one can augment the physical model to

try to predict what the observed data looks like. This second procedure, dubbed ‘for-

ward modelling’ is a mapping from theory to data space, such that we do our analysis

through direct comparison to observations. Although this is a conceptually cleaner

methodology and allows a more straightforward implementation of the noise model,

it is typically difficult to perform since one needs to increase the dimensionality of pa-

rameter space to incorporate models for the imperfections in the data. The treatment

of noise is significantly more challenging in the reverse modelling scenario (mapping

from data to theory space) so one typically would rely on frequentist statistics, for

example by subtracting the maximum likelihood template for some contamination to

the underlying signal. In this thesis we will be attempting to identify correlations in

extremely noisy data, where there is often not an obvious way to ‘subtract’ the noise.

We will therefore exclusively use forward modelling techniques in this thesis due to

the importance of the noise models in our analyses and to allow us to marginalise

over these models in a Bayesian manner.

1.3 Bayesian Origin Reconstruction from Galaxies

In this section we describe a method for processing large scale structure data which

goes beyond two-point statistics, where one can measure the true (i.e. not just the

statistical) DM distribution of the local Universe using the BORG (Bayesian Origin

Reconstruction in Galaxies) algorithm [4, 5, 82–86].

1.3.1 The BORG algorithm

Despite having five times the average density of baryonic matter, since DM is only

known to interact gravitationally, we must infer its presence indirectly through its

effect on other components of the Universe. In particular, we expect that galax-

ies reside with quasi-spherical ‘halos’ of DM, such that the distribution of galaxies

throughout the Universe can be used to trace the distribution of DM. Hence, if one

knows what the connection between the galaxy and DM density is (the so-called bias),

one can infer the large scale distribution of DM. From a Bayesian perspective, this

enables us to derive and evaluate a likelihood for the observed galaxy distribution
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given a DM distribution. Of course, it is not the likelihood which concerns us, but

the posterior. By Bayes’ theorem (Equation 1.39) we therefore need to know what

the prior distribution of DM is. This is in fact a highly non-trivial task and, due to

the non-linear equations of structure formation, an analytic expression for the prior

of the present-day matter distribution is not known. One could introduce maximally

agnostic priors (either a Gaussian or log-normal distribution depending on whether

you know the scale of the density fluctuations) however this is far from ideal.

We are saved from a theoretical and observational view point, since the density

field is (approximately) Gaussian at high redshifts. We can therefore place a Gaussian

prior on the initial density fluctuations,

P
(
δI
)
=

1√
det (2πS)

exp

(
−1

2
δIiS

−1
ij δ

I
j

)
, (1.62)

where we have discretised our density field such that i labels the voxel of interest.

Given a current matter density field, δF, it is tempting to integrate the equations

of motion backwards to high redshift and then evalate this prior. There a number

of issues with this approach. First, the equations of motion are second order and

thus contain two solutions; one of these grows with time and the other decays. By

integrating backwards, one can match onto one of these decaying modes, which will

grow to spuriously large values when integrating backwards, making such a procedure

numerically infeasible. Secondly, if one has a masked region of the sky, it is unclear

how one should fill in the unobserved region in order to have a full density field to

evolve backwards in time. The procedure for reconstructing the initial conditions

from present day observations in such a manner is ill-posed [87, 88].

The BORG algorithm approaches this differently. Instead of trying to integrate the

equations backwards in time to unambiguously find the initial conditions (which is

impossible), it instead works in reverse. The algorithm aims to reconstruct the initial

conditions (ICs) of the local DM density field by applying a Bayesian forward model

for the number densities of observed galaxies in voxels and marginalising over galaxy

bias parameters. A key assumption is that gravitational structure formation is a

deterministic process, such that the likelihood of a final density field given an initial

one is

P
(
{δFi }|{δIi}

)
=
∏

i

δD
(
δFi −Gi

(
{δIi}

))
, (1.63)

where the set of functions Gi

(
{δIi}

)
is the structure formation model. In this way,

one can constrain the ICs of the local Universe by first evolving these forward to the

present day under some structure formation model and then by comparing these to
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the observed galaxy number counts by applying a bias model. Evaluating Gi

(
{δIi}

)

involves simulating the evolution of the Universe from the ICs to a redshift of zero.

Structure formation models implemented to date include first and second order La-

grangian Perturbation Theory, Particle-Mesh simulations and the COmoving La-

grangian Acceleration (CMB) method [89].

This procedure requires one to infer a large number of parameters. If one wishes

to infer the ICs on a grid with 256 grid points per side, this results in O (107) (highly

degenerate) parameters, and thus a HMC procedure (Section 1.2.3.3) is necessary.

Not only this, but one also needs to infer and marginalise over nuisance parameters,

e.g. those describing galaxy bias or foreground templates. The BORG algorithm is

therefore designed as a highly flexible block sampling procedure to allow for arbitrary

complexity in the model.

The result of this sampling is a Markov Chain of feasible realisations of the ICs of

the local Universe. A particular advantage of the BORG algorithm is that it interpo-

lates the density field into the unobserved regions of the sky in a physically consistent

manner, such that for a given MCMC sample, one cannot distinguish between the

observed and unobserved regions. This is not true across the whole chain; the en-

semble mean reflects the observational strategy such that the mean δF will be zero

in the unobserved regions, corresponding to the mean cosmological density. In the

observed regions, however, the data are highly constraining such that one can identify

structures which exists in all samples, and these regions have a smaller (fractional)

variance in δF across the chain.

1.3.2 Constrained simulations

Throughout this thesis, we use the CSiBORG (Constrained Simulations in BORG ) suite

of constrained N-body simulations of the local universe [90–93]. The full CSiBORG

suite takes ∼100 sets of z = 69 ICs from the posterior of the particle-mesh BORG re-

construction of the 2M++ volume [5, 94] separated by several autocorrelation lengths.

These cover a box length of 677.77h−1Mpc with 2563 voxels, yielding a resolution of

2.65h−1Mpc. Within a smaller sphere of radius 155h−1Mpc centred on the Milky

Way, the ICs are augmented with white noise to a resolution of 20483, giving a parti-

cle mass of 4.38× 109M⊙. Each set of ICs is then used to run a DM-only RAMSES [95]

simulation to z = 0, refining only in the higher-resolution central sphere (although

keeping the larger cube to include longer-wavelength modes). This produces ∼100

N -body realisations of the local DM structure. By sampling the realisations one can

marginalise over both the uncertainties in the constraints on the ICs derived from
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2M++ and the unconstrained smaller-scale modes, and hence over the local DM den-

sity field itself. BORG and CSiBORG use the cosmology TCMB = 2.728 K, Ωm = 0.307,

ΩΛ = 0.693, Ωb = 0.04825, H0 = 70.5 km s−1 Mpc−1, σ8 = 0.8288, ns = 0.9611.

1.4 Thesis Overview

The program of work outlined in thesis aims to utilise astrophysical systems as pre-

cision probes of fundamental physics through simulation-based, Bayesian statistical

forward-modelling techniques. These methods differ from conventional analyses in

two main ways. First, we utilise an under-explored region of parameter space, since

relatively few tests of ΛCDM and the SM have been conducted on galactic scales

[96], although the field of astrophysical tests of gravity is nonetheless emerging as

powerful and complementary to traditional methods [36]. There are clear advantages

to studying galaxies. We are no longer restricted to the linear regime, so remove the

associated limits on our results introduced by cosmic variance. However, the same

non-linearities that make galaxies such rich laboratories for investigating fundamental

physics also complicate any such analysis, because the complex astrophysical effects

that shape galaxies act as critical systematics. This will require the development of

a sophisticated treatment of astrophysical and observational noise. The second dif-

ference compared to conventional analyses is that we will always focus on field-level

inference; we will make predictions on an object-by-object (or pixel-by-pixel) basis

and not on their statistical summaries. This will enable us to implicitly capture all

n-point statistics.

In Chapter 2 we will develop the inference techniques required to test fundamental

physics on astrophysical scales by constraining Quantum Gravity (QG), the photon

mass and the WEP with the spectral lags of Gamma Ray Bursts (GRBs). Before

transferring these techniques to tests of scalar-tensor theories in Chapter 4 using the

locations of the supermassive black hole (SMBH) in galaxies, we will investigate this

phenomenon in ΛCDM through the use of hydrodynamical cosmological simulations

in Chapter 3. In Chapter 5 we will constrain the self-annihilation cross-section and

decay rate of DM by cross-correlating DM density fields inferred from the distribution

of galaxies with the gamma ray background. These chapters will require us to develop

empirical noise models describing alternative contributions to the observed signals, so

in Chapter 6 we introduce a framework to assess the validity of these models and we

carry out such an assessment for a galactic-scale test of f(R) gravity. We conclude in

Chapter 7. The work in Chapter 2 was first presented in [97, 98], Chapter 3 is based
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on [99], Chapter 4 utilises work from [90], the analysis of Chapter 5 was presented in

[100] and Chapter 6 was discussed in [101].
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Chapter 2

Fundamental Physics and Gamma
Ray Bursts

2.1 Introduction

High energy astrophysical transients at cosmological distances allow us to test the

fundamental assumptions of the standard models of cosmology and particles physics,

such as Lorentz invariance (LI), the massless nature of the photon or the WEP, (for

a review, see [102]). If any of these assumptions are incorrect, photons of different

energies propagate differently through spacetime, which could be observable in the

spectral lags of GRBs.

If the photon velocity is energy-dependent, then photons of different energies from

a distant source would arrive at different times, even if they were emitted simulta-

neously. For example, the photon’s dispersion relation could be modified if it has a

nonzero mass, mγ, such that the photon velocity, v, depends on the energy, E, as

v =

√
1− m2

γ

E2
≈ 1− 1

2

m2
γ

E2
. (2.1)

Alternatively, the hitherto elusive unification of quantum mechanics and GR is ex-

pected to exhibit so-called QG effects at energies of order the Planck scale, EP ≈
1.2× 1019GeV. By extension of the uncertainty principle, one may expect spacetime

no longer to appear smooth on distance scales ∆x ∼ 1/EP [103], and thus have a non-

trivial refractive index for particles propagating through it. Hence, at low energies in

QG theories, the photon velocity becomes [104]

v ≈ 1− ξ
E

EQG

, (2.2)

where ξ = ±1 and EQG is the QG energy scale, constituting LI violation. Such a

linear modification to v is expected in a range of QG models (see Section 1 of [105]
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and references therein). We dub the ξ = +1 and ξ = −1 models “subluminal QG”

and “superluminal QG” respectively, based on the value of v for nonzero E. One may

expect that ξ = +1 otherwise photons would quickly lose energy due to gravitational

Čerenkov radiation [106], however we consider both signs in this chapter since current

constraints [107] from Čerenkov radiation only consider models which would lead to

even powers of E in Equation 2.2. Superluminal photons would also decay into

electron–positron pairs above a threshold energy, providing an independent test of

such theories [108].

Constraints on EQG from GRBs have previously been obtained using a variety of

methods [105, 109–130], with the most stringent lower bounds of EQG > 9.3×1019GeV

for the subluminal (ξ = +1) and EQG > 1.3×1020GeV for the superluminal (ξ = −1)

models arising from GRB 090510 [115]. In many cases these constraints are obtained

using a handful of GRBs, do not propagate uncertainties in the redshifts of sources, or

suffer from uncertain systematics in the model for other contributions to the spectral

lag.

It is clear from Equation 2.1 that tighter constraints on mγ can be obtained using

lower frequency photons, and thus fast radio bursts (FRBs), pulsars and magnetars

provide useful probes of mγ [102, 131–140]. However, the scaling with frequency

(v ∝ E−2) is identical to the time delay due to dispersion by electrons [141], which

is negligible for gamma rays, but leads to degeneracies at radio frequencies. The

majority of constraints from radio frequencies neglect this important contribution

[102], although recently [133–135] the plasma effect has been incorporated into a

Bayesian analysis of FRBs, leading to constraints of mγ < 4 × 10−15 eV/c2. Slightly

tighter constraints of 2.9 × 10−15 eV/c2 have also been obtained [136], but these do

not include the plasma effect in the analysis. GRBs have previously been used to

constrain the photon mass, but these either compare to radio frequencies [137] or do

not consider alternative causes for the time delay [138].

One does not require an energy-dependent photon velocity to produce a time delay

between photons of different energy. A basic feature of metric theories of gravity is

that objects on either timelike or null geodesics experience apparent time delays due

to motion through regions of varying spacetime curvature, caused by the difference

between proper and observer time induced by a gravitational field. In general metric

theories the time delay is proportional to the integral of the fluctuation in Newtonian

potential ϕ along the line of sight to the source; within the PPN framework it has

a prefactor 1 + γ where γ is the Parametrised Post-Newtonian (PPN) light-bending

parameter [142], and γ = 1 in GR. This effect, first derived by Shapiro in 1964
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[143], has now been accurately measured in the Solar System: the best constraint on

the fractional deviation of the time delay from the prediction of General Relativity

(GR) is currently at the 10−5 level, using data from the radio link with the Cassini

spacecraft [144]. For sources at greater distance, however, the lack of knowledge of

the time of emission of a signal precludes direct measurement of the delay.

Nevertheless, the time delay effect has found use in testing various aspects of the

theory of gravity and the standard model of cosmology. This is done by comparing

time delays, either between nearby geodesics or between different types of object

following the same geodesic. The former may be achieved by comparing the time

of reception of photons originating from a common source but traversing different

paths due to gravitational lensing. When the source is a time-varying quasar and

the lens a single massive elliptical galaxy or cluster, this method has been used to

constrain the Hubble parameter, H0, on which time delay distances depend [145, 146].

Conversely, comparing time delays between different objects travelling along the same

geodesic allows the WEP to be tested by investigating whether they experience time

delays identically. This can be achieved either when the source emits light at varying

frequencies which can be independently measured [147], or when it emits other types

of energy in addition to light, such as gravitational waves [148]. Within the PPN

framework, this constrains the difference between their γ factors.

Constraining γ through time delays is therefore equivalent to determining δϕ. In

typical analyses, δϕ ≃ ϕ is modelled as arising from one or a few isolated sources

near the line of sight that are believed to be predominantly responsible for sourcing

the potential. However, the long range of the gravitational potential (ϕ ∼ 1/r)

casts doubt on the multiple point masses approximation, since ϕ is sensitive to the

distribution of distant sources and thus should be considered in a cosmological context

[149–151].

There are thus three aims of this chapter. First, we address the issues highlighted

when constraining EQG by constructing probabilistic source-by-source forward mod-

els of the time delays of GRBs from the BATSE satellite [152, 153] and marginalising

over empirical models describing astrophysical and observational contributions to the

measured time delay. Second, we provide constraints on the photon mass that are

independent of radio observations and are thus insensitive to potential systematics

in modelling the propagation of photons at radio frequency. Finally, we aim to ac-

count fully for the contributions to the time delay from all mass in the non-linear

cosmological density field when constraining the energy variation of γ.
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In Section 2.2 we describe the observations of GRBs used in this chapter. We then

constrain the photon’s dispersion relation in Section 2.3 by developing forward models

for the time delay, introducing models for competing astrophysical and observational

effects, and deriving the likelihood function. These techniques are then utilised in

Section 2.4 to constrain EP violation, where instead of the geometric time delay we

must compute the Shapiro time delay due to mass in the local Universe. Section 2.5

concludes.

2.2 Observational Data

The spectral lag data we use are a sample of the BATSE detections of GRBs cat-

alogued in [152]. The temporal evolution of a GRB’s luminosity, L (t), typically

contains many spikes, making a simple definition of the time delay based on a fit

to L (t) challenging. Instead, spectral lags are typically computed to be the peak in

the cross-correlation function of L (t) between two energy channels [154], and is the

definition used in this chapter. We make use of a set of sources compiled in [153],

where the four energy bins considered are sensitive to the ranges Ch1: 25-60 keV,

Ch2: 60-110 keV, Ch3: 110-325 keV and Ch4: >325 keV. These four bins result in

up to 6 time delay pairs per source, ∆tij, where i, j label the channels used. With-

out loss of generality we define i > j. In the cases where no ∆tij is recorded for a

source due to low signal-to-noise, we ignore that particular pair but still consider the

others. These sources also have pseudo-redshifts calculated using the spectral peak

energy-peak luminosity relation [155].

The physical mechanisms that result in the spectral lags of GRBs are unknown;

the search for the nature of spectral lag is an ongoing research topic where most

of the focus lies on investigating possible effects at the source [see e.g. 156–162].

It has, for example, been shown that the effects of spectral lag can be recreated

from simple source models utilising rapid bulk acceleration on relativistic jet shells

[162]. Therefore, when modelling the intrinsic contribution to these time delays in

Section 2.3.2 we will have to rely on empirical models, as opposed to the ideal case

where we can calibrate our noise model with simulations [101].
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2.3 Quantum Gravity and the Photon Mass

2.3.1 Forward modelling the time delay

As noted by [163], for energy-dependent photon speeds, one cannot simply multiply

the difference in photon velocity in the observer’s frame by the distance travelled by

a photon, but one must consider the cosmological redshift of the photon. This results

in a time delay between photons of observed energy Ei and Ej, ∆tij ≡ tj − ti, of

∆t
(QG)
ij = ξ

Ei − Ej

EQG

∫ z

0

1 + z′

H (z′)
dz′ ≡ ξ

∆Eij

EQG

IQG, (2.3)

for the QG scenario, and

∆t
(MP)
ij =

m2
γ

2

(
1

E2
i

− 1

E2
j

)∫ z

0

1

H (z′) (1 + z′)2
dz′ ≡ m2

γ

2

(
1

E2
j

− 1

E2
i

)
IMP (2.4)

for the massive photon. We will assume a ΛCDM cosmology to determine the Hubble

parameter H(z); in general one should consider a variety of cosmological models [164–

167], although this is beyond the scope of this work. In both cases we see that the

parameter of interest (EQG or mγ) and the observed energy bands appear as scaling

factors. We therefore simply need to compute the predicted theoretical time delay,

∆t
(th)
ij ∈ {∆t(QG)

ij ,∆t
(MP)
ij }, using Equations 2.3 and 2.4 for some fiducial EQG or

mγ, and then rescale these parameters linearly for EQG and quadratically for mγ

(Equations 2.3 and 2.4) according to the EQG or mγ being sampled.

Since the redshift values of our sources are uncertain, we draw NMC = 104 redshifts

per source from a two-sided Gaussian with upper and lower uncertainties equal to the

uncertainties calculated in [155]. Doubling NMC yields identical results, indicating

that the number of samples is adequate. For each sample we evaluate the integrals IQG

and IMP using the scipy.integrate subpackage [168]. To determine the appropriate

Ei to use in Equations 2.3 and 2.4, for each sample we draw an energy randomly from

a distribution proportional to the best-fit spectral model for that GRB as given in the

BATSE 5B Gamma-Ray Burst Spectral Catalog [169]. Furthermore, at each iteration

we draw the parameters for the model from Gaussian distributions with means and

widths as given in the catalogue.

The resulting NMC samples are assumed to follow a GMM [170], such that the

likelihood function for ∆t
(th)
ij for some source s is

Ls

(
∆t

(th)
ij

)
=
∑

α

w
(α)
sij√

2πτ
(α)
sij

exp


−

(
∆t

(th)
ij − λ

(α)
sij

)2

2τ
(α)
sij

2


 , (2.5)
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where ∑

α

w
(α)
sij = 1, w

(α)
sij ≥ 0, (2.6)

and the sum runs over the number of Gaussian components. We compute an inde-

pendent GMM for each source, and choose the number of Gaussians which minimise

the BIC (Equation 1.43).

2.3.2 Modelling the noise

Quantum gravity or a photon mass are not the only types of physics that can lead

to spectral lags: these may also be generated through intrinsic differences in the

emission of photons of different wavelength at the source or their propagation through

the medium surrounding the GRB, or through instrumental effects at the observer.

Without a robust physical model for the time delays these lead to, we model them

using a generic functional form (a sum of Gaussians) with free parameters that we

marginalise over in constraining mγ and EQG. We refer to any contribution to the

time delays other than QG or a photon mass as “noise.”

We suppose that the time delay between frequencies νi and νj can be written as

the sum of the following independent terms

∆t
(obs)
ij (r) = ∆t

(th)
ij (r) + A (r)

(
ν−2
i − ν−2

j

)
+Bij. (2.7)

Besides the term arising from an energy-dependent propagation speed, our time de-

lay contains two other contributions. The first of these (containing A (r)) describes

the dispersion due to electrons. The second (Bij) represents the combination of an

intrinsic time delay at the source and the instrument response, which we assume is

independent of observed angle and redshift.

The mean of A depends on the temporal evolution of the comoving electron den-

sity, n̄e,c, as

Ā (r) =
e2

2πme

1

4πϵ0

∫ z(r)

0

dz′

H (z′)
(1 + z′) n̄e,c (z

′) , (2.8)

and fluctuations about this depend on fluctuations in the electron density and other

relativistic effects [141]. The comoving electron density can be modelled as

n̄e,c (z) =
3H2

0Ωb

8πGmp

xe (z) (1 + xH (z))

2
, (2.9)

where xe is the free electron fraction, xH is the hydrogen mass fraction, Ωb is the

baryon density fraction, and mp is the proton mass. xe is proportional to the frac-

tion of electrons in the intergalactic medium, fIGM (z), which slightly increases with
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redshift, from 0.8 for z ≲ 0.4 to 0.9 at z ≳ 1.5 [171–173]. For simplicity, assuming

xe = 1 and xH = 0.75, we find the contribution from the electron plasma to be

A (r)
(
ν−2
i − ν−2

j

)
=

(∫ z(r)

0

H0

H (z′)
(1 + z′) dz′

)((
Ei

keV

)−2

−
(
Ej

keV

)−2
)
×5.6×10−17 s.

(2.10)

Since in this chapter we will be considering GRBs, we will find that this contribution

is negligible for the probed frequencies, and thus we will neglect it in our analysis. If

we were to consider radio bursts we would need to consider this term, as we would

expect contributions of O (1 s).

Given that we are neglecting the contribution from the electron plasma in Equa-

tion 2.7, to determine the likelihood of an observed time delay, we must finally con-

volve Equation 2.5 with the likelihood for Bij. We assume that for each pair of

frequencies the distribution of Bij can be written as the sum of NG Gaussians,

L (Bij) =
∑

β

ω
(β)
ij√

2πσ
(β)
ij

exp


−

(
Bij − µ

(β)
ij

)2

2σ
(β)
ij

2


 , (2.11)

where ∑

β

ω
(β)
ij = 1, ω

(β)
ij ≥ 0, (2.12)

and β ∈ {0, 1, . . . , NG − 1}. Without loss of generality, we define the Gaussians such

that ω
(β)
ij ≥ ω

(β+1)
ij .

In Equation 2.11 we have assumed that the noise only depends on the observed

photon energies. Inspired by Ellis et al. [110], we also consider noise models in which

the means and widths of one or more of the Gaussians are redshift dependent,

µ
(β)
ij → µ

(β)
ij (1 + zs) , σ

(β)
ij → σ

(β)
ij (1 + zs) , (2.13)

where zs is the quoted pseudoredshift of source s. These models capture an intrinsic

contribution to the time delay from the source such as a “magnetic-jet” model for

GRB emission [122, 174], whereas one would expect the redshift-independent models

to describe observational effects. By including these, we now have a wider range of

noise models to choose from, increasing our confidence that the optimum model lies

within this set.
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2.3.2.1 Likelihood model

The likelihood of a given observed time delay, ∆t
(obs)
ij , for source s is given by the

convolution of Equation 2.5 (once we have appropriately scaled ∆t
(th)
ij and the GMM

parameters) and Equation 2.11,

Ls

(
∆t

(obs)
ij

)
=
∑

αβ

w
(α)
s ω

(β)
ij√

2π
(
τ
(α)
sij

2 + σ
(β)
ij

2 + ε2sij

) exp


−

(
∆t

(obs)
ij − λ

(α)
sij − µ

(β)
ij

)2

2
(
τ
(α)
sij

2 + σ
(β)
ij

2 + ε2sij

)


 ,

(2.14)

where we have also included the quoted measurement uncertainty in the spectral lag,

εsij.

Assuming that all frequency pairs and sources are independent, the total likelihood

for our dataset D is

L (D|θ) =
∏

sij

Ls

(
∆t

(obs)
ij

)
, (2.15)

where θ ≡ {A, µ(β)
ij , σ

(β)
ij , ω

(β)
ij }, and A = mγ or ℓQG ≡ ξE−1

QG depending on the theory

considered. We choose to fit for the QG length scale, ℓQG, instead of EQG since the

infinite upper limit of the prior on EQG becomes a zero lower limit on the prior for

ℓQG. A separate set of noise parameters is fitted to each pair of frequencies, but we

consider the target of interest, A, to be universal.

The deliberately wide priors, P (θ), in Table 2.1 lead to difficulties in interpret-

ing the Bayes ratio (Equation 1.42). To determine the appropriate NG, we instead

compare the models by calculating the BIC (Equation 1.43); the best-fitting model

minimises this statistic. To find the maximum likelihood and thus the BIC, we first

optimise using the Nelder-Mead algorithm [175] with a simplex consisting of param-

eters drawn randomly from the prior. We repeat this ten times then compute the

Hessian at the maximum likelihood point (MLP), L̂. Drawing 256 walkers from a

Gaussian centred on the MLP with this Hessian, we run the emcee sampler [62] for

10,000 steps to find a new estimate of the MLP using the 2.56× 106 samples. If our

estimate of the Hessian is not positive definite, we draw the walkers from log-normal

distributions of unit width, centred on the MLP. We find that L̂ changes by less than

2 per cent for any NG and for both theories considered if we only use the first 5,000

steps, which is much smaller than the change in BIC between different NG.

For computational convenience, we now use these posterior samples to restrict the

size of the prior: we find the samples for which the change in χ2 (∆χ2 = −2∆ logL)
from the MLP is 25 times the number of observed frequency pairs (5σ for a Gaussian
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Table 2.1: Priors on photon mass, QG length scale and parameters describing the
empirical noise model (Equation 2.11). All priors are uniform in the range given.

Parameter Prior
mγ / meV/c2 [0, 1]
ℓQG / GeV−1 [−10−14, 10−14]

µ
(β)
ij / s [−15, 15]

σ
(β)
ij / s [0, 15]

ω
(β)
ij [0, 1],

∑
β ω

(β)
ij = 1, ω

(β)
ij ≥ ω

(β+1)
ij

likelihood) and set the new prior such that it (just) encompasses these points. For

some parameters we keep the prior wider than this to ensure that our results are not

dominated by the choice of the prior. We now use Bayes’ theorem (Equation 1.39) to

obtain the posterior distribution of θ, and evidence with the nested sampling Monte

Carlo algorithm MLFriends [68, 69] using the UltraNest package [70]. Since the

prior is still treated as uniform and we do not use the Bayes ratio, reducing the size of

the prior does not affect our results since it simply changes P (θ|D) by a multiplicative

constant except in regions where it is already negligible.

2.3.3 Results

For both theories considered, we find that NG = 3 and 4 Gaussians have comparable

BIC values, and that the best noise models contain either one redshift-dependent

Gaussian or are completely independent of redshift, suggesting that observational

effects dominate the noise. Using the GetDist package [176], in Figure 2.1 we show

the corner plots for mγ and ℓQG and the parameters for the component of the noise

model which is most correlated with the signal. We note that, from the energy

dependence of Equations 2.1 and 2.2, it is unsurprising that mγ is most sensitive to

the noise parameters from the frequency pair with the lowest energies, but for ℓQG

this is the pair with the largest range of energies.

We find that, for the QG theories, the results are relatively independent of the

noise model, and the best-fit model gives a constraint of |ℓQG| < 5.3× 10−18 hGeV−1

at 95% confidence, where h ≡ H0/(100 km s−1 Mpc−1) for Hubble constant H0. We

quote our results in terms of h to remain agnostic as to the true value of H0, given

the “Hubble tension.” The maximum of the marginalised one-dimensional posterior

is, perhaps coincidentally, in the same direction as [111] (accounting for the different

sign in the definition), indicating a slight preference for a superluminal QG theory.

For the photon mass inference we see that mγ is correlated with the highest weighted
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Figure 2.1: Constraints on (a) the photon mass,mγ, and (b) the QG length scale, ℓQG,
and the noise parameters of the Gaussian which is most correlated with the signal.
The legend gives the number of redshift independent and dependent Gaussians used
to describe the noise, respectively. A QG model with superluminal photon speed at
high energies (ξ = −1) is defined to have a negative ℓQG. For the QG theories there
is little degeneracy with the noise, whereas mγ is highly correlated with the mean of
the highest-weighted Gaussian, making the constraint on mγ more sensitive to the
noise model employed.
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Gaussian for frequency pair (i, j) = (2, 1) and that the marginalised one-dimensional

posterior is more sensitive to the noise model. In all cases we findmγ < 4.0×10−5 h eV

at 95% confidence.

Besides the clear proportionality with h, we find that our constraints are relatively

independent of cosmological parameters; varying Ωm0 in the range 0.25 − 0.35 with

fixed h changes the constraints by ≲ 10%.

We previously assumed that the uncertainty on the pseudoredshift of a source

can be described by a two-tailed Gaussian. To test the impact of this assumption,

we run the analysis assuming zero redshift error, and find the constraints on mγ

and ℓQG tighten by 18% and 3% respectively. Due to the pseudoredshift calibration,

we removed all GRBs with pseudoredshifts above zmax = 4.5. Increasing this to

zmax = 6 slightly tightens the constraints by 3% for the massive photon case and 5%

for the QG theories. If we include all GRBs from [153] then the constraint on mγ

is again virtually unchanged, whereas we find a nonzero (at 3σ confidence) value of

ℓQG = −1.6 × 10−18 hGeV−1. We find that this “detection” is driven by two GRBs

(4B 910619 and 4B 921112-) at z ∼ 7.5 which have negative time delays. Upon

excising these potential outliers, the constraint is again consistent with zero at 1σ

confidence.

2.4 Equivalence Principle Violation

In the previous section we developed a framework of source-by-source, probabilistic

forward modelling which we used to constrain two theories which give rise to photon

propagation speeds, and we demonstrated how one can incorporate and compare

empirical noise models. In those theories, the theoretical time delay was dominated

by the geometric contribution, i.e. the time delay depended only on the distance of

the source from the observer and not the direction. In this section we utilise the tools

we have developed to consider a more complicated problem, where we constrain EP

violation through direction-dependent time delays caused by the mass distribution of

the local Universe. We describe these time delays in Section 2.4.1 and how we model

them in Section 2.4.2. The results are presented in Section 2.4.3 and discussed in

Section 2.4.4.
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2.4.1 Time delay differences in metric theories of gravity

2.4.1.1 Equivalence principle violation

Consider a perturbed FRW-like metric in the Newtonian gauge,

ds2 = − (1 + 2δϕ) dt2 + a2 (t) (1− 2γδϕ) dr2, (2.16)

where we have introduced the PPN parameter γ to allow for deviations from General

Relativity (where γ = 1).

For a massless particle, the gravitational time delay to a source at distance rs is

given by (1 + γ) tgrav, where

tgrav = −
∫ rs

0

dr δϕ0(r)D(r), (2.17)

where D(r) is the linear growth factor, δϕ0 is the potential fluctuation evaluated using

the present-day matter field and we have used the weak field limit δϕ≪ 1. For a set

of point masses ϕ =
∑

iGMi/ri, but in a general density field δϕ must be found by

solving the Poisson equation

∇2δϕ(r) = 4πGδρ(r), (2.18)

where δρ is the total matter density fluctuation. This is most readily solved in Fourier

space. Thus determining time delays amounts to mapping out the three dimensional

density field to at least the redshift of the source, as described in Section 1.3.

There exist several formulations of the Equivalence Principle, of varying strengths.

The WEP, our focus here, states that all freely-falling test objects follow the same

trajectories given the same initial conditions, irrespective of their composition or

structure. This requires that all objects from a given source experience the same

time delay, regardless of their composition or energy.

A potential contribution to the difference in the time of reception of photons from

GRBs is a difference in the gravitational time delay, which can be parametrised as

a difference in the PPN parameter γ between two wavelengths. Thus by comparing

the measured time delays with the line-of-sight integral in Equation 2.17, one can put

constraints on how γ changes with photon frequency, and therefore on any violation

of the WEP.
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2.4.1.2 Time delay angular power spectrum

The angular power spectrum of the gravitational time delay is [149, 177]

Cℓ =
2

π

∫
dk k2Pϕ (k)

∣∣∣∣
∫ rs

0

dr D (r) jℓ (kr)

∣∣∣∣
2

, (2.19)

such that the mean-squared time delay is

〈
t2grav

〉
=
∑

ℓ

2ℓ+ 1

4π
Cℓ, (2.20)

where Pϕ is the power spectrum of the potential. For k ≪ 1/rs, the spherical Bessel

function can be expanded as

jℓ (x) =

√
π

2ℓ+1Γ
(
ℓ+ 3

2

)xℓ +O
(
x2+ℓ

)
, (2.21)

so that

Cℓ =
4

π3

√
π

2ℓ+1Γ
(
ℓ+ 3

2

)
∫

dk

k
[Tϕ (k)]

2Ask
ns−1k2ℓ

(∣∣∣∣
∫

dr D (r) rℓ
∣∣∣∣
2

+O
(
k2+2ℓ

)
)
,

(2.22)

where Tϕ is the potential transfer function and we assume a nearly scale-invariant

primordial power spectrum

PR (k) = Ask
ns−1. (2.23)

On super-Hubble scales, Tϕ (k) ∼ constant, so the smallest power of k in the integral

has an exponent ns−2+2ℓ. For ℓ ≥ 1, this is ≥ ns, which, given that ns ∼ 0.97 [178],

means that, for ℓ ≥ 1, the integral does not diverge at small k. However for ℓ = 0,

the exponent is ns − 2 < −1, and so the integral diverges. We therefore see that the

monopole diverges due to the contribution from large scales. This is not to say that

there is an infinite time delay for a given universe, but that its variance across all

possible universes is infinite.

The problematic diverging monopole was first noted by Reischke et al. [179], who

showed how to circumvent this issue by computing the angular power spectrum and

forecasted constraints of ∆γ < 10−15 using FRBs. Similarly, for our forward modelling

approach in Section 2.4.2, we will only be able to predict angular fluctuations about

the mean Shapiro time delay at a given redshift, and not its absolute value.
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2.4.2 Methods

In this section we use the large-scale structure information described in Section 1.3 to

produce a source-by-source probabilistic forward model for the expected Shapiro time

delay difference for a given ∆γij. Combining this with an empirical model describing

other contributions to the measured time delays (noise) outlined in Section 2.3.2, we

calculate the likelihood function and constrain ∆γij and the parameters describing

the noise via a MCMC algorithm. The parameters which are fixed in this section are

summarised in Table 2.2.

2.4.2.1 Calculating the Shapiro time delay

As discussed in Section 2.4.1.2, the variance of the mean Shapiro time delay at a given

redshift across all possible universes diverges. We can rephrase our problem so that

this is not an issue. Let us decompose the gravitational time delay into two parts

tgrav (r) = t0 (r) + δtgrav (r) , (2.24)

where t0 (r) is the mean Shapiro time delay across all angles at a given r (i.e. the

monopole), and δtgrav gives the fluctuation about this. These fluctuations can be

decomposed into the sum of three terms

δtgrav (r) = δt(L)grav (r) + δt(R)
grav (r) + δt(S)grav (r) (2.25)

corresponding to the long wavelength (L; k < kmin), resolved (R; kmin ≤ k < kmax) and

short wavelength (S; k ≥ kmax) contributions respectively. The ‘resolved’ contribution

can be determined using the inferred matter fields from BORG .

To determine the resolution and box size required to accurately reconstruct the

time delay fluctuation, we compare the results of calculating the angular power spec-

trum with a finite resolution and box size to the continuous, infinite volume case. Ob-

viously the latter is impossible in practice, but we approximate this limit by choosing

a sufficiently small minimum (10−5Mpc−1) and large maximum (100Mpc−1) k. To

approximate the finite volume result, we consider a box length Lbox with Nbox grid

cells along each side, so we have minimum and maximum (non-zero) k of

kmin =
2π

Lbox

, kmax =
π (Nbox − 1)

Lbox

. (2.26)

Note that we do not include a factor of
√
3 in kmax as the sphere in k-space of radius

kmax does not fully fit inside the first Brillouin zone if this is included. To mimic using
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Table 2.2: Parameters used to constrain the Equivalence Principle-violating contribution to the time delay. Above the horizontal
line are the parameters used to forward model the time delay and below are the parameters passed to multinest in the MCMC
analysis. In the final column we give the value chosen for each parameter, although we show in Section 2.4.4 that our results
are unchanged for reasonable alternative values.

Parameter Description Value
Lbox / h

−1Mpc Side length of box used to reconstruct local density field. 4000
Nbox Number of grid points per side of box used to reconstruct local density field. 256
k0 / Mpc−1 Minimum wavenumber used to calculate long wavelength contribution. 10−5

ℓmax Maximum multipole used to compute time delay from angular power spectrum. 2000
Nside Resolution of HEALPix map used to calculate the monopole. 64
Nmon Number of redshifts between z = 0.1 and 2 used to calculate the monopole. 20
Nz,R Number of redshift points used to calculate the second term in Equation 2.29. 512
Nz,L Number of redshift points used to calculate long-wavelength time delay contributions. 1024
Nk,L Number of wavenumber points used to calculate unconstrained time delay contributions. 512
NMC Number of Monte Carlo runs to get the distribution of time delays for the template 103

signal for a given density field.
Nbin Number of redshift bins to determine redshift evolution of noise model. 5
NB Number of density field reconstructions sampled from the BORG chain. 18
n live points Number of live points used in multinest sampling. 800
importance nested sampling Whether to use importance nested sampling with multinest. True
multimodal Whether to allow mode separation in multinest. True
evidence tolerance Evidence tolerance for multinest. 0.5
sampling efficiency Sampling efficiency for multinest. 0.8
const efficiency mode Whether to use constant efficiency mode in multinest. False
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this box, we top-hat filter the potential power spectrum, allowing modes between kmin

and kmax. We calculate two quantities: (i) the Cℓ’s themselves, and (ii) the RMS

fluctuation in the time delay using Equation 2.20, where we find ℓmax = 2000 to be

more than sufficient (halving this to ℓmax = 1000 does not change the final result).

In Figure 2.2 we compute the Cℓ’s for a source at redshift z = 0.10 using the

Core Cosmology Library [180]. We compare the results from the continuous case

with the SDSS-III/BOSS (Lbox = 4000h−1Mpc, Nbox = 256) and 2M++ (Lbox =

677.7h−1Mpc, Nbox = 256) reconstructions. We note that the maximum distance a

source can be from the observer in the latter two cases is Lbox

√
3/2, which is 5.17Gpc

for the SDSS-III/BOSS and 876Mpc for the 2M++ reconstruction, corresponding to

redshifts of 1.9 and 0.21 respectively. Thus our test source at z = 0.10 is within both

boxes.

The continuous case gives the same result as SDSS-III/BOSS to ∼ 4 parts in 105

as the Cℓ’s only disagree at ℓ≫ 1 while the result is dominated by low ℓ. The lack of

power at low k results in the 2M++ box underestimating the low ℓ contribution, and

thus the RMS time delay. The points of disagreement are as expected, since for this

redshift, using the Limber approximation [181] ℓ ∼ kr, we find that kmin and kmax

correspond to multipoles

ℓ
SDSS−III/BOSS
min ∼ 0.46, ℓSDSS−III/BOSS

max ∼ 59 (2.27)

ℓ2M++
min ∼ 2.7, ℓ2M++

max ∼ 346, (2.28)

which is approximately where we see the results diverging from the continuous case.

Since the total time delay is dominated by low ℓ, we conclude that a large box

size is far more important than a fine resolution, justifying our choice of the SDSS-

III/BOSS over 2M++ reconstruction. For simplicity, we will henceforth refer to the

SDSS-III/BOSS BORG reconstruction simply as ‘BORG ’.

Nonetheless, for sources at higher redshift, the density field not contained within

the inferred volume contributes significantly to the gravitational time delay. For

sources outside of the BORG volume, Equation 2.17 can be split into a contribution

from the observer to the edge of the box, rb, and then from rb to the source:

tgrav = −
∫ rb

0

dr δϕ0(r)D(r)−
∫ rs

rb

dr δϕ0(r)D(r). (2.29)

When we compute the first term (or Equation 2.17 for sources inside the box) we do

not have a fluctuation, since the mean time delay at the upper limit of the integral
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is not zero. We therefore must find and subtract this mean. We do this by comput-

ing the time delays on HEALPix1 [182, 183] maps with Nside = 64 at Nmon = 20

logarithmically-spaced redshifts between z = 0.1 and z = 2. We then compute the

monopoles of these maps with healpy. To determine the monopole at some inter-

mediate redshift we linearly interpolate between the sampled redshifts.

The ensemble mean of the resulting time delay fluctuation map is plotted in

Figure 2.3. One can see that the typical fluctuation from the resolved contribution

is larger than ∼ 1011 s and thus, given that the measured time delays are typically

O(0.1 s), one would expect |∆γij| to be smaller than ∼ 10−12.

If the source is outside the volume, we now add an unconstrained contribution to

the fluctuation (but not the monopole) drawn from a Gaussian with a width given

by Equation 2.20, but only using k modes accessible to BORG (Equation 2.26) and

integrating between rb and rs using Nz,R = 512 intermediate points. This corresponds

to fluctuations due to the second term in Equation 2.29. We find ℓmax = 2000 to be

sufficient for this calculation.

To marginalise over the uncertainties in the pseudo-redshifts, angular position and

unconstrained regions, we use simulation-based Bayesian forward modelling to create

predictions from the statistical models. In particular, for a given density field from

the converged part of the BORG MCMC chain, we take NMC = 103 Monte Carlo draws

from the input distributions to build the likelihood. For each iteration, we draw an

angular location from Gaussian distributions characterised by the positional uncer-

tainty given in [153] and a redshift from a two-sided Gaussian using the upper and

lower uncertainties determined by [155]. The time delay for a source at this position

is then calculated for this density field. From Equation 2.7, we see that the gravita-

tional contribution to the time delay between any two frequencies is proportional to

∆γij. We therefore only need to run this Monte Carlo procedure once per source to

construct a template signal with ∆γij = 1 since this can be trivially reintroduced as

a scaling factor later.

2.4.2.2 Monte Carlo modelling

Now that we have NMC samples per source and per BORG density field of our proba-

bilistic model for δt
(R)
grav, we must convert these samples into a distribution to use in

our likelihood analysis.

1http://healpix.sf.net
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Figure 2.2: The predicted Shapiro time delay fluctuation angular power spectrum for
a source at z = 0.10 calculated with the Core Cosmology Library. For the SDSS-
III/BOSS and 2M++ calculations, we only include k modes within the range sampled
in the simulated volume due to the finite box length and resolution. The right hand
panel shows the fractional difference between these and the continuous case. Using
SDSS-III/BOSS gives practically the same result for the time delay as the continuous
case, whereas 2M++ underestimates this by ∼ 32 per cent. The result is driven by
the smallest ℓ, making large box size far more important than high spatial resolution.
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Figure 2.3: Mollweide projection in equatorial coordinates of the ensemble mean of
the time delay fluctuations at z = 0.1 from resolved wavelengths. The typical scale
is ∼ 1011 s which, since the majority of observed time delays are O(0.1 s), indicates
that constraints at least as tight as |∆γij| ≲ 10−12 should be possible.
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We model the samples as a GMM [170], where the likelihood function for some

source s and BORG density field b is

Lsb

(
δt(R)

grav|∆γij = 1
)
=
∑

α

w
(α)
sb√

2πτ
(α)
sb

exp


−

(
δt

(R)
grav − λ

(α)
sb

)2

2τ
(α)
sb

2


 , (2.30)

where ∑

α

w
(α)
sb = 1, w

(α)
sb ≥ 0, (2.31)

and the sum runs over the Gaussians. The number of Gaussians is chosen to minimise

the BIC (Equation 1.43). Independent Gaussians are obtained for each source and

BORG density field. To account for a different ∆γij, we must transform the means and

widths of the Gaussians in the GMM as

λ̃
(α)
sbij = ∆γijλ

(α)
sb , τ̃

(α)
sbij = |∆γij| τ (α)sb . (2.32)

2.4.2.3 Adding larger scale modes

Thus far we have only calculated the ‘resolved’ contribution to the Shapiro time delay

fluctuations. Since the large-k contributions are negligible, we do not consider these

further. To incorporate the long wavelength modes, we evaluate Equation 2.20 for

each source, where we integrate between k0 = 10−5Mpc−1 and kmin (Equation 2.26)

using Nk,L = 512 intermediate points. We integrate up to the three-sigma redshift in

the pseduo-redshift distribution with Nz,L = 1024 points and again use ℓmax = 2000.

For source s this gives the width of the distribution of long-wavelength contributions,

ξs, which we assume to be Gaussian distributed since the density should also be Gaus-

sian distributed on large scales. We must convolve this long-wavelength distribution

with our GMM to get the total likelihood of δtgrav,

Lsb (δtgrav) =
∑

α

w
(α)
sb√

2π
(
τ̃
(α)
sbij

2 + ξ̃2sij

) exp


−

(
δtgrav − λ̃

(α)
sb

)2

2
(
τ̃
(α)
sbij

2 + ξ̃2sij

)


 , (2.33)

where

ξ̃sij ≡ |∆γij| ξs. (2.34)
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2.4.3 Results

In Figure 2.4 we plot the BIC as a function of the number of Gaussian components

in the noise model, NG, where we set the number of model parameters equal to the

BMD (Equation 1.47). We find that the change in BIC is large when we use non-

optimal NG, indicating that the best NG is unambiguous. The same trend is found

when we fix ∆γij = 0 (i.e. fit the observations with just the noise model). For

NG = 5, we find that the weight of the lowest-weighted Gaussian, ω
(4)
ij , is extremely

small: ω
(4)
ij < 0.03 at 68% confidence for all frequency pairs. It is unsurprising then

that the BIC increases for this case, since we are adding three new but negligible

parameters to the noise model. Similar results are found if we compare models using

the Bayes factor; the only discrepancy is for (i, j) = (4, 2) where the BIC prefers

NG = 3 whereas the Bayes factor suggests that NG = 4 is optimal. The constraints

are similar for both models.

For the optimal NG we plot the marginalised one-dimensional posteriors of ∆γij

in Figure 2.5, and in Figure 2.6 we show the corner plot for the time delay pair with

the weakest constraints on ∆γij. Since the unconstrained large scale contribution

is modelled as a Gaussian of zero mean and finite width, if such scales alone were

important then the one-dimensional posteriors would be symmetric about ∆γij = 0.

That this is not true for all frequency pairs shows that our constraints on the density

field are relevant.

For all time delay pairs we find ∆γij to be consistent with zero. The 1σ constraints

(defined to be half the difference between the 84th and 16th percentile) are tabulated

in Table 2.3. The tabulated results use the best-fit NG; however, we find that these

change by no more than 25% across the range NG = 3− 5.

We find that our weakest constraint is for the time delay between the highest

and lowest energy channels ((i, j) = (4, 1)), where we find ∆γ41 < 2.1 × 10−15 at 1σ

confidence. This is unsurprising because each pulse of a GRB’s lightcurve is known to

peak first at higher energy due to spectral evolution [184–187], although the reasons

for this are not fully understood [156–162]. This results in the majority of observed

time delays obeying ∆tij > 0 for i > j, so one expects the largest time delay for this

pair and hence the weakest constraint.

Given the form of our noise model, if ∆γij = 0 then one expects {µ̃(0)
ij } to be

redshift independent. We check this in Figure 2.7 and indeed find that for all pairs

any variation in {µ̃(0)
ij } is comparable to its uncertainty, indicating that our assump-

tion is reasonable. Furthermore, the time delay pair giving the weakest constraint
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Figure 2.4: Noise model comparison, including the Equivalence Principle-violating
term, using (a) the BIC (Equation 1.43) with the number of parameters of our model
equal to the BMD (Equation 1.47), and (b) the Bayes factor (Equation 1.42). The
best-fitting model should minimise the BIC and maximise the Bayes factor. For i < 4
we see that NG = 4 is the optimal noise model using either statistic. Although the
Bayes factor prefers NG = 4 for (i, j) = (4, 2), we adopt NG = 3 for i = 4 since this
is favoured by the BIC, but find similar constraints on ∆γ42 for both NG = 3 and
NG = 4.
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Figure 2.5: Posteriors on ∆γij for the different time delay pairs, marginalised over the
noise parameters. These constraints use the noise models which minimise the BIC
(Equation 1.43).
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Figure 2.6: Constraints on ∆γij and the parameters describing other contributions
to the time delay for (i, j) = (4, 1). The ij indices have been suppressed for clarity
since all parameters are only for this pair. The contours show the 1 and 2σ confidence
intervals.

Table 2.3: The 1σ constraints on ∆γij for the different time delay pairs.

(i, j) Constraint on ∆γij × 1015

(2, 1) 0.68
(3, 1) 1.19
(3, 2) 0.62
(4, 1) 2.13
(4, 2) 1.72
(4, 3) 0.92
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Figure 2.7: Evolution of the means of the highest-weighted Gaussian in the noise
model, µ̃

(0)
ij , with redshift, where it is assumed that all sources in the same redshift bin

have the same µ̃
(0)
ij . Any variation with redshift is comparable to the uncertainty on

µ̃
(0)
ij , as one would expect for a redshift-independent intrinsic time delay contribution,

since ∆γij is consistent with zero.

((i, j) = (4, 1)) has noise parameters most suggestive of redshift evolution, as would

be expected.

2.4.4 Discussion

2.4.4.1 Systematic uncertainties

Our probabilistic forward model is designed to propagate uncertainties in the source

localisation and density field reconstruction, which we marginalise over via a MCMC

algorithm. We use NMC = 103 Monte Carlo samples per source and per BORG density

field to estimate the likelihood, but we also check that this is sufficiently large to

fully sample the distributions we wish to marginalise over. Running the inference

using NMC = 500 yields identical constraints on ∆γij and the noise parameters as the

fiducial case of NMC = 103, indicating that the number of samples is adequate.

In order to measure the fluctuations in the Shapiro time delay using BORG , we

had to subtract the monopole at a given redshift. This involved sampling Nmon = 20

logarithmically spaced redshifts, where for each redshift we computed the monopole

using a Nside = 64 HEALPix map. In Figure 2.8 we plot the ensemble mean of the

inferred monopole, t0, to subtract from the BORG contribution as a function of redshift,

z, and see that t0 is a smoothly varying function of z, indicating that Nmon = 20

should be sufficient. We find that if we were to use small values of Nside we would

calculate the wrong monopole at high redshift, but that the values quickly converge
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Figure 2.8: Evolution of the ensemble mean of the monopole of Shapiro time delays,
t0, with redshift, z, calculated using wavelengths resolved within the BORG box. Note
that the true monopole from all wavelengths cannot be predicted statistically (Sec-
tion 2.4.1.2). The monopole is found to vary smoothly with redshift, suggesting that
our interpolation procedure is reasonable. The ensemble mean is positive due to local
massive structures.

with increasing Nside. The maximum fractional difference between the calculated t0

at Nside = 32 and Nside = 64 is 3 × 10−3, indicating that our map’s resolution is

sufficient. Moreover, we run the inference again with Nside = 32 and Nmon = 10 and

find 1σ constraints on ∆γ41 of 2.1 × 10−15 and 2.0 × 10−15 respectively, suggesting

that our constraints are robust to these choices.

In Section 2.4.2.1, at each Monte Carlo iteration we drew a redshift from a two-

sided Gaussian. One may be concerned that this is not the correct distribution. To

test the effect of the redshift uncertainty, we repeat the analysis but fix the redshift

to the mean value; i.e., we assume zero redshift error. We find the constraints change

by ∼10% compared to our fiducial method, indicating that our constraints are not

dominated by redshift uncertainty, and thus that the exact redshift distribution is

not important.

Finally, to account for the monopole of the Shapiro time delay (which we are un-

able to predict or constrain by itself), we introduce a redshift dependence in our noise

model, binning our sources into Nbin = 5 linearly spaced redshift bins. Repeating the

inference with Nbin = 1 or Nbin = 10 changes our constraint to γ41 < 1.8 × 10−15

and γ41 < 2.5× 10−15 respectively. This is as one would expect; the constraint tight-

ens as we decrease the number of parameters in the noise model and weakens as

this increases. However this change is only 0.1 dex, indicating that our constraint is

relatively insensitive to the choice of Nbin.
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2.4.4.2 Comparison with the literature

The majority of previous attempts to constrain violations of the WEP via ∆γij with

GRBs [153, 188–191], FRBs [136, 147, 192–194], Supernovae [195, 196], Gravitational

Waves [132, 197–204], Blazar Flares [205–209], or Pulsars [210–213] have assumed

that the gravitational potential is dominated by the contribution from the Milky Way

and/or other massive objects such as the Laniakea supercluster. This has two major

shortcomings for distant sources: first, the gravitational potential in Equation 2.17

should be a fluctuation about the cosmological mean (and thus can take either sign,

unlike in the multiple-source approximation where it is strictly additive), and second,

the long range behaviour of the gravitational potential means that we cannot neglect

the large-scale distribution of mass [149–151]. These studies claim that only including

a few sources underestimates the Shapiro time delay, making the constraints obtained

conservative [102]. However, since the potential can take either sign, this reasoning

is incorrect. Furthermore, the modelling of other contributions to the time delay in

these studies are relatively simplistic compared to our analysis; for example, Yu et al.

[153] assume all noise can be modelled as a single Gaussian, which we have shown

to be a poor approximation. Not only have we considered more sophisticated noise

models but also we have demonstrated that our constraints are robust to the choice

of model.

As well as being more robust than previous work, our constraints are also stronger,

and are comparable to the forecasts of [179] for FRBs. The first attempts to include

the cosmological contribution to the time delays yielded constraints weaker than

∆γij < 10−13 [149, 214]. Using the same sources as us and the point-mass method-

ology, Yu et al. [153] find ∆γ41 < 1.3 × 10−13, which is a factor of ∼40 weaker than

our constraints. As a consistency check, we re-run our inference for (i, j) = (4, 1) but

(incorrectly) assume that the gravitational potential is dominated by the Laniakea

supercluster (of mass M = 1017M⊙, at a distance d = 79Mpc, with RA=10h32m and

Dec=-46◦00′) as is done by Yu et al. [153]. Also mimicking Yu et al. [153], we now

assume that the redshifts and angular positions of the sources have no uncertainty.

We find constraints of ∆γ41 < 1.1× 10−14, which are tighter than [153]. This is due

to our use of the optimal noise model with NG = 3; if we use NG = 1 then our con-

straint is ∆γ41 < 1.1× 10−13, similar to that of [153]. One might have expected that

increasing the number of Gaussian components describing the noise would weaken the

constraint, not strengthen them. We find that for NG = 1 the constraint is dominated

by the few sources with the largest time delays. This is because the WEP-violating

term must account for the wide tails in the measured time delays, upweighting larger

49



values of |∆γ|. When allowing NG > 1, the broader Gaussians capture the tails

instead, favouring smaller |∆γ|. This is preferable behaviour because the constraint

on ∆γ should come from the angular correlation of the measured time delays with

those predicted by BORG , rather than from the width of the measured time delay

distribution itself.

The long Shapiro time delays for extragalactic sources result in tight constraints on

∆γij; however, one can only measure the time delay differences and not the absolute

time delays; we constrain ∆γij and not γi. Therefore, although our constraints may

appear tighter than Solar System measurements from the Cassini spacecraft [144]

or Very Long Baseline Interferometry [215, 216] of γ − 1 = (2.1 ± 2.3) × 10−5 and

(−0.8± 1.2)× 10−4, respectively, these have the advantage of constraining the PPN

parameter itself and thus can differentiate between different theories that obey the

Equivalence Principle. Nonetheless, our constraints indicate that the Equivalence

Principle should be obeyed to within 2.1 × 10−15 for photons in the energy range

25− 325 keV.

2.4.4.3 Further applications

In this section we have used the BORG reconstruction of the SDSS-III/BOSS galaxy

compilation to predict the Shapiro time delay to GRBs. The mean pseudo-redshifts

of the sources compiled by Yu et al. [153] is ∼ 2, and thus we had to include uncon-

strained contributions to the calculation between the edge of the constrained volume

and the sources (Equation 2.29). This, coupled with the importance of long wave-

length modes (Section 2.4.2.1), suggests that our constraints could be improved by the

next generation of galaxy surveys, such as with Euclid [217] or the Rubin Observatory

[218], which will be sensitive up to z ∼ 2. To estimate the potential improvement, we

run the end-to-end inference assuming that we can accurately reconstruct the den-

sity field up to z = 1.26 and to twice this redshift by generating Gaussian Random

Fields. We find that the constraint improves by a factor of ∼ 30% with this extra in-

formation. By combining the SDSS-III/BOSS and 2M++ reconstructions one could

also reduce the uncertainty of the low-redshift part of the calculation, since 2M++

provides better constraints on the local density field.

We note that in this section we have used ∆γij as a phenomenological parameter

with which to quantify WEP violation of photons through Equation 2.17. This is

an arbitrary choice, and one could equally phrase equivalence principle violation as

a difference in e.g. the gravitational constant [219]. Theories that predict a non-null

signal in our test (e.g. massive photons) may have γ = 1 in the usual PPN sense.
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In these cases, and neglecting cosmological redshift for illustrative purposes, one

would equate ∆γij = ∆vij and thus for the above models our bound on ∆γ41 would

correspond to mγ ≲ 10−6 eV and EQG ≳ 1011GeV, if E1 = 25 keV and E4 = 325 keV.

For such models the geometric term dominates the time delay, so it is unsurprising

that these bounds are not stronger than those obtained in Section 2.3.

Strong lensing of distant objects smears their light into an Einstein ring. The paths

of photons observed across the ring trace out two cones that intersect at the lens plane.

The relative time delays of these photons therefore contain information not only on

the distribution of mass in the lens that sources a large part of the potential, but also

on the path length itself which the time delay is proportional to. This length is a

function of H0, enabling this fundamental cosmological parameter to be constrained

by measuring the time delays across the ring [145, 146]. As in this work, the modelling

is potentially sensitive to mass further away from the geodesics that the photons

follow than either the lens itself or the few additional massive objects modelled in

[145]. Provided one has sufficient spatial resolution to determine time delay differences

across the Einstein ring, by using the time delay maps from constrained density fields

one can test the validity of the external source assumptions.

Similarly, in GR photons and gravitational waves are predicted to follow the same

geodesics. Recently, by considering the effect of four massive halos along the line

of sight, it was shown [220] at > 5σ confidence that GW170817 [148] underwent

gravitational lensing. As with the case of measuring H0, one could use constrained

density fields to determine the impact of mass away from the line of sight when

computing the time delay.

In this chapter we have only considered the time delay differences between different

frequencies from a given source. The only cosmological regime in which the time delay

itself may be directly measurable is the CMB, where different delays between different

regions of the sky imply varying times of recombination, and correspondingly varying

temperature of the blackbody radiation [221]. Standard autocorrelation techniques

cannot currently detect such a delay; however, cross-correlation with other fields

appears to be a promising avenue [222]. We leave it to future work to determine

whether the large scale structure information from the BORG algorithm could afford a

detection of this phenomenon.
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2.5 Conclusions

In this chapter we have considered two theories in which the photon propagation

speed depends on energy: a quadratic correction due to nonzero photon mass, mγ,

and a QG scenario in which the photon speed depends linearly on energy, as is

expected in a wide range of models. By forward-modelling the expected time delays

of photons of different frequencies for a large sample of GRBs, we find constraints

on the photon mass of mγ < 4.0 × 10−5 h eV and on the QG length scale of |ℓQG| <
5.3× 10−18 h GeV−1 at 95% confidence. Our constraints on mγ are significantly less

stringent than those from radio observations, however they are much less sensitive to

the effects of dispersion by electrons, which has the same frequency dependence in

the dispersion relation as a massive photon.

We then constructed a source-by-source, Monte Carlo-based forward model for

the Shapiro time delay from GRBs detected by the BATSE satellite. Most previous

attempts to calculate the Shapiro delay in order to constrain EP violation through

∆γij have assumed that the gravitational potential is dominated by only a few local

sources and incorrectly argue that this produces conservative constraints. We worked

in a cosmological context by combining the constrained local density field determined

using the BORG algorithm with unconstrained, long-wavelength modes. Propagat-

ing uncertainties in the density field reconstruction via Monte Carlo sampling and

marginalising over an empirical model characterising other contributions to the time

delay, we derive constraints on ∆γij between the four energy channels, and for all

pairs find constraints at least as tight as ∆γij < 2.1× 10−15 at 1σ confidence. These

constraints are a factor∼30 times tighter than previous results that use a cosmological

model and ∼40 times tighter than if one neglects the cosmological contribution.

A large number of previous attempts to constrain QG with the spectral lag of

GRBs assume a simple noise model in which the non-QG contribution to the time

delay is proportional to (1 + z) and is constant for all sources, even though Ellis

et al. [110] demonstrated that ignoring stochasticity dramatically changes the results.

Moreover, these studies often only use a small sample of GRBs (sometime only one),

but one requires a statistical sample to provide trustworthy constraints. Our con-

straints are among the tightest astrophysical constraints on QG which use multiple

sources (see Table 1 of [102]) and we have demonstrated that these are robust to how

one models other astrophysical and observational contributions to the spectral lag.

Our constraints are comparable to Ellis et al. [105], who use the irregularity, kurtosis

and skewness of GRBs instead of spectral lag to find EQG ≡ |ℓQG|−1 ≳ few×1017GeV.
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It is expected that detecting GRBs at >100 GeV should be routine in the future

[223]; with more, higher energy measurements one should begin to probe EQG near the

Planck energy, EP. Since one expects EQG ∼ EP, either a nonzero or null detection of

LI violation at these scales will significantly constrain which QG theories are allowed.

With very few other known tests of QG, it is therefore important that future work

should develop more theoretically motivated noise models for GRB spectral lag than

we have used here to ensure that any detection or rejection of new physics is not due

to incorrect modelling of the astrophysical processes governing GRB emission.

Our modelling is applicable to alternative multi-messenger probes of the WEP,

although these may require different models for the other contributions to the time

delays. For example, for FRBs one would need accurate maps of the electron density of

the universe to forward model the contribution of scattering from the electron plasma,

which depends on the integrated electron density (and is thus direction dependent)

and scales as ν−2. Furthermore, cosmological calculations of the Shapiro time delay

can determine the accuracy of lens modelling when considering time delays across

the Einstein ring of a strongly lensed source or find use in the analysis of the CMB.

Identifying potential systematics in these probes of the Universe is vitally important,

especially in the context of the Hubble tension [224].
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Chapter 3

Spatially offset black holes in
ΛCDM

3.1 Introduction

Most galaxies are now known to harbour SMBHs near their centres. The strong

correlations between SMBH mass and galactic properties such as velocity dispersion

[225–227] and stellar and bulge mass [228, 229] show that they are far from passive

onlookers in their hosts’ evolution, but rather play a key role in shaping the galaxy

population.

The high bolometric luminosities of active galactic nuclei (AGN) are due to ac-

cretion of matter onto SMBHs. Tens of thousands of AGN have been discovered in

the central regions of galaxies, although the precise location of the black hole (BH)

need not be coincident with the galactic centre. Upon the merger of two galaxies a

BH binary may form near the centre of the merged system, which can coalesce due to

stellar and gaseous interactions [230]. Gravitational wave emission upon coalescence

can, by linear momentum conservation, cause the centre of mass to recoil [231, 232],

thus resulting in a BH offset from the galactic centre. It should be possible to observe

the coalescence of these binaries in the early Universe with the Laser Interferometer

Space Antenna (LISA) [233]. Other processes can result in this phenomenon such as

three-body interactions between BHs if there are two successive mergers [234, 235], or

subhalo accretion, which transfers energy to the BH by dynamical friction, resulting

in offsets of tens of parsecs [236]. A population of offset and wandering BHs [237] is

therefore expected.

The same three-body interactions that can physically eject BHs from galaxies can

result in numerical artefacts in cosmological simulations through numerical heating

of BH particles [238]. This is especially prevalent when the BH and DM particles
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have similar masses. Many simulations implement expedient but unphysical schemes

to alleviate this problem, such as ‘teleporting’ the BH back to the local potential

minimum at each time step. This is not the case however in the Horizon-AGN (H-

AGN) simulation, which uses a more physically motivated model – dynamical friction

between the BH and surrounding gas – to impose a drag force on recoiling BHs

[239, 240]. By studying the properties of offset BHs in this simulation, we develop

both a physical picture of the evolution of individual systems and a statistical sense

of the behaviour of the entire population. This will enable us to assess the efficacy of

the dynamical friction model.

Knowledge of the location of central BHs is essential for models of galaxy forma-

tion. The number of wandering BHs depends on the degree of dissipation in galaxy

mergers, which in turn determines the BHs’ evolution through, and hence scatter

around, the MBH − σ relation [241]. The lower gas densities around an off-centre BH

restricts BH accretion, which could result in a lower mass BH than one constrained to

reside at the centre [242]. The lower accretion rate would quench BH feedback, and

hence reduce the impact on the surrounding gas, stars and DM. This is particularly

important in attempts to resolve small-scale problems in ΛCDM such as the core-cusp

problem through BH feedback [236, 243]. The location of SMBHs is also important

to the study of DM microphysics: self-interacting dark matter (SIDM) [244, 245], for

example, lowers central DM densities in halos and hence lengthens dynamical friction

timescales and increases the fraction of off-centre BHs [246]. SIDM also suppresses

BH growth and feedback, allowing higher star formation rates in ΛSIDM galaxies

than their ΛCDM counterparts [247].

The structure of this chapter is as follows. In section 3.2 we introduce the H-AGN

simulation, and in section 3.3 we summarise the observational datasets against which

we will compare the simulation results. We outline the methods used to make this

comparison in section 3.4 and present the results in section 3.5. These are discussed

in section 3.6 and our conclusions are given in section 3.7.

3.2 Horizon-AGN

H-AGN1 [239] is a large-volume cosmological hydrodynamical simulation, run with the

Adaptive Mesh Refinement code, ramses [95]. The adopted standard ΛCDM cosmol-

ogy is compatible with a WMAP-7 cosmology [248] and thus has total matter density

Ωm = 0.272, dark energy density ΩΛ = 0.728, amplitude of the matter power spectrum

1http://www.horizon-simulation.org/about.html
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σ8 = 0.81, baryon density Ωb = 0.045, Hubble constant H0 = 70.4 km s−1Mpc−1, and

power-spectrum slope ns = 0.967. Throughout this chapter we use WMAP-7 parame-

ters, to remain consistent with H-AGN. The size of the box is Lbox = 100h−1Mpc and

contains 10243 DM particles, resulting in a DM mass resolution ofMDM = 8×107M⊙.

The simulation incorporates prescriptions for background UV heating, gas cooling

(including the contribution from metals released by stellar feedback) and feedback

from stellar winds and type Ia and type II supernovae assuming a Salpeter initial

mass function (IMF) [249, 250]. Star formation follows a Schmidt law with a 1 per

cent efficiency [251] and a star formation density threshold of n0 = 0.1H cm−3.

A cell is refined up to an effective physical resolution of ∆x = 1kpc, with a new

refinement level added if the mass in a cell is more than 8 times that of the initial

mass resolution. The force softening scale is ∼ 2 kpc.

3.2.1 Black hole formation, growth and feedback on ambient
gas

If the combined gas and stellar density exceeds the threshold for star formation in

a cell and if the stellar velocity dispersion within that cell surpasses 100 km s−1, a

BH is created with an initial seed mass of 105M⊙. A BH cannot form if this occurs

within 50 comoving kpc of another BH, preventing many BHs from forming in the

same galaxy. BHs grow through mergers and accretion, with the accretion rate given

by the Bondi-Hoyle-Littleton rate multiplied by a dimensionless boost factor [252]

α =

{
(ρgas/ρ0)

2 if ρgas > ρ0

1 otherwise,
(3.1)

for gas density ρgas, and is capped at the Eddington rate with an assumed radiative

efficiency of ϵr = 0.1 for the Shakura and Sunyaev [253] accretion onto a Schwarzschild

BH. ρ0 is the mass density of hydrogen if its number density is n0 = 0.1H cm−3. This

boost factor accounts for the inability to model the colder and higher density regions

of the interstellar medium.

The AGN feedback is a combination of two different modes: the ‘radio mode’ for

χ < 0.01 and the ‘quasar mode’ otherwise, where

χ =
ṀBH

ṀEdd

, (3.2)

for BH and Eddington accretion rates ṀBH and ṀEdd respectively. The quasar mode

isotropically ejects thermal energy with deposition rate ĖAGN = ϵfϵrṀBHc
2 into the
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gas within a sphere of radius ∆x. The efficiency ϵf is taken to be 0.15 as this re-

produces the correlations between BHs and galaxies and the BH density in our local

Universe [see 254]. In contrast, the radio mode releases the feedback energy into a

bipolar, cylindrical outflow with height 2∆x and radius ∆x as in Omma et al. [255].

The jet velocity is 104 km s−1 and the radio mode has an increased efficiency, with

ϵf = 1.3. Note that ‘radio mode’ does not necessarily mean ‘radio loud’. For a de-

tailed analysis of how the H-AGN simulation compares to observational radio data

see Slyz et al. [256].

Due to the finite resolution of the simulation, for the rest of the chapter we ignore

BHs with masses MB < 2× 107M⊙ [see 240].

3.2.2 Dynamical friction

Simulating the dynamical friction, which ensures the BH’s trajectory decays towards

the centre of the galaxy [257, 258], is notoriously challenging for cosmological simu-

lations because the gas cannot be tracked all the way down to the BH [259]. Some

simulations [260–262] therefore anchor the BH to the centre of their DM halos. Offset

BHs might not efficiently accrete since high density gas tends to be centrally located

[263], so the feedback of such BHs is quenched [236]. Consequently, pinning the BH

to the halo centre can result in unrealistic BH and galactic evolution.

Artificial advection schemes exist to overcome this, but these are not without their

drawbacks [see 242]. It is necessary to introduce a sub-grid model for the dynamical

friction induced by the gas surrounding the BH. In H-AGN dynamical friction is

modelled as

FDF = fgas4παρgas

(
GMBH

c̄s

)2

, (3.3)

where c̄s is the average sound speed and the coefficient fgas ∈ [0, 2] is a function

of the Mach number M = ū/c̄s < 1 [264, 265], where ū is the average velocity of

the gas relative to the BH. The average density and sound speed around the BH

are computed using kernel weighting of neighbouring cell values, whereas the average

relative velocity is set to a constant value typical of gas velocity dispersion in the

ISM, ū = umax = 10 km s−1, as described in Dubois et al. [254].

3.2.3 Assigning black holes to galaxies

Since the BHs are not labelled by their host halo number in the simulation, we must

do this in post-processing. In this section we outline how this is achieved. Halos

and galaxies are identified using the adaptaHOP structure finder [266, 267] applied
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to DM and star particles, respectively. In both cases, we need a minimum of 50

particles and the smoothed density field, calculated using the 20 nearest neighbours,

must exceed 178 times the mean total matter density [268]. The centre is taken as

the position of the densest particle, after a shrinking sphere approach is used [269].

Therefore the halo centre is defined to be the position of the densest DM particle,

and the galactic centre is at the location of the densest star particle.

We look for galaxies within 10 per cent of the virial radius, rvir, of a DM halo

and match the most massive unassigned galaxy to that halo [270] to produce a

galaxy+halo structure. We consider each halo in turn, moving from the most to

least massive. A BH is assigned to a galaxy+halo structure if it is within twice the

effective radius, reff , of the galaxy and 10 per cent of rvir of the halo. At this point,

some of the galaxy+halo structures contain multiple BHs, since the galaxies contain

up to 59 BHs within 2reff of their centres. To decide which is the central BH, we can

make one of several choices

1. Select the most massive BH [as in 240].

2. Ignore any BH with L < Lcut, where L = ϵrṀBHc
2 and Lcut is some cut-off

luminosity to be decided. Select the BH from the remaining candidates that

is closest to the centre of the galaxy. This is inspired by Volonteri et al. [240],

who find that higher luminosity BHs tend to reside closer to galaxies’ centres,

so we expect this cut to preferentially choose BHs near the centre.

3. Simply select the BH closest to the centre of the galaxy.

In each case we work hierarchically through the halos, going from the most to least

massive. Once a BH has been assigned to a galaxy+halo structure, it is removed from

the list of available BHs.

We can now calculate the distance between the centre of the galaxy and its central

BH, rGB, using the three dimensional information. We can also project the offsets

onto the plane of the sky according to an observer at the centre of the simulation

volume, to determine the two-dimensional offset that would be observed.

We start by investigating the effects of the various selection procedures since

conclusions made about the offset population are sensitive to the way we assign BHs

to galaxies. For the remainder of this section, we use the z = 0.1 output for H-AGN

and consider the three-dimensional offsets.

To decide what to use as Lcut, in Figure 3.1 we plot the BH luminosity distribution.

Since we are interested in the high-luminosity region, as we expect high-luminosity

58



36 38 40 42 44 46
log10(L / erg s 1)

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Radio Mode
Quasar Mode

Figure 3.1: Distribution of the luminosity, L, of BHs in H-AGN at z = 0.1 with
masses M > 2 × 107M⊙. The distribution is bimodal with peaks at L ∼ 1038 and
1043 erg s−1. BHs only operate in the quasar mode at very high luminosity and are
greatly outnumbered by those in the radio mode.

BHs to reside near the centre [240], we perform two cuts near the peaks of the bimodal

distribution, at Lcut = 1038 and 1043 erg s−1.

In Figure 3.2 we plot the halo-galaxy, rHG, and BH-galaxy, rGB, distances in terms

of reff with and without a luminosity cut. It is clear that for Lcut = 1043 erg s−1, we

preferentially select BHs closer to the centre of the galaxy than without this cut. In

particular, rGB < reff for most BHs and the sharp cut-off observed at rGB = 2reff

is less visible with this luminosity cut. We also see in Figure 3.2 that if we assign

the most massive BH as the central one, the distribution is almost identical to if we

selected the closest BH without a luminosity cut. 99.3 per cent of galaxies which

have a central BH using the ‘closest’ method have the same central BH in the ‘most

massive’ method. If use Lcut = 1038 erg s−1, the distribution is almost identical to

those without a luminosity cut.

It may seem paradoxical that the ‘closest’ method without a luminosity cut is

more likely to select BHs that are further out than when we impose a non-zero Lcut

(which does the same thing, however only after removing low-luminosity BHs) and

is comparable to the ‘mass’ method, which only uses BH mass. The reason is to do

with which galaxies are retained in the sample. With the ‘closest’ method all galaxies

with BHs are retained, while the ‘Lcut’ method only keeps galaxies with particularly

luminous BHs. Since more luminous BHs tend to lie closer to their host galaxies’

centres, the Lcut method preferentially selects galaxies with small offsets. While the

‘closest’ method will select the same BH in those galaxies (or one even closer to the

centre), for the remaining galaxies with less luminous BHs the offsets are larger.

We therefore see that simply using the selection criteria of [240] produces a large

tail of low luminosity BHs in the galaxy-BH offset distribution and that a cut is
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Figure 3.2: Distribution of halo-galaxy, rHG, and galaxy-BH, rGB, offsets in H-AGN
at z = 0.1 as a multiple of the galaxy’s effective radius, reff , for systems obeying one
of three selection cuts. In one case we select the most massive BH and in the other
cases we select the BH closest to the galactic centre. For the case with a luminosity
cut, Lcut, we reject all BHs with luminosity L < Lcut before making the assignment.
The galactic and halo centres are always close, whereas we can have very different
offset BHs if we do not introduce a sufficiently stringent luminosity cut. The values
of the halo-BH offsets, rHB, are very similar to rGB and are thus not plotted. There is
little difference between choosing the most massive or closest BH as the central BH.

necessary to preferentially select the BHs near the centre of the galaxy. We use a

range of selection criteria in this work. Our quasar and radio mode samples (see

subsection 3.5.1) select the closest BH to the centre of the galaxy and impose cuts on

accretion efficiency and luminosity. We detail the selection cuts used to compare to

observational data in section 3.3.

3.3 Observational data & simulation selection cuts

Offset BHs have been observed through an array of techniques up to redshift ∼ 1.5.

In Figure 3.3 we plot the BH displacement with respect to the centre of the host

galaxy (e.g. the brightest part of the optical emission) projected onto the plane

of the sky as a function of redshift for a number of observational samples. In this

section we describe the various datasets and the region of the rGB − z plane they

are sensitive too, and these are summarised in Table 3.2. Where appropriate, we

also detail the selection cuts made to the H-AGN sample in order to mimic those

observations, as summarised in Table 3.1. We find that our AGN cut, where we only

select BHs with χ > 0.01, makes the samples almost identical, with each containing

60



10 3 10 2 10 1 100

Redshift

10 4

10 3

10 2

10 1

100

101

102

r G
B

/k
pc

K16
S19
B00
OF13
L14

O16
B16
SB18
B19
R20

B08
C10
B10
J10
M14

M16
C17
K17
SB20

Figure 3.3: Offset as a function of redshift for various observational datasets. The
shaded regions indicate the approximate the regions each dataset is sensitive to,
based on resolution and cuts made to the data. The OF13, SB18 and B19 data
only show upper errorbars since the lower errorbars are of the same magnitude, but
the logarithmic y axis scale makes the plot confusing if the lower errors are also
included. The lower error bar for one of the SB20 points has also been omitted as
the offset is consistent with zero and this cannot be displayed with a logarithmic y
scale. The S19 region does not contain any points here, although in reality there are
8210 measurements (not publicly available). Black points correspond to studies of
only one or two systems.

≤ 533 systems. The remaining cuts for specific samples remove up to an additional

few tens of systems.

We note that offsets between the point identified as the BH and the galactic

centre could be ‘true’, where systems with large true offsets are likely to be mergers

[271]. However, misassociation, extended sources, double or lensed quasars, statistical

outliers due to an extended tail [272], or the presence of a jet [273, 274] could also

be responsible. Even smooth elliptical dust lanes could produce an apparent offset.

Any values of the observed fraction of offset BHs should therefore be considered as

upper limits for the intrinsic offset fraction, and this necessitates statistical methods

to disentangle true vs merely apparent offsets.

3.3.1 Binggeli et al. 2000 (B00)

Binggeli et al. [275] investigated a sample of 78 ‘nucleated’ dwarf galaxies (dE,N)

in the Virgo cluster using a previous photometric study [276, 277]. They compare

the position of the nucleus (brightest pixel) to the optical centre of the galaxy. The

observed relation between the nuclear magnitude and ellipticity is predicted to be due
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Table 3.1: Selection criteria of the observational datasets that we use. We apply
these also to H-AGN to allow a fairer comparison. LR and LX are the minimum
allowed radio and X-ray luminosities, respectively.

Minimum luminosity / erg s−1

AGN cut LR (5GHz) LR (8.46GHz) LX

OF13 ✓
L14 ✓ 1.0× 1036

O16 ✓
B16 ✓ 1.0× 1042

SB18 ✓ 1.4× 1038

B19 ✓ 1.0× 1042

R20 ✓
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Table 3.2: Summary of observational datasets used in this work. The number of objects may be smaller than given in the
reference due to additional selection cuts made here. The resolutions are approximate, and are a combination of quoted, mean
and fitted values. We provide the astrometric precision in the source plane for the SB20 sample, hence the small value. We do
not give a resolution for S19, since these data are upper limits in the range ∼ 5− 20 kpc, nor for K16, since these are velocity
offsets that are only approximately converted to physical offsets. The final columns indicates the wavelength used to determine
the position of the BH.

Name Reference Objects Resolution (′′) Redshift BH Position
B00 Binggeli et al. [275] 78 0.42 z ∼ 5× 10−3 Optical
OF13 Orosz and Frey [278] 233 0.05 0.01 < z < 0.85 Radio
L14 Lena et al. [279] 14 0.01 z < 0.02 Optical
K16 Kim et al. [280] 26 - z < 0.25 Hα (Broad)
O16 Orosz et al. [281] 1327 0.07 z < 1 Radio
B16 Barrows et al. [271] 48 0.06 z < 0.2 X-ray
SB18 Skipper and Browne [282] 345 0.06 z < 0.2 Radio
B19 Barrows et al. [283] 254 0.18 z < 0.58 X-ray
S19 Shen et al. [284] 8210 - 0.3 < z < 0.8 Optical
R20 Reines et al. [285] 13 0.25 z < 0.055 Radio
SB20 Spingola and Barnacka [286] 2 5× 10−6 z ∼ 1.4 Radio
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to a central massive compact object (i.e. a BH). Objects in their sample are required

to have an apparent B -band magnitude brighter than 18mag and those which have

bright stars near the centre are removed. The lower limit in Figure 3.3 is set by the

typical standard deviation of mean off-centre distance of 0.′′1 and the upper limit is

the maximum offset in the sample.

Since Binggeli et al. do not directly determine whether a BH resides in their

nucleus, and there are no obvious selection cuts on BH luminosity, mass or accretion

rate based on these observations, we do not produce a H-AGN sample designed to

mimic these data.

3.3.2 Orosz & Frey 2013 (OF13)

Orosz and Frey [278] find the optical counterparts of 1297 radio sources from the

International Celestial Reference Frame (ICRF2) in SDSS DR9 [287], of which 233

are classified by SDSS DR9 as extended (i.e. galaxy-AGN offsets) and the remainder

are spatially unresolved and therefore appear as point-like quasars. The AGN position

is determined from ICRF2 due to its superior astrometric precision as these are Very

Long Baseline Interferometry (VLBI) observations, with the optical counterpart from

SDSS required to lie within 0.′′5, which is the upper limit in Figure 3.3. The sample

covers the redshift range 0.01 < z < 0.85. The cut-off in the published data of

3σ ∼ 0.′′17 sets the lower limit in Figure 3.3.

As we are only interested in galaxy-AGN offsets so we exclude the quasar-like

SDSS sources in this dataset. We also cut the H-AGN systems so that χ > 0.01.

3.3.3 Lena et al. 2014 (L14)

Lena et al. [279] analyse archival Hubble Space Telescope (HST ) images of 14 nearby

(d < 100Mpc) bright elliptical galaxies containing low luminosity AGN. The selected

galaxies were required to have an optically bright central point-like source and be

free of heavy nuclear obscuration or other photometric irregularities. The offset is

measured as the displacement between the photocentre (flux-weighted average of the

centres of elliptical isophotes) and the AGN point source, which is modelled as a

Gaussian. The lower limit of Figure 3.3 is set by the HST resolution and the upper

limit is due to the search region of 2 ′′.

Since the selection process requires a point-like AGN source, we only select quasar

mode BHs from the simulation (χ > 0.01) when mimicking this sample in H-AGN.

The minimum detected redshift from [279] is zmin = 3.0 × 10−3, which corresponds
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to a luminosity distance of dL = 13Mpc. Converting the minimum detected flux (at

5GHz) of Fν = 1mJy [288] to a luminosity gives

Lmin = 4πd2LFν = 2.0× 1026 erg s−1Hz−1. (3.4)

This must be converted to LR = νLν , thus we remove all systems from H-AGN with

LR (5GHz) < 2.0 × 1028 erg s−1Hz−1 × 5GHz = 1.0 × 1038 erg s−1. To calculate the

radio luminosity, we first calculate the X-ray luminosity, LX, from the bolometric

luminosity, L, using [289, 290]

L = 35.0LX. (3.5)

Utilising the best-fitting fundamental plane of BHs [291] we obtain the radio lumi-

nosity at 5GHz

log

(
LR (5GHz)

erg s−1

)
= ξRX log

(
LX

erg s−1

)
+ ξRM log

(
MBH

M⊙

)
+ bR, (3.6)

where ξRX = 0.60± 0.11, ξRM = 0.78+0.11
−0.09 and bR = 7.33+4.05

−4.07. It should be noted that

radio-loud and radio-quiet AGN obey different fundamental plane relations [292]. The

value of ξRX above is less than the values reported in Wang et al. [292] of 1.39 for

radio-loud and 0.85 for radio-quiet AGN. Our estimates of LR (5GHz) are therefore

smaller than if we used these alternative values of ξRX, and we thus reject more

systems here than in these alternative cases. We will find in Table 3.3 that rejecting

no systems based on luminosity (an extreme case of using larger ξRX) has little effect

on our results. Therefore, for simplicity we will apply the Merloni et al. relation for

both radio-quiet and radio-loud AGN as this is the most stringent cut.

3.3.4 Kim et al. 2016 (K16)

Kim et al. [280] looked for recoiling SMBHs from the z < 0.25 quasi-stellar objects in

SDSS DR7 by targeting objects with broad lines that are blueshifted relative to the

systemic velocity. They excluded those with highly asymmetric and widely separated

broad-line velocity profiles (disc emitters) or those with double-peak emission lines

(possible binary SMBHs). Performing a spectral decomposition of the Hα and Hβ

lines, their final sample of 26 have kinematic offsets in Hα of at least 69 km s−1 (the

instrument dispersion) and the Hα and Hβ velocities must agree within to 50 per

cent. Assuming an AGN age of τ = 10Myr [293], the recoil velocity, vrel, can be

converted to a physical offset as

rGB = vrelτ. (3.7)
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We include these offsets in Figure 3.3, with the upper and lower limits set by the fibre

radius and instrument dispersion respectively. We do not, however, use this data in

the rest of the analysis since the spatial offsets are only estimates and depend on

the chosen τ . It should be noted that the magnitude of the inferred offsets appear

consistent with the other data.

3.3.5 Orosz et al. 2016 (O16)

These data are currently unpublished, however were briefly presented by Orosz et al.

[281]. The procedure for obtaining the offsets is identical to OF13, however the

matching is between SDSS DR12 [294] and mJIVE-20 [295]. As before, we select

objects classified by SDSS as galaxies, so obtain 1327 objects out of a total 2066.

We note that the offset AGN candidates were not subject to follow-up observations

to exclude spurious sources (e.g. jets, lensing systems etc.). It is therefore possible

that this sample has a higher level of contamination than the other datasets. To

quantify this, a Monte Carlo procedure similar to Orosz and Frey [278] was performed

(Orosz private communication) to determine the probability of false identification.

The probability is twice as high in this sample than for OF13, although both are

∼ 0.1 per cent for a match radius of 500mas, which is what we adopt.

3.3.6 Barrows et al. 2016 (B16)

Barrows et al. [271] searched for X-ray AGN by cross-matching sources from SDSS

DR7 [296] with the z < 0.2 OSSY catalogue [297]. These sources were then cross-

correlated with Chandra [298] and only sources containing i - or z -band SDSS images

registered with Chandra were kept. Sources with dust lanes or multiple emission

peaks were removed, since these give false centroid positions. To reject stellar-mass

objects, they required the difference between the observed luminosity in the range

2−10 keV and that expected from star formation, to be > 3σ and exceed 1042 erg s−1.

Further, the hardness ratio must be HR > −0.1. This provides a sample of 48 type-

II AGN. The detection radius is less than 5 ′ from the observation aim point and

the AGN must be within 20 kpc of centre of galaxy, which gives the upper limit in

Figure 3.3. The lower limit is given by the Chandra resolution of 0.′′6. We only plot

the ‘offset sample’ and not the full parent sample.

To select H-AGN systems that are similar to these observations, we first cut on

X-ray luminosity, LX, such that LX > 1042 erg s−1, where we calculate LX using

Equation 3.5. We then choose the closest remaining BH to the centre of the galaxy
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to be the central BH. The hardness ratio cut is designed to select only AGN, so we

use the quasar mode criterion χ > 0.01.

3.3.7 Skipper & Browne 2018 (SB18)

Skipper and Browne [282] adopted a similar selection method to Barrows et al. for

radio AGN. They cross-matched sources from SDSS with the z < 0.2 OSSY catalogue

and compared2 this with the Cosmic Lens All-Sky Survey (CLASS) [299, 300] to find

sources within 10 ′′, giving the upper limit of offsets in Figure 3.3. CLASS is a radio

survey with the VLA and the images have an angular resolution of 200 − 250mas

at an observing frequency of 8.46GHz. We plot the lower limit as twice the size of

the point spread function (PSF) of SDSS as offsets smaller than this would unlikely

be resolved. Matches outside the visible bulge of the galaxy were removed and so

are galaxies in the starburst region of the BPT diagram [301], which compares the

flux ratios FO iiiλ5007/FHα and FN iiλ6583/FHα. Those known to be starburst galaxies

and those missing optical emission line data products in the OSSY database were also

removed. This results in a final sample of 345 radio selected systems.

To mimic this selection process, we start by selecting the closest BH to the centre

of each galaxy, as this is how they select their central BH. We do not impose a

minimum galaxy mass cut at this stage but keep our BH mass cut. We reject all

systems with χ ≤ 0.01. Finally, Skipper and Browne only select candidates from

the CLASS catalogue which have a flux density of at least 8mJy at 8.46GHz. We

must therefore select AGN that obey this criterion. We are not given the radio

luminosities of the BHs in H-AGN, so we do the following to make the correct cut.

From the X-ray luminosity, LX, (Equation 3.5), we find the radio luminosity at 5GHz

with Equation 3.6. The radio luminosity at 8.46GHz is

LR (8.46GHz) = LR (5GHz)
( ν

5GHz

)−αR

, (3.8)

for some spectral index αR. We choose αR = 0.4 as this corresponds to the crossover

between flat and steep spectra [291]. Since the cutoff for CLASS is given as a flux,

we wish to convert this to a minimum detectable luminosity. The minimum detected

redshift is zmin = 8.9 × 10−3, which corresponds to a luminosity distance of dL =

38Mpc. Converting the minimum detected flux of Fν = 8mJy to a luminosity gives

Lmin = 4πd2LFν = 1.4× 1028 erg s−1Hz−1. (3.9)

2http://www.jb.man.ac.uk/research/gravlens/class/class.html
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Converting to LR = νLν , we remove all systems from H-AGN with LR (8.46GHz) <

1.4× 1028 erg s−1Hz−1 × 8.46GHz = 1.2× 1038ergs−1.

The AGN cut reduces the number of systems to 533 and the luminosity cut, using

ξRX, ξRM and bR from subsection 3.3.3, further reduces this to 530. Note that if we

chose αR = 0 (i.e. a completely flat spectrum) then none of the 533 systems would

be removed. Further, if we use ξRX = 0.76, ξRM = 0.71 and bR = 1.31, as found by

Merloni et al. for flat-spectrum sources, we would not remove any system.

We also note that the flat radio spectra indicate that the emission from these

sources is likely to be beamed. Our assumption of isotropic emission would then

result in Lmin being over-predicted, making our luminosity cut too severe. As in sub-

section 3.3.3, we choose the most stringent selection cuts and again note that we will

find that our results would not change significantly if we did not make any luminosity

cuts. Therefore, for simplicity, we assume isotropic emission in the luminosity cut

and note than any anisotropy would not cause significant bias.

3.3.8 Barrows et al. 2019 (B19)

Barrows et al. [283] used an almost identical selection procedure to B16 in a search

for hyper-luminous X-ray sources by again comparing SDSS and Chandra data. In

the 2019 sample, the search radius is changed from within the 3′′ fibre to within

two Petrosian radii. Further, the latest sample imposes a much stricter cut on the

compactness of the source and the errors, specifically the X-ray source errors, are

estimated differently. Although some galaxies are common to this sample and B16

we plot them separately in Figure 3.3 as the offset may differ between the two. To

compare to H-AGN we make the same selection cuts as for B16.

3.3.9 Shen et al. 2019 (S19)

Shen et al. [284], using the technique of Vastrometry [302], were able to put upper

limits on the magnitude of the offsets from 8210 AGN in Gaia DR2 [303, 304]. This

technique utilises the astrometric jitter caused by stochastic variability of the AGN to

place upper limits on the BH displacement. Gaia cannot resolve separations ≲ 1 kpc

in the desired redshift range of 0.3 < z < 0.8, but this method enables upper limits

to be determined in the range ∼ 5 pc to ∼ 1 kpc, as indicated in Figure 3.3.

Since this method does not measure the projected off-nucleus distance, we do not

compare Shen et al.’s results directly to H-AGN, but we do note that they find that
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AGN are well centred at these redshifts, with 99, 90 and 40 per cent of AGN within

1 kpc, 500 pc and 100 pc respectively.

3.3.10 Reines et al. 2020 (R20)

Reines et al. [285] cross-correlated galaxies from the NASA-Sloan Atlas3 (z < 0.055)

with a sub-sample of dwarf galaxies from the Very Large Array (VLA) Faint Images

of the Radio Sky and Twenty-centimetres (FIRST) Survey [305], requiring a match

radius ≤ 5 ′′, which is approximately the resolution of the 1.4GHz radio observations.

This gives 186 matches, after enforcing a maximum stellar mass of M⋆ ≤ 3× 109M⊙
and absolute magnitude cuts of Mg,Mr > −20 to prevent spurious mass estimates.

Sources clearly not dwarf galaxies were removed and 111 objects were observed with

the VLA at higher frequencies (∼ 8 − 12GHz) and therefore higher resolution. The

match radius and the typical angular resolution of the VLA follow-up observations of

0.25 ′′ define the shaded region in Figure 3.3. Only those with > 3σ radio detections

were retained, and those with optical counterparts which appear to come from unre-

lated background point sources were removed. Finally, the VLA detections were used

to eliminate samples with emission from thermal H ii regions, individual supernova

remnants or young supernovae. This results in a sample of 13 compact radio sources,

which are almost certainly AGN.

The VLA analysis ensures that only AGN are selected, hence we cut the H-AGN

data such that χ > 0.01. The minimum mass of these galaxies is 6.5×109M⊙, which

is small compared to typical masses in H-AGN. Since this cut was only introduced to

ensure reasonable mass estimates we do not introduce a mass cut here. We explore

the impact of galaxy mass on the BH offsets in subsubsection 3.6.1.1.

3.3.11 Spingola & Barnacka 2020 (SB20)

Recent work by Spingola and Barnacka [286] demonstrates how to exploit the non-

linear magnification of gravitational lensing to access parsec scales at cosmological

redshifts when an AGN lies close to a caustic curve. Using VLBI radio observations,

they detected one object (z = 1.34) with optical and radio centres within ∼ 40pc of

each other, and another (z = 1.39) with a radio-optical offset of 214± 137 pc.

Currently this sample size is too small for comparison with H-AGN. Nonetheless,

the astrometric precision achieved is impressive. This methodology can be applied to

3http://www.nsatlas.org/documentation
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future optical and radio surveys of gravitational lensing systems, which will allow to

detect offset BHs at high redshifts.

3.3.12 Other observations

The remaining observations in Figure 3.3 are of single systems, hence we cannot make

statistical comparisons of these to H-AGN. We include them for visual comparison

with the other data, and summarise them here.

• B08 [306] is the offset Seyfert-2 nucleus in the system NGC 3341. This system

consists of three nuclei, but the optical emission lines suggest only one of these

harbours an AGN, however this is not the primary nucleus. Further optical,

radio and X-ray observations [307] support this conclusion.

• C10 [308] is one of the best studied offset AGN, CXOC J100043.1+020637

(CID-42), with optical, high resolution X-ray [309] and radio [310, 311] ob-

servations consistent with an AGN ejected from a separate compact region.

Simulations [312] also support this conclusion, as opposed to a dual-AGN sys-

tem. The offset used in Figure 3.3 is the measured displacement between the

two compact optical sources in the HST/ACS image.

• B10 [313] is the displaced SMBH in M87*. The offset is measured using archival

HST data, with the offset between the photocentre of the galaxy and AGN point

source.

• J10 [314] is the source CXO J122518.6+144545: an X-ray source from Chandra

offset from a galaxy from SDSS DR7. It is unknown whether the source is

a recoiling SMBH, bright ultra-luminous X-ray source with a bright optical

counterpart, or a very blue Type IIn supernova. A candidate optical counterpart

to the X-ray source is found in archival HST data.

• M14 [315] is an AGN in NGC 3115 observed to be off-centred from the pho-

tometric centre, using the Gemini Multi-Object Spectrograph mounted on the

Gemini-South telescope.

• M16 [316] is a Seyfert 2-like source offset from the central stellar cluster in

NGC 3621, observed using the Gemini Multi-Object Spectrograph. An X-ray

source found at the centre of the stellar cluster suggests this may not in fact be

an offset BH.

• C17 [317] is a SMBH in the cluster ZwCl 8193, which is offset from both the

brightest cluster galaxy (∼ 8.5 kpc) and its host galaxy, a small, optically faint

radio galaxy (∼ 0.1 kpc).
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• K17 [318] is the source CX0 J101527.2+625911, a recoiling or dual SMBH

discovered from the Chandra Source and SDSS Cross-Match Catalogue. No

X-ray source is observed at the galaxy centre, supporting the recoiling SMBH

hypothesis.

We note that many other catalogues are used to investigate of optical-radio offsets,

such as Gaia DR1 [319, 320] and DR2 [272, 321] combined with ICRF2, the Rio

catalogue [322] or the catalogue of Zacharias and Zacharias [323]. Although some

of the conclusions of these studies are similar to this work, the lack of photometry

means we cannot guarantee that these offsets are the same as are of interest here, so

we do not use them. In future work, we hope to be able to use upcoming Gaia data

releases, once photometric classifications are included, to expand our sample size.

3.4 Comparing Horizon-AGN with the data

In the previous section we described observational searches for offset AGN, which

should be interpreted as finding ‘candidate’ rather than necessarily ‘true’ offset sys-

tems. Despite this limitation, we believe it is important to study the exact nature

of any discrepancy between these and the simulations in order both to understand it

fully and to improve the simulations. However, due to H-AGN having a much coarser

spatial resolution than the observations, we cannot simply compare the magnitudes

of the offsets since the resolution makes the simulated values appear much larger.

Ideally, one would compare simulations of different resolutions and extrapolate the

results to predict the properties of a simulation with perfect resolution. Unfortu-

nately, we only have one simulation so must develop an alternative framework to

quantify the effect of resolution to allow us to compare the observed and simulated

offsets fairly. In this section we describe how we do this by determining the fraction

of BHs which are in the tails of the galaxy–BH offset distribution.

3.4.1 Accounting for finite resolution

Since the simulations and observations have a finite resolution, we need a prescription

to quantify the number of intrinsically offset BHs. Inspired by Skipper and Browne

[282], we bin the d-dimensional offsets and fit to this two components:

pd (r) = ad (r) + bd (r) . (3.10)
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pd(r) is the probability of an offset r (as described by the number of counts in the

corresponding histogram bin), ad(r) is the probability distribution function for appar-

ent offsets produced by the finite spatial resolution of the observation or simulation,

and bd(r) is the probability distribution function for intrinsic offsets. Assuming a

Gaussian distribution for each Cartesian component, ad takes the form

ad (r) = Ard−1 exp

(
− r2

2σ2

)
. (3.11)

Skipper and Browne give an explicit model for bd (r), however we do not need to

know this to find the fraction of BHs that are intrinsically offset. Instead we enforce

normalisation, ∫ ∞

0

bd (r) dr = 1−
∫ ∞

0

ad (r) dr, (3.12)

so that

Pd (offset) =

∫∞
0
bd (r) dr∫∞

0
(ad (r) + bd (r)) dr

= 1− 2d/2−1Γ

(
d

2

)
Aσd, (3.13)

where Γ(x) is the gamma function. We fit for A and σ in the region rGB < rcutoff , for

some cut-off offset rcutoff , with the expectation that σ ∼ 1 kpc, the approximate spatial

resolution of H-AGN. We find that the fitting parameters converge by rcutoff ∼ 3 kpc,

but reducing this to rcutoff ∼ 2 kpc does not significantly change the results. Choosing

rcutoff ≫ 3 kpc produces unrealistic fits, as this tries to make ad fit the tail too well,

to the detriment of the small r part of the distribution.

For each system, i, with d-dimensional offset ri, we can now define the probability

that the offset is intrinsic as

w (ri) =
bd (ri)

ad (ri) + bd (ri)
. (3.14)

Hence, we need to find the functional form of bd(r), since the normalisation condition

is no longer sufficient. Skipper and Browne [282] assume b2 (r) takes the form of a

decaying exponential. We would like to have a form for bd such that its marginal

distribution gives bd−1. It is not obvious how to do this for an exponential, although

the good fit obtained by Skipper and Browne shows that a functional form that de-

cays exponentially at large r is desirable. We choose a generalised symmetric Laplace

distribution [324, 325], since all marginal distributions of a multivariate Laplace dis-

tribution are also multivariate Laplace distributions.

Working in coordinates centred on the galactic centre, we assume that the mean

vector offset is zero. If we assume that the components of the displacements along
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each axis are independent and that there is no preferred direction, the generalised

symmetric Laplace distribution for a displacement r is

gd (r) =
21−d/2

Γ
(
d
2

) λ (λr)d/2K1−d/2 (λr) , (3.15)

with Kn the modified Bessel function of the 2nd kind.

Unfortunately, with the resolution of H-AGN, the peak of gd(r) occurs at a similar

value to the peak of ad(r) for appropriate fitting parameters if we assume bd ∝ gd.

This suppresses the contribution from the resolution to very low levels and pushes

σ < 1 kpc. In order to suppress bd at small rGB, we multiply gd by a sigmoid function

and thus arrive at

bd (r) = Brd/2K1−d/2 (λr)
1

1 + exp (−κ (r − ν))
. (3.16)

ν is an additional free parameter to be fitted, which we expect to be around 3 kpc

because this is where pd(r) starts to deviate from ad(r) (Figure 3.4). Although this

removes the property that bd−1 is the marginal of bd, we anticipate that future higher-

resolution simulations would not require the sigmoid function and thus this property

would be conserved.

In Figure 3.4 we demonstrate these fits for a highly offset sample (z = 1.0) and one

with a low fraction of offset BHs (z = 2.5) where we use quasar mode systems only.

The results are similar for the radio mode, but we choose to only plot the quasar mode

for clarity and because this is the mode used when comparing to observations. Note

we assume that the shape parameter remains equal to 1 at all redshifts for simplicity.

The degree to which a sample is intrinsically offset is determined by how well ad fits

the distribution.

3.4.2 Probability of consistency

After making selection cuts to match the simulated galaxies to the observed ones, we

wish to find the probability of generating a dataset with up to as many intrinsically

offset BHs as is observed. To do this, using the parameter vectorΩ = {A, σ,B, λ, κ, ν}
from the fit to Equation 3.10, we find {wi}. For each system, we then draw a random

number Ri ∈ [0, 1] from a uniform distribution U [0, 1] and define the random variable

ai such that

ai =

{
1 if wi > Ri

0 if wi ≤ Ri.
(3.17)
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Figure 3.4: Distributions of offsets for the quasar mode systems in H-AGN and the
fits for both the true (d = 3) and projected (d = 2) offsets. The ad term captures the
offsets due to the finite resolution and bd models the intrinsically offset population.
The z = 1.0 sample has a higher fraction of intrinsically offset BHs and hence requires
a larger contribution from bd than the z = 2.5 sample.
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Figure 3.5: Left : The probability of a BH being intrinsically offset, w (ri), as a
function of the offset, ri. The points correspond to individual systems. The relation
is not monotonic for SB18, as w is determined by the angular offset, whereas here
we plot the offset distance. Right : The probability density functions of the fraction
of intrinsically offset BHs, p (foffset), using the best fit parameters. The black lines
are Gaussians with the same mean and standard deviation as the data. For all these
plots we use the selection procedures outlined in subsection 3.3.7.

For N systems, the fraction of offset BHs is

foffset =

∑
i ai
N . (3.18)

Repeating this procedureNMC = 105 times, we find a distribution of foffset, p (foffset|Ω).

Using the means and errors on the fits for Ω, we draw Ndist random values of Ω

from a Gaussian distribution and repeat the above analysis for each of those samples.

Since ΩB = {B, λ, κ, ν} is determined after finding ΩA = {A, σ}, we draw ΩA

from its multivariate Gaussian distribution first, fit the residuals to obtain means

and covariances for ΩB and then draw ΩB from the resulting multivariate Gaussian

distribution. We reject any of the iterations if ω < 0 for any ω ∈ Ω since these are

unphysical, or if the fit for ΩB is unsuccessful for the given ΩA. We combine these

Ndist samples to find the distributions of the parameters describing p (foffset|Ω).

In Figure 3.5 we plot w (ri) and p (foffset) for the best-fitting Ω for the SB18 sample

and the H-AGN sample designed to mimic these observations (subsection 3.3.7). We

see that p (foffset) is well approximated by a Gaussian, hence we will characterise the

distributions by their mean, µ (Ω), and their standard deviation, s (Ω).

The results for the fits for the distributions in Figure 3.4 are plotted in Figure 3.6.

Since the z = 1.0 sample is more offset than at z = 2.5, we see that it has a larger
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value of µ. We also note that σ is comparable between the two fits, since the resolution

of H-AGN is constant with redshift at∼ 1 kpc.

For each of the Ndist runs, we find the probability of generating a sample from

H-AGN with up to a fraction fcrit of offset BHs, which is

Pcrit ≡ P (foffset ≤ fcrit) =

∫ fcrit

−∞

1√
2πs

exp

(
−(f − µ)2

2s2

)
df

=
1

2

[
1 + erf

(
fcrit − µ

s
√
2

)]
,

(3.19)

since p (foffset|Ω) is approximately Gaussian. We can then find the mean and error of

Pcrit from the Ndist iterations.

To prevent poor fits to the tail, we enforce ν ≤ 4 kpc (Equation 3.16), although

our results are not sensitive to this choice; relaxing this to ν ≤ 8 kpc changes µ for

the quasar-mode sample at z = 0 with d = 3 from 0.40 ± 0.06 to 0.36 ± 0.12. It is

also necessary, for d = 2, to demand ν ≥ νmin, where we set νmin = 2.3 kpc. Once

again, our results are not sensitive to this choice; if we remove this constraint for

the quasar-mode sample at z = 0 with d = 2, then µ changes from 0.25 ± 0.05 to

0.26± 0.05.

3.5 Results

In this section we start by analysing the H-AGN systems, by looking at the impact of

the mode of feedback (subsection 3.5.1) and the correlations between offsets and the

galaxy and halo properties (subsection 3.5.2). We then assess the compatibility of the

observations with each other and with H-AGN in subsection 3.5.3 and subsection 3.5.4

respectively.

3.5.1 Quasar vs radio mode

To compare the effect of selecting quasar or radio mode BHs at each redshift we start

by assigning the closest BH to the centre of the galaxy as the central BH. At each

redshift, we find the minimum luminosity of the quasar mode BHs and only consider

BHs with luminosities greater than this. At z = 0.1 this corresponds to a luminosity

cut of 2.6× 1043 erg s−1. We split the sample into two sets, those in the quasar mode

(χ > 0.01) and those in the radio mode (χ ≤ 0.01). We fit the distributions of

offsets and plot the resulting Pd(offset) for the two samples as a function of redshift

in Figure 3.7.
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Figure 3.6: The distributions of fitting parameters A, B, σ, λ, κ and ν (Equa-
tions 3.10, 3.11 and 3.16) and the parameters describing the distribution of foffset:
the mean, µ and standard deviation, s, where we consider the true offsets (d = 3) of
the quasar mode systems at the given redshifts. We fit the offsets to the sum of a
Gaussian of width σ and the product of a sigmoid function and generalised symmet-
ric Laplace distribution, with typical scale λ. κ and ν parametrise the steepness and
position of the sigmoid respectively. A controls the weight of the Gaussian term, and
B has the same role but for the non-Gaussian term (see Equation 3.11 and Equa-
tion 3.16). The contours show the 1, 2 and 3σ confidence intervals.
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At all redshifts, the radio mode quasars are more offset than those in the quasar

mode. This is to be expected since by definition the quasar mode BHs operate at a

higher fraction of the Eddington rate, so these will tend to lie closer to the centre of

the galaxy where the gas density is higher. We note that this could also arise due to

the different implementations of AGN feedback between the two samples. For z ≳ 3

the two modes have comparable values of Pd(offset), but this is also where the errors

on the radio mode sample become large.

It is also clear in Figure 3.7 that BHs are more central at earlier epochs. This

is consistent with the picture that BHs initially reside at the centres of galaxies and

then move off-centre later due to interactions with other galaxies [237]. It is hard to

test this prediction of redshift evolution observationally, since the majority of current

observations are at z < 0.2 (Figure 3.3). We therefore look forward to the results of

applying the methods of Spingola and Barnacka [286] to the CLASS sample of lensed

sources, since this will probe z = 0.6− 3.6.

The most physically interesting parameter from the fits to the offset distributions

is λ, which tells us about the scale to which offset BHs extend. In Figure 3.8 we

plot the redshift evolution of λdA, for angular diameter distance dA. Fitting this to a

power law in the cosmological scale factor, we find

λdA ∝ (1 + z)α , α =

{
0.39± 0.07, Quasar Mode

1.06± 0.20, Radio Mode.
(3.20)

A larger value of λ indicates that the intrinsically offset BHs reside closer to the

galactic centre. Since λdA increases with redshift, we conclude that BHs are more

localised to their host’s centre at earlier epochs, in terms of observed projected angular

offset. This supports the picture of Figure 3.7 that BHs initially reside near galaxies’

centres.

We note that, although the qualitative trends are the same for d = 2 and d = 3,

the three-dimensional analysis tends to give a higher probability of a BH being offset

than when we use the projected offsets. We find that this is due to a preference of our

fitting procedure to obtain larger σ for d = 2 compared to d = 3. Since our procedure

is designed to match the observational technique, this is not a concern provided we

only directly compare the observations to the d = 2 model.

3.5.2 Correlation of offsets with galaxy and halo properties

To investigate which parameters besides redshift affect the magnitude of the galaxy-

BH offset, we train a Random Forest regressor [170, 326] on the combined quasar plus
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Figure 3.7: Fraction of offset BHs (see Equation 3.13) as a function of redshift in
H-AGN. The BHs are selected as the closest BH to the centre of their galaxy. The
‘Quasar Mode’ BHs have χ > 0.01 and the ‘Radio Mode’ BHs have the same lumi-
nosity range as the ‘Quasar Mode’ BHs, but with χ ≤ 0.01. The lower panel uses the
full 3D offset while the upper panel projects to 2D using an observer at the centre
of the simulation box. We find Radio Mode BHs to be more intrinsically offset than
Quasar Mode ones at 0 < z < 3.
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Figure 3.8: Evolution of λdA as a function of redshift, for both the quasar mode
and radio mode samples, where λ−1 characterises the length scale of BH offsets and
dA(z) is the angular diameter distance to redshift z. Thus λdA gives the reciprocal
of the angular scales over which BHs are intrinsically offset. We plot the best fits to
λdA ∝ (1 + z)α.
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radio mode sample at z = 0.1, optimising the regressor’s hyperparameters using 5-fold

cross-validation. This regressor fits nonlinear decision trees to predict components of

the data from others. These recursively split the training data from the “root” node

(containing the entire data set) to more homogeneous “child” nodes by minimising

a loss function at each split. The Random Forest injects randomness by randomly

selecting the number of features considered at each split and by training each tree

in the ensemble with bootstrap aggregated samples. The returned prediction for a

given input is the mean prediction of the ensemble. Random Forests can provide an

estimate of the variables which are most important for the regression by assigning

each a “feature importance.” This is proportional to the number of times the variable

is used in a split, weighted by the number of samples it splits, such that the features

which are the best predictors have the largest feature importances. Before outlining

the results, we describe the features we choose and how we calculate them.

3.5.2.1 Chosen features

From the halo and galaxy finder we obtain the masses of the halo and galaxy, MH

andMG respectively, the halo virial radius, rvir, and the galaxy’s effective radius, reff .

We use the black hole mass, MB, and Eddington ratio, χ, as directly output from the

simulation. From this output we also retrieve the properties of the gas surrounding

the BH: the average relative velocity between the BH and gas, ū, the gas density,

ρgas, and the average sound speed, c̄s, calculated as described in subsection 3.2.2. We

calculate the mean velocity of the particles in each galaxy, vG, and hence the relative

velocity between the BH and galaxy

vGB ≡ vB − vG, (3.21)

where vB is the velocity of the BH. This velocity is decomposed into components

parallel, vGB∥, and perpendicular, vGB⊥, to rGB. We find the angular momentum of

the galaxy, JG, and halo, JH, in their centre of mass frames, and the corresponding

spin parameters [327], λG and λH. The angular momentum of the BH about the

galactic centre in the galaxy’s centre of mass frame, JB, is also calculated.

We produce merger trees for all galaxies back to z = 7, with an average time-step

of ∼ 50Myr. Following Martin et al. [328], we identify major mergers to be those

with mass ratios, qmerge, greater than 1:4, where we define the time of the merger,

tmerge, to be the point of coalescence according to the halo-finder, and we calculate

the mass ratio at the point at which the less massive galaxy begins to lose mass. The

most massive galaxy in the merger has mass M1 at the time qmerge is measured. If
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we do not identify any mergers for a given galaxy fulfilling our mass ratio criterion,

then we do not include that system in this part of the analysis. The conclusions of

the regression are the same for the other parameters whether or not these systems

are included.

To investigate the impact of the external environment we calculate the gravita-

tional field at the BH, g. We find the density field by applying a cloud-in-cell algo-

rithm to the DM and star particles in the simulation, adding this to the gas density

field, and solve Poisson’s equation on a 5123 grid. This corresponds to a minimum

spatial resolution of ∼ 200h−1 kpc.

Our final features describe the geometry of the system. We include the magnitude

of the offset between the halo and galaxy centres, |rHG|, and the angles between

various vectors described above: ĴG · ĴB, ĴH · ĴG, rGB · ĴG, vGB · ĴG, rGB · ĝ, vGB · ĝ
and rGB · vGB, where we denote x̂ as the unit vector parallel to x.

3.5.2.2 Correlation results

The resulting feature importances are plotted in Figure 3.9, where we also plot the

two-dimensional distributions of the offsets with the three most importance features:

vGB,⊥, rHG and ĴG · ĴB.
We see that the strongest correlation is with vGB,⊥, such that BHs with larger

offsets have a large vGB,⊥. To understand this, in the lower panel of Figure 3.10 we

plot the distribution of angles between JG and JB, which we also know is an important

feature. Since these tend to align, we conclude that the BHs move on prograde orbits.

In particular, 65 per cent of systems are aligned within 60◦ at z = 0.1. Consequently,

vGB,⊥ gives the orbital velocity of the BH, making it an important parameter for

deducing rGB.

The two-dimensional distribution of cos−1(ĴG · ĴB) and rGB demonstrates that a

wide range of orbital radii are possible if the angular momenta perfectly align, with

only smaller offsets permitted as the level of aligned decreases.

In Figure 3.10 we also plot the distributions of the angles between rGB and vGB for

z = 0.1, 0.5 and 1.5. We plot the mean of these distributions across a wider range of

redshift in Figure 3.11. We see that for z ≲ 2 the velocity of the BH tends to oppose

the direction of its offset, i.e. the BHs are, on average, returning to the centres of their

host galaxies. The distribution is more uniform at z = 0.1 than z = 1.5. The anti-

alignment of rGB and vGB can be interpreted as the orbital decay due to dynamical

friction, which stalls at low z, and the uniform part of this distribution is due to the

range of eccentricities of the BH orbits. The positive values of ⟨v̂GB · r̂GB⟩ for z = 3−4
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Figure 3.9: Feature importances for log10(rGB), for BH offset rGB, from optimised
Random Forests for the combined quasar and radio mode sample from H-AGN at
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panel, with the Spearman’s rank correlation coefficients as the titles.

82



1.0 0.5 0.0 0.5 1.0
vGB rGB

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e 

Fr
eq

ue
nc

y

761
519
266

1.0 0.5 0.0 0.5 1.0
JG rGB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e 

Fr
eq

ue
nc

y

761
519
266

1.0 0.5 0.0 0.5 1.0
JB JG

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e 

Fr
eq

ue
nc

y

761
519
266

Figure 3.10: Distributions of Left : The cosine of the angle between the BH offset,
rGB, and the velocity of the BH relative to its host galaxy vGB; Centre: The cosine
of the angle between rGB and the angular momentum of the galaxy about its centre
in its centre of mass frame, JG; Right : The cosine of the angle between the angular
momentum of the BH about the galactic centre in the galaxy’s rest frame, JB, and
JG. There is a slight propensity for rGB and vGB to be anti-aligned, so the BH
tends to move back towards the galactic centre. This preference is stronger at higher
redshift. The BH offsets tend to be perpendicular to JG, and hence to lie in the plane
of the galaxy. JB and JG are preferentially aligned at all z considered, indicating
that BHs move on prograde orbits.
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Figure 3.11: The mean of v̂GB · r̂GB as a function of redshift, where v̂GB and r̂GB are
unit vectors parallel to the relative velocity and position of the BH relative to its host
galaxy respectively, for the combined quasar and radio mode sample. For the lowest
redshifts, there is a net anti-alignment, so BHs are on average returning back to the
galactic centre. The positive value of ⟨v̂GB · r̂GB⟩ at z = 3 − 4 corresponds to BHs
moving away from the centres of their hosts on average.
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are due to BHs being kicked away from the centres of their galaxies. This is why the

fraction of offset BHs is higher today than at the earliest epochs.

We further observe in Figure 3.10 a strong preference for rGB to be orthogonal

to JG. If we use JG as a proxy for the normal to the plane of the galaxy, we infer

that BHs have a propensity to lie in a plane parallel to the galactic plane. We

find that 73 per cent of BHs in the combined quasar and radio mode sample have

displacements parallel to JG within ±1 kpc. Given that the resolution of H-AGN is

∼ 1 kpc, we therefore conclude that BHs tend to lie in the galactic plane. H-AGN

does not contain a procedure for the asymmetric gravitational wave (GW) emission

upon BH coalescence and the subsequent recoil, and only contains Schwarzschild BHs.

For two Kerr SMBHs in a galaxy merger, if there is a gas rich environment, the spins

align with each other and the circumbinary disc’s angular momentum [329]. Since

gravitational wave emission results in a kick preferentially perpendicular to the BH

orbital plane [330], we would thus expect the distribution to become more isotropic

if GW effects were included.

The second most important feature was found to be the magnitude of the halo-

galaxy offset, rHG ≡ |rHG|. This could occur if the halo and BH were tightly bound,

and the galaxy is the offset member of the set. However, this is not the case since, as

can be seen in the central panel of Figure 3.9, the median halo-galaxy offset is half the

median galaxy-BH offset, and the halo-BH and galaxy-BH offsets are well correlated,

with a Spearman’s rank regression coefficient of r = 0.81. Instead, we interpret rHG

as a measure of how disturbed the system is; more disturbed systems have larger rHG

and thus greater galaxy-BH offsets.

We repeated the analysis using an Extra Trees regressor, separately using the

quasar and radio mode samples, using different mass ratios to define a major merger

(1:2 and 1:3), choosing the most massive or most recent merger irrespective of qmerge,

and altering when we measure quantities from the merger. In all cases, the results

were qualitatively similar, with vGB,⊥ always being the most important feature. We

also separately analysed the quasar and radio mode samples, and for an uncut H-

AGN sample, where we choose the closest BH to the centre of the galaxy, but do not

make any cuts on galaxy mass, halo mass, BH luminosity or accretion rate. In all

cases, the BH closest to the centre of the galaxy preferentially moves on a prograde

orbit in the galactic plane. One difference is that the full H-AGN sample exhibits a

slight propensity for rGB and vGB to be orthogonal at the lowest redshifts, consistent

with more circular orbits for the complete sample.
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At z = 0.1, Figure 3.9 suggests that the magnitude of the BH offset is independent

of g. We also find that the distribution of the angle between the offset and g is

consistent with isotropic, with a p-value of 0.50 for the two-sided KS test that the

distribution is drawn from an isotropic distribution.

Figure 3.9 indicates that the quantities describing the merger history of the galaxy

are relatively unimportant. Perhaps counter-intuitively, the Spearman correlation co-

efficient between log10(rGB) and tmerge is 0.184, so there is a slight positive correlation.

In fact, this is true only for small tmerge ≲ 5Gyr. Since we define the start of the

merger to be the point at which the halo-finder can no longer identify two separate

galaxies, there may be some delay between this point and the BHs being dislodged

from their centres. Further, if a BH merger event occurs, there is an additional delay

due to the finite timescales associated with the binary’s evolution [230], although only

a limited period of this evolution will be resolved in H-AGN. Thus, an initial increase

of rGB with tmerge is not too surprising, and indicates the time required for the central

BH to become perturbed. For tmerge ≳ 5Gyr there is little correlation with the offset.

3.5.3 Compatibility of observational datasets

Before comparing to H-AGN, it is important to investigate the level at which the

independent observational datasets agree with one another. To do this we will restrict

our attention to samples with more than two systems.

All the datasets that we use include the offsets greater than 3σ, so an initial test

of compatibility is to compare the fraction of systems which have an offset > 3σ.

Dividing the systems into two groups (those which have offsets > 3σ and those which

do not), and assuming a Binomial distribution, with probability Λ of a single BH

being offset at > 3σ, we can estimate Λ and its error using a maximum likelihood

estimate.

We plot the calculated Λ and the errors in Figure 3.12, alongside the values calcu-

lated using different cuts from H-AGN. The errors for the H-AGN values are calculated

using the errors on the value of σ, whereas we assume a fixed σ for the data. If the

sample contains a sufficiently large number of systems, we fit the observational data

to Equation 3.11 (as described in subsection 3.4.1) to obtain σ. Otherwise we used

the quoted uncertainty on each offset.

The considerable difference between using the fitted σ or the published errors is

expected from B00, since the errors are given as lower bounds, so the offsets relative

to these errors will be larger. The inconsistency between the two values of Λ for B19

suggest that the reported errors may be too conservative, as they give a much lower
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Figure 3.12: The fraction of systems with offsets > 3σ from the various datasets
(coloured points), compared to different cuts from H-AGN (black points). The errors
are from the maximum likelihood estimate and show the 95 per cent confidence in-
tervals. For the circular markers, we set σ to be the published error on each offset,
whereas for the points marked with stars we use the fitted value of σ from Equa-
tion 3.10. The three datasets below the dashed line have very few systems, hence the
large errors, and are only included for completeness; we make no further quantitative
comparison between these and H-AGN. The reader should therefore focus mainly on
the points above the dashed line.

Λ than the fitted offset. To mitigate these issues, henceforth we choose σ to be the

fitted value for the samples where this is possible (B00, OF13, O16, SB18 and B19).

Otherwise we use the published errors.

Due to their small sample sizes, the L14, B16 and R20 values have very large errors,

so it is hard to say whether these are discrepant with the other values. We make no

further quantitative comparison using these data, such as assigning a probability of

consistency with H-AGN; these are only included for completeness. We see that B00,

SB18 and B19 give similar values of Λ of 0.09, 0.10 and 0.09 respectively. These

values are lower than those calculated from H-AGN. OF13 has 18 per cent of systems

having offsets greater than 3σ, which is consistent with the 18 per cent of systems

obeying this criterion in H-AGN.

The only data to have a larger fraction of offset BHs than H-AGN is O16, with 19

per cent of systems having offsets above 3σ, although the values are consistent within

the errors.

We now perform a KS test on the normalised angular offset, rGB/σ, for all the

datasets, to test the null hypothesis that the normalised offsets for each sample of

galaxies are drawn from the same population distribution. The results are plotted in
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Figure 3.13: Left: The p-values of KS tests between the different datasets’ angular
offsets, normalised by the resolution, rGB/σ, to see if they could be drawn from the
same distribution. p = 1 indicates that the underlying distributions are identical.
Right: A summary of the KS test, where green indicates p > 0.05 and red indicates
p < 0.05; the datasets in green are consistent with each other.

Figure 3.13. Since B16 only contains the > 3σ offsets, we cut the other datasets to

include only the > 3σ offsets when comparing to B16.

From this we can make the following observations

• B00, OF13, SB18, B19 are mutually consistent with each other.

• The > 3σ distribution in B00 is consistent with B16.

• L14 is consistent with R20.

• O16 is consistent with OF13 and B00.

This means that each dataset is consistent with at least one of the others, but the

datasets are not all consistent with each other. It is interesting that the tail of B19

is not consistent with B16, indicating that the change in selection criteria has altered

their results.

3.5.4 Comparison of Horizon-AGN with observations

In Table 3.3 we give the results for fitting a2 to the various datasets in terms of the

fraction of offset BHs in the data, fcrit, and from H-AGN, P2 (offset), using Equa-

tion 3.13. We also calculate the probability of generating datasets with the fraction

of offset BHs up to fcrit, Pcrit, using Equation 3.19 and Ndist ∼ 2× 106.

As noted in subsection 3.5.1, we find that the systems appear more offset in

three dimensions than if they are projected onto the sky, so for consistency we only

consider d = 2 here. Even using the two dimensional offsets, we find that H-AGN
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Table 3.3: Comparison of observations to H-AGN samples (z = 0.1) designed to
mimic their selection criteria. P2(offset) is the fraction of offset BHs (Equation 3.13),
calculated by fitting the 2D projected offsets to Equation 3.11. It is independent of
the form of the intrinsically offset distribution. fcrit is the corresponding quantity
for the observations. Pcrit is the probability of generating a fraction of up to fcrit
offset BHs. The selection criteria have little effect on P2(offset); for the quasar-mode
sample with no further cuts this is 0.27± 0.14.

fcrit P2 (offset) Pcrit (d = 2)
OF13 0.18± 0.03 0.27± 0.14 0.07
O16 0.24± 0.02 0.27± 0.14 0.48
SB18 0.17± 0.04 0.28± 0.11 0.05
B19 0.09± 0.02 0.27± 0.10 0.003

predicts a higher fraction of offset BHs, although the large errors obtained by just

using a2 to determine a probability of being offset results in P2(offset) and fcrit being

approximately consistent.

In most cases, Pcrit is never greater than a few per cent, and is only 0.3 per cent

for B19, indicating that it is unlikely to create these observations given the offset

distributions from H-AGN. The one exception is for O16, where there is a 48 per cent

chance of producing up to this fraction of offset BHs. From Figures 3.12 and 3.13 we

know that O16 does not agree well with most other observations. Furthermore, as

noted in subsection 3.3.5, these data did not undergo follow-up observations, so it is

likely that the increased fraction of offset BHs is due to spurious sources. Given that

H-AGN overpredicts the fraction of offset BHs compared to the other seven studies

considered here, we conclude that the fraction of offset BHs in H-AGN is larger than

observed. This result is strengthened by the argument that the calculated value of

fcrit should be treated as an upper limit (see section 3.3).

3.6 Discussion

3.6.1 Systematic uncertainties

3.6.1.1 Effect of galaxy mass

A potentially important consideration is whether the stellar masses of the observed

galaxies are compatible with those of the H-AGN sample. The relatively small box

size of H-AGN means that it is dominated by lower mass objects. The observational

masses are obtained from the MPA-JHU analysis of SDSS data, based on the methods

of Brinchmann et al. [331], Kauffmann et al. [332] and Tremonti et al. [333].
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Figure 3.14: The distributions of host galaxy masses considered in B00, O13, O16,
SB18, B19 and the quasar mode sample from H-AGN. In the left panel we plot the
mass-offset plane, where the offsets are normalised by the fitted resolution, σ.

Table 3.4: Spearman correlation coefficients, r, between the BH offset, rGB, and
galaxy mass, MG. The p value is for a two-sided hypothesis test, with the null
hypothesis that rGB and MG are uncorrelated. Most datasets show no significant
correlation.

Sample Spearman r p-value
B00 -0.35 0.06
OF13 0.16 0.32
O16 0.03 0.67
SB18 -0.07 0.18
B19 0.15 0.03

H-AGN (Quasar Mode) 0.02 0.60

In Figure 3.14 we plot the mass distributions from the four samples and the mass-

offset plane, normalised by σ. The Spearman regression coefficients and p values for

the test that the mass and offset are uncorrelated are given in Table 3.4. For all

samples except B19 there is very little overlap in mass between the observations and

H-AGN. However, we find very little variation of offset with galaxy mass, although

B19 does exhibit a slight positive correlation with p = 0.03.

We repeated the Monte Carlo sampling for the SB18-like H-AGN sample, but now

imposing that the galaxy mass satisfies MG > 4.3 × 1010M⊙, which gives the most

massive 50 per cent of the sample. We find that this mass cut has very little effect

on the fitting parameters. In particular, we find that µ and s are consistent between

the two samples; µ changes from 0.40± 0.06 to 0.39± 0.06 and 103s slightly increases

from 14±2 to 19±3. This further indicates that, for the mass range considered here,
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the mass of the galaxy is unimportant.

3.6.1.2 Galactic vs projected luminosity centre

When considering the offsets from H-AGN, so far we have defined the centre of the

galaxy to be the position of the densest star particle within a galaxy, where we use

the full three-dimensional information. This clearly is not how the centre is defined in

observations, so it is important to check that any discrepancy between observations

and simulations is not due to the definition of the centre of the galaxy. To do this

we must compare the true position of the galactic centre to that inferred from the

projected distribution of star particles.

For every galaxy we find all star particles within a box, BG, of side length 4reff ,

centred on the galactic centre. The projected coordinates of the ith star particle are

xi = (αi − αG) cos δG, y = δi − δG (3.22)

where the projected true centre has right ascension αG and declination δG and the

star particle has right ascension αi and declination δi, measured by an observer at

the centre of the box. Assuming these are distributed according to a Sérsic [334]

distribution, such that the probability of being at some coordinates (x̃i, ỹi) = (xi −
x0, yi − y0), is

p (x̃i, ỹi) = I0 exp

(
−bn

[(
Ri

Reff

) 1
n

− 1

])
, (3.23)

where x̃i = Ri cosφ and ỹi = Ri (1− ϵ) sinφ, for polar angle φ ∈ [0, 2π) relative to

the major axis, which is at an angle θ relative to the x axis, and ellipticity ϵ ∈ [0, 1).

We normalise the probability distribution,

I0 =
b2nn e

−bn

2πnR2
effΓ (2n) (1− ϵ)

, (3.24)

and define Reff such that half of the probability lies within Reff ,

γ (bn, 2n)

Γ (2n)
=

1

2
, (3.25)

where γ (z, a) is the incomplete lower gamma function. We thus must fit for 6 pa-

rameters ({Reff , n, x0, y0, ϵ, θ}), which we do by maximising the likelihood

logLG (Reff , n, x0, y0, ϵ, θ) =
∑

i∈BG

log p (x̃i, ỹi) . (3.26)

We impose uniform priors on all parameters, so that the maximum likelihood is

also the maximum of the posterior. We run the optimisation 5 times for each galaxy,
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with a different start point each time, generated randomly from the priors and adopt

the maximum likelihood of these 5 as the true maximum likelihood. We find this

number to be sufficient for several of the endpoints of the optimiser to be coincident

at a likelihood value above the remainder, indicating that they have reached the

maximum-likelihood point and therefore that 5 repeats is sufficient.

Using the fitted projected luminosity centres (x0, y0), and assuming that the radial

distance to the galactic centre is the same in this method as before, we can thus find

the coordinates of the observed luminosity centre, rG,lum.

Working with the quasar mode sample at z = 0.1, in 71 per cent of cases, the

luminosity centre shifts by less than 1kpc. With both d = 2 and d = 3, the mean BH

offset shifts by less than 0.08kpc. Fitting the results to ad, we find that probabilities

of being offset is

P2 (offset, lum) = 0.30± 0.12, P3 (offset, lum) = 0.40± 0.16, (3.27)

which are consistent with the values from the galactic centre in Table 3.3.

The effects are slightly greater for the radio mode sample, where 56 per cent of

cases shift by less than 1 kpc and the mean difference is 0.18 kpc. This is still smaller

than the resolution of H-AGN. The probabilities of being offset in two and three

dimensions for the radio mode BHs are

P2 (offset, lum) = 0.31± 0.09, P3 (offset, lum) = 0.402± 0.10, (3.28)

which are again consistent with Table 3.3.

We therefore conclude that the offset fraction in H-AGN does not change signifi-

cantly if we use the luminosity, rather than galactic, centre.

3.6.2 Comparison with other simulations

The majority of cosmological hydrodynamical simulations besides H-AGN do not

include a prescription for dynamical friction on BHs. For example, Illustris-TNG

[335], MassiveBlack-II (Khandai et al. 336, Khandai private communication) and

Simba [337] artificially return their BHs back to the potential minimum of their host.

The EAGLE simulations [261] also do this for BHs with masses below 100 times the

gas particle mass.

The Magneticum simulations, however, do attempt to keep their BHs near the

galactic centres using physical processes [338]: they impose strict momentum conser-

vation during gas accretion and BH mergers and they include Chandrasekhar friction
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[257]. The peak of their distribution of the BH offsets relative to the host’s poten-

tial minimum occurs at 0.7h−1 kpc. Assuming this distribution takes the form of ad

(Equation 3.11) with d = 3, we would envisage the peak to be at rGB =
√
(d− 1)σ.

Taking σ to be half the minimum gravitational softening length (2.0h−1 kpc), as is

approximately true for H-AGN, this is value we would predict. Thus the distribu-

tions in offsets between the simulations are qualitatively similar and dominated by

the resolution.

In subsection 3.5.2, we found that offset BHs tend to lie within the galactic plane.

This is in contrast with Tremmel et al. [339], who found that wandering BHs are

preferentially found outside of galactic discs, with > 4σ confidence, for Milky Way

(MW)-type halos. To make a more meaningful comparison with Tremmel et al.

[339], we define a MW-type halo as having a mass 5 × 1011 ≤ MH/M⊙ ≤ 2 × 1012.

We consider all MW-type halos which are in a galaxy+halo structure and find all

wandering BHs within 10 kpc of the centre of the halo. We use Tremmel et al. [339]’s

definition of a wandering BH as one further than 0.7 kpc from the halo centre. Defining

the galactic plane such that the normal of the plane is aligned with JG, we find that

50 per cent of BHs lie within 30◦ of the galactic plane (which is the value expected

for a uniform distribution), compared to 20± 7 per cent for Tremmel et al.’s sample.

Comparing this distribution to an isotropic distribution with a KS-test, we obtain a

p-value of p = 0.50, indicating that wandering BHs in MW-type halos in H-AGN are

distributed isotropically.

These results are not necessarily in tension with those of Tremmel et al., since

we analyse a very different population of BHs: the minimum mass BH of Tremmel

et al. is 106M⊙, whereas we cannot use BHs below 2× 107M⊙. Since the wandering

BH population only dominates the mass budget of BHs below ∼ 105M⊙ [237], we do

not expect to capture the behaviour of the full wandering BH population in H-AGN,

but only the most massive cases. This could also explain why we find far fewer BHs

within the virial radius of a MW-type halo than Tremmel et al.: 1.4± 0.7 compared

to 12.2± 8.4.

As noted in subsection 3.4.1, the large value of σ for H-AGN means that we have

to introduce a sigmoid function to suppress the contribution of bd at small offsets.

The upcoming New Horizon simulation (Dubois et al., in preparation) is a zoom-in of

a ‘field’ environment of H-AGN, with a comoving radius of 10Mpc. The simulation

has reached z = 0.7 at the time of writing and has a much higher resolution than

H-AGN, with a maximum spatial resolution corresponding to a physical scale of

40 pc at z = 0. It will be interesting to see how our results change with this increased
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resolution, potentially removing the need for the sigmoid suppression and thus making

the marginal distribution of bd equal to bd−1.

3.6.3 Interpretation of results

The dynamical friction model used in H-AGN results in a resolution-dominated dis-

tribution of offsets of BHs from the centres of their host galaxies. At large rGB we

find an exponentially decaying tail, as observed. The fraction of offset BHs in H-

AGN, however, is larger than is observed, with a probability of only a few per cent

of generating the observations from the simulated distributions (Table 3.3).

The dynamical friction model used (Equation 3.3) only depends on the gas pa-

rameters, and not on the star or DM particles. In order to resolve the force from

these particles, the resolution should obey [340]

∆x <
GMB

σ2
v

= 1pc

(
MB

107M⊙

)( σv
200 km s−1

)−2

, (3.29)

where σv is the velocity dispersion of the particles of interest. Remembering that

∆x ∼ 1 kpc for H-AGN, we see that it is not inconceivable that we would fail to obey

this criterion, so that to improve the offset prediction a sub-grid model for dynamical

friction from these particles would be needed.

This was investigated by Pfister et al. [341], who found that the stellar component

of dynamical friction is more stabilising than its gaseous counterpart, ensuring that

BHs remain centralised post-merger. At higher redshifts, however, the irregular stellar

distribution prevents stars from providing this constant acceleration.

Although the current dynamical friction model has the desired effect of providing

a restoring force such that the BH velocity tends to oppose its displacement (Fig-

ure 3.10), this orbital decay appears to stall at low redshift. Given that this is where

Pfister et al. find stellar dynamical friction to be most effective, our results indicate

that such a model should be included to match the observed BH offset distribution

more closely.

It would be more concerning if the fraction of offset BHs in H-AGN was smaller

than observed, since reasonable alterations must increase the dynamical friction force

and thus reduce the magnitudes of the offsets. The contributions from stars and DM

could not push a BH to larger rGB.
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3.7 Conclusions

We have studied the statistical properties of the offsets between BHs and the centres

of their host galaxies at a range of redshifts in the H-AGN simulation, and compared

to a set of observations. The H-AGN simulation is almost unique among cosmological

hydrodynamical simulations in employing a subgrid model of dynamical friction for

BHs rather than artificially advecting them to galaxies’ centres at each timestep.

We described the distribution of these offsets as the combination of a Gaussian

and a generalised symmetric Laplace distribution, where a more intrinsically offset

BH has a larger contribution from the latter. The fraction of offset BHs was compared

to observations from the literature, where we tested for consistency and investigated

the relative mass dependences of the offsets. From a feature importance analysis we

determined the properties of the halo-galaxy-BH system that most strongly affect

the offset in the simulation and hence derived a physical picture for the system’s

evolution.

Our key findings are as follows:

• The fraction of intrinsically offset BHs is higher in the simulation than in most

observations. Although both distributions are dominated by the resolution, we

find ∼ 27 per cent of BHs in H-AGN are intrinsically offset compared to the

upper limits of ∼ 10 − 20 per cent in the observations. We believe this to be

due to the unmodelled dynamical friction from stars and DM in the simulation.

• A higher fraction of the simulated BHs are intrinsically offset today than at ear-

lier epochs. This suggests that BHs form near the centres of galaxies at early

times, but are then displaced by interaction and mergers, before slowly migrat-

ing back. This is expected in the hierarchical structure formation paradigm,

where galaxies and their BHs interact and merge to form larger ones.

• Offset BHs in H-AGN exist on prograde orbits in the plane of the galaxy with

orbital radii that decay over time. Although the total fraction of offset BHs

increases with time, a given BH moves back towards the centre of its host

galaxy due to dynamical friction, unless something causes it to become more

offset. This orbital decay stalls at low redshift.

To prevent the orbital decay of BHs from stalling at low redshift, and hence align

the fraction of offset BHs from the simulation more closely with the observations,

future simulations should model the dynamical friction from stars and DM as well as

gas. With observations planned to probe higher redshifts [286], it will soon be possible

to compare the offset distributions at an epoch when dynamical friction from stars
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is truly subdominant to that from gas, providing a further test of the BH physics

that is implemented in cosmological simulations. Ultimately, this will be necessary

to understand fully the role played by SMBHs in shaping the galaxy population over

cosmic time.
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Chapter 4

Galileons and Supermassive Black
Holes

4.1 Introduction

Now that we have developed methods to produce Monte Carlo-based forward models

to constrain fundamental physics in the astrophysical regime, we now adapt this

approach to an observational test of Vainshtein screened modified gravity theories.

This test was introduced by Hui and Nicolis [342], and is based on the same physical

principle as the test presented in Sakstein et al. [2] and Asvathaman et al. [3]: we

investigate whether the offset between a galaxy’s centre and its central SMBH is

preferentially aligned along the local gravitational field, as would be expected by the

SEP violation in this class of modified gravity theories.

Specifically, we forward model the magnitude and direction of the BH–galaxy off-

set for each galaxy in the samples collated in [99]. The measured BH–galaxy offset

for these galaxies is determined by cross-matching the optical centre to observations

at a different wavelength, which provides the location of the active galactic nucleus.

We use the CSiBORG suite of constrained N-body simulations of the local universe dis-

cussed in Section 1.3.2 to map out the large-scale Galileon field. Combining this with

models for galaxy and halo structure allows us to make predictions for the BH–galaxy

offsets. Marginalising over uncertainties in the Galileon field and galaxy properties,

as well as parameters describing the noise due to non-fifth-force contributions to the

signal, we compare our predictions to the observed offsets via a MCMC algorithm.

We find that the strength of the fifth force relative to gravity, ∆G/GN, is constrained

to be < 0.16 at 1σ confidence; this bound is applicable to Galileons with crossover

scales rC ≳ H−1
0 .

96



In Section 4.2 we discuss this phenomenon in the context of the cubic Galileon

model, although the effect occurs more generally in Galileon theories due to their

BH no hair theorem [343]. We present the observational data used in this work in

Section 4.3. Section 4.4 details our inference methods and the results are presented

in Section 4.5. We discuss systematic uncertainties and compare our constraints to

previous work in Section 4.6 and conclude in Section 4.7.

4.2 Galaxy–black hole offsets in Galileon gravity

We consider a theory containing a single scalar field, φ, which respects the Galileon

symmetry φ→ φ+ b+ cµx
µ [344] and is Vainshtein screened [48] on small scales. A

common example is the cubic Galileon, which has the action

S =

∫
d4x

√−g
[

R

16πG
− 1

2
c2L2 −

1

2
c3L3 − Lm

]
, (4.1)

where R is the Ricci scalar, g is the determinant of the metric gµν , c3 and c4 are

constants, Lm is the matter Lagrangian, and

L2 = ∇µφ∇µφ, L3 =
2

M3
□φ∇µφ∇µφ, (4.2)

where M3 = MPlH
2
0 . Note that these Lagrangians are required to result in second-

order equations of motion and are thus special cases of Horndeski theory [345]: the

most general theory of gravity in four dimensions with second-order equations of

motion constructed from the metric tensor and a scalar field. Equation 4.1 contains

the usual Einstein-Hilbert term (Equation 1.1); the frame which contains this term

is referred to as the Einstein frame.

There are two branches to the cubic Galileon, depending on the sign of the kinetic

term. If, using the mostly minus signature, c2 > 0 (normal branch) we have a scalar

field with a canonical kinetic term; these cannot self-accelerate and are simply models

of fifth-forces. On the other hand, if c2 < 0 (self-accelerating branch) then the field

can self-accelerate and does not necessarily require a cosmological constant [346]. This

self-acceleration can most easily be seen in the tracker solution (see Section 4.6.2),

where the Galileon density parameter is Ωφ = Ac2ξ2, where A < 0 is a constant

which depends on whether one considers the cubic, quartic or quintic Galileon model

[347] and ξ is a real constant. For Ωφ to be a positive constant and thus take the

role of ΩΛ, one requires c2 < 0. One finds that the condition c2 < 0 is more generally

required for self-acceleration in Galileon models, even when one no longer considers

the tracker solution [348].
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One may be concerned that models with c2 < 0 will have a field with negative

kinetic energy, introducing ghost instabilities. However, the non-linear kinetic terms

in the action make the condition for no ghosts to be less trivial than requiring c2 >

0. In fact, it has been known since the introduction of Galileon theories that such

models admit self-accelerating de Sitter solutions without ghost instabilities [344].

Constraints on model parameters have been derived to avoid such instabilities for

both scalar and tensor perturbations [349], allowing theoretically reasonable self-

accelerating solutions.

If we work in the quasi-static approximation and neglect terms suppressed by the

Newtonian potentials and their spatial derivatives, we obtain [350] the equation of

motion for perturbations, φ, about a background, φ̄,

∇2φ+
1

3β1a2M3

[(
∇2φ

)2 −∇i∇jφ∇i∇jφ
]
=
MPl

3β2
8πGNa

2ρ̄∆, (4.3)

where i ∈ {1, 2, 3} and

β1 =
1

6c3

[
−c2 −

4c3
M3

( ¨̄φ+ 2H ˙̄φ) +
2κc23
M6

˙̄φ4

]
, β2 = 2

M3MPl

˙̄φ2
β1, (4.4)

with κ ≡ 8πG. Our test will depend only on Equation 4.3 which holds for both signs

of c2; our constraints therefore apply to both branches. We can rewrite Equation 4.3

in a more familiar form,

∇2φ+
r2C
3

[(
∇2φ

)2 −∇i∇jφ∇i∇jφ
]
= 8παGNρ̄∆, (4.5)

where α describes the strength of the coupling of the Galileon to matter, and rC,

called the ‘crossover scale’, parameterises the new kinetic terms. We note that, using

Equation 4.4, these parameters are functions of time. In this work we use low-redshift

observations so will ignore this temporal evolution and consider only their present day

values. Since the coupling in self-accelerating models tends to dramatically increase

as we approach the present day [350], the constraints we find imply a bound on α

over the history of the Universe for this branch.

To remain agnostic to the details of the Galileon model, we assume that α and

rC are independent. This is not true for all models: in the Dvali-Gabadadze-Porrati

(DGP) model [351], for example, α is related to rC and the Hubble parameter, H(t),

as [352]

αDGP (t) =
1

3

[
1± 2HrC

(
1 +

Ḣ

3H2

)]−1

. (4.6)
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An overdot denotes a derivative with respect to cosmic time t, the + sign refers to

the normal branch and the − sign to the self-accelerating branch. Although the

DGP model is a five-dimensional model (where our Universe is the four-dimensional

boundary of a five-dimensional spacetime), by integrating out the bulk degrees of

freedom, one finds that the four-dimensional effective action consists of a graviton and

an extra scalar degree of freedom describing the extrinsic curvature of the boundary

[353, 354]. This action contains the cubic term in Equation 4.2 and was the original

inspiration for the Galileon family of models. To test a specific model, one should

compare the model’s trajectory in the α−rC plane to the constraints obtained in this

work.

Far outside the Vainshtein radius, rV, the new kinetic terms are negligible and we

recover Poisson’s equation. For a source of mass M , this transition occurs at

rV =

(
4

3
αGNMr2C

) 1
3

. (4.7)

Within the Vainshtein radius the fifth force has magnitude

a5 = −α∇φ =
∆G

GN

GNQM

r2

(
r

rV

)q

(4.8)

where q = 3/2 for the cubic Galileon, Q is the scalar charge of the object given in

terms of its stress-energy tensor as

Q =

∫
T µ

µd
3x, (4.9)

and
∆G

GN

≡ 2α2. (4.10)

The suppression of a5 for r ≪ rV is what constitutes Vainshtein screening.

For a non-relativistic object, Q is equivalent to the object’s mass, but for compact

objects Q < m because T does not include gravitational binding energy. The limiting

case is a black hole, for which Q = 0.

Due to the Galileon symmetry, by adding a term with a linear gradient, one can

always generate a new solution φ → φ+ φext, where ∇φext is a constant. Therefore,

although stars in galaxies tend to reside within their host’s Vainshtein radius, this

does not mean they cannot feel a fifth force. Rather, they interact with the field

sourced by large scale structure [342], which has a wavelength long compared to the

Vainshtein radius and hence has approximately constant gradient on the scale of the
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galaxy. Cosmological simulations have confirmed this prediction [355] and indicate

that φ obeys linear dynamics on scales ≳ 10Mpc for rC ≃ 6Gpc [356–359].

In conjunction with the no-hair theorem described above, this property of the

Galileon symmetry can lead to an offset between the centre of a galaxy and its central

BH. This occurs since, if a galaxy is falling down a scalar field potential, the non-

relativistic matter feels the attractive fifth force, whereas the BH does not (Q = 0).

Therefore the BH lags behind the galaxy. The offset is stabilised by the gravitational

force between the BH and the galaxy and its DM halo, which can lead to a constant

displacement in equilibrium.

4.3 Observational data

In this chapter we use the four largest datasets collated and summarised in Section 3.3

[99] which contain measurements of the offsets between an AGN and its host galaxy’s

centre: OF13 [278], O16 [281], SB18 [282] and B19 [283]. Each of these cross-match

the optical centres of galaxies from the Sloan Digital Sky Survey (SDSS) [294] to

observations at a different wavelength, where the latter provides the position of the

AGN. OF13, O16 and SB18 search for radio counterparts, using the International

Celestial Reference Frame (ICRF2) [360], mJIVE-20 [295] and the Cosmic Lens All-

Sky Survey (CLASS) [299, 300] respectively. In B19 AGN positions are obtained

from Chandra X-ray data [298]. The distributions of offsets from these samples are

dominated by a Gaussian component describing the spatial resolution of the mea-

surements, with width σobs ∼ 50mas for the radio samples and σobs ∼ 150mas for

B19. Approximately 10-30 per cent of the probability density can be attributed to a

non-Gaussian component (e.g. a Laplace distribution) which is dominant in the tails

of the distribution [99]. The degree to which an AGN is intrinsically offset is given

by the ratio of the non-Gaussian to Gaussian terms.

We plot the physical and angular offsets as a function of redshift for the galaxies

used in this chapter in Figure 4.1. The galaxies are typically at redshift z ∼ 0.1, such

that a 3σobs offset for a galaxy from the radio samples corresponds to a physical offset

of ∼ 340 pc.

For information on the halo structures (which determine the restoring force), we

cross-correlate these data with the Nasa Sloan Atlas (NSA)1 to find the closest source

within 0.5′. The NSA contains measured and derived quantities for nearby galaxies

using state of the art sky subtraction and photometric determinations [361] in the

1www.nsatlas.org
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Figure 4.1: Observed BH–galaxy offset as a function of redshift for the galaxies used
in this work. The left panel gives the physical offsets and the right panel gives the
angular offsets. For redshift we use zdist from the NSA.

optical and near-infrared, largely from the Sloan Digital Sky Survey. Approximately

10 per cent of galaxies are discarded due to not having an NSA counterpart, and we

retain 144, 1328, 230 and 214 galaxies for the OF13, O16, SB18 and B19 samples

respectively.

For distances, we use zdist, which is determined using the peculiar velocity model

of Willick et al. [362]. Since, as described in Section 4.4.4, we use a Sérsic profile to

determine the central baryonic surface density, we use quantities relevant to such a

profile: stellar mass M⋆ = sersic mass, apparent Sérsic minor-to-major axis ratio

(b/a)obs = sersic ba, Sérsic index n⋆ = sersic n, and half-light radius along the

major axis reff = sersic th50.

4.4 Methods

Despite the different theoretical background and observational signals, our approach

is similar to [363, 364]; we forward model the offset, r•, for the galaxies in our samples

and, in conjunction with an empirical noise model describing astrophysical contribu-

tions to r•, derive a likelihood function for the observed offsets for a given ∆G/GN

and rV. For a fixed rV, we then constrain ∆G/GN by MCMC. As detailed in Sec-

tion 4.4.3, we take rV to be a universal free parameter instead of using a different

Vainshtein radius for each galaxy. This will make our constraint on ∆G/GN at a

given rC conservative as we will systematically under-estimate the magnitude of the

Galileon field.

101



We derive the offset expected in Galileon gravity in Section 4.4.1 and the gravita-

tional field required to determine this in Sections 4.4.2 and 4.4.3. In Section 4.4.4 we

convert this to a predicted offset for each galaxy. Using Monte Carlo sampling, we

obtain a distribution of offsets, which is modelled as in Section 4.4.5. We utilise one of

the empirical noise models outlined in Section 4.4.6 to calculate the likelihood func-

tion in Section 4.4.7. The parameters which are fixed in this section are summarised

in Table 4.1.

4.4.1 Offset expected from a fifth force

In this section we briefly summarise the derivation of [342] for the predicted offset of

a BH from the galactic centre in Galileon gravity.

In the rest frame of the galaxy, the black hole equation of motion is

r̈ = −GNM (< r)

r2
+ aBH, (4.11)

where M (< r) is the mass enclosed at a distance r from the galaxy’s centre. Since

the galaxy receives an additional acceleration from the fifth force, the restoring force

on the BH must be the same for equilibrium. Using Equation 4.8, this is

aBH = −α∇φext = −
(
∆G

GN

)
∇Φlss =

(
∆G

GN

)
glss, (4.12)

where Φlss and glss are the gravitational potential and acceleration sourced by large

scale structure respectively. The Galileon force is therefore proportional to the regular

gravitational force. Note that this is only true in the linear regime of the Galileon,

where it satisfies a Poisson equation identical to the gravitational potential up to a

normalisation factor of 2α.

Since the mean predicted offset is O(10 pc) for ∆G/GN = 1, we are only interested

in the very central regions of our galaxies. We therefore assume a constant density,

ρ0, giving an enclosed mass M(< r) = 4πρ0r
3/3. At equilibrium r̈ = 0, so the offset

between the BH and the centre of the galaxy, r•, is

r• =
3

4π

∆G

GN

|glss|
GNρ0

. (4.13)

We define the right ascension (J2000; RA; α) and declination (Dec; δ) directions

on the plane of the sky and decompose the offset into these components. Since the

observations are two dimensional, from now on we will use r• to refer to r•,αα̂+ r•,δ δ̂

and we define the angular offset

θ• ≡
r•
dA

= θ•,αα̂ + θ•,δ δ̂, (4.14)

for angular diameter distance dA.
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Table 4.1: The fixed parameters used to convert dynamical information from the NSA to a predicted offset as described in the
text. Above the horizontal line we give the parameters used in the fiducial analysis, and the remainder are used in Section 4.6.1.1
to test for systematics. In the final column we give the value chosen for each parameter, although we show in Section 4.6 that
our results are unchanged for reasonable alternative values.

Parameter Description Value
ba min The minimum allowed minor-to-major axis ratio. 0.15
σM Scatter (dex) in M⋆ −Mgas relation (Equation 4.32). 0.3
σR Scatter (dex) in Reff,gas −Reff relation (Equation 4.33). 0.25
σD Additional scatter (dex) in dynamical surface density. 0.5
ngas Sérsic index for gas component 1
nsim The number of constrained simulations used to reconstruct the gravitational field. 106
N The number of grid points per side length used to reconstruct the gravitational field. 512
ℓ The size of the box used to create artificial long wavelength modes for the 6

gravitational field, in units of the box length of the constrained simulations.
N MC The number of Monte Carlo runs to get the distribution of offsets for the template signal. 500,000
N AM The number of abundance matching realisations. 200
n Slope of halo density profile in the central regions of the halos. 0 ≤ n < 1
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4.4.2 Modelling the gravitational field

In this section we describe how we model the gravitational field using the CSiBORG

ΛCDM N-body simulations and the matter power spectrum for a ΛCDM cosmology.

Although for given initial conditions the presence of a Galileon increases power on

large scales [365], our use of concordance cosmological parameters reproduces the ob-

served matter power spectrum [178], justifying our use of these as an approximation

to the density field for a GR+Galileon cosmology. Nevertheless, if the power was

enhanced on large scales then we would be systematically underestimating the mag-

nitude of the gravitational (and hence Galileon) field and therefore overestimating

the strength of the coupling. This makes our constraints on ∆G/GN conservative.

This is further justified post-hoc by our tight constraint on fifth-force strength, which

ensures that differences between the ΛCDM and ‘true’ density fields cannot be large.

We model the density fields produced in the CSiBORG simulations, ∆(x), by ap-

plying a cloud-in-cell algorithm to the DM particles and solve Poisson’s equation

Φ (k) = −4πGNρ̄

k2
∆(k) , (4.15)

on a grid with N = 512 grid points per side, where ∆(k) is the Fourier transform of

∆(x). We have checked that using a coarser resolution (N = 256) does not affect our

results.

Due to the finite size of the box, we do not have information about the gravitational

field all the way down to k = 0; we can only construct modes with k ≥ π/L for box

length L. To fully reconstruct the gravitational field, we must therefore add in long

wavelength modes [366]. Unlike the modes captured by the constrained simulation,

we have no constraints on the direction of these, so each mode is added as a noise

term with a random orientation.

We start by generating a continuous matter power spectrum, P (k), using CLASS

[367], assuming a ΛCDM cosmology with the same parameters as in Section 1.3.2.

We then construct a grid of size L′ = ℓL for ℓ > 1 with N ′ grid points, such that the

maximum k obeys kmax ≥ π/L. This ensures that the modes added here begin where

those in the simulation boxes end.

A Gaussian random field, ψ(k), is generated on the grid, with the condition ψ(k) =

ψ∗(−k) to ensure the density contrast is real. To determine this, we must adapt the

continuous power spectrum for the discrete case [368, 369]; we must account for

the normalisation in our Fourier convention, the change in measure and the units

of the power spectrum. After doing this, we can obtain the potential by solving

Equation 4.15.
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We filter out all modes which overlap between the large and small boxes to prevent

double counting and inverse Fourier transform to obtain g (r) from these large scale

modes. These are added to the field obtained from the constrained simulation. Since

the magnitude and direction of the modes added in the above procedure are not

constrained, we must marginalise over the direction and magnitude by incorporating

this into our Monte Carlo sampling. The addition of long wavelength modes increases

the root mean square of |g| by 5% and scatters each Cartesian component by ∼ 17%

compared to their uncorrected values.

When adding in long wavelength modes to account for scales not captured by the

constrained simulations, one should ensure that the size of the larger box, L′ = ℓL, is

sufficiently large to accurately capture all small-k modes. To find a suitable value for

this, for simplicity we assume that the modes are continuous (so we are integrating

rather than summing on a grid) and denote these by the subscript ‘cts’. In this case,

the expectation value of the square of the gravitational field at position x is

〈
|gcts (x)|2

〉
= (4πGρ̄)2

∫
d3k

(2π)3
d3k′

(2π)3
k · k′

k2k′2
ei(k−k′)·x ⟨∆cts (k)∆

∗
cts (k

′)⟩

= 8 (Gρ̄)2
∫ ∞

0

P (k) dk,

(4.16)

since the power spectrum is as defined in Equation 1.20. For simplicity, we assume

the matter power spectrum can be described by a broken power law

P (k) ≈




Peq

(
k
keq

)
, k < keq

Peq

(
k
keq

)−3

, k > keq.
(4.17)

For a finite box size, one cannot calculate the integral in Equation 4.16, since one

can only integrate from some finite k0 to obtain ⟨|gcts|2⟩0, such that

〈
|gcts|2

〉
=
〈
|gcts|2

〉
0
+ δg2cts (k0) , (4.18)

where the correction from long wavelength modes is

δg2cts (k0) ≡ 8 (Gρ̄)2
∫ k0

0

P (k) dk. (4.19)

In the case where k0 < keq we have

δg2cts = (2Gρ̄k0)
2 Peq

keq
, (4.20)
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whereas for k0 > keq we have

δg2cts = δg2cts (keq) + 8 (Gρ̄)2
∫ k0

keq

P (k) dk = (2Gρ̄)2 Peqkeq

(
2−

(
keq
k0

)2
)
. (4.21)

By sending k0 → ∞, we see that

〈
|gcts|2

〉
= 8 (Gρ̄)2 Peqkeq, (4.22)

and so we arrive at, defining L0 ≡ 2π/k0 and Leq ≡ 2π/keq,

δg2cts (L0)〈
|gcts|2

〉 =





1
2

(
Leq

L0

)2
, L0 > Leq

1− 1
2

(
L0

Leq

)2
, L0 < Leq.

(4.23)

Using Leq ≈ 450Mpc, we find that for L′ = 6Gpc (ℓ ≈ 6), the correction is√
δg2cts/ < |gcts|2 > ≈ 0.05, or for L′ = 14Gpc (ℓ ≈ 14), this is ≈ 0.02. This is

small compared to the ∼ 30 per cent variation in |g| across the constrained simu-

lations, so using either of these values is acceptable. We investigate the choice of ℓ

further in Section 4.6.1.3.

4.4.3 Modelling the Galileon field

In Equation 4.12 we assume that the fifth force is proportional to the gravitational

field sourced by large scale structure, while on small scales the Galileon is screened.

As a model for this, we take the field calculated in Section 4.4.2 and apply a low-pass

filter, such that we remove all k modes with |k| > kV, corresponding to a Vainshtein

radius for large scale structure of

rV ≡ 2π

kV
. (4.24)

We choose a constant rV for all galaxies, instead of filtering at the scale of each

galaxy’s Vainshtein radius, r
(g)
V , as a function of its mass and rC (Equation 4.7). This

essentially corresponds to an average over all galaxies, and simplifies the analysis

because we do not have to apply a different filter for each galaxy or re-filter each time

we change ∆G/GN in our inference which would require us to re-derive the likelihood

by running the Monte Carlo sampling again.

To convert our constraint on ∆G/GN as a function of rV to one on α as a function

of rC, we require rC as a function of rV and α. To determine this in a cosmological
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context, we consider the mass enclosed within radius r due to cosmological perturba-

tions:

M (r) = ρ̄

∫

|x|<r

∆(x) d3x. (4.25)

We only consider the contribution from perturbations and not the background because

the gravitational effects of the latter are encoded in the evolution of the Hubble

parameter [370]. The mean square value is determined by the matter power spectrum,

〈
M2 (r)

〉
= (4πρ̄)2

∫
d3k

(2π)3
P (k)

k4
(sin (kr)− kr cos (kr))2 , (4.26)

where we use CLASS to compute the non-linear P (k) for a ΛCDM cosmology. Using

Equation 4.7, we can thus determine rC as

rC ≃ 1

3

(
3r3V

4αG ⟨M2 (rV)⟩
1
2

) 1
2

, (4.27)

where the arbitrary factor of 1/3 is included so that rV = 10Mpc corresponds to

rC ∼ 6Gpc, as found in simulations [359]. We run our inference for a range of

rV > 1Mpc, with rV = 100Mpc as our fiducial case.

Using the power spectrum to obtain the covariance of ∆(k), we can find the

expectation value of the square of the gravitational field from large scale structure2,

δg2cts, by squaring Equation 4.15 and only keeping modes |k| < kV. Assuming P (k) ∝
k for k < keq where Leq = 2π/keq ≈ 450Mpc, for two values of rV < Leq, r1 and r2,

we find the fractional difference in the field is

(
δgcts (r1)

2) 1
2 −

(
δgcts (r2)

2) 1
2

(
δgcts (r1)

2) 1
2

= 1−

√√√√√√
1− 1

2

(
r2
Leq

)2

1− 1
2

(
r1
Leq

)2 . (4.28)

This fractional difference is only 1 per cent between rV = 1Mpc and rV = 100Mpc or

5 per cent between rV = 1Mpc and rV = 200Mpc. This implies that the calculated

field is relatively insensitive to the choice of rV provided rV < Leq.

In reality the separation between screened and unscreened modes will be more

gradual than this step-function filter. However, this insensitivity to rV suggests that

a smoother filter will not dramatically change our results.

This model neglects the impact of the non-linear regime and requires the Galileon

to be linear. This, combined with the insensitivity of the fifth force field to rV < Leq

means our constraints are valid for 10Mpc ≲ rV ≲ 450Mpc.

2This definition is identical to Equation 4.19 and so δg2cts is given by Equation 4.23.
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4.4.4 Calculating the offset

In order to the calculate the magnitude of the offset, r•, we need to know the total

enclosed mass within separation r•, M(< r•). In the absence of central kinematic

data in our observational datasets, we must either attempt to fit a density profile to

the galaxies using empirical methods such as abundance matching (AM) or employ

empirical scalings between mass and light at the centre of the galaxies. We will find

that r• ≪ size of the galaxy, so that the latter is more reliable as the former requires

an integral over the galaxy’s full luminosity profile. We therefore use this method.

Assuming a cored density profile, we wish to find the (constant) central density,

ρ0, using the information obtained from the NSA. To do this we must determine the

major and minor axis lengths from the observed minor-to-major axis ratio, (b/a)obs,

effective radius, reff , and redshift, zdist. We also use the measured stellar mass, M⋆,

and intensity profile to determine the central surface density, utilising observed corre-

lations to estimate the contributions from DM and gas. Combining these two results

gives us ρ0.

Using the observed minor-to-major axis ratio (b/a)obs from the NSA, we assign a

random inclination, i, to the galaxy and, using simple geometry [371], estimate the

true axis ratio to be (
b

a

)2

= 1− 1− (b/a)2obs
sin2 i

, (4.29)

with the condition that (b/a) ≥ ba min, where ba min = 0.15 since this is the lowest

axis ratio recorded in the NSA. If one knew (b/a) a priori, this step would be unnec-

essary and one could simply calculate the inclination by comparing (b/a) to (b/a)obs.

However, we do not have this information so pursue the maximally agnostic strat-

egy of drawing random inclinations to reflect our lack of knowledge of this quantity.

Through Monte Carlo sampling, this uncertainty is propagated through to the final

constraints.

We use zdist from the NSA catalogue to determine the angular diameter distance

dA to each galaxy and calculate the major-axis length as Rmaj
eff ≡ dAreff . This is related

to circularised, Reff , and minor-axis, Rmin
eff , half-light radii as

Reff =

(
b

a

) 1
2

Rmaj
eff , Rmin

eff =

(
b

a

)
Rmaj

eff . (4.30)

We now find the stellar surface density in the plane of the galaxy [372, 373]

Σ⋆ =
M⋆

2πb−2n⋆
n⋆

Γ (2n⋆)R2
eff

, (4.31)
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where bn⋆ ≡ 2n⋆−1/3+0.009876/n⋆, which is different to the observed surface density

as we have now corrected for randomly the assigned inclination. Using the reverse

of the method from [363], we can estimate the gas mass from the stellar mass using

[374]

log10

(
M⋆

M⊙

)
= 1.89 log10

(
Mgas

M⊙

)
− 8.12, (4.32)

with scatter σM = 0.3 dex. Assuming an exponential disk with effective radius given

by

log10

(
Reff,gas

kpc

)
= log10

(
0.92Reff

kpc

)
, (4.33)

with scatter σR = 0.25 dex, we can calculate the central gas surface density, Σgas,

using Equation 4.31 with the appropriate mass and radius and with ngas = 1 instead

of n⋆. We now have the central baryonic surface density

ΣB = Σ⋆ + Σgas. (4.34)

To convert this to the central dynamical surface density, ΣD, we use the empirical

relation [375–377]

ΣD = ΣMS

(
ΣB

ΣM

)
, (4.35)

where

S (y) =
y

2
+ y

1
2

(
1 +

y

4

) 1
2
+ 2 sinh−1

(
y

1
2

2

)
, (4.36)

with ΣM = 1.37×108M⊙kpc−2. Despite the already large scatter due to uncertainties

on the input quantities, one may expect the scaling relations to provide good fits only

to a subset of the galaxy population. Therefore, to ensure our constraints on ∆G/GN

are conservative, we impose an additional scatter of σD = 0.5 dex. For scale height h,

which we assume is equal to Rmin
eff , ΣD is related to the central density as

ΣD ≡ 2hρ0, (4.37)

which we can substitute into Equation 4.13 to determine r•.

4.4.5 Gaussian mixture model

From Equation 4.13, we see that the offset is proportional to ∆G/GN. We therefore

construct a template signal with ∆G/GN = 1 containing NMC realisations of our

probabilistic model.
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For a given rV, we must convert the NMC samples of predicted θ•,α and θ•,δ for

each galaxy into a distribution. We model the samples as a GMM [170] where the

likelihood function for some galaxy g is

Lg (θ•,α|∆G, rV) =
∑

i

w
(i)
g,α√

2πσ
(i)
g,α

exp


−

(
θ•,α − µ

(i)
g,α

)2

2σ
(i)
g,α

2


 , (4.38)

where ∑

i

w(i)
g,α = 1, w(i)

g,α ≥ 0, (4.39)

and {w(i), σ(i), µ(i)}, the weights, standard deviations and means of the Gaussians,

are implicit functions of rV. There is an analogous definition for the declination

component. The sum runs over the number of Gaussian components. The number of

components is chosen to minimise the BIC (Equation 1.43). We find an independent

set of Gaussians for each galaxy and component. For a different value of ∆G/GN, we

must transform the means and widths of the Gaussians in the GMM

µ̃(i)
g,α =

(
∆G

GN

)
µ(i)
g,α, σ̃(i)

g,α =

(
∆G

GN

)
σ(i)
g,α. (4.40)

Treating the orthogonal RA and Dec components as independent, the overall

likelihood Lg(θ•,α, θ•,δ) for a test galaxy g to have θ• components θ•,α and θ•,δ is

Lg (θ•,α, θ•,δ|∆G, rV) = Lg (θ•,α|∆G, rV)Lg (θ•,δ|∆G, rV) . (4.41)

4.4.6 Modelling the noise

Galileons are not the only type of physics that can lead to BH–galaxy offsets, re-

quiring us to develop a model for astrophysical noise. Ideally we would construct a

model for the observed offsets in the absence of a fifth force by using cosmological

hydrodynamical simulations. Unfortunately, as discussed in Chapter 3, the majority

of these simulations do not include a prescription for dynamical friction on BHs and

instead pin the BHs at the centre of the galaxy [260–262]. Those that do allow the

BH to move over-predict the fraction of offset BHs compared to observations. We

therefore must construct an empirical noise model based on the global distribution of

offsets in the various datasets.

We consider three different noise models: a Gaussian distribution, the sum of a

Gaussian and Laplace distribution, and an Edgeworth expansion. We outline these

below, before describing how we discriminate between them. In the following, we

define the observed offsets to be θ•,α,obs and θ•,δ,obs, and the true offsets – which are

to be compared to the fifth force prediction – are θ•,α and θ•,δ.
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4.4.6.1 Gaussian Noise Model

In this model we assume that the observed value is Gaussian distributed about the

predicted value due to a fifth force, such that the observed value has some uncertainty

σobs. We assume this is equal for both the RA and Dec components. We therefore

have

Lg (θ•,α,obs|θ•,α,Ω) =
1√

2πσobs
exp

(
−(θ•,α,obs − θ•,α)

2

2σ2
obs

)
, (4.42)

with Ω = {σobs}.

4.4.6.2 Gaussian plus Laplace distribution

It is known that the distribution of observed BH–galaxy offsets is non-Gaussian (see

Chapter 3), so we should also consider non-Gaussian noise models. Inspired by Chap-

ter 3, our first non-Gaussian model is the sum of a Gaussian and Laplace distribution,

Lg (θ•,α,obs|θ•,α,Ω) =
f√

2πσobs
exp

(
−(θ•,α,obs − θ•,α)

2

2σ2
obs

)
+
1− f

2ν
exp

(
−|θ•,α,obs − θ•,α|

ν

)
,

(4.43)

with Ω = {σobs, ν, f}. As with the Gaussian model, σobs describes the uncertainty

in the observed value. The Laplace term dominates in the tails of the distribution,

hence ν tells us about the scale to which offset BHs extend, while f is the fraction of

the probability in the Gaussian component.

4.4.6.3 Edgeworth Expansion

We now consider another way to incorporate non-Gaussianity, namely through the

Edgeworth expansion [378]

Lg (θ•,α,obs|θ•,α,Ω) =
1√

2πσobs
exp

(
−(θ•,α,obs − θ•,α)

2

2σ2
obs

)
F∑

n=0

αnHn

(
θ•,α,obs − θ•,α

σobs
√
2

)
,

(4.44)

where Hn(x) are Hermite Polynomials. The parameters {αn} are related, since the

probability density must be non-negative.

The non-zero coefficients αn in the Edgeworth expansion are (up to F = 8)

α0 = 1, α3 =
κ3

23/2 × 3!
, α4 =

κ4
22 × 4!

, α5 =
κ5

25/2 × 5!
,

α6 =
10κ23 + κ6
23 × 6!

, α7 =
35κ3κ4 + κ7
27/2 × 7!

, α8 =
35κ24 + 56κ3κ5 + κ8

24 × 8!
,

(4.45)
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where κn is the nth cumulant. The powers of 2n/2 are due to us using the Physicist’s

and not the Statistician’s Hermite Polynomials. For notational convenience, we define

the following parameters

γ ≡ κ3
23/2

, τ ≡ κ4
22
, η ≡ κ5

25/2
, ζ ≡ κ6

23
, ξ ≡ κ7

27/2
, ι ≡ κ8

24
, (4.46)

so the coefficients are

α0 = 1, α3 =
γ

3!
, α4 =

τ

4!
, α5 =

η

5!
,

α6 =
1

6!

(
ζ + 10γ2

)
, α7 =

1

7!
(ξ + 35γτ) , α8 =

1

8!

(
ι+ 56γη + 35τ 2

)
.

(4.47)

We need to impose restrictions on the parameters since they must describe a proba-

bility distribution. Following [379], we define

⟨a, b⟩ ≡ ⟨ab⟩ − ⟨a⟩ ⟨b⟩ , (4.48)

and, since the probability density is non-negative, we use the Cauchy-Schwarz In-

equality

⟨a, b⟩2 ≤ ⟨a, a⟩ ⟨b, b⟩ , (4.49)

which for some random variable x gives

⟨xp, xq⟩2 ≤ ⟨xp, xp⟩ ⟨xq, xq⟩ . (4.50)

These can be trivially expressed in terms of cumulants, and thus we have neces-

sary conditions for the parameters Ω = {σobs, γ, τ, η, ζ, ξ, ι} to describe a probability

distribution. We impose this constraint for all p < q ≤ 4 and consider the cases

3 ≤ F ≤ 8.

4.4.6.4 Physical offsets

So far the assumed noise models only contain contributions due to observational

effects, so that all noise parameters are angular quantities. This corresponds to the

assumption that any noise contribution with a fixed physical scale is subdominant.

To account for this possibility, for each noise model we consider the corresponding

model with

σobs →
√
σ2
obs +

(
σint
dA

)2

, (4.51)

which assumes that BHs are isotropically, Gaussian distributed with width σint. This

adds one more parameter to the noise model and means that each galaxy has a

different width of its noise Gaussian.
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4.4.6.5 Choosing the model

To decide which noise model to use, for each dataset we find the maximum likelihood

estimates, L̂ ≡ maxL (d|∆G, rV,Ω), for each model. We then choose the model

that minimises the BIC (Equation 1.43) with N = 2Ngal for Ngal galaxies in the

dataset. We find that in all cases the sum of the Gaussian and Laplace distribution

without a physical offset best describes the data, so this is the noise model we use

below. In Figure 4.1 we see that the observed angular offsets are independent of

redshift, suggesting that these are dominated by observational effects. It is therefore

unsurprising that the addition of an intrinsic offset is not required.

4.4.7 Likelihood Model

Now we have a distribution for obtaining an observed value given a predicted one,

Lg (θ•,α,obs|θ•,α,Ω), after accounting for the noise contribution to the signal. The

resulting likelihood for an observed offset θ•,α,obs is

Lg (θ•,α,obs|∆G, rV,Ω) =

∫
Lg (θ•,α,obs|θ•,α,Ω)Lg (θ•,α|∆G, rV) dθ•,α. (4.52)

For example, for the Gaussian noise model, this is

Lg (θ•,α,obs|∆G, rV,Ω) =
∑

i

w
(i)
g,α√

2π
(
σ2
obs + σ̃

(i)
g,α

2
) exp


−

(
θ•,α,obs − µ̃

(i)
g,α

)2

2
(
σ2
obs + σ̃

(i)
g,α

2
)


 .

(4.53)

We treat each galaxy as independent to obtain the likelihood of our dataset d to be

L (d|∆G, rV,Ω) =
∏

g

Lg (θ•,α,obs|∆G, rV,Ω)Lg (θ•,δ,obs|∆G, rV,Ω) . (4.54)

Finally, given some prior on ∆G and rV, P (∆G, rV,Ω), we use Bayes’ theorem to

obtain

P (∆G, rV,Ω|d) = L (d|∆G, rV,Ω)P (∆G, rV,Ω)

P (d)
, (4.55)

where P (d) is the constant probability of the data for any {∆G, rV,Ω}. We are now

in a position to derive posteriors on ∆G/GN and the noise model parameters at fixed

rV, for which we use the emcee sampler [62]. We impose the improper prior ∆G ≥ 0,

flat in ∆G. The priors for all inferred parameters are given in Table 4.2.
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Table 4.2: Inferred parameters describing the predicted signal and the empirical noise
models. In all cases the Gaussian plus Laplace distribution is the preferred noise
model, and the parameters for this are given in the top part of the table. Below the
horizontal line we give the parameters for the Edgeworth expansion (Equations 4.44
and 4.46) and the models containing intrinsic offsets, which we use in Section 4.6.1.2.
All priors are uniform in the range given. We fix rV in the inference and allow all
other parameters relevant to the chosen noise model to vary. The (p, q) values refer
to Equation 4.50.

Parameter Prior/Constraint
∆G/GN ≥ 0

log10 (rV / Mpc) ≥ 0.5
σobs > 0
ν > 0
f [0, 1]
σint ≥ 0
γ -
τ p = 1, q = 2
η -
ζ p = 2, q = 3
ξ -
ι p < q, q = 4

4.5 Results

In Figure 4.2 we show the corner plot from the inference with rV = 100Mpc for

each dataset, using the empirical noise model consisting of a Gaussian plus a Laplace

distribution. We see that each dataset is consistent with ∆G/GN = 0. Assuming

each sample is independent, we multiply the likelihoods and, giving each dataset a

different set of noise parameters, find the joint constraint of

∆G

GN

< 0.16 (4.56)

at 1σ confidence for this value of rV, or < 0.36 at 2σ confidence. We find that the

constraint is driven by O16 due to its large size. If we did not include the O16 data,

our strongest constraint would come from SB18 and would be ∆G/GN < 0.65 at 1σ

confidence.

For the radio samples (OF13, O16 and SB18) we find that σobs ∼ 50mas and for

B19 we find σobs ∼ 150mas, as expected in Section 4.3. Further, as in [99], we find

that O16 has a much higher contribution from the non-Gaussian component than the

other datasets, as shown by the smaller value of f .
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Figure 4.2: Corner plot of the constraints on the strength of the coupling to the
Galileon field, ∆G/GN, and the noise parameters at rV = 100Mpc. The contours
show the 1 and 2σ confidence intervals. Each dataset is consistent with ∆G/GN = 0,
with ∆G/GN > 0.16 ruled out at 1σ confidence when we combine the datasets. Note
that while ∆G/GN is assumed universal, σobs, ν and f are sample-specific.
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Figure 4.3: 1σ constraint on ∆G/GN as a function of average Vainshtein radius, rV.
We expect rV ∼ 10Mpc for crossover scales ∼ H−1

0 . rV > Leq corresponds to crossover
scales much larger than the observable universe (see Figure 4.5).

We repeat the inference at different values of rV > 1Mpc and plot the 1σ con-

straint as a function of rV for each dataset in Figure 4.3. As anticipated in Sec-

tion 4.4.3, we find that the constraint is relatively independent of rV for rV < Leq,

where the level of bumpiness for these rV indicates the noise level of this method, due

to the finite number of Monte Carlo realisations used to determine the likelihood. To

quantify this, we run the end-to-end inference a further 6 times for the OF13 data

with rV = 100Mpc and find an unbiased sample variance of the 1σ and 2σ constraints

of 8% and 7% respectively. This shows that the number of Monte Carlo realisations

is sufficiently large.

The lack of dependence of the constraint on rV means we expect our constraints

will not change for a broad transition from screened to unscreened in this regime, as

opposed to the step-function we currently use.

For larger values of rV we find that, although the posteriors are still consistent with

∆G/GN = 0, the constraint weakens. The smaller magnitude of the fifth force field at

these rV (more modes of the g field are excluded) means a given offset requires a larger

value of ∆G/GN (Equation 4.13), and thus a worse constraint. rV = Leq corresponds

to the largest crossover scales in Figure 4.5, which are already much larger than H−1
0 .
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4.6 Discussion

4.6.1 Systematic uncertainties

In this section we vary several parameters of the analysis which could contribute

systematic error if kept fixed. For computational convenience, throughout this section

we use the OF13 data as this is the smallest dataset, although the conclusions apply

equally to all the datasets. Hence the constraint for the fiducial case in this section

is ∆G/GN < 1.28, as opposed to the full joint constraint of ∆G/GN < 0.16.

4.6.1.1 Density profile

Although halos in N-body simulations are typically well fit by NFW profiles, the

situation is less clear observationally and in the presence of baryons. While the

process of adiabatic contraction steepens the central DM density during the process

of galaxy formation [380, 381], subsequent stellar feedback can inject energy into the

halo and cause it to expand (e.g. [243, 382]). Previously we assumed that this results

in an approximately uniform density at the centre of the halo, however this need not

be true.

To test whether our constraints are sensitive to the assumed density profile, we

now suppose that the inner density can be described by a power law. To remain

agnostic as to the slope of the DM density profile over the extent of the galaxy, we

parameterise it as

ρ (r) =

{
ρs
(
rs
r

)n
, r ≤ rs

4ρs
r/rs(1+r/rs)

2 , r > rs,
(4.57)

with n a free parameter that would equal 1 for NFW. With most observational ev-

idence favouring profiles somewhat shallower than NFW (e.g. [383–385]) we take a

fiducial value for n of 0.5, although we will check explicitly the result of varying it

within the a priori plausible range 0 ≤ n < 1. rs is the scale radius of the halo, while

ρs is the density at that radius.

For n = 0.5, the mean predicted offset is ∼ 50 pc for ∆G/GN = 1. This is much

less than rs so that the relevant profile is the power law, and the NFW profile is only

required to determine ρs. We therefore do not need to consider the case where the

restoring force is too small to balance the fifth force, which could lead to the BH

being ejected from the galaxy [2].

Within the power-law region the enclosed mass is

M (< r) =
4π

3− n
ρsr

3
(rs
r

)n
, r < rs. (4.58)
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Substituting this into Equation 4.11, the equivalent of Equation 4.13 is

r• =

(
∆G

GN

) 1
1−n
(
3− n

4π

|glss|
GNρs

1

rns

) 1
1−n

, (4.59)

Note that this offset diverges for an NFW profile (n = 1). We also clearly need n < 3,

however this is already required for the halo to have a finite mass within any finite

radius. If n < 1, then the largest offsets will be for the least dense galaxies, whereas

the converse is true if n > 1. The case n > 1 is interesting in that a larger ∆G/GN

will actually shrink the offset between the BH and galactic centre. However we do

not consider this case further since, by considering small perturbations about r•, the

equilibrium offset is found to only be stable for n < 1. As mentioned above, n < 1

is often a better fit for the density profile, so it is not unreasonable to only consider

these values.

The values of rs and ρs for each test galaxy are estimated using the technique of

halo abundance matching (AM) [386, 387]. The technique assumes a near-monotonic

relation between the absolute magnitude of a galaxy and a halo ‘proxy’, typically a

combination of virial mass and concentration. We use the best-fit AM model of [388]

applied to the rockstar halo catalogue of the DarkSky-400 N-body simulation

[389] and the Sérsic r-band luminosity function of [390]. We generate N AM = 200

mock galaxy catalogues, where each catalogue is a different random realisation of the

noise from the intrinsic scatter in the galaxy–halo connection implied by the model.

We draw values of rs and ρs for each galaxy from a randomly chosen catalogue for

each Monte Carlo realisation of our model, where we use the halo from that catalogue

which is closest in magnitude to that galaxy. By iterating this procedure many times,

we marginalise over the stochasticity in the galaxy–halo connection. We re-run the

end-to-end inference with n = 0.5 and only 100 catalogues and find the constraint

to be unchanged (Figure 4.4), indicating that N AM is sufficiently large to sample the

distributions of ρs and rs.

As before, we obtain NMC samples from our model of offsets in Galileon gravity

and convert this into a GMM for the case ∆G/GN = 1. For a power law profile, the

offset is no longer proportional to ∆G/GN, and instead the relation is

r• ∝
(
∆G

GN

) 1
1−n

. (4.60)

Thus, to convert the GMM to a different value of ∆G/GN, Equation 4.40 is changed

to

µ̃(i)
g,α =

(
∆G

GN

) 1
1−n

µ(i)
g,α, σ̃(i)

g,α =

(
∆G

GN

) 1
1−n

σ(i)
g,α, (4.61)
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with the rest of the analysis unchanged from Section 4.4. We again use the Gaussian

plus Laplace distribution for our noise model.

In Figure 4.4 we plot the 1σ constraints on ∆G/GN for different power law indices.

Fitting the constraint to an exponential, as would be expected from Equation 4.59, we

find the constraint weakens like eβn where β ≈ 4.3. Increasing n increases the density

at a given radius which increases the restoring force and thus a larger ∆G/GN is

necessary for a given offset.

Comparing to Figure 4.2, we see that the constraint using a power law profile is an

order of magnitude tighter than when we use the scaling relations from Section 4.4.4

for the smallest values of n, and comparable when n ≲ 1. The stronger constraints

can be understood in terms of the pivot scale at which the density profile changes

from NFW to a power law. In Equation 4.57 we chose rs as the pivot scale however,

since we use n < 1, if this transition occurred at a smaller radius, the density at a

given radius in the power law region would be greater. Changing the pivot scale to

∼ 0.01rs (∼ 360 pc for a typical galaxy from OF13) would provide constraints similar

to our previous prediction. There is no reason a priori why we would choose 0.01rs

as a pivot scale, but it is reassuring that it is not an unreasonable choice.

Our fiducial case is the halo density profile which gives the most conservative

constraint of those considered, hence we report the value derived from scaling relations

with a cored profile as our final constraint.

We also assumed that the gas density profile has a Sérsic index ngas = 1, i.e. an

exponential disk. We repeated the inference with ngas = 0.5 and 2.0. Increasing ngas

slightly widens the posterior on ∆G/GN. This is expected as increasing ngas increases

the central gas density, which decreases the predicted offset for a given ∆G/GN so

slightly larger values of ∆G/GN are permitted. Given that the gas mass is sub-

dominant compared to the other mass components, we would expect the change in

the constraint to be small, as indeed it is.

4.6.1.2 Noise model

Our previous work on BH offsets [99] demonstrated that the distribution of offsets

is non-Gaussian for these data, so it is unsurprising that the addition of a Laplace

distribution is favoured by the BIC. To ensure that our results are insensitive to our

choice of non-Gaussianity, we re-run the inference using an Edgeworth expansion for

our empirical noise mode, truncating the sum at F = 4 in Equation 4.44 as this has

the minimum BIC for 3 ≤ F ≤ 8. Using the OF13 data, we find that the Edgeworth

noise model gives a result which is consistent with zero, with ∆G/GN < 1.89 at 1σ
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Figure 4.4: Constraints on ∆G/GN at rV = 100Mpc at 1σ confidence using the OF13
data. Left: A power law halo density profile of index n is assumed. To determine
the density profile, we use N AM=200 mock catalogues obtained through abundance
matching. We re-run the analysis at n = 0.5 with N AM=100 and see that the con-
straint is unchanged. Right: Using our fiducial density profile, we vary the box size,
L′, used to add in long wavelength modes when reconstructing the Galileon filed.
L′ ∼ 1Gpc corresponds to no extra long wavelength modes. We also show the con-
straints from different noise models at L′ ∼ 6Gpc, and if we reduce the number of
constrained simulations to 50.

confidence, compared to ∆G/GN < 1.28 for the Gaussian plus Laplace distribution

with this data.

Although disfavoured by the BIC, we now explore the effect of adding a contri-

bution from physical offsets to the Gaussian plus Laplace distribution noise model

(Section 4.4.6.4). We find that our constraint is slightly tightened to ∆G/GN < 1.23

for the OF13 data. As the difference is within the uncertainty on our constraint of

8% (see Section 4.5), we conclude that our constraint is insensitive to this change.

We find that σint < 22 pc at 1σ confidence, showing that this contribution is small if

it exists at all. We plot the constraints from both of these alternative noise models

in Figure 4.4.

We conclude that our results are not sensitive to the noise model, provided that

we include non-Gaussianity.

4.6.1.3 Galileon field

When reconstructing the Galileon field, one should check that the resolution is suf-

ficiently high such that the maximum k is determined by rV and not the resolution,

i.e. that L/N < rV.
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Our minimum rV equals L/N for N = 512. We have checked that our constraints

are unchanged if we use N = 256 for rV ≥ 10Mpc (where we require N > 100).

Repeating the analysis with 34 constrained simulations did not change the con-

straint (see Figure 4.4), indicating that we have a sufficient number of constrained

simulations to sample the distribution of the Galileon field at each galaxy.

In Section 4.4.2 we discussed how we should add Fourier modes to the Galileon

field with wavelengths longer than the box length, L, of our constrained simulations.

This was achieved by creating unconstrained Gaussian random fields in a box of

side length L′ = ℓL. We chose ℓ = 6, however to check that our constraints are

independent of this choice, we re-run the inference with different values of ℓ and plot

the results in Figure 4.4. Comparing ℓ = 6 to ℓ = 14 for the OF13 data, we find

the results are consistent, justifying our choice of ℓ = 6. We also find the constraint

if we do not include this additional long wavelength information (ℓ = 1) and find

that it is weakened from ∆G/GN < 1.28 to ∆G/GN < 3.36 at 1σ confidence for the

OF13 data. This is to be expected as adding in long wavelength modes increases the

magnitude of the Galileon field, which tightens the ∆G/GN constraint.

Removing all of the modes from the constrained simulations is equivalent to setting

rV ∼ 1Gpc. We do this in Figure 4.3 and find little change in our constraints. This is

to be expected since the main contributors to the magnitude of the Galileon field are

modes with k ∼ 2π/Leq, so the majority of the modes from the constrained simulation

have a negligible impact on this. Even though the constrained simulations turn out

to be relatively unimportant in setting our constraints, they would be necessary to

obtain a detection because they contain the information on the direction of g. In

the future it will be interesting to repeat the inference using simulations with initial

conditions constrained in the much larger SDSS volume [86].

4.6.1.4 Other potential systematics

Although we use the BIC to determine how many components to fit in the GMM (Sec-

tion 4.4.5), which should penalise components which fit outliers of the distribution,

it is important to check that our constraints are not driven by unlikely realisations

in our Monte Carlo sampling. Still minimising the BIC, but restricting ourselves to

no more than 15 Gaussian components, we find that our constraints are unchanged.

We find that all galaxies across all runs require ∼10 GMM components even with-

out a maximum number of components, showing that the imposed maximum is not

important.
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We re-run the end-to-end inference with σD = 1.0, 2.5 and 5.0 dex, and find little

variation of the constraint with this parameter for the smaller values of σD. To

understand why increasing the scatter in all of the quantities has little impact on our

∆G/GN constraint, we fit a single Gaussian instead of a GMM to the distribution of

offsets for each galaxy. As expected, the log-normal scatter increases the magnitude

of the mean and the width of the Gaussian. Increasing the mean and the covariance

have competing effects in logL and, until we reach relatively large values of scatter,

the two effects cancel and thus the constraint on ∆G/GN has little dependence on

σD. Increasing σM to 0.6 or σR to 0.5 also has a negligible impact on our constraint.

The final parameter in the inference is ba min, the minimum allowed minor-to-

major axis ratio allowed. We set this to 0.15 as this is the lowest axis ratio recorded

in the NSA. Changing this to 0.20 was found not to change the constraint.

4.6.2 Comparison with the literature

Previous attempts to constrain Galileons using the polarisation of BH–galaxy offsets

relative to the direction of a partially unscreened Galileon field have targeted galaxies

in massive galaxy clusters. Since Equation 4.5 is a total derivative for a spherically

symmetric mass distribution, this equation becomes a modified non-linear Gauss’ law;

only the mass within some radius sources the field at that point. This results in the

Vainshtein mechanism being less efficient inside extended mass distributions, hence

why Galileons with sub-Gpc values of rC can be constrained in these environments.

Constraints α ≲ O(1) were obtained [2, 3] using the central BH in M87 for Galileons

with rC ≲ 1Gpc.

By considering galaxies in more rarefied environments, we study the situation

where the Galileon field is sourced by large scale structure as opposed to a cluster.

This allows us to probe larger values of rC, since we no longer require that the mass

in the vicinity of the BH sources a partially unscreened Galileon field.

Constraints on Galileons can also be found using the technique of lunar laser

ranging [10], which currently sets the bound [1, 11]3

rCα
− 3

2 ≳ 150Mpc. (4.62)

Slightly weaker constraints are obtained by studying the precession of planetary orbits

in the Solar System [392].

3Note that this constraint is sensitive to the rotation vector of the Moon [391], which is set to its
GR value. This could introduce some model dependence in the result.
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In Figure 4.5 we plot the constraints on α as function of rC for the cubic Galileon

from the literature and compare to the constraints obtained in this work. As discussed

in Section 4.4.3, we convert rV to rC by using Equations 4.26 and 4.27. From this

we see that our constraints are applicable to the region rC ≳ H−1
0 . As anticipated,

this is complementary to previous work, which constrains rC ∼ 0.01 − 1Gpc, and is

comparable in strength.

Our conversion from rV to rC in a cosmological context is based on the non-linear

matter power spectrum from CLASS; for smaller values of rV within the 1-halo term

this approximation breaks down and an alternative conversion would be required. We

anticipate that if we were to improve the modelling of the Galileon field to incorporate

the non-linear regime, our constraint on α would remain relatively unchanged as we

moved to smaller rC. Our test will then become competitive with Lunar Laser Ranging

and constrain self-accelerating Galileons, providing an alternative to the Integrated

Sachs-Wolfe probe [393].

We note that the strength of our constraints are similar to those from M87 [2],

despite our sample containing 1916 galaxies and their one. This is due to the interplay

of three effects. First, the observations used in this work have lower resolution, with

σ ∼ 50mas for the radio data, whereas the galaxy–BH offset for M87 is measured

to be < 30mas. Second, we marginalise over an empirical noise model, whereas [2]

assume that the entire offset is due to a fifth force, which would make their constraint

tighter but also more prone to systematics to do with astrophysical contributions

to the offset. Finally, we only consider the Galileon field sourced by large scale

structure, which is smaller than that near a massive cluster and hence allows larger

∆G/GN values for a given offset. Combining cosmic and cluster fields in future work

will therefore afford much tighter constraints.

To enable easy comparison to the literature, we also convert our constraint on rV

and ∆G/GN to one on the Horndeski parameters c2 and c3. To do this, we consider

the tracker solution [394]

˙̄φH = ξH2
0 = constant, (4.63)

where ξ is related to the dimensionless Horndeski parameters for cubic Galileons as

ξ = − c2
6c3

. (4.64)

From Equations 4.3 to 4.5 we see that today

β1 =
ξ

3

[
c3ξ

3 − 1 + 2
Ḣ

H2
0

]
, β2 =

2

ξ2
β1, (4.65)
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where

β1 = (H0rC)
−2 , β2 =

1

3α
. (4.66)

From this conversion and Equation 4.27, we see that lines of constant rV are trans-

formed to lines of constant c3ξ
3, where ξ is proportional to α on these curves. In

Figure 4.6 we plot our constraints in the c3 − ξ plane. In this plot we demonstrate

the regions of parameter space that can be probed by our test, and ways of further

constraining this region. It is clear from the plot that further work should target

smaller rV, as our constraint already lies close to the line corresponding to rV → ∞.

We also plot the α − rV curves in Figure 4.5 for the normal and self-accelerating

branches of the DGP model, evaluated using Equation 4.6 and assuming the matter

density and H0 is the same as in the constrained simulations. We see that the normal

branch is not yet constrained by our test. For our smallest value of rV, we would

require a constraint α < 0.04 to do this, corresponding to an improvement of a factor

of ∼ 7.

Due to the assumption of linearity, our constraints are insensitive to the spe-

cific Galileon model; using the Vainshtein radius for a quartic Galileon in Figure 4.5

changes the conversion to rC by a numerical factor of O(1) [36]. Our bounds are there-

fore equally applicable to quartic and quintic Galileons. The results of GW170817

[148] already severely constrain the self-accelerating branches of these models, with

constraints on the Horndeski parameters [395]

|c4| ≲ 2.8× 10−17

(
2

ξ

)4

, |c5| ≲ 3.8× 10−17

(
2

ξ

)5

, (4.67)

where ξ = H(t)φ̇/H2
0 . To convert these to bounds on α and rC using variants of

Equation 4.4 relevant to these models, one would also need to know c3. Since this

is not constrained by GW170817, we do not perform this comparison explicitly, but

note that our results provide independent stringent constraints on the quartic and

quintic models.
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Figure 4.5: Constraints on the coupling of a cubic Galileon to matter, α, as a function
of the crossover scale, rC, from lunar laser ranging (LLR) [1], the BH at the centre
of M87 [2, 3] and this work. The shaded regions are excluded at 1σ confidence. We
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Figure 4.6: Constraints on the Horndeski parameters c2 and c3 for the cubic Galileon
tracker solution ˙̄φH = ξH2
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4.7 Conclusions

Galileons are scalar field theories which obey the Galileon symmetry φ→ φ+b+cµx
µ

[344] and are parameterised by their crossover scale, rC, and coupling to matter, α.

If rC ∼ H−1
0 then the Galileon is said to be cosmologically relevant and could explain

the late-time accelerated expansion of the Universe. Here we present a test of Galileon

gravity by comparing the predicted equilibrium offsets between the centre of a galaxy

and its central supermassive BH to observational data.

Using similar methods to those in Chapter 2, we construct a galaxy-by-galaxy

Bayesian forward model of these offsets based on dynamical information about these

galaxies, a reconstruction of the local gravitational field and a non-Gaussian empir-

ical noise model. In doing so we utilised CSiBORG, a suite of constrained N-body

simulations of the local Universe using initial conditions from the BORG algorithm.

Marginalising over noise parameters and propagating uncertainties on input quanti-

ties via Monte Carlo sampling, we derive constraints on the magnitude of the fifth

force arising from cosmologically relevant Galileons, ∆G/GN ≡ 2α2.

We rule out ∆G/GN > 0.16 at 1σ confidence for rC ≳ H−1
0 . We find our con-

straints to be robust to the assumed halo density profile, the choice of empirical noise

model and parameters used to infer physical properties from the dynamical informa-

tion available on these galaxies. These constraints are complementary to previous

constraints from galaxy–BH offsets [2, 3]: we probe larger values of rC because we

consider the Galileon field sourced by large scale structure as opposed to a massive

galaxy cluster.

Improved modelling of the Galileon field to enter the non-linear regime should

make our constraints competitive with lunar laser ranging (LLR) [1] at smaller values

of rC. Our approach necessarily requires a large number of galaxies to fit the pa-

rameters of the empirical noise model accurately, so targeted observations at a small

number of galaxies would not be particularly useful in tightening our constraints. Im-

proved modelling of dynamical friction in future cosmological hydrodynamical sim-

ulations [99] could remove our reliance on an empirical noise model, making such

simulations useful for future constraints on Galileons and similar theories.

126



Chapter 5

Dark matter annihilation and
decay

5.1 Introduction

As alluded to in Section 1.1.2.2, the thermal relic cross-section for DM particles of

mass ∼ 0.1 − 1TeV is suspiciously similar to that expected if the coupling were

approximately equal to the electroweak coupling scale. DM annihilation or decay

for particles at these masses could be detected through the emission of gamma rays

by their decay products. Despite the theoretically low interaction rates - one would

expect only a few in 1015 particles to annihilate per Hubble time in the present

Universe [57] - the vast quantities of DM on cosmological scales makes these processes

potentially detectable in the state-of-the-art gamma ray measurements from the Fermi

Large Area Telescope (Fermi -LAT) [396]. Indeed, the excess of observed gamma rays

towards the galactic centre (Galactic Centre Excess; GCE) [397–399] can be fitted well

by the annihilation of DM [400–406]. There is debate over whether other explanations

could also explain the emission. Several studies [407–412] argue that the GCE can be

explained by a population of unresolved point sources, although this is contested [405,

413–415], and some groups [416–419] find both DM annihilation and other models

can fit the data. A combination of these two processes is of course possible, and is

plausible given the spatial variation of the GCE [420]. Other astrophysical processes

at the centre of the galaxy [421–426] could also be responsible.

Given these conflicting explanations of the GCE, in order to unambiguously detect

or rule out DM annihilation or decay models, one should determine if an excess of

gamma rays is detected from other sources or across the full sky. Previous studies

have placed constraints on ⟨σv⟩ through cross-correlation between Fermi -LAT data

and galaxy [e.g. 8, 427] or lensing [428] catalogues, or by studying nearby dwarf
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galaxies [7, 429, 430] or groups [431]. Moreover, such emission should increase the

kinetic energy of baryons, so by considering the impact on the CMB [432] or galaxy

formation [433], one can rule out a velocity-independent cross-section for thermal relic

DM particles less massive than ∼ 30GeV.

Instead of focusing on a few nearby or massive objects, the aim of this work is to

search for the signature of DM decay and annihilation across the full sky by forward-

modelling the observed gamma ray sky, as first suggested in [434]. As proposed in

[435], anisotropies in the cosmic gamma-ray background could be a signature of DM

annihilation or decay. This has previously been studied through the two-point corre-

lation function [e.g. 436], which is calibrated with unconstrained N-body simulations

(e.g. [437] use the Millennium-II and Aquarius simulations [438–440]). Instead, we

utilise the CSiBORG suite of constrained N -body simulations [90–93]. The ICs for

these simulations are chosen to produce final three-dimensional DM density fields

which are consistent with the observed positions of galaxies in the 2M++ galaxy cat-

alogue. The ICs are inferred using the BORG (Bayesian Origin Reconstruction from

Galaxies) algorithm [4, 82–85], a fully Bayesian forward model. We use the particle

positions in the simulations to produce maps of the expected gamma ray flux from ha-

los down to 4.38×1011M⊙ in mass (although we also model smaller substructures), as

well as from DM not identified as belonging to halos. The halos are assumed to have

Navarro-Frenk-White (NFW) profiles [441] and we explicitly model unresolved sub-

structure in a probabilistic manner, since the signal from DM annihilation is sensitive

to the peaks in the density field.

We do not include a contribution from the Milky Way halo or Local Group dwarf

galaxies (which are unresolved in our simulations) in our templates so as to produce

constraints entirely from large scale structure. These constraints will be free from

many of the systematics affecting searches in particular objects, and will reveal the

amount of constraining power for DM annihilation and decay to be found in various

parts of the cosmic web. To account for non-DM effects we include templates for

emission due to point sources, galactic emission and an isotropic background. We

marginalise over the amplitudes of these templates, as well as the realisations in the

CSiBORG suite which sample the full BORG posterior in ICs of the 2M++ volume. We

then compare to Fermi -LAT observations via a MCMC algorithm. A full-sky field-

level inference allows us to capture not only the two-point statistics, but implicitly

all higher orders too.

In this work we rule out the thermal relic cross-section at 95% confidence for

annihilations which produce Z bosons, gluons or quarks less massive than the bottom
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quark if DM has a mass mχ ≲ 7GeV/c2. We find a contribution to the gamma ray

sky with the same spatial distribution as expected from DM decay (flux proportional

to DM density) at 3.3σ confidence, with a decay rate Γ ≈ 3 × 10−28 s−1 for these

channels. However, a power law spectrum with an index p = −2.75+0.71
−0.46 provides a

better fit to the data, suggesting a non-DM origin. In our fiducial analysis, we do not

rule out the thermal relic annihilation cross-section at any mass for production of top

or bottom quarks; we obtain upper bounds which are half the size if we marginalise

over the contribution proportional to the DM density, but we do not include this

contribution in the fiducial analysis. Our constraints on DM decay to leptons are

approximately an order of magnitude less stringent than decay to quarks.

This chapter is structured as follows. We discuss DM annihilation and decay

models in Section 5.2 and introduce the gamma ray data that we use to constrain

these models in Section 5.3. Our inference and template construction methods are

outlined in Section 5.4. The results are presented in Section 5.5 and discussed in

Section 5.6, including the potential systematic uncertainties and a comparison to the

literature. We conclude in Section 5.7. Equations throughout the chapter use units

ℏ = c = 1.

5.2 Theoretical background

We start by assuming that DM is made of a single particle, χ, of mass mχ, whose

antiparticle is itself (e.g. Majorana fermions). This particle is assumed to be able to

both decay

χ→ AĀ, (5.1)

and annihilate

χχ→ AĀ, (5.2)

to a standard model particle, A, and its antiparticle, Ā. The annihilation of the

produced particles would lead to gamma ray emission at some energy Eγ, which one

could detect. If these processes occur via channel i with branching ratio Bri, then

the photon flux for annihilation per unit density squared at redshift z is [442]

dΦann
pp

dEγ

=
⟨σv⟩
8πm2

χ

∑

i

Bri
dNi

dE ′
γ

∣∣∣∣
E′

γ=Eγ(1+z)

, (5.3)

and for decay per unit density

dΦdec
pp

dEγ

=
Γ

4πmχ

∑

i

Bri
dNi

dE ′
γ

∣∣∣∣
E′

γ=Eγ(1+z)

, (5.4)
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where ⟨σv⟩ is the thermally averaged cross section, τ = 1/Γ is the lifetime of the

particle, and dNi/dEγ is the photon energy distribution for channel i. Throughout

this work we assume s-wave annihilation so the parameter ⟨σv⟩ is assumed to be a

constant, i.e. independent of v. If χ is not its own antiparticle (e.g. Dirac fermions),

the annihilation flux is half of this value, provided there is no matter-antimatter

asymmetry. Since we do not a priori know which branching ratios to use, in this

work we assume that the annihilation or decay occurs via a single channel, however

our analysis can be trivially extended to multiple channels.

Since these results apply at unit density, we must now take into account the

integrated DM density along the line of sight. By introducing the J factor

dJ

dΩ
=

∫
ρ2DM (s,Ω) ds, (5.5)

and D factor
dD

dΩ
=

∫
ρDM (s,Ω) ds, (5.6)

we arrive at the total photon fluxes per unit solid angle

d2Φann

dEγdΩ
=

dΦann
pp

dEγ

dJ

dΩ
, (5.7)

d2Φdec

dEγdΩ
=

dΦdec
pp

dEγ

dD

dΩ
, (5.8)

where we note that we have assumed that the cosmological redshift variation across

the source is negligible, so we can factor out Equations 5.3 and 5.4 from the line of

sight integral.

5.3 Gamma ray data

In this work we use gamma ray observations from Fermi -LAT, and analyse these using

the Fermi Tools1 and FermiPy [443]. To mitigate the effect of contamination from

cosmic rays whilst ensuring a sufficiently high photon acceptance rate at high energy

to enable one to constrain emission models, we consider photons within the event class

SOURCEVETO. We select all photons in this event class of energy 500MeV−50GeV

between mission weeks 9 and 634 which are flagged as belonging to the upper quartile

of angular resolution (PSF3) and set the maximum zenith angle to be 90◦. We

subdivide these data into 9 logarithmically space energy bins, then bin spatially

1https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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onto HEALPix 2 [182, 183] maps. Although the angular resolution of the data

corresponds to nside ≈ 1024, we compare it to the theoretical maps at nside =

256 for computational efficiency. In Section 5.6.2.1 we find that out results are not

significantly affected by this choice.

Due to the high density and close proximity of the centre of our own galaxy, one

would expect that a DM annihilation or decay signal would be dominated by this

region. However, the constraint or detection one would obtain from studying this

region would be sensitive to the modelling of the Milky Way density profile, and one

would have to ensure that such a signal could not arise due to potentially incorrect

modelling of the galactic diffuse or isotropic components, or through processes not

captured by these models, such as an unresolved population of millisecond pulsars.

This is a complicated yet feasible task [see e.g. 405], but is beyond the scope of this

work; here we wish to produce constraints on DM annihilation and decay which are

independent of the GCE so we simply mask the galactic plane, with the aim that any

constraint or detection is driven by the density fields inferred in Section 5.4.1. We

therefore mask the region with galactic latitude |λ| < 30◦.

5.4 Methods

In this section we detail how we construct the full-sky templates for dark matter an-

nihilation and decay and how these are compared to the gamma ray data to constrain

the annihilation cross-section and decay rate. In Section 5.4.1 we describe the con-

strained simulations used to generate these templates and in Section 5.4.2 we describe

how the J and D factors are computed from the DM particles in these simulations.

These templates are combined with those from Section 5.4.3 which describe non-DM

contributions to the gamma ray sky, and we compare these to the data using the

likelihood model in Section 5.4.4.

5.4.1 Bayesian large-scale structure inference

To compute the J and D factors, we use the set of DM-only constrained simulations,

CSiBORG , introduced in Section 1.3.2. Therefore, our results are conditioned on

the BORG cosmology; a study of the cosmology-dependence of our results is beyond

the scope of this work. To improve the effective resolution of our calculation in high-

density regions we run a halofinder on the CSiBORG particles and use analytic formulae

for a specified density profile. Specifically, we use the watershed halofinder PHEW [444]

2http://healpix.sf.net
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7e+11 1e+15〈J〉[GeV2 cm−5] 1e+15 1e+16〈D〉[GeV cm−2]

Figure 5.1: Mollweide projection in galactic coordinates of the ensemble mean J and
D factors over the CSiBORG realisations, alongside the brightest ∼ 6000 galaxies from
the 2M++ dataset (red points). One can see that the calculated J and D factors,
i.e. the underlying DM distribution, trace the observed galaxies well. We overplot
the mask on completeness used in the BORG inference of the initial conditions [4, 5]
(faded region near the galactic plane masked out).

which runs on the fly as a patch to RAMSES. This splits the negative density field into

basins which share a common local minimum via steepest descent. These basins are

then combined according to user-defined thresholds on the density of saddle points

between basins to merge low-mass subhalos into their parents; we use the standard

threshold value from Bleuler et al. [444] of 200ρc. The halo catalogues are publicly

available for the full CSiBORG suite [93].

5.4.2 Computing the J and D factors

The halofinding allows us to split CSiBORG particles into two types: those that belong

to halos and those that do not. Since the J factor depends on the square of the density,

it is more sensitive to the small-scale matter distribution, and thus we must treat halos

separately from the background density field in order to account for structures below

the resolution of the CSiBORG simulations. The D factor is less sensitive to these

small scales, and thus we treat all particles equally in this case. D is computed using

the procedure outlined in Section 5.4.2.1, where we use all particles. We compute

J as in Section 5.4.2.1, but only considering non-halo particles, and add this to the

contribution from halos, which are treated as in Section 5.4.2.2. We plot the resulting

ensemble mean J and D factor maps in Figure 5.1.

For the J factor maps, we generate the templates on a higher resolutionHEALPix

grid than that on which we perform the inference (nside = 2048 instead of nside =

256) and subsequently degrade them. Due to the nonlinear dependence of J on

ρ, this allows for a more faithful representation of the density field than if J was
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initially calculated at nside = 256, which is especially important for the regions of

the sky corresponding to halos produced in CSiBORG . We concluded the HEALPix

resolution of nside = 2048 was sufficient by comparing the total J factor to those

with increasing HEALPix resolution (nside = 4096, 8192) since the change in total

J factor was at the sub-percent level with increasing nside.

Regarding the D factor calculation, we directly calculate the line-of-sight integral

of the density field within a given HEALPix pixel at the selected resolution. The

convergence of total all-sky D factor with this procedure is of course present for all

considered resolutions, since it should be simply proportional to the total mass within

the CSiBORG volume.

5.4.2.1 Smoothed density field

We wish to determine the density of DM particles which do not belong to a halo on a

regular Cartesian grid with Ngrid = 1024 grid points per side. To do this, we adopt a

procedure based on smooth particle hydrodynamics (SPH) [445] as described in [446]

and outlined below. Using the SPH algorithm over e.g. a cloud-in-cell (CIC) approach

allows us to better capture the peaks of the matter density field, since the SPH kernel

will adapt to the local density of matter, in contrast to the CIC approach which has

a fixed kernel corresponding to a trilinear interpolation scheme. We compare the

results of using a SPH kernel to a CIC algorithm in Section 5.6.2.1.

First, we determine the number of particles, Np, within the cell corresponding to

each grid point (i, j, k). We then define

NX = max (Np, NSPH) , (5.9)

where NSPH = 32. The choice for this number of neighbour is partly motivated by the

typical number of edges linking a node to its neighbours in a Delaunay tesselation.

That number is approximately 16 for a Euclidean three dimensional vector space

[447, 448]. We pick a value twice as big as we intend the filter to have a larger reach

than the first layer of neighbours. We then find the mass associated with this grid

point by considering the nearest NX particles to be

m̃ijk =
1

R3
ijk

NX−1∑

l=1

mlWlS
(

dl
Rijk

)
, (5.10)

where Rijk is half the distance to the furthest of the NX particles from the grid point,

ml is the mass of particle l, which is at a distance dl from the grid point, Wl is the
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weight for particle l

Wl =

(∑

ijk

1

R3
ijk

S
(

dl
Rijk

))−1

(5.11)

and the interpolating function, S, is chosen to be

S (x) =





1− 3
2
x+ 3

4
x3, 0 ≤ x < 1

1
4
(2− x)3, 1 ≤ x < 2

0, otherwise.

(5.12)

If the spacing between grid points is ∆r, then the density assigned to each site is

ρ̃ijk =
m̃ijk

∆r3
. (5.13)

To compute the J and D factors, we compute Equations 5.5 and 5.6, respectively,

along line of sight corresponding to eachHEALPix pixel at the chosen resolution. We

integrate up to the edge of the simulated volume and perform trilinear interpolation of

the density field onto the line of sight. The convergence of this approach was checked

by increasing the resolution of the SPH kernel. The total assigned mass to the grid

was consistent between all resolutions we tried (Ngrid = 256, 512, 1024), therefore we

opted for Ngrid = 1024 for our final J and D factor calculations.

5.4.2.2 J factor from halos

To include the contribution from particles inside halos, we use a custom extension

of the clumpy package3 [449–451]. In this section we review how the J factor is

calculated in this package, and our assumptions for the halo density profiles.

We assume that all halos are spherically symmetric, and that the total density

profile, ρtot, can be described by a simple analytic form. For our fiducial case, we

consider the three-parameter family of profiles [238, 452]

ραβγ (r) =
2

β−γ
α ρs

(r/rs)
γ (1 + (r/rs)

α)
β−γ
α

, (5.14)

where rs is the scale radius, ρs is the density at rs, and α describes the sharpness of

the transition between the inner (γ) and outer (β) logarithmic slopes. For a NFW

profile, α = 1, β = 3, γ = 1. In Section 5.6.2.1, we also consider the Einasto profile

[440, 453]

ρEINASTO (r) = ρ−2 exp

(
− 2

α

((
r

r−2

)α

− 1

))
. (5.15)

3https://clumpy.gitlab.io/CLUMPY
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In the above, r−2 represents the radius at which the logarithmic slope of the profile

equals −2, while ρ−2 ≡ ρ(r−2). For both profiles we calculate the parameters defining

the profile from the total halo mass and corresponding concentration. The mass-

concentration relation we use is shown in Equation 5.25. We also be note that the

parameter α of the Einasto profile is determined as a function of virial peak height

[454]. Given that all of our halos are at very low redshift (z ≲ 0.05) and almost all

have masses within M ∈ [1012, 1015]M⊙, the parametric relation is quite accurate.

We use the colossus package throughout [455]. We note that, since the Einasto

parameters are fitted to halos produced in DM-only simulations, this captures only

the uncertainty in N -body modelling. Baryons induces a potentially larger effect,

which is however harder to model reliably. We discuss this further in Section 5.6.2.2.

One would also expect that a halo contains a large number of ‘clumps’ or subhalos,

such that the true smooth component of the density profile is [456]

ρsm (r) = ρtot (r)− ⟨ρsubs (r)⟩, (5.16)

where ⟨ρsubs(r)⟩ gives the average contribution from the substructure. If clump i has

density profile ρicl, then it contributes to the total J factor value within a HEALPix

pixel, p, as

Jp =

∫

p,∆halo

(
ρsm(s,Ω) +

∑

i

ρicl(s,Ω)

)2

dsdΩ = Jsm,p + Jsubs,p + Jcross,p, (5.17)

where

Jsm,p =

∫

p,∆halo

ρ2sm(s,Ω)dsdΩ, (5.18)

Jsubs,p =

∫

p,∆halo

(∑

i

ρicl(s,Ω)

)2

dsdΩ, (5.19)

Jcross,p = 2

∫

p,∆halo

ρsm(s,Ω)

(∑

i

ρicl(s,Ω)

)
dsdΩ, (5.20)

and ∆halo represents the intersection of the halo volume with the cone spanned by

the pixel p. Our task is therefore to determine the distribution of clumps for a given

halo and to calculate these integrals. Here, we readily use the solution provided by

the clumpy package and describe it briefly below.

Assuming that a given halo has Ntot independent clumps, we factorise the distri-

bution for the number of clumps with some mass M , concentration c, in some region

dV = d3r as [450, 457]

dN

dV dMdc
= Ntot

dPV (r)

dV

dPM (M)

dM

dPc (M, c)

dc
. (5.21)
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Since the clumps form before the host halos within ΛCDM, their spatial distribution

will follow the host dark-matter density profile. This has been shown to be a good

assumption in simulations of galaxy-sized halos [440, 458]. Given the self-similar

nature of collapse of ΛCDM halos, we extrapolate this conclusion to halos from our

CSiBORG ensemble. We assume that the distribution of masses is a power-law

dPM

dM
∝M−αM , (5.22)

in the range M ∈ [10−6M⊙, 10−2Mh] for a halo of mass Mh, where αM = 1.9 (see

section 2.3 of [459] and references therein). Again, the values are motivated by nu-

merical simulations of Milky Way sized halos, which we extrapolate to bigger halos

present in our forward model.

Besides modelling the uncertainty due to the spatial and mass distribution of

substructure, the clumpy package also allows us to include the uncertainty in the

mass-concentration relation. For the substructure component, we consider two cases

for the concentration distribution. In the first case, we assume that the concentration

of all substructure halos is a deterministic function of the mass

dPc

dc
= δ (c− c̄ (M)) , (5.23)

where we define δ as the Dirac-delta distribution. The second possibility that we

follow is that the concentration is log-normally distributed about this mean

dPc

dc
=

1√
2πcσc (M)

exp

(
−(log c− log (c̄ (M)))2

2σ2
c

)
. (5.24)

Motivated by [437], the substructure halos are assumed to have the following mass-

concentration relation [460]

c̄ (M) =
5∑

j=0

Cj

[
ln

(
M

h−1M⊙

)]j
, (5.25)

where Cj = (37.5153,−1.5093, 1.636×10−2, 3.66×10−4,−2.8927×10−5, 5.32×10−7),

with σc = 0.0, i.e. we assume all substructure halos of the same mass have the

same concentration. In Section 5.6.2.3 we consider a nonzero value σc = 0.2 in

Equation 5.24, as motivated by [461–463] as a comparison.

Given that we do not resolve substructures of all the halos present with our sim-

ulation, we assume the resulting distribution for Jsm and Jsubs to be a Gaussian.
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Figure 5.2: The figure shows (a) J factor of a typical NFW halo within CSiBORG

(Mh ≈ 5 × 1013M⊙) and (b) the corresponding relative fluctuations in the J factor
due to the substructure contribution. The quantities ⟨J⟩ and std(J) are calculated
according to Equations 5.35 and 5.36 respectively. As can be seen, the relative size of
fluctuations in the J factor grows towards the outskirts. Qualitatively similar features
are observed if we assume an Einasto profile. Note that here we placed the halo at
the centre of the HEALPix grid for numerical convenience.

Therefore, we only need to find the mean and variance of these contributions in each

HEALPix pixel. We define the 1-clump luminosity to be

L (M, c) ≡
∫

Vsubhalo

ρ2cl (r;M, c) d3r, (5.26)

and its moments as

⟨Ln⟩ ≡
∫ M2

M1

dPM

dM

∫
dPc

dc
Lndc dM, (5.27)

for a given mass range of clumps [M1,M2], while the mean contribution of Jsubs,p from

this volume is

⟨Jsubs,p⟩ = Ntot

∫

p,Vℓ

dPV

dV
dℓ dΩ ⟨L⟩ , (5.28)

with Ntot representing the total number of clumps within the selected mass range

[M1,M2]. Note that we assume that the clumps are non-overlapping, such that the

cross-terms in Equation 5.19 can be neglected. For more details on how these quan-

tities are defined we refer the reader to the clumpy related publications [449–451].

Note that since we are assuming unresolved substructures for our CSiBORG extra-

galactic halos, we are integrating over the total subhalo volume Vsubhalo for the subhalo

luminosity. Furthermore, since there can be many subhalos present within the line of

sight determined by the given HEALPix pixel we are also accounting for the span

of the host halo along this line of sight through Vℓ ≡ [ℓmin, ℓmax], with ℓmin and ℓmax
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being the closest and furthest points of the host halo along this line of sight. Since

these integrals do not have a closed form for general DM profiles, we evaluate all

numerically.

Given that the mean of some power of the distance from the observer, ℓ, to a

clump which falls inside the HEALPix pixel p is

〈
ℓnp
〉
=

∫

p,Vℓ

ℓn+2dPV

dV
dℓ dΩ, (5.29)

we can write the variance on Jsubs as

σ2
Jsubs,p

=
〈
L2
〉 〈
ℓ−4
p

〉
− ⟨L⟩2

〈
ℓ−2
p

〉2
, (5.30)

since L and ℓ are independent. For the cross-term, Jcross,p, we use that its mean is

⟨Jcross,p⟩ = 2

∫

p,Vℓ

ρsm ⟨ρsubs⟩ dℓ dΩ, (5.31)

while its variance can be computed as

σ2
Jcross,p = 4

∫

p,Vℓ

ρ2sm(l,Ω)σ
2
subs(l,Ω)dℓ dΩ, (5.32)

with

σ2
subs,p ≡ σ2

subs(l,Ω) = ⟨ρ2subs(l,Ω)⟩ − ⟨ρsubs(l,Ω)⟩2, (5.33)

⟨ρsubs(l,∆Ω)⟩ =
∫

∆Ω,Vℓ

dPV

dV

∫

VM

dPM

dM

∫

Vc(M)

dPc

dc
ρsubs(ℓ,Ω;M, c(M)) dℓdΩdMdc,

(5.34)

with VM and Vc(M) representing the mass and corresponding concentration ranges for

the subhalo distribution respectively.

We decide to only include σJsubs,p as it is the dominant source of uncertainty. This

can intuitively be understood from the Equation 5.32. We note that the integrand is

negligible both in the outskirts of the host halo, since ρsm ∼ 0 and σ2
subs remains finite,

and in the very centre of the host halo, since σsubs,p ∼ 0. Therefore, Jcross,p contributes

only at a very limited range of scales. Furthermore, for our halos, there is a clear

hierarchy between the cross- and subs- term Jcross,p ≲ 0.01 − 0.1Jsubs,p, therefore we

focus only on the σJsubs,p as the dominant source of uncertainty of J factor due to

substructure.

We hence write that the distribution followed by the J factor for a given halo in

a given pixel is given by a Gaussian with mean

⟨Jp⟩ = Jsm,p + ⟨Jsubs,p⟩+ ⟨Jcross,p⟩ , (5.35)
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and variance

σ2
p = σ2

Jsubs,p
+ σ2

Jcross,p ≈ σ2
Jsubs,p

. (5.36)

We calculate these quantities for all CSiBORG realisations. To distinguish between

these, we introduce a second index, j, to label the simulation, i.e. ⟨Jpj⟩ is ⟨Jp⟩ for

CSiBORG simulation j, and likewise σpj is σp for the same simulation.

In Figure 5.2, we show the result of the model for a typical halo within CSiBORG

with a mass ofMh ≈ 5×1013M⊙. We see that the effects from the term in σ2
Jsubs

cannot

be neglected, especially in the outskirts of the halo. In the very centre, where the

structure of the halo is dominated by the smooth component, the fluctuations in the

J factor due to the substructure are negligible, amounting only to few percent, while

in the outer parts these fluctuations become more important. This is an expected

result given that the boost in J factor due to substructure becomes more important

in the outer edges, where the smooth component, Jsm,p, is subdominant with respect

to the substructure J factor, Jsubs,p. This behaviour is identical for an Einasto profile.

Besides this, we also include the contributions of sub-subclumps to the J factor

of halos, using one additional level of substructure, which is the default setting of

the clumpy code. Due to the increased computational cost, we considered two-level

substructure contribution for our halos for only one CSiBORG realisation. Including

additional substructure levels will result in an overall change in J factor of less than

∼ 5% [450], and ignoring such levels will make our constraints on ⟨σv⟩ conservative
since this will systematically underestimate the J factor.

In conclusion, to obtain the total all-sky J factor, we combine the line-of-sight

calculation for the density field obtained from particles outside of halos detected

within CSiBORG realisations with the component coming from the halo particles of

the CSiBORG by treating the halos as presented in this section, utilising the clumpy

code. This final template is used in the inference pipeline. We discuss the numerical

convergence of these calculations in Section 5.6.2.

5.4.3 Non-DM Templates

In order to constrain the parameters describing DM annihilation or decay, one also

needs to take into account other sources of gamma rays. We consider a model with

three contributions: our own galaxy (gal), an isotropic background (iso) and point

sources (psc). We produce separate templates, {T t
i (r̂)}, t ∈ {iso, gal, psc} for each

energy bin, i, and assign each template a different normalisation, which we infer

from the data. The sum of the three templates is plotted in Figure 5.3 alongside the
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Figure 5.3: Mollweide projection in galactic coordinates of (a) the template predic-
tions and (b) observed photon counts across the full energy range considered in this
work. For visualisation, we sum the isotropic, galactic diffuse and point source tem-
plates assuming each has unit amplitude. In our inference we simultaneously infer the
normalisation of each of the three components, with a different amplitude for each
energy bin, and the contribution proportional to the J or D factor.

observed photon counts, from which one sees that these three templates dominate

the observed gamma ray sky.

The isotropic component is designed to capture emission from unresolved extra-

galactic sources, residual cosmic-rays and extra-galactic diffuse sources. It consists of

a spatially constant map, with a spectral shape given by the Fermi Isotropic Spectral

Template4, but with an over normalisation Aiso
i , which we infer separately for each

energy bin, i.

For the galactic component, we use the spatial models described in [464], which are

developed using spectral line surveys of HI and CO and infrared tracers of dust column

density and a model of inverse Compton emission. These spatial templates describe

the relative change in flux across different parts of the sky. We keep these fixed during

our analysis, and infer the normalisation, Agal
i , in each energy bin, which controls the

total emission from our galaxy. We note that these templates are not designed to be

used for analyses which aim to fit medium or large scale diffuse structures, since the

templates include a filtered residual map, which is smoothed to a few degrees. Any

large-scale component not explicitly modelled when generating the templates will be

absorbed by this residual and would be undetectable in our analysis. However, as can

be seen in Figure 5.1, the J and D factor maps are dominated by small-scale features

due to massive structures, and thus we are in the regime for which these templates

are valid.

4https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Finally, we produce a single template containing all point and extended sources

from the models provided in the LAT 12-year Source Catalog (4FGL-DR3).5 We

introduce a free scaling parameter, Apsc
i , for each energy bin which will be inferred.

Since we find no cross-correlation between the point-source template and our own J

andD factor templates, having a separate normalisation for the point-source template

will not introduce new degeneracies (see Section 5.6.2.4).

5.4.4 Likelihood model

Instead of directly constraining the DM annihilation or decay parameters, we split

the inference into two parts. First, we assume that there is a contribution to the

gamma ray sky which is proportional to the J or D factor, i.e. for a given CSiBORG

simulation j, the flux in energy bin i and pixel p, Φipj, has terms

Φipj ⊃
(
AJ

i

Jpj
J0

+ AD
i

Dpj

D0

)
∆Ei, (5.37)

where ∆Ei is the width of the bin and J0 and D0 set the units. We choose J0 =

1013GeV2 cm−5 sr−1 and D0 = 1013GeV cm−2 sr−1. We fit for the total flux of such

a contribution in each energy bin to obtain a spectrum. In the second half of the

inference, we fit this spectrum to a series of models (including DM annihilation and

decay) in an attempt to determine the origin of such a signal.

This method has two main advantages. First, we can consider each energy bin

and CSiBORG simulation separately in the first half of the inference. Although this

involves initially computing 909 MCMC chains (one for each energy bin and for each

CSiBORG simulation), since the problem is embarrassingly parallelisable and because

we only need to infer four or five parameters for each chain (AJ
i and/or A

D
i , A

iso
i , Agal

i ,

Apsc
i ) compared to ∼ 30 if we combined the energy bins, we find that this approach

is computationally more efficient. Second, by remaining agnostic to the origin of AJ
i

or AD
i until the second step, we are able to more easily determine which energy bins

drive our constraints. Hence, it becomes simpler to compare different models since

we do not need to rerun the map-level inference every time that we wish to change

the DM particle mass or decay channel (which is more computationally expensive).

5.4.4.1 Inferring the spectrum

We assume that photon counts in energy bin i from the J and D factor contributions,

as well as each of the contributions described in Section 5.4.3 is Poisson distributed.

5https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
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The variation of the mean of the latter with sky position, r̂, and energy is described by

the known templates {T t
i (r̂)}, where t labels the templates. For pixel p and CSiBORG

realisation j, we then define

Jipj ≡
Jpj
J0

∆Ei, Dipj ≡
Dpj

D0

∆Ei, T t
ip ≡

∫

p

T t
i (r̂) dΩ, (5.38)

such that the mean number counts in pixel p and energy bin i is predicted to be

λipj = Fip ×
(
AJ

i Jipj + AD
i Dipj +

∑

t

At
iT

t
ip

)
, (5.39)

and we have multiplied our templates by the Fermi exposure, Fip, which describes

the angular variation of the sensitivity of Fermi. This step is performed using the

Fermi Tools, where we also convolve all templates with the point spread function.

The likelihood of observing nip counts in pixel p and energy bin i given the mean λipj

is

L (nip|λipj) =
λ
nip

ipj exp (−λipj)
nip!

. (5.40)

As discussed in Section 5.4.2, we do not know the exact DM distribution for

a given CSiBORG simulation due to unresolved substructure in halos, although we

did not include this uncertainty in Equation 5.40. We model the uncertainty on

the substructure contribution to the J factor as a truncated Gaussian. This choice

allows us to marginalise analytically over the substructure uncertainty, such that the

conditional probability for a given λipj given the model parameters is

L
(
λipj|AJ

i , A
D
i , {At

i}, j
)
=

1

σipj

√
2

π

×
(
1 + erf

(
µipj

σipj
√
2

))−1

exp

(
−(λipj − µipj)

2

2σ2
ipj

)
, (5.41)

for λipj > 0, and zero otherwise, where

µipj = Fip ×
(
AJ

i ⟨Jipj⟩+ AD
i ⟨Dipj⟩+

∑

t

At
iT

t
ip

)
, (5.42)

and

σipj = AJ
i

σpj
J0

∆Ei. (5.43)

142



The likelihood for observing nip counts in pixel p and energy bin i is then

L
(
nip|AJ

i , A
D
i , {At

i}, j
)

=

∫
Lipj (nip|λipj)L

(
λipj|AJ

i , A
D
i , {At

i}, j
)
dλipj

=

√
2n

π

σ
nip

ipj

nip!
exp

(
− µ2

ipj

2σ2
ipj

)(
1 + erf

(
µipj

σipj
√
2

))−1

(
Γ

(
nip + 1

2

)
1F1

(
nip + 1

2
;
1

2
;

(
µipj − σ2

ipj

)2

2σ2
ipj

)
+

√
2

(
µipj − σ2

ipj

)

σipj
Γ
(nip

2
+ 1
)

×1F1

(
nip + 2

2
;
3

2
;

(
µipj − σ2

ipj

)2

2σ2
ipj

))
, (5.44)

where 1F1 is the confluent hypergeometric function of the first kind. We describe how

we implement this likelihood numerically in Appendix A.

Assuming that each pixel is independent, the likelihood for the observed data in

energy bin i, Di, is

L
(
Di|AJ

i , A
D
i , {At

i}, j
)
=
∏

p

L
(
nip|AJ

i , A
D
i , {At

i}, j
)
. (5.45)

Using the priors, P , given in Table 5.1, we apply Bayes’ identity (Equation 1.39)

L
(
AJ

i , A
D
i , {At

i}, j|Di

)
=

L
(
Di|AJ

i , A
D
i , {At

i}, j
)
P
(
AJ

i

)
P
(
AD

i

)
P ({At

i})P (j)

Z (Di)
,

(5.46)

where

P
(
{At

i}
)
≡
∏

t

P
(
At

i

)
, (5.47)

to obtain the posterior, P
(
AJ

i , A
D
i , {At

i}, j|Di

)
, where Z (Di) is the evidence and

where we consider each energy bin and CSiBORG simulation separately. We use the

emcee sampler [62] and terminate the chain when the estimate of the autocorrelation

length changes by less than 1 per cent per iteration and the chain is at least 100

autocorrelation lengths long in all of the parameters.

We apply a Monte Carlo estimate to the likelihood of the CSiBORG samples, such

that the one-dimensional posterior for the amplitude AX
i (X being J or D) is

L
(
AJ

i |Di

)
=

1

Nsim

∑

j

∫
d{At

i}dAD
i L
(
AJ

i , A
D
i , {At

i}, j|Di

)
. (5.48)
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where Y = J if X = D and vice-versa. In practice, we compute the average over

CSiBORG realisations by first fitting the one-dimensional posteriors L
(
AX

i |Di, j
)
with a

spline using the GetDist package [176] and then computing the mean of the resulting

functions. This is equivalent to concatenating the Markov Chains if each chain had

the same length.

5.4.4.2 Constraining DM parameters

We now have a posterior, L
(
AJ

i |Di

)
, describing the gamma ray spectrum from sources

which have the same spatial distribution as the J factor. We wish to fit this spectrum

to a model, fi (θ), for these sources and infer the model parameters θ. We assume

that our model is deterministic, such that

L
(
AJ

i |θ
)
= δ

(
AJ

i − fi (θ)
)
, (5.49)

and therefore we obtain the likelihood for the observed gamma ray sky by incorpo-

rating Equation 5.48,

L (Di|θ) =
∫

dAJ
i L
(
Di|AJ

i

)
L
(
AJ

i |θ
)
=

∫
dAJ

i

L
(
AJ

i |Di

)
Z (Di)

P (AJ
i )

δ
(
AJ

i − fi (θ)
)
.

(5.50)

We assume that all energy bins are independent such that the likelihood of θ given

the full dataset D is

L (D|θ) =
∏

i

L (Di|θ) , (5.51)

and so with a final application of Bayes’ identity we obtain the posterior for our model

parameters

L (θ|D) =
L (D|θ)P (θ)

Z (D)
. (5.52)

If fi (θ) comprises exclusively of DM annihilation, then, at fixed DM mass and anni-

hilation channel, the transformation from the posterior distribution of AJ
i to that of

⟨σv⟩ is trivial. For more complicated models (i.e. where θ consists of more than one

parameter), we again calculate the posterior on θ using the emcee package.

For DM annihilation and decay, prompt production, decays, hadronisation and

radiative processes associated with the resulting SM products produce a variety of

stable species, including gamma rays. For a given channel, one must know the energy

spectrum of the intermediate SM particles and the resulting branching ratios and

energies of the subsequently produced particles. One then has, for each channel,

a model for the spectrum of gamma rays as a function of DM particle mass and
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Table 5.1: Priors on DM properties and template amplitudes (At
i ∈ {Agal

i , Aiso
i , A

psc
i }),

as defined in the text. All priors are uniform in the range given, except from the DM
particle mass, mχ, since we constrain the cross section, ⟨σv⟩, and decay rate, Γ, at
fixed mχ. The priors on A

J
i and A

D
i depend on the minimum energy of the energy bin,

Ei, although in all cases the prior is much wider than the posterior. For DM decay
we also ensure that mχ is at least twice the rest mass of the final decay products.

Parameter Prior
mχ / GeV/c2 [2, 500]

⟨σv⟩ / 10−26 cm3s−1 [0, 103]
Γ / 10−30 s−1 [0, 103]

At
i [0.5, 1.5]

AJ
i / 10−16 cm−2s−1MeV−1 [0, (300GeV/Ei)

2]

AD
i / 10−16 cm−2s−1MeV−1 [0, 0.5× (300GeV/Ei)

2]

annihilation cross-section or decay rate. In this work we utilise the pre-computed

spectra provided by the Fermi collaboration6 which are calculated as described by

Jeltema and Profumo [465].

5.5 Results

In Figure 5.4, we show the corner plot for the first stage of our inference, where we

infer AJ
i and AD

i simultaneously. We emphasise that we fit a different AJ
i and AD

i to

each energy bin, i, and CSiBORG simulation. In this example, we consider simulation

number 7444 (as given in [93]) and the energy range 30 − 50GeV (energy bin 9).

We see that the parameters corresponding to the isotropic, galactic and point-source

contributions are all approximately unity, as one would expect. For this energy bin

and CSiBORG simulation we see that there is no evidence for a contribution to the

gamma ray flux proportional to either the J or D factor. We note that AJ
i and AD

i

are highly degenerate, such that a large value of AJ
i corresponds to a small AD

i . For

our fiducial analysis, we therefore choose to set one of these parameters equal to

zero at a time; i.eṫhe inference to place constraints on ⟨σv⟩ will assume ∀i AD
i = 0

and for Γ we assume ∀i AJ
i = 0. This will make our constraints conservative (see

Section 5.6.1.1).

We note that Aiso
i is strongly degenerate with Agal

i , which is to be expected since

both describe large-scale features across the sky. If we used exactly the same selection

criteria as the Fermi analysis which produced the non-DM templates, then Agal
i , Aiso

i

and Apsc
i would all have a mean of unity. This is not true here because the isotropic

6https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
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Figure 5.4: Posterior distributions for CSiBORG simulation 7444 of the parame-
ters describing the gamma ray flux in the energy range 30 − 50GeV. We include
templates proportional to the J factor (AJ

9) and D factor (AD
9 ), as well as an

isotropic (Aiso
9 ), galactic diffuse (Agal

9 ) and point source (Apsc
9 ) contributions, and

define A⋆ ≡ 10−22 cm−2s−1MeV−1. The contours show the 1 and 2σ confidence inter-
vals.
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Figure 5.5: One-dimensional posterior distributions on the coefficients describing the
flux proportional to the (a) J factor and (b) D factor in the energy range 30−50GeV.
Each black line gives the posterior distribution for an individual CSiBORG simulation,
and the red line is the mean of these, i.e. the final posterior distribution.
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i

for DM annihilation and decay, respectively, via the bb̄ channel for a particle of mass
mχ = 100GeV/c2 with a thermally averaged cross-section of ⟨σv⟩ = 3× 10−25 cm3s−1

and decay rate Γ = 3 × 10−28 s−1. We also plot AD
i if the spectrum was due to

a power law of amplitude Ap = 4.1 × 10−20 cm−2s−1MeV−1 and index p = −2.75,
and AJ

i for annihilation of mχ = 100GeV/c2 particles which occurs via the W+W−

(⟨σv⟩ = 3× 10−25 cm3s−1) and e+e− (⟨σv⟩ = 3× 10−24 cm3s−1) channels.

147



101 102

mχ / GeV/c2

100

101

102

95
%

u
p

p
er

li
m

it
on
〈σ
v
〉
/

10
−

2
6

cm
3

s−
1

uū
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rule out the thermal relic cross-section at 95% confidence for the corresponding mass
and channel. The dotted black line is the constraint obtained by Albert et al. [7] from
Milky Way satellites for the bb̄ channel; we see our constraints are approximately an
order of magnitude less stringent. The dashed black line shows the constraints for
the bb̄ channel derived from the cross-correlation between Fermi -LAT and the Dark
Energy Survey Y3 low surface brightness galaxy sample (DES-LSBGs) [8]. Our field-
level inference improves the constraints from large scale structure by approximately
a factor of 2 at mχ = 10GeV/c2.
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Figure 5.8: Constraints on DM decay rate, Γ, as a function of particle mass, mχ, for
different decay channels. The solid lines are the median values and the bands show
the 95% confidence regions. We do not infer mχ, which means that every constraint
is conditioned on the corresponding particle mass. For some decay channels and some
masses, we see that Γ is inferred to be non-zero, however (as shown in Section 5.6.1.2)
we find that a power-law model better describes the spectrum, suggesting that this
flux is not in fact due to DM decay. We note that for some channels we cannot probe
the full mass range due to the requirement that mχ is at least as large as the sum of
the masses of the decay products.

template is calibrated for latitudes 10◦ < |λ| < 60◦, whereas we fit our template

to |λ| > 30◦. In general, we find Aiso
i to be slightly smaller than 1. This is more

prominent in the higher energy bins; we find that Aiso
i is closer to unity at lower

energy. We verify that this not due to the addition of the J or D factor templates by

rerunning the analysis with AD
i = AJ

i = 0 and find that Aiso
i remains less than one.

We generate such MCMC chains for each of the 101 CSiBORG simulations, and

plot the resulting one-dimensional posterior distributions for AJ
i and A

D
i in Figure 5.5.

Knowing that each CSiBORG simulation is a fair Monte Carlo sample, the final poste-

rior distribution on AX
g is simply the average of each individual probability distribu-

tion, which yields the red lines in the figure. When marginalised over the BORG chain,

we again find AJ
i and AD

i are consistent with zero for this energy bin.

This process is repeated for each energy bin to determine the posterior for a given

AJ
i or AD

i , marginalised over all other contributions to the gamma ray sky and over

the uncertainties involved in producing maps of the J and D factors. These spectra

are displayed in Figure 5.6, where we indicate the maximum posterior points by the

circles and 1σ confidence intervals by the error bars. For a given DM mass and

channel, these posteriors can be trivially transformed into constraints on ⟨σv⟩ or Γ
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for a given energy bin. We then simply multiply the posteriors from each bin to

determine our final constraint on these parameters.

In Figure 5.7, we plot the 95% upper limit on ⟨σv⟩ as a function of DM particle

mass, mχ, for an annihilation which solely produces particle-antiparticle pairs of

a single type, but for any standard-model quark, charged lepton or gauge boson

(except photons). We compare these constraints to the thermal relic cross-section

(⟨σv⟩th ≈ 3× 10−26 cm3 s−1), such that any point below this value in Figure 5.7 rules

out DM being a thermal relic for the corresponding mass and annihilation channel

at 95% confidence. For all annihilations producing Z bosons, gluons or quarks less

massive than the bottom quark, we see that, if DM is a thermal relic, it should be

more massive than ∼ 7GeV/c2 since we rule out smaller masses. We are unable to

rule out the thermal relic cross-section at any mass for production of bottom quarks,

top quarks or W bosons. Our constraints for lepton production are much weaker at

a given particle mass, such that our constraints for electron or muon production do

not cross ⟨σv⟩th. We rule out τ production for mχ ≲ 6GeV/c2 at this cross-section.

Turning our attention to DM decay, Figure 5.8 shows the inferred decay rate, Γ,

for different decay channels as a function of mχ. Contrary to our analysis of DM

annihilation, we find that for the majority of channels we infer a non-zero Γ at over

2σ confidence for at least some mχ (corresponding to non-zero AD
i in Figure 5.6). The

results are relatively insensitive to the DM particle mass, provided mχ is above the

threshold for production. For the bb̄ channel, we find the inferred Γ is ∼ 3×10−28 s−1,

which corresponds to approximately one decay per Hubble time in a volume∼ 560 km3

at mean cosmological density if mχ = 100GeV/c2. This is around the smallest Γ that

has been constrained by any previous study (see Section 5.6.3.2). The inferred Γ for

decay to the lightest charged leptons is approximately an order of magnitude larger

than this.

To determine the overall detection significance, we compute the coefficient for the

total flux across all energy bins which multiplies the D factor

AD
tot ≡

∑

i

AD
i ∆Ei = 1.02+0.24

−0.28 × 10−16 cm2s−1. (5.53)

Simply dividing the best fit value by the lower error would suggest that our detection

of a contribution to the gamma ray sky proportional to the D factor has a significance

of 3.6σ when averaged over all available energies. Since our posterior is non-Gaussian,

we wish to compute this significance through other methods. We compute the max-

imum likelihood for each AD
i and, since each energy bin is treated as independent,

the maximum likelihood for AD
tot is the product of these values. We compare this to
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simulation (9844); the 95% upper limits on ⟨σv⟩ for this simulation if we use all halos
are indicated by the dashed horizontal lines. Our constraints are dominated by halos
of mass ∼ 1013.5 − 1014.5M⊙.

the likelihood for AD
i = 0 and find the change in log-likelihood between these two

cases is ∆χ2 ≡ 2∆ ln L̂ = 11.2, which is equivalent to 3.3σ for a Gaussian likelihood

or a change in the Bayesian Information Criterion (BIC) [58] of 9.0, if one takes the

AD
tot ̸= 0 model as having one more parameter. In Section 5.6.1.2 we ask whether this

is due to DM decay, finding that a non-DM spectrum is preferred by the data.

5.6 Discussion

In this section, we discuss the possible origin of our results, their limitations and a

comparison to existing results in the scientific literature.

5.6.1 Interpretation of results

In this section we investigate which objects and observations drive our results and

whether there are non-DM explanations for the signal proportional to the D factor.

5.6.1.1 Annihilation

For each channel and mχ, we compute the change in log-likelihood between ⟨σv⟩ = 0

and the 1σ constraint on ⟨σv⟩ separately for each energy bin to determine which
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energy range is dominating our constraint. For DM particle masses mχ ≲ 10GeV/c2,

our constraints are driven by the first two energy bins. For these masses, we expect

there to be very few photons produced at high energies at fixed ⟨σv⟩, so these bins are

unable to constrain ⟨σv⟩ as very large values are required to produce an appreciable

flux. As we move to higher masses, we notice the effect of the data at higher energy,

such that at the highest masses we find that the sixth energy bin (6.5 − 10.8GeV)

is the most constraining. We find a similar trend for the constraints on Γ and if we

compare using the 95% confidence limit instead of the 1σ constraint.

To determine which halos drive our constraints, we produce several J-factor maps

where each one is only due to objects in a given mass range; we create separate maps

for halos in moving bins of width ∆ log10 (Mh/M⊙) = 1. We rerun the inference for

a single representative CSiBORG simulation (9844) separately for each of these mass

bins, i.e. we assume that only a single mass bin contributes to the total J factor. We

plot the constraint on ⟨σv⟩ as a function of halo mass in Figure 5.9 and observe that

the tightest constraints are obtained for halos in the range ∼ 1013.5−1014.5M⊙. If one

studied a single object at a fixed distance, then the most massive halo would give the

tightest constraints since it has the largest J factor. However, such massive objects

are rare, so there is a compromise between having many objects of a given mass across

the sky and those objects having a large J factor. Given the tight constraints one

can obtain with dwarf galaxies in the Local Group, it is perhaps not surprising that

the inclusion of lower mass objects can lead to an improvement in the upper limit on

⟨σv⟩. The inclusion of these structures in this work was possible due to the use of

constrained simulations, which provide plausible realisations of these halos given the

ICs which are constrained on large scales. As a result, Figure 5.9 shows the types

of objects in the nearby universe one should target to extract maximum information

about DM annihilation.

Since we found a non-zero flux proportional to the D factor, we rerun the anal-

ysis for all CSiBORG simulations but infer both AD
i and AJ

i simultaneously. In this

way, when making our constraint on ⟨σv⟩, we now marginalise over this contribu-

tion. Note that in this marginalisation we do not assume a spectral form for the D

factor template, such that we marginalise over any source whose spatial distribution

is proportional to the local DM density, which may or may not be DM decay. As

anticipated in Section 5.5, we find that our constraints become tighter, such that our

upper limit on ⟨σv⟩ is typically over a factor of two smaller. This is as expected:

the negative degeneracy between AJ
i and AD

i (Figure 5.4) means that, if we allow

AD
i > 0, we must reduce AJ

i so that the total flux from these two contributions is
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approximately constant. When marginalising over AD
i , this will result in a posterior

on AJ
i which is necessarily narrower. Since these results are tighter than when we set

AD
i = 0, we choose to report the latter as our fiducial results so that our conclusions

are conservative.

5.6.1.2 Decay

In Figure 5.8 we found a non-zero DM decay rate is compatible with the observed

gamma ray sky at over 2σ confidence for a range of DM masses and decay channels.

More conservatively, one would say that we find a signal which is proportional to the

D factor, i.e. the emitted flux from some region appears to be proportional to the

local density, and is compatible with the spectrum of DM decay. This source does

not necessarily need to be DM decay, which can be investigated by fitting the inferred

spectrum to a different model. For this we choose a power-law profile, such that the

parameter AD
i arises from integrating the spectrum

dN

dEγ

= Ap

(
Eγ

E0

)p

, (5.54)

across energy bin i, where we normalise to E0 ≡ 1GeV. We place broad, uniform

priors on Ap and p in the range [0, 10−18] cm−2s−1MeV−1 and [−5, 2], respectively,

and find

Ap = (4.1± 1.5)× 10−20 cm−2s−1MeV−1,

p = −2.75+0.71
−0.46,

(5.55)

where the limits are at 1σ confidence. To enable a comparison, we plot the spectrum

for this model and a DM decay model in Figure 5.6, where we see that the power law

fits better at most energies.

To assess the relative goodness of fit of the two models we compute the BIC.

Since we have set deliberately wide priors on our model parameters, ratios of the

Bayesian evidence are difficult to interpret. For all channels and masses, we find that

the BIC prefers the power law spectrum, with BIC ≥ 1.3 (the bound is saturated for

the W+W− channel). Decays via the tt̄ channel are least preferred by the data, with

BIC ≥ 6.0. We therefore conclude that, although we do find an excess of gamma ray

flux which traces the density of DM, its spectrum is fit marginally better by a power

law, so this is not evidence for DM decay.

This conclusion is consistent with previous works studying the origin of the resid-

ual gamma ray flux. The cross-correlation of the gamma ray sky with galaxy cata-

logues has been detected at 2− 4σ [466], and the spectral index of the 1-halo contri-

bution was found to be -2.7 if a single power law is assumed, which is consistent with
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our inferred index and has a similar significance of detection. Moreover, analysis of

the angular power spectrum of the gamma ray sky [467] suggests a component which

can be modelled as a double power law with an exponential cutoff, with power law

indices −2.55 ± 0.23 and −1.86 ± 0.15, the former of which is consistent with our

result. Ackermann et al. [467] note that this spectrum is compatible with blazar-like

sources being the dominant component at these energies. Since we detect a non-zero

contribution with the same spatial variation as our D factor maps, our work suggests

that these excesses could be due to sources with a linear bias with respect to the local

dark matter density. An analysis by Colavincenzo et al. [468] of the cross-correlation

between Fermi data and cluster catalogues finds a peak in the cross-correlation func-

tion at ∼ 0.7◦. Our field-level inference means that it is more challenging to determine

the exact scales driving our results, although the cross-correlation function between

the D factor map and the residuals between the observations and non-DM templates

does extend beyond ℓ ∼ 100, suggesting that such scales are important in our analysis.

5.6.2 Systematic uncertainties

In this section we investigate potential systematic errors in our analysis by changing

some of the analysis choices in Section 5.4. For computational convenience, through-

out this section we only use one CSiBORG realisation (simulation 7444 as given in [93])

unless otherwise stated.

5.6.2.1 Computing the J and D factors

In Section 5.4.2.1 we computed the D factor and non-halo contribution to the J factor

by smoothing simulation particles onto a grid with a kernel inspired by SPH. Besides

this kernel, we also consider the CIC density assignment in order to quantify the

impact of the kernel choice on our constraints. The median change in the constraint

on ⟨σv⟩ is 2% for the bb̄ channel if we change to this kernel. For the DM decay

inference, we find the median and 95% upper limit on Γ change by a median of

9% and 7.5% respectively for this channel. The inferred value of p only changes by

0.01 when we change to the CIC kernel. If the low density regions were driving our

constraints then one would expect large differences between the two procedures, since

these regions have the fewest simulation particles and the two kernels have different

noise properties for low particle counts. However, we do not see this since the expected

flux is highest in the high density regions and the low density regions are relatively

unconstraining.
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For computational convenience, for our fiducial analysis we chose a HEALPix

resolution of nside=256. We rerun the analysis at coarser resolution (nside=128)

and find that our constraints on ⟨σv⟩ weaken by a median change of 42% across

all masses for the bb̄ channel. The median and 95% upper limit on Γ change by a

median of 19% and 14% respectively for the bb̄ channel, and the inferred value of p

changes by only 0.03 when we lower the HEALPix resolution. It is unsurprising that

the D factor analysis is less affected by this choice; for the J factor our template is

dominated by high density peaks in the DM density field, since the flux is proportional

to the square of the density. By using a higher resolution map, one can localise these

peaks better to obtain tighter constraints if these are not aligned with peaks in the

observed gamma ray sky.

The J and D factor maps were calculated for each of the 101 CSiBORG simulations.

By utilising the full suite, we marginalise over both the uncertainties in the con-

strained density modes from the BORG algorithm and the unconstrained, small-scale

modes. To verify that we have a sufficiently large number of simulations to achieve

this, we rerun our analysis one hundred times for the bb̄ channel using fifty randomly

selected simulations to determine a bootstrap uncertainty on our constraints. The

standard deviation of the 95% upper limit on ⟨σv⟩ has a median value of 20% when

considering all masses. The inferred Γ has a median bootstrap uncertainty of 4%. The

uncertainty on the inferred power law index, p, is 0.05 and the fractional bootstrap

uncertainty on Ap is 4%, which are small compared to the uncertainties we quote in

Equation 5.55. We therefore conclude that the number of constrained simulations is

adequate.

5.6.2.2 Halo density profile

After identifying halos within the CSiBORG simulations, we assumed that all halos have

NFW profiles with masses as given by the halofinder and concentrations given by the

mass-concentration relation of [460]. To determine the sensitivity of our constraints

to the assumed profile, we rerun the analysis but assuming that all halos are described

by Einasto profiles, as calculated in Section 5.4.2.2. We find our constraints on ⟨σv⟩
can be up to 80% tighter if one uses an Einasto profile compared to a NFW. For

small mass halos we find that the Einasto profile leads to larger densities near the

centre than the NFW profile and, given the importance of these lower mass objects

for our constraint (Section 5.6.1.1), this leads to smaller values of ⟨σv⟩. Note that

a similar tightening of the constraints was observed in [469] when the Milky Way
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profile is changed from a NFW to an Einasto profile. We choose to report the most

conservative constraints, hence the choice of NFW profiles in our fiducial analysis.

Both the form and parameters of the NFW and Einasto profiles are inspired by N-

body, DM-only simulations. Observations and hydrodynamical simulations suggest

that these may not accurately describe the true density profiles. In the presence

of baryons, the DM profile could be steeper due to adiabatic contraction during

galaxy formation [380, 381], or shallower due to the subsequent stellar feedback (e.g.

[243, 382]). For steeper slopes of the density profile, the J factor near the centre

would also be larger and hence one would expect tighter constraints on ⟨σv⟩. Ideally
one would use profiles motivated by hydrodynamical simulations, however common

parameterisations such as [470] apply primarily to sub-Milky Way mass halos while

most of those produced in CSiBORG are in the group and cluster regime. Rather

than perform a large extrapolation, we leave it to future work to implement a robust

baryonification scheme on these scales.

5.6.2.3 Substructure uncertainties

Since the gamma ray flux from DM annihilation is proportional to the square of the

density, the substructure of DM halos is an important contribution that one must

consider; if one computes the angular power spectrum for the J factor, Cℓ, one finds

that ℓ (ℓ+ 1)Cℓ is continuing to rise at the smallest scales considered in this work.

Usually this substructure is modelled as a mass-dependent multiplicative boost factor

[e.g. 471] and uncertainties captured by looking at the extreme values of the boost for

given masses [437]. We on the other hand capture substructure and its uncertainty

through clumpy ’s probabilistic approach to substructure modelling. This led us to

use a non-Poisson likelihood, since we introduced uncertainties, σjp, on the Poisson

means. To evaluate the impact of this choice, we rerun the analysis assuming a

Poisson likelihood by setting σjp = 0. We find that our constraints typically change

by a few per cent across all channels and masses, indicating that the impact of this

uncertainty is negligible. However, we note that this could not have been known a

priori. Although the fractional uncertainties are small near the centres of halos, this

is not true in the outskirts, motivating our thorough treatment of uncertainties.

For simplicity, we previously neglected the uncertainty which arises due to stochas-

ticity in the mass-concentration relation. We find our constraints are not very sensi-

tive to the scatter in this relation. For the bb̄ channel across all masses, the median

change in the constraint on ⟨σv⟩ is 1.4% if this uncertainty is included.
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Another source of systematics due to substructure modelling might be driven by

the breakdown of our assumption that the uncertainty in the J factor is Gaussian.

Namely, as the considered mass of the clump grows, the total number of such clumps

within the host halo decreases. Therefore, it is expected that at some point we

transition from the Gaussian into a Poisson regime [472]. Furthermore, it is not

obvious that the contribution to the J factor from these more massive clumps will

not outshine the cumulative contribution of the lower mass clumps. In order to check

for this, we use the -h5module of the clumpy package to explicitly draw substructure

realisations for a typical halo (Mh ≈ 5× 1013M⊙) from the CSiBORG simulations. We

modify Equation 5.35 such that

⟨Jp⟩ = ⟨Jcont,p(Mth)⟩+ ⟨Jdrawn,p(Mth)⟩, (5.56)

and

⟨Jcont,p(Mth)⟩ = Jsm,p + ⟨Jsubs,p(Mth)⟩+ ⟨Jcross,p(Mth)⟩ , (5.57)

where we introduce

⟨Jdrawn,p(Mth)⟩ =
1

Nds

Nds∑

i

Jdrawn,pi(Mth), (5.58)

with Nds being the total number of explicit realisations of the clumps with a mass

above a given mass threshold, Mth. The quantities ⟨Jsubs,p(Mth)⟩ and ⟨Jcross,p(Mth)⟩
from Equation 5.57 are obtained by replacing the upper limit of the clump mass

distribution by Mth, i.e. replacing M2 with Mth in Equation 5.27. To estimate

⟨Jdrawn,p(Mth)⟩, we run Nds ≈ 1000 explicit realisations of substructure clumps for a

typical halo, requiring that we capture fluctuations in the value of Jsm,p – the leading

contribution to the total J factor of the halo – at the percent level. In other words,

any clump whose contribution to the given pixel will induce a fluctuation to the value

of Jsm,p of the order of ∼ 1% will be explicitly drawn onto the HEALPix grid. This is

equivalent to taking one sample from Equation 5.21, but with a modified mass range

of the mass function, and setting the lower limit for this draw to be Mth. For more

details see section 2.4.3 of [449].

For this experiment, we selected a HEALPix resolution of nside = 1024, corre-

sponding to the Fermi -LAT angular resolution. The corresponding threshold mass

for this setup translates to Mth = 5.3× 109M⊙ for our chosen halo. We find that

⟨Jdrawn,p(Mth)⟩ ∼ 0.04 ⟨Jcont,p(Mth)⟩, (5.59)
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which justifies our starting assumption of treating the substructure contribution to the

total J factor as Gaussian, since the “drawn” (Poisson) component is subdominant

compared to the “continuous” (Gaussian) contribution.

Note, however, that choosing a smaller Mth, i.e. looking at even smaller fluctu-

ations of Jsm,p, would lead to probing the even lower mass end of the substructure

mass function, which would of course alter the ratio of the “drawn” and “continu-

ous” component. However, going below this limit would already enter into a regime

where drawing 104−105 clumps from the corresponding version of Equation 5.21 will

be necessary, which is computationally expensive and well within the validity of the

Gaussian approximation. As a comparison, usingMth ≈ 5.3×109M⊙ required around

∼ 103 draws. Throughout this section we assumed the same DM profile parameterisa-

tion and mass-concentration relation as in the fiducial inference (see Section 5.6.2.2).

The conclusions are unchanged for the same halo using the Einasto profile.

5.6.2.4 Non-DM Templates

The point source template is designed to remove small-scale emission so that large-

scale variations in the gamma-ray sky can be modelled more robustly. Since this

template is derived from the data, there is a risk that a subset of the point sources

could be due to annihilating or decaying regions of high DM density. Modelling

these as a non-DM component would therefore be incorrect. To assess this, we com-

pute the angular cross-correlation function between halos identified from the CSiBORG

simulations and the positions of point sources detected by Fermi -LAT. We find no

significant correlation at any scale, justifying our modelling assumptions. This would

be expected from the lack of degeneracy between the amplitude of the point-source

template, Apsc
i , and the amplitudes of the J and D factor templates, AJ

i and AD
i , in

Figure 5.4. This suggests that our constraints are not driven by point sources, so the

precise model we use for these is not important.

Although in Figure 5.4 we see there is little degeneracy between the parameters

describing galactic diffuse emission and the DM annihilation or decay parameters,

one should verify that the results are robust to reasonable variations in these non-

DM templates. In our fiducial analysis we used the most recent galactic diffuse model

provided by the Fermi collaboration (gll iem v07). We rerun the analysis with an

older model (gll iem v02) and find our constraints on ⟨σv⟩ are slightly weaker, with

a median change of 10% across all mass bins for the bb̄ channel, and that the inferred

value of Γ can vary by ∼ 30%. Although there is some variation as we change the
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model, these are at a similar level to other systematic effects. The inferred power law

index, p, only changes by 0.01 so is insensitive to this choice.

5.6.2.5 High redshift sources and optical depth

The gamma rays emitted from either DM annihilation or decay would interact with

the extragalactic background light (EBL) or CMB photons [473, 474]. This interaction

manifests itself through pair production and therefore can cause signal attenuation,

which can be modelled through an energy and redshift dependent optical depth coef-

ficient τ(E, z). Since both the EBL and CMB are approximately isotropic, the optical

depth will not have a directional dependence. For the redshift range considered in

this chapter (z ≲ 0.05), the attenuation of the photon flux due to interaction with

background photons will not be significant, except at very high energies (∼ TeV),

which lie well above the maximum photon energies we consider here (∼ 50GeV), and

thus we neglected this contribution.

Although this is the case for the very nearby Universe, there is also a contribution

to J and D from sources outside the CSiBORG volume. The expected contribution to

the differential photon flux from annihilation is [57]

〈
d2Φann

dEγdΩ

〉
=

⟨σv⟩ρ̄2DM,0

8πm2
χ

∫
dz

(
dNγ

dE ′
γ

)∣∣∣∣
E′

γ=Eγ(1+z)

(1 + z)3

H(z)
e−τ(E′

γ ,z)⟨(1 + δ(z,Ω))2⟩,

(5.60)

where ρ̄DM,0 represents present-day DM density and δ(z,Ω) is the density fluctuation.

This can be directly computed from the nonlinear matter power-spectrum (see for

example [475]) or using the halo model approach [435, 476]. Within the halo model,

this factor comes directly from averaging the one-halo annihilation luminosity over the

halo mass function. This is equivalent to marginalising over plausible realisations of

the DM distribution in our Universe by utilising the Press-Schechter [477] formalism,

or any other halo-formation model.

As in [476] (see Fig. 10 in their Appendix B), we estimate the integrand at a

given Eγ and integrate between z = 0.05 and z = 10 to determine the ratio of this

contribution to that explicitly modelled from CSiBORG . We find that this ratio is

approximately unity at Eγ = 5GeV for mχ = 10GeV/c2 for the bb̄ channel. One

may be concerned that this is an important contribution, however since our chosen

HEALPix resolution of nside = 256 corresponds to a physical scale of ∼ 0.6h−1Mpc

at the edge of the CSiBORG volume, one would expect that the extragalactic sources

beyond z ≳ 0.05 are unresolved, and therefore this contribution will almost entirely

be absorbed into the isotropic template. Of course, clustering of sources at redshifts
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beyond the CSiBORG volume would lead to an anisotropy in this unresolved emission.

Our constraints are completely independent of how one models the isotropic part of

the high-redshift component, and we leave it to further work to model the fluctuations

about this, for example by including constrained realisations of the density field for

larger volumes. Since this contribution can only increase the J factor, we always

underestimate the J factor in our templates, making our constraints conservative.

We note that in Equation 5.60 one must correct for the redshift of emission, i.e.

the spectrum should be evaluated at Eγ (1 + z) for a source at redshift z if we observe

a photon at energy Eγ. Since we only considered sources at z ≲ 0.05, we neglected

this effect. If we consider the extreme case where all our sources were actually at

z = 0.05, we would find that our estimate of the flux at a given ⟨σv⟩ is correct to

within 5% in the five lowest energy bins for the bb̄ channel at mχ = 100GeV/c2

(similar effects are seen for other channels and masses). Since this is comparable

to the size of other reasonable variations to the model and this is an unrealistically

extreme case, we are justified in making this assumption.

5.6.3 Comparison to literature

To enable a comparison between the constraints on ⟨σv⟩ and Γ obtained in this work

using large scale structure and those from the literature, we now briefly summarise

other methods for inferring these parameters and the results they produce.

5.6.3.1 Annihilation

The release of energy by annihilating DM has the potential to affect several ob-

servables over the Universe’s history. The earliest important observable is the ele-

ment yield from Big Bang Nucleosynthesis (BBN): a 100GeV/c2 DM particle with

the thermal relic cross-section would release ∼1 MeV of energy for every baryon in

the Universe per Hubble time during the BBN era. This has the potential to alter

subdominant nuclear reactions, although the effect is not strong enough to lead to

stringent constraints [478, 479]. The next important epoch is recombination, where

annihilating DM has the potential to ionise a non-negligible fraction of the hydrogen

in the Universe. This would absorb CMB photons after recombination, to which the

CMB angular power spectra and power spectra are acutely sensitive [480]. This al-

lows thermal relic DM with a velocity-independent cross-section to be ruled out for

masses below ∼ 10− 30GeV/c2 depending on the annihilation channel [432, 481]. Of

course, these bounds could be evaded by a large branching fraction into neutrinos or
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other particles with no electromagnetic interaction. The CMB constraints are partic-

ularly important for light DM (mχ ≲ 1GeV/c2) where the effective area and angular

resolution of telescopes like Fermi -LAT are poor. At even later times (2 ≲ z ≲ 6),

observations of the Lyman-α forest constrain the gas temperature (e.g. [482, 483])

which would be increased by annihilations, although this has not been used to set

quantitative constraints.

These bounds were derived purely by considering the effects of energy injection

into the Universe, but more information is available from observations of the potential

annihilation products themselves. This is most often done by means of high-energy

photons (a common final product regardless of annihilation channel), and forms the

context for our own analysis. Of course, the spectra of the final-state photons depend

crucially on the channel, as we have described previously. In the local Universe, the

most promising targets are the galactic centre, nearby groups or clusters, and dwarf

galaxies in the Local Group. The former is the greatest nearby concentration of DM,

but also suffers from large astrophysical backgrounds, and the expected signal depends

sensitively on the poorly-known DM density profile of the Milky Way. Nevertheless,

there are claims for a gamma-ray excess which could be due to annihilating DM

[400]. In particular, Hooper and Goodenough [400] claim the excess is well fit for

mχ ∼ 7− 10GeV/c2 with ⟨σv⟩ ∼ (0.5− 5)× 10−26 cm3s−1 annihilating via the τ+τ−

channel. Although we cannot rule out the lower values of ⟨σv⟩ for this mass range,

we do find that ⟨σv⟩ < 4.4 × 10−26 cm3s−1 at 95% confidence for these masses and

this channel, which is incompatible with the larger values of ⟨σv⟩ reported. Clusters
are also massive accumulations of DM and permit a statistical analysis, but also

suffer from potentially significant backgrounds. Dwarf galaxies, although smaller and

less dense, have a much lower baryonic mass and hence the lowest contribution from

degenerate astrophysical effects, affording a cleaner test. However, one is limited

to a small sample size and thus one has to assume that the objects do not have

peculiarities, e.g. unusual boost factors. By looking at a larger number of sources, as

we do here, one can average over a more representative sample of substructure.

Fermi -LAT has been used to set limits on the annihilation cross-section using

dwarf galaxies, the Milky Way halo [440, 484, 485], and galaxy groups [431]. The

strongest constraints come from the dwarfs, which, due to their lower distances, offer

higher peak signals than clusters [486]. These have been used to rule out the thermal

relic cross-section for masses below ∼ 100GeV/c2 assuming annihilation to b quarks

[7, 429], as depicted in Figure 5.7 (although see [487]). Even stronger constraints,

ruling out the thermal relic scenario to O(TeV) mass scales for annihilation to bb̄, have
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been claimed from a radio search of the Large Magellanic Cloud [488]. Somewhat

weaker constraints have also been obtained using dwarf irregular galaxies [430] and

by cross-correlating Fermi -LAT data with the positions of nearby galaxies without

knowledge of those galaxies’ distances (dashed line in Figure 5.7) [8, 427]. Further

information can be gleaned by cross-correlating gamma-ray flux with a tracer of

density such as gravitational lensing [428].

Data from the ground-based air Cherenkov telescopes VERITAS, MAGIC, HAWC

and H.E.S.S. have also been used to set constraints from dwarfs, which dominate those

from Fermi -LAT for mχ ≫ 1TeV/c2 [489–492]. H.E.S.S. has also been applied to

the galactic centre, achieving stronger constraints at very high energies at the cost

of increased systematic uncertainty due to astrophysical backgrounds [469, 493]. It

is worth noting also that constraints on both annihilation and decay can be set by

direct detection laboratory experiments, although these are considerably weaker than

astrophysical constraints [494].

Annihilating DM produces other cosmic rays besides photons, most notably positrons

and antiprotons. The AMS-02 instrument has provided data on the spectrum of a

wide range of cosmic ray species [495–497]. Despite uncertainties due to cosmic ray

propagation and the impact of the Sun’s magnetic field, antiproton observations have

been used to set bounds that beat those from Fermi -LAT in some cases, for example

constraining the µ+µ− channel to mχ ∼ 100GeV/c2 at the thermal relic cross-section

[496]. It is also possible to search for gamma-ray lines, which are generically expected

to be weak but may be prominent if the DM particle decays to charged particles

similar to it in mass. Line limits from Fermi -LAT and H.E.S.S. are presented in

[469, 498] and [499, 500] respectively.

5.6.3.2 Decay

Similar considerations to those of Sec. 5.6.3.1 allow cosmological constraints to be

placed on DM decay. These constraints are stronger at lower redshifts, where a

greater fraction of DM decays per Hubble time for fixed decay rate. This allows

BBN to test decay lifetimes around 1018s, the CMB 1025s and the Lyman-α forest

1025 − 1026s [57].

Constraints can also be derived from gamma-ray and neutrino telescopes. In

particular, data from Fermi -LAT, AMS-02, PAO, KASCADE and CASAMIA have

been used to constrain the DM lifetime at the 1027 − 1028s level for 102 < mχ <

1017GeV/c2 [501, 502]. For lower-mass DM decaying primarily leptonically, bounds
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at the 1025 − 1026s level can be set from X-ray and gamma-ray telescopes, the spec-

trometer on board the Voyager I spacecraft and the heating of gas-rich dwarf galaxies,

as well as the Lyman-α forest and CMB as described above [433, 503]. These con-

straints imply that over a very large DM mass range, only a tiny fraction of the total

DM can decay during the lifetime of the Universe. Decaying DM can also be con-

strained using the masses and abundances of Milky Way satellites in case the decay

gives momentum to the DM particle, which provides a constraint of order the age of

the Universe (e.g. [504]). The inferred values of Γ in this work are compatible with

these constraints.

5.6.4 Future directions

5.6.4.1 Including additional mass

Our analysis deliberately targets large scale structure as a source of annihilation

or decay flux in order to be fully complementary to studies of particular objects

while avoiding their systematics. This has made our constraints conservative because

significant J and D factor contributions come from the Milky Way halo and dwarf

spheroidals in the Local group. Incorporating these into our mass model would there-

fore produce the most constraining results possible, modelling flux from all mass in

the local Universe. For the Milky Way this could be done by detailed modelling of the

properties of our host halo along the lines of [484, 485] but using the latest data from

Gaia [505, 506]; this will be the subject of future work. A separate likelihood com-

ponent could be added for local dwarf galaxies (cf. [7, 429]). We note that inferring

ICs which could produce such structures with the correct masses and locations using

a process similar to the sibelius simulations [507, 508] would be a computationally

demanding task. A more feasible approach may be to populate larger halos with such

objects a posteriori in a manner similar to how one paints galaxies onto a N-body

simulation.

5.6.4.2 Velocity dependence

In this work we have assumed that σv is independent of energy. One can generalise

this such that the cross-section is multiplied by a function S of the relative velocity

between two DM particles, vr, i.e. (σv) = (σv)0 S (vr/c). The velocity-dependent

term is commonly modelled as S(x) = xn, where in this work we have considered

n = 0 (s-wave) scattering. Other velocity dependencies are theoretically interesting:

in models with minimal flavour violation, n = 2 (p-wave) annihilation dominates for
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Majorana fermions forming Standard Model fermion-antifermion pairs, since the s-

wave is chirality-suppressed [509]. A null-result for p-wave annihilation in the galactic

centre is presented in [510]. Similarly, n = 4 (d-wave) dominates in such models if DM

is instead a real scalar [511, 512]. Due to the small DM velocities within halos, one

would expect these signals to be harder to detect than s-wave scattering. However,

if DM has long-range self-interactions, then the annihilation is Sommerfeld enhanced

[513], corresponding to n = −1 and thus a high, potentially detectable annihilation

rate.

When studying these velocity-dependent cross sections, one cannot use the J

factor given in Equation 5.5, but instead [514]

JS =

∫
ds d3v1 d

3v2 S

( |v1 − v2|
c

)
f (r,v1) f (r,v2) , (5.61)

where f (r,v) is the distribution function of DM particles. This thus requires one

to know or model the velocities of DM particles within halos, and is therefore left to

future work, although we note that JS has recently been calculated for a range of DM

density profiles [515].

5.7 Conclusions

Indirect detection of DM annihilation or decay through gamma ray emission has

previously typically involved inference from a small number of nearby, DM rich objects

(the Milky Way, dwarf spheroidals in the Local Group or local groups and clusters) or

by cross-correlating the gamma ray background with other catalogues. Instead, in this

work we utilise the CSiBORG suite of constrained simulations of the local 155 h−1Mpc

to forward-model the predicted gamma ray sky for s-wave DM annihilation or decay

due to large scale structure. We marginalise over uncertainties in the density field

reconstruction, unresolved substructure and non-DM contributions to the signal, and

compare to data from Fermi -LAT via a MCMC algorithm.

We rule out the thermal relic cross-section at 95% confidence for DM particles

of mass mχ ≲ 7GeV/c2 whose annihilation produces Z bosons, gluons or quarks

less massive than the bottom quark. Our constraints for the production of charged

leptons are approximately an order of magnitude less stringent and we are unable to

rule out the thermal relic cross section for the production of top or bottom quarks

in our fiducial analysis. We infer at 3.3σ a non-zero contribution to the gamma ray

sky with the same spatial distribution as predicted by DM decay. For the decay to

quarks, this corresponds to a decay rate of Γ ≈ 3 × 10−28 s−1. However, we find
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that a power-law spectrum is preferred by the data, and we infer that the power-law

index is p = −2.75+0.71
−0.46. If we marginalise over the contribution with the same spatial

distribution as DM decay, we obtain constraints on ⟨σv⟩ which are twice as tight as

our fiducial analysis.

Our constraints on the annihilation cross section are less stringent than those

obtained by studying other objects, such as the GCE or dwarf galaxies in the Local

Group. Given the sensitivity of the dwarf spheroidal analysis to the prior on galaxy

mass [487] and the conflicting explanations for the GCE, this work provides a useful

independent probe of novel DM properties by forward modelling the whole gamma

ray sky and will thus be sensitive to different systematics. The field-based framework

we develop implicitly incorporates not just the two point correlation function – a

more traditional way to constrain DM properties from large scale structure – but all

other higher order statistics as well. Since both DM annihilation and decay fluxes

are determined by line of sight integrals of the density field, the use of constrained

simulations provides a convenient way of calculating these integrals for the observed

Universe. Future work should be dedicated to a joint inference where one combines

the contribution to the dark matter annihilation or decay signal from large scale

structure with objects from the Local Group. As with analyses on smaller scales,

there is some sensitivity to how one parametrises the halo density profiles, and thus

future analysis should include procedures to (probabilistically) model baryonic effects

on the dark matter density profile.
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Chapter 6

Calibrating galaxy formation
effects in galactic tests of
fundamental physics

As demonstrated in the previous chapters, Bayesian Monte Carlo-based forward mod-

els have proven to be successful in constraining fundamental physics on galactic scales.

These analyses have however assumed empirical noise models in which astrophysical

contributions to the signals are assumed to be Gaussian distributed and uncorrelated

with the properties of galaxies and their environments. The inferences would be bi-

ased if astrophysical effects were in fact significantly degenerate with the fundamental

physics being tested. In this chapter we propose an approach for constructing reliable

noise models based on correlations found in cosmological hydrodynamical simulations

between relevant parameters of the system.

As a case study, we consider warping of stellar disks and offsets between the stel-

lar and gas mass centroids of galaxies. These are important probes of screened fifth

forces [9, 41, 363, 516], and have recently [364] been used to rule out astrophysi-

cally relevant Hu-Sawicki f(R) gravity [517], a paradigmatic modified gravity model.

A galactic disk can be warped through a plethora of physical phenomena besides

modified gravity, including gas infall into the DM halo [518], DM self-interactions

[519, 520], or interaction of the disk with companions [521, 522] (see [523] for a re-

view). Furthermore, gas can be displaced from the centres of galaxies in clusters due

to a combination of ram pressure stripping and tidal interactions [524]. It is therefore

likely that disks will be warped and the stellar and gas mass separated even in the

absence of a fifth force. This was accounted for in Refs. [9, 363, 364] by convolving

the fifth force likelihood with a Gaussian noise model with a width that was either

constant between galaxies or proportional to their distance. It is however unclear

166



that this model should be sufficiently flexible to account for baryonic physics, which

will make the noise a function of galaxies’ properties and environments.

In Section 6.1 we introduce our case study and in Section 6.2 we outline the

criteria used to evaluate the suitability of the astrophysical noise model. We detail

our measurement and modelling of the signals in the simulation in Section 6.3 and

verify that we obtain a null detection of a fifth force in Section 6.4. We investigate the

validity of the Gaussian noise model used to make these constraints in Section 6.5, and

discuss the impact of the assumed halo density profile for this model in Section 6.6.

We discuss the broader context of our work, and conclude, in Section 6.7.

6.1 Case study — screened fifth forces

While our methodology will prove to be general, we choose a specific case study

to show it working in practice. We focus on aspects of galaxy morphology (gas–star

offsets and warping of stellar disks) caused by thin-shell-screened fifth forces generated

by a new light scalar gravitational degree of freedom. Throughout this chapter we

use units in which ℏ ≡ c ≡ 1.

6.1.1 Theoretical background

In this chapter we focus on thin-shell screening mechanisms (Zij = δij in Equa-

tion 1.27), where the degree of suppression of the fifth force is determined by the

gravitational potential, Φ, such that an object is approximately unscreened if |Φ| < χ

and screened otherwise, where χ is the theory-dependent “self-screening parame-

ter”. The archetypal example is f(R) gravity [525, 526], which is obtained from the

Einstein-Hilbert action of GR by replacing the Ricci scalar, R, with R + f(R), i.e.

S =

∫
d4x

√−g R + f(R)

16πGN

+ Sm, (6.1)

for matter action Sm (for reviews of f(R) gravity see [394, 527]). The propagating

degree of freedom of f(R) gravity is fR ≡ df
dR

, with a background value today of

fR0. We will phrase our results in terms of the Compton wavelength, λc, of the

scalar field (applicable to any scalar-tensor theory), or equivalently fR0 in the Hu-

Sawicki model of f(R). Astrophysical tests are relatively insensitive to the specific

theory [528] and our results are applicable to all thin-shell-screened theories with an

astrophysical range fifth force. We will compute Φ sourced by matter within λc of an
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object [529–531], and use the screening cutoff

χ =
3

2
fR0 =

3

2
× 10−8

(
λc

0.32Mpc

)2

, (6.2)

appropriate for the n = 1 Hu-Sawicki model [517]. Note that a Compton wavelength

of λc = 1Mpc corresponds to a mass of 4× 10−29 eV/c2.

6.1.2 Observables: gas-star offsets and galaxy warps

Main sequence stars will always be screened if χ ≲ 10−6, since this is approximately

the Newtonian potential at their surfaces. On the other hand, if a galaxy is in a suffi-

ciently low density environment, the gas and DM within the galaxy can be unscreened.

Therefore different components of a galaxy can experience different accelerations, and

thus the Equivalence Principle is violated.

This generates two key morphological signals, as illustrated in Figure 6.1. The

first is that the centre of the galaxy as measured by the gas will not coincide with the

centre as measured by the stars. For an external fifth force field a5, evaluated with

∆G/GN = 1, the displacement of the gas centre from the stellar, r⋆ = r⋆r̂⋆, is

GNM (r⋆)

r2⋆
r̂⋆ ∼

∆G

GN

a5, (6.3)

where M(r) is the enclosed mass at a distance r from the halo centre.

This displacement results in a gravitational potential gradient across the stellar

disk, which warps the disk in a characteristic ‘U’ shape. For equilibrium, we require

the total acceleration to be constant along the disk. By equating the gravitational

and fifth force contributions, we find the displacement, z, normal to the the major

axis of the disk, x, in the plane of the sky to be [9]

z (x) = −∆G

G2
N

|r|3
M (r)

a5 · ẑ ≈ −∆G

G2
N

|x|3
M (x)

a5 · ẑ, (6.4)

where we approximate z ≪ x for the second equality. Note that near the centre of the

disk this approximation does not hold, so z (x = 0) is not necessarily zero, although

this does not affect w1 below. The disk therefore bends in the opposite direction

to the projection of a5 onto the disk normal. The magnitude of this warp can be

described by the warp statistic

w1 ≡
1

L3

∫ L

−L

|x| (z (x)− ⟨z⟩) dx, (6.5)

where we choose L = 3Reff , as in [9, 364]. The modulus sign in the integral picks out

specifically ‘U’-shaped warps, as opposed to the more commonly observed ‘S’-shaped

warps [532, 533].
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Figure 6.1: Schematic diagram of the displacement between the gas and star centres
and the formation of a warped stellar disk due to a thin-shell screened fifth force, a5.
Unlike the gas and DM, the stars typically do not feel the fifth force since they are
self-screened, resulting in these two morphological features.

6.2 Assessing the impact of baryons

To infer ∆G/GN as a function of λc, we construct a galaxy-by-galaxy Bayesian forward

model. This consists of two steps. First, we model our target observable (signal; r⋆ or

w1) as a function of our new physics parameters (∆G/GN and λc) and the properties

of the galaxy considered (e.g. the halo density profile) by evaluating Equation 6.3 or

Equation 6.5. Any uncertainty in these properties would turn the predicted signal

into a distribution, the likelihood function. We combine this with the second part

of the model that describes other processes (noise) that could lead to the same ob-

servable and hence alter the prediction due to new physics. We then constrain the

new physics parameters and the noise together by comparing to observations with a

MCMC algorithm.

Once we have specified our model, we must check for systematic uncertainties

which could bias the inference. The use of cosmological hydrodynamical simulations

for this purpose offers two advantages: i) we know exactly what the theoretical pa-

rameters and implementation of baryonic physics are in the simulation, and ii) we

have more information available there than we do observationally.

In particular, there are three questions to consider:

1. Are there any correlations between galactic properties and the target observable

in the simulation that are not accounted for in the noise model?

2. How significant are those correlations in the inference?
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3. Is the model sufficient in light of the extra information available in the simula-

tion?

To answer point 1, we investigate whether we can predict the simulated observ-

able from the parameters used to predict the signal in the context of the new physics

model. Investigating potentially complex correlations without an a priori known func-

tional form is best done in a machine-learning context, using algorithms to adaptively

determine the functions to employ. For our case study, we train a Random Forest re-

gressor on the simulated data; by fitting nonlinear decision trees to predict the signal

from other variables, the regressor is able to assign a relative importance to each fea-

ture for determining the simulated signal [170]. Of course, to ensure our conclusions

are robust to the choice of estimator, one should try multiple approaches. For our

example, we repeat the analysis using an Extra Trees regressor and obtain consistent

results.

If no significant correlations are found (and the real universe is similar to the

simulated one), it is justified to model baryonic noise through uncorrelated random

variables. Conversely, if one or more parameter is found to correlate with the simu-

lated signal, then this model may not be sufficient. To quantify this, one may then

compare the constraints obtained from the simulated data using different noise mod-

els. If a simple parameterisation can be found between the simulated signal and

galactic properties due to baryonic physics, then one could allow the parameters of

the noise model to vary continuously with these properties and hence marginalise

over them. Alternatively, one could use one or more galactic properties to sort the

sample into bins, and fit a separate noise model within each bin. If the difference

in the constraint between these two methods is within some specified tolerance, then

one can conclude that the simplified model is adequate; otherwise one should use the

more complex one.

The extra data afforded by a simulation may be used to check other aspects of the

inference method as well, for example unobservable properties of galaxies’ halos. In

data these must be modelled using observables that are available, which can introduce

significant uncertainty. For the simulated data, however, one can compare the results

of using the “true” vs model parameters to assess the accuracy of the model. In our

example we consider the inner power law slope of the halo density profile: in the

observational sample of [364] the absence of dynamical information at small radius

makes this unobservable (it is estimated using halo abundance matching), but it can

be measured directly from the DM particles in the simulation.
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We explore the fifth force inferences of Refs. [9, 363, 364] in the context of H-AGN,

as introduced in Section 3.2. We again produce galaxy+halo structures by matching

the most massive unassigned galaxy to a halo, provided its centre is within 10 per

cent of the virial radius, rvir, of the halo. Each halo is considered in turn, moving

from the most to least massive. Of the initial 126,361 galaxies identified, 117,099 are

partnered with a halo with this procedure.

6.3 Methods

6.3.1 Measuring the offsets and warps

6.3.1.1 Stellar warp

For every galaxy, g, with its centre at rg relative to the centre of the simulation

volume, we find all star particles identified by the galaxy finder as belonging to that

galaxy. We take the coordinates of each star particle, ri, and project these into a

plane containing the angular momentum of the galaxy, Jg, to increase the probability

of viewing a disk edge on. To make this projection, we define two orthogonal unit

vectors for each galaxy

ê1 ≡
Jg

|Jg|
, ê2 ≡

rg × Jg

|rg × Jg|
, (6.6)

and hence find the projected (angular) coordinates of the ith star particle to be

x̃i ≡
ri · ê1
|rg|

, z̃i ≡
ri · ê2
|rg|

. (6.7)

We fit the distribution of these particles to a Sérsic [334] profile of index n, such

that the probability of having a particle at (xi, zi) = (x̃i − x0, z̃i − z0) is

p (xi, zi) = I0 exp

(
−bn

[(
Ri

Reff

) 1
n

− 1

])
, (6.8)

where Ri is the two-dimensional distance from the centre of the distribution. The

major axis of the elliptical contours, of ellipticity ϵ ∈ [0, 1), is at an angle θ relative

to the x axis, where

ϵ ≡ 1− b

a
, (6.9)

for major and minor axis lengths a and b respectively. The normalisation constant,

I0, is

I0 =
b2nn e

−bn

2πnR2
effΓ (2n) (1− ϵ)

, (6.10)
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where we have defined Reff such that half of the probability lies within Reff ,

γ (bn, 2n)

Γ (2n)
=

1

2
, (6.11)

where γ is the incomplete lower gamma function. We fit for the 6 parameters of this

distribution (Reff , n, x0, z0, ϵ, θ) by maximising the likelihood

logLg (Reff , n, x0, z0, ϵ, θ) =
∑

i∈g
log p (xi, zi) . (6.12)

We enforce uniform priors on all parameters in the ranges given in Table 6.1, so

that the maximum likelihood is also the maximum of the posterior. The optimisation

is run five times for each galaxy using Powell’s method [534], with a different randomly

generated start point each time. We adopt the maximum likelihood of these five as

the true maximum likelihood, but require that at least two other converged points

have parameters within 5 per cent of the maximum likelihood point. Otherwise, we

say that the fit has not converged and we run the fit five more times. Once again

we find the maximum likelihood point (of the ten) and require two different points

to have parameters within 5 per cent of it. We keep adding five more fits until we

obtain a converged result. After repeating this procedure five times, we find that we

have successfully fitted over 99 per cent of the galaxies.

After six runs, 9 of our galaxies have zero likelihood for every iteration of the fit

(i.e. this has been returned 30 times). Upon inspection of these galaxies, we find

that they contain fewer than 75 star particles. It is not surprising, therefore, that

we cannot fit a distribution to them. The shape measurements are unlikely to be

reliable if we have too few particles, and we therefore reject galaxies with masses

below 2× 109M⊙. Given that the DM resolution is 40 times coarser than the stellar

mass resolution (Section 3.2), we implement a corresponding minimum halo mass of

8 × 1010M⊙. Both of these cuts are also implemented when generating the sample

for the gas–star offset inference. We find that changing these mass cuts by ±50 per

cent does not significantly affect our results.

The observational warp statistic is determined from an image, so we must generate

mock images of galaxies from H-AGN. Since the optical data in [9, 364] are from the

Nasa Sloan Atlas (NSA)1, we use the pixel size for i- and r-band images from the

Sloan Digital Sky Survey (SDSS) [535] (∆x = ∆z = 0.′′396) as the NSA predominately

contains sources from SDSS. We use the projected coordinates of all star particles

1https://www.sdss.org/dr13/manga/manga-target-selection/nsa/
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Table 6.1: Priors used in the Sérsic fit to the star particles for each galaxy, where the
symbols are defined in Section 6.3.1.1. All priors are uniform in the range given.

Parameter Description Prior
Reff Effective radius. > 0
n Sérsic index. > 0
x0 Centre of profile along x. -
z0 Centre of profile along z. -
ϵ Ellipticity. [0, 1)
θ Angle between major axis and x. [0, π)

within a galaxy in the ê1− ê2 plane to determine the intensity map I(x, z). From this

we find the luminosity-weighted z position as a function of x,

z̄ (x) =

∑Lz

z=−Lz
zI(x, z)

∑Lz

z=−Lz
I(x, z)

, (6.13)

where Lz = Neff(b/a)Reff , and the sum is over all pixels, which have x and z spacing

∆x and ∆z respectively. As in [9, 364], we choose Neff = 3. We calculate the mean

of z̄ across the whole image

⟨z⟩ = 1

nx

NeffReff∑

x=−NeffReff

z̄(x), (6.14)

where we have nx grid points along the x axis, and we subtract this from z̄ to have

a variable of zero mean,

z̄′(x) ≡ z̄(x)− ⟨z⟩ . (6.15)

Finally, we use this variable to calculate the warp statistic

w1 =
1

(NeffReff)
3

NeffReff∑

x=−NeffReff

|x|z̄′(x)∆x. (6.16)

Just creating a 2D histogram of the star particles onto the grid described above

gives too many columns for which the intensity is zero, and thus Equation 6.13 is

undefined. This is not a problem in the SDSS images where such zero-intensity

columns are not found. To circumvent this problem we smear each point-like star

particles into a Gaussian with a standard deviation equal to the pixel width. This

procedure works well for the majority of galaxies, and we discard those for which we

still have columns of zero intensity.
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6.3.1.2 Gas-star offset

The gas centre of the galaxy is obtained by considering all gas within a box centred

on the position of the densest star particle, extending to ±N⋆Reff in each dimension,

where we choose N⋆ = 4. If we simply calculated the centre of mass of the gas in this

box, we would bias our results towards small offsets; the extreme case of a uniform

gas density distribution would have a centre of mass at the origin (so zero offset) even

though there is no physical justification for this. Instead, we fit the density profile to

a three dimensional Gaussian,

ρgas (r) = ρg exp

(
−1

2
(r − µ)T Σ−1

g (r − µ)

)
, (6.17)

where we fit for the central density, ρg, mean position, µ, and the covariance matrix,

Σg. The fitted mean is then taken to be the gas centre, and we project the resulting

offset between this and the centre of mass of the star particles into right ascension

(RA), r⋆,α, and declination (Dec), r⋆,δ, components. To determine convergence, we

calculate the R2 value for the fit,

R2 ≡ 1−
∑

(ρmeas (r)− ρgas (r))
2

∑
(ρmeas (r)− ρ̄)2

(6.18)

where ρmeas is the measured gas density, ρ̄ is the mean of ρmeas, and the sum runs

over all cells within the box of gas considered. We plot these in Figure 6.2 and see

that the distribution is bimodal, suggesting that a cut in R2 of R2
crit = 0.6 is sufficient

to remove the poorly fitted density fields. We have repeated the analysis with R2
crit

in the range 0.5 − 0.8 and find that the constraint is relatively insensitive to this

parameter.

To ensure that the gas is associated with the galaxy of interest, we define a char-

acteristic length scale of the gas

lg ≡ (detΣg)
1
6 , (6.19)

which is the geometric mean of the standard deviations of the density distribution

along the principal axes. We then remove all galaxies where the gas–star offset is

larger than Nglg, where we choose Ng = 4. Varying Ng in the range 2 − 5 changes

the constraint by less than 50 per cent, so this choice is not important. Further, to

prevent the gas associated with nearby galaxies from affecting our results, we remove

all galaxies from our sample whose nearest neighbour is within Nnn = N⋆ times the

sum of the effective radii of the galaxies.
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Figure 6.2: The distribution in R2 values (Equation 6.18) for the fits to the gas
density surrounding a galaxy to a Gaussian. The distribution is bimodal, indicating
that a cut of R2

crit = 0.6 is sufficient to remove poor fits.

6.3.2 Halo density profile

As in [9, 363, 364], in Section 6.3.3.2 we will forward model the gas–star offsets

and galaxy warps assuming that the halo density profile is a power law within some

transition radius, rt,

ρ (r) = ρt

(
r

rt

)−β

. (6.20)

For each galaxy, we therefore need to know rt, the density at rt (ρt), and the inner

power law slope (β). In [363], abundance matching (AM) is used to find the Navarro-

Frenk-White (NFW) [536] profile parameters for the host halo of each galaxy,

ρNFW (r) =
ρ0

(r/rs) (1 + r/rs)
2 . (6.21)

It is then assumed that rt = rs and that β = 0.5.

As discussed in Section 3.2, the galaxies in H-AGN are already matched to halos,

but we do need to fit for the NFW parameters. To do this, we use that the probability

of some particle to be at radius r is

P (r|r < rmax) =
4πr2ρ (r)

M (rmax)
, (6.22)

where

M (rmax) =

∫ rmax

0

4πr2ρ (r) dr. (6.23)
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From this, it is clear than any dependence on ρ0 in P (r|r < rmax) cancels, so we must

determine this at the end. To fit the profile, we maximise

logLh =
∑

i

log (P (ri|ri < rmax)) , (6.24)

where the sum is over all DM particles identified as belonging to the halo within some

radius rmax of the halo centre of mass. We therefore fit for rs, requiring that rs > 0.

To find the second parameter of this profile (ρ0), we enforce

M (rmax) =
∑

i

mi, (6.25)

where mi is the mass of the ith DM particle.

We should make an initial guess at our parameters in order to find the maximum

likelihood point. We take the mass of the halo from the halo finder, Mh, and estimate

the concentration, ch = rvir/rs, using the mass–concentration relation [537]

ch, guess = 57.6

(
Mh

M⊙

)−0.078

. (6.26)

We find that an initial guess of rs equal to the 75th percentile of ri divided by ch, guess

is appropriate. Finally, we need to choose a value of rmax within which we fit our

NFW profile. We make the simplest choice, setting rmax to be the virial radius, rvir,

as output by the halo finder.

As an alternative to this method, we consider a parameterisation where the inner

power law slope can vary. We consider a more general density profile

ρΓ (r) =
ρ0

(r/rs)
−Γ (1 + r/rs)

3+Γ
, (6.27)

which, like NFW, scales as r−3 at large radii, but is allowed to have a different inner

power law slope, Γ. Comparing to Equation 6.20, we see that for r ≪ rs, we have

rt = rs, ρt = ρ0 and β = −Γ.

We fit this using the same procedure as before, first fitting for rs and Γ, and then

finding ρ0 by considering the total mass of particles. We now have the additional

requirement that Γ > −3, so that limr→0M(r) = 0.

The distributions of the fitting parameters for both of these profiles are shown

in Figure 6.3. We see that the majority of galaxies have Γ < −1, consistent with

the conclusion of [538] that the halos in H-AGN have steeper density profiles near

their centre than a NFW profile. We find that the mass-concentration relation of

Equation 6.26 falls within the 1σ region of the distribution for the NFW profile, but

the more general profile favours slightly lower concentrations.
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Figure 6.3: Distributions of fitting parameters to halos in H-AGN for (a) a NFW pro-
file (Equation 6.21) and (b) a NFW-like profile with a different inner power law slope
(Equation 6.27). Note that this is not a plot of posteriors, but a density map with
one point per halo. The contours show the 1, 2 and 3σ levels of the distributions. The
blue line is the mass-concentration relation given in Equation 6.26. This falls within
the 1σ region of a, whereas the more general profile favours a smaller concentration
for a given virial mass. The red line in b represents the NFW case (Γ = −1); most
halos have steeper central density profiles than this (Γ < −1).
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6.3.3 Modelling the offsets and warps

6.3.3.1 Gravitational and fifth force fields

H-AGN, by construction, does not include a fifth force. To check our inference method

we confirm that it reconstructs no such force from the simulation, and calculate the

fifth force constraints it would impose were it real data. To make the calculation

computationally feasible, and to mimic the methods of [9, 363, 364], we consider two

distinct contributions to the fifth force: i) a smoothed density field and ii) halos,

which we assume are described by NFW profiles with the parameters obtained in

Section 6.3.2. To obtain the smoothed density field, we ignore all DM particles that

are assigned to halos, and project the remaining DM particles and all of the star

particles onto the same grid as the gas. This grid is defined to have 2ℓ cells per side

across the full simulation volume. We assume that the density is Gaussian distributed

in each cell,

ρGauss (r) =
M

(2πσ2)
3
2

exp

(
− r2

2σ2

)
, (6.28)

for

σ =
Lbox

2ℓ+1
, (6.29)

where Lbox is the simulation box length.

Using these components, we first compute the Newtonian potential at the centre

of each halo sourced by all mass within λc of that point. The contribution from a

grid cell of mass M of the smoothed density field at a distance r is

Φext,Gauss (r) = −GNM

r
erf

(
r

σ
√
2

)
. (6.30)

The contribution from a halo of virial mass Mvir and concentration ch at a distance

r is

Φext,NFW (r) = −GNMvir

r

ln (1 + chr/rvir)

ln (1 + ch)− ch/ (1 + ch)
. (6.31)

For each halo, we add a component due to self screening [529, 531]

Φint = −V 2
vir, (6.32)

where Vvir is the virial velocity of the halo. The potential at a given halo is then

Φ = Φext + Φint = Φext,Gauss + Φext,NFW + Φint, (6.33)

such that halos with |Φ| < χ are unscreened, where χ is given by Equation 6.2.

178



To calculate the fifth force at the position of each halo, we sum the contributions

from the unscreened halos and the unscreened regions of the smoothed density field

within 4λc of the centre. To determine the Newtonian potential of the smoothed

density field, we use a multidimensional piece-wise linear interpolator to interpolate

the values of Φext from the halos to the grid points (as in [364]). Assuming there is

no self screening of the smoothed density field, all grid points with |Φext| < χ are

then unscreened. By solving the time-independent massive Klein-Gordon equation

(Equation 1.27 with Zij = δij), we find the magnitudes of the contributions from the

Gaussian smoothed density field and NFW halos to be

a5,Gauss (r) = −2α2GNM

r2
e−r/λc

(
1 +

r

λc

)
e

σ2

2λ2c

[
1

2

(
1 + erf

(
r − σ2/λc

σ
√
2

))
−

1

2

1− r/λc
1 + r/λc

e2r/λc

(
1− erf

(
r + σ2/λc

σ
√
2

))
−

2r

1 + r/λc

1√
2πσ

exp

(
−(r − σ2/λc)

2

2σ2

)]
,

(6.34)

a5,NFW (r) = −2α2GNMvir

r2
ch (1 + ch) e

−(r+rvir/ch)/λc

2 (rvir + chr) ((1 + ch) ln (1 + ch)− ch)
×

(
e2(r+rvir/ch)/λc

(
r

λc
− 1

)(
rvir
ch

+ r

)
Ei

(
−r + rvir/ch

λc

)
−

(
r

λc
+ 1

)(
rvir
ch

+ r

)
Ei

(
r + rvir/ch

λc

)
+ 2ervir/(λcch)×

(
er/λcr +

(
r

λc
+ 1

)(
rvir
ch

+ r

)(
γ + ln

(
rvir
λcch

))))
,

(6.35)

where Ei is the exponential integral function and γ is Euler’s gamma constant.

We choose ℓ = 7, which corresponds to a spatial resolution of ∆x ∼ 1.1Mpc,

comparable to the 1.4Mpc resolution used for the smoothed density field in [364].

As discussed in [363], if λc is less than a few ∆x, the discretisation of the smoothed

density field can lead to excessive shot noise. Hence, in the cases where λc < Rthresh,

we evaluate the potential and acceleration from the smoothed density field at a cutoff

of Rthresh and 4Rthresh respectively, then correct our results as

Φext,Gauss (λc) =

(
λc

Rthresh

)2

Φext,Gauss (Rthresh) , (6.36)

and

aGauss (λc) =

(
λc

Rthresh

)2

aGauss (Rthresh) , (6.37)

where, as in [364], we choose Rthresh = 3.5Mpc.
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6.3.3.2 Modelling the halo restoring force

We focus on the power-law region of Equation 6.20 (r < rt), where the mass enclosed

within a radius r is given by

M (r) =
4πρt
3− β

rβt r
3−β. (6.38)

Using Equation 6.3, we then find the predicted offset to be

r⋆ =

(
a5

∆G

G2
N

3− β

4πρt
r−β
t

) 1
1−β

â5, (6.39)

and, using Equations 6.4 and 6.5, the predicted warp parameter is

w1 =
−β (3− β)

(1 + β) (2 + β)

∆G

G2
N

1

4πρt

(3Reff/rt)
β

3Reff

a5 · ẑ. (6.40)

One may be concerned that a larger ∆G/GN would result in a smaller offset for β > 1.

By considering a small perturbation about equilibrium in this case, one finds that the

offset is unstable and thus the predicted signal is either zero or infinite. We therefore

set r⋆ = 0 whenever β ≥ 1. We evaluate these predicted signals for ∆G/GN = 1 to

create a “template” signal, which can then be multiplied by appropriate functions of

∆G/GN to obtain the corresponding prediction (see Equation 6.41 below).

6.3.4 Selection criteria

In this section we summarise the selection criteria used to obtain the samples for

our inference, having justified these in the preceding sections. The fiducial values for

these cuts are also shown in Table 6.2.

6.3.4.1 Warp sample

As noted in Section 6.3.1.1, the Sérsic fit converges for over 99 per cent of our galaxies,

reducing the sample from 126,361 to 125,346. In Figure 6.4 we plot the distribution

of ellipticity, ϵ, for these galaxies. The vertical line at ϵ = ϵcrit = 0.5 is the cut used

in [9] to keep only disk-like galaxies, where we keep those with ϵ > 0.5. Since the

finite spatial resolution will dilate disks with scale heights below 1 kpc [539] and thus

decreases their ellipticity, this criterion dramatically reduces our sample to 2,990. A

further 273 galaxies are removed for having stellar masses below 2× 109M⊙ and 47

more do not have finite warp values due to having columns of zero intensity in their

mock images. 22 of these galaxies do not have associated halos. 54 of the remaining
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Figure 6.4: The distribution in ellipticity, ϵ, of the galaxies in H-AGN. The vertical
line shows the cut at ϵcrit = 0.5 used in [9], where only galaxies to the right of the line
are used. We use the same cut here, reducing our H-AGN sample to 2,990 galaxies.
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Table 6.2: The fiducial parameters used in the offset and warp inferences, as described in the text. The first six parameters are
used in both inferences, whereas the next two are only used for warps, and the final four are for the offset analysis.

Parameter Description Value
λc Compton wavelength of fifth force field. λc ∈ [0.4, 7.6]Mpc
Halo profile Type of density profile used in fit. NFW
Mg, crit Minimum galaxy mass. 2× 109M⊙
Mh, crit Minimum halo mass. 8× 1010M⊙
rt Where to start core. rs
β Power law slope of core. 0.5
ϵcrit Minimum ellipticity of Sérsic fit of galaxy. 0.5
Neff Within how many Reff to calculate warp. 3
N⋆ Within how many Reff to calculate gas centre of mass. 4
R2

crit Minimum value of R2 for Gaussian fit to gas density to say fit has converged. 0.6
Ng Maximum number of gas length scales (lg) for which gas is associated to a galaxy. 4
Nnn Closest a nearest neighbouring galaxy can be as a multiple of the sum of their Reff . 4
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galaxies have a halo mass below 8 × 1010M⊙, which when rejected leaves a final

sample of 2,594 galaxies. This should be compared to the 4,139 galaxies used in

[364].

6.3.4.2 Offset sample

Starting with the 117,099 galaxy+halo pairs, we discard the 14,041 galaxies where the

Gaussian fit to the surrounding gas does not converge, as detailed in Section 6.3.1.2.

The gas–star offset is greater than Nglg for 430 galaxies, where Ng = 4, so these are

also eliminated from the sample. 1,923 galaxies have nearest neighbours which are

too close to make the gas–star offset measurement reliable and 44,514 have masses

below 2 × 109M⊙, reducing our sample to 56,132. Imposing a minimum halo mass

of 8× 1010M⊙ leaves a final sample of 38,042 galaxies, to be compared to 15,634 in

[364].

6.3.5 Likelihood model

Now for each galaxy, i, in the offset and warp samples, we have both an “observed”

(simulated), yi, and template, ȳi, signal, where y ∈ {r⋆,α, r⋆,δ, w1}. The likelihood for

the observed signal is then

Li (yi|∆G/GN, λc, σy,i) =
1√

2πσy,i
exp

(
−(yi − ȳi (∆G/GN)

τ )
2

2σ2
y,i

)
, (6.41)

where τ = 1 for the warp inference, and τ = (1 − β)−1 for the offset inference. The

noise parameters, Ωy = {σy,i}, characterise the uncertainty on each of the parameters,

and we use the same σy,i for y = r⋆,α and y = r⋆,δ. A key assumption of [364] is that

these parameters are either constant for all galaxies or only depend linearly on the

distance between the observer and galaxy, di. For our fiducial analysis we choose a

constant Ωy for all galaxies, as the spatial resolution of H-AGN means that a physical,

as opposed to angular, uncertainty is appropriate for the offset inference, and we find

no systematic trend between w1 and distance. In Section 6.6 we investigate the

validity of these assumptions.

Assuming the galaxies are independent, we find the likelihood of the set of observed

y to be

L (y|∆G/GN, λc,Ωy) =
∏

i

Li (yi|∆G/GN, λc, σy,i) . (6.42)

183



We also treat the signals as independent, such that the total likelihood of our dataset

D is

L (D|∆G/GN, λc,Ω) =
∏

y

L (y|∆G/GN, λc,Ωy) , (6.43)

for Ω = {Ωy}. We consider both the warp and offset samples separately and com-

bined, so that for the above product we have three choices: y = w1 (warp inference),

y ∈ {r⋆,α, r⋆,δ} (offset inference), and y ∈ {w1, r⋆,α, r⋆,δ} (combined inference). Fi-

nally, given some prior on ∆G, λc and Ω, we use Bayes’ theorem (Equation 1.39) to

obtain the posterior distribution of these parameters.

Imposing the priors ∆G/GN ≥ 0 and σy,i > 0 ∀ y, i, and using the emcee sampler

[62], we now derive posteriors on ∆G/GN and the noise model parameters at fixed

λc. We sample with 32 walkers and terminate the chain when the estimate of the

autocorrelation length changes by less than 1 per cent per iteration and the chain is

at least 50 autocorrelation lengths long.

6.4 Simulated constraints

In Figure 6.5a we plot the 1σ constraints on ∆G/GN as a function of λc for the warp

and offset samples separately, as well as the joint constraint obtained from multiplying

the likelihoods. We find the same qualitative results as [364]; ∆G/GN is consistent

with zero, and the strength of the constraint improves with increasing λc. The warp

inference is weaker than the gas–star offset inference at small λc because there are

far fewer galaxies in the warp sample; repeating the gas–star offset inference with the

same number of galaxies as the warp sample results in comparable constraints for

both signals. We find that all halos in our sample are screened for λc = 0.4Mpc, so

we cannot achieve a constraint for this or lower λc.

For λc = 1.2, 4.4 and 7.6Mpc, we plot the posterior distributions from the

combined inference in Figure 6.5b. We see that the typical scale of the offsets is

σr⋆ ∼ 0.5 kpc, which is approximately half the spatial resolution of H-AGN. We also

see that w1 in H-AGN is approximately five times larger than found in [364]. As

previously noted, the finite spatial resolution inflates disks with scale heights below

1 kpc [539]. This leads to larger absolute fluctuations in the luminosity-weighted z

position of the disk, justifying the increased w1. It is therefore reasonable to suppose

that the magnitudes of both of these noise parameters are set by the resolution of

the simulation, so that these are upper limits for the true theoretical predictions.

However, it is not the magnitude of the signals which we wish to determine here, but
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Figure 6.5: (a) 1σ constraints on ∆G/GN as a function of λc or n = 1 Hu-Sawicki fR0

for the gas–star offset (blue) and warp (red) analyses, and their combination (black),
using simulated galaxies from H-AGN. (b) Constraints on ∆G/GN at different λc,
from the combined inference of the gas–star offsets and galaxy warps in galaxies from
H-AGN, along with the noise parameters σr⋆ and σw1 .

their correlations with other galaxy properties, which one would expect not to change

significantly with improved resolution. Since the absolute level of noise will have an

impact on the constraints in Figure 6.5b, we do not compare these directly to [364],

but rather consider the relative change to our constraints if we alter the noise model.

6.5 Validity of noise model

We now are ready to address the first two questions in Section 6.2; are there unaccounted-

for correlations in the noise, and, if so, do these impact the constraints? As noted

in Section 6.3.5, both our fiducial analysis and [9, 364] assumed that the noise in

the warp inference is a constant for all galaxies, whereas for the offset inference we

assumed a constant spatial uncertainty and [363, 364] assumed a constant angular

uncertainty. Assessing whether the observable is correlated with parameters used to

construct the template signal due to baryonic physics (i.e. in the simulation) is anal-

ogous to asking whether the former can be predicted from the latter through some

function. If not, an empirical noise model in which such correlations are absent is

sufficient. Otherwise a more sophisticated noise model may be required.
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Figure 6.6: Feature importances for predicting (a) warps, w1, and (b) gas–star off-
sets, |r⋆|, in the simulation from the variables relevant to the fifth force prediction
using optimised Random Forest regressors. The bars are the impurity-based feature
importances (normalised so that their sum is one), and the lines give the inter-tree
variability. w1 is found to be uncorrelated with any such variable as each feature
importance is consistent with zero. Conversely, the gas–star offset is correlated with
several properties of the host halos.

To determine the halo parameters to use, we fit each simulated halo with a NFW

and the NFW-like profile with the inner power law slope as a free parameter, and

choose whichever fit minimises the BIC (Equation 1.43). We then have the charac-

teristic density, ρ0, scale radius, rs, inner power law slope, Γ, and virial radius, rvir,

for each halo. We combine these with the distance of the galaxy from the centre of

the box, di, screening potential, Φ, and magnitude of the fifth force field at a given

λc, |a5|, to obtain the set of parameters that we will consider correlations of the noise

with.

To determine the level of correlation, we calculate the feature importances from

optimised Random Forests for the prediction of w1 and |r⋆| from these parameters.

The feature importance gives the total decrease in node impurity due to that fea-

ture, normalised so that the sum of feature importances is one. The most important

features—those that correlate most strongly with the signal—have the largest feature

importances, and the inter-tree variability (shown by the black lines in Figure 6.6)

indicates the level of uncertainty on these values.

6.5.1 Correlation of warps with galaxy and halo properties

In Figure 6.6a we plot the feature importances for the prediction of w1 from the

parameters listed above that are used to make the template signal. We see that all

features are equally (un)important and find that the regressor is unable to predict
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Figure 6.7: Two-dimensional histograms of the simulated signals and the most impor-
tant features, as given in Figure 6.6, for determining the gas–star offset in H-AGN.
We see that these features have little correlation with the warp statistic, but there is
a clear correlation between rvir and the magnitude of the gas–star offset. The high-
intensity band at Γ = −1 contains the galaxies whose halos prefer a NFW fit over
the more general profile according to the Bayesian Information Criterion.

w1 reliably, with a cross-validated score of 0.02. This is also evident in the two-

dimensional histograms plotted in Figure 6.7, where we see little correlation between

w1 and the parameters considered. It is therefore appropriate to assume uncorrelated

noise in the inference, justifying the model of [9, 364].

6.5.2 Correlation of offsets with galaxy and halo properties

The case of gas–star offsets is more interesting, as Figure 6.6b indicates that the

properties of the halo are important in predicting the measured value, and indeed we

obtain a higher cross-validated score of 0.45. We find that the two most important

features are rvir and Γ, and the correlations of the signals with these parameters

are clearly visible in the two-dimensional histograms of Figure 6.7. The relationship

between rvir and |r⋆| is not linear, indicating that the offset does not solely arise via

scale-invariant processes.

To determine whether any correlation with these parameters affects our constraint,

we now allow σr⋆ to vary with one of these parameters, which we denote p. We sort

our galaxies into bins of increasing p such that each bin contains the same number of

members, except in the case p = Γ, where we have one bin which is larger, containing

all galaxies that are best-fit by NFW profiles (Γ = −1). We repeat our inference with

a universal ∆G/GN, but with a different σr⋆ for each bin, and find that the fitted σr⋆

are independent of both ∆G/GN and λc.
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Figure 6.8: (a) Ratio of the 1σ constraints on ∆G/GN from the gas–star offset infer-
ence between allowing the noise parameters to vary with the halo properties vs using
a single noise parameter for all galaxies. A value less than one indicates that the
constraint tightens when using varying σr⋆ . (b) Noise parameters, σr⋆ , as a function
of bin number for λc = 4.4Mpc, for the same bins used in Figure 6.8a. The horizon-
tal line indicates the value obtained when a single σr⋆ is used for all galaxies. The
constraint changes by ≲ 30 per cent in all cases, weakening at large λc when we bin
in rvir due to the increase in σr⋆ for the largest halos.

In Figure 6.8a we compute the change in our constraints as a function of λc for 10

bins in rvir, Γ or rs, where we compare to the constraint with a single σr⋆ . Binning in

any other variable produces curves similar to those of rs and Γ. We find that allowing

σr⋆ to vary can either tighten, by up to ∼ 25 per cent, or weaken, but by no more

than ∼ 30 per cent, the constraint on ∆G/GN. It is interesting that the constraint

tightens at the smallest λc when using the more sophisticated noise model; this is

the region that probes that weakest fifth force and hence sets the bound on e.g. fR0.

We have repeated this binning procedure with only 5 bins and obtain similar results,

indicating that our discretisation is sufficiently fine to capture the variation of σr⋆

with these parameters.

As one would expect, the most dramatic change to our constraint occurs when we

bin in the most highly correlated property, rvir. To understand the behaviour of the

constraint in this case, we plot σr⋆ as a function of bin number in Figure 6.8b. When

we bin in rvir, we find that for the majority of our bins, we obtain a smaller σr⋆ than

our fiducial likelihood model, whereas the positive correlation between rvir and the

observed offset causes an increased σr⋆ for the largest halos.

We now look at the effect each rvir bin has on our constraint. We consider the
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Figure 6.9: The summed change in log-likelihood, ∆ logL, in bins of rvir of equal size
between ∆G/GN = 0 and the 1σ constraint, for the offset analysis with a universal
noise parameter. A negative ∆ logL indicates a preference for ∆G/GN = 0. We
normalise by the total change of logL to show the relative contribution of each bin.
For large values of λc the constraint is dominated by the largest rvir, but for smaller
λc the galaxies with the largest halos are more likely to be screened, so that halos of
intermediate rvir are primarily responsible for the constraint.

change in the sum of the log-likelihood for all galaxies in a bin, ∆ logL, between the

1σ constraint on ∆G/GN and ∆G/GN = 0, where we use a single σr⋆ for all bins, and

set this to the maximum likelihood value. We plot the variation of ∆ logL with bin

number in Figure 6.9 for different λc. For larger values of λc, we see that |∆ logL| is
largest for the biggest halos, i.e. our fiducial constraint is driven by the highest rvir

bins. Since these bins acquire a larger σr⋆ when we allow this to vary with rvir, the

increased noise allows larger predicted signals for these galaxies. This reduces their

constraining power, and hence our total constraint is weakened. For smaller values

of λc the contribution is driven by intermediate rvir, since a higher fraction of the

galaxies are screened in the largest bins. Now we have the opposite case, where the

noise is reduced in the bins which dominate and thus we are able to achieve tighter

constraints.

As will be shown in Section 6.6, the change in the constraint due to using this more

complicated noise model is less than the systematic uncertainty due to the assumed

halo density profile. This suggests that the simplified model used in [9, 363, 364] is

adequate given other uncertainties in the model.

By choosing just one parameter to bin in, we neglect the covariance between the

parameters; it is possible that a better noise model could be constructed through

a multi-dimensional binning procedure. The method we outline is easily generalis-
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able to higher dimensions, and we have confirmed that considering two parameters

simultaneously for our case study yields similar results to just using one.

So far we have assumed that the simulated signals can be measured with perfect

angular resolution. As this is not the case observationally, it is important to assess

how our results are affected by the addition of a realistic angular uncertainty. To

do this, we place the observer at the corner of the simulation volume to match more

closely the distribution of distances of the ALFALFA survey. We remove one galaxy

which is closer to the observer than 4Mpc (the closest any galaxy is to us in [364]).

We add a random angular displacement to the gas–star offset of each galaxy, drawn

from a Gaussian of width σobs. We consider two cases: 1) σobs = 18′′ to mimic the

ALFALFA survey and thus the inference of [363, 364], and 2) σobs = 0.′′1, as will be

achievable with the ‘mid’ configuration of SKA1 [540, 541]. Now we must fit for both

an angular, σobs, and intrinsic, σint, noise component, such that the appropriate σr⋆

for galaxy i at distance di is

σr⋆,i =

√
σ2
int + (σobsdi)

2. (6.44)

We now re-run the inference with this additional, random angular offset 15 times

for each λc, fitting in each case for a universal ∆G/GN and σobs, and either a universal

σint or a different σint for each of 5 bins in rvir. The change in the constraint from using

a rvir-dependent σint is shown in Figure 6.10. We see that for both the ALFALFA

and SKA resolution, the mean constraint changes by ≲ 30 per cent for all λc.

It is unsurprising that the ALFALFA-like constraints are insensitive to whether we

bin σint or not, with the 1σ regions of the uncertainty on the constraint overlapping

for all λc. An 18′′ angular offset at the mean distance from the observer (128Mpc)

corresponds to 11 kpc, so the angular offset dominates the intrinsic contribution of ∼
0.5 kpc. One would expect that changing the model of the subdominant contribution

to the noise would have little impact on the constraint, as indeed we find.

For the SKA resolution we are in the opposite regime: a 1σ angular offset now

corresponds to only 60 pc at the mean distance to a galaxy, and thus our results are

dominated by the intrinsic component. If SKA data were used in this test, to test the

noise model it would therefore be more appropriate to convolve the observations with

the simulation’s resolution rather than vice versa, as we do in this section. This results

in a smaller sample variance than with the ALFALFA resolution, and a practically

identical variation of the change of the constraint with λc as in Figure 6.8a. Now the

1σ uncertainties on the constraints from multiple runs do not overlap, but again the

constraints change by less than 30 per cent for all λc.
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Figure 6.10: Same as Figure 6.8a, but here we add an additional random angular
offset to each galaxy at either the ALFALFA (18′′) or SKA (0.′′1) resolution. Our
binned noise model has a universal angular uncertainty combined with a different
intrinsic contribution for each of 5 bins in rvir, where each bin contains the same
number of galaxies. We run the un-binned and binned analyses 15 times each, and
the standard deviation of the constraint between these is given by the shaded region
and error bars respectively.
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The uncertainty on the constraint is actually larger than the variation across these

realisations, as will be discussed in Section 6.6. Given this, and that the intrinsic con-

tribution to the offset here is expected to be an upper limit set by the simulation’s

resolution, we conclude that the assumption of uncorrelated Gaussian noise is justi-

fied given the other potential systematic uncertainties in the inference at both the

ALFALFA and SKA resolution. This is to be expected, as we previously found this

to be true even in the absence of an angular uncertainty.

6.6 Validity of halo density model

We now wish to see how the assumed form of the halo density profile affects our

constraints, a test afforded by the full DM distribution available in the simulation.

We consider the change in the constraint from assuming β = 0.5 with the NFW

properties to using Γ as the inner power law index alongside the parameters from the

more general NFW-like profile. To isolate the impact of the halo density profile from

the number of galaxies used to make the constraint, when making this comparison we

only use galaxies which have a non-zero template signal with both parametrisations.

The resulting changes in the constraints are plotted in Figure 6.11. From this we see

that, as in [364], the constraints from the warp analysis vary by less than a factor of

∼ 2 for most λc, although we do note that the constraint tends to be weaker when

using the more general density profile. The gas–star offset analysis appears to be

more strongly affected by the assumed density model, with constraints up to an order

of magnitude weaker with the more general density profile.

The conclusion to draw from this analysis is conditioned on the reliability of the

halo density profiles in H-AGN. The inner slope of the halo is determined by the bal-

ance between adiabatic contraction [380, 381], which steepens the profile, and stellar

or AGN feedback, which promotes core formation [243, 382]. While redshift-zero ha-

los in H-AGN are found to be steeper than NFW [538], most observational evidence

favours shallower profiles (e.g. [384, 385]), a manifestation of the cusp-core problem of

ΛCDM [383]. It is unclear how alternative feedback prescriptions would alter the con-

straints in Figure 6.11, although we note that by considering only halos with non-zero

template signals we have removed all those with Γ < −1 (Section 6.3.3.2).

Due to this issue, we cannot a draw a definitive conclusion about the validity

of the halo density model used in [364]. We can however say that, for the H-AGN

simulation, variations in the halo density model can result in a weakening of the

constraint of ∆G/GN from gas–star offsets by up to a factor ∼ 10, and galaxy warps
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Figure 6.11: Ratio of the 1σ constraints on ∆G/GN between assuming an inner power
law of slope β = 0.5 inside the scale radius of a NFW profile, and using a more general
NFW-like profile, where we explicitly fit for the inner power law slope. A value greater
than one indicates a weaker constraint when using the more general density profile.

by up to a factor ∼ 2. Although this is consistent with the discussion of systematic

uncertainties in [364], different simulations or different halo density profiles could lead

to different conclusions. It is therefore important for future work to investigate other

cosmological hydrodynamical simulations with different implementations of galaxy

formation physics, to determine whether this result is robust to plausible variations

in the DM distribution.

For this specific example, we note that it is not the individual constraints that

are important but rather the combined constraint of the two analyses. From figure 1

of [364], we see that the combined constraint on ∆G/GN would hardly change if we

removed the gas–star offset analysis and only used galaxy warps. The sensitivity of

the gas–star offset inference to the halo density profile is therefore of little consequence

to the conclusions of that work, which are driven mainly by the warp analysis.

6.7 Discussion and Conclusions

Galactic scale tests are capable of providing powerful constraints on new fundamental

physics across a range of previously under-explored environments. Their drawback is

that one must accurately model the messy astrophysical regime to capture fully, and

break degeneracies with, baryonic effects that are less important in more traditional

analyses.

We propose three main tests to gauge the robustness of a given model to baryonic

physics:
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1. Determine whether there are any unaccounted-for correlations between the tar-

get observable (signal) and galactic properties due to baryonic physics (noise).

To do this, we ask whether the signal in a cosmological hydrodynamical sim-

ulation without new physics can be predicted from the parameters relevant to

the new physics model. Since the functional form of any such correlation is

unknown a priori, this is best addressed in a machine-learning context.

2. If one or more parameter is found to correlate with the simulated signal, then

the impact of this on the new physics constraint must be established. We do this

by explicitly constructing a more sophisticated noise model and repeating the

inference. If the constraint changes by less than some specified tolerance then

it can be concluded that the simplified noise model is satisfactory; otherwise it

should be replaced with the more complex one.

3. Use the extra information available in the simulation compared to observations

to assess the adequacy of the modelling of unobservable properties. With the

simulated data one can compare the constraints obtained using the “true” vs

model parameters to quantify the model’s suitability, and improve it if necessary.

As a case study, we investigate the morphological signatures used in [364] to con-

strain thin-shell-screened fifth forces and rule out astrophysically relevant Hu-Sawicki

f(R) theories, namely offsets between the stellar and gaseous components of a galaxy

and warping of the stellar disk. We work in the context of the H-AGN simulation,

performed in ΛCDM and hence with no fifth force. We use a machine-learning feature

importance analysis to study the correlations in the simulation between the morpho-

logical signals and the parameters used to predict them in the context of modified

gravity. We find that the degree of ‘U’-shaped warping of the stellar disk is indepen-

dent of these parameters, justifying the assumption of uncorrelated random Gaussian

noise used in [9, 364]. For the gas–star offset case, we find a positive correlation

between the signal and the virial radius of the host halo, rvir. To assess the impact

of this previously unaccounted-for complication, we allow the width of the Gaussian

noise model to vary with rvir by binning the galaxies in rvir and using a different width

in each bin. This changes the fifth force constraint by ≲ 30 per cent, which is less

than the systematic uncertainty from the assumed halo density profile. This again

justifies the assumption of random noise. We find that the gas–star offset inference is

more sensitive to the assumed density profile than the warp analysis, and we identify

this as the largest source of systematic uncertainty in the inference of [364]. It could
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be reduced in the future using dynamical information on the central regions of the

test galaxies.

We anticipate the methods developed here to prove useful for validating future

forward models of galactic signals used to constrain fundamental physics. In this

chapter, we have only considered the implementation of galaxy formation physics in

the H-AGN simulation. Other simulations have different sub-grid models, calibration

methods, hydrodynamical and feedback schemes and resolutions, and any analysis

must be robust to these differences. It is known that small-scale predictions for the

matter power spectrum are sensitive to these effects [542], so it is natural to suspect a

similar sensitivity here. Future studies should therefore apply the methods we outline

to different simulations and different physics tests to assess the accuracy of constraints

derived from the galactic regime.
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Chapter 7

Conclusions

In this thesis we developed the use of Monte Carlo-based forward models in galac-

tic astrophysics, with applications to tests of dark matter, dark energy, and galaxy

formation. By forward-modelling observational signals on a source-by-source basis,

propagating uncertainties through Monte Carlo sampling, and marginalising over a

model describing other astrophysical and observational processes, we harnessed the

constraining power of galaxies whilst accounting for their complexity and mitigating

uncertainties due to unknown astrophysics or poorly modelled astrophysical processes.

Provided one can sufficiently understand the complex, non-linear processes which gov-

ern these objects, it is possible to achieve constraints on fundamental physics with

small statistical uncertainties. The practically unlimited sample size that is achievable

with astrophysical objects is in stark contrast to traditional large-scale cosmological

probes, where one is fundamentally limited by cosmic variance. Since astrophysical

noise is the dominant source on uncertainty in such analyses, it was crucial to robustly

model these contributions and assess the accuracy of the modelling. This is critically

lacking in many previous studies.

To develop the inference techniques required to constrain fundamental physics on

astrophysical scales, in Chapter 2 we considered the energy-dependent propagation

speed for photons induced by Lorentz invariance violation in QG models or a nonzero

photon mass, mγ. In such models, photons of different energies from a distant source

would arrive at different times, even if they were emitted simultaneously. By devel-

oping source-by-source, Monte Carlo-based forward models for such time delays from

GRBs, and marginalising over empirical noise models describing other contributions

to the time delay, we derived constraints on mγ and the QG length scale, ℓQG, using

spectral lag data from the BATSE satellite. We found mγ < 4.0 × 10−5 h eV/c2 and

ℓQG < 5.3 × 10−18 h GeV−1 at 95% confidence, and demonstrated that these con-

straints are robust to the choice of noise model. The QG constraint is among the
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tightest from studies which consider multiple gamma ray bursts and the constraint on

mγ, although weaker than from using radio data, provides an independent constraint

which is less sensitive to the effects of dispersion by electrons.

The observed positions of galaxies in the local Universe allow one to infer the

initial conditions and hence the current DM density (see Section 1.3). The use of

the BORG algorithm to achieve this produces a Markov Chain of plausible large scale

structure realisations which one can use to constrain new physics. Extending the

QG and photon mass analysis, we then developed probabilistic forward models for

the Shapiro time delays of GRBs by combining constrained realisations of the local

density field using the BORG algorithm with unconstrained large-scale modes. The

large Shapiro time delays of extragalactic sources allowed us to put tight constraints

on differences in the PPN parameter γ between photons of different frequencies from

spectral lag data, since a non-zero ∆γ would result in a frequency-dependent arrival

time. The majority of previous constraints have assumed that the Shapiro time delay

is dominated by a few local massive objects, although this is a poor approximation

for distant sources, whereas we considered the cosmological context of these sources.

Propagating uncertainties in the density field reconstruction and marginalising over

an empirical model describing other contributions to the time delay, we utilised the

same spectral lag data to constrain ∆γ < 2.1×10−15 at 1σ confidence between photon

energies of 25 keV and 325 keV. This is a constraint on Weak Equivalence Principle

violation, since γ should be the same for all particles at all energies if this is obeyed.

Our next aim was to constrain fundamental physics with the morphology of galax-

ies themselves, rather than just the inferred DM density fields from their spatial

distribution. For this, we considered Galileons; scalar field theories which obey the

Galileon symmetry φ→ φ+ b+ cµx
µ and are capable of self-acceleration if they have

an inverted sign for the kinetic term. These theories violate the Strong Equivalence

Principle, such that BHs do not couple to the Galileon field, whereas non-relativistic

objects experience a fifth force with strength ∆G/GN relative to gravity. For galaxies

falling down a gradient in the Galileon field, this results in an offset between the

centre of the galaxy and its host supermassive BH. Before attempting to constrain

the coupling of these theories, in Chapter 3 we studied this phenomenon in ΛCDM

to investigate whether one could build a noise model from these considerations.

We studied the displacements between the centres of galaxies and their supermas-

sive BHs in the cosmological hydrodynamical simulation H-AGN, and in a variety

of observations from the literature. The BHs in H-AGN feel a sub-grid dynamical

friction force, sourced by the surrounding gas, which prevents recoiling BHs being
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ejected from the galaxy. We found that the fraction of spatially offset BHs increases

with cosmic time, BHs live on prograde orbits in the plane of the galaxy with an

orbital radius that decays with time but stalls near z = 0, and the magnitudes of

offsets from the galaxy centres are substantially larger in the simulation than in ob-

servations. We attributed the stalling of the infall and excessive offset magnitudes to

the fact that dynamical friction from stars and DM is not modelled in the simulation,

and hence provided a way to improve the black hole dynamics of future simulations.

Unfortunately, the unrealistic predictions of the simulations meant that we had to

rely on empirical noise models for this test.

In Chapter 4 we reconstructed the local gravitational and Galileon fields through

a suite of constrained N -body simulations and developed a Monte Carlo-based for-

ward model for these offsets on a galaxy-by-galaxy basis. Using the measured off-

set between the optical centre and active galactic nucleus of 1916 galaxies from the

literature, propagating uncertainties in the input quantities and marginalising over

an empirical noise model describing astrophysical and observational noise, we con-

strained the Galileon coupling to be ∆G/GN < 0.16 at 1σ confidence for Galileons

with crossover scale rC ≳ H−1
0 .

In Chapter 5 we utilised the DM density fields inferred through galaxy positions to

constrain the properties of DM itself. Decaying or annihilating DM particles could be

detected through gamma-ray emission from the species they decay or annihilate into.

This is usually done by modelling the flux from specific DM-rich objects such the

Milky Way halo, Local Group dwarfs and nearby groups. However, these objects are

expected to have significant emission from baryonic processes as well, and the analyses

discard gamma-ray data over most of the sky. Here we constructed full-sky templates

for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of the

CSiBORG simulation suite. Marginalising over uncertainties in this reconstruction,

small-scale structure and parameters describing astrophysical contributions to the

observed gamma ray sky, we compared to observations from the Fermi Large Area

Telescope to constrain DM annihilation cross-sections and decay rates. We ruled out

the thermal relic cross-section for s-wave annihilation for all mχ ≲ 7GeV/c2 at 95%

confidence if the annihilation produces Z bosons, gluons or quarks less massive than

the bottom quark. We inferred a contribution to the gamma ray sky with the same

spatial distribution as DM decay at 3.3σ. Although this could be due to DM decay

via these channels with a decay rate Γ ≈ 3 × 10−28 s−1, we found that a power-law

spectrum of index p = −2.75+0.71
−0.46 is preferred by the data.

198



When constraining DM annihilation, we assumed that all DM halos obey NFW

density profiles, however we verified that our constraints are conservative compared

to those obtained using Einasto profiles. Both of these profiles are calibrated against

DM-only simulations, whereas ideally one would use hydrodynamic simulations which

incorporate the impact of baryons. Adiabatic contraction can steepen the inner DM

density profile [380, 381], which would lead to larger predicted signals in the centres of

halos and thus tighter constraints on ⟨σv⟩. However, the subsequent stellar feedback

caused by this contraction can cause the halo to expand [243, 382]. This would lead to

lower DM densities and thus larger values of ⟨σv⟩ could be permitted. Since the true

DM density profiles are sensitive to the exact implementation of baryonic feedback,

and due to the current lack of sufficiently massive simulated halos to calibrate against,

we leave a quantitative study of the impact of baryonic processes on our constraints

to future work.

The galactic scale tests outlined above proved to be powerful tools in constraining

fundamental physics in previously under-explored regions of parameter space. The

astrophysical regime which they probe is inherently complicated, and the inference

methods used to make these constraints should be robust to baryonic effects. Previous

analyses have assumed simple empirical models for astrophysical noise without de-

tailed calibration or justification. In Chapter 6 we outlined a framework for assessing

the reliability of such methods by constructing and testing more advanced baryonic

models using cosmological hydrodynamical simulations. As a case study, we use the

H-AGN simulation to investigate warping of stellar disks and offsets between gas and

stars within galaxies, which are powerful probes of screened fifth forces. We showed

that the degree of ‘U’-shaped warping of galaxies is well modelled by Gaussian ran-

dom noise, but that the magnitude of the gas–star offset is correlated with the virial

radius of the host halo. By incorporating this correlation we confirmed recent results

ruling out astrophysically relevant Hu-Sawicki f(R) gravity, and identify a ∼ 30%

systematic uncertainty due to baryonic physics. Such an analysis must be performed

case-by-case for future galactic tests of fundamental physics.

The statistical, forward-modelling techniques developed in this thesis have allowed

the field of astrophysical tests of fundamental physics to become a powerful probe of

how the Universe works. Through robust characterisation and assessment of astro-

physical and observational noise, we have opened up an uncharted region of parameter

space to answer some of the most important questions about our Universe, such as

the nature of dark energy, dark matter, and gravity.
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As we move into an era of increased observational power, we will probe smaller

scales and thus non-Gaussian processes will become the dominant source of uncer-

tainty and limitation to extracting information. Although in Chapter 6 we developed

a framework to assess the reliability of models designed to capture this noise by

constructing and testing more advanced baryonic models using cosmological hydro-

dynamical simulations, it would be desirable to produce these a priori, as opposed

to justifying their validity a posteriori. Utilising machine learning techniques such

as Bayesian Neural Networks to determine these relations, and training on a variety

of cosmological hydrodynamical simulations to ensure the inference is robust to this

choice, future work should incorporate machine learning into noise models and hence

improve their sophistication. When constructing these noise models, one can not only

improve the robustness of the results, but there is the opportunity to learn about the

processes that govern galactic formation and evolution.

With the next generation of galaxy surveys – such as Euclid [217] or the Rubin

Observatory [218] – just around the corner, we will soon have high quality data for

billions of galaxies. The galactic-scale tests of fundamental physics performed in

this thesis typically involved a few thousand galaxies. Future work should therefore

improve the scalability of these methods, whilst still treating galaxies as more than

point-like objects. This will involve adapting techniques such as DELFI to these novel

probes of fundamental physics. An increased level of automation in these simulation-

based inferences – for example by designing convergence criteria for the Monte Carlo

sampling – will reduce the computational cost of a given analysis, allowing more tests

to be run even as the sophistication of the inference increases.

A key theme throughout this thesis has been to constrain fundamental physics

without using two-point statistics. Instead, objects (or pixels in Chapter 5) were

forward modelled individually and directly compared to the data, which allowed us

not only to capture the two-point statistics, but implicitly all higher orders too.

This is advantageous since we minimise the amount of compression performed on the

data and hence retain maximal constraining power. Moreover, we know that many

phenomena we wish to study are non-Gaussian (e.g. the present-day matter density

field is not a Gaussian Random Field, as demonstrated by the filamentary structures),

so a two-point statistic does not fully describe the statistical properties of the data in

these scenarios. The themes and methods discussed in this work should therefore be

applied to more traditional cosmological probes, with the expectation that these will

produce tighter constraints than resorting to power-spectrum analyses, as has already

been shown by [79–81]. Importantly, we have developed the requisite methodologies to
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propagate uncertainties and noise within this object-by-object (or field-level) inference

framework and assess their appropriateness, which could naturally be incorporated

in an inference pipeline.

Although primarily applied to the astrophysical regime in this thesis, the tech-

niques introduced were designed to detect correlations in extremely noisy data with

potentially unknown noise characteristics. The techniques developed can therefore be

applied to any situation when one wishes to analyse a population for which one has a

large amount of (potentially uncertain) data per member, making this approach appli-

cable to other areas of astronomy. Future applications of these methods to maximally

extract information from under-explored regions of parameter space and to more tra-

ditionally studied phenomena will be invaluable in the attempt to learn how galaxies

form and evolve, and uncover the fundamental physics of the Universe. In achieving

this goal, there is the tantalising opportunity to obtain competitive constraints on

fundamental physics in a completely new way.
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Appendix A

Numerical implementation of dark
matter likelihood

When evaluating the likelihood in Equation 5.44, we often care about small fractional

errors on the model, such that the parameter

x ≡ (µ− σ2)
2

2σ2
(A.1)

is large, where we have omitted indices for clarity. We therefore must evaluate

1F1(a, c, x) for x ≫ 1, although this is problematic since 1F1 has the asymptotic

expansion [543]

1F1 (a, c, x) ∼
Γ (c)

Γ (a)
exxa−c, (A.2)

and thus diverges as x→ ∞. We therefore define the function

f (a, c, x) ≡ e−xxc−a
1F1 (a, c, x) , (A.3)

which is finite as x→ ∞. Thus the likelihood for a single pixel becomes

L (n) =
(µ− σ2)

n

√
πn!

exp

(
σ2

2
− µ

)(
1 + erf

(
µ√
2σ

))−1

×
(
Γ

(
1 + n

2

)
gn (x) + 2Γ

(
1 +

n

2

)
hn (x)

)
,

(A.4)

where we have defined the functions

gn (x) ≡ f

(
1 + n

2
,
1

2
, x

)
, (A.5)

and

hn (x) ≡ f

(
1 +

n

2
,
3

2
, x

)
. (A.6)
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Given the asymptotic expansion of 1F1, it is clear that Equation A.4 is equivalent to

the Poisson distribution in the limit σ → 0 at fixed µ.

If n is even, then gn(x) can we expressed as

gn (x) =

n/2∑

m=0

α(n)
m x−m, (A.7)

where the coefficients obey the recurrence relation

α(n+2)
m =

2

n+ 1

((
n−m+

3

2

)
α
(n)
m−1 + α(n)

m

)
, (A.8)

and

α
(0)
0 = 1. (A.9)

Similarly, if n is odd, then

gn (x) =

(n−1)/2∑

m=0

β(n)
m x−m, (A.10)

for

β(n+2)
m =

2

n+ 2

((
n−m+

3

2

)
β
(n)
m−1 + β(n)

m

)
, (A.11)

and

β
(1)
0 = 1. (A.12)

For odd n, the function gn(x) has a slightly more complicated expression

gn (x) =
e−x

√
x

(n−1)/2∑

m=0

γ(n)m x−m +
√
π erf

(√
x
) (n−1)/2∑

m=0

δ(n)m x−m, (A.13)

where

γ(n+2)
m =

2

n+ 1

(
δ(n)m + (n−m+ 1) γ

(n)
m−1

)
, (A.14)

δ(n+2)
m =

2

n+ 1

(
δ(n)m +

(
n−m+

3

2

)
δ
(n)
m−1

)
, (A.15)

γ
(1)
0 = δ

(1)
0 = 1. (A.16)

Finally, the function hn(x) can be expressed in a similar form for even n,

hn (x) =
e−x

√
x

n/2∑

m=0

ϵ(n)m x−m +
√
π erf

(√
x
) n/2∑

m=0

ζ(n)m x−m, (A.17)
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where

ϵ(n+2)
m =

2

n+ 2

(
ζ(n)m + (n−m+ 1) ϵ

(n)
m−1

)
, (A.18)

ζ(n+2)
m =

2

n+ 2

(
ζ(n)m +

(
n−m+

3

2

)
ζ
(n)
m−1

)
, (A.19)

ϵ
(0)
0 = 0, (A.20)

ζ
(0)
0 =

1

2
. (A.21)

Whenever x > 1, we evaluate the likelihood using Equation A.4 and the series

expansions for gn(x) and hn(x) given above. Otherwise, the likelihood is evaluated

using Equation 5.44 directly, using the usual series expansion for 1F1

1F1 (a, c, x) =
∞∑

m=0

(a)m
(c)m

xm

m!
. (A.22)
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[324] S. Kotz, K. T. J, and K. Podgórski, The Laplace Distribution and Generaliza-
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[459] M. Hütten, C. Combet, G. Maier, and D. Maurin, JCAP 2016, 047 (2016).

[460] M. A. Sánchez-Conde and F. Prada, MNRAS 442, 2271 (2014).

[461] J. S. Bullock et al., MNRAS 321, 559 (2001).

[462] M. A. Sánchez-Conde and F. Prada, MNRAS 442, 2271 (2014).

[463] R. H. Wechsler et al., The Astrophysical Journal 568, 52 (2002).

[464] F. Acero et al., ApJS 223, 26 (2016).

[465] T. E. Jeltema and S. Profumo, JCAP 2008, 003 (2008).

[466] E. Branchini et al., ApJS 228, 8 (2017), arXiv:1612.05788 [astro-ph.CO] .

[467] M. Ackermann et al., Phys. Rev. Lett. 121, 241101 (2018).

[468] M. Colavincenzo et al., MNRAS 491, 3225 (2020).

[469] H. Abdallah et al., Phys. Rev. Lett. 120, 201101 (2018).

[470] A. Di Cintio et al., MNRAS 441, 2986 (2014).

[471] M. Fornasa et al., MNRAS 429, 1529 (2013).

218

http://dx.doi.org/ 10.1111/j.1365-2966.2009.15191.x
http://dx.doi.org/ 10.1111/j.1365-2966.2009.15878.x
http://dx.doi.org/ 10.1111/j.1365-2966.2008.14066.x
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1103/PhysRevD.97.063005
http://dx.doi.org/10.1186/s40668-015-0009-7
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://dx.doi.org/10.1111/j.1365-2966.2006.11330.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13180.x
http://arxiv.org/abs/0712.3049
http://dx.doi.org/10.1016/j.cpc.2011.10.017
http://dx.doi.org/10.1016/j.cpc.2015.11.012
http://dx.doi.org/10.1016/j.cpc.2018.10.001
http://dx.doi.org/10.1093/mnras/278.2.488
http://dx.doi.org/ 10.1111/j.1365-2966.2004.07586.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13277.x
http://dx.doi.org/10.1103/PhysRevD.83.023518
http://dx.doi.org/10.1051/0004-6361:20078723
http://dx.doi.org/10.1093/mnras/stu1014
http://dx.doi.org/10.3847/0067-0049/223/2/26
http://dx.doi.org/10.1088/1475-7516/2008/11/003
http://dx.doi.org/10.3847/1538-4365/228/1/8
http://arxiv.org/abs/1612.05788
http://dx.doi.org/ 10.1103/PhysRevLett.121.241101
http://dx.doi.org/10.1093/mnras/stz3263
http://dx.doi.org/ 10.1103/PhysRevLett.120.201101
http://dx.doi.org/10.1093/mnras/stu729


[472] J. Lavalle, J. Pochon, P. Salati, and R. Taillet, A&A 462, 827 (2007).

[473] A. Franceschini, G. Rodighiero, and M. Vaccari, Astrophys 487, 0805 (2008).

[474] A. Franceschini and G. Rodighiero, A&A 603, A34 (2017).

[475] P. D. Serpico et al., MNRAS: Letters 421, L87 (2012).
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