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Deutsche Kurzfassung der Dissertation

Skalarfelder sind sowohl durch die theoretische als auch die experimentelle Physik gut motiviert.
Sie werden von höherdimensionalen Theorien wie der Stringtheorie vorhergesagt, erklären die
Masse der Eichbosonen der schwachen Wechselwirkung und können dazu dienen, die kosmische
Inflation anzutreiben oder Modelle für dunkle Materie oder dunkle Energie zu konstruieren.
Leichte Skalarfelder, wie sie häufig in der Kosmologie auftreten, können zu einer
gravitationsähnlichen fünften Kraft führen. Die Existenz solcher Skalarfelder erfordert entweder
äußerst schwache Kopplungen an Materie durch die Feinabstimmung von Parametern oder die
Integration von Mechanismen, die das Fehlen beobachteter fünfter Kräfte erklären, um nicht im
Widerspruch zu experimentellen Tests der Allgemeinen Relativitätstheorie zu stehen.
Der Fokus dieser Arbeit liegt auf Skalarfeldern mit einem sogenannten Screening-Mechanismus,

wie ihn zum Beispiel das Chameleon-, Symmetron- oder Dilatonfeld besitzen. Diese Mechanismen
sorgen dafür, dass die fünfte Kraft bei hohen Materiedichten unterdrückt wird, aber im Vakuum
stark werden kann.
Tabletop Experimente im Vakuum sind besonders gut geeignet, um nach solchen Feldern zu

suchen. Die Kombination ihrer sehr hohen Messgenauigkeit mit der Vakuumumgebung macht
sie zu mächtigen Werkzeugen bei der Suche nach Skalarfeldern. Allerdings ist die theoretische
Berechnung dieser Felder äußerst schwierig, da ihre Bewegungsgleichungen nichtlinear sind.
Der Hauptfokus dieser Arbeit liegt darauf, theoretische und numerische Methoden zu entwick-

eln, um Tabletop Experimente, die mit der TUWien assoziiert sind, zu analysieren. Dazu gehören
die Neutroneninterferometrie, Gravitationsresonanzspektroskopie (qBounce) und das Casimir
and Non-Newtonian Force Experiment (cannex). Diese Experimente wurden unter anderem
mit dem Ziel aufgebaut, nach fünften Kräften zu suchen. Die Untersuchungen werden durch eine
Analyse von Lunar Laser Ranging (LLR) ergänzt.
Ein wesentlicher Schwerpunkt dieser Arbeit liegt auf der Untersuchung des Dilatonmodells, das

im Grenzfall starker Kopplung von der Stringtheorie erwartet wird.
Die entwickelten Methoden werden angewandt, um den Parameterraum des Dilaton-, Symmetron-
und Chameleonfeldes einzuschränken und das experimentelle und theoretische Verständnis dieser
Felder zu fördern.
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Abstract

Scalar fields, ubiquitous in theoretical physics, hold significant promise both theoretically and
experimentally. They arise in higher-dimensional frameworks like string theory and play pivotal
roles in diverse phenomena, including endowing mass to weak interaction gauge bosons via the
Higgs mechanism, driving cosmic inflation, and shedding light on enigmatic concepts such as dark
matter and dark energy.
Of particular interest are light scalar fields, prevalent in cosmological contexts, which could

potentially introduce a fifth force akin to gravity. However, stringent constraints from local
gravity tests necessitate careful consideration. The existence of such scalar fields demands either
exceedingly weak couplings to matter through fine-tuning or the incorporation of mechanisms
that account for the absence of observed fifth forces.
This thesis focuses on scalar field theories equipped with screening mechanisms, exemplified by

models like chameleon, symmetron, and environment-dependent dilaton fields. These mechanisms
render the fifth force weak in dense environments while allowing its manifestation in low-density
settings.
To explore these theories, vacuum tabletop experiments emerge as optimal tools due to their

high precision and since they usually operate in vacuum. However, the nonlinear nature of the
governing equations presents significant theoretical challenges.
The primary objective of this work is to develop theoretical and numerical techniques tailored

for studying screened scalar fields within the framework of tabletop experiments, particularly
those associated with TU Wien. These experiments, including neutron interferometry, gravity
resonance spectroscopy (qBounce), and the Casimir And Non-Newtonian force EXperiment
(cannex), are suited to probe screened scalar fields. Additionally, an analysis of Lunar Laser
Ranging (LLR) within this context is conducted.
A key focus lies on investigating the relatively less explored environment-dependent dilaton

model, whose self-interaction potential naturally arises in the strong coupling limit of string
theory.
The culmination of this research involves deriving parameter constraints for the environment-

dependent dilaton, chameleon, and symmetron models, thereby contributing to a deeper under-
standing of screened scalar fields and their implications in theoretical and experimental physics.

3



Acknowledgments

I extend my heartfelt gratitude to all those who supported me throughout my PhD journey.
First and foremost, I owe a debt of gratitude to my supervisor Mario Pitschmann, the visionary

behind this project. Mario’s profound knowledge and diverse interests including quantum field
theory, general relativity, cosmology, and experimental physics and his willingness to share his
knowledge in numerous conversations enriched my understanding of physics immensely. However,
it’s Mario’s exceptional conscientiousness that I hold in highest regard. His unwavering commit-
ment to supporting his students is exemplified by his remarkable support. While few individuals
respond to emails within hours, sometimes minutes, Mario consistently does so. Whenever I asked
for a longer discussion with him, he would usually give me an appointment on the very same day,
which I find very commendable. Beyond guiding me through my doctoral studies, he provided
numerous ideas for my future academic pursuits and always truly supported me.
I also wish to express my appreciation to René Sedmik, a postdoctoral fellow at the TU Wien,
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Conventions

The following conventions are used throughout this thesis:

1. The Minkowski metric is defined as ηµν = diag(1,−1,−1,−1).

2. Unless explicitly stated otherwise, ℏ and c are set to 1.

3. The reduced Planck mass is defined as mpl :=

�
ℏc
8πG

≃ 2.435× 1021 MeV.

4. For two four-vectors a, b, the operation aµb
µ is defined as a0b

0 + a1b
1 + a2b

2 + a3b
3.

5. A dot over a function (φ̇) refers to a time derivative.

6. Experimental vacuum densities are denoted by ρV , and material densities are represented
by ρM .

7. φV denotes the potential minimum of a scalar field within vacuum, while φM signifies the
minimum within material.
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1. Introduction

According to our current understanding, our universe consists of approximately 5 % baryonic
matter, 27 % dark matter and 68 % dark energy [7]. Despite their prevalence, the nature of dark
matter and dark energy remains largely elusive, with indications that they interact only weakly,
if at all, with Standard Model particles. The energy distribution of the universe is commonly
quantified by the parameter Ω := ρ/ρc, where ρ represents the average energy density of the
universe and ρc denotes the critical density required for a flat universe (further discussed in
Section 2.1). Notably, the measured value of Ω aligns closely with unity [7], implying that the
observable universe exhibits flatness—a characteristic that would not be observed without the
influence of dark matter and dark energy.
While baryonic matter is observable directly, the existence of dark matter is inferred through

various phenomena, including the flat rotation curves of spiral galaxies [8], the gravitational
lensing effects of massive structures like galaxies, the high velocities of individual galaxies within
clusters [9], the rapid formation of gravitationally bound structures [10, 11], and other empirical
observations (for a comprehensive review, see [12]). In each instance, the presence of dark matter is
necessary to account for the unexpectedly strong gravitational effects, surpassing those predicted
solely by visible matter.
Dark energy, in contrast, is primarily linked to the accelerated expansion of the universe and,

unlike dark matter, exhibits an extremely uniform distribution while exerting gravitational re-
pulsion. Notably, observations of Type Ia supernovae have provided compelling evidence for
the ongoing accelerated expansion of our universe [13–15]. Further support for the existence of
dark energy has been garnered from observations of the cosmic microwave background radiation
(CMB) [16–18] and the presence of Baryonic Acoustic Oscillations in the large-scale correlation
function of galaxy surveys [19–21]. Dark energy is often associated with the concept of vac-
uum energy. The simplest model capable of describing cosmic acceleration posits a cosmological
constant Λ0, representing an intrinsic energy of the vacuum.
While the ΛCDM (Λ for the cosmological constant and CDM for cold dark matter) model of

cosmology is sometimes referred to as the standard model of cosmology [22], it leaves several
questions unanswered.
The idea of cosmic inflation, originally proposed by Alan Guth [23], addresses two of these

questions. The Ω parameter, measured to be approximately 1, implies a flat universe, however,
general relativity (GR) also allows for Ω > 1 (indicating positive overall curvature) or Ω < 1 (in-
dicating negative overall curvature), with no a priori reason for it to be precisely 1. Additionally,
if the universe were to start with Ω ̸= 1, it would quickly deviate from this value. The second
issue, known as the horizon problem, arises from the remarkable uniformity in the temperature of
the universe in all directions, which seems inconsistent with the ΛCDM cosmology where not all
regions could have interacted sufficiently to reach temperature equilibrium [24]. Both problems
are ultimately fine-tuning problems: if the initial conditions of the universe were such that mat-
ter had identical temperatures everywhere and the universe was precisely flat, the ΛCDM model
would require no extension. However, in the theory of cosmic inflation the potential energy of
a decaying scalar field could trigger a brief period of exponential expansion prior to the ΛCDM
epoch. In this theory, the observable universe emerged from a tiny patch of space that had
ample time to reach temperature equilibrium and underwent exponential expansion to become
significantly larger. This rapid expansion naturally leads to a universe approaching flatness and
possessing a highly uniform temperature. Cosmic inflation also provides insight into the origin
of initial density fluctuations present in the CMB, which subsequently evolve into the large-scale
structure of the universe [25,26]. The Planck Collaboration has concluded that ’the Planck results
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offer powerful evidence in favor of simple inflationary models’ [27].
Another fine-tuning issue arises from the extremely small value of Λ0 ∼ 10−120 m4

pl [28,29] within
the ΛCDM cosmology, which lacks an explanation. Λ0 is typically associated with the energy of
the vacuum and should theoretically receive contributions from the zero-point energy of quantum
fields. However, estimates suggest that the contribution of quantum fields is approximately 60
orders of magnitude larger than the observed value of Λ0, however, this depends on the chosen
ultraviolet cutoff for the SM. Postulating a bare cosmological constant, independent of quantum
fields and capable of canceling their contributions to 60 decimal places, necessitates remarkable
fine-tuning [29]. Given the success of cosmic inflation theory, it’s natural to consider whether
the current accelerated expansion of the universe might also be driven by the potential energy
of a scalar field. This approach to dark energy is sometimes referred to as quintessence [29, 30].
Alternatively, it’s possible that the value of Λ0 is inherently zero, and its observed small value
could be explained by a scalar field approaching its potential energy value of zero at a later stage
in the universe’s evolution.
Scalar fields have significant motivation beyond potential cosmological applications. A promi-

nent example is the Higgs field, postulated to explain the non-vanishing mass of weak interaction
gauge bosons [31–33]. The discovery of the Higgs boson [34] confirms the existence of scalar fields
in nature.
Another motivation for anticipating new scalar fields stems from their prediction by various

modifications of GR. Modifying GR arises from several potential motivations. While quantum
physics typically describes phenomena at very small scales and encompasses the strong and elec-
troweak forces, gravity, as described by GR, is primarily associated with large-scale phenomena
such as planets, solar systems, galaxies, and cosmology. In most scenarios, it suffices to apply
either quantum physics or GR independently. However, in extreme situations like black holes [35],
neither gravity nor quantum physics can be ignored: gravity cannot be neglected due to its sig-
nificant mass, and quantum physics becomes essential because matter is compressed into a tiny
region, necessitating a quantum description. Consequently, extensive efforts have been directed
towards finding a deeper theory of quantum gravity that deviates from GR (see [36] for a review).
One early modification of GR, explored by Albert Einstein himself, is known as Kaluza-Klein
theory [37], which aims to unify electromagnetism with gravity—albeit classically—in a five-
dimensional spacetime. The additional fourth spatial dimension is compactified to form a small
cylinder. In this theory, the metric possesses five additional degrees of freedom (in five spacetime
dimensions, the metric has 15 independent components; in four dimensions, it has 10 due to
symmetry). While 10 degrees of freedom correspond to the familiar four-dimensional spacetime
metric, four components can be associated with the electromagnetic four-potential. The remaining
component acts as a scalar field in an effective four-dimensional theory. Similarly, other higher-
dimensional theories such as string theory, which rely on the compactification of high-dimensional
spaces, naturally predict new scalar degrees of freedom in an effective four-dimensional spacetime
theory [38]. Other modifications of GR that predict new scalar degrees of freedom include f(R)
gravity [39], where the Ricci scalar in the Einstein-Hilbert action is replaced with a function of R,
and Brans-Dicke theory [40], which introduces a new scalar field into the Einstein-Hilbert action
to permit a spacetime-dependent value of the gravitational constant G.
While there is ample motivation to expect new scalar degrees of freedom, the discovery of the

accelerated expansion of the universe is particularly intriguing because a scalar field capable of
driving cosmic expansion would need to be extraordinarily light (see Section 2.1). Consequently,
it would introduce a new long-range force that should be detectable in solar system tests and
tabletop experiments. With stringent solar system tests of GR provided by Lunar Laser Ranging
(LLR) [41], the absence of any observed fifth forces can only be reconciled by an extraordinarily
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weak coupling of the scalar field to matter.
A different approach, which allows for gravitational strength coupling without violating existing

constraints, was introduced with the chameleon scalar field [42] (for further discussion, see Section
3.2). This field has a mass that depends on the matter density of its environment. In high-density
regions, the mass increases, rendering the field short-ranged and ’screened’, while in low-density
regions, the field becomes long-ranged and would lead to an appreciable new force. This concept
has ignited a new branch of research into screening mechanisms and the detection of screened
scalar fields. Additional screening mechanisms have been discovered and can generally be classified
into three categories [29]: increasing the mass in dense environments, such as the chameleon;
decreasing the coupling to matter in dense environments, as exemplified by symmetrons [43]
(discussed in Section 3.3); and kinetic screening and Vainshtein screening, where the kinetic term
in the Lagrangian is modified (or additional terms are added), suppressing kinetics in dense
environments, leading to a short range. An example of this is galileons [44,45], which are not the
focus of this thesis.
References [46–49] investigated whether symmetron fields could also account for phenomena

typically associated with particle dark matter. They concluded that the anomalous rotation
curves of spiral galaxies might be attributed to the fifth force of a symmetron field and its
energy contribution to galaxies. Similarly, symmetrons may explain gravitational lenses that
are too strong to be accounted for by GR and baryonic matter. It has long been known that
rotation curves of galaxies can be derived from modifications of gravity that do not postulate
the existence of particle dark matter. A well-known alternative possibility is to modify Newton’s
laws of motion for extremely small accelerations, an idea known as Modified Newtonian Dynamics
(MOND) [50,51]. A relativistic generalization of MOND is known as TeVes [52], a tensor-vector-
scalar field theory. Clearly, no screened scalar field theory to date can explain all the lines of
evidence for dark matter without introducing particle dark matter. Nonetheless, the possibility
remains that they may contribute to the solution of the dark matter problem, which serves as
additional motivation to explore them.
Screened scalar fields exhibit certain generic features, such as the suppression of the fifth force

in dense environments and large objects. This suppression occurs because the fields couple only
to a thin shell beneath the object’s surface, a phenomenon known as the thin-shell effect [53].
Consequently, if such fields exist, high-precision tabletop experiments are expected to be more
sensitive to them than astrophysical measurements. This increased sensitivity arises because, in
smaller scale experiments, the thin-shell effect is less pronounced, shorter ranges can be probed,
and the experiments are conducted in a vacuum where the force experiences less suppression.
However, despite these qualitative expectations, determining which experiment is most sensitive
to screened scalar fields requires a rigorous analysis dependent on the specific model parameters.
Thus, tabletop experiments should be viewed as complementary to astrophysical measurements.
To date, various tabletop experiments have been employed to probe fifth forces associated with

screened scalar fields and derive constraints on the parameters of these models. These exper-
iments include atom interferometry [54–58], Eöt-Wash experiments [59, 60], gravity resonance
spectroscopy [61–64], atomic precision measurements [65], neutron interferometry [66], CASIMIR
experiments [67–70], and more. Additional investigations using Bose-Einstein condensate inter-
ferometry have been suggested and could significantly enhance the search for chameleons and
symmetrons [71] (see also Ref. [72] for further exploration of screened scalar fields in the context
of Bose-Einstein condensates).
In addition to laboratory tests, several astrophysical analyses have been undertaken (refer

to [53, 73] for a comprehensive review). However, these endeavors have thus far failed to detect
any positive effects associated with screened scalar fields.
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The Atominstitut of the Technische Universität Wien presents an ideal environment for the
investigation of screened scalar fields, owing to its affiliation with various high-precision tabletop
experiments designed to probe new physics. Notably, the qBounce experiment [74–76], which
utilizes gravity resonance spectroscopy, along with neutron interferometry, have been employed
in the quest to uncover the chameleon field [66,77–79]. Furthermore, qBounce has extended its
scope to investigate the symmetron field [63, 64].
In addition, the Casimir And Non-Newtonian Force Experiment (cannex) stands out as a

dedicated endeavor, conceived from its inception to be adept at detecting, among other things,
fifth forces linked with screened scalar fields [80]. Currently, scientists at the Atominstitut are
actively engaged in assembling this experiment (a detailed introduction of these experiments
is provided in Section 5). Notably, prospective constraints on the parameters governing the
chameleon and symmetron fields have already been calculated [81,82].
This thesis is part of a collaborative effort between experimental physicists associated with

the Technische Universität Wien and theoretical physicists. It encompasses several overarching
objectives:
One primary goal is to conduct a thorough investigation into the relatively underexplored

environment-dependent dilaton model. This model holds stronger theoretical motivations com-
pared to the chameleon or symmetron models, as its potential naturally emerges in the strong
coupling limit of string theory [83–85]. Moreover, it has been proposed as a potential candidate
for dark energy. However, despite its theoretical promise, this model has received comparatively
less attention than the chameleon or symmetron models, and as of yet, parameter constraints are
lacking.
Another significant aim is to enhance both the theoretical and numerical analyses for deriving

experimental constraints applicable to the qBounce, cannex, and neutron interferometry ex-
periments across various models. Additionally, the objective includes deriving constraints from
LLR [86, 87]. This endeavor seeks to bolster our understanding of the fundamental physics un-
derlying these experiments and advance our capability to derive meaningful constraints that
contribute to broader scientific knowledge.
This thesis is organized as follows:
Section 2 provides a brief exploration of the role of a cosmological constant and discusses how

scalar fields could potentially drive the accelerated expansion of the universe. This investigation is
followed by a concise introduction to the general framework of scalar-tensor theories investigated
within this thesis.
Section 3 is mainly dedicated to the introduction of the environment-dependent dilaton model.

This Section delves into its parameter-dependent screening mechanisms, parameter symmetries,
and further investigates its potential as a dark energy candidate. Brief introductions to the
symmetron and chameleon models are also provided.
Section 4 discusses suitable techniques for simulating any of the explored models for arbitrary

parameters. Special attention is given to the environment-dependent dilaton field, which presents
unique numerical challenges due to its exponential self-coupling. Additionally, a robust numerical
method for solving the stationary Schrödinger equation in the presence of a screened scalar field is
presented. These methods allow bypassing analytical approximations to the equations of motion
and avoiding a perturbative treatment when solving the stationary Schrödinger equation.
In Section 5, each of the studied experiments is introduced in detail, and the theoretical frame-

work necessary for computing scalar field constraints developed. The amalgamation of these
results to derive the final constraints is elucidated.
Section 6 discusses the experimental constraints obtained using the methods outlined in this

thesis. Constraints are derived for the following scenarios:
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1. Dilaton field constraints from neutron interferometry, qBounce, LLR and cannex, the
latter only prospective.

2. Symmetron field constraints from neutron interferometry, qBounce and cannex, the lat-
ter only prospective. The qBounce and cannex constraints are a re-analysis of existing
constraints, marked by significant methodological improvements compared to previous anal-
yses.

3. Chamelon field constraints from qBounce and cannex, the latter only prospective. The
qBounce and cannex constraints are a re-analysis of existing constraints, marked by sig-
nificant methodological improvements compared to previous analyses. However, prospective
cannex constraints for the case n = 1 and varying Λ are investigated for the first time.

The substantial methodological advancements made in this thesis compared to existing analyses
are exemplified in Section 6.2.2 and Section 6.2.3.
In Section 7, the findings are summarized.

I wish to acknowledge that the results presented in this thesis encompass contributions beyond
my own. A comprehensive breakdown of the specific contributions made by my collaborators will
be provided in the Section 8.

14



2. Summary of Scalar-Tensor theories

In Subsection 2.1, the discussion briefly covers how scalar fields can potentially drive the accel-
erated expansion of the universe. It begins with an examination of the role of a cosmological
constant and explores how a scalar field might emulate its effects.
Moving on to Subsection 2.2, the broader concept of scalar-tensor theories is introduced, which

serves as the theoretical framework throughout this thesis.

2.1. Scalar field dark energy

This Subsection is largely based on [88], but some results were also taken from [24, 29] for a
brief cosmological motivation for investigating scalar fields. Notably, the discussion on the Klein-
Gordon field in Section 2.1.2 is not covered in these references; it has been included solely for
illustrative purposes.

2.1.1. The cosmological constant

The cosmological constant Λ0 serves as a parameter within Einstein’s field equations:

Rµν − 1

2
gµνR =

1

m2
pl

Tµν + Λ0gµν , (2.1.1)

where Rµν denotes the Ricci Tensor, R the Ricci Scalar, gµν the space-time metric, and Tµν

the energy-momentum tensor of matter. By comparing the cosmological constant term with the
energy-momentum tensor of a perfect fluid [89]:

Tµν = (p+ ρ)uµuν − pgµν , (2.1.2)

where ρ represents the energy density of the fluid, p denotes its pressure, and uµ its four-velocity,
it is evident that the cosmological constant can be viewed as a perfect fluid with:

ρΛ0 =m2
plΛ0,

pΛ0 =−m2
plΛ0

wΛ0 :=
pΛ0

ρΛ0

= −1. (2.1.3)

In the last line, the parameter w was introduced, quantifying the pressure-to-energy density ra-
tio. Notably, a cosmological constant is characterized by wΛ0 = −1, differing from non-relativistic
matter with w = 0, while relativistic matter (such as photons and neutrinos) is characterized by
w = 1

3
. To understand how a cosmological constant can accelerate the expansion of the universe,

a brief discussion is provided on how the evolution of the universe depends on its energy content.
On large scales, the universe can be approximately described by a FLRW (Friedmann-Lemâıtre-

Robertson-Walker) metric, compatible with the cosmological principle of isotropy and spatial
homogeneity. In spherical coordinates (with angles θ and Φ), the line element is given by:

dl2 = dt2 − a2S(t)
� dr2

1− kr2
+ r2(dθ2 + sin2θdΦ2)

�
. (2.1.4)
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Here, aS(t) represents the scale factor describing the universe’s expansion, k ∈ {−1, 0, 1} dis-
tinguishes between negatively curved, flat, or positively curved universes, and r is defined to be
temporally constant, with expansion solely described by aS(t). Modeling the energy content of
the universe as a perfect fluid with density ρ and pressure p, one can use Eq. (2.1.4) as an Ansatz
for Einsteins Field Equations. Assuming the rest frame of matter (uµ = δ0i), this Ansatz results
in the Friedman equations, describing the evolution of aS(t) over time:

3

a2S

�
ȧ2S + k) =

ρ

m2
pl

+
ρΛ0

m2
pl

, (2.1.5)

äS
aS

= −
�
ρ+ 3p)

6m2
pl

+
ρΛ0

3m2
pl

. (2.1.6)

Notably, the latter equation indicates that a universe dominated by the energy contribution
of Λ0 experiences äS > 0, thus expanding at an accelerated rate. It is conventional to use Eq.
(2.1.5) to define the critical energy density ρc for a flat universe (k = 0):

ρc(t) := 3H2(t)m2
pl. (2.1.7)

Here, the Hubble parameter H(t) is defined as H(t) := ȧS(t)/aS(t). Introducing

ΩΛ0 :=
ρΛ0

ρc
, (2.1.8)

allows to express the current energy density of Λ0 as

ρΛ0 = 3ΩΛ0H
2
0m

2
pl ≃ 2.51× 10−35 MeV4. (2.1.9)

Here, ΩΛ0 ≃ 0.685 and H0 represents the Hubble parameter at present [7].

2.1.2. Scalar fields mimicking a cosmological constant

The origin of the cosmological constant remains a mystery. One possible explanation is that the
vacuum energy, associated with this constant, arises from a scalar field.
An important insight is that, similar to a cosmological constant, scalar fields can also be

envisioned as perfect fluids. This is apparent when observing the energy-momentum tensor of a
scalar field φ with a potential energy density V (φ):

T φ
µν = ∂µφ∂νφ− gµν

�1
2
∂α∂

αφ− V (φ)
�
. (2.1.10)

Comparing this to Eq. (2.1.2), a scalar field can be conceptualized as a perfect fluid with the
following components:

uµ =(∂αφ∂
αφ)−

1
2∂µφ

pφ =
1

2
∂αφ∂

αφ− V (φ)

ρφ =
1

2
∂αφ∂

αφ+ V (φ). (2.1.11)
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Hence, if pφ = −ρφ the scalar field effectively behaves as a cosmological constant. Considering
a homogeneous scalar field, which aligns with the observed homogeneity of the universe on large
scales, leads to:

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.1.12)

In order for the scalar field to act as a cosmological constant with wφ ≃ −1 it must slowly evolve
over time (1

2
φ̇2 ≪ V (φ)). The slow-roll condition is coupled to the dynamics of the scalar field,

which - assuming a FLRW background - is determined by

φ̈+ 3Hφ̇+ V,φ(φ) = 0. (2.1.13)

To serve as the source of dark energy, with V (φ) = 3ΩΛ0H
2
0m

2
pl, the scalar field’s mass must be

exceptionally light (|m| ≲ H0 ≃ 10−33)eV to evolve suitably slowly. For elucidation, a simplified
example is presented. More rigorous investigations are provided in Refs. [90–92].
A Klein-Gordon field with V (φ) = m2

2
φ2 needs to fulfill φ =

�
6ΩΛ0H0mpl/m to act as dark

energy at present. From the slow-roll condition, it follows that |φ̇| ≪ �
6ΩΛ0H0mpl. If m ≫ H0,

Hubble friction loses effectiveness at the present moment:

3H0φ̇

V,φ(φ)
≪ 3H0

m
≪ 1. (2.1.14)

Resultantly, the field behaves akin to a free harmonic oscillator. Hence

1
2
φ̇2

V (φ)
=

sin2
�
m(t− tc)

�
cos2

�
m(t− tc)

� . (2.1.15)

Here, tc denotes a constant necessitating determination from initial conditions. Violation of the
slow-roll condition occurs rapidly on cosmological timescales if m ≫ H0, with the scalar field
oscillating at frequency m. Hence, |m| ≤ H0 is essential. A light scalar field could induce a long-
ranged force if directly coupled to matter, necessitating screening mechanisms for compatibility
with solar system tests of GR.
Unlike a true cosmological constant, the behavior of the scalar field typically varies with space-

time. Given dark energy’s enigmatic origin as just one motivation for exploring scalar fields,
further exploration is deferred, and interested readers are directed to the comprehensive reviews
in Ref. [29, 53] regarding scalar fields in the context of dark energy.

2.2. Scalar-Tensor theories

This Section offers a concise overview of the theoretical framework underlying the scalar field
models investigated in this thesis. The foundation of this summary is drawn from Ref. [93]. For
detailed mathematical proofs of the formulas presented, readers are directed to the cited reference.
The scalar field theories explored in this thesis are defined by the following general action [94]:

S =

�
d4x

√−g

�
−m2

pl

2
R +

1

2
∂µφ ∂

µφ− V (φ)

�
+

�
d4x

�
−g̃LSM(g̃µν , ψi). (2.2.16)
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In this context, V (φ) represents the self-interaction potential of the scalar field φ, while g̃µν =
A2(φ)gµν denotes the Weyl-rescaled metric. The symbol R stands for the Ricci scalar, and mpl is
the reduced Planck mass. Importantly, matter is minimally coupled to g̃µν rather than gµν . The
Lagrangian density LSM incorporates the Standard Model (SM) fields ψi. This action extends
the Einstein-Hilbert action of GR [95] (where A(φ) = 1) by introducing a non-minimal coupling
of the scalar field to the metric through a conformal factor A(φ).
Two distinct frames are typically distinguished: The first frame is the Einstein frame, where

the Ricci-scalar term in the action of GR remains unchanged (with no scalar field), and the action
is fully expressed by gµν :

S =

�
d4x

√−g
�
− mpl

2
R +

1

2
∂µφ∂

µφ− V (φ)
�
+

�
d4x

√−gA4(φ)LSM

�
A2(φ)gµν , ψi

�
. (2.2.17)

In the Jordan frame, the matter component of the action adopts the identical form as in GR,
albeit with the modification that gµν is replaced by g̃µν . The entire action is then expressed
exclusively in terms of g̃µν :

S =

�
d4x

�
−g̃A−2(φ)

�
− mpl

2
R̃ +

1

2
κ2(φ)∂̃µφ∂̃

µφ− A−2(φ)V (φ)
�
+

�
d4x

�
−g̃LSM

�
g̃µν , ψi

�
,

(2.2.18)

with

κ2(φ) = 1− 3

2
mpl2

�dlnA−2(φ)

dφ

�2

. (2.2.19)

It is important to observe that quantities denoted with a tilde correspond to values expressed
in terms of the Jordan metric. For instance, ∂̃µφ∂̃

µφ := g̃µν∂µφ∂νφ. In the subsequent discussion,
some of the physical implications in these two distinct frames will be briefly examined.

2.2.1. The Jordan frame

In the Jordan frame, the Weyl-rescaling induces transformations:

gµν → g̃µν = A2(φ)gµν

gµν → g̃µν =
1

A2(φ)
gµν ,

√−g →
�

−g̃ = A4(φ)
√−g,

dl → dl̃ = A(φ)dl. (2.2.20)

This implies that locally, all lengths and times are rescaled by a factor of A(φ), while leaving
all angles invariant. This conformal rescaling affects densities and pressures but leaves masses
unchanged:

m0 → m0,

ρ0 → ρ̃ =
1

A3(φ)
ρ0

p0 → p̃ =
1

A3(φ)
p0, (2.2.21)
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where the index 0 refers to quantities before re scaling. Similarly, uµ =
dxµ

dl
implies:

uµ → ũµ =
1

A(φ)
uµ

uµ → ũµ = A(φ)uµ.

Since g̃µν is minimally coupled to matter, the covariant divergence of the stress-energy tensor
is zero:

∇̃µT̃
µν = 0. (2.2.22)

Thus, in the Jordan frame, several physical quantities undergo rescaling. Point particles move
along geodesics of g̃µν due to minimal coupling, and there is no fifth force from the scalar field.
The equations of motion for g̃µν and φ could, in principle, be derived from the action in the Jordan
frame, but they would not adopt a familiar form due to the substantial modifications compared
to the Einstein-Hilbert action.

2.2.2. The Einstein frame

The Einstein frame exhibits a closer resemblance to GR, as evidenced by the forthcoming equa-
tions of motion. This frame is the preferred choice for subsequent analyses; therefore, a more
in-depth investigation is provided. The transformations in the Einstein frame leave the following
quantities unchanged

gµν → gµν (2.2.23)√−g → √−g

dl → dl

uµ → uµ.

However, the mass, matter density, and pressure of matter depend on the scalar field:

m0 → m = A(φ)m0

ρ0 → ρ = A(φ)ρ0

p0 → p = A(φ)p0. (2.2.24)

In the Einstein frame, the equations of motion for the metric assume a familiar form:

Rµν − 1

2
gµνR =

1

m2
pl

(T φ
µν + Tµν), (2.2.25)

where

T φ
µν = ∂µφ∂νφ− gµν

�1
2
∂α∂

αφ− V (φ)
�
. (2.2.26)
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The equations of motion of φ are

�φ+ Veff,φ = 0, (2.2.27)

where

Veff(φ) = V (φ) +
�
A(φ)− 1

�
ρ (2.2.28)

in the non-relativistic limit. The combined energy-momentum tensor of the scalar field and matter
maintains covariant conservation:

∇µ(T φ
µν + Tµν) = 0. (2.2.29)

However, individual conservation does not hold:

∇µTµν = ∂ν
�
ln A

�
T,

∇µT φ
µν = −∂ν

�
ln A

�
T. (2.2.30)

This implies the presence of a fifth force in the Einstein frame. The force acting on a point
particle with mass m is given by:

fµ
φ = m

�
∂µ

�
ln A

�− ∂α
�
ln A

�
uαuµ

�
. (2.2.31)

In the non-relativistic limit, which is used in this thesis, this expression simplifies

f⃗φ = −m∇⃗ln A(φ) ≃ −m∇⃗A(φ) = −β(φ)
m

mpl

∇⃗φ, (2.2.32)

where the full coupling to matter is defined as:

β(φ) = mpl
dA(φ)

dφ
. (2.2.33)

The calculation assumed A(φ) ≃ 1, which is fulfilled for all models under considerations in this
thesis. The force given in Eq. (2.2.32) bears a resemblance to the Newtonian gravitational force
law, with a distinctive feature—unlike being directly proportional to the gradient of φ, it involves
a coupling function β to matter that varies with the value of φ. For further details, see Ref. [93].
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3. Screened scalar fields investigated in this thesis

Subsection 3.1 provides a detailed exploration of the environment-dependent dilaton field, an as-
pect that has not been thoroughly investigated prior to this work. The symmetron and chameleon
field are introduced in Subsections 3.2-3.3.

3.1. The environment-dependent dilaton field

The environment-dependent dilaton field [83–85] is conceptualized as a scalar-tensor theory with
the following expressions [73]:

A(φ) = 1 + A2
φ2

2m2
pl

+O
�

φ3

m3
pl

�
,

V (φ) = V0e
−λφ/mpl . (3.1.34)

Here, V0 represents a constant energy density, A2 is a dimensionless coupling constant to matter,
and λ is a numerical constant. The effective potential in the non-relativistic limit is then given
by

Veff(φ; ρ) = V0e
−λφ/mpl + A2ρ

φ2

2m2
pl

. (3.1.35)

An illustrative example is presented in Fig. 3.1.1.

Fig. 3.1.1: Illustration of the effective potential of the environment-dependent dilaton field

This model finds motivation in the string dilaton χ within the strong coupling limit, where
V (χ) → 0 as χ → ∞. V (χ) is asymptotically expanded as follows:

V (χ) = Ṽ0e
−χ +O(e−2χ). (3.1.36)
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In Ref. [83], it is assumed that the coupling to matter reaches a minimum at a large value χ0,
and is given by

A(χ)− 1 ∝ (χ− χ0)
2. (3.1.37)

Under certain assumptions, the model considered here can be derived from the string dilaton
by defining φ :=

mpl

λ
(χ − χ0), as elaborated in [93]. Throughout this thesis, the environment-

dependent dilaton model defined in Eq. (3.1.34) is treated as an effective field theory, always
adhering to the condition

A2
φ2

2m2
pl

< 0.1 (3.1.38)

to ensure that couplings to matter of higher order can be neglected. The selection of 0.1 as the
cutoff value may appear somewhat arbitrary; alternatively, one could opt for a different threshold
that is sufficiently small compared to one. This particular value was chosen because it is the
largest order of magnitude estimate that is smaller than one. However, it has been checked
that all results obtained in this thesis are insensitive to the specific value chosen for the cutoff.
Subsequent Subsections will establish general properties of the environment-dependent dilaton
field. Henceforth, the term ”environment-dependent dilaton field” is abbreviated as ”dilaton
field.”

3.1.1. Potential minimum, dilaton mass and full coupling to matter

The potential minimum φρ for the dilaton field is determined by the equation:

Veff,φ(φρ; ρ) = 0. (3.1.39)

A short calculation shows [1]

φρ =
mpl

λ
W

�
λ2V0

A2ρ

�
. (3.1.40)

Here, the Lambert W function [96] is employed, defined as the inverse function of xex. As W
is a monotonically increasing function, it follows that if ρ1 < ρ2, then φρ1 > φρ2 .
This implies that the dilaton field experiences greater suppression in denser environments. The

mass µρ of the dilaton field is expressed as:

µρ =
�

Veff,φφ(φρ; ρ) =
1

mpl

�
λ2V0e−λφρ/mpl + A2ρ. (3.1.41)

The full coupling to matter, denoted as β(φ), is given by:

β(φ) = A2
φ

mpl

. (3.1.42)
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3.1.2. The three parameter regions, screening mechanisms and parameter symmetries

This Subsection demonstrates the natural division of the dilaton model’s parameter space into
three distinct regions, each characterized by unique physical behaviors:
The small λ region, the intermediate λ region, and the large λ region, as illustrated in Fig. 3.1.2.

This thesis adopts a parameter-agnostic approach, investigating the entire 3D parameter space
that satisfies the minimal requirement of not violating the cutoff condition (3.1.38). Deriving
parameter-agnostic constraints maximizes the amount of information obtained. Importantly, it
will become evident throughout this Section that the dilaton model exhibits various approximate
parameter symmetries, making it generally impossible to assign physical meaning to individual
parameters. Therefore, excluding parameters from subsequent analyses would be arbitrary.
With this approach, the parameters considered are determined solely by the sensitivity of the

experiments under scrutiny. Subsequent experimental analyses reveal that the experiments can
probe the dilaton parameters for values up to A2 ∼ 1060, λ ∼ 1032, and V0 ∼ 1010

24
MeV4 within

the large λ region. This is why extremely large values of V0 are considered in this thesis. In
Section 3.1.4, it is clarified that this large value of V0 is an artifact of the chosen parameterization
and has no physical consequences.

Fig. 3.1.2: This is an example of the three parameter regions for V0 = 10 MeV4 and ρV = 10−15 MeV4.
The model is only defined for the small and large λ regions, because the intermediate λ
region violates (3.1.38). φ has been set to φV to evaluate the red region where the cutoff
is violated.

The small λ region Keeping V0, A2 and ρ fixed, λ can always be chosen small enough such
that:

λ2V0

A2ρ
≪ 1, (3.1.43)

defining the small λ region. Employing W (x) ≃ x for small x, the following approximations
hold within this region:
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Exact expression φρ e−λφρ/mpl µρ β(φρ)

Approximation mpl
λV0

A2ρ
1

√
A2ρ
mpl

λV0

ρ

Table 1: Approximations for the small λ region

This indicates a pronounced dependence of both the matter coupling β(φρ) and field mass µρ

on matter density. Thus, two screening mechanisms manifest strongly within this parameter re-
gion: the chameleon effect, where the mass increases in dense environments and hence the range
decreases, and a suppression of the coupling to matter.

Parameter symmetry:

Moreover, there is an approximate parameter symmetry within the dilaton model in this region.
The equations of motion,

�φ =
λ

mpl

V0e
−λφ/mpl − A2ρ

φ

m2
pl

≃ λ

mpl

V0 − A2ρ
φ

m2
pl

, (3.1.44)

depend solely on the product V0λ and not on the individual values of V0 and λ. Since neither of
these parameters contributes to the full coupling of matter, the fifth force of the dilaton field also
depends solely on the product V0λ. This parameter symmetry was further substantiated through
numerical evaluations.

The intermediate λ region The intermediate λ region is characterized by λ2V0

A2ρ
≃ 1. Serving

as a boundary between the small and large λ regions, this domain is mostly undefined in the
experimentally accessible values of V0 due to a violation of the cutoff condition (3.1.38):

A2

φ2
ρ

2m2
pl

≃ A2

2λ2
W (1)2 < 0.1, (3.1.45)

which implies an upper bound on V0:

V0 <
0.2

W (1)2
ρ ≃ 0.6ρ. (3.1.46)

Consequently, the model is only well-defined in this region for exceedingly small values of V0.
It’s worth noting that in subsequent investigations, experiments primarily exhibit sensitivity when
V0/ρ ≫ 1, rendering detailed exploration of this region unnecessary.

The large λ region The large λ region is characterized by the condition λ2V0

A2ρ
≫ 1. The expres-

sion

Veff,φ(φρ; ρ) = 0, (3.1.47)

implies
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e−λφρ/mpl =
W

�
λ2V0

A2ρ

�
λ2V0

A2ρ

. (3.1.48)

Using W (x) ≃ ln(x) for large x [96] results in the following approximations that are valid in
the large λ region:

Exact expression φρ e−λφρ/mpl µρ β(φρ)

Approximation
mpl

λ
ln
�

λ2V0

A2ρ

�
ln
�

λ2V0

A2ρ

�
/λ2V0

A2ρ
≪ 1 1

mpl

�
A2ρln

�
λ2V0

A2ρ

�
A2

λ
ln
�

λ2V0

A2ρ

�
Table 2: Approximations for the large λ region

Hence, in the large λ region, the full coupling to matter predominantly depends logarithmically
on ρ, while the mass approximately exhibits a square root dependence on ρ. Hence, the field
primarily screens by the chameleon mechanism in this parameter region.

Parameter symmetry:

As highlighted earlier in this Section, the ratio V0/ρ typically assumes values significantly larger
than A2 and λ within experimentally accessible parameters. Consequently, for the majority of
the experimentally accessible parameter space:

ln
�V0

ρ

�
≫ ln

� λ2

A2

�
, (3.1.49)

which permits further simplification:

Exact expression φρ µρ β(φρ)

Approximation
mpl

λ
ln
�

V0

ρ

�
1

mpl

�
A2ρln

�
V0

ρ

�
mpl

λ
ln
�

V0

ρ

�
Table 3: Approximations for the large λ region, assuming (3.1.49)

These relationships imply an approximate parameter symmetry in this paramter region: The
quantities φρ and µρ primarily depend on A2 ln (V0/ρ), rather than on the individual values of V0

and A2. Furthermore, the force acting on a point particle with mass m also follows this symmetry:

f⃗φ = −β(φ)
m

mpl

∇⃗φ

≃ −β(φM)
m

mpl

∇⃗φ

= −β(φM)
m

mpl

∇⃗δφ, (3.1.50)

where δφ := φ(x⃗) − φM . Here, φ ≃ φM has been utilized for V0 → ∞, as is evident from
φM ≤ φ(x) ≤ φV (see Appendix A) and Eq. (3):
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$$$$φV − φM

φV + φM

$$$$ → 0 , for V0 → ∞. (3.1.51)

Given that β(φM) follows the A2 ln (V0/ρ) symmetry, it remains to demonstrate that this holds
true for δφ. Employing

Veff,φ(φM ; ρM) = 0 ⇔ λV0

mpl

e−λφM/mpl =
β(φM)ρM

mpl

(3.1.52)

yields

�δφ =
β(φM)ρM

mpl

e−λδφ/mpl − β(φM + δφ)ρ

mpl

≃ β(φM)ρM
mpl

e−λδφ/mpl − β(φM)ρ

mpl

, (3.1.53)

thus confirming that δφ shares the parameter dependence with β(φM).

3.1.3. The dilaton as a source of dark energy

This Subsection explores the possibility of the dilaton field to serve as the exclusive source of
dark energy. The viability of this scenario varies across the three parameter regions, necessitating
separate investigations for each case. Since the Weyl factor exclusively couples to the matter
density rather than the scalar field itself, the focus is on dilaton field parameters that satisfy

Veff(φρmatter ; ρmatter) = ρΛ0 , (3.1.54)

where ρΛ0 represents the energy density associated with dark energy, while

ρmatter = 3Ωmatterm
2
plH

2
0 =

Ωmatter

ΩΛ0

ρΛ0 ≃ 0.46ρΛ0 , (3.1.55)

is the average density of matter in the observable universe. This approach neglects possible
quantum corrections to the potential.

The small λ region In this parameter region, the dilaton’s effective potential energy holds the
potential to supply sufficient energy for driving the cosmological acceleration. Specifically, in the
small λ region

V0 ≥ ρmatter ⇒ Veff(φρmatter ; ρmatter) ≃ V0. (3.1.56)

This is evident from

Veff(φρmatter ; ρmatter) = V0 + ρmatterA2

φ2
ρmatter

2m2
pl

= V0

�
1 +

ρmatter

V0

A2

φ2
ρmatter

2m2
pl

� ≃ V0, (3.1.57)
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where the cutoff condition has been utilized as well as V0 ≥ ρmatter. As a special case, it is
noteworthy that in the small λ region, V0 can conveniently be set to ρΛ0 to scrutinize the dilaton
as a potential source of dark energy.

The intermediate λ region Within this parameter region, the dilaton field falls short in sup-
plying the required energy for the ongoing cosmological acceleration. This limitation becomes
apparent when examining

Veff(φρmatter ; ρmatter) ≃ V0e
−W (1) + ρmatterA2

φ2
ρ

2m2
pl

≲ 0.44ρmatter ≪ ρΛ0 . (3.1.58)

Here, Eq. (3.1.38) and Eq. (3.1.46) have been utilized. Consequently, the potential energy
stored in the scalar field is insufficient to fuel the current cosmological acceleration.

The large λ region Within this parameter region, the dilaton field also lacks the potential
energy required to drive the cosmological acceleration. The following inequality is established:

Veff(φρ; ρ) ≲ 0.1ρ. (3.1.59)

Importantly, this inequality holds for any arbitrary ρ and has physical implications beyond the
dilaton’s role as dark energy. Therefore, the following derivation is maintained in a general form.
The defining property of φρ:

Veff,φ(φρ; ρ) = 0 ⇔ λV0

mpl

e−λφρ/mpl =
A2φρρ

m2
pl

, (3.1.60)

implies:

V (φρ) = V0e
−λφρ/mpl

= A2ρ
φ2
ρ

m2
pl

1

W (λ
2V0

A2ρ
)
<

0.2

W (λ
2V0

A2ρ
)
ρ. (3.1.61)

The last step utilized Eq. (3.1.38). Consequently,

Veff(φρ; ρ) = V0e
−λφρ/mpl + A2ρ

φ2
ρ

2m2
pl

< 0.1
�
1 +

2

W (λ
2V0

A2ρ
)

�
ρ ≃ 0.1ρ. (3.1.62)

In the final step, the defining property λ2V0

A2ρ
≫ 1 of the large λ region has been used, which implies

W (λ
2V0

A2ρ
) ≫ 1. Hence, in the large λ region, the potential energy of the dilaton field is insufficient

to drive the cosmological acceleration alone.
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3.1.4. The physical meaning of the dilaton’s parameters

As demonstrated, various parameter symmetries emerge in different regions, leading to dilaton
forces that solely depend on either V0λ or A2ln

�
V0/ρ

�
. Consequently, attempting to assign distinct

physical interpretations to these parameters is contrived.
Moreover, the exceptionally large values that V0 can assume within the large λ region in ex-

perimentally relevant parameter spaces are artifacts of the parameterization; the parameter V0

usually lacks inherent physical significance. This viewpoint is supported by two considerations:
Firstly, the parameter symmetry within this region implies that the logarithm of V0/ρ, signifi-

cantly smaller than V0/ρ, exerts a comparable physical effect to A2.
Furthermore, from the analysis in Eq. (3.1.59), it becomes evident that, regardless of the value

of V0, the entire potential energy of the dilaton field— an actual physical quantity—remains
bounded by ∼ 0.1 ρ. (This bound only applies to the large λ region, where experiments can probe
V0 values up to 1010

24
MeV4)

3.2. The chameleon field

A scalar-tensor theory that has garnered significant attention is the chameleon field [42]. Formally,
it can be defined by:

V (φ) =
Λn+4

φn
,

A(φ) = eφ/Mc ≃ 1 +
φ

Mc

, (3.2.63)

where Mc is a coupling constant to matter of dimension mass, Λ is a constant energy density and
n ∈ Z+ ∪ 2Z−\{-2} determines the power of the self-interaction potential. The effective potential
is then given by:

Veff(φ; ρ) =
Λn+4

φn
+ ρ

φ

Mc

. (3.2.64)

An example is illustrated in Fig. 3.2.1.
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Fig. 3.2.1: This is an illustration of the effective potential of the chameleon field for n > 0.

Similar to the dilaton field, the condition

φ

Mc

< 0.1, (3.2.65)

is employed to disregard couplings to higher orders in numerical calculations1.
The potential minimum, mass, and full coupling to matter of the chameleon are expressed

as [53]:

φρ =
�nMcΛ

n+2

ρ

� 1
n+1

,

µρ = n(n+ 1)Λn+4
� ρ

nMcΛn+4

�n+2
n+1

,

β(φ) =
mpl

Mc

. (3.2.66)

Given that the mass is a monotonically increasing function of ρ, chameleons experience an
increase in mass in dense environments, resulting in an effectively short-ranged force in such cases
and, consequently, a weakened associated force. This mechanism might allow the chameleon to
evade constraints from local tests of gravity.

3.3. The symmetron field

The symmetron field is characterized by [43]:

1While technically not mandatory, this constraint is imposed as parameters where φ
Mc

≫ 1 have already been ruled out
by numerous experiments (see, e.g., [53, 73]). Such values would lead to pronounced deviations from GR, lacking
sufficient motivation. The use of a linear coupling to matter is common and simplifies several calculations.
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V (φ) = −µ2

2
φ2 +

λS

4
φ4,

A(φ) = 1 +
φ2

2M2
+O

�
φ3

M3

�
, (3.3.67)

resulting in an effective potential:

Veff(φ; ρ) =
1

2

� ρ

M2
− µ2

�
φ2 +

λS

4
φ4. (3.3.68)

The condition

φ2

2M2
< 0.1, (3.3.69)

is used to allows to neglect couplings to higher order. For the symmetron field, it is customary
to distinguish between the symmetric phase and the broken symmetry phase. The following
definitions and formulas are standard, and can, e.g., be found in [61].

3.3.1. The symmetric phase

The symmetric phase is defined by:

ρ ≥ M2µ2. (3.3.70)

In this phase, the effective potential exhibits a unique minimum at φ = 0 (see Fig. 3.3.1 for an
example). The mass and full coupling to matter of the field are given by:

µρ =

�
ρ

M2
− µ2,

β(φ) = mpl
φ

M2
. (3.3.71)

Given that φ seeks to minimize its potential, the coupling to matter is driven towards 0 in
the symmetric phase. This phenomenon constitutes the screening mechanism associated with the
symmetron field. Additionally, it is worth noting that the symmetron also becomes short-ranged
- akin to the chameleon field - in high-density regions, as is evident from the condition ρ ≥ M2µ2

and the dependence of the field’s mass on ρ.
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Fig. 3.3.1: This is an illustration of the symmetron potential in its two distinct phases.

3.3.2. The broken symmetry phase

The broken symmetry phase is defined by:

ρ < M2µ2. (3.3.72)

In this phase, the potential exhibits two distinct local minima, as depicted in Fig. 3.3.1. The
potential minimum and mass of the field are given by:

φρ = ±
�

µ2

λ
− ρ

λM2
,

µρ =

�
2
�
µ2 − ρ

M2

�
. (3.3.73)

The full coupling to matter is still given by Eq. (3.3.71), but since the field is not driven to 0
anymore, there can be an appreciable coupling to matter, and the field can unscreen.
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4. Numerical methods and scalar field simulations

To accurately compute the impact of a scalar field on an experiment, it is imperative to solve
its equations of motion within the experimental setup. Due to the inherent non-linearity of the
scalar fields considered, this usually necessitates numerical simulations. This Section elucidates
the numerical methodologies employed for this purpose, forming the cornerstone for subsequent
Sections. Throughout this thesis, the focus remains solely on static scalar fields.
The principal objective revolves around deriving parameter constraints for any model under

scrutiny, demanding robust numerical techniques capable of effectively handling arbitrary param-
eters.
Inspired by the actual geometries of the experiments, scalar fields are computed for the following

scenarios:

1. One mirror geometry: This configuration, utilized in modeling the neutron mirror within
the qBounce experiment, assumes the scalar field’s dependence solely on the z coordinate.
An infinitely extended neutron mirror with density ρM resides at z < 0, with a vacuum
region above it having density ρV . The differential equation to be solved is:

d2φ

dz2
= Veff,φ(φ; ρ). (4.0.74)

The boundary condition is that the field minimizes its potential asymptotically: φ ap-
proaches φV as z tends towards infinity, and φ approaches φM as z tends towards negative
infinity.

2. Two mirror geometry: This geometry, employed in computing the pressure within the
cannex experiment, similarly assumes the scalar field’s dependence only on the z direction.
Here, a vacuum region exists for |z| < d with density ρV , flanked by two infinitely extended
mirrors placed at |z| > d, possessing density ρM . The differential equation to be solved
mirrors that of the one mirror geometry, albeit with boundary conditions φ → φM as
|z| → ∞.

3. Spherical geometry: This setup, utilized in computing scalar fields for LLR, envisions a
sphere with density ρM situated at r < R, surrounded by a vacuum region with density ρV
for r > R. Exploiting spherical symmetry, the equation to solve becomes:

d2φ

dr2
+

2

r

dφ

dr
= Veff,φ(φ; ρ). (4.0.75)

Boundary conditions2 are specified as
dφ

dr
(0) = 0 and φ → φV as r → ∞.

4. Cylinder cross Section geometry: For an infinitely long cylinder with density ρV for
r < d and ρM for r > d, the z dependence of the field can be neglected and it is sufficient
to compute the cross section by solving

d2φ

dr2
+

1

r

dφ

dr
= Veff,φ(φ; ρ), (4.0.76)

2Strictly speaking, the expression dφ
dr |r=0 = 0 does not qualify as a boundary condition, as r = 0 does not represent a

physical boundary. In Cartesian coordinates, no conditions are necessary at x⃗ = 0⃗. The necessity for an additional
condition at r = 0 arises as an artifact of adopting spherical coordinates. In the context of spherical coordinates, it
becomes imperative to set the first derivative to 0 at r = 0 to prevent 2

r
dφ
dr from diverging to infinity at r = 0. This

condition is also necessary to ensure the spherical symmetry of the solution.
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where boundary conditions are specified as
dφ

dr
(0) = 0 and φ → φM as r → ∞. This

geometry will only be employed for code tests.

5. Cylindrical geometry: This geometry, employed in modeling the vacuum and air chamber
for neutron interferometry, necessitates solving:


1

r

∂

∂r

�
r
∂

∂r

�
+

∂2

∂z2

�
φ(r, z) = Veff,φ(φ; ρ) . (4.0.77)

Here, the density is characterized by:

ρ(r, z) :=

�
ρV

�
r ≤ d

� ∧ �− L
2
< z < L

2

�
ρM else

(4.0.78)

where L denotes the chamber length and d denotes the inner radius. The boundary condi-
tions are:

φ(r, z) = φM , if
�
r = d+ δ

�
∨
�
z =

L

2
+ δ

�
∨
�
z = −L

2
− δ

�
, (4.0.79)

where δ represents half the thickness of the cylinder shell (typically around 5 mm in the
experiment). Here, the logical and ∧, as well as the logical or ∨ have been used. At r = 0

the condition
∂φ

∂r
= 0 is required.

In the context of qBounce, an additional requirement is to solve the stationary Schrödinger
equation in the presence of a scalar field:

− 1

2mn

d2ψn(z)

dz2
+
�
mngz +QXUX(z)

�
ψn(z) = Enψn(z), (4.0.80)

where the precise expression for the scalar field induced potential QXUX(z) is derived in the
theory chapter and provided in Eq. (5.3.231).
While various authors have successfully simulated chameleon and symmetron fields (cf. [56,

66, 67, 97–106]), the environment dependent dilaton field is less explored. No group has yet
derived parameter constraints for this model, and simulations in experimental settings remain
unachieved. Existing cosmological N-body simulations (cf. [102, 107]) are limited to specific pa-
rameters, utilizing a uniform finite difference method for discretizing equations of motion, which
proves unsuitable for general parameters.
This Section primarily discusses the numerical methods employed to derive parameter con-

straints in the studied models, with a specific focus on the unique numerical challenges posed by
the dilaton field and their resolution.
In Section 4.1, the exploration begins by deriving the exact two mirror solution for the environment-

dependent dilaton model, under the simplifying assumption of ρV = 0. This foundational step
ensures the availability of exact solutions for all models examined in this thesis, which is crucial
to test the reliability of the numerical algorithms employed.
Sections 4.2 and 4.3 delve into the intricacies of why standard machine precision calculations

(typically 16 digits) often fall short in accurately computing the dilaton and symmetron fields for
arbitrary parameters. These challenges are thoroughly addressed, and the strategies employed to
overcome them are outlined.
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In Section 4.4, the algorithm utilized to solve the equations of motion for one- and two mir-
ror geometries, for a spherical geometry and the cylinder cross section geometry, is elucidated.
Moreover, Section 4.5 is dedicated to detailing the approach to full cylinder simulations.
Finally, in Section 4.6, the numerical methodology employed to solve the stationary Schrödinger

equation is presented.

4.1. The exact two mirror solution with ρV = 0

In this Section, the exact dilaton solution within a vacuum region confined between two infinitely
extended plates having a density of ρM is derived. These plates are situated at z < −d and z > d,
mimicking the geometric setup of the cannex experiment. It is noteworthy that the decision to
derive an exact solution for this particular geometry is motivated by the absence of exact solutions
for the geometries pertinent to other experiments explored in this thesis.
To formulate the one dimensional equation of motion, the dilaton field’s Eq. (5.4.234) is

reexpressed as

d2φ

dz2
= Veff,φ(φ; ρ) = − λ

mpl

V0e
−λφ/mpl + A2ρ

φ

m2
pl

. (4.1.81)

The objective is to find a solution that approaches φM as |z| → ∞. In a region of homogeneous
density ρ, multiplying Eq. (4.1.81) by φ′ and integrating over z results in:

1

2

�
dφ

dz

�2

= Veff(φ; ρ) + c, (4.1.82)

where c is a constant that has to be determined from boundary conditions or symmetry consid-
erations.

4.1.1. Solution inside the vacuum region

Inside the vacuum region with ρV = 0 Eq. (4.1.82) simplifies to

1

2

�
dφ

dz

�2

= V0e
−λφ(z)/mpl − V0e

−λφ0/mpl . (4.1.83)

Here, the choice of the integration constant ensures φ′(0) = 0, maintaining symmetry of the
field solution in the experimental setup. The quantity φ0 is defined as φ(0) and u(z) is defined
through the relationship:

φ(z) = φ0 − mpl

λ
ln
�
u(z)

�
, (4.1.84)

implying u(0) = 1. This leads to the equation:

m2
pl

λ2

�
u′(z)

�2
2u(z)2

= V0e
−λφ0/mpl

�
u(z)− 1

�
. (4.1.85)

Defining

α :=
�
2V0

λ

mpl

e−λφ0/(2mpl), (4.1.86)
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Eq. (4.1.85) can be expressed as: �
u′(z)

�2
u2(z)(u(z)− 1)

= α2. (4.1.87)

Next, Eq. (4.1.87) is solved within the range −d ≤ z ≤ 0. In this interval, the dilaton field φ
exhibits an upward trend, reaching its local maximum at z = 0. Consequently φ′(z) ≥ 0. This,
in turn, implies that u′(z) ≤ 0 as indicated by Eq. (4.1.84). Integrating the equation yields:� 0

z

u′(s)�
u2(s)

�
u(s)− 1

�ds = αz. (4.1.88)

Introducing the variable y(s) :=
�

u(s)− 1, the integral transforms to:

2

� 0

√
u(z)−1

1

1 + y2
dy = αz. (4.1.89)

Solving this expression for u(z) yields:

u(z) = 1 + tan
�α
2
z
�2

. (4.1.90)

By analogous reasoning, one can ascertain that the obtained expression for u(z) also satisfies
Eq. (4.1.87) in the interval 0 ≤ z ≤ d. Consequently, the full solution in between the plates can
be written as:

φ(z) = φ0 − mpl

λ
ln



1 + tan

�α
2
z
�2
�
. (4.1.91)

4.1.2. Boundary conditions and definition of φ0

The obtained solution introduces the parameter φ0, which needs determination through boundary
conditions. Inside the mirrors, Eq. (4.1.82) reduces to:

1

2

�
dφ

dz

�2

= Veff(φ; ρM)− Veff(φM ; ρM), (4.1.92)

where integration constant must be selected to ensure the derivative approaches zero for |z| → ∞.
The demand for the derivative’s continuity at |z| = d results in an equation for φd := φ(|d|).
Equating (4.1.92) and (4.1.83) at |z| = d yields:

φd =

�
2m2

pl

A2ρM

�
Veff(φM , ρM)− V0e−λφ0/mpl

�
, (4.1.93)

where the positivity of the dilaton field has been utilized. Equating (4.1.93) with (4.1.91) at
|z| = d results in an implicit equation defining φ0 as the root of Eqn(φ0):
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Eqn(φ0) := φ0 − mpl

λ
ln



1 + tan

�α
2
d
�2
�
−
�

2m2
pl

A2ρM

�
Veff(φM , ρM)− V0e−λφ0/mpl

�
.

Fig. 4.1.1: a) Eqn(φ0) is plotted for V0 = 10 MeV4, λ = 1031 and A2 = 1040 for a plate separation of
10 µm.
b) The incorrect solution φ0 ≃ 18.5 meV is plottet, this solution has poles at z ≃ ±1 µm
and z ≃ ±3 µm according to Eq. (4.1.91) and is hence not a legitimate solution of the
differential equation.

Due to the periodicity of the tangent function, multiple solutions for φ0 may exist, as exemplified
in Fig. 4.1.1. However, considering that φ(z) must be defined on the domain −d ≤ z ≤ d and
tan(x) is undefined for x = π/2 + nπ and n ∈ Z, the correct solution must satisfy αd < π,
establishing a lower bound on φ0:

φ0 >
2mpl

λ
ln

�
λ
√
2V0d

πmpl

�
, (4.1.94)

where Eq. (4.1.86) has been employed. For the examined dilaton parameters, only one solution
compatible with this lower bound was found. This solution is instrumental in verifying the
accuracy of the proposed methods for solving the equations of motion. Although the numerical
algorithm must work for ρV > 0, applying it to the case of ρV = 0 and comparing it with an
exact solution provides a powerful consistency check. Furthermore, when φ0 does not closely
approach φV , the derived solution serves as an excellent approximation for the more realistic
scenario where ρV > 0. This also allows the use of the analytical solution with ρV = 0 to test
numerical algorithms under more realistic conditions. This observation becomes apparent when
examining the region near the potential minimum φρ defined by Veff,φ(φρ; ρ) = 0. Near φρ, the
following approximation, deduced from Eq. (4.1.81), holds:

λ

mpl

V0e
−λφ/mpl ≃ A2ρ

φ

m2
pl

. (4.1.95)
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Deep within the mirror, the field is suppressed to φM , leading both terms on the right-hand
side (RHS) of Eq. (4.1.81) to contribute roughly equally to the differential equation. As the field
transitions into the vacuum region, the linear term undergoes a sudden suppression by several
orders of magnitude due to ρV ≪ ρM . Consequently, the exponential term begins to dominate
Eq. (4.1.81). The field advances toward its new potential minimum, and it is only in proximity to
φV that the linear term ceases to be suppressed, as indicated by Eq. (4.1.95). Therefore, as long
as φ0 ≪ φV , the linear term can be disregarded within the vacuum region, which is equivalent to
setting ρV = 0.
It is noteworthy that the obtained solution remains applicable to models featuring a distinct

Weyl-rescaling function A(φ), as long as V (φ) remains unchanged. As a consequence of setting
ρV = 0, the Weyl-rescaling no longer manifests in the differential equation between the mirrors.
Any alteration in A(φ) would solely require adjustments to the implicit equation governing φ0.
In the following, an explicit demonstration will be provided for which parameters this solution

also approximates the case where ρV > 0, and it will be compared to the approximate two mirror
solution derived in Appendix C.

4.1.3. Analysing the accuracy of the two mirror solutions

While the derived solution is exact for ρV = 0, making it suitable as a benchmark for numerical
algorithms, the case where ρV = 2.28 × 10−20 MeV4 corresponds to the lowest possible vacuum
density of the cannex experiment. In this Section, it will be shown that, for a significant
portion of the relevant parameter space, either the exact two mirror solution with ρV = 0 or
the approximate two mirror solution (derived in Appendix C) with arbitrary ρV serves as an
extremely accurate solution for the exact equation with ρV = 2.28 × 10−20 MeV4. Due to the
approximate parameter symmetries of the dilaton model, the analysis primarily focuses on a fixed
value of V0 = 10 MeV4. The specific value of V0 = 10 MeV4 is arbitrary and the obtained results
in this Section would only be marginally affected by increasing it by a factor 1010

6
or even much

more as becomes evident in the derived constraints in Section 6.1. This specific value was chosen
primarily because the investigated experiments quickly loose their sensitivity for V0/MeV4 ≪ 1
making V0 values close to 1 MeV4 a natural choice.
To assess the accuracy of the solutions, the relative residual (RS) is defined as:

RS(φ, z) :=

$$$d2φdz2
(z) + λ

mpl
V0e

−λφ(z)
mpl − A2ρ(z)

m2
pl

φ(z)
$$$

max
�$$$d2φdz2

(z)
$$$, $$$ λ

mpl
V0e

−λφ(z)
mpl

$$$, $$$A2ρ(z)

m2
pl

φ(z)
$$$� . (4.1.96)

This definition has previously been employed to assess the accuracy of numerical chameleon
solutions [98]. For an exact solution RS(φ, z) = 0, whereas for a random function φ, RS(φ, z) ∼ 1.
Fig. 4.1.2 illustrates that the exact two mirror solution is an exceptionally accurate approximation
for the case ρV = 2.28× 10−20 MeV4 when A2 < 1045 within the large λ region. For larger values
of A2, the dilaton range is so short that φ would reach φV inside the vacuum region, contradicting
the assumption ρV = 0, which is necessary for the analytical solution to be accurate.
Conversely, within the small λ region, the approximate two mirror solution derived in Appendix

C with arbitrary ρV is practically exact throughout the entire parameter region, as demonstrated
in Fig. 4.1.3. This is attributed to the fact that the approximate solution is based on linearizing
the equations of motion. Given that, in the small λ region, the real equations of motion are linear
to a very good approximation

�
see Eq. (3.1.44)

�
, any linearization yields a practically exact

solution.
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In the following Subsection an appropriate algorithm to solve the differential equations of
motion of the dilaton field is introduced and numerical challenges and their resolutions are sum-
marized. The accuracy of these methods is also verified for the chameleon and symmetron field.
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Fig. 4.1.2: The comparison involves the approximate two mirror solution (depicted in orange) with
ρV = 2.28×10−20 MeV4 and the exact two mirror solution (depicted in blue) with ρV = 0.
Their relative residuals are illustrated, considering parameters V0 = 10 MeV4 and λ = 1031.
The figure highlights the value of A2. The chosen parameters are directly relevant to the
investigation of experimental constraints, see Fig. 4.2.1.
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Fig. 4.1.3: The comparison involves the approximate two-mirror solution (depicted in orange) with
ρV = 2.28×10−20 MeV4 and the exact two mirror solution (depicted in blue) with ρV = 0.
Their relative residuals are illustrated, considering parameters V0 = 10MeV4 and λ = 10−10.
The figure highlights the value of A2. For the approximate two mirror solution RS(z) is so
extremely small (∼ 10−100) that it is rounded to zero and not displayed in a logarithmic plot.
The chosen parameters are directly relevant to the investigation of experimental constraints,
see Fig. 4.2.1.
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4.2. Precision Challenges of the dilaton field

This Section delves into precision challenges and their resolution within the context of the
environment-dependent dilaton model, specifically within the experimentally relevant parame-
ter space outlined in Fig. 4.2.1. The determination of experimentally relevant parameters is
inherently post hoc: regions of parameters leading to measurable physical effects are computed.
These results allow to determine the accessible—and consequently relevant—parameter volume
for individual experiments. Although a detailed derivation is reserved for Section 6.1, the acces-
sible parameter volume is presented here without discussion, because the robustness of numerical
algorithms has to be guaranteed for these parameters.

Fig. 4.2.1: The filled areas show which parameters of the dilaton model can be constraint by experi-
ments. a) In the case of small λ, the physical outcomes are solely reliant on the product
V0λ, rendering the individual values of V0 and λ irrelevant. Consequently, as V0 grows, the
constraint areas shift towards smaller λ values while maintaining their original shapes. b)
Arrows depict how constraint regions evolve with increasing values of V0. For a compre-
hensive explanation see Section 6.1. Figure published in Ref. [5]

4.2.1. Phenomenologically relevant parameter space

The model’s parameter space can be broadly divided into three regimes, as detailed in Section
3.1.2:

• For small λ (Figure 4.2.1 left), the equation of motion is given to a very good approximation
by

�φ =
λ

mpl

V0e
−λφ/mpl − A2ρ

φ

m2
pl

≃ λ

mpl

V0 − A2ρ
φ

m2
pl

. (4.2.97)

These are linear equations of motion, allowing for exact solutions for various geometries,
see Appendix C. The parameter region characterized by small λ is found to be numerically
straightforward and is hence only briefly explored in this thesis.
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• For intermediate values of λ, the model becomes undefined due to the violation of condi-
tion (3.1.38).

• For large λ (see Figure 4.2.1 right), the dilaton field exhibits strong exponential self-coupling,
resulting in highly nonlinear equations of motion where

e−λφ/mpl ≪ 1. (4.2.98)

The parameter V0 can take values as large as V0 = 1010
24

MeV4 in the phenomenologically
relevant parameter region, presenting significant numerical challenges, which are further
discussed in the next Subsection.

4.2.2. Computing functions for very large values of V0

Computing the effective potential
Handling large values of V0 presents computational challenges, including potential overflows

and underflows. For instance, the product

V0e
−λφ/mpl (4.2.99)

may yield physically meaningful results, but individual values of V0 and e−λφ/mpl can become ex-
cessively large or small, leading to underflows in the exponential. To mitigate this, the parameter
γ := log10(V0/MeV4) is introduced, enabling the effective potential to be expressed as

e

�
−λφ/mpl+γln(10)

�
MeV4 +

A2ρ

2m2
pl

φ2, (4.2.100)

effectively averting underflows. Functions involving γ must be reformulated to prevent internal
overflows.

Computing the potential minimum
A crucial instance is the computation of the potential minimum:

φρ =
mpl

λ
W

�
λ2V0

A2ρ

�
=

mpl

λ
W

�
λ2eγln(10)MeV4

A2ρ

�
. (4.2.101)

Here, eγln(10) can lead to an overflow. This can be avoided by employing an asymptotic expansion
of Lambert’s W function [96]:

W (x) = ln(x)− ln ln(x) +
∞"
k=0

∞"
m=1

ckm
�
ln ln(x)

�m�
ln(x)

�−k−m
,

ckm =
1

m!
(−1)k



k +m
k + 1

�
, (4.2.102)

where



k +m
k + 1

�
denotes the Stirling cycle number of the first kind. To lowest order, cancellation

of ln(eγln(10)) = γln(10) results in

φρ ≃ mpl

λ

�
γln(10) + ln(

λ2MeV4

A2ρ
)
�
, (4.2.103)
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but higher-order correction terms of W can be added as well. In my implementation I employed
Mathematica [108] to expand W (x) to a sufficiently high order and simplify it analytically to

W (x) ≃ ln (x)− ln ln(x) +
ln ln(x)

ln(x)
+

�− 2 + ln ln(x)
�
ln ln(x)

2 ln(x)2

+
ln ln(x)

�
6− 9 ln ln(x) + 2 ln ln(x)2

�
6 ln(x)3

=: g(x). (4.2.104)

I then ensured that the relative difference between W (x) (computed exactly with Mathematica)
and g(x) is less than 10−28 for γ ≥ 106 (this is only at the threshold of γ = 106, for γ = 1024 the
difference would be much smaller). For larger γ values, I exclusively used g(x) instead of W (x)
and employed the analytical replacement

ln(eγln(10)) = γln(10), (4.2.105)

to circumvent overflows. While the γ−parameterization has been used in numerical calcula-
tions, the text will stick to the V0 parameterization, since this is how the model was originally
defined.

The need to go beyond machine precision
The following numerical challenge arises when dealing with large values of V0 due to the

inherent limitation of machine precision calculations, typically accurate up to 15-16 digits on
contemporary 64-bit machines. This level of precision often proves inadequate for obtaining
physically meaningful results. Consider a static field in a vacuum chamber with density ρV ,
surrounded by material walls with density ρM . The field is governed by the inequality (a proof
of this claim is provided in Appendix A):

φM ≤ φ(x) ≤ φV . (4.2.106)

For the maximum value of V0 ∼ 1010
24

MeV4 in the context of tabletop experiments, the relative
difference between φV and φM is approximately expressed as:

2
φV − φM

φV + φM

≃ ln
�
ρM
ρV

�
log10(V0/MeV4)ln(10)

≃ 10−23. (4.2.107)

ρM has been assumed to be roughly 10 orders of magnitude larger than ρV in table top experi-
ments. Consequently, φ(x) = φM = φV to machine precision, providing no meaningful physical
information. Therefore, solving the equations of motion directly requires significantly higher pre-
cision, which most software cannot provide, and this increased precision also comes at a higher
computational cost. The next Subsection introduces a method to circumvent calculations beyond
machine precision.

4.2.3. Circumventing the need for high precision calculations

Machine precision calculations suffice for V0 values up to approximately 1010
12

MeV4; however,
for V0 values surpassing this threshold, higher precision becomes essential. This Section presents
a resolution to this issue by reformulating the dilaton field as follows:
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φ(x) = φM + δφ(x). (4.2.108)

Here, |δφ(x)| ≪ |φM | denotes a small value that primarily influences only the less significant

digits of φ for large V0 but significantly affects the dilaton force f⃗φ. Accordingly, the force is
expressed as:

f⃗φ = −β(φ)
m

mpl

∇⃗φ = −β(φ)
m

mpl

∇⃗δφ. (4.2.109)

Failing to isolate δφ and computing φ directly with machine precision would lead to the incorrect
result φ(x) = φM , and hence ∇⃗φ = 0. Recalling the differential equation of φ:

�φ =
λV0

mpl

e−λφ/mpl − A2ρ

m2
pl

φ, (4.2.110)

the differential equation of δφ is given by:

�δφ =
λV0

mpl

e−λ(φM+δφ)/mpl − A2ρ

m2
pl

(φM + δφ). (4.2.111)

Using Eq. (3.1.52) allows to recast the previous equation:

�δφ =
β(φM)ρM

mpl

e−λδφ/mpl − β(φM + δφ)ρ

mpl

. (4.2.112)

Importantly, implementing Eq. (4.2.110) directly at machine precision can result in the round-
ing:

�φ ∼ 0,

e−λφ/mpl ∼ e−λφM/mpl , (4.2.113)

leading to completely incorrect results. These roundings are avoided analytically by implementing
Eq. (4.2.112) instead. Note that the rounding β(φM+δφ)ρ

mpl
≃ β(φM )ρ

mpl
does not affect the leading digits

of β(φM+δφ)ρ
mpl

and is hence unproblematic. Section 4.4.3 serves to validate the legitimacy of this

approach.
Next, the discussion briefly turns to the symmetron field, highlighting its inherent precision

issues as well. Following this, the numerical algorithms utilized to solve the scalar field equations
of motion will be discussed.

4.3. Precission challenges in Symmetron field computations

While the primary focus remains on numerically investigating the dilaton field, it is crucial to
recognize that precision challenges extend beyond this specific field. Particularly, when examining
parameters that place the symmetron field within its symmetry broken phase inside materials,
precision becomes an inevitable concern.
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Consider a scenario where chamber walls exhibit a density ρM while surrounded by a vacuum
density ρV , resulting in the symmetron field persisting in its symmetry-broken phase even inside
the walls. The potential minima are defined as follows:

φV = ±
�

µ2

λ
− ρV

λM2
,

φM = ±
�

µ2

λ
− ρM

λM2
. (4.3.114)

Keeping other parameters constant, it becomes apparent that their relative difference vanishes
asymptotically:

2

$$$$φM − φV

φM + φV

$$$$ → 0, as M → ∞, (4.3.115)

reflecting the behavior observed in the dilaton field for large values of V0. Consequently, varia-
tions in fields become exceedingly minute for very large values of M , rendering them indiscernible
with machine precision. In contrast to the dilaton field, only cannex and qBounce are sensitive
to parameter values where this becomes a concern. Since the associated geometries of these two
experiments are one-dimensional, I have developed my own code for these experiments capable
of arbitrary precision computation, effectively resolving these precision challenges. The transfor-
mation of the equations of motion for the dilaton field is still essential for cylinder simulations
associated with neutron interferometry. The underlying algorithm is detailed in the following.

4.4. Solving one dimensional equations of motion

Solving for scalar fields in static configurations entails solving the partial differential equation:

d2φ

dx2
+

d2φ

dy2
+

d2φ

dz2
= Veff,φ(φ; ρ). (4.4.116)

Eq. (4.4.116) is explicitly tackled for one and two mirror geometries, a spherical configura-
tion and the cross section of an infinitely extented cylinder. These geometries are pertinent to
qBounce, cannex, LLR, and neutron interferometry respectively. The full cylinder geometry,
also relevant to neutron interferometry, will be discussed separately.
The geometries in this Section are encapsulated by the following differential equation:

d2φ

ds2
+ Γ

2

s

dφ

ds
= Veff,φ(φ; ρ). (4.4.117)

Here, s = r for spherical and cylindrical geometries. For one and two mirror geometries s = z,
respectively. The parameter Γ takes the value 0 for one and two mirrors, 0.5 for the cross section
of a infinitely extended cylinder and 1 for a sphere. The primary challenge in solving Eq. (4.4.117)
stems from the extreme slopes of the dilaton field, as depicted in Fig. (4.4.3). The dilaton field
exhibits significant variations at scales as small as 10 fm for experimentally accessible parameters.
Achieving an accurate and uniform discretization would necessitate over 108 grid points in the
vacuum region alone, rendering it computationally unfeasible.
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4.4.1. Non-uniform finite difference method

Addressing the challenge of steep slopes necessitates the adoption of a non-uniform mesh within
the simulation interval. While the FEM is a common choice for accommodating an arbitrary mesh
(see e.g., [109]), this Section opts for non-uniform finite difference methods (FDMs) due to their
simpler implementation, which is particularly advantageous for the straightforward geometries
under consideration. The presented method, in case of the one and two mirror geometries, can
be seen as a special case of the FEM, which is demonstrated in Appendix B.5.
Initially, the continuous simulation interval [a, b] is discretized into grid points s0 = a, ..., sN+1 =

b. Here, a and b typically represent cutoffs. For instance, in the context of the one mirror
solution, a and b are selected such that the field naturally relaxes towards its asymptotic boundary
conditions φM within the mirror and φV within the vacuum region.
Defining

hi := si+1 − si

φi := φ(si),

φ′
i :=

dφ

ds
(si),

φ′′
i :=

d2φ

ds2
(si), (4.4.118)

a second-order Taylor expansion yields:

φi+1 = φi + φ′
ihi +

φ′′
i

2
h2
i +O(h3

i )

φi−1 = φi − φ′
ihi−1 +

φ′′
i

2
h2
i−1 +O(h3

i−1). (4.4.119)

Neglecting higher order terms, approximations of φ′
i and φ′′

i are defined as solutions to:�
hi h2

i /2
−hi−1 h2

i−1/2

�
·
�
φ′
i

φ′′
i

�
≈

�
φi+1 − φi

φi−1 − φi

�
,

resulting in:

φ′′
i ≈

2(φi+1 − φi)

hi(hi + hi−1)
− 2(φi − φi−1)

hi−1(hi + hi−1)
, (4.4.120)

φ′
i ≈

hi(φi − φi−1)

hi−1(hi + hi−1)
+

hi−1(φi+1 − φi)

hi(hi + hi−1)
. (4.4.121)

These approximations extend the standard central difference scheme to non-uniform grids [110]
and maintain second-order accuracy if hi = hi−1. Substituting Eqs. (4.4.120)–(4.4.121) into Eq.
(4.4.117) results in the discretized differential equation:

2(φi+1 − φi)

hi(hi + hi−1)
− 2(φi − φi−1)

hi−1(hi + hi−1)
+ Γ

2

si

� hi(φi − φi−1)

hi−1(hi + hi−1)
+

hi−1(φi+1 − φi)

hi(hi + hi−1)

�
− Veff,φ(φi, ρi) = 0.

(4.4.122)

Appendix B.3 outlines how this system of equations is solved.
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Fig. 4.4.1: Sketch for mesh construction, not to scale. Figure published in [6].

4.4.2. Mesh construction

The crucial task lies in appropriately choosing s0, ..., sN+1 to accurately capture the behavior of
the scalar fields under consideration, as discussed in the following.

Uniform meshes:
In the vicinity of material surfaces at s = −d and s = d (referred to as UM(1) and UM(2)

in Figure 4.4.1), a highly refined yet uniform mesh is established with a small spacing parameter
D. Specifically, for s = d, this mesh comprises 2N1 + 1 points defined as follows:

si := d+ iD, for i = 0, ..., N1,

sN1+i := d− iD, for i = 1, ..., N1. (4.4.123)

Geometric mesh:
To reduce the total number of mesh points, the small uniform meshes at the surfaces are

connected with a mesh of exponentially increasing si. This facilitates a smooth transition from
material boundaries, where fine spacing is crucial, to the center of homogeneous regions, allowing
for a coarser grid. Taking GM(3) in Figure (4.4.1) as an example, the mesh is constructed as
follows: Initially, the mesh boundaries are set at a := d − N1D > 0 and b := 0, as the scalar
field exhibits the weakest slope in the middle of the vacuum region, justifying a coarser grid. The
number of points within this mesh, denoted as N2, is fixed. An exponential parameter δ > 1
determines the positions of all other points:

s0 := a

si := si−1 −Dδi−1, i=1, ..., N2 − 1. (4.4.124)

To ensure sN2−1 = b, δ has to be determined by solving:

N2−1"
i=1

Dδi−1 = D
1− δN2−1

1− δ
= |b− a|. (4.4.125)

Full mesh for the considered geometries
The full mesh is crafted by merging uniform and geometric meshes, as depicted in Figure

4.4.1. The final outcome for a two mirror geometry is illustrated in Figure 4.4.2. For one mirror,
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Fig. 4.4.2: This illustration provides an example of the grid construction realizing grid spacings between
1 nm and 19 mm with only ∼ 430 points. The dotted lines mark the surfaces of the mirror.
The mesh parameters are D1 = D2 = 1 nm, N1 = N2 = 80 and N3 = 30.

spherical and cylindrical geometries, it suffices to construct only GM(1), UM(1), and GM(2). In
contrast, for a two mirror geometry, owing to the symmetry of the setup, GM(3), UM(2), and
GM(4) are selected as the mirror image counterparts of GM(1), UM(1), and GM(2). This brings
the total number of parameters needed to define the mesh to 5: two spacing parameters D1 and
D2, along with the parameters N1 and N2 dictating the number of points in the geometric meshes,
as well as N3 to determine the number of points for the uniform meshes. In the majority of cases
examined, opting for D1 = D2 and N1 = N2 yielded highly satisfactory numerical results, thereby
streamlining the parameter-setting process.

4.4.3. Testing the algorithm for the two mirror solution of the dilaton field

Fig. 4.4.3: The dilaton field defined in Eqs. (4.1.91) and (4.2.108) is plotted for V0 = 10 MeV4,
A2 = 1045, λ = 1031, ρM = 1.083×10−5 MeV4 and d = 5 µm and compared to the solution
of the numerical algorithm. The mesh parameters are D1 = D2 = 10 fm, N1 = N2 = 80
and N3 = 30. For the given parameters φM ≃ 11.9meV. Figure published in [6].
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Fig. 4.4.4: The dilaton field defined in Eq. (4.1.91) and Eq. (4.2.108) is plotted for V0 = 1010
24

MeV4, A2 = 1013, λ = 1031, ρM = 1.083 × 10−5 MeV4 and d = 5 µm and compared
to the solution of the numerical algorithm. The mesh parameters are D1 = D2 = 1 nm,
N1 = N2 = 80 and N3 = 30. For the given parameters φM ≃ 5.61 × 1023 meV. Figure
published in [6].

The accuracy of the proposed algorithms is validated for scenarios involving extreme slopes
in Figure 4.4.3 and an exceedingly large value of V0 in Figure 4.4.4. The differential equation
(4.2.112) for δφ is solved using the proposed algorithm, defining

Veff(δφ) :=
β(φM)

λ
ρMe−λδφ/mpl + β

�
φM +

δφ

2

�
ρ
δφ

mpl

. (4.4.126)

Numerical field solutions where computed with standard machine precision (16 digits), while
the corresponding analytical solution for V0 = 1010

24
MeV4 had to be computed with much higher

precision (at least ∼ 30 digits) for comparison. The analytical and numerical solution closely
match even inside extreme slopes. Since the analytical solution assumes ρV = 0, a numeri-
cal solution is mandatory for a realistic analysis of cannex and other experiments, where this
restriction may not hold in general.
In Fig. 4.4.5, a comparison between the more realistic scenario with ρV = 2.28 × 10−20 MeV4

and the analytical solutions is presented across a broader range of parameter combinations. As
anticipated, the numerical algorithm and the approximate two mirror solution with ρV = 2.28×
10−20 MeV4 exhibit strong alignment in the small λ region (λ = 10−5 in the figure), while the
numerical algorithm remains in agreement with the analytically exact solution with ρV = 0 up to
A2 = 1045. This consistency corroborates the earlier analysis outlined in Section 4.1.3.
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4.4.4. Testing the algorithm for the two mirror solution of the symmetron and chameleon
fields

Fig. 4.4.6: a) The analytically exact two mirror solutions for the chameleon field for the parameters
n = 1, β = 4.1×105 and Λ = 2.4×10−9 is plotted alongside the solution of the numerical
algorithm. b) The analytically exact two mirror solutions for the symmetron field for the
parameters µ = 10−6.5 MeV,M = 10−3.2 MeV and λ = 103 is plotted alongside the solution
of the numerical algorithm. The experimental parameters were set to ρM = 1.083× 10−5

MeV4, ρV = 0 and d = 5 µm. The mesh parameters are D1 = D2 = 1 nm, N1 = N2 = 80
and N3 = 30. Figure published in [6].

The code has also been compared to the exact analytical solutions available for the symmetron
and chameleon models [61, 111], see Figure 4.4.6. While the analytically exact solutions for the
chameleon field are specifically applicable for n = 1, the numerical algorithm can compute the
field for arbitrary parameters. In the code, the analytical solution was compared to the proposed
algorithm for many more parameters, consistently showing the same level of agreement.
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Fig. 4.4.5: V0 is held constant at 10 MeV4 for all comparisons. Left column: The analytical ap-
proximate two mirror solution (dashed yellow) is compared against the numerical solution
(blue) for a fixed value of λ = 10−5. Right column: The analytical exact two mirror
solution with ρV = 0 (dashed yellow) is contrasted with the numerical solution (blue) for
a fixed value of λ = 1031. The parameter A2 remains fixed at 1035 in Row a), 1040 in
Row b), 1045 in Row c), and 1050 in Row d). Additionally, ρV = 2.28× 10−20 MeV4 and
ρM = 1.083× 10−5 MeV4.
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4.4.5. Testing for cylindrical and spherical geometries

Fig. 4.4.7: a) The analytical solution for a sphere is compared to the numerical algorithm, for V0 = 10
MeV4, A2 = 1020 and λ = 10−24. The densities are given by ρV = 7.21 × 10−29 MeV4,
ρM = 2.37× 10−5 MeV4. b) The analytical solution for a the cross section of a cylinder is
compared to the numerical algorithm, for V0 = 10 MeV4, A2 = 1038 and λ = 10−5. The
densities are given by ρV = 1.69× 10−16 MeV4, ρM = 1.1× 10−5 MeV4.

The code was tested to ensure it can reproduce the known one mirror solution [61] for the
symmetron field. While analytically exact solutions of the investigated scalar fields for spheres and
cylinder cross sections remain elusive, inside the small λ region, the dilaton differential equation
becomes linear and can be explicitly solved for both geometries, see Appendix C. The numerical
algorithm and the approximate analytical solutions match in this scenario. An example is shown
in Figure 4.4.7.

4.5. Numerical methods for simulating a cylinder

In the preceding Section, a method for solving one dimensional differential equations using a FDM
has been developed. However, in Appendix B.5, it is demonstrated that this method can also be
interpreted as a special case of the FEM for both one and two mirror geometries. Now, within
the context of neutron interferometry, the task is to solve the differential equation for a cylinder
with two degrees of freedom (r, z), as described in Equation (4.0.77).
There are two natural avenues to extend the method for one-dimensional equations of motion to

a cylindrical geometry. One could either adhere to the FDM interpretation of the previous Section
and apply Eq. (4.4.118) to each partial derivative individually, or opt for a two dimensional FEM
approach.
The FEM, akin to the non-uniform FDM, allows for arbitrary discretization, making it optimal

for screened scalar field simulations. Its versatility surpasses that of non-uniform finite difference
schemes for higher-dimensional geometries, as it is better equipped to simulate arbitrary shapes.
Figure 4.5.1 illustrates how a cylinder is divided into triangles for discretization, allowing for
arbitrary distribution of degrees of freedom (points where the edges of different triangles intersect),
which is only possible with the FEM and not FDMs.
I have chosen to utilize the FEM for cylindrical geometries for two reasons:
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Firstly, Mathematica’s built-in FEM code can be adapted to suit cylinder simulations relevant
to neutron interferometry, thereby significantly reducing coding efforts. Secondly, the FEM proves
superior when investigating more intricate geometries; hence, investigations based on the FEM
can be easier generalized to other problems in the future.
However, the built-in Mathematica code is hampered by significant limitations. While I man-

aged to address some of these limitations through manual modifications tailored to neutron in-
terferometry, the code still falls short when it comes to deriving parameter constraints for other
experiments explored in this work. Consequently, custom code had to be developed from the
ground up for these additional experiments, a process detailed in the preceding Section.
Section 4.5.1 will provide an overview of integrating the FEM within the context of screened

scalar fields. Following this, Section 4.5.2 will address the unreliability of Mathematica’s nonlinear
solver, while Section 4.5.3 will outline my manual interventions to rectify these limitations. In
Section 4.5.4, mesh construction and initial guesses for Newton’s method are detailed, the non-
uniqueness of symmetron solutions is demonstrated, and several code tests discussed.
Section 4.5.5 concludes by addressing the remaining limitations of the code and clarifying why

it is not applicable to the other experiments considered in this thesis.

4.5.1. Summary of the FEM for screened scalar fields

This Subsection provides a brief summary of the FEM applied to screened scalar fields. The
following is a straight forward generalization of the FEM applied to the chameleon field [98] or
the Poisson equation [112]. The discussion begins with the differential equation:

Δφ = Veff,φ(φ; ρ), (4.5.127)

on a domain Ω̂, with mixed Dirichlet and Neumann boundary conditions

φ = φD on ∂Ω̂D,

∇⃗φ · n⃗ = g on ∂Ω̂N ,

∂Ω̂ = ∂Ω̂D∪̇∂Ω̂N . (4.5.128)

The equation is multiplied by a test function ϕi and partially integrated:

−
�
Ω̂

∇⃗φ∇⃗ϕid
3x+

�
∂Ω̂

∇⃗φ · n⃗ϕidS −
�
Ω̂

Veff,φ(φ; ρ)ϕid
3x

=−
�
Ω̂

∇⃗φ∇⃗ϕid
3x+

�
∂Ω̂N

gϕidS −
�
Ω̂

Veff,φ(φ; ρ)ϕid
3x = 0, (4.5.129)

where homogeneous Dirichlet boundary conditions have been assumed for simplicity3.
The last equation applied to all test functions is the weak form of the differential equation4.
The finite element discretization works based on choosing a finite amount of basis functions ϕi

and using an approximation of φ expressed as a linear combination of ϕi.

3Non-homogeneous Dirichlet boundary conditions are implemented by choosing an arbitrary smooth function φ̂ that
fullfills the boundary conditions and making the Ansatz φ = φ̂ + δ. Plugging this into the differential equation
results in a differential equation with homogenous dirichlet conditions for δ that can then be solved as described.

4The weak derivative is a mathematical concept replacing the regular derivative. It involves multiplying a function by
an arbitrary test function and partially integrating the result. This approach sometimes allows functions that aren’t
differentiable in the traditional sense to become differentiable.
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Geometrically, the basis functions can be identified with the values assigned to the nodes within
the FEM mesh, as illustrated in Fig. 4.5.1.

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4.5.1: This is an example of a FEM mesh for a cylinder. Each node corresponds to a basis function
that is 1 at one of the nodes and continuously falls of to 0 at the surrounding nodes. For
a detailed explanation I refer to the main text.

Within the domain Ω̂, the nodes are designated as x⃗1, ..., x⃗N , and each basis function ϕi is
defined to assume a value of 1 at node i and 0 at all other nodes:

ϕi(x⃗j) = δij. (4.5.130)

A common choice in two dimensions is to use triangle basis functions: A triangle has three
nodes and a linear function in two dimensions is specified by exactly three points. Hence, a
basis function is uniquely defined by demanding it to be 1 at one node of the triangle an 0 at
the others. Notably, unlike finite difference methods, these basis functions can aptly represent
geometric shapes such as triangles, making them well-suited for effectively approximating complex
domains.
The discretized version of the differential equation reads

−
N"
j=1

φj

��
Ω̂

∇⃗ϕj∇⃗ϕid
3x
�
+

�
∂Ω̂N

gϕidS −
�
Ω̂

Veff,φ

� N"
k=1

φkϕk; ρ
�
ϕid

3x = 0, for i = 1, ..., N,

(4.5.131)

where φk corresponds to the value at x⃗k of the FEM approximation of φ. Defining

F : RN → RN (4.5.132)

with

Fi(φ1, ..., φN) := −
N"
j=1

φj

��
Ω̂

∇⃗ϕj∇⃗ϕid
3x
�
+

�
∂Ω̂N

gϕidS −
�
Ω̂

Veff,φ

� N"
k=1

φkϕk; ρ
�
ϕid

3x,

(4.5.133)
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the goal is to solve

F(φ1, ..., φN) = 0, (4.5.134)

which corresponds to a root fining problem on RN . In order to solve this system, a non-linear
solver needs to be employed. A standard choice is Newton’s method or variants thereof [113],
which is also what is used by Mathematica. To apply a Newton iteration, the Jacobian of F has
to be computed. One obtains

JF,ij =
∂Fi

∂φj

= −
�
Ω̂

∇⃗ϕj∇⃗ϕid
3x−

�
Ω̂

Veff,φφ

� N"
k=1

φkϕk; ρ
�
ϕjϕid

3x. (4.5.135)

Assuming an initial guess of φ(0) := (φ
(0)
1 , ..., φ

(0)
N ), the Newton iterations are given by

F(φ(n−1)) + JF(φ
(n−1))(φ(n) − φ(n−1)) = 0, (4.5.136)

which is the linear system of equation that has to be solved at the n’th iteration.
In summary the FEM applied to screened scalar fields involves the solution of a root-finding

problem on RN , where the goal is to find φ1, ..., φN that satisfy F(φ1, ..., φN) = 0. Next, it will
be shown that the non-linear solver in Mathematica’s FEM implementation is unreliable, and an
explanation will be provided on how this issue was addressed.

4.5.2. Convergence problems with Mathematica’s nonlinear solver

While Mathematica’s NDSolve includes functionality for solving nonlinear differential equations
using the FEM, it unfortunately exhibits unreliability in certain cases. Fig. 4.5.2 shows a solu-
tion returned by Mathematica’s NDSolve, without triggering any error messages, for a two mirror
geometry with ρV = 0. A comparison with the known exact solution reveals a substantial dis-
crepancy, highlighting the inaccuracies in the obtained result. Furthermore, for more intricate
geometries, such as the cylinder geometry, NDSolve often fails to provide any solution.
After a thorough investigation, the root of the problem has been identified:
The nonlinear solver in Mathematica does not effectively monitor convergence. This conclusion

arises from the observation that, as discussed in the preceding Subsection, solving the differential
equation ultimately leads to a nonlinear system of equations. To initiate the Newton iterations,
an initial guess must be specified. In NDSolve, this can be provided using the ’initial seeding’
option. In Fig. 4.5.2, the trivial seed φ = φM has been used. Denoting the incorrectly returned
solution by Mathematica as φ2, upon restarting NDSolve, this time with the guess φ2 instead of
φM , the solution returned, denoted as φ3, again proves incorrect, albeit slightly different from
φ2. Iterating this process eventually converges to the correct solution, indistinguishable from the
exact solution.
Despite specifying the most stringent convergence criteria (these can be controlled with the ac-

curacy goal and precision goal option in NDSolve), Mathematica’s NDSolve terminates Newton’s
iteration prematurely for some unknown reason. I brought this issue to Mathematica’s atten-
tion through their official forum5, but as of now, a proper response has not been received. The
workaround of repeatedly restarting NDSolve, although effective in some cases, is far from ideal,
often resulting in no solution at all. Notably, Mathematica’s FEM exhibits reliability for linear
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problems but encounters challenges in handling nonlinear problems. In the following Section, the
approach to address and resolve this problem will be outlined.

-5 5

18.0

18.5

19.0

Fig. 4.5.2: The analytically exact solution is compared to the output of Mathematica’s inbuilt function
NDSolve, which was returned without error-messages. The parameters are V0 = 10 MeV4,
A2 = 1035 and λ = 1031. The densities are given by ρV = 0, ρM = 1.08× 10−5 MeV4.

4.5.3. Replacing Mathematica’s nonlinear solver

The key insight that allows for the resolution of NDSolve’s convergence issues with minimal effort
lies in recognizing that the nonlinear solver can be decoupled from NDSolve, making it easily
replaceable. This realization is underpinned by the following analytical understanding:
There exist two approaches to apply Newton’s method for solving the differential equation:

Δφ = Veff,φ(φ; ρ). (4.5.137)

The first approach involves initially applying the FEM to the nonlinear differential equation,
transforming it into an N−dimensional root-finding problem, which is then solved using Newton’s
method on RN , as discussed in Section 4.5.1.
Reference [114] highlights another method where Newton’s method is directly applied in the

function space before discretization, and notes that both approaches are often equivalent. Begin-
ning with an initial guess function φ

(0)
f (x⃗)

�
where subscript f was added to avoid confusion with

the definition below Eq. (4.5.135)
�
for the field, the differential equation is linearized around this

guess function to first order. The resulting solution serves as an improved guess for the subsequent
iteration. This process generates a sequence of functions φ

(0)
f , ...φ

(n)
f , where φ

(n)
f is defined as the

solution of the linear differential equation:

Δφ
(n)
f (x⃗) = Veff,φf

�
φ
(n−1)
f (x⃗); ρ(x⃗)

�
+ Veff,φφ

�
φ
(n−1)
f (x⃗); ρ(x⃗)

��
φ
(n)
f − φ

(n−1)
f

�
. (4.5.138)

The significant advantage of the second approach is that NDSolve can be employed solely for
solving the linear differential equations (4.5.138), which is reliable, while developing an indepen-
dent nonlinear solver. The norm ||φf ||2 is defined as:

5This message can be found here: https://mathematica.stackexchange.com/questions/278396/convergence-problems-
non-linear-fem
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||φf ||2 :=
 !!� N"

i=1

φ2
f (x⃗i), (4.5.139)

and these linear differential equations are iteratively solved using NDSolve until the condition

||φ(n)
f − φ

(n−1)
f ||2

||φ(n−1)
f ||2

< ϵ, (4.5.140)

is satisfied, where ϵ is a small value (typically set to at least 10−10, but smaller for extreme
parameters). This approach effectively decouples the nonlinear convergence issue from NDSolve,
leading to a more robust solution strategy. The discussion is closed by explicitly demonstrating
the equivalence of both Newton’s methods:

The equivalence of both Newton’s methods
Beginning with the differential equation:

Δφ
(n)
f (x⃗) = Veff,φ

�
φ
(n−1)
f (x⃗); ρ(x⃗)

�
+ Veff,φφ

�
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��
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f − φ

(n−1)
f

�
, (4.5.141)

its weak form is derived by multiplying with a test function and employing partial integration:
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3x = 0. (4.5.142)

Here, φ
(n−1)
f represents the FEM solution from the previous iteration. Expressing both φ

(n−1)
f

and φ
(n)
f in the FEM basis (φ
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Rearranging the equation yields:
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By using equations (4.5.135) and (4.5.133), this can be represented more succinctly as:

Fi(φ
(n−1)) +

N"
l=1

JF,il(φ
(n−1))(φ

(n)
l − φ

(n−1)
l ) = 0, (4.5.144)

or in matrix notation:

F(φ(n−1)) + JF(φ
(n−1))(φ(n) − φ(n−1)) = 0, (4.5.145)

which is identical to (4.5.136), using φ(n) = (φ
(n)
1 , ..., φ

(n)
N ). The explanation proceeds by detailing

the construction of the mesh and verifying that the code works.

4.5.4. Mesh construction, code tests and initial guesses

In the preceding Subsections, a nonlinear FEM was outlined, relying on two crucial components.
Firstly, constructing an appropriate mesh is essential. This involves creating two one-dimensional

grids: one for the radial points r0, ..., rN1 , representing the cross section of the cylinder, and the
other for the axial points z0, ..., zN2 , indicating the cylinder’s length. By employing these separate
one-dimensional grids, as detailed in Section 4.4.2, a suitable two-dimensional grid can be defined.
This grid is characterized by the points {(ri, zj) | 0 ≤ i ≤ N1, 0 ≤ j ≤ N2}. Fig. 4.5.3 provides
an illustration of such a FEM grid. This construction ensures that the discretization is very fine
close to material boundaries, while being coarser in other regions.
As expounded upon in Section 5.5.2, exploration revealed that neutron interferometry fails to

yield new constraints for the chameleon field. Consequently, deep dives into chameleon simula-
tions of cylinder geometries were not pursued. Subsequently, various tests conducted to validate
the precision of the proposed method for the dilaton and symmetron fields are scrutinized. Addi-
tionally, deliberation on the suitability of different initial guesses for Newton’s method is provided.

Fig. 4.5.3: The figure depicts an example of a FEM mesh that was used for cylinder simulations.

Code tests for the dilaton field
Initiating Newton’s method with the trivial guess φ = φM ensures convergence across all

relevant parameters. The focus lies in exploring parameters inspired by the constraint volume,
as discussed in Section 6, which stems from neutron interferometry. Thus, the simulations are
tailored exclusively to these parameters.
For large values of A2, an analytical short-range approximation is employed which makes simu-

lations unnecessary, this will be elaborated on in detail in Section 5.2.2. Consequently, simulations
and code testing are limited to 1028 ≤ A2 ≤ 1036 for V0 = 10 MeV4 within the large λ region,
for larger values of A2 the short range approximation becomes highly accurate, as shown in Fig.
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5.2.3. In the small λ region at V0 = 10 MeV4, 1030 ≤ A2 ≤ 1040 needs to be considered. For the
extreme scenario of V0 = 1010

18
MeV4, simulations must robustly handle 1012 ≤ A2 ≤ 1020.

The code underwent three tests:
Firstly, it was confirmed that the relative residual (RS) quickly decreases as the mesh is refined.

The RS is defined as:

RS(r, z) :=
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$$$� . (4.5.146)

The exact solution corresponds to RS=0, whereas a random solution typically yields RS∼1. Fig.
4.5.6 demonstrates that refining the mesh decreases RS to values significantly below 1.
Secondly, it was ensured that solutions converge rapidly as the mesh refines. As illustrated in

Fig. 4.5.7, solutions from a coarse mesh with 12996 nodes and a finer mesh with 98596 nodes
exhibit agreement to at least one part in 1000, often more.
To further validate the code, physical insight was leveraged by comparing it against known

correct solutions. Particularly, the dilaton field at the center of the cylinder (z = 0) is minimally
affected by the cylinder’s top and bottom, as seen in Fig. 4.5.4-4.5.5. This observation allows for
the approximation of the differential equation at z = 0 as:
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φ(r, 0); ρ(r, 0)

�
= 0. (4.5.147)

The reliable solution of this equation using the FDM in Section 4.4 has been demonstrated.
Thus, the accuracy of the simulations away from the cylinder’s ends for various parameter com-
binations is explicitly verified, as depicted in Figs. 4.5.8-4.5.9.

Fig. 4.5.4: The dilaton field is shown for the parameters V0 = 10 MeV4, A2 = 1030, and λ = 1026.6.
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Fig. 4.5.5: The dilaton field is shown for the parameters V0 = 10 MeV4, A2 = 1036, and λ = 1029.6.

Fig. 4.5.6: The relative residuals are shown for three simulations, characterized by the parameters
V0 = 10 MeV4, A2 = 1030, and λ = 1026.6. Throughout all simulations, the mesh
parameters remained consistent: the minimum distance between two points was fixed at
0.472 nm in the z direction and 0.182 nm in the r direction, without any additional uniform
meshes around material surfaces. In the first simulation, the N parameters, as elaborated
in Section 4.4.2, were all set to 30; for the second simulation, they were increased to 50,
and for the third simulation, to 80. The meshes consisted of 12996, 37636, and 98596
nodes, respectively.

Fig. 4.5.7: The solutions obtained from the finest and coarsest meshes depicted in Fig. 4.5.6 are
compared.
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Fig. 4.5.8: A comparison between the simulation of the full cylinder at z = 0 (shown in blue) to
the cross sectional simulation of an infinitely long cylinder using the FDM (depicted in
dashed orange) is shown. The parameters for comparison are as follows: a) V0 = 10 MeV4,
A2 = 1030, and λ = 1026.6. b) V0 = 10 MeV4, A2 = 1032, and λ = 1027.6. c) V0 = 10
MeV4, A2 = 1034, and λ = 1028.6. d) V0 = 10 MeV4, A2 = 1036, and λ = 1029.6.

Fig. 4.5.9: A comparison of the simulation of the full cylinder at z = 0 (shown in blue) to the cross
sectional simulation of an infinitely long cylinder using the FDM (depicted in dashed orange)
is shown. Cases a) and b) show δφ(r, z). The parameters for comparison are as follows:
a) V0 = 1010

18
MeV4, A2 = 1015, and λ = 1027.3. d) V0 = 1010

18
MeV4, A2 = 1020, and

λ = 1029.7. c) V0 = 10 MeV4, A2 = 1035, and λ = 10−7.4. d) V0 = 10 MeV4, A2 = 1039,
and λ = 10−7.2.
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Fig. 4.5.10: The figure depicts a simulation of the symmetron field for the parameters µ = 1 meV,
M = 10−1 GeV, and λS = 10−2.

Code tests for the symmetron field
In contrast to the approach taken for the dilaton field, constraints for the symmetron field

were exclusively derived from the short-range approximation (Eq. 5.2.223). Section 5.5.2, delves
into why this approach suffices. Consequently, achieving high precision in simulations is not as
imperative as it is for the dilaton field.
Code tests are therefore confined to a fixed parameter value of µ = 1 meV, which represents

the smallest value for which constraints were derived (corresponding to the largest symmetron
ranges for which constraints were derived). For larger values of µ (resulting in shorter symmetron
ranges), the approximation becomes increasingly accurate, obviating the need for simulations
altogether. Similar to the dilaton field, it is demonstrated that the cylindrical cross section FDM
simulation matches the full simulation at z = 0. Additionally, owing to the rapid attainment of
its vacuum expectation value (VEV) within the chamber (refer to Fig. 4.5.10), there is negligible
variation in the r direction at r = 0. Consequently, at r = 0, one can approximate:
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�
= 0. (4.5.148)

This differential equation coincides with the one for the two mirror solution. Consequently,
the two mirror solution with a plate distance of 9.4 cm (corresponding to the cylinder’s length)
should align with cylinder simulation at r = 0. Both tests were conduced, as depicted in Fig.
4.5.11, and excellent agreement between the FDM and the FEM is observed.
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Fig. 4.5.11: This is a comparison between the simulation of the full cylinder at z = 0 (blue) and the
cross sectional simulation of an infinitely long (Fig. a) and b)), or the two-mirror simula-
tion (Fig. c) and d)) using the FDM (dashed orange). The parameters for comparison are
as follows: a) µ = 1 meV, M = 10−1 GeV, and λS = 10−2. b) µ = 1 meV, M = 104.5

GeV, and λS = 10−25. c) µ = 1 meV, M = 10−1 GeV, and λS = 10−2. d) µ = 1 meV,
M = 104.5 GeV, and λS = 10−25.

Initial guess and non-uniqueness of symmetron field solutions
Developing an appropriate initial guess for symmetron field simulations presents a challenge

not encountered with the dilaton field, because the static equations of motion typically lack a
unique solution. Examining the differential equation

∂2

∂r2
φ(r, z) +

1

r

∂

∂r
φ(r, z) +

∂2

∂z2
φ(r, z)−

� ρ

M2
− µ2

�
φ(r, z)− λφ3(r, z) = 0, (4.5.149)

reveals that when the symmetron is in its symmetric phase within the cylinder shell, the potential
minimum is φM = 0. In such cases, the trivial solution φ(r, z) = 0 satisfies the boundary
conditions. However, as depicted in Fig. 4.5.10, non-trivial solutions complying with the same
boundary conditions also exist. Moreover, it’s evident that if φ is a solution of Eq. (4.5.149), then
−φ is also a solution. In their study, Ref. [61] demonstrated that in the two mirror geometry,
there can generally exist multiple static solutions with an increasing number of local extrema
(nodes), all adhering to the boundary conditions.
In the subsequent discussion, three non-trivial solutions for identical symmetron parameters

are deliniated, elucidating the method employed for their computation.
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First solution:
The most straightforward solution entails the determination of a solution manifesting only one
node. The qualitative behavior of this solution approximates the linearization of the differential
equation around its potential minimum:



1
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r
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+
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�
. (4.5.150)

Here, φρ(x⃗) is defined as the positive potential minimum of φ assuming a density ρ(x⃗):

Veff,φ

�
φρ(x⃗), ρ(x⃗)

�
= 0. (4.5.151)

Therefore, to compute the actual symmetron solution with one node, one can initially solve
Eq. (4.5.150) and utilize the solution as an initial guess for Newton’s method. This approach
typically converges to the desired solution, as illustrated in Fig. 4.5.12.

Fig. 4.5.12: The figure shows a symmetron simulation for the parameters µ = 6.1×10−5 eV, λS = 10−2

and M = 103 GeV. The top solution denotes the intitial guess that was used for Netwon’s
method, the bottom solution is the converged symmetron solution.

Second solution:
Securing a solution with two nodes typically involves some trial and error, as a reliable converging
seed is not readily found. In the exemplification provided in Fig. 4.5.13, a step function was
employed that is close to the positive VEV for negative z values (φ = 0.7 φV ), and close to the
negative VEV for positive z values (φ = −0.7 φV ), while maintaining 0 within the shell.
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Fig. 4.5.13: The figure shows a symmetron simulation for the parameters µ = 6.1×10−5 eV, λS = 10−2

and M = 103 GeV. The top solution denotes the intitial guess that was used for Netwon’s
method, the bottom solution is the converged symmetron solution.

Third solution:
A third solution was identified via the following procedure: Initially, a multiple node solution was
sought for an infinitely long cylinder by solving
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∂

∂r
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� ρ

M2
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�
φ(r)− λφ3(r) = 0, (4.5.152)

utilizing a similar one-dimensional step function as employed for the second solution. Through
trial and error, it was found that extending this equation to non-physical negative r and imposing
the boundary conditions φ(r) = φM for large and small r facilitated the convergence to a non-
trivial solution. The solution for this step, alongside the initial guess, is depicted in Fig. 4.5.14.

Fig. 4.5.14: The figure shows a symmetron simulation for the cross section of a cylinder for the pa-
rameters µ = 6.1× 10−5 eV, λS = 10−2 and M = 103 GeV.
a) denotes the initial guess that was used for Netwon’s method, and b) the converged
symmetron solution.
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Subsequently, the multiple node solution φ(r) for the cross section was utilized to formulate
the following initial guess for the entire cylinder:

Seed(r, z) :=

�
φ(r)

�
L− 2|z|�, (r < d) ∧ (|z| < L

2
)

0, else.
(4.5.153)

This initial guess ultimately converged to a third non-trivial symmetron solution, as evidenced
in Fig. 4.5.15.

Fig. 4.5.15: The figure shows a symmetron simulation for the parameters µ = 6.1×10−5 eV, λS = 10−2

and M = 103 GeV. The top solution denotes the intitial guess that was used for Netwon’s
method, the bottom solution is the converged symmetron solution.

It’s noteworthy that a well-founded initial guess alone does not ensure convergence to a multiple
node solution. The same guess may converge or diverge depending on the FEMmesh. The quest to
find these solutions entailed an arduous and unsystematic procedure. It took me approximately
1.5 working days to uncover all of the displayed solutions. Without prior knowledge of these
solutions, identifying a suitable initial guess that leads to convergence proves challenging, and
each simulation typically spans several minutes, rendering the process of experimenting with
numerous seeds time-consuming.
A natural inquiry arises regarding the existence of further solutions. While it is plausible that

additional solutions exist, the analytical one-dimensional two mirror analysis [61] that prompted
the aforementioned search has indicated that higher node solutions only materialize for larger
values of µ, wherein the field exhibits greater curvature. Given that the final solution fails to
approach its VEV at ±0.61 meV, one can speculate that all multiple node solutions with cylinder
symmetry have been exhausted for the given parameters. Since the symmetron does not have
to follow the symmetries of the chamber, it is possible that solutions without cylinder symmetry
exist, which would require to solve the full three dimensional equation of motion. Nonetheless,
as the non-uniqueness of symmetron solutions does not constitute the primary focus of this PhD
thesis, this was not explored in detail.
The physical interpretation of the discovered solutions will be elaborated upon in Section 5.5.2.

4.5.5. Remaining limitations

While the nonlinear FEM has shown efficacy in neutron interferometry, its utility in deriving
parameter constraints for the cannex, qBounce, and LLR experiments is constrained by two
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primary factors:
Firstly, the analytical short-range approximation utilized in neutron interferometry, derived in

Section 5.2.2, confines cylinder simulations to parameters that correspond to moderate curvature.
However, when attempting to simulate fields with extreme curvatures, the necessity for increas-
ingly finer mesh resolutions becomes prohibitive. Mathematica’s FEM encounters difficulties with
such extreme mesh constructions, often resulting in error messages and an inability to produce
solutions.
Secondly, a notable limitation of Mathematica’s FEM is its precision, capped at only 16 digits.

Although a workaround to address precision issues concerning the dilaton field has been developed,
similar challenges persist for the symmetron field, especially with extreme parameters requiring
higher precision. In contrast, the FDM code that was developed for the other experiments operates
with arbitrary precision, alleviating concerns related to precision.
In essence, neutron interferometry stands as the sole experiment that circumvents the necessity

to simulate fields with extreme curvature or parameters due to the short-range approximation
that is further discussed in Section 5.2.2.
It’s important to note that these limitations stem from the implementation of Mathematica,

rather than from the FEM itself. It has been demonstrated that the FDM implementation of the
one and two mirror geometry is a special case of the FEM (see Appendix B.5). My FDM (or
FEM) code reliably handles extreme meshes and parameters without encountering limitations.
However, Mathematica’s FEM struggles where my FEM succeeds, highlighting an implementation
issue on Mathematica’s part. Similarly, I believe that while the FEM is generally more suitable
for arbitrary geometries, an implementation tailored to the challenges of screened scalar fields is
necessary.
The focus will now shift to the remaining task of solving the stationary Schrödinger equation

in the presence of a scalar field.

4.6. Numerical method to solve the one dimensional Schrödinger equation

This Subsection elaborates on the approach employed to solving the stationary Schrödinger equa-
tion. This need arises when calculating the energy shifts induced by the scalar field in qBounce.
As detailed in Section 5.3.3, the aim is to find solutions to:

− 1

2mn

d2ψn(z)

dz2
+
�
mngz +QXUX(z)

�
ψn(z) = Enψn(z). (4.6.154)

Here, UX(z) := mn

�
AX

�
φ(z)

�−1
�
represents the scalar field induced potential experienced by

a test particle due to the neutron mirror. The factor QX accounts for the screening of the neutron,
mn is the neutron mass, g denotes the Newtonian gravitational acceleration, and X ∈ {D, S,C}
stands for the dilaton, symmetron, and chameleon, respectively. These equations are derived and
elaborated upon in Section 5.3.
To solve this equation, boundary conditions for ψ must be specified. The same boundary

conditions as those used in prior qBounce analyses involving the symmetron and chameleon
field [63, 64, 76] are employed, which consistently assumed:

ψ(0) = 0,

ψ(z) → 0, as z → ∞. (4.6.155)

67



The approximations are justified by the experimental observations that Ultra-cold neutrons are
confined within the gravitational potential of the Earth and are reflected by the neutron mirror.
It’s worth noting that previous derivations of qBounce constraints of the symmetron and

chameleon models have exclusively relied on perturbation theory up to the first order [63,64,76]. A
subsequent analysis has validated the accuracy of perturbation theory for the chameleon field [79],
however, there isn’t a comparable investigation for the symmetron field.
Contrary to this, my investigations in this work have revealed that deriving constraints from

perturbation theory is inaccurate for both the dilaton and symmetron fields, while confirming its
accuracy for the chameleon field. This examination is detailed in Appendix B.6.
For this reason, the aim is to solve Eq. (4.6.154) numerically, enabling a comprehensive non-

perturbative treatment. Two analytical approaches are briefly reviewed in Sections 4.6.1-4.6.2,
which are only applicable to specific parameters. These methods will serve as benchmarks for the
more general numerical treatment in Section 4.6.3.

4.6.1. Energy shifts from perturbation theory

The application of perturbation theory serves as an initial estimate for scalar field-induced energy
shifts. The first-order contribution of scalar fields to the resonance frequency shift, as described
by perturbation theory, is expressed as (see e.g. [115]):

δEpq = QX

� ∞

−∞
dzUX(z)

�|ψ(0)
p (z)|2 − |ψ(0)

q (z)|2�. (4.6.156)

Here, ψ
(0)
p represents the p’th eigenstate in the unperturbed scenario, with its formulas outlined

in Eq. (5.3.228). Heuristically, one expects perturbation theory to be applicable if 6

pert(n) :=

$$$$$En − E
(0)
n

E
(0)
n

$$$$$ ≪ 1, (4.6.157)

for the n value under consideration. This allows to compare a numerical solution of the Schrödinger
equation to perturbation theory as long as pert(n)≪ 1, for n ∈ {1, 3, 4}, which corresponds to
the experimentally investigated energy states.

4.6.2. Energy shifts from effective g

If the scalar field exhibits long-range behavior, it can be Taylor expanded across the extent of the
wave function:

UX(z) = UX(0) +
dUX

dz
(0)z +

d2UX

dz2
(0)

z2

2
+O(z3). (4.6.158)

6This is not a precise condition for the validity of perturbation theory. A rigorous treatement is found in [115], for
instance. However, the focus of this thesis does not lie in an exhaustive exploration of perturbation theory; rather,
focuses on a numerical solution of the Schrödinger equation. I have observed that this simplified condition serves
as a reliable indicator for perturbation theory’s alignment with non-perturbative numerical methods, especially after
redefining scalar field potentials via the transformation UX(z) → UX(z)− UX(0). Such a redefinition, permissible
due to the inherent ambiguity in the definition of potentials by an additive constant, ensures that both the scalar
field and the mgz term equate to 0 at z = 0, facilitating meaningful comparison.
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To neglect nonlinear terms, the following condition is imposed:

$$$$$
d2UX

dz2
(0)

z2

2
dUX

dz
(0)z

$$$$$ < 0.1. (4.6.159)

This implies

⇒ |z| < 0.2

$$$$$
dUX

dz
(0)

d2UX

dz2
(0)

$$$$$ =: zmax. (4.6.160)

If zmax effectively exceeds the wave function’s extent, the Schrödinger equation in the presence
of the scalar field can be simplified to:

− 1

2mn

d2ψn(z)

dz2
+mngeffzψn(z) = Enψn(z), (4.6.161)

where geff is defined as:

geff := g +
QX

mn

dUX

dz
(0). (4.6.162)

Consequently, the Schrödinger equation assumes a form identical to the unperturbed Newtonian
case, with the substitution g → geff. Exact solutions for wave functions and energies can be
computed straightforwardly by replacing g → geff in the analytical Newtonian solutions provided
in Eq. (5.3.228). The extent of the first and fourth energy states is consistently smaller than
∼ 10 z̃0, where z̃0 corresponds to z0 in Eq. (5.3.228). Hence, after the substitution g → geff,
ensuring

zmax > 10 z̃0 (4.6.163)

guarantees the accuracy of this approach.
Within this approach, only the potential and its first two derivatives need to be known at z = 0.

These expressions are functions of the field and its first two derivatives at z = 0, and they can
be computed analytically. The derivation of these values naturally emerges from the formulation
of the pressure formula in the cannex experiment, as detailed in Section 5.4.2 and can hence be
found in this Section.
This method allows for testing numerical algorithms in the non-perturbative regime.

4.6.3. Numerical solution of the Schrödinger equation

To precisely compute energy shifts across a range of parameters, employing a numerical approach
becomes essential. The task involves solving the stationary Schrödinger equation to determine
the eigenvalues and eigenstates of the Hamiltonian. In order to devise a numerical algorithm, the
Hamiltonian is initially discretized into an N×N matrix, which is then numerically diagonalized.

69



I have adopted a methodology outlined in Ref. [116], which utilizes the same non-uniform FDM
I employed for scalar field simulations. This approach permits arbitrary discretization of the
simulation interval. Here’s an elucidation of the method:
Initially, the simulation interval [0, cutoff] is discretized into z0 = 0, ..., zN+1 = cutoff. The

cutoff must be sufficiently large to ensure the wave functions naturally decay sufficiently to 0
before reaching the cutoff. Thus, the discretized stationary Schrödinger equation takes the form:

− 1

2mn

� 2(ψi+1 − ψi)

hi(hi + hi−1)
− 2(ψi − ψi−1)

hi−1(hi + hi−1)

�
+ Viψi = Eψi, (4.6.164)

where Vi = QXUX(zi) +mngzi. This yields the discrete Hamiltonian matrix, A, given by:

Aij =

��������
− 1

2mn

2
hi(hi+hi−1)

, if j = i+ 1

− 1
2mn

2
hi−1(hi+hi−1)

, if j = i− 1,
1

2mn

�
2

hi(hi+hi−1)
+ 2

hi−1(hi+hi−1)

�
+ Vi , if j = i,

0 , else .

(4.6.165)

Boundary conditions (φ0 = φN+1 = 0) need to be handled similarly to the scalar field equations
of motion described in Appendix B.4.1. The matrix A is tridiagonal, but only symmetric on a
uniform grid due to:

Ai+1,i = − 1

2mn

2

hi(hi+1 + hi)
,

Ai,i+1 = − 1

2mn

2

hi(hi + hi−1)
. (4.6.166)

To restore symmetry, A is recast as:

Aij =

��������
− 1

2m
1
hi

1
L2
i

, if j = i+ 1

− 1
2m

1
hi−1

1
L2
i

, if j = i− 1,
1

2mn

�
2

hi(hi+hi−1)
+ 2

hi−1(hi+hi−1)

�
+ Vi , if j = i,

0 , else .

(4.6.167)

where

L2
i :=

hi + hi−1

2
. (4.6.168)

M is defined as the diagonal matrix with L2
i on the diagonal, and B as:

B = MA, or

Bij = L2
iAij. (4.6.169)

Since A is tridiagonal and M is diagonal, B is also tridiagonal and symmetric. This transfor-
mation allows to convert the discrete eigenvalue problem:
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Aψ = Eψ, (4.6.170)

where ψ = (ψ1, ..., ψN), into a symmetric problem. M is expressed as M = LL, where L is a
diagonal matrix with Li on the diagonal. For an eigenvector of A with eigenvalue E, one obtains:

Bψ = MAψ = EMψ = ELLψ. (4.6.171)

Multiplying with L−1 from the left and defining Φ = Lψ yields:

L−1BL−1Lψ = L−1BL−1Φ = EΦ, (4.6.172)

or

HΦ = EΦ, (4.6.173)

where H = L−1BL−1. Since B is symmetric and L is diagonal, H is also symmetric (HT =
L−1,TBTL−1,T = L−1BL−1 = H).

Hence, H is diagonalized to obtain the eigenvectors for A as:

ψ = L−1Φ, (4.6.174)

which represents the discrete energy state approximation of the Hamiltonian.
Mathematica’s eigensystem function was used to compute all eigenvectors and eigenvalues and

sort them by magnitude. This allows for an easy extraction of the desired eigenenergy and
eigenstate.
A cutoff was applied, typically at 100 µm, to ensure accurate computation of unperturbed wave
functions. However, a smaller cutoff is used if the scalar field compresses the wave function into
a smaller region. Due to significant differences in the shapes of wave functions and scalar fields,
using the same mesh for solving the stationary Schrödinger equation as for scalar field simulations
is generally unsuitable. Therefore, the following strategy was adopted to discretize the stationary
Schrödinger equation:
In scenarios where the scalar field induces weak perturbations, a single uniform grid capable

of resolving Newtonian energy states suffices. Conversely, in cases of extreme perturbations, a
single uniform grid that captures the initial slope of the scalar field is adequate. For intermediate
scenarios, two uniform grids can be merged: one with a very small step-size and small extent to
capture the initial slope of the scalar field, and another with a larger step-size and a larger extent
to capture the Newtonian potential. This approach consistently yields excellent results.

4.6.4. Code tests for solving the stationary Schrödinger equation

To ensure algorithmic precision, a series of tests were conducted.
Initially, the ability to recover the analytically known eigenenergies and eigenstates of the

Newtonian problem was verified. Defining ΔEpk := Ep − Ek, comparisons were focused on the
experimentally measured quantities ΔE13 and ΔE14. The comparison between the exact solutions
and the code output is presented in Fig. 4.6.1.
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Fig. 4.6.1: The figure shows a comparison between the numerical algorithm and the exact solution,
for the first four energy states in the absence of any scalar field. For the energy differences
one finds: |�ΔE13,analytical −ΔE13,numerical

�
/ΔE13,analytical| = 1.5× 10−4, |�ΔE14,analytical −

ΔE14,numerical

�
/ΔE14,analytical| = 1.8 × 10−4, for a uniform mesh with cut-off 100 µm and

500 points.

Fig. 4.6.2: The diagram depicts the results obtained from a numerical algorithm directly derived from
a simulation of the potential of a dilaton field, utilizing specific parameters: V0 = 10
MeV4, A2 = 1040, and λ = 1023. Under these parameter settings, the dilaton field yields
an effective g value of 2.7 × 10−10 MeV (= 1.23 × 1020m

s
), as long as z < zmax =

1.5× 10−10m. This threshold surpasses the range of the perturbed wave function, thereby
rendering the effective g approach valid. A comparison is made with the exact solution
corresponding to geff = 2.7 × 10−10 MeV. In terms of energy differences, the following
comparisons are observed: |�ΔE13,analytical − ΔE13,numerical

�
/ΔE13,analytical| = 5.1 × 10−3,

|�ΔE14,analytical −ΔE14,numerical

�
/ΔE14,analytical| = 6.2× 10−3, for a uniform mesh with cut-

off 50 pm and 500 points.
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Subsequently, the performance of the code in accurately reproducing solutions of the Schrödinger
equation in the presence of a dilaton field was evaluated. This assessment was carried out within
parameter ranges where the effective g approach, grounded on known exact solutions, remains
valid. Despite being confined to a narrow segment of the parameter space characterized by in-
tense perturbations, the numerical algorithm exhibited remarkable accuracy, even under extreme
conditions, as illustrated in Fig. 4.6.2.
In the concluding examination, the algorithm’s performance within domains characterized by

slight perturbations induced by the dilaton field was analyzed, with perturbations of pert(n)≲ 0.1
for n = 1, ..., 4 as outlined in Eq. (4.6.157). In this context, a close correspondence with results
derived from perturbation theory was anticipated. Below, a tabulated comparison across diverse
parameters is presented, revealing a notable concurrence between the numerical algorithm and
perturbation theory within the perturbative regime.

log10[λ] log10[A2] log10[
V0

MeV4 ] |ΔE13,analytical−ΔE13,numerical

ΔE13,analytical
| |ΔE14,analytical−ΔE14,numerical

ΔE14,analytical
| pert(4)

31.3 41 1 1.8× 10−4 1.5× 10−4 0.02
30.5 36 1 1.4× 10−4 1.7× 10−4 0.04
30.5 20 1018 1.6× 10−4 1.3× 10−4 0.08
31 24 1018 1.8× 10−4 1.5× 10−4 0.03

Table 4: This is a comparison of the energies obtained from perturbation theory (subscript analytical)
and the numerical algorithm.

These tests collectively affirm the reliability and adaptability of the numerical algorithm across
a diverse array of scenarios and parameter ranges.
The next Section introduces the experiments investigated in this thesis and elucidates the

theoretical framework for computing the impacts of scalar fields within the said experiments.
The results are then combined with the numerical methods to enable the derivation of parameter
constraints for the models under consideration.
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5. Theoretical methods and derivation of parameter
constraints

This Section aims to introduces the experiments considered in this thesis and to establish the
theoretical framework necessary for deriving parameter constraints for screened scalar fields within
these experiments.
Subsections 5.1-5.4 present the investigated experiments along with the necessary theoretical

background to derive parameter constraints. Subsection 5.5 explains the process by which theo-
retical and numerical findings, coupled with the actual measurement results of the experiments,
are used to derive of parameter constraints for the dilaton, symmetron, and chameleon models.
The combined constraints of all models and experiments are provided and discussed in Section

6.

5.1. Lunar Laser Ranging

5.1.1. Summary of the experiment

Lunar Laser Ranging (LLR) stands as a precise method for determining the Earth-Moon distance.
This technique involves directing a laser beam towards a retroreflector array positioned on the
lunar surface, a legacy of the Apollo missions. The retroreflectors comprise an arrangement
of small mirrors that reflect the laser beam back towards Earth [86, 87]. By measuring the
time it takes for the laser pulse to travel to the Moon and return, the distance between the
Earth and the Moon can be determined with a high level of accuracy, reaching down to a few
centimeters. This data has been instrumental in achieving a highly precise measurement of the
Moon’s orbit, enabling rigorous testing of GR and imposing stringent constraints on alternative
theories. Presently, the collected data aligns with the predictions of GR. This alignment suggests
that if scalar fields with a non-minimal coupling to matter exist, they must exhibit a screening
mechanism to remain consistent with the observed results from LLR.
LLR has previously been employed to constrain the parameter space of chameleon and sym-

metron fields [117–119], yet the dilaton field has not been similarly investigated. Here, the focus
shifts to the particular aspects of LLR that will be employed to derive experimental constraints.
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Fig. 5.1.1: Sketch of LLR

5.1.2. Violations of the strong equivalence principle - The Nordtvedt effect

In Newtonian physics, the inertial mass mI of an object is defined by the Newtonian force law:

mI a⃗ = F⃗ , (5.1.175)

while the gravitational mass mG is defined by how the object responds to a gravitational force:

F⃗1 = − 1

8πm2
pl

mG,1mG,2

r2
e⃗r, (5.1.176)

where

e⃗r =
r⃗1 − r⃗2$$r⃗1 − r⃗2

$$ . (5.1.177)

If mI = mG, the acceleration of a point particle is independent of its mass:

a⃗ = − 1

8πm2
pl

mG,2

r2
e⃗r, (5.1.178)

where mG,2 is the point mass causing the force. As known from special relativity, any form of
energy also contributes to the mass of the object via m = E. The following discussion for the
different types of equivalent principles follows references [41,120]. The equivalent principle comes
in two forms:
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The weak equivalence principle (WEP) The WEP states that mI = mG, taking all
energy contributions from the strong and electro-weak force into account. The WEP can be
tested in laboratory settings, and measurements of the differential accelerations result in the
constraint [121]

Δa

a
= 2

a1 − a2
a1 + a2

= 2

�
mG

mI

�
1
− �

mG

mI

�
2�

mG

mI

�
1
+
�
mG

mI

�
2

= (0.3± 1.8)× 10−13, (5.1.179)

where a uniform gravitational field has been assumed such that a⃗i =
�
mG

mI

�
i
g⃗ = ai

g⃗
|g⃗| .

The strong equivalence principle (SEP) states that mI = mG even taking into account
objects with considerably gravitational self-energy. The ratio of the gravitational to inertial
masses can be parameterized by the Nordtvedt parameter η:�mG

mI

�
= 1 + η

U

m
, (5.1.180)

where U is the gravitational self-energy of the body, and m the mass corresponding to its mass-
energy, given by:

U =
1

8πm2
pl

1

2

�
ρ(x⃗)ρ(x⃗′)
|x⃗− x⃗′| d3xd3x′, (5.1.181)

m =

�
ρ(x⃗)d3x,

with the bodies energy density ρ. In GR η = 0 [41, 87, 120]. To test the SEP, objects with a
considerable gravitational self-energy are required. LLR tests the SEP by measuring the differ-
ential acceleration of the Earth and Moon towards the sun. For the Earth (♁) and Moon (�) one
finds [87]:

�U
m

�
♁ = −4.64× 10−10,�U

m

�
� = −1.90× 10−11, (5.1.182)

which is a large enough fraction of the total energy content to test the SEP.

The Nordtvedt effect
In Ref. [122, 123] it was shown that a difference between the Earth’s and Moon’s acceleration
towards the sun:

δa⃗ := δa⃗� − δa⃗♁, (5.1.183)

would change the shape of the orbit of the Moon around the Earth, where δa⃗ = 0 in GR. Here,
δa⃗� and δa⃗♁ refer to a scalar field contribution, assuming the SEP holds. The change of the
Earth-Moon distance δr(t) is approximately given by [93,123]:

δr(t) ≃ δa
1 + 2 ω0

Ωf

ω2
0 − Ω2

f

cos(Ωf t), (5.1.184)
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with the Moon’s orbital frequency ω0, Ωf := ω0 − ωS, and the sun’s frequency ωS. Since LLR
measures r(t), it can be be used to constrain deviations from the SEP [41]. In Section 5.1.5,
δa is computed in the presence of a dilaton field, which can be used to constrain the dilaton’s
parameters.

5.1.3. Violations of the inverse square law

LLR serves as a valuable tool to investigate potential deviations from the gravitational inverse
square law. Any Earth-induced force on the Moon deviating from an inverse square law would
manifest itself as a precession of the lunar perigee—the point closest to Earth in the Moon’s orbit.
Isaac Newton calculated this precession in Propositions XLIII-XLV of [124] as is further detailed
in [93, 125]:

δΩf

Ωf

≃ −8πm2
plR

2
EM

M ♁
(δf(REM) +

REM

2

dδf

dr
(REM)). (5.1.185)

Here, the angle ϕ(t) of the Moon on the unperturbed orbit is given by ϕ(t) = Ωf t, assuming
a circular orbit of the Moon. δf(REM) is the additional acceleration at the maximum Earth-
Moon separation REM, caused by the dilaton field of the Earth with mass M♁, and the induced
precession of the orbit is characterized by Δϕ(t) = δΩf t. A brief calculation reveals that

δΩf

Ωf

= 0, (5.1.186)

if

δf(r) ∝ 1

r2
, (5.1.187)

indicating that LLR can effectively probe forces deviating from an inverse square law, such as
those caused by a dilaton field. Both tests of LLR necessitate the computation of the dilaton
force on a spherical object, a task undertaken in the subsequent Subsection.

5.1.4. The dilaton force between spheres and the thin-shell effect

A consequence of the screening mechanism is the thin-shell effect [53]. Fig. 5.1.2 illustrates an
example of the thin-shell effect. A comparison of the outer field of a solid sphere with a hollow
sphere reveals that the outer fields of both objects are practically identical7:
Notably, not all of the mass (or volume) of the solid sphere contributes to its outer field for

a screened object; only a thin shell below the surface of the object does. This is because the
screening mechanism quickly pushes the dilaton field towards its potential minimum inside the
object, and the field remains constant once this minimum is reached.
Hence, the force between two spheres generally cannot be accurately approximated by the force

between two point particles, for which the thin-shell effect is never present. The next step involves
approximately computing the dilaton field of a sphere to quantify the extent to which a sphere’s
volume contributes to its outer field.

7To be more precise, this statement depends on the parameters of the model. A parameter-dependent quantification
of the actual thin-shell effect is necessary, given by the screening charge Q.
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0.5 1.0 1.5 2.0

1.4×1081.5×1081.6×1081.7×1081.8×1081.9×1082.0×108

Fig. 5.1.2: This is a comparison of the dilaton field of a hollow sphere with a thin shell indicated by
the vertical lines, alongside a solid sphere. The experimental parameters are taken from
the Earth, the dilaton parameters are V0 = 10 MeV4, λ = 1015 and A2 = 1010. The fields
were computed by numerically solving d2φ

dr2
+ 2

r
dφ
dr

= Veff,φ(φ; ρ) , as described in Section 4.

The dilaton field of a sphere and the screening charge
The following derivation follows Refs. [1, 93]. The dilaton field of a sphere is the solution to:

d2φ

dr2
+

2

r

dφ

dr
= Veff,φ(φ; ρ) ,

ρ(r) : =

�
ρV r > R
ρM r ≤ R.

(5.1.188)

The boundary conditions are:

φ(r) → φV , for r → ∞ (5.1.189)

and

and
dφ

dr
|r=0 = 0. (5.1.190)

Inside the sphere, the field equations pushes φ towards its potential minimum φM , while outside
the sphere, the field approaches its asymptotic value φV . Hence, the effective potential is expanded
around these values. To second order, this results in the following approximation:

d2φ

dr2
+

2

r

dφ

dr
≃ Veff,φφ(φM ; ρM) (φ− φM) = µ2

M (φ− φM) , r < R ,

d2φ

dr2
+

2

r

dφ

dr
≃ Veff,φφ(φV ; ρV ) (φ− φV ) = µ2

V (φ− φV ) , r ≥ R . (5.1.191)

Under the transformations:

φ− φM =
ϕ

r
, for r < R,

φ− φV =
ϕ

r
, for r ≥ R (5.1.192)
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the equations of motion for the field ϕ become:

d2ϕ

dr2
= µ2

Mϕ, for r < R

d2ϕ

dr2
= µ2

V ϕ, for r ≥ R. (5.1.193)

Using the boundary conditions, one obtains:

φ(r) = φM + C1
sinh(µMr)

r
, for r < R

φ(r) = φV + C0
e−µV (r−R)

r
, for r ≥ R, (5.1.194)

where C0 and C1 have to be determined from

φ(R−) = φ(R+)

dφ

dr
(R−) =

dφ

dr
(R+). (5.1.195)

After some algebraic manipulations one obtains:

C1 =
φV − φM

cosh(µMR)

1 + µVR

µM + µV tanh (µMR)
,

C0 = −R
1− tanh(µMR)

µMR

1 + µV

µM
tanh (µMR)

(φV − φM). (5.1.196)

Unlike a Newtonian gravitational potential, δφ(r) = φ(r)− φρ(r) does not only fall off with 1
r

but additionally by either:

sinh(µMr) = sinh

�
r

RI(ρM)

�
, for r ≤ R, (5.1.197)

or

e−µV r = e
− r

RI (ρV ) , for r > R, (5.1.198)

where the interaction range of the field is defined by:

RI(ρ) :=
1

µρ

. (5.1.199)

Thus, for a strongly screened sphere, one has RI(ρM) ≪ R (the field reaches its minimum
closely behind the surface of the sphere) while for an unscreened sphere, one finds RI(ρ) ≫ R.
Thus C0 is expanded in powers of µMR. For an unscreened sphere (the lowest order of µMR):
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Cu
0 = −µ2

MR3

3
(φV − φM). (5.1.200)

More generally, defining:

Q :=
C0

Cu
0

=
3

µ2
MR3

1− 1
µMR

tanh(µMR)

1 + µV

µM
tanh(µMR)

, (5.1.201)

as the screening charge, Q quantifies the amount of screening of a sphere, with

Q →
�
0, for screened bodies with µMR → ∞
1, for unscreened bodies with µMR → 0.

(5.1.202)

An example of the screening charge is shown in Fig. 5.1.3
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Fig. 5.1.3: The screening charge Q is plotted for A2 = 1015, λ = 1015 and V0 = 10 MeV4, with
ρV = 7.21× 10−29 MeV4 and ρM = 2.37× 10−5 MeV4.

Finally, the solution is given by:

φ(r) =

�
φM + φV −φM

cosh(µMR)
1+µV R

µS+µV tanh (µMR)
sinh(µM r)

r
, for r ≤ R

φV −Q
µ2
MR3

3
(φV − φM) e

−µV (r−R)

r
, for r ≥ R.

(5.1.203)

For large r the acceleration of a point particle in the outer field of the sphere is derived from
A(φ) = 1 + A2

2m2
pl
φ2 and (2.2.32):

a⃗φ = − A2

m2
pl

φ∇⃗φ

≃ −Q
A2

m2
pl

µV µ
2
MR3

3
φV (φV − φM)

e−µV (r−R)

r

r⃗

r
, (5.1.204)

once again justifying the definition of the screening charge. Notably, µM and φM do not contain
any information about the size of the sphere, only its density, and the radius R in e−µV (r−R)

r
r⃗
r
does
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not distinguish between a solid sphere or a thin-shell (it only guarantees that at r = R the field
starts being suppressed by the vacuum range of the field). Hence, the entire information about the
volume of the sphere is contained in the factor R3, which is however multiplied by Q. Hence, Q
quantifies how much of the volume (or mass) of the sphere actually contributes to the acceleration
on a point particle far away from the sphere.

5.1.5. Hypothetical dilaton induced effects in Lunar Laser Ranging

Taking the thin-shell effect into account, the force on a sphere with screening charge Q̃ and mass
M in an external dilaton field φ is approximated by

f⃗φ ≃ −β(φ)Q̃
M

mpl

∇⃗φ (5.1.205)

where

β(φ) = A2
φ

mpl

. (5.1.206)

The dilaton-induced violation of the equivalence principle is hence given by

δem ≃ − A2

2m2
pl |⃗aG|

�
Q♁ −Q��dφ2(r)

dr

$$$$
r=1AU

, (5.1.207)

where φ(r) is the dilaton field of the Sun and a⃗G the Newtonian acceleration towards the Sun.
Likewise, the centripetal acceleration experienced by the Moon due to the dilaton field of the
Earth is approximated as

δf(r) ≃ A2

2m2
pl

Q�dφ2(r)

dr
. (5.1.208)
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5.2. Neutron interferometry

5.2.1. Summary of the experiment

split-crystal interferometer
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Fig. 5.2.1: Illustrative diagrams of neutron interferometric configurations (not drawn to scale) are
presented for probing different prominent dark energy models. The setups involve vacuum
and air chambers designed in a cylinder format. (a) Depicts a monolithic interferometer
similar to the one utilized in [66], while (b) illustrates a suggested split-crystal interferometer
arrangement with an extended interaction region and increased beam separation, facilitating
the use of larger cylinder diameters. Figure published in [3] and provided by Stephan Sponar.

In a neutron interferometer, illustrated in Fig. 5.2.1, a neutron beam undergoes interference
[126, 127]. A beam splitter, utilizing Bragg diffraction on a silicon crystal, divides the neutron
wave function into two paths, enabling self-interference for each neutron.
The precise alignment of beam splitters, requiring nanoradian precision, often necessitates

constructing interferometers from a single crystal, as depicted in Fig. 5.2.1 (a). Introducing
chambers into either path, represented as cylinders in Fig. 5.2.1, can introduce a phase difference
affecting the count rate of H and O detectors (Fig. 5.2.1, O measures the forward direction and
H the refracted direction). Specifically, inserting identical chambers into both paths, one vacuum
and one filled with air, would induce a relative phase difference due to the reduced suppression
of screened scalar fields in vacuum regions.
In Refs. [79,128], it has been argued that neutrons are particularly sensitive to screened scalar

fields. This sensitivity arises from their lack of experiencing a thin-shell effect due to the relatively
large extent of the neutron wave function, making neutron interferometry an effective tool to probe
scalar fields.
However, as neutrons are quantum objects and scalar fields are treated classically, a fully

consistent treatment is currently unavailable, necessitating further theoretical work. One semi-
classical approach suggested in Refs. [129, 130] assumes that the neutron can be treated as a
particle with density ρ(x⃗) := mn|ψ(x⃗)|2, with the neutron’s wave function denoted as ψ(x⃗). For
a wave function extending over several millimeters, the neutron’s density would be so low that
screening effects are expected to be negligible.
However, an alternative semi-classical approach treats the neutron as an object with a well-

defined size of about 1 fm, consistent with QCD. Both approaches have been pursued in [63,64],
and it is unclear which is more accurate. In the latter approach, the neutron might still be
screened due to its high density, despite its small extent. Nevertheless, an independent motivation
for neutron interferometry lies in the fact that neutrons lack electrical charge and have minimal
polarizability, rendering them highly insensitive to experimental background disturbances and
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making them valuable tools to search for new physics [131,132]. This makes neutron experiments
an interesting way to probe screened scalar fields. Following these theoretical motivations, a
neutron interferometer was realized in Ref. [66] and used to constrain parts of the parameter
space of the chameleon field.
Remarkably, a recent proof-of-principle demonstration in Ref. [133] showcases a split-crystal

interferometer built from two crystals (Fig. 5.2.1 (b)). This innovation allows for the insertion of
longer chambers into either path, enhancing the interaction time of neutrons with hypothetical
scalar fields and consequently increasing the interferometer’s sensitivity.
In both configurations, the incident neutron beam, characterized by a mean wavelength of

λn = 2.72 Å, with a relative wavelength spread of δλn/λn ∼ 0.043 is divided and traverses either
an air or vacuum chamber. Following recombination at the final interferometer plate, detectors
with an efficiency exceeding 99 percent measure the intensity in the outgoing beams.
The original goal of this research project was for the experimental physicists to replicate the

existing experiment in [66] with an improved experimental setup and to extend the theoretical and
numerical analysis to a larger part of the chameleon parameter space, as well as the symmetron
and dilaton field. Unfortunately, due to time constraints, this analysis relies on the already pub-
lished experiment [66] and only extends the constraints derived in this reference to other models.
Additionally, the analysis here also considers the screening of the neutron, which was neglected
in [66]. Moreover, the investigation involves exploring the potential increase in sensitivity achiev-
able through a split-crystal interferometer and computing prospective parameter constraints on
an experiment currently in assembly. In the next Subsection, the necessary theoretical framework
is derived to compute the phase shift induced by a scalar field in a neutron interferometer.

5.2.2. Scalar field induced phase shifts

The cylinder mantle of the chambers would suppress a scalar field, as shown in Fig. 5.2.2 .

Fig. 5.2.2: Simulated dilaton field for V0 = 10 MeV4, A2 = 1037 and λ = 10−9 with ρV = 7.08×10−17

MeV4. Figure published in [3].

This scalar field can be computed by solving its static equation of motion:



1

r

∂

∂r

�
r
∂

∂r

�
+

∂2

∂z2

�
φ(r, z) = Veff,φ(φ; ρ) , (5.2.209)

as elaborated on in Section 4.5
The presence of a scalar field would induce a phase shift. The formula for this phase shift is

derived below. The following derivation is an adaption of [134] (see also [93]) to screened scalar
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fields. The starting point is the free Schrödinger equation governing neutrons:

H0φ0 = − 1

2mn

Δφ0

= E0φ0 , (5.2.210)

where φ0 ∝ eik⃗·x⃗. Introducing the Ansatz φ = φ0χ and E = E0 the full Schrödinger equation is
given by: �

H0 + U
�
φ = Eφ . (5.2.211)

A straightforward calculation shows:

φ0Δχ+ 2iφ0k⃗0 · ∇⃗χ = 2mnUφ0χ . (5.2.212)

In the semi-classical limit (|∇⃗χ| ≪ k0|χ|), the first term is negligible. Defining k0 := |⃗k0| = 2π/λ

and a length parameter s along the direction of k⃗0, where k⃗0 · ∇⃗ = k0
d
ds

and

χ = e
−imn

k0

�
dsU

, (5.2.213)

results in the phase shift:

δϕ = −mn

k0

�
dsU . (5.2.214)

For neutrons propagating through a cylindrical cavity of length L along the symmetry z-axis at
constant radius rc the phase shift is given by:

δϕ = −mn

k0

� L/2

−L/2

dz U(rc, z) . (5.2.215)

Next, the conditions for the validity of the semi-classical limit are derived. From

∇⃗χ = −i
mn

k0
U(rc, z)χ e⃗z , (5.2.216)

and considering |χ| = 1, it follows:

|∇⃗χ| = mn

k0
|U(rc, z)| . (5.2.217)

Thus, the condition for the validity of the semiclassical limit is:

|∇⃗χ|
k0

=
mn

k2
0

|U(rc, z)| ≪ 1 . (5.2.218)

Finally, the derivation assumes U = 0 outside both chambers, i.e. in air. Nevertheless, scalar
fields in air generally exhibit a non-zero value. However, for parameter values allowing con-
straints, the field ranges in air are small compared to the dimensions of the experimental setup.
Consequently, the field can be approximated as nearly constant outside the chambers, maintain-
ing its air expectation value. To adhere to the assumption that U = 0 outside the chambers, the
potentials for the dilaton (D), symmetron (S), and chameleon (C) are established as follows 8:

UX(x⃗) = mn

�
AX

�
φ(x⃗)

�− AX

�
φAir

��
, (5.2.219)

84



where X ∈ {D, S,C}.
The provided potentials hold true under the condition that the neutron can be treated as

a test particle within a scalar field background, rather than serving as the source of the field.
This assumption becomes applicable when the screening of the neutron can be disregarded. To
incorporate the screening effect, the above potentials are multiplied with a screening charge,

UX(x⃗) → QXUX(x⃗) , (5.2.220)

hence, the criteria determining the applicability of the semiclassical limit can be expressed as
follows:

QX
m2

n

k2
0

�
AX

�
φ(x⃗)

�− AX

�
φAir

�� ≪ 1. (5.2.221)

Since screening charges are only applicable for classical spheres, the neutron is treated as such.
For the dilaton, the screening charge derived in Section 5.1.4 was utilized, while for the symmetron
and chameleon fields, the definitions provided in [3, 61, 62] were employed.
For extremely short scalar field ranges, accurately resolving the slopes of scalar fields poses

numerical challenges. However, in such scenarios, the following approximation is employed:

� L/2

−L/2

dz
�
AX

�
φ(0, z)

�− AX

�
φAir

�� ≃ L
�
AX

�
φV

�− AX

�
φAir

��
(5.2.222)

which allows defining

δsim := −QX
m2

n

k0

� L/2

−L/2

dz
�
AX

�
φ(0, z)

�− AX

�
φAir

��
,

δapprox := −QX
m2

n

k0
L
�
AX

�
φV

�− AX

�
φAir

��
. (5.2.223)

Here, δsim represents the actual phase shift computed from a simulation for a neutron propagat-
ing through the chamber’s center (r = 0), while δapprox denotes an approximation valid solely for
extremely short-ranged fields. For the dilaton field, small interaction ranges correspond to large
values of A2. Fig. 5.2.3 demonstrates that the error in the approximation diminishes continuously
for larger A2 values, and the field increasingly adopts its VEV over a broader region inside the
cylinder.

8The potentials are obtained from the force on a test particle f⃗φ(x⃗) ≃ −mn∇⃗AX

�
φ(x⃗)

�
= −∇⃗UX(x⃗), which implies

UX(x⃗) = mnAX

�
φ(x⃗)

�
+ constant.
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Fig. 5.2.3: The calculations assumed λ = 10−9 and V0 = 10 MeV4. a) illustrates the relative error of
the approximation with respect to A2 and b) the normalized field profiles along the z axis
for r = 0. Here, the value 1 represents φ(0, z) = φV , while 0 corresponds to φ(0, z) = φM .
The steep slopes are observed at the chamber walls. Figure published in [3].

The next Subsection provides a brief explanation on neutron screening.

5.2.3. The fermi and micron screening approximation

In the existing analysis of the symmetron field within the qBounce experiment, which is also a
neutron experiment, two screening approximations were compared: fermi and micron screening
[63,64]. The fermi screening approximation treats the neutron as a classical sphere with a radius
of 0.5 fm, inspired by QCD, while the micron screening approximation considers the neutron as
a sphere with a radius of 5.9 µm. The latter is motivated by the well-defined analytical length
scale z0 = 5.9 µm in qBounce, determining the wave function’s vertical extent (see Section 5.3).
This approximation stems from interpreting the neutron’s density as ρ(x⃗) = mn|ψ(x⃗)|2.
In this thesis, the focus is exclusively on the fermi screening approximation for both experi-

ments. The rationale for the neutron interferometry experiment is provided below:
Firstly, in neutron interferometry, the wave function is non-spherical, extending a few nm in one

direction and a few mm in another [3]. Applying the same approach as in qBounce (extracting a
sphere’s radius from the wave function’s z-direction extent) raises the question of which direction
to choose. Assuming a radius of 1 mm results in a density that is 18 orders of magnitude lower
than assuming 1 nm. Given the intrinsic sensitivity of scalar fields to matter densities, selecting
one direction fails to provide a valid order of magnitude estimate for neutron screening. It is more
appropriate to acknowledge the inability to estimate the neutron’s coupling to the scalar field,
assuming it couples to the square modulus of the wave function, given that only the screening
charge for spheres is known.
Secondly, fermi screening limits are generally more reliable. Assuming a neutron radius of 0.5

fm results in a much higher density than the density given by the wave function. Therefore, the
fermi screening approximation consistently implies a much stronger neutron screening compared
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to the micron screening approximation9 and is hence more conservative.

5.3. qBOUNCE

5.3.1. Summary of the experiment

In qBounce [74–76], ultracold neutrons, exhibiting total reflection from most materials, traverse
the gravitational field of the Earth. The analysis presented in this thesis is grounded in the Rabi
setup [135], as illustrated in Fig. 5.3.1.
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Fig. 5.3.1: Sketch of the qBounce experiment. Figure published in [2] and provided by René Sedmik.

The neutron wave packet encounters three distinct regions:
In the initial region, serving as an effective state selector spanning approximately 15 cm, a

polished mirror at the base and a rough scatterer positioned 20 µm above ensure that only
neutrons in the lowest states can traverse. Undesired higher energy states are scattered out of
the system.
The subsequent region introduces a vibrating mirror with a tunable frequency ω, capable of

driving the neutron towards a higher energy state. This region extends for a length of 20 cm.
The final region mirrors the characteristics of the first region. If the energy ω linked to the

mirror’s frequency closely aligns with the energy difference ΔEn = En − E1, where En refers to
the n’th eigenenergy of the neutron, required to transition the neutron to a specific higher energy
state, the system enters a coherent superposition of the ground state and the excited state. In
instances where the neutron is no longer in one of the lowest ∼ 2 states upon entering the last
region, a decrease in transmission is observed.

9The neutron is assumed to be smaller in the fermi screening approximation. One might wonder if the weaker thin
shell effect due to the smaller size can compensate for the much higher density. I have thoroughly examined this
and confirmed that for all models under consideration, the effect of the higher density is much larger than the effect
of the reduced size. Parameter constraints of the fermi screening approximation are thus always more conservative
than micron screening constraints.
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The qBounce experiment draws inspiration from Rabi spectroscopy, originally developed to
measure nuclear magnetic moments [136]. In Rabi’s original work, a homogeneous magnetic
field leads to Zeeman splitting10 [137] of a nucleus with nuclear spin-1

2
. This splitting defines

a frequency ω = ΔE associated with the two different energy levels of the system. A second,
much weaker, orthogonal magnetic field tuned to this frequency periodically induces transitions
between the two states, with a frequency known as the Rabi frequency.
In analogy to Zeeman splitting, qBounce measures different energy levels of ultracold neutrons

based on the Earth’s gravitational field. The first few eigenenergies are given by

E1 = 1.40672 peV,

E2 = 2.45951 peV,

E3 = 3.32144 peV,

E4 = 4.08321 peV. (5.3.224)

Since the gravitational energy levels in qBounce are not equidistant, any two energy states can
be treated as an effective two-level system, analogous to a spin-1

2
system. The unique transition

frequency ωpq between states p and q is given by

ωpq = Ep − Eq. (5.3.225)

Similar to the weak magnetic field in Rabi spectroscopy, the oscillating mirror acts as a repul-
sive potential for the neutrons of ∼ 100 neV [138]. Since qBounce is also a neutron experiment,
motivations to search for screened scalar fields with qBounce as mentioned for neutron interfer-
ometry, also apply. Additionally, qBounce can test Newtonian gravity at the micrometer scale,
making it suitable for probing gravity-like interactions at this scale. Consequently, qBounce has
already been employed to constrain hypothetical interactions such as the chameleon field, the
symmetron field, and axion-like particles [63, 64, 76, 139,140].

5.3.2. Newtonian theory

In the absence of other forces, the energy eigenstates of neutrons can be obtained by solving
the Schrödinger equation within the Earth’s gravitational potential. Upon separation into free
transversal and bound vertical states, this equation yields [93]

ψn(x⃗, t) =
ei(p⃗⊥·x⃗⊥−E⊥t)

2πv⊥
ψn(z)e

−iEnt, (5.3.226)

and

− 1

2mn

d2ψn(z)

dz2
+mngzψn(z) = Enψn(z), (5.3.227)

where mn is the neutron’s mass, and g the gravitational acceleration. Analytical solutions are
provided as follows [78]:

10The Zeeman effect occurs when spectral lines split into multiple components in the presence of a stationary magnetic
field.
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ψn(z) =
Ai( z−zn

z0
)

√
z0Ai

′(− zn
z0
)
,

En =
3

�
mng2

2
Ai(0, n). (5.3.228)

In this context, ψn symbolizes the energy state labeled as the n-th state with energy En. The
parameter z0 = 1/ 3

�
2m2g = 5.9 µm defines the extent of the wave functions. Additionally,

zn = En/mg, and Ai represents the Airy functions (refer to [141]), and Ai(0, n) denotes the n-th
root of the Airy function. Fig. 5.3.2 shows the first few energy states.

0 10 20 30 40 50 60

1.41

2.46

3.32

4.08

Fig. 5.3.2: The figure depicts the four lowest energy states of neutrons within the gravitational potential
of the Earth.

5.3.3. Scalar field induced energy shifts

In addition to Earth’s gravitational potential, neutron mirrors would suppress a scalar field,
illustrated in Fig. 5.3.3.
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Fig. 5.3.3: The dilaton field above a mirror placed at z < 0 is plotted for the parameters V0 = 10
MeV4, A2 = 1043, λ = 1032. The mirror density was assumed to be ρM = 1.082 × 10−5

MeV4, the vacuum density is ρV = 10−15 MeV4
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Treating the mirrors as infinitely extended in the x and y directions, the scalar field is deter-
mined by solving:

d2

dz2
φ(z) = Veff,φ(φ; ρ) , (5.3.229)

for a mirror placed at z < 0 with density ρM and a vacuum region of density ρV above. The
boundary conditions are:

φ(z) → φM , for z → −∞,

φ(z) → φV , for z → +∞. (5.3.230)

Numerical solutions are obtained as described in Section 4. The scalar field induces an additional
potential on a test particle given by11

UX(z) := mn

�
AX

�
φ(z)

�− 1
�
, (5.3.231)

with X ∈ {D, S,C}, for the dilaton, symmetron and chameleon field respectively. Proceeding
analogously to neutron interferometry, the screening of the neutron is taken into account by
replacing the above definitions with

UX(x⃗) → QXUX(x⃗) , (5.3.232)

where QX is the neutron’s screening charge. The same definitions of the screening charge as for
neutron interferometry are employed.
In this thesis, only the fermi screening approximation is employed, as elaborated in Section

5.2.3. It is noteworthy that, although the shape of the wave function differs between qBounce and
neutron interferometry, the precise dimensions in the x and y directions remain uncertain in the
context of qBounce. The wave function shape in qBounce significantly deviates from a spherical
form. Consequently, the approach presented in [64], which treats the wave function as a sphere in
the micron screening approximation, is not adopted. Instead, the micron screening approximation
is completely dropped, opting for the more conservative fermi screening approximation.
Hence, in the presence of a scalar field, the eigenfunctions and eigenenergies of the neutron

above the mirror satisfy:

− 1

2mn

d2ψn(z)

dz2
+
�
mngz +QXUX(z)

�
ψn(z) = Enψn(z). (5.3.233)

Since qBounce has an energy resolution of approximately ΔE = 2 × 10−15 eV it can probe
or constrain hypothetical scalar fields. The solution to the stationary Schrödinger equation is
described in Section 4.

11The derivation is the same as for the neutron interferometry experiment, but the additional constant was chosen
differently, which has no physical effect. In neutron interferometry this constant was kept to keep track of the
assumption UX = 0 inside air, since this assumption influences the validity conditions for the semi-classical limit.
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5.4. CANNEX

5.4.1. Summary of experiment

The Casimir And Non-Newtonian force EXperiment (cannex) is currently undergoing recon-
struction at the Conrad Observatory in Austria, as detailed in a comprehensive report in Ref.
[81]. This experiment has been intricately designed to achieve unparalleled precision in measuring
both the Casimir force and potential fifth forces arising from gravity-like interactions, in addition
to gravity.
The experimental setup involves two closely situated plane parallel plates with a tunable dis-

tance of 3-30 µm. A visual representation is provided in Fig. 5.4.1. As outlined in Ref. [81]
(Table 1), cannex exhibits a remarkable pressure sensitivity of approximately 0.1 pN

cm2 , surpass-
ing a sphere-sphere configuration by four orders of magnitude and a sphere-plane configuration
by three orders of magnitude. This heightened sensitivity positions cannex ideally for probing
Casimir forces and fifth forces at small distances.
From its inception, one of the goals of cannex was to investigate the chameleon field [80, 82].

The presence of this field (or any other screened scalar field) would result in an additional pressure
on the plates. The lower plate is kept fixed, while the upper plate is movable. The experiment is
capable of eliciting the distinctive dependence on the matter density of screened scalar fields by
adjusting the Xe gas pressure in the chamber between 5.3×10−12 kg/m3 and 2.6 kg/m3.
The first projective constraints of cannex on the chameleon field have already been provided

in [82]. Projective constraints from cannex on the parameters of the Symmetron field and axion-
like particles can be found in [81]. The next Subsection provides a derivation of the pressure
induced by a screened scalar field on the upper plate of cannex.

helical springs

optical fiber

glass body

Fabry Pérot cavities

silicon 100 µm

gold 1 µm

vacuum 3–30 µm

gold 1 µm

SiO2 6 mm

mater. thickness

optical fiber

upper

lower
plates

Fig. 5.4.1: A cutaway illustration of the cannex setup is provided in the schematic view. Forces within
the system are identified through Fabry-Pérot interferometers, which detect the elongation
of the mass-spring system formed by helical springs and an upper plate. The inset on the
left specifies the material and thickness of different layers. Figure published in [2] and
provided by René Sedmik.
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5.4.2. Derivation of scalar field induced pressure

In the one-dimensional configuration, the setup can be effectively approximated as a half-space
with a density of ρM = 2514kg/m3 for z ≤ −d, a vacuum region with density ρV for −d < z < d,
an upper plate with a density of ρM for d < z < d+D, and a vacuum region with density ρV for
z > d+D12.
The upper plate has a thickness of D = 100 µm and is movable, such that 1.5 µm < d < 15 µm.

If screened scalar fields indeed exist, the mirrors would suppress a scalar field that can be computed
by solving

d2φ

dz2
= Veff,φ(φ; ρ) , (5.4.234)

with boundary conditions

φ(z) → φM , for z → −∞,

φ(z) → φV , for z → +∞. (5.4.235)

The formula for the induced scalar field pressure is derived next.

Original formula
Starting with the force on a point particle (2.2.32), the force on the upper plate is:

f⃗φ = −ρM

� ∞

−∞
dx

� ∞

−∞
dy

� d+D

d

dz
dA(φ)

dz
e⃗z. (5.4.236)

Consequently, the pressure in the z direction is given by:

P = ρM

�
A
�
φ(d)

�
− A

�
φ(d+D)

��
. (5.4.237)

This formula has been used to compute prospective cannex symmetron limits in Ref. [81].
The initial intention was to utilize a numerical solution of Eq. (5.4.234) to extract the field values
φ(d) and φ(d + D) and compute the pressure. However, this approach proved to be unsuitable
for general numerical evaluation.

12While the actual setup consists of distinct layers with varying densities, the choice of a uniform density for the entire
setup simplifies both theoretical and numerical treatments significantly. As demonstrated in Appendix B.2, this
approximation proves highly accurate, introducing only negligible errors in calculations. The specific value of ρM is
derived in Appendix D.
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Fig. 5.4.2: a) Only the upper plate surrounded by vacuum is simulated and compared to the full
cannex set up with both plates. b) Zooming into the lower surface of the upper mirror
demonstrates that both geometries lead to an indistinguishable field close to the mirror
surface. The parameters are given by V0 =10 MeV4, λ = 1031, A2 = 1045, and ρV =
2.28× 10−20 MeV4.

To elucidate the issues encountered, consider Fig. 5.4.2, where a numerical solution of Eq.
(5.4.234) is depicted for the specified plate geometries. A comparison is made between the full
cannex setup with both plates and a simulation involving only the upper plate surrounded
by vacuum. Both solutions are indistinguishable above the upper plate, but deviations become
visible below the surface of the lower plate (see Fig. 5.4.2 a). Strikingly, very close to the lower
surface of the upper mirror (Fig. 5.4.2 b), both solutions are indistinguishable.
This observation implies that, as the solution approaches the surfaces of the upper mirror, it

is predominantly influenced by the upper mirror alone, rendering the impact of the lower mirror
negligible. Consequently, the values directly at the surfaces of the upper mirror

�
used as input

to (5.4.237)
�
can be expressed as:

φ(d) = φone plate(d) + δ1,

φ(d+D) = φone plate(d+D) + δ2 = φone plate(d) + δ2,

where φone plate(d) represents the solution in the presence of only the upper mirror, and due to
symmetry, φone plate(d) = φone plate(d+D). Substituting these expressions into Eq. (5.4.237), one
obtains:

P = ρM
�
A(φone plate(d) + δ1)− A(φone plate(d) + δ2)

�
. (5.4.238)

The crucial insight here is that the values at the mirror surfaces are predominantly influenced
by the upper mirror alone, leading to the conditions:

δ1 ≪ φone plate(d),

δ2 ≪ φone plate(d). (5.4.239)
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Unfortunately, the challenge arises in accurately determining the values of δ1 and δ2, which
contain all information about the pressure induced by the lower plate. Numerically computing
the scalar field results in correct leading digits, but the higher digits are dominated by rounding
errors. This poses a serious computational challenge, as extracting accurate values for δ1 and δ2
requires an impractical level of precision in solving φ, as δ1 and δ2 only influence the higher digits
of φ due to (5.4.239).
In the symmetron analysis conducted in Ref. [81], Mathematica [108] was employed, allowing

for arbitrary precision calculations. René Sedmik, the author of the calculations, utilized hundreds
of digits in these computations to ensure sufficent precision13.
This approach was feasible because an analytically exact solution for Eq. (5.4.234) exists for

symmetron fields [61, 62]. However, for the dilaton field, no such analytical solution is available,
rendering this approach unfeasible. I addressed this challenge by deriving an analytically equiv-
alent and more computationally tractable formula for the pressure, as detailed in the following.

Refined formula
Numerical calculations where based on the formula:

P =
ρM

ρM − ρV

�
Veff(φV , ρV )− Veff(φ0, ρV )

�
. (5.4.240)

Here, φ0 = φ(0) represents the scalar field value at the midpoint between the plates, and the
effective potential is defined as:

Veff(φ; ρ) = V (φ) + ρ
�
A(φ)− 1

�
. (5.4.241)

Due to the screening mechanism, it is assumed that the field reaches its minimum value, denoted
as φM , within the upper mirror with a thickness ofD. This assumption holds true across all models
and parameter values for which constraints were imposed in this thesis. Consequently, the value
of φ(d) closely aligns with the surface value of a two mirror configuration, where both plates
extend infinitely with a vacuum region between them.
Likewise, the value of φ(d + D) can be obtained from the surface value of a configuration in

which one plate extends infinitely, accompanied by an infinitely extended vacuum region above
it. Multiplying Eq. (5.4.234) by φ′ and integrating with respect to z results in:

1

2

�
dφ

dz

�2

− 1

2

�
dφ

dz

�2 $$$$
z=z0

= Veff(φ; ρ)− Veff(φ; ρ)
$$
z=z0

. (5.4.242)

Considering the one mirror case with boundary conditions φ(z) → φM for z → −∞ and φ(z) → φV

for z → ∞, in the limit z → ∞ one obtains:

−1

2

�
dφ

dz

�2 $$$$
z=z0

= Veff(φV ; ρV )− Veff(φ; ρ)
$$
z=z0

. (5.4.243)

Subtracting Eq. (5.4.243) from Eq. (5.4.242) results in

1

2

�
dφ

dz

�2

= Veff(φ; ρV )− Veff(φV ; ρV ) . (5.4.244)

13While not documented in the paper, René Sedmik shared these details in personal conversations.
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Inside the mirror, the following relationship holds:

1

2

�
dφ

dz

�2

= Veff(φ; ρM)− Veff(φM ; ρM) . (5.4.245)

The continuity of the derivative at z = d+D implies

A
�
φ(d+D)

�− 1 =
1

ρM − ρV

�
Veff(φM ; ρM)− Veff(φV ; ρV )

�
. (5.4.246)

For the case of two infinitely extended mirrors one can use dφ/dz|z=0 = 0 due to the symmetry
of the setup and conclude

A(φ(d))− 1 =
1

ρM − ρV

�
Veff(φM ; ρM)− Veff(φ0; ρV )

�
. (5.4.247)

Substituting these equations into Eq. (5.4.237) proves Eq. (5.4.240). In Ref. [68] the formula

P ≃ Veff(φV , ρV )− Veff(φ0, ρV ) (5.4.248)

has been derived with a similar derivation, albeit assuming ρV ≪ ρM . For the actual vacuum
density in cannex

ρM
ρM − ρV

≃ 1 (5.4.249)

and hence the difference between both formulas is negligible. This formula excels in achieving
accurate numerical evaluations. Instead of computing φ(d) and φ(d + D), which minimally in-
corporate the influence of the lower mirror, the calculation now focuses on the value φ0, situated
between the upper and lower mirrors. As illustrated in Fig. 5.4.2, it becomes apparent that the
disparity in scalar fields between the upper mirror alone and both mirrors is substantial and visu-
ally discernible. This difference significantly contributes to the leading digits of φ and is therefore
much more straightforward to compute. Appendix B provides a formal analysis to demonstrate
the superiority of this formula.
Finally, it’s worth noting that this derivation can be extended to calculate the values φ(0),

dφ
dz
(0), and d2φ

dz2
(0) for the one mirror solution scenario applicable to qBounce, where a mirror

with density ρM is positioned at z < 0, and a vacuum region exists at z > 0. Taking the dilaton
field as an example, Equation (5.4.246) implies:

φ(0) =

�
2m2

pl

A2(ρM − ρV )

�
Veff(φM ; ρM)− Veff(φV ; ρV )

�
. (5.4.250)

Here, the positivity of the dilaton field has been utilized. Similarly, the values of dφ
dz
(0) and

d2φ
dz2

(0) can be directly derived from equations (5.4.244) and (5.4.234):

dφ

dz
(0) =

�
2
�
Veff(φ(0); ρV )− Veff(φV ; ρV )

�
,

d2φ

dz2
(0) = Veff,φ(φ(0), ρV ). (5.4.251)

These computed values enable the exact determination of energy shifts caused by a scalar field
in the parameter region where it acts as effective renormalization of g within the framework of
the qBounce experiment. Further elaboration on this topic can be found in Section 4.6.2.
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5.5. Derivation of parameter constraints

In this Section, the outcomes from prior Sections are used to establish constraints on the parame-
ters of the chameleon, symmetron, and dilaton models. The methodology involves comparing the
theoretical predictions of measured quantities for each model against empirical measurements.
Prior derivations of parameter constraints from neutron interferometry [66] and qBounce [63,64]
used a statistical technique known as χ2-analysis.
However, these analyses only considered experimental measurement sensitivities and errors,

but did not take theoretical uncertainties into account. Notably, two major sources of theoretical
uncertainties include:

1. The fermi screening approximation simplifies the neutron to a classical sphere with a radius
of 0.5 fm. However, as detailed in Appendix B.3, this approximation can result in significant
discrepancies in the predicted energy shifts in qBounce (or equivalently, the predicted
phase shift in neutron interferometry). These discrepancies may diverge by several orders of
magnitude from the actual values, leading to substantial errors in the computed constraints.

2. The screening charge employed to characterize neutron screening is heuristic and derived
from linearizing spherical equations of motion. However, the accuracy of this approximation
remains largely uncertain.

Since not all errors can be quantified, we deemed elaborate statistical analyses assuming neg-
ligible theoretical errors to be inappropriate and used simplified constraint criteria that will be
explained in more detail in the following Subsections.
It has to be stressed, however, that within these uncertainties, significant progress has been

made in enhancing theoretical predictions through numerical and analytical methods in this the-
sis. Two examples of this progress concerning the qBounce and cannex analysis are provided
in Sections 6.2.2-6.2.3, by comparing results obtained in this thesis to results that have been pub-
lished prior to this thesis. Nevertheless, the resulting constraints must be regarded as the current
best estimate given the available theoretical and numerical tools, underscoring the necessity for
further theoretical advancements.
It is imperative to emphasize that in the cannex experiment, the calculations are very accu-

rate. Since computing pressure involves classical calculations devoid of any heuristic screening
charge, one can typically compute the pressure accurately to the percent level, rendering a sta-
tistical analysis meaningful for this experiment. However, as the experiment is currently under
construction, measurement data remains unavailable at this point, and the analysis will hence
rely on the expected measurement sensitivity.
In order to validate the theoretical assumptions underlying constraint calculations, several

cut-off criteria have been implemented, thereby excluding parameters from the analysis that
contravened any of the following conditions:

1. φ
Mc

, φ2

2M2 ,
A2

2
φ2

m2
Pl

< 0.1, indicating that higher-order couplings between the matter density

and the scalar field can be neglected. The necessity of this condition has been discussed in
Section 3.

2. For qBounce and cannex, only parameters for which the interaction range of the field in
vacuum is at most 1 mm are considered, to justify the neglect of the influence of the vacuum
chamber. Additionally, parameters are excluded for cannex for which the scalar field does
not fully decay to its minimum φM inside the upper mirror, to ensure the applicability of
Eq. (5.4.240). This latter assumption also ensures that it is feasible to model the mirrors
as one dimensional.
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3. For neutron interferometry, only parameters for which the interaction range of the field does
not exceed 0.25 mm inside the cylinder shell are considered, ensuring that the boundary
condition φ = φM inside the cylinder shell is physically sensible.

Demanding these conditions leads to sharp cuts in the derived constraints. The following Sub-
section provides a brief summary of how constraints have been derived for each experiment.

5.5.1. Lunar Laser Ranging

In this Section the theoretical results from 5.1 and numerical results from Section 4 are applied
to derive parameter constraints of the dilaton model in the context of LLR. The LLR analyis is
restricted to the dilaton field, for a LLR analysis in the context of the symmetron or chameleon
field see [117–119].

Constraints from equivalence principle violations
The measured value for violations of the equivalence principle is [41]

δem ≃ aφ♁ − aφ�
aG

= (−3± 5)× 10−14 , (5.5.252)

where aφ♁, aφ� refer to the scalar field induced acceleration of the Earth and Moon towards
the sun, whereas aG is the regular Newtonian acceleration towards the sun. Parameters are
constrained for which the scalar field contribution leads to an at least two sigma deviation of the
measured value. Parameter constraints are hence placed for

δem ̸∈ (−1.3× 10−13, 7× 10−14) . (5.5.253)

The dilaton field of the Sun has been computed by solving the nonlinear differential Eq.
(5.1.188). The procedure to compute the constraint volume was analogous for all experiments and
screened scalar field models, and is hence only detailed and visualized for the two most complex
cases14, neutron interferometry and qBounce.
Notably, constraints in the small λ region employed the analytical field solution derived in Ap-

pendix C, since the dilaton field equations are effectively linear inside this parameter region and
the analytical solution - based on a linearization - hence exact. In the large λ region the spherical
differential equation was solved numerically. The cutoff for large r was always chosen to ensure
that the field naturally relaxes to φV within the cutoff. The FDM mesh was always checked for
its accuracy by ensuring that further refinement marginally influences (5.5.252).

Constraints from violations of the inverse square law
The constraint for violations of the inverse square law is taken from Ref. [142] and is given by:$$$$δΩf

Ωf

$$$$ ≃ 8πm2
plR

2
EM

M ♁

$$$δf(REM) +
REM

2

dδf

dr
(REM)

$$$ ≤ 1.6× 10−11, (5.5.254)

where REM denotes the maximum Earth-Moon separation. These constraints largely overlap with
those obtained from equivalence violations. For this test, I exclusively utilized the analytically
approximate solution but ensured that in parameter space regions where this LLR test constrains
parameters not already constrained by equivalence principle violations, the constraints align with
predictions from a full numerical simulation of the Earth’s field.

14Neutron interferometry requires a proper integration of the short-range approximation. qBounce does not only
require screened scalar field simulations, but also a numerical solution of the Schrödinger equation.
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Calculating
8πm2

plR
2
EM

M ♁

$$$δf(REM)+
REM

2
dδf
dr

(REM)
$$$ poses significant challenges for parameters where

the field starts to resemble an inverse square law near the Moon. In the case of an exact in-
verse square law, this quantity vanishes; for an approximate inverse square law, |δf(REM)| ≃
|REM

2
δf ′(REM)|. Consequently, the leading digits of both terms cancel out, and only higher digits

dominate this expression. Precise simulations are required to accurately capture this, often prov-
ing unfeasible. Given that such parameters yield no novel constraints, the less accurate analytical
approximate solution was employed in this case.

5.5.2. Neutron interferometry

In this Section the theoretical results from Section 5.2 and numerical results from Section 4 are
applied to derive parameter constraints of the dilaton and symmeron model in the context of
neutron interferometry. The analysis herein is based on the experimental setup described in
Ref. [66], which initially investigated chameleon-induced phase shifts, for a fixed value of Λ = 2.4
meV. This analysis is extended to encompass the symmetron and dilaton fields and to a larger
part of the chameleon parameter space.
If a scalar field does indeed exist, the neutron would undergo distinct phase shifts along each

of its paths. In the semi-classical approximation, this shift is given by Eq. (5.2.215), expressed
as:

δϕX;P (r) = −mn

k0

L/2�
−L/2

UX;P (r, z) dz . (5.5.255)

Here, X represents three possible scenarios {D, S,C}, k0 denotes the neutron’s wave number, r
signifies the radius, L stands for the length of the vacuum chamber, UX;P (r, z) := QXmn

�
AX(φ)−

AX(φAir)
�
represents the scalar field potential within the vacuum or air chamber at pressure P ,

and the integration over z extends along the classical flight path (CFP) within the respective
vacuum chamber. The experiment employed two measurement modes:

Constraint calculation profile mode
In this operational mode, the vacuum chamber pressure remained fixed at 10−4 mbar, while the

position of the beam was varied. Initially, both beams traversed through the respective central
region of the corresponding chamber, after which they were adjusted closer to the chamber walls,
reaching a displacement of approximately 1.5 cm from the center. This mode demonstrates
heightened sensitivity towards long-ranged fields, showcasing substantial variations in the field
across several centimeters, as illustrated in Fig. 5.2.3 (A2 = 1036, A2 = 1038). Conversely, very
short-ranged fields, as exemplified in Fig. 5.2.3 (A2 = 1042), tend to attain their VEV near the
chamber wall, while maintaining relative constancy within the chamber. Consequently, the profile
mode is deemed unsuitable for investigating such parameters.
Experimental constraints for scalar fields were derived by measuring the phase difference for

both beam positions. The computation of the phase shift utilized the expression:

ΔϕX;P = δϕX;P (0)− δϕX;P (0.015 m) , (5.5.256)

for both the vacuum and air chamber. The experiment measured

α := ΔϕX;Vacuum −ΔϕX;Air < 0 . (5.5.257)
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This quantity is negative due to the increased suppression of the potential near the chamber
walls, coupled with |ΔϕX;Air| < |ΔϕX;Vacuum|. The experimentally determined value is denoted
as α = (0.56 ± 2.50)◦. To establish a 95% CL, the error is assumed to conform to a normal
distribution and α < 0 is taken into account. Accordingly, the normal distribution is modeled
with a mean of 0.56◦ and a standard deviation of 2.5◦. Given the anticipated negativity of α, the
objective is to identify x such that the probability of measuring α within the interval (−∞, x) is
only 5%, allowing to constrain α values in this interval with a 95% CL. Therefore, x has to be
determined by solving:

1

2.5◦
√
2π

� x

−∞
e−

1
2

�
s−0.56◦

2.5◦
�2

ds = 0.05 , (5.5.258)

which yields x ≃ −3.55◦ allowing to constrain parameters for which

α < −3.55◦ . (5.5.259)

Constraint calculation pressure mode
In this mode, both beams traversed through the center of each chamber, while the pressure within
the vacuum chamber was adjusted. Initially, the phase shift resulting from the highest pressure of
P0 = 10−2 mbar served as a reference, after which the pressure was decreased to P1 = 2.4× 10−4

mbar.
This mode exhibits heightened sensitivity towards very short-ranged fields, as depicted in

Fig. 5.2.3 (A2 = 1042), where the field essentially maintains its VEV throughout the chamber.
Given that the VEV relies on the vacuum density in the considered models, comparing phase
shifts at different gas pressures introduces a relative phase difference for short-ranged fields.
Thus, the measured quantity is expressed as:

ξ := δϕX,P1(0)− δϕX,P0(0) < 0, (5.5.260)

with a vacuum pressure of P1 = 2 × 10−4 mbar and a reference pressure P0 = 10−2 mbar. The
experimentally determined result is β = (0.37 ± 3.53)◦. Accounting for ξ < 0 and assuming a
normal distribution for the error, y is computed such that:

1

3.53◦
√
2π

� y

−∞
e−

1
2

�
s−0.37◦
3.53◦

�2

ds = 0.05, (5.5.261)

yielding y ≃ −5.44◦. Consequently, parameters are constraint if

ξ < −5.44◦. (5.5.262)

Projective constraints for the split interferometer were derived using the same equations and
experimental parameters, except that the second beam position was assumed to be 4 cm displaced
from the center.

Dilaton constraints calculation

The existing experiment deviated from a perfect cylindrical shape, instead featuring a rectangu-
lar design with rounded edges. Due to the substantial computational expense associated with
conducting 3D simulations, the actual geometry is approximated using cylinders. These cylin-
ders were configured to match the length of the real chambers, which measured 0.094 m in the
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experiment and 0.5 m for the split interferometer. They were either designed to fit within the
actual chamber (with a radius of r = 2 cm for both chambers) or to encompass the chamber
entirely (with a radius of r =

√
8 cm for the vacuum chamber and r =

√
3.252 + 22 cm for the air

chamber). Extensive verification confirmed that the disparities between the two geometries were
negligible, allowing me to proceed with computing the final constraints while assuming r = 2 cm.
The constraints were derived as follows: Starting with a fixed V0 and commencing from the

smallest permissible value of A2 (dictated by the long-range cutoff to ensure field decay to φM

within the vacuum chamber’s shell), a systematic search for the contour of the constrained region
along the λ-axis was conducted. This search involved employing a step width of 0.1 in a logarith-
mic plot. Subsequently, A2 was incremented by a factor of 10, and the iterative process continued
until reaching a regime where the pressure mode exerted dominance, rendering the short-range
approximation in Eq. (5.2.223) indistinguishable from the simulations. For larger values of A2,
only the short-range approximation was used to compute the remainder of the constrained region.
Finally, the points located at the edge of the constrained region were connected. The FEM mesh
was always refined to the point where further refinement has negligible influence on the computed
phase shift.
An illustrative example of this methodology is presented in Fig. 5.5.1

Fig. 5.5.1: The shaded blue region represents constraints derived from the short-range approximation
given by Eq. (5.2.223). The bullet points denote positions along the real contour of the
constrained region, obtained from simulations with V0 = 10 MeV4. Figure published in [3].

Symmetron constraints calculation and domain wall solutions

The behavior of the symmetron field is dictated by its effective potential, which takes the form:

Veff(φ) =
1

2

� ρ

M2
− µ2

�
φ2 +

λS

4
φ4. (5.5.263)

This potential permits spontaneous symmetry breaking. In high-density regions where ρ
M2 −

µ2 > 0, the potential has a single real minimum at φ = 0, indicating a symmetric phase and
resulting in the absence of fifth forces. Conversely, in low-density regions where ρ

M2 − µ2 <
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0, the field undergoes symmetry breaking, acquiring a non-zero VEV and giving rise to fifth
forces. Additionally, owing to the symmetry φ → −φ of the potential, the differential equation
Eq. (4.0.77) may have multiple solutions, as discussed in [61, 62] for the case of the two mirror
geometry. This property is further elucidated below.
Constraint calculations employed solutions exhibiting a single node, typically corresponding

to the lowest energy solution (as illustrated in the top of Fig. 5.5.2). Numerical simulations
revealed that for sufficiently small µ values, no solution exists15. This observation aligns with
findings from [61,62], which established that between two infinitely extended mirrors, no solution
can exist for small µ. Consequently, given the dimensions of the vacuum and air chambers,
symmetron ranges of approximately 1 mm or larger preclude the existence of field solutions
satisfying the boundary conditions.
This inherent limitation of the symmetron field confines the parameter space accessible to

short-ranged fields. Notably, it was determined that employing the short-range approximation
(5.2.223) proves sufficiently accurate across the parameter space where new constraints can be
established.

Fig. 5.5.2: The field profiles of the three solutions listed in Table 5 are displayed. It’s noteworthy that
for the specified parameters, φV = 0.61 meV is maintained. Figure published in [3].

Domain walls and multiple node solutions
In the symmetry-broken phase, the symmetron field may settle into distinct VEVs, potentially
leading to the formation of domains where the field adopts either VEV. The boundaries separating
these domains are termed domain walls (as discussed in [143]). Although domain walls may be
unstable on cosmological time scales [144], they could produce observable effects on ultra-cold
neutrons by causing their deflection towards the domain wall [145]. Moreover, Ref. [146] has
proposed to deliberately induce such domain walls by manipulating gas within a vacuum chamber.
However, these domain walls may also be unstable over experimental time scales. Ensuring

their stability within a cavity can be achieved by introducing appropriate matter distributions
at the experiment’s center, providing anchoring points for the walls [145, 146]. The decay time
and required matter distribution for stability depend on the specific model parameters, necessi-
tating thorough investigations through time-dependent simulations across various setups, which
extend beyond the current thesis scope but remain the focus of future studies. Nonetheless, the

15The trivial solution φ(r, z) = 0 is not considered a solution, since it does not induce any phase shift.
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present investigation highlights the existence of diverse static solutions in principle. It’s crucial
to acknowledge that detecting these solutions may demand specific stabilization procedures.
A search for static domain walls within a realistic cylindrical vacuum chamber involved testing

numerous plausible initial guesses using Newton’s method to solve Eq. (4.0.77). The spectrum
of solutions obtained for a fixed parameter combination is depicted in Fig. 5.5.2.
Among these solutions, the top one exhibits a single domain with a sole local extremum at

the chamber’s center. In contrast, the middle solution features two domains, with the field
assuming its positive VEV for z < 0 and its negative VEV for z > 0. Notably, this latter solution
demonstrates anti-symmetry φ(r,−z) = −φ(r, z), illustrating that in the symmetry-broken phase,
the field need not adhere to the chamber’s symmetries. Instead of the anticipated three-domain
solution along the z-axis, a different configuration, depicted at the bottom, is found. While this
solution displays multiple local extrema along each axis, none closely approaches any VEV. This
implies that static solutions can exist without the field assuming its VEV within the vacuum
chamber. Despite employing numerous seeds for Newton’s method, no additional solutions were
identified. However, it’s suspected that solutions without cylinder symmetry also exist, given that
symmetron field solutions need not conform to their environment’s symmetry. Discovering such
solutions would necessitate solving the full 3D differential equation, exceeding the scope of this
thesis. It’s further speculated that solutions containing more domains may emerge only for larger
parameter values of µ, allowing for increased field curvature. This behavior, including the absence
of solutions for excessively small µ values, has been observed in [61,62] for a one-dimensional setup
with two parallel mirrors. The energies of these field solutions and their interaction with matter
density can be evaluated using the Hamilton density,

H =
1

2

�
∇⃗φ

�2

+ Veff(φ)

=
1

2

��
∂φ

∂r

�2

+

�
∂φ

∂z

�2
	

+ Veff(φ) , (5.5.264)

where cylinder symmetry is assumed. The energy E inside the cylinder is hence given by:

E =

�
cylinder

d3xH(x⃗) = 2π

� d

0

dr r

� L/2

−L/2

dzH(r, z) , (5.5.265)

where d and L represent the cylinder’s radius and length, respectively. The obtained energies are
listed in Table 5.

Mode E [eV]

0 -2.097

1 -1.710

2 -0.06

Table 5: The table shows energies E corresponding to the three obtained solutions, with the mode
number enumerating the solutions with increasing energy. Numerical values used include
ρM = 1.16 × 10−5 MeV4, ρV = 7.08 × 10−17 MeV4, λS = 10−2, M = 103 GeV, and
µ = 6.1× 10−5 eV.
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Constraint calculation chameleon field

Currently, neutron interferometry lacks the capability to impose new limits for n = 1 and varying
Λ, as well as for the scenario 1 ≤ n ≤ 10 and Λ = 2.4 meV. This conclusion was drawn not from
precise constraint computations, but rather from the following rationale:
A static chameleon field obeys the inequality (see Appendix A):

φM ≤ φ(x) ≤ φV . (5.5.266)

The quantity ΔmaxϕC is defined as

ΔmaxϕC := QC
m2

nL

k0Mc

max{(|φV − φAir|) , (|φM − φAir|)} , (5.5.267)

and can be used to bound the maximal expected phase shift:

$$α$$ ≤ 4ΔmaxϕC ,

|ξ| ≤ 2ΔmaxϕC . (5.5.268)

Over all unconstrained parts of the parameter space one has

4ΔmaxϕC ≪ 1◦ . (5.5.269)

Thus, neutron interferometry cannot yield new constraints. Any obtained limits would be
significantly weaker than existing ones, rendering a more detailed analysis of this experiment
redundant for chameleons.

5.5.3. qBOUNCE

This Section applies theoretical results from 5.3 and numerical results from Section 4 to derive pa-
rameter constraints of the dilaton, symmetron and chameleon model in the context of qBounce.
In the experiment in Ref. [63], the transition energies ΔE13 := E3 − E1 and ΔE14 := E4 − E1

were measured. The experimentally observed values are ΔE13 = (1.9222 ± 0.0054) peV and
ΔE14 = (2.6874± 0.0074) peV, which align with the transition energies anticipated from a New-
tonian gravitational potential alone.
Scalar field parameters are constrained if they would result in a deviation of at least two

standard deviations from the measured values. Therefore, parameters are considered constrained
if:

ΔE13 ̸∈ (1.9114, 1.933) peV,

or

ΔE14 ̸∈ (2.6726, 2.7022) peV. (5.5.270)

Here, ΔE13 and ΔE14 denote the solutions for the eigenenergies of the stationary Schrödinger
equation in the presence of a scalar field, as elaborated in Section 5.3.3.
The procedure for deriving the constraint volume was akin to the case of neutron interferometry

depicted in Fig. 5.5.1 and is elucidated using the example of the dilaton field:
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• For a fixed V0, the analysis began from the smallest permissible value of A2 determined by
a cutoff. Subsequently, the boundary of the constraint region was sought with a step width
of 0.1 in a log-log plot in the λ direction.

• A2 was incremented by a factor of 10.

• This process was reiterated until the entire non-trivial boundary (not arising from cutoffs)
was identified, and the points along the boundary of the constraint region were connected.

Each step comprised two sub-steps: Firstly, the one mirror solution was computed numeri-
cally to determine the scalar field-induced potential of the neutron. Subsequently, the stationary
Schrödinger equation was solved to calculate the energy shifts induced by the scalar field. Pertur-
bation theory was used in parameter regions where it was evidently applicable, due to its lower
computational cost. Otherwise, the entire Schrödinger equation was solved numerically. An il-
lustration of this process is presented in Fig. 5.5.3.

Fig. 5.5.3: This is an illustration of how parameter constraints for qBounce were derived. V0 was
set to 10 MeV4. The bullet points represent the actual boundary of the parameter region
constrained by qBounce. The dots were connected, and the cutoffs were added to obtain
the complete constrained region.

While previous studies have computed qBounce constraints for the symmetron field [63, 64],
this thesis undertakes a reevaluation of these constraints. The new analysis employs the following
refinements:

• Previous works [63, 64] assumed a residual gas density of ρV = 0 in the vacuum chamber
surrounding the experiment. However, the re-analysis incorporates the actual experimental
density of ρV = 2.32 × 10−7 kg/m3. This adjustment significantly alters constraints since
assuming ρV = 0 could erroneously allow the symmetron to exist in its symmetry-broken
phase in situations where it is not.
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• A non-perturbative solution of the stationary Schrödinger equation is employed.

• The new analysis acknowledges the possibility that the symmetron within the neutron mirror
used in qBounce may exist in its symmetry-broken phase [62].

• To ensure theoretical rigor, appropriate cut-offs are applied.

Section 6.2.2 demonstrates that each refinement significantly enhances the resultant constraints.
Similarly, constraints for the chameleon model have already been published in [54, 135, 147]

assuming ρV = 0 and either neglecting neutron screening altogether [135,147] or using a different
definition of the screening charge [54] sometimes treating the neutron as a test particle even when
µMR ≫ 1, leading to significantly larger constraints. This disparity underscores the imperative for
further theoretical advancements to transcend heuristic approximations and accurately determine
the true coupling of neutrons to the individual scalar field. These chameleon analyses are also
updated in this thesis, to have a consistent treatment for all models using the same methodologies.
For the case of the symmetron field, the analytically exact one mirror solutions derived in

Refs. [61, 62] has been used, rather than a numerical solution.
The FDM cutoff was always chosen to ensure that the field naturally relaxes to φV within the

cutoff, and the FDM mesh refined to the point where further refinement has negligible effect on
the computed energy shifts.

5.5.4. CANNEX

In this Section the theoretical results from 5.4 and numerical results from Section 4 are applied
to derive prospective parameter constraints of the dilaton, symmetron and chameleon model in
the context of cannex. A recent publication [4] has examined the anticipated measurement
sensitivity at one σ for both pressure and pressure gradient measurements as a function of the
plate separation d, illustrated in Fig. 5.5.4. Constraints have been established for parameters
where

|P (d)| > 2σ(d), or
$$$∂P
∂d

(d)
$$$ > 2σ(d). (5.5.271)

The scalar field-induced pressure has been calculated from Eq. (5.4.240), where φ0 is computed
by numerically determining the two mirror solution. Pressure gradients have been computed
using

∂P

∂d
(d) ≃ P (d+ δ)− P (d− δ)

2δ
(5.5.272)

for sufficiently small δ.
It is noteworthy that prospective constraints for the symmetron field have been previously

outlined in [81], along with constraints for the chameleon with Λ = 2.4 meV and small values of
n [82]. However, these analyses are revisited due to their reliance on analytical approximations and
their lack of consideration for the variability of plate separation and vacuum pressure variation.
Additionally, none of the existing analyses accounted for pressure gradient measurements. The
constraint determination closely parallels the qBounce case in Fig. 5.5.3, with two notable
adjustments:
Firstly, the analysis incorporates the variability of plate separation between 3-30 µm and vac-

uum density 5.3× 10−12 kg/m3 < ρV < 2.6 kg/m3 within the experimental setup.
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Secondly, for the chameleon with n = 1, the analytically exact solution presented in Ref. [111]
is utilized. For the symmetron field, only solutions with a single node, akin to the neutron
interferometry analysis, have been employed.
The FDM mesh was always refined to the point where further refinement has negligible effect

on the computed pressure.

Fig. 5.5.4: The potential sensitivity of the forthcoming cannex measurements, displayed at a one σ
confidence level is depicted for both a) pressure and b) pressure gradient measurements.
The sensitivity is presented as a function of plate separation d.
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6. Results and discussion

This Section offers an in-depth discussion and interpretation of the derived constraints, along
with the theoretical and numerical advancements achieved in scalar field calculations.
Section 6.1 provides an exploration of the combined dilaton constraints emerging from the

considered experiments, spanning the entire three-dimensional parameter space. Additionally,
constraints arising if the dilaton field is considered as the source of dark energy are explored.
Subsection 6.1.3 elaborates on potential enhancements achievable through a split-crystal interfer-
ometer, while Subection 6.1.4 delves into the interpretation of constraints derived from LLR.
Moving forward, Section 6.2 focuses on the collective constraints concerning the symmetron

field, offering a comprehensive comparison with constraints obtained from experiments not directly
related to this thesis. Within Subsection 6.2.2, a comparative analysis between the pre-existing
qBounce symmetron constraints, predating this thesis [63,64], and the results derived from this
thesis is undertaken. This comparison serves to highlight the substantial improvements achieved
in both theoretical frameworks and numerical analyses throughout the duration of this thesis.
Similarly, a comparison of the old cannex analysis and the new results is provided in Subsection
6.2.3.
Lastly, Section 6.3 provides an extensive discussion on chameleon constraints.

6.1. Constraints for the environment-dependent dilaton field

6.1.1. Combined constraints for the three dimensional parameter space

The dilaton constraints naturally segregate into two regions: the small λ region (Fig. 6.1.1 a))
and the large λ region (Fig. 6.1.1 b)) region. The intermediate λ region violates the cutoff in
Eq. (3.1.38), rendering the model undefined. This violation manifests as diagonal cuts in the
constraint regions.
In the small λ region, the shape of the constraint areas remains constant as V0 increases, shifting

only towards lower values of λ due to the V0λ symmetry discussed in Section 3.1.2, illustrated by
arrows in Fig. 6.1.1 a).
In the large λ region, constraint areas systematically shift towards lower values of A2 as V0

increases, in accordance with the approximate A2ln
�
V0/ρ

�
symmetry, indicated by a downward

vertical arrow. Notably, this symmetry applies solely to the fifth force, not to the cutoff in Eq.
(3.1.38), which progressively reduces the size of constraint regions for larger V0, as shown by
diagonal arrows.
LLR is sensitive to dilaton ranges of approximately 1 AU and larger; shorter ranges render the

dilaton force weak. Tabletop experiments, however, can constrain parameters close to dilaton
ranges of 1 µm.
Notably, neutron interferometry can probe extremely small ranges of ∼ 1 pm (it can set con-

straints for substantially larger values of A2 than the other experiments). The physical reason
is that very small dilaton ranges simply mean that the field reaches its VEV very close to the
cylindrical vacuum chamber walls, as shown, e.g. in Fig. 5.2.3 (A2 = 1042). The potential is
roughly constant inside the vacuum chamber, but the VEV still induces a phase shift, according
to Eq. (5.2.223). Since the VEV is contingent on the vacuum density, the phase shift induced in
the air and vacuum chamber is not the same, even for extremely small dilaton ranges. Hence, even
very short-ranged dilaton fields still induce a relative phase difference in neutron interferometry,
which is one the substantial advantages of this experiment.
The lower edge of neutron interferometry constraints acts as a cutoff to ensure the dilaton field

decay within the cylinder shell, which allows to neglect influences from outside the chamber.
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The lower edge of qBounce is a vacuum range cut-off (1 mm) to ensure that the influence of
the vacuum chamber can be neglected, and using the one mirror solution is appropriate.
At the lower edge of cannex, two cutoffs overlap: parameters exceeding a 1 mm vacuum range

are disregarded, similar to qBounce. However, since cannex can increase the vacuum density
up to ∼2.6 kg/m3, it effectively weakens this cutoff by suppressing screened scalar fields in dense
environments, enabling analysis of lower A2 values. Additionally, a second cutoff ensures the field
decays to φM within the upper plate, justifying the use of Eq. (5.4.240) to calculate the pressure
and the treatment of the mirror as infinitely extended.
For significantly lower values of V0 than those depicted in Fig. 6.1.1, constraints from both the

large and small λ regions converge, leading to a rapid disappearance of constraints due to weak-
ened physical effects. The specific point of convergence depends on the experiment and vacuum
density but is generally around ∼ 10−20 MeV4 qualitatively.

Fig. 6.1.1: The constraint plots typically exhibit two distinct regimes: a): Illustrating constraints for
small values of the parameter λ. b): Depicting constraints for large values of λ. Further
explanations are available in the main text.
LLR: For LLR, the combined constraints from violations of the equivalence principle and
violations of the inverse square law are represented by filled areas located in the bottom-left
of each region.
Neutron interferometry: Constraint are filled areas surrounded by dashed red lines.
qBounce: Constraints are filled areas surrounded by solid red lines.
cannex: Prospective constraints are surrounded by solid black lines.
The interaction range of the dilaton is illustrated for log10(V0/MeV4) = 1, considering
two distinct values: The 1 µm and 1 AU contours correspond to vacuum densities of
ρV = 2.32× 10−7 kg/m3 (for qBounce) and ρV = 1.67× 10−20 kg/m3 (pertaining to the
interplanetary medium). Figure published in [5].

6.1.2. Constraints for the dilaton as a source of dark energy

Ensuring the dilaton’s exclusive role as the primary source of dark energy is feasible solely within
the small λ region. Within this domain, the effective potential is approximated as:
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Veff

�
φM , ρM

� ≃ V0, (6.1.273)

as elaborated in Section 3.1.3. Consequently, the examination of the dilaton as a source of dark
energy involves enforcing V0 = 3ΩΛ0m

2
plH

2
0 ≃ 2.51× 10−35 MeV4, as depicted in Fig. 6.1.2. LLR

remains the sole experimental method discussed in this thesis capable of setting constraints in this
scenario, given the exceedingly low value of V0, which nullifies constraints from other experiments.
It’s worth mentioning that in Ref. [1], it was demonstrated that the dilaton parameter space

can be effectively reduced to two dimensions by stipulating Veff

�
φM , ρM

�
= 3ΩΛ0m

2
plH

2
0 . This

allows the expression of V0 as a function of A2 and λ. However, the constraints depicted in Fig.
6.1.2 remain identical, as the condition V0 = 3ΩΛ0m

2
plH

2
0 suffices within the small λ region.

Fig. 6.1.2: Constraints regarding the dilaton field’s role as the source of dark energy are primarily estab-
lished by LLR. Within the illustrated region, V0 is defined as V0 = 3ΩΛ0m

2
plH

2
0 . Constraints

pertaining to violations of the equivalence principle are shown in blue, while constraints
from violations of the inverse square law are surrounded by dashed lines. Figure published
in [2].

6.1.3. Improvements from a split-crystal interferometer

Figure 6.1.3 compares the actual constraints derived from neutron interferometry, as depicted in
Fig. 6.1.1, with those that would arise from a split-crystal interferometer. The split-interferometer
analysis presumed identical experimental parameters—vacuum density, measurement sensitivity,
etc.—except for variations in the dimensions of the vacuum chamber: a longer chamber (0.5 m
instead of 0.0094 m) and widened chamber (radius of 4.75 cm instead of 2 cm). This comparison
illuminates the impact of differing vacuum chamber sizes on the resultant constraints.
Evidently, the enhanced size yields negligible improvements in the parameter space available

for probing the dilaton using neutron interferometry. A more promising avenue for enhancing the
sensitivity of neutron interferometry to screened scalar fields lies in reducing the vacuum pressure,
which stood at approximately 10−4 mbar during the experiment. Given that screened scalar fields
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are inherently sensitive to ambient matter density, decreasing the vacuum density by several orders
of magnitude would exert a far more pronounced effect. For instance, the cannex project aims
for a vacuum pressure as low as 10−9 mbar. The improvements of the split-interferometer in the
context of the symmetron field would be too small to be visible in a log-log plot and are hence
not plotted.

Fig. 6.1.3: This figure presents a comparison of neutron interferometry constraints derived from the
experiment in Ref. [66], depicted in color, alongside the split-crystal interferometer geometry
delineated by dashed lines, as explained in the text.

6.1.4. Interpretation of LLR constraints

This Subsection delves into the contributions of two distinct LLR tests: the tests of the equivalence
principle (LLR I) and those concerning the inverse square law (LLR II), to the combined LLR
constraints, as illustrated in Figure 6.1.4. Notably, constraints originating from LLR II deviate
from the approximate A2ln

�
V0/ρ

�
symmetry derived in Section 3.1.2.

This example underscores that the approximate parameter symmetry isn’t universally applica-
ble and cannot be reliably exploited to treat the model as having two parameters in the large λ
region.
The physical reason for LLR II to deviate from this approximate symmetry is the following:
The force exerted by the Earth on the Moon can be expressed as follows

�
see Eq. (5.1.205)

�
:

f⃗φ = −β(φ)Q�M�
mpl

∇⃗φ = −β(φ)Q�M�
mpl

∇⃗δφ, (6.1.274)

where φ represents the Earth’s field and δφ := φ− φV . For long-ranged dilaton fields defined by
µV r ≪ 1, with µV denoting the dilaton mass in vacuum and r the distance between the Earth
and the Moon, one can approximate

�
using Eq. (5.1.203)

�
:

δφ ∝ e−µV r

r
≃ 1

r
. (6.1.275)
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Consequently, the dilaton force on the Moon can be approximated by

f⃗φ ∝ −β(φ)Q�M�
mpl

∇⃗1

r
. (6.1.276)

Since β(φ) generally retains spatial dependence, long-ranged dilaton fields do not generally
mimic an inverse square law akin to Newtonian gravity, where the coupling to matter lacks spatial
dependence. Thus, the dilaton field still induces a precession of the lunar perigee, as evident from
Equation (5.1.185). However, for very large values of V0, one can approximate β(φ) ≈ β(φV ), as
discussed in Section 3.1.2. Consequently, the spatial dependence of β(φ) diminishes significantly
for large V0 values, causing long-range dilaton fields to precisely mimic an inverse square law,
thereby nullifying the precession of the lunar perigee. This understanding, coupled with the
observation that the cutoff in Eq. (3.1.38) eliminates short-ranged fields as V0 increases16,
elucidates why these constraints weaken swiftly for increasing V0 values, in contrast to con-

straints from other experiments detailed in this thesis.

Fig. 6.1.4: This figure illustrates the distinct contributions of constraints pertaining to the equivalence
principle, marked by solid lines, and deviations from the inverse square law, delineated by
dashed lines, towards the cumulative constraints derived from LLR, as depicted in Fig. 6.1.1.
While the constraints originating from equivalence principle violations exhibit systematic
shifts for increasing V0 in the large λ region, in accordance with the explanations detailed in
Fig. 6.1.1, constraints from deviations of the inverse square law deviate from this shifting
behavior.

16This is visually illustrated in the computed constraint regions shown in Fig.6.1.1. The cutoff truncates the upper
portions of these regions as the values of V0 increase, which corresponds to large values of A2. These truncated
regions represent short dilaton ranges, as indicated in Tab.2. Therefore, as V0 increases, only the constraint regions
associated with long-range fields persist.
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6.2. Constraints for the symmetron field

6.2.1. Combined constraints from all experiments

The comprehensive set of constraints derived in this thesis is illustrated in Fig. 6.2.1, alongside a
comparison with existing constraints from other studies. Below follows a detailed breakdown of
the obtained constraints:
a) Tabletop experiments predominantly target the µ values depicted here, given the sym-

metron’s range proximity to 1 mm which roughly corresponds to the smallest distances probed
by several experiments.
b) cannex is anticipated to yield robust constraints, as the range aligns closely with 1 µm,

akin to the plate separation. Eöt-Wash and atom interferometry currently lack the capability to
establish limits for these µ values.
c) Certain quantum experiments can still impose constraints despite the symmetron’s range

being close to 1 nm, which is beyond the reach of current experiments relying on the classical
force of the symmetron field. Similar to dilaton field constraints, neutron interferometry can
probe extremely small ranges effectively. Similarly, qBounce can explore these ranges as the
neutron’s wave function would be significantly compressed by the steep slope of the symmetron
potential, resulting in measurable effects.
d) At these µ values, roughly corresponding to a symmetron range of 1 pm, neutron screening

becomes highly pronounced, challenging the limits of neutron-probing capabilities. However,
muonium remains a potent tool for setting substantial constraints due to its composition solely
comprising fundamental particles. Reference [65] suggests that treating an anti-muon and an
electron within muonium as pointlike test particles explains the absence of screening observed in
muonium spectroscopy compared to hydrogen spectroscopy.
It is important to note that once the symmetron range approaches the dimensions of the vacuum

chamber, it completely vanishes, as elaborated in Section 5.5.2. Since µ = 0.1 meV corresponds
to a range of approximately 1 cm, tabletop experiments cannot effectively probe much smaller
values of µ than those displayed.
The lower diagonal cuts in the constraints stem from Eq. (3.3.69), while the left vertical

cut denotes the threshold where the symmetron enters its symmetric phase inside the vacuum
chamber. For even smaller values of M , it remains globally in its symmetric phase, with classical
forces and potentials completely vanishing.
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Fig. 6.2.1: Constraints on the parameter space of the symmetron model for different values of the
parameter µ based on the review in Ref. [53]; the Eöt-Wash results from Ref. [59]; the atom
interferometry analysis in Ref. [58] (see Ref. [99] for an earlier analysis); the investigations
of hydrogen, muonium and the electron (g-2) in Ref. [65]; and the analysis in this article
for qBounce, neutron interferometry, and cannex (only prospective). A full explanation
is given in the main text. Figure published in [5].

6.2.2. Comparison of the old qBOUNCE analysis and this work

This Section illustrates the advancements made in theoretical and numerical analyses within this
thesis compared to prior work. Focusing on the qBounce framework and the derivation of sym-
metron constraints, the improvement in each aspect is demonstrated, enhancing the calculation of
experimental constraints. This enhancement is showcased through a direct comparison between
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the symmetron constraints computed in this thesis and those computed previously [63, 64].
It’s noteworthy that in [64], a χ2 analysis was employed to derive constraints, which differs

from the approach in this thesis. To ensure the meaningfulness of the subsequent comparisons
despite this difference, I repeated the calculations in the existing analysis with the exact same
assumptions as that reference (ρV = 0, neglecting the possibility of the mirror being in the
symmetry-broken phase, assuming perturbation theory to first order is always applicable, and
applying the same cut-offs as in the existing analyses).
The only difference was that I employed the conditions in Eq. (5.5.270) rather than a χ2- data

analysis, aiming to isolate how strongly a throrough statistical analysis affects the computed
constraints. The results of this comparison are shown in Fig. 6.2.2, demonstrating that the
difference in constraint criteria is negligible.

Fig. 6.2.2: This is a comparison between symmetron constraints computed in Ref. [64] using a χ2

analysis and constraints obtained with the criteria established in this work, while adopting
all other theoretical assumptions from Ref. [64]. The colored filled areas represent the
constrained regions from Ref. [64] for different values of M . The dashed line depicts the
edge of the constrained region from my calculation, nearly overlapping with the published
result.
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Fig. 6.2.3: Comparison between the qBounce constraints derived in Ref. [64] and those computed
in this work. a) The symmetron parameter µ is set to 0.1 eV. To the left of line A, no
symmetron solutions exist because the symmetron remains in its symmetric phase within
both the vacuum and mirror regions. To the right of line B, the symmetron is in its
symmetry-broken phase within the mirror. b) Here, µ is set to 1 keV, a parameter value
for which Ref. [64] provides no constraints.

Fig. 6.2.3 illustrates that the old analysis deviates from the improved analysis by many orders of
magnitude. Each of the improvements, including applying the correct vacuum density, considering
the symmetry-broken phase of the mirror, and employing non-perturbative techniques to compute
the energy alone, corrects the existing analysis by several orders of magnitude.
It is noteworthy that according to perturbation theory, qBounce cannot effectively constrain

the symmetron field for values of µ ≳ 10 eV. However, my numerical calculations demonstrate
substantial constraints can be obtained up to µ = 0.1 MeV. This considerable discrepancy arises
because perturbation theory computes energy shifts by integrating the symmetron potential mul-
tiplied by the modulus squared of the unperturbed wave function, which spans approximately
100 µm:

δEpq = QX

� ∞

−∞
dzUX(z)

�|Ψ(0)
p (z)|2 − |Ψ(0)

q (z)|2�, (6.2.277)

At µ = 10 eV, the vacuum range of the symmetron field is approximately 0.1 µm. Consequently,
the field rapidly reaches its VEV, leading the unperturbed wave function to perceive a nearly
constant potential shift (except for the initial 0.1 µm above the mirror, contributing minimally
to the integral), resulting in:
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δEpq = QX

� ∞

−∞
dzUX(z)

�|Ψ(0)
p (z)|2 − |Ψ(0)

q (z)|2�
≃ QXU

V EV
X

� ∞

−∞
dz

�|Ψ(0)
p (z)|2 − |Ψ(0)

q (z)|2� = 0, (6.2.278)

where UV EV
X is the value of UX(z) corresponding to the VEV. However, the actual behavior of

strong scalar fields at such short ranges is to distort the wave functions of the neutron, resulting
in vastly different energy shifts for various energy states, which would be readily observable in
experiments and thus, constrainable. An example of the real behavior of wave functions is given
in Appendix B.6.
In essence, a non-perturbative treatment is indispensable for accurately determining the pa-

rameter regions that can be constrained with qBounce.

6.2.3. Comparison of the old CANNEX analysis and this work

Prospective cannex constraints for the symmetron model, published in Ref. [81], have vastly
underestimated the potential of cannex to search for the symmetron field. The primary reason
is that existing analyses did not take into account that the plate separation can be varied.
For too small values of µ the field vanishes entirely and with it the induced pressure as well.

This happens approximately for [61] �
µ2 − ρV

M2
d <

π

2
, (6.2.279)

where d refers to half the plate separation. For too large µ values, however, the force between the
plates gets very weak. Hence, cannex can only probe a small interval of µ values. It has been
found that in some cases pressure gradients provide better constraints than the pressure itself
and that the plate separation has a large impact on the limits. The analysis herein significantly
improves on the previous analysis in [81]. Specifically, for µ = 1 eV, corresponding roughly to
an interaction range of 0.2 µm, the cannex constraints have previously been underestimated by
a factor of ∼ 1020 on the λS axis, since a plate separation of 10 µm was assumed. Clearly, a
smaller plate separation of 3 µm yields an enormously stronger pressure and consequently better
constraints. Due to the same reason, previous limits for µ = 0.1 eV have also been underestimated
by several orders of magnitude. Based on Eq. (6.2.279), in combination with a value of d = 10 µm,
the conclusion was drawn in [81], that cannex can probe only parameter values M > 10−4 GeV
for µ = 0.1 eV. However, increasing d to 20 µm removes this constraint, and more substantial
limits with M > 10−6 GeV can be obtained, resulting in significant improvements with respect
to existing constraints.
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Fig. 6.2.4: The prospective cannex constraints derived in Ref. [81] are compared to constraints com-
puted in this thesis. a) The value µ is fixed to 0.1 eV. The constraints largely overlap,
however, constraints in Ref. [81] have underestimated the potential of cannex by around
two orders of magnitude on the M axis. b) The value µ is fixed to 1 eV. The constraints
computed in Ref. [81] are far below the lower cut-off (they violate Eq. (3.3.69)), resulting
in a null result. The constraints have been vastly underestimated.

6.3. Constraints for the chameleon field

The combined constraints from qBounce and cannex on the parameters of the chameleon model
are illustrated in Fig. 6.3.1.
Each value of the chameleon parameter n typically corresponds to a different chameleon model.

This thesis focused on the most commonly studied models: either the parameter Λ is fixed to the
dark energy scale of 2.4 meV (Fig. 6.3.1 a)), where models for small n are considered, or n = 1,
while allowing the other parameters to vary (Fig. 6.3.1 b)).
In Fig. 6.3.1 a), only cannex is anticipated to probe new regions of the parameter space.

qBounce and neutron interferometry are unable to constrain this portion of the parameter space.
The contour from cannex (indicated by the black arrow) arises from a cutoff (it is required that
the field decays to φM inside the upper mirror, as explained for dilaton constraints in Section
6.1.1). However, the pressure at the contour only slightly exceeds the measurement sensitivity.
Even if the necessity of this cutoff was eliminated by simulating the entire vacuum chamber, the
contour would only marginally shift.
No new constraints have been found for the case of n = 1 and varying Λ, as shown in Fig.

6.3.1 b). Neutron interferometry constraints have not been thoroughly analyzed, as justified in
Section 5.5.2, while qBounce constraints are relatively weak. The diagonal cuts in Fig. 6.3.1
b) (the cutoff pointed to by the cannex arrow and the parallel qBounce cutoff) ensure that
the vacuum range cannot exceed 1 mm for either experiment, and for cannex, the field must
decay to φM inside the upper mirror, as explained for the dilaton constraints in Section 6.1.1.
The upper qBounce cutoff and the parallel cannex cutoff stem from Eq. (3.2.64).
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The primary reason that qBounce and neutron interferometry yield relatively weak constraints
compared to symmetron and dilaton constraints is that the mass of the chameleon field scales
with ρ3/2 for n = 1

�
see Eq. (3.2.66)

�
, where ρ is the matter density, while for the dilaton field,

the mass approximately scales with
√
ρ (see Table 1 and 2 ). For the symmetron, the mass is

either dominated by the parameter µ for the symmetry-broken phase or approximately scales
with

√
ρ in the symmetric phase, see Eq. (3.3.71) and Eq. (3.3.73).

Due to the extremely high density of the neutron, its screening (quantified by the screening
charge) is usually much more pronounced in chameleons. However, this interpretation relies on
the fermi screening approximation.

Fig. 6.3.1: Constraints on the parameter space of chameleon models, as elucidated in Ref. [53], are
further refined with considerations of quantum Casimir pressure [148], constraints from
levitated force sensor measurements [149], atom interferometry [58], and the analyses con-
ducted herein for qBounce and cannex. a) In this context, the parameter Λ is held
constant at the dark energy scale of 2.4 meV. The shaded blue region delineates the com-
bined prospective constraints arising from pressure and pressure gradient measurements on
chameleon interactions, as inferred from cannex. Conversely, neither qBounce nor neu-
tron interferometry yield discernible constraints. b) Specifically for the chameleon model
with n = 1, the shaded blue area represents anticipated constraints from cannex, which are
expected to coincide with existing limits. Meanwhile, the compact dark red region denotes
constraints from qBounce, overlapping with atomic measurements and the cannex-
derived constraints. Further explanations are provided in the main text. Figure published
in [5].

7. Conclusion

The research conducted for this PhD thesis has yielded several outcomes:
The investigation of the dilaton model has provided detailed insights into its parameter-
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dependent behavior, distinguishing between small and large λ regions. This includes exploring
screening mechanisms, parameter symmetries (Section 3.1.2), and its potential role as a candi-
date for dark energy (Section 3.1.3). Additionally, the first exact solution, assuming ρV = 0, has
been derived (Section 4.1), along with detailed solutions addressing intrinsic numerical precision
issues (Section 4.2). Techniques for numerical simulation across arbitrary parameters have been
developed (Sections 4.4 and 4.5), leading to the derivation of first parameter constraints.
The algorithms devised for dilaton simulations have been generalized to apply to scalar-tensor

theories beyond the dilaton model, exhibiting reliability across chameleon and symmetron models
as well (Section 4.4.4 and Section 4.5.4).
A thorough examination of equivalence principle violations and deviations from the inverse

square law in the context of LLR has led to the establishment of parameter constraints for the
dilaton model (Section 5.1 and 6.1).
The analysis of neutron interferometry has refined the phase shift formula (Section 5.2.2),

offering a more realistic approach compared to the previous chameleon investigation (cf. Ref. [66]),
particularly in considering neutron screening effects. Consequently, this analysis has yielded novel
parameter constraints for both the dilaton and symmetron fields (Sections 6.1 and 6.2). Moreover,
neutron interferometry has been validated as a potent tool for probing scalar fields with classical
ranges as minute as 1 pm, surpassing experiments reliant on classical effects for such parameters.
Notably, the examination also revealed the potential formation of domain walls within the vacuum
chamber, prompting further investigation (Section 5.5.2).
The analysis of qBounce has resulted in a robust numerical method (Section 4.6.3) to solve

the stationary Schrödinger equation even in the strongly perturbed regime. The equations of
motion for screened scalar fields (Section 4.4) can now be solved numerically for various models,
eliminating the need for additional assumptions such as a vanishing vacuum density to find
analytical solutions (as was the case in Ref. [77] for the chameleon model). In total, constraints
for the dilaton, symmetron, and chameleon model have been derived, constraining previously
unconstrained parts of the parameter space for the symmetron and dilaton model. Similarly to
neutron interferometry, a fully non-perturbative treatment has revealed that qBounce is also
able to probe extremely small scalar field ranges, sometimes as low as 1 pm (Section 6.2).
The cannex analysis has clearly highlighted the numerical unsuitability of the original analyti-

cal formula for the pressure (Section 5.4.2 and Appendix B.1) and provided a solution by bringing
the original formula into a numerically more suitable form. The results have been utilized for the
first complete analysis of cannex, including variations of vacuum density, plate separation, and
pressure gradients to derive the best prospective constraints possible for the dilaton, symmetron,
and chameleon model (Section 6). Section 6.2.3 has shown that the analysis in this thesis provides
significant improvements compared to previous analyses.
In summary, significant strides have been made in the analysis of screened scalar fields within

the contexts of LLR, neutron interferometry, qBounce, and cannex.
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René Sedmik:1

• Offered guidance on numerical techniques.

• Contributed to the ideas of avoiding overflows in Section 4.2.2, as well to the ideas on mesh
construction in Section 4.4.2.

• Provided experimental parameters and sensitivities, as well as figures for qBounce and
cannex experiments.

Christian Käding:1
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A. Bounds on Stationary Scalar Fields

The aim of this Section is to establish the following theorem:

Theorem
Let φ be a scalar field with the following properties:

• ρ1 < ρ2 ⇒ φρ1 > φρ2

• Veff,φφ(φ; ρ) > 0 for all φ and ρ,

then the scalar field obeys the following bounds: Let Ω̂ ⊂ R3, and φ be a stationary scalar field
on Ω̂ with Dirichlet boundary conditions φ(x⃗) = φρ(x⃗) on ∂Ω̂, where φρ(x⃗) has been defined in
Eq. (4.5.151). Moreover, assume the density is bounded by

ρmin ≤ ρ(x⃗) ≤ ρmax for all x⃗ ∈ Ω̂, (A.0.280)

then the scalar field is bounded by

φρmax ≤ φ(x⃗) ≤ φρmin , for all x⃗ ∈ Ω̂. (A.0.281)

All stationary scalar field calculations in this thesis employed the Dirichlet boundary con-
ditions stated in this theorem. This inequality is frequently referenced throughout this thesis,
and a proof is provided in this Section. The discussion commences with the following observation:

Lemma
Let Ω̂ ⊂ R3, and φ be a scalar field on Ω̂ with the same properties as in the theorem and
Dirichlet boundary conditions φ(x⃗) = φρ(x⃗) on ∂Ω̂. Then φ cannot have any local minima with
φ(x⃗) < φρ(x⃗), nor can it have local maxima with φ(x⃗) > φρ(x⃗).

Proof of the Lemma
Only the first statement is proved; the second statement follows similarly. From

Veff,φφ(φ(x⃗); ρ(x⃗)) > 0 (A.0.282)

follows that Veff,φ is a strictly increasing function of φ(x⃗) with
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Veff,φ(φ(x⃗); ρ(x⃗)) < 0, for φ(x⃗) < φρ(x⃗),

Veff,φ(φ(x⃗); ρ(x⃗)) > 0, for φ(x⃗) > φρ(x⃗). (A.0.283)

From the differential equation, one obtains

Δφ(x⃗) = Veff,φ(φ(x⃗); ρ(x⃗)) < 0, for φ(x⃗) < φρ(x⃗). (A.0.284)

Next, assume a local minimum at x⃗0 = (x0, y0, z0) with φ(x⃗0) < φρ(x⃗0). I will show that this
leads to a contradiction. From

Δφ(x⃗0) < 0, (A.0.285)

follows that at least one second partial derivative is smaller than 0. Without loss of generality,
assume

∂2φ

∂z2
(x⃗0) < 0. (A.0.286)

The function

f(z) := φ(x0, y0, z) (A.0.287)

is a 1D slice of φ and thus also has a local minimum at z0. Since φ(x⃗) = φρ(x⃗) at the boundary of

Ω̂, this minimum cannot be at the boundary, and the first partial derivatives of φ have to vanish.
However, the above considerations imply

df

dz
(z0) =

∂φ

∂z
(x⃗0) = 0,

d2f

dz2
(z0) =

∂2φ

∂z2
(x⃗0) < 0. (A.0.288)

These conditions are well known to imply a local maximum of f at z0, which is a contradiction.
Hence local minima with φ(x⃗) < φρ(x⃗) are impossible. �
This Lemma is used to prove the theorem:

Proof of the theorem
Since φ is continuous with finite boundary conditions, it has a (possibly not unique) global
minimum and global maximum17. Assume that the global minimum at x⃗0 fulfills

φ(x⃗0) < φρmax . (A.0.289)

Trivially, the global minimum is also a local minimum. However, since ρ2 > ρ1 implies φρ1 > φρ2 ,
it follows

φ(x⃗0) < φρmax ≤ φρ(x⃗0). (A.0.290)

Thus, φ(x⃗0) is a local minimum with φ(x0) < φρ(x⃗0), which contradicts the last lemma. Hence
one finds

φρmax ≤ φ(x⃗), for all x⃗ ∈ Ω̂. (A.0.291)
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The proof for the upper bound follows analogous reasoning. �
Applications to the dilaton and chameleon field
The chameleon and dilaton field both fulfill the assumptions of the theorem, as can easily be

checked. This theorem, however, does not apply to the symmetron field. For example, in the
symmetry-broken phase, the potential has a local maximum at φ = 0, hence Veff,φφ(0; ρ) < 0.

B. Additional numerical investigations

B.1. Comparisons of the two pressure formulas

This Section formally demonstrates the numerical superiority of the pressure formula in cannex,
given by Eq. (5.4.240), over the previous formulation, Eq. (5.4.237), with a focus on the dilaton
model. Notably, the value at the upper surface of the upper plate is given by (5.4.250):

φ2(d+D) =
2m2

pl

A2(ρM − ρV )

�
Veff(φM ; ρM)− Veff(φV ; ρV )

�
. (B.1.292)

This leads to two analytically equivalent methods for computing the pressure:

P1

�
φd

�
:= ρM

A2

2m2
pl

�
φ2
d − φ2(d+D)

�
, (B.1.293)

P2

�
φ0

�
:=

ρM
ρM − ρV

�
Veff(φV ; ρV )− Veff(φ0; ρV )

�
, (B.1.294)

with φ0 := φ(0) and φd := φ(d).
The primary objective is to assess the amplification of relative errors in the arguments φd

and φ0 by their respective formulas. A standard approach involves calculating the condition
number [151]. For a given function f(x), the aim is to determine the relative error of f(x) given a
relative error in x. Assuming uncertainty in the real value of x and using x̃ as an approximation,
one employs a Taylor expansion:

f(x̃) ≃ f(x) +
df

dx
(x)(x̃− x),

⇒ |f(x̃)− f(x)

f(x)
| ≃ |

df
dx
(x)

f(x)
x| |(x̃− x)

x
|,

K := |
df
dx
(x)

f(x)
x|. (B.1.295)

Here, K is the condition number, where K > 1 signifies error amplification, while K < 1
indicates error dampening. For the pressure formulas, these values are given by

17The Extreme Value Theorem [150] proofs that for any continuous function defined on a compact set (which means
bounded sets containing their boundary, such as spheres), the function is bounded and attains both a global maximum
and minimum. In unbounded domains, a continuous function may grow arbitrarily large as |x⃗| → ∞, and therefore,
it may not possess a global maximum or minimum. However, the focus is solely on the physically relevant scenario,
where φ(x⃗) approaches its potential minimum as |x| → ∞, ensuring it remains bounded even in R3 with a finite
global maximum and minimum.
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KP1 = |
∂P1

∂φd

P1

φd| = |
ρM

A2

m2
pl
φd

P1

φd|,

KP2 = |
∂P2

∂φ0

P2

φ0| = |
λV0

mpl
e−λφ0/mpl − ρVA2

φ0

m2
pl

P2

φ0|. (B.1.296)

The ratio

α :=
KP1

KP2

= |
ρM

A2

m2
pl
φd

λV0

mpl
e−λφ0/mpl − ρVA2

φ0

m2
pl

φd

φ0

|, (B.1.297)

quantifies how much worse the error propagation properties of the old formula P1 are compared
to the new formula P2, utilizing P1 = P2 and ρM

ρM−ρV
≃ 1, which holds to an extremely good

approximation for the cannex setup. Fig. B.1.1 plots α close to the contour of the cannex
constraint region. The error propagation properties of the original formula worsen significantly
for large values of A2, reaching α > 10500 at A2 = 1052, rendering the original formula numerically
unusable.

Fig. B.1.1: B.1.297 is plotted close to the contour of the cannex exclusion region. At the upper
edge, the relative error propagation of the old formula is worse by roughly a factor 10500

and hence completely unusable numerically.

Another analysis confirms the above observation. With an exact two mirror solution derived in
Section 4 for ρV = 0, which remains practically exact even for ρV ̸= 0 at A2 ≤ 1045 and V0 = 10
MeV4, one can compute the pressure analytically in two equivalent ways.
Performing the following consistency checks involves computing the pressure using either for-

mula for the analytically exact solution and for numerical simulations, which align well with the
analytical solution for these parameters. The results are shown in Fig. B.1.2 a), where, as ex-
pected, both formulas yield practically the same result with the analytical solution. Discrepancies
start appearing at the percent level near A2 = 1045 due to the solution no longer approximating
the case ρV ̸= 0.
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The situation is starkly different for simulations. Even at A2 = 1044, both results disagree by
a factor of roughly 107.
To ensure the reliability of using simulations with the new formula, a comparison is made be-

tween results obtained using the analytical solution and numerical solution with the new formula,
finding agreement within a few percent, as shown in B.1.2 b).
The discovery of the new formula for the pressure was hence instrumental in obtaining reliable

parameter constraints, due to the absence of analytically exact solutions. For similar reasons, it
is also very useful for computing the pressure for the chameleon field, where the exact two mirror
solution is only known for the case n = 1, and the exact one mirror solution for no parameters.

Fig. B.1.2: a) A consistency check is shown for the two equivalent pressure formulas for numerical
simulations and the analytically exact solution with ρV = 0. b) A comparison of the
pressure obtained from the analytical solution and from numerical simulations with the
new formula is shown. V0 = 10 MeV4 and λ = 1031.5 were kept fixed, these values lie very
close to the contour of the exclusion region, and are hence very relevant.
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Fig. B.1.3: This figure shows a comparison between constraints obtained from P1 (B.1.293) com-
puted from the approximate two mirror solution in Appendix C (blue area without clear
bounds), the constraint computed from P2 (B.1.294) with the same solution and con-
straints computed from P2 with simulations. The parameter V0 was fixed to 10 MeV4 and
ρV = 2.28× 10−20 MeV4.

In Fig. B.1.3, the efficacy of the new formula Eq. (B.1.294) is presented. Even when derived
from the crude analytical two mirror approximation in Appendix C and compared against much
more accurate simulations, the deviations between constraints are minimal in a log-log plot when
computed with the new formula, as expected for a formula with good error propagation properties.
Conversely, utilizing the exact value at the upper surface of the upper mirror alongside the two

mirror approximation with the old pressure formula Eq. (B.1.293) yields constraints lacking clear
bounds. The errors are so pronounced that the resulting data is effectively numerical garbage.
Constraints from simulations solely with the old formula were not computed due to persistent
numerical challenges encountered when attempting this method. However, it’s worth noting
that significant disparities in pressure between the approximate solution and simulations were
encountered when initially pursuing this approach.

B.2. CANNEX error in using a homogeneous mirror density

This Section demonstrates that the approximation of treating all mirrors in cannex with the
same average density (ρM = 2514 kg/m3), results in a negligible error on the derived prospective
constraints. Figure B.2.1 illustrates a comparison of constraints computed for the dilaton model,
assuming mirrors are entirely composed of gold (ρM = 19320 kg/m3), the densest layer, and
silica (ρM = 2329 kg/m3), the layer with the lowest density. Remarkably, the constraints exhibit
identical behavior in a log-log plot, indicating that the pressure is highly insensitive to the specific
value of the material density.
This consistent behavior holds true for both the chamleon and symmetron models as well.

Consequently, the error introduced by treating all mirrors with the same average density is deemed
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entirely negligible. In the context of cannex, my findings indicate that only the vacuum density
significantly influences the computed constraints.

Fig. B.2.1: The prospective constraints from cannex are compared for two mirror densities: ρM =
19320 kg/m3 and ρM = 2329 kg/m3, considering V0 = 10 MeV4. Remarkably, both
densities yield nearly identical constraints, with only a minuscule mismatch observed near
the arrows. It’s noteworthy that there is no discernible mismatch whatsoever in the small
λ region. The symmetron and chameleon models exhibit comparable insensitivity to the
precise values of the mirror densities. Given the substantial computational effort required
to execute numerous simulations, this plot was generated based on the approximate two
mirror setup outlined in Appendix C. Nevertheless, the simulations consistently demonstrate
the same insensitivity to the mirror density.

B.3. qBOUNCE error of the fermi screening approximation

This Section highlights the potential significant error associated with the fermi screening approx-
imation. The existing symmetron analysis [64] considered both the micron screening approx-
imation (modeling the neutron as a sphere with a radius of 5.9 µm) and the fermi screening
approximation (modeling the neutron as a sphere with a radius of 0.5 fm). The resulting con-
straints on the parameters of the symmetron field exhibited deviations spanning several orders of
magnitude.
The micron screening calculation underscored the profound theoretical uncertainties inherent

in the qBounce symmetron calculations. To illustrate this point, the first dilaton constraints
published in [2] are provided in Fig. B.3.1 that included the micron screening approximation for
qBounce.
The large discrepancy between both approximations shows how uncertain either approximation

is, while confirming that the fermi screening approximation is the more conservative estimate.
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Fig. B.3.1: This figure has been published in [2], and constraints have been computed as explained
in this reference. The explanation of this figure matches the explanations of Fig. 6.1.1 in
Section 6.1 with two notable differences: First, two qBounce constraints are presented:
Lighter areas correspond to the micron screening approximation, while darker areas corre-
spond to the fermi screening approximation. Second the individual contributions of LLR I
(filled blue areas) and LLR II (dashed LLR area) are shown. The main text provides a more
detailed explanation.

B.4. Newton’s method for the finite difference scheme

The method that was used to solve the discretized differential equation (4.4.122) is outlined in
the following.
The definition

F : RN → RN

Fi(φ1, ..., φN) =
2(φi+1 − φi)

hi(hi + hi−1)
− 2(φi − φi−1)

hi−1(hi + hi−1)
+ Γ

2

si

� hi(φi − φi−1)

hi−1(hi + hi−1)
+

hi−1(φi+1 − φi)

hi(hi + hi−1)

�
− Veff,φ(φi, ρi), (B.4.298)

results in an N -dimensional root-finding problem for F . The values φ0 and φN+1 must be fixed
to set the boundary conditions. The equation

F (φ1, ..., φN) = (0, ..., 0)T (B.4.299)

can be solved using Newton’s method (refer to [151]). Starting from an initial guess φ(0) =

(φ
(0)
1 , ..., φ

(0)
N ), F is linearized around that guess and the following equation solved:

F (φ(0)) + JF (φ
(0))(φ(1) − φ(0)) = 0, (B.4.300)

with the Jacobi Matrix (JF )ij :=
∂Fi

∂φj
. This defines the improved guess φ(1), and the procedure

is iterated. In the n’th iteration, the linear system

128



An−1φ(n) = bn−1,

An−1 : = JF (φ
(n−1)),

bn−1 : = −F (φ(n−1)) + JF (φ
(n−1))φ(n−1), (B.4.301)

needs to be solved. For i = 2, ..., N − 1, An−1 and bn−1 are given by

An−1
ij =

��������
2

hi(hi+hi−1)
+ Γ 2

si

hi−1

hi(hi+hi−1)
, if j = i+ 1

2
hi−1(hi+hi−1)

− Γ 2
si

hi

hi−1(hi+hi−1)
, if j = i− 1,

− 2
hi(hi+hi−1)

− 2
hi−1(hi+hi−1)

+ Γ 2
si

�
hi

hi−1(hi+hi−1)
− hi−1

hi(hi+hi−1)

�− Veff,φφ(φ
(n−1)
i , ρi) , if j = i,

0 , else ,

(B.4.302)

and

bn−1
i = Veff,φ(φ

(n−1)
i ; ρi)− Veff,φφ(φ

(n−1)
i ; ρi)φ

(n−1)
i . (B.4.303)

The remaining values must account for the boundary conditions.

B.4.1. Boundary conditions for the one and two mirror case

The fields minimize their effective potential at the boundary, hence φ0 = φM , and φN+1 ∈ φV , φM

for the one and two mirror cases, respectively. This results in

An−1
1,1 = − 2

h2
1

− Veff,φφ(φ
(n−1)
1 ; ρ1),

An−1
1,2 =

1

h2
1

,

An−1
N,N−1 =

1

h2
N−1

,

An−1
N,N = − 2

h2
N−1

− Veff,φφ(φ
(n−1)
N , ρN),

bn−1
1 = Veff,φ(φ

(n−1)
1 ; ρ1)− Veff,φφ(φ

(n−1)
1 ; ρ1)φ

(n−1)
1 − φ0

h2
1

,

bn−1
N = Veff,φ(φ

(n−1)
N ; ρN)− Veff,φφ(φ

(n−1)
N ; ρN)φ

(n−1)
N − φN+1

h2
N−1

, (B.4.304)

where h0 := h1, hN := hN−1.

B.4.2. Boundary conditions for a sphere and the cross section of a cylinder

r=0:
In the context of spherical geometry and the cross section of a cylinder, ensuring dφ

dr
|r=0 = 0 is

imperative to address the coordinate singularity at r = 0 in Eq. (4.4.117).

129



To overcome this singularity, a ghost point at r0 := −r1 < 0 with no physical significance is
introduced and φ0 defined as

φ0 := φ1. (B.4.305)

Although φ1/2 := φ(0) is excluded from discretization to circumvent the singularity, the con-

dition dφ
dr
|r = 0 is guaranteed by Eq. (4.4.121) if the neighboring points of φ1/2 are chosen to

be φ0 and φ1. This avoidance strategy for the singularity has been proposed in [152]. Utilizing
(B.4.305) for i = 1 and r1 = h0/2 yields

A1,1 := − 6

h1(h1 + h0)
− Veff,φφ(φ

(n−1)
1 , ρ1),

A1,2 :=
6

h1(h1 + h0)
,

b1 := Veff,φ(φ
(n−1)
1 ; ρ1)− Veff,φφ(φ

(n−1)
1 ; ρ1)φ

(n−1)
1 . (B.4.306)

r = cutoff:
By setting hN := hN−1 and using φN+1 = φB, with φB = φM for the cross section of a cylinder,

and φB = φV for a sphere, it follows

An−1
N,N−1 =

1

h2
N−1

− 1

rNhN−1

,

An−1
N,N = − 2

h2
N−1

− Veff,φφ(φ
(n−1)
N , ρN),

bn−1
N = Veff,φ(φ

(n−1)
N ; ρN)− Veff,φφ(φ

(n−1)
N ; ρN)φ

(n−1)
N − φB

h2
N−1

− φB

rNhN−1

. (B.4.307)

B.4.3. Convergence

The euclidean norm

||φ(n)||2 :=
 !!�N+1"

i=0

(φ
(n)
i )2, (B.4.308)

is used to monitor convergence and iterations are stopped when

||φ(n) − φ(n−1)||2
||φ(n−1)|| < ε, (B.4.309)

where ε is sufficiently small. Mathematica’s LinearSolve function was utilized for solving the
linear systems of equations. The remaining task involves determining an initial guess.
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B.4.4. Initial guess

The success of Newton’s method in achieving convergence relies on selecting an appropriate
initial guess, denoted as φ(0). Three reliable seeds consistently leading to convergence have been
identified.
For the dilaton and chameleon models, convergence is guaranteed with either of the following

trivial guesses:

• φ
(0)
i := φM

• φ
(0)
i := φρ(si)

In the symmetron model, the effective potential is expanded around its potential minimum,
resulting in a linear differential equation:

d2φ

ds2
+ Γ

2

s

dφ

ds
= Veff,φφ(φρ(s)) (φ(s)− φρ(s)) . (B.4.310)

This equation can be solved with the same method outlined above using
Veff,approx :=

1
2
Veff,φφ(φρ(s)) (φ(s)− φρ(s))

2. As the linearization of an already linear equation has
no impact, Newton’s method concludes after a single iteration for an arbitrary initial guess.

B.5. FDMs as a special case of the FEM in one dimension

This Section demonstrates that the non-uniform FDM employed in this thesis is a specialized
instance of the FEM for the one and two mirror geometries (this result has not been established
for the spherical and cylindrical geometries), achieved through a proper selection of FEM basis
functions. The one-dimensional equation of motion is given by

d2φ

dz2
− Veff,φ(φ; ρ) = 0, (B.5.311)

which has to be solved over a domain z ∈ [a, b], subject to appropriate Dirichlet boundary
conditions that depend on the geometry under consideration. Starting from a mesh z1, ..., zN
with hi := hi+1 − hi, the standard piece-wise linear basis functions for the FEM are defined as

ϕi(z) :=


z−zi
hi−1

, z ∈ [zi−1, zi]
zi+1−z

hi
, z ∈ [zi, zi+1]

0, else.

(B.5.312)

It’s worth noting that this definition ensures ϕi(zj) = δij. Following the procedure outlined in
Section 4.5.1, Fi

�
see (Eq. 4.5.133)

�
is given by

Fi(φ1, ..., φN) = −
N"
j=1

φj

�� zN

z1

dϕi

dz

dϕj

dz
dz

�
−
� zN

z1

Veff,φ(
N"
k=1

φkϕk; ρ)ϕidz, (B.5.313)
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where the term associated with Neumann boundary conditions has been omitted18.
The integrals are numerically evaluated in the FEM. A common choice is the trapezoidal

rule [151], applied to each subdomain separately:

� zn

z1

fdz =
N−1"
i=1

� zi+1

zi

fdz ≃
N−1"
i=1

hi
f(zi+1) + f(zi)

2
. (B.5.314)

The trapezoidal rule exactly integrates polynomials up to the first order. A straightforward
calculation yields

� zN

z1

dϕi

dz

dϕj

dz
dz =

������
1

hi−1
+ 1

hi
, i = j

− 1
hi−1

, j = i− 1

− 1
hi
, j = i+ 1

0, else.

(B.5.315)

Applying the trapezoidal rule to the second integral in Eq. (B.5.313) yields

Fi(φ1, ..., φN) ≃ φi−1

hi−1

− φi

� 1

hi−1

+
1

hi

�
+

φi+1

hi

− hi + hi−1

2
Veff,φ(φi, ρi)

=
hi + hi−1

2

� 2(φi+1 − φi)

hi(hi + hi−1)
− 2(φi − φi−1)

hi−1(hi + hi−1)
− Veff,φ(φi, ρi)

�
. (B.5.316)

The final algorithm is based on this approximation. Therefore, the objective of the FEM is to
determine (φ1, ..., φN) that solves the nonlinear system of equations

2(φi+1 − φi)

hi(hi + hi−1)
− 2(φi − φi−1)

hi−1(hi + hi−1)
− Veff,φ(φi, ρi), for i = 1, ..., N, (B.5.317)

where the factor hi+hi−1

2
has been omitted since it doesn’t affect the root finding problem.

Notably, this system of equations is identical to the one derived from the non-uniform FDM, as
seen in Eq. (B.4.298) and Eq. (B.4.299). Therefore, the non-uniform FDM can be interpreted as
a special case of the FEM.

B.6. The inappropriateness of perturbation theory for the dilaton and
symmetron field

This Section shows that perturbation theory is inappropriate to derive constraints for the dilaton
or symmetron model and briefly outlines the reason. Fig. B.6.1 shows a direct comparison be-
tween constraints computed by always applying perturbation theory to first order and constraints
computed from a numerical solution of the Schrödinger equation.

18This term evaluates to precisely 0 for the one and two mirror geometries since we require the field to asymptotically
minimize its potential, implying that the derivative specified by Neumann boundary conditions vanishes. In practice,
we introduce a cut-off while ensuring that the field naturally relaxes to its minimum at the boundary condition,
consistent with homogeneous Neumann boundary conditions.
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Fig. B.6.1: Examples are presented for comparing dilaton constraints for qBounce derived from per-
turbation theory with those obtained via numerical calculations in the large λ region. a)
In the investigation of the large λ region of the dilaton field with V0 = 10 MeV4, the
approximate two mirror solution derived in Appendix C was utilized for comparison. It’s
important to note that the constraints applied here required |δE14| > 2×10−15 eV. These
assumptions slightly deviate from the treatment outlined in the main text, as this com-
parison predates the completion of this thesis and certain assumptions have been refined
subsequently. Due to time constraints and the illustrative nature of this example this anal-
ysis was not repeated with the updated constraint criteria. Nevertheless, this doesn’t alter
the qualitative insight gained, indicating that numerical and perturbative calculations can
diverge significantly in magnitude. b) Contrasting qBounce constraints derived from per-
turbation theory with those obtained via numerical calculations for the symmetron model
with µ = 1 keV reveals that perturbation theory results in no constraints at all!

The results disagree by several orders of magnitude. The reason is outlined in the following.
The main task is to compute the outer edge of the constraint area, which is the parameter

region where the scalar field effects are just large enough to be still detectable with the current
measurement sensitivity of ∼ 10−15 eV. Since the Newtonian energy states have energies in the
10−12 eV regime, one could naivley assume that perturbation theory should be appropriate to
compute the correct edge of the constraint volume, where energy differences are at the order of
10−15 eV.
Its also possible, for example, that perturbation theory yields the following result:

δE1 = 2× 10−15 eV + 1 GeV,

δE4 = 1 GeV,

⇒ |δE14| = |δE1 − δE4| = 2× 10−15 eV. (B.6.318)
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Despite perturbation theory asserting |δE14| = 2 × 10−15 eV—considerably smaller than the
individual Newtonian energies—this outcome lacks credibility. The use of perturbation theory
necessitates both energy shifts to be individually much smaller than the Newtonian contribution,
thereby questioning its reliability. Hence, generally, determining the surface of the constraint
volume necessitates non-perturbative techniques.
The following example illustrates the real behavior of wave functions at the edge of the con-

straint region, assuming the strongly perturbed regime.

Wave Function Perturbation Analysis:

Fig. B.6.2: The ground state wave function in the presence of a dilaton field for the fixed paramters
V0 = 10 MeV4 and λ = 8 × 1028 is shown. The parameter A2 was varied as indicated in
the figure. The unperturbed Newtonian case is shown in red.

Fig. B.6.2 illustrates that the dilaton potential squashes the ground state wave function of the
neutron for A2 < 1044.4, λ = 8 × 1028 and V0 = 10 MeV4. Increasing A2 while keeping other
parameters fixed causes the wave function to gradually revert to its original unperturbed Newto-
nian shape. At A2 = 1044.4, the wave function becomes indistinguishable from the unperturbed
case. However, comparing its energy to the unperturbed Newtonian energy yields19:

E1

E
(0)
1

≃ 2761 ≫ 1. (B.6.319)

Although the energies are strongly perturbed, the wave function remains largely unaffected.
To elucidate this behavior, I offer a physical interpretation.
Fig. B.6.3 shows that the dilaton potential is comparatively short-ranged compared to the

unperturbed wave function’s extent. To evade the higher potential above the mirror, the neutron
compresses itself into the region where the dilaton potential is lower. However, as the neutron
compresses further, its kinetic energy increases. With increasing A2, the potential steepens, neces-
sitating further compression to avoid the dilaton field’s potential energy. Eventually, a threshold
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is reached where it becomes more energetically favorable to expand into the high potential region.
This threshold can be estimated analytically.
Considering the dilaton field’s decreasing range, when the neutron fully enters the high potential

region, its energy would be approximately:

α := E
(0)
1 +QD

�
mn

A2

2

φ2
V − φ(0)2

m2
pl

�
, (B.6.320)

since the dilaton is mostly sitting at its VEV. Once the neutron’s energy approaches this
threshold, it becomes more economical to expand into the potential rather than increasing the
kinetic energy further. The approximately constant dilaton potential no longer significantly affects
the neutron’s wave function shape in this case. This explanation’s validity has been confirmed
numerically, as depicted in Fig. B.6.3.

Fig. B.6.3: a) The dilaton potential for the neutron is shown for two different value of A2, the un-
perturbed ground state of the neutron is shown in dashed green. b) The neutrons ground
state energy in the presence of a dilaton field is compared to B.6.320.

The threshold where the wave function reverts back to its original shape is exactly the be-
havior of the wave functions at the edge of the constraint region. Once the wave functions are
reverted back to their original shape, the dilaton field gives the same energy contribution to all
energy states, which results in no energy differences. The exact threshold can only be computed
numerically, and cannot be obtained from perturbation theory.

19For the comparisons presented in this Subsection, E
(0)
1 is defined as the lowest energy state of the neutron in the

presence of only the Newtonian potential U(z) = mngz. E1 is the lowest energy state in the presence of both
the Newtonian potential and the dilaton potential defined by Udilaton(z) := QD(UD(z)− UD(0)). It’s important to
recognize that potentials are inherently defined with an indeterminate constant term. To align with the convention
of the Newtonian potential, which is set to 0 at the mirror surface, I imposed the same condition on the dilaton
field.
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C. Additional approximate dilaton field solutions

In this Section, additional approximate dilaton field solutions are explored, employed either in
the small λ region for constraint computations, where the equations of motion exhibit linearity,
or for testing numerical methods within this specific region. The derivations of the approximate
one and two mirror solutions presented below closely resemble those of the spherical field profile
or the exact two mirror solution with ρV = 0 in the main text, and therefore, concise formulations
are provided. Detailed derivations for these two approximations can be found in Ref. [1].

C.1. Approximate one mirror solution

The approximate one mirror solution has originally been derived by Mario Pitschmann, with his
derivation published in [1].
Initially, an approximate dilaton field solution for a mirror located at z ≤ 0 and vacuum for

z > 0 is derived. Assuming that the field does not vary in the x−y plane, the stationary equation
of motion for φ becomes:

d2φ

dz2
= Veff,φ(φ; ρ). (C.1.321)

As a boundary condition for z → ∞ it is assumed that φ minimizes its potential and takes
on the value φV . Similarly, for z → −∞, the boundary condition φM is adopted. Except near
the surface of the mirror at z = 0, the field approaches φM inside the mirror and φV inside the
vacuum region. The following approximation is made:

d2φ

dz2
≈ Veff,φφ(φV )(φ− φV ) = µ2

V (φ− φV ),

d2φ

dz2
≈ Veff,φφ(φM)(φ− φM) = µ2

M(φ− φM), (C.1.322)

inside the vacuum region and inside the mirror, respectively. Obtaining the solution is straight-
forward: First, the general homogeneous solution is computed in either region, and a particular
solution is added. Then, the free parameters are determined by demanding continuity of φ and
dφ
dz

at z = 0. The final solution reads:

φ(z) = θ(z)(φV + (φ0 − φV )e
−µV z) + θ(−z)(φM + (φ0 − φM)eµMz), (C.1.323)

with

φ0 =
µV φV + µMφM

µV + µM

. (C.1.324)

C.2. Approximate two mirror solution

The approximate two mirror solution has originally been derived by Mario Pitschmann, with his
derivation published in [1].
The exact two mirror solution derived in the main text assumes ρV = 0. However, in the small

λ region, it is more accurate to relax this assumption and solve the linearized equations of motion
assuming ρV > 0. The differential equation is given by
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d2φ

dz2
= Veff,φ(φ; ρ), (C.2.325)

assuming two mirrors: One located at z ≥ d and one at z ≤ −d. For −d ≤ z ≤ d, there is
vacuum with density ρV . The boundary conditions are φ(z) → φM for |z| → ∞. Unlike in the
one mirror case, φ will never fully reach φV due to the finite extent of the vacuum region. Thus,
the potential is expanded around φ0 := φ(0) in the vacuum region, which is the highest value φ
can take, and for which dφ

dz
(0) = 0 has to hold due to the symmetric setup. One approximates

d2φ

dz2
≈ Veff,φ(φ0) + Veff,φφ(φ0)(φ− φ0) = −D0 + µ2

0(φ− φ0),

d2φ

dz2
≈ Veff,φφ(φM)(φ− φM) = µ2

M(φ− φM), (C.2.326)

in the vacuum region and inside the mirrors respectively, with D0 = −Veff,φ(φ0) and

µ0 =
1

mpl

�
λ2V0e−λφ0/mpl + A2ρV . Obtaining the homogenous solutions in the respective regions is

straightforward: Due to the symmetric set up, φh(z) ∝ cosh(µ0z) holds in the vacuum region and
due to the finite boundary conditions φh(z) ∝ e−µM |z| inside the mirrors. Adding the particular
solution in the respective regions and demanding that φ and dφ

dz
are continuous at z = ±d, one

easily obtains

φ(z) = θ(d− |z|)
�
φ0 +

D0

µ2
0

(1− cosh(µ0z))



+θ(|z| − d)

�
φM + (φd − φM)e−µM (|z|−d)



,

(C.2.327)

where φ0 is defined implicitly by

φM +
D0

µ0µM

sinh(µ0d) = φ0 +
D0

µ2
0

(1− cosh (µ0d)). (C.2.328)

C.3. Approximate solution for the cross section of a cylinder

In this section, we calculate the field of the cross section of an infinitely extended cylinder, where
the field shows no dependence on the direction of the cylinder’s symmetry axis, denoted as the
z- direction. The equation of motion for φ simplifies to

d2φ

dr2
+

1

r

dφ

dr
+ = Veff,φ(φ; ρ). (C.3.329)

Vacuum is assumed for r ≤ d and an infinitely extended shell with density ρM for r > d. The
boundary conditions are thus

φ(r) → φM , for r → ∞,

dφ

dr
= 0, for r = 0. (C.3.330)
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Similarly to the approximate two mirror solution, the following approximations are employed

d2φ

dr2
+

1

r

dφ

dr
≈ −D0 + µ2

0(φ− φ0), r ≤ d,

d2φ

dr2
+

1

r

dφ

dr
≈ µ2

M(φ− φM), r > d,

D0 : = −Veff,φ(φ0, ρV ),

µ0 : =
�
Veff,φφ(φ0, ρV ),

φ0 : = φ(0). (C.3.331)

The equations inside vacuum and inside the shell are formally identical, with different inho-
mogenous constant, since

−D0 + µ2
0(φ− φ0) = µ2

0(φ− φ0 − D0

µ2
0

). (C.3.332)

Thus by the replacement

µ2
0 → µ2

M (C.3.333)

φ0 +
D0

µ2
0

→ φM ,

both equations are formally identical. Therefore only the vacuum equation is discussed in detail.
The aim is to reduce Eq. (C.3.331) to an equation with known analytical solutions. The right
choice is the modified Bessel equation, which reads (see e.g. [153], [154])

x2 d
2y

dx2
(x) + x

dy

dx
(x)− (x2 + α2)y(x) = 0, (C.3.334)

where α is an arbitrary complex constant. The modified Bessel functions are two linearly inde-
pendent solution to this equation. One typically distinguishes between modified Bessel functions
of the first kind (Iα(x)) and second kind (Kα(x)). In this case, only α = 0 is relevant. I0 has a
vanishing derivative at x = 0, but diverges for x → ∞, while K0 diverges for x → 0, but converges
to 0 for x → ∞, see Fig. C.3.1.
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Fig. C.3.1: The two modified Bessel functions are plotted for α = 0.

The homogeneous equation is given by

d2φ

dr2
+

1

r

dφ

dr
= µ2

0φ, (C.3.335)

and transforms to

r̃2
d2φ̃

dr̃2
+ r̃

dφ̃

dr̃
− r̃2φ̃(r̃) = 0, (C.3.336)

where r̃ := µ0r and φ̃(r̃) := φ(r) = φ( r̃
µ0
). The last equation is the modified Bessel equation

for the case α = 0, and the general homogeneous solution is

φ̃h,general(r̃) = c1I0(r̃) + c2K0(r̃)

= c1I0(µ0r) + c2K0(µ0r). (C.3.337)

Thus

φh,general(r) = c1I0(µ0r) + c2K0(µ0r). (C.3.338)

Inside the vacuum region, fulfilling the boundary condition dφ
dr
(0) = 0 implies that c2 = 0, since

K0 diverges for x = 0. A particular solution inside the vacuum region is given by

φparticular(r) = φ0 +
D0

µ2
0

. (C.3.339)

Lastly, c1 can be determined from I0(0) = 1. Thus, in the vacuum region the solution is given
by

φvacuum(r) = φ0 +
D0

µ2
0

(1− I0(µ0r)). (C.3.340)
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Similarly, inside the shell c1 = 0 is necessary, since I0 diverges for large arguments, but the
field approaches a finite boundary condition for r → ∞. Since K0(r) → 0 for r → ∞, it follows

φ(r) = φM + c2K0(µMr). (C.3.341)

Demanding continuity of dφ
dr

at r = d, results in

−D0

µ0

dI0
dr

(µ0d) = c2µM
dK0

dr
(µMd), (C.3.342)

which implies

c2 = − D0

µ0µM

dI0
dr
(µ0d)

dK0

dr
(µMd)

. (C.3.343)

Hence,

φshell(r) = φM − D0

µ0µM

dI0
dr
(µ0d)

dK0

dr
(µMd)

K0(µMr). (C.3.344)

The only remaining unknown is φ0. An implicit equation for φ0 can be derived by demanding
continuity of φ(r) at r = d, which can be solved numerically:

φ0 +
D0

µ2
0

(1− I0(µ0d)) = φM − D0

µ0µM

dI0
dr
(µ0d)

dK0

dr
(µMd)

K0(µMd). (C.3.345)

In conclusion, the full solution is given by

φ(r) =

�
φvacuum(r), for r ≤ d,

φshell(r), else
(C.3.346)

where φ0 is the solution to (C.3.345).

D. Experimental parameters

This Section provides all experimental parameters utilized in numerical calculations, followed by
succinct derivations for parameters derived from other values.

Parameters for LLR

The analysis of LLR utilized the astrophysical parameters given in Ref. [7]. When calculating field
profiles and screening charges for the Sun, Moon, and Earth, their respective average densities
where employed. The density of the interplanetary medium is assumed to be ρV = 1.67 × 10−20

kg/m3, roughly equivalent to 10 hydrogen atoms per cubic centimeter. It’s worth noting that the
actual density varies, ranging from 5 to 40 atoms per cubic centimeter [155]. Nevertheless, my
analyses showed that altering the vacuum density by a factor of 10 had only a marginal impact
on the computed constraints.
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Parameters for neutron interferometry

Description Value

Inner radius vacuum chamber 2 cm
Inner length of vacuum chamber 9.4 cm
Inner radius vacuum chamber 2 cm
Inner length chamber 9.4 cm
Thickness of chamber walls 0.5 cm
Density of cylinder shells ρM 2700 kg/m3

Lowest vacuum pressure profile-mode 10−4 mbar
Lowest vacuum pressure pressure-mode 2.4× 10−4 mbar
ρV profile-mode 1.64× 10−8 kg/m3

ρV pressure-mode 3.92× 10−8 kg/m3

Air density 1.18 kg/m3

Temperature 293 K
Beam separation 5 cm
Wavelength of the neutron 2.72× 10−10 m
Neutron mass mn 939.565 MeV
cut-off to ensure field decays to φM inside cylinder shell RI(ρM) < 0.25 mm

Table 6: This is a summary of the experimental parameters used for computing constraints based on
the already existing neutron interferometry experiment in Ref. [66].

Description Value

Inner radius vacuum chamber 4.75 cm
Inner length of vacuum chamber 0.5 m
Inner radius vacuum chamber 4.75 cm
Inner length chamber 0.5 m
Thickness of chamber walls 0.5 cm
Density of cylinder shells ρM 2700 kg/m3

Lowest vacuum pressure profile-mode 10−4 mbar
Lowest vacuum pressure pressure-mode 2.4× 10−4 mbar
ρV profile-mode 1.64× 10−8 kg/m3

ρV pressure-mode 3.92× 10−8 kg/m3

Air density 1.18 kg/m3

Temperature 293 K
Beam separation 10 cm
Wavelength of the neutron 2.72× 10−10 m
Neutron mass mn 939.565 MeV
cut-off to ensure field decays to φM inside cylinder shell RI(ρM) < 0.25 mm

Table 7: This is a summary of the experimental parameters used for computing prospective constraints
for the split-interferometer.
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Parameters for qBOUNCE

Description Value

Mirror density ρM 2510 kg/m3

Vacuum pressure 2× 10−4 mbar
Vacuum density ρV 2.32× 10−7 kg/m3

Temperature 300 K
Gravitational acceleration g 9.806 m/s2

Neutron mass mn 939.565 MeV
cut-off to neglect influence of the vacuum chamber RI(ρV ) < 1 mm

Table 8: This is a summary of the experimental parameters used for computing constraints for
qBounce.

Parameters for CANNEX

Description Value

Mean mirror density ρM 2514 kg/m3

Lowest vacuum pressure 10−9 mbar
Highest vacuum pressure 500 mbar
Lowest vacuum density ρV 5.3× 10−12 kg/m3

Highest vacuum density ρV 2.6 kg/m3

Lowest plate separation 3 µm
Highest plate separation 30 µm
cut-off to ensure field decays to φM inside upper mirror RI(ρM) < 2.5 µm
cut-off to neglect influence of the vacuum chamber RI(ρV ) < 1 mm

Table 9: This is a summary of the experimental parameters used for computing prospective constraints
for cannex.

Pressure density conversion

In experiments such as qBounce, cannex, and neutron interferometry, the measurement typ-
ically focuses on vacuum pressure rather than its density. To convert pressure into density, the
ideal gas law is applied in the following form [156]:

p = ρ
NAkBT

M

⇒ ρ =
Mp

NAkBT
,

where p denotes pressure, ρ represents gas density, NA stands for Avogadro’s number, kB for
Boltzmann’s constant, M for molar mass (mass in kg per mole), and T for gas temperature.
The neutron interferometry analysis assumed helium with a molar mass of MHe ≈ 4×10−3 kg/mol
and a temperature of T = 293 K.
For qBounce, a composition of 80% nitrogen (N2) and 20% oxygen (O2), having molar masses
MO2 ≈ 31.9988 × 10−3 kg/mol, MN2 ≈ 28.0134 × 10−3 kg/mol and a temperature of T = 300 K
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was assumed.
The cannex analsis assumed Xenon with a molar mass of MXe ≈ 131.293× 10−3 kg/mol and a
temperature of T = 300 K.

CANNEX mirror density

For cannex, a mean mirror density (for both the upper and lower mirrors) of ρM = 2514 kg/m3

was utilized, initially provided by René Sedmik and derived from the following considerations:
During the inception of my PhD, the envisaged design for cannex was as follows:
The lower plate, several millimeters thick, was intended to be composed of SiO2 with a density of
2642 kg/m3, overlaid with a thin gold layer 200 nm thick, possessing a density of 19320 kg/m3.
Conversely, the upper plate was designed with three layers. The main layer, 100 µm in thickness,
comprised of Si with a density of 2329 kg/m3, coated on both top and bottom with a 70 nm thick
layer of gold.
To ensure symmetry in the setup, an average plate density for both plates was determined, as-
suming the SiO2 layer to also be 100 µm thick. This assumption was reasonable given that all
calculations assumed the scalar field could not penetrate deeper than 100 µm into the material.
Consequently,

ρM =
340× 19320 + 105 × 2329 + 105 × 2642

2× 105 + 340
kg/m3 ≃ 2514kg/m3. (D.0.347)

It’s important to note that the actual layers implemented differed slightly, a decision made later
in my PhD journey, after all calculations were completed. However, rigorous checks confirmed
that the constraint regions were highly insensitive to minor changes in ρM , as demonstrated in
Section B.2. Consequently, the constraint regions calculated in this thesis remain applicable to
the updated experiment.
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solution (blue) for a fixed value of λ = 10−5. Right column: The analytical exact
two mirror solution with ρV = 0 (dashed yellow) is contrasted with the numerical
solution (blue) for a fixed value of λ = 1031. The parameter A2 remains fixed at 1035

in Row a), 1040 in Row b), 1045 in Row c), and 1050 in Row d). Additionally,
ρV = 2.28× 10−20 MeV4 and ρM = 1.083× 10−5 MeV4. . . . . . . . . . . . . . . . 51

4.4.7 a) The analytical solution for a sphere is compared to the numerical algorithm, for
V0 = 10 MeV4, A2 = 1020 and λ = 10−24. The densities are given by ρV =
7.21 × 10−29 MeV4, ρM = 2.37 × 10−5 MeV4. b) The analytical solution for a
the cross section of a cylinder is compared to the numerical algorithm, for V0 = 10
MeV4, A2 = 1038 and λ = 10−5. The densities are given by ρV = 1.69 × 10−16

MeV4, ρM = 1.1× 10−5 MeV4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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4.5.1 This is an example of a FEM mesh for a cylinder. Each node corresponds to a basis
function that is 1 at one of the nodes and continuously falls of to 0 at the surrounding
nodes. For a detailed explanation I refer to the main text. . . . . . . . . . . . . . . 54

4.5.2 The analytically exact solution is compared to the output of Mathematica’s inbuilt
function NDSolve, which was returned without error-messages. The parameters are
V0 = 10 MeV4, A2 = 1035 and λ = 1031. The densities are given by ρV = 0,
ρM = 1.08× 10−5 MeV4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.3 The figure depicts an example of a FEM mesh that was used for cylinder simulations. 58
4.5.4 The dilaton field is shown for the parameters V0 = 10 MeV4, A2 = 1030, and λ = 1026.6. 59
4.5.5 The dilaton field is shown for the parameters V0 = 10 MeV4, A2 = 1036, and λ = 1029.6. 60
4.5.6 The relative residuals are shown for three simulations, characterized by the parameters

V0 = 10 MeV4, A2 = 1030, and λ = 1026.6. Throughout all simulations, the mesh
parameters remained consistent: the minimum distance between two points was fixed
at 0.472 nm in the z direction and 0.182 nm in the r direction, without any additional
uniform meshes around material surfaces. In the first simulation, the N parameters,
as elaborated in Section 4.4.2, were all set to 30; for the second simulation, they were
increased to 50, and for the third simulation, to 80. The meshes consisted of 12996,
37636, and 98596 nodes, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.7 The solutions obtained from the finest and coarsest meshes depicted in Fig. 4.5.6 are
compared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.8 A comparison between the simulation of the full cylinder at z = 0 (shown in blue) to
the cross sectional simulation of an infinitely long cylinder using the FDM (depicted in
dashed orange) is shown. The parameters for comparison are as follows: a) V0 = 10
MeV4, A2 = 1030, and λ = 1026.6. b) V0 = 10 MeV4, A2 = 1032, and λ = 1027.6.
c) V0 = 10 MeV4, A2 = 1034, and λ = 1028.6. d) V0 = 10 MeV4, A2 = 1036, and
λ = 1029.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.9 A comparison of the simulation of the full cylinder at z = 0 (shown in blue) to
the cross sectional simulation of an infinitely long cylinder using the FDM (depicted
in dashed orange) is shown. Cases a) and b) show δφ(r, z). The parameters for
comparison are as follows: a) V0 = 1010

18
MeV4, A2 = 1015, and λ = 1027.3. d)

V0 = 1010
18

MeV4, A2 = 1020, and λ = 1029.7. c) V0 = 10 MeV4, A2 = 1035, and
λ = 10−7.4. d) V0 = 10 MeV4, A2 = 1039, and λ = 10−7.2. . . . . . . . . . . . . . . 61

4.5.10 The figure depicts a simulation of the symmetron field for the parameters µ = 1 meV,
M = 10−1 GeV, and λS = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.11 This is a comparison between the simulation of the full cylinder at z = 0 (blue) and
the cross sectional simulation of an infinitely long (Fig. a) and b)), or the two-mirror
simulation (Fig. c) and d)) using the FDM (dashed orange). The parameters for
comparison are as follows: a) µ = 1 meV, M = 10−1 GeV, and λS = 10−2. b)
µ = 1 meV, M = 104.5 GeV, and λS = 10−25. c) µ = 1 meV, M = 10−1 GeV, and
λS = 10−2. d) µ = 1 meV, M = 104.5 GeV, and λS = 10−25. . . . . . . . . . . . . 63

4.5.12 The figure shows a symmetron simulation for the parameters µ = 6.1 × 10−5 eV,
λS = 10−2 and M = 103 GeV. The top solution denotes the intitial guess that was
used for Netwon’s method, the bottom solution is the converged symmetron solution. 64

4.5.13 The figure shows a symmetron simulation for the parameters µ = 6.1 × 10−5 eV,
λS = 10−2 and M = 103 GeV. The top solution denotes the intitial guess that was
used for Netwon’s method, the bottom solution is the converged symmetron solution. 65
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4.5.14 The figure shows a symmetron simulation for the cross section of a cylinder for the
parameters µ = 6.1× 10−5 eV, λS = 10−2 and M = 103 GeV.
a) denotes the initial guess that was used for Netwon’s method, and b) the converged
symmetron solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.15 The figure shows a symmetron simulation for the parameters µ = 6.1 × 10−5 eV,
λS = 10−2 and M = 103 GeV. The top solution denotes the intitial guess that was
used for Netwon’s method, the bottom solution is the converged symmetron solution. 66

4.6.1 The figure shows a comparison between the numerical algorithm and the exact solu-
tion, for the first four energy states in the absence of any scalar field. For the energy
differences one finds: |�ΔE13,analytical − ΔE13,numerical

�
/ΔE13,analytical| = 1.5 × 10−4,

|�ΔE14,analytical−ΔE14,numerical

�
/ΔE14,analytical| = 1.8×10−4, for a uniform mesh with

cut-off 100 µm and 500 points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.2 The diagram depicts the results obtained from a numerical algorithm directly derived

from a simulation of the potential of a dilaton field, utilizing specific parameters: V0 =
10 MeV4, A2 = 1040, and λ = 1023. Under these parameter settings, the dilaton field
yields an effective g value of 2.7×10−10 MeV (= 1.23×1020m

s
), as long as z < zmax =

1.5 × 10−10m. This threshold surpasses the range of the perturbed wave function,
thereby rendering the effective g approach valid. A comparison is made with the exact
solution corresponding to geff = 2.7× 10−10 MeV. In terms of energy differences, the
following comparisons are observed: |�ΔE13,analytical−ΔE13,numerical

�
/ΔE13,analytical| =

5.1×10−3, |�ΔE14,analytical−ΔE14,numerical

�
/ΔE14,analytical| = 6.2×10−3, for a uniform

mesh with cut-off 50 pm and 500 points. . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.1 Sketch of LLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 This is a comparison of the dilaton field of a hollow sphere with a thin shell indicated

by the vertical lines, alongside a solid sphere. The experimental parameters are taken
from the Earth, the dilaton parameters are V0 = 10 MeV4, λ = 1015 and A2 = 1010.
The fields were computed by numerically solving d2φ

dr2
+ 2

r
dφ
dr

= Veff,φ(φ; ρ), as described
in Section 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.3 The screening charge Q is plotted for A2 = 1015, λ = 1015 and V0 = 10 MeV4, with
ρV = 7.21× 10−29 MeV4 and ρM = 2.37× 10−5 MeV4. . . . . . . . . . . . . . . . 80

5.2.1 Illustrative diagrams of neutron interferometric configurations (not drawn to scale)
are presented for probing different prominent dark energy models. The setups involve
vacuum and air chambers designed in a cylinder format. (a) Depicts a monolithic
interferometer similar to the one utilized in [66], while (b) illustrates a suggested split-
crystal interferometer arrangement with an extended interaction region and increased
beam separation, facilitating the use of larger cylinder diameters. Figure published
in [3] and provided by Stephan Sponar. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Simulated dilaton field for V0 = 10 MeV4, A2 = 1037 and λ = 10−9 with ρV =
7.08× 10−17 MeV4. Figure published in [3]. . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 The calculations assumed λ = 10−9 and V0 = 10 MeV4. a) illustrates the relative
error of the approximation with respect to A2 and b) the normalized field profiles
along the z axis for r = 0. Here, the value 1 represents φ(0, z) = φV , while 0
corresponds to φ(0, z) = φM . The steep slopes are observed at the chamber walls.
Figure published in [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Sketch of the qBounce experiment. Figure published in [2] and provided by René
Sedmik. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 The figure depicts the four lowest energy states of neutrons within the gravitational
potential of the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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5.3.3 The dilaton field above a mirror placed at z < 0 is plotted for the parameters V0 = 10
MeV4, A2 = 1043, λ = 1032. The mirror density was assumed to be ρM = 1.082 ×
10−5 MeV4, the vacuum density is ρV = 10−15 MeV4 . . . . . . . . . . . . . . . . . 89

5.4.1 A cutaway illustration of the cannex setup is provided in the schematic view. Forces
within the system are identified through Fabry-Pérot interferometers, which detect
the elongation of the mass-spring system formed by helical springs and an upper plate.
The inset on the left specifies the material and thickness of different layers. Figure
published in [2] and provided by René Sedmik. . . . . . . . . . . . . . . . . . . . . 91

5.4.2 a) Only the upper plate surrounded by vacuum is simulated and compared to the full
cannex set up with both plates. b) Zooming into the lower surface of the upper
mirror demonstrates that both geometries lead to an indistinguishable field close to
the mirror surface. The parameters are given by V0 =10 MeV4, λ = 1031, A2 = 1045,
and ρV = 2.28× 10−20 MeV4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 The shaded blue region represents constraints derived from the short-range approx-
imation given by Eq. (5.2.223). The bullet points denote positions along the real
contour of the constrained region, obtained from simulations with V0 = 10 MeV4.
Figure published in [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.2 The field profiles of the three solutions listed in Table 5 are displayed. It’s noteworthy
that for the specified parameters, φV = 0.61 meV is maintained. Figure published
in [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 This is an illustration of how parameter constraints for qBounce were derived. V0

was set to 10 MeV4. The bullet points represent the actual boundary of the parameter
region constrained by qBounce. The dots were connected, and the cutoffs were
added to obtain the complete constrained region. . . . . . . . . . . . . . . . . . . . 104

5.5.4 The potential sensitivity of the forthcoming cannex measurements, displayed at
a one σ confidence level is depicted for both a) pressure and b) pressure gradient
measurements. The sensitivity is presented as a function of plate separation d. . . . 106

6.1.1 The constraint plots typically exhibit two distinct regimes: a): Illustrating constraints
for small values of the parameter λ. b): Depicting constraints for large values of λ.
Further explanations are available in the main text.
LLR: For LLR, the combined constraints from violations of the equivalence principle
and violations of the inverse square law are represented by filled areas located in the
bottom-left of each region.
Neutron interferometry: Constraint are filled areas surrounded by dashed red lines.
qBounce: Constraints are filled areas surrounded by solid red lines.
cannex: Prospective constraints are surrounded by solid black lines.
The interaction range of the dilaton is illustrated for log10(V0/MeV4) = 1, considering
two distinct values: The 1 µm and 1 AU contours correspond to vacuum densities of
ρV = 2.32× 10−7 kg/m3 (for qBounce) and ρV = 1.67× 10−20 kg/m3 (pertaining
to the interplanetary medium). Figure published in [5]. . . . . . . . . . . . . . . . . 108

6.1.2 Constraints regarding the dilaton field’s role as the source of dark energy are primarily
established by LLR. Within the illustrated region, V0 is defined as V0 = 3ΩΛ0m

2
plH

2
0 .

Constraints pertaining to violations of the equivalence principle are shown in blue,
while constraints from violations of the inverse square law are surrounded by dashed
lines. Figure published in [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.3 This figure presents a comparison of neutron interferometry constraints derived from
the experiment in Ref. [66], depicted in color, alongside the split-crystal interferometer
geometry delineated by dashed lines, as explained in the text. . . . . . . . . . . . . 110
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6.1.4 This figure illustrates the distinct contributions of constraints pertaining to the equiv-
alence principle, marked by solid lines, and deviations from the inverse square law,
delineated by dashed lines, towards the cumulative constraints derived from LLR, as
depicted in Fig. 6.1.1. While the constraints originating from equivalence principle
violations exhibit systematic shifts for increasing V0 in the large λ region, in accor-
dance with the explanations detailed in Fig. 6.1.1, constraints from deviations of the
inverse square law deviate from this shifting behavior. . . . . . . . . . . . . . . . . 111

6.2.1 Constraints on the parameter space of the symmetron model for different values of
the parameter µ based on the review in Ref. [53]; the Eöt-Wash results from Ref. [59];
the atom interferometry analysis in Ref. [58] (see Ref. [99] for an earlier analysis);
the investigations of hydrogen, muonium and the electron (g-2) in Ref. [65]; and
the analysis in this article for qBounce, neutron interferometry, and cannex (only
prospective). A full explanation is given in the main text. Figure published in [5]. . 113

6.2.2 This is a comparison between symmetron constraints computed in Ref. [64] using a
χ2 analysis and constraints obtained with the criteria established in this work, while
adopting all other theoretical assumptions from Ref. [64]. The colored filled areas
represent the constrained regions from Ref. [64] for different values of M . The
dashed line depicts the edge of the constrained region from my calculation, nearly
overlapping with the published result. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 Comparison between the qBounce constraints derived in Ref. [64] and those com-
puted in this work. a) The symmetron parameter µ is set to 0.1 eV. To the left of
line A, no symmetron solutions exist because the symmetron remains in its symmetric
phase within both the vacuum and mirror regions. To the right of line B, the sym-
metron is in its symmetry-broken phase within the mirror. b) Here, µ is set to 1 keV,
a parameter value for which Ref. [64] provides no constraints. . . . . . . . . . . . . 115

6.2.4 The prospective cannex constraints derived in Ref. [81] are compared to constraints
computed in this thesis. a) The value µ is fixed to 0.1 eV. The constraints largely
overlap, however, constraints in Ref. [81] have underestimated the potential of can-
nex by around two orders of magnitude on the M axis. b) The value µ is fixed to
1 eV. The constraints computed in Ref. [81] are far below the lower cut-off (they
violate Eq. (3.3.69)), resulting in a null result. The constraints have been vastly
underestimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Constraints on the parameter space of chameleon models, as elucidated in Ref. [53],
are further refined with considerations of quantum Casimir pressure [148], constraints
from levitated force sensor measurements [149], atom interferometry [58], and the
analyses conducted herein for qBounce and cannex. a) In this context, the param-
eter Λ is held constant at the dark energy scale of 2.4 meV. The shaded blue region
delineates the combined prospective constraints arising from pressure and pressure
gradient measurements on chameleon interactions, as inferred from cannex. Con-
versely, neither qBounce nor neutron interferometry yield discernible constraints.
b) Specifically for the chameleon model with n = 1, the shaded blue area represents
anticipated constraints from cannex, which are expected to coincide with existing
limits. Meanwhile, the compact dark red region denotes constraints from qBounce,
overlapping with atomic measurements and the cannex-derived constraints. Further
explanations are provided in the main text. Figure published in [5]. . . . . . . . . . 118

B.1.1 B.1.297 is plotted close to the contour of the cannex exclusion region. At the upper
edge, the relative error propagation of the old formula is worse by roughly a factor
10500 and hence completely unusable numerically. . . . . . . . . . . . . . . . . . . 124
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B.1.2 a) A consistency check is shown for the two equivalent pressure formulas for numerical
simulations and the analytically exact solution with ρV = 0. b) A comparison of the
pressure obtained from the analytical solution and from numerical simulations with
the new formula is shown. V0 = 10 MeV4 and λ = 1031.5 were kept fixed, these values
lie very close to the contour of the exclusion region, and are hence very relevant. . . 125

B.1.3 This figure shows a comparison between constraints obtained from P1 (B.1.293)
computed from the approximate two mirror solution in Appendix C (blue area without
clear bounds), the constraint computed from P2 (B.1.294) with the same solution
and constraints computed from P2 with simulations. The parameter V0 was fixed to
10 MeV4 and ρV = 2.28× 10−20 MeV4. . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1 The prospective constraints from cannex are compared for two mirror densities:
ρM = 19320 kg/m3 and ρM = 2329 kg/m3, considering V0 = 10 MeV4. Remark-
ably, both densities yield nearly identical constraints, with only a minuscule mismatch
observed near the arrows. It’s noteworthy that there is no discernible mismatch
whatsoever in the small λ region. The symmetron and chameleon models exhibit
comparable insensitivity to the precise values of the mirror densities. Given the sub-
stantial computational effort required to execute numerous simulations, this plot was
generated based on the approximate two mirror setup outlined in Appendix C. Never-
theless, the simulations consistently demonstrate the same insensitivity to the mirror
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.3.1 This figure has been published in [2], and constraints have been computed as explained
in this reference. The explanation of this figure matches the explanations of Fig.
6.1.1 in Section 6.1 with two notable differences: First, two qBounce constraints
are presented: Lighter areas correspond to the micron screening approximation, while
darker areas correspond to the fermi screening approximation. Second the individual
contributions of LLR I (filled blue areas) and LLR II (dashed LLR area) are shown.
The main text provides a more detailed explanation. . . . . . . . . . . . . . . . . . 128

B.6.1 Examples are presented for comparing dilaton constraints for qBounce derived from
perturbation theory with those obtained via numerical calculations in the large λ
region. a) In the investigation of the large λ region of the dilaton field with V0 =
10 MeV4, the approximate two mirror solution derived in Appendix C was utilized
for comparison. It’s important to note that the constraints applied here required
|δE14| > 2 × 10−15 eV. These assumptions slightly deviate from the treatment
outlined in the main text, as this comparison predates the completion of this thesis
and certain assumptions have been refined subsequently. Due to time constraints and
the illustrative nature of this example this analysis was not repeated with the updated
constraint criteria. Nevertheless, this doesn’t alter the qualitative insight gained,
indicating that numerical and perturbative calculations can diverge significantly in
magnitude. b) Contrasting qBounce constraints derived from perturbation theory
with those obtained via numerical calculations for the symmetron model with µ = 1
keV reveals that perturbation theory results in no constraints at all! . . . . . . . . . 133

B.6.2 The ground state wave function in the presence of a dilaton field for the fixed
paramters V0 = 10 MeV4 and λ = 8 × 1028 is shown. The parameter A2 was
varied as indicated in the figure. The unperturbed Newtonian case is shown in red. . 134

B.6.3 a) The dilaton potential for the neutron is shown for two different value of A2, the
unperturbed ground state of the neutron is shown in dashed green. b) The neutrons
ground state energy in the presence of a dilaton field is compared to B.6.320. . . . 135

C.3.1 The two modified Bessel functions are plotted for α = 0. . . . . . . . . . . . . . . . 139
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Abbreviations and Symbols

List of Abbreviations
cannex Casimir And Non-Newtonian force EXperiment, see Section 5.4
chameleon chameleon field model defined in Section 3.2
CMB Cosmic microwave background radiation
dilaton environment-dependent dilaton field model defined in Section 3.1
Eq. Equation
FEM Finite Element Method. Numerical method to solve PDEs.
Fig. Figure
FLRW metric Friedmann-Lemâıtre-Robertson-Walker metric, describes a universe

obeying the cosmological principle of homogeneity and isotropy

FWF Fonds zur Förderung der wissenschaftlichen Forschung, Österreichs
zentrale Einrichtung zur Förderung der Grundlagenforschung.

GR general relativity
intermediate λ region parameter region of the dilaton defined in Section 3.1.2
large λ region parameter region of the dilaton defined in Section 3.1.2
LLR Lunar Laser Ranging
LLR I LLR tests of the SEP
LLR II LLR tests of the inverse square law
Mathematica Wolfram Mathematica software, see Ref. [108]
MOND Modifield Newtonian Dynamics
PDE partial differential equation
qBounce gravity-resonance-spectroscopy experiment, see Section 5.3
RS relative residual, defined in Eq. (4.1.96) and (4.5.146)
small λ region parameter region of the dilaton defined in Section 3.1.2
SEP Strong equivalence principle
symmetron symmetron field model defined in Section 3.3
VEV vacuum expectation value, classically: φρ

WEP weak equivalence principle
ΛCDM Standard model of cosmology, with a cosmological constant Λ0

and cold dark matter

List of Symbols
a⃗ acceleration
a⃗G Newtonian acceleration of the Earth and Moon towards the Sun
A(φ) Weyl-rescaling

A2 dilaton parameter A(φ) ≃ 1 + A2
φ2

m2
pl

Ai Airy function
aS scale factor of the universe
C when used as subscript it refers to the chameleon field
c speed of light in vacuum
D mesh construction parameters defined in Section 4.4.2

when used as subscript it refers to the dilaton field
in the context of cannex this refers to the thickness of the upper plate

d either radius of inner cylinder in neutron interfeometry,
or half the plate separation in the cannex experiment
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dl line element (gµνdx
µdxν)

En n’th energy of the neutron

f⃗φ fifths force associated with a scalar field
F,Fi The FEM seeks to finds roots to F = (F1, ...,FN), see Section 4.5.1
F, Fi The FDM seeks to finds roots to F = (F1, ..., FN), see Appendix B.4
G Gravitational constant
GM(i) Meshes defined in Section 4.4.2
g determinant of the space-time metric, or g ≃ 9.8m

s2

gµν Einstein Metric
g̃µν Jordan Metric
geff effective gravitational acceleration of the neutron including scalar field effects
ℏ reduced planck constant
H Hubble parameter
H0 current value of the Hubble parameter
hi defined as si+1 − si, where s1, ..., sN refers to a 1D mesh
Iα modified Bessel function of the first kind
JF Jacobi matrix of F
k k ∈ {−1, 0, 1} for a negatively curved, flat or positively curved universe
Kα modified Bessel function of the second kind
k0 wave number of the neutron in neutron interferometry
L chamber length in neutron interferometry
LSM Lagrange density of standard model particles

M Symmetron parameter A(φ) ≃ 1 + φ2

2M2

m mass or meter
M♁ mass of the Earth
Mc Chameleon parameter A(φ) = eφ/Mc

mG gravitational mass
mI intertial mass
mn mass of a neutron

mpl reduced Planck mass
�

ℏc
8πG

n Chameleon parameter V (φ) = Λn+4

φn

n⃗ normal vector
N1, N2, N3 mesh construction parameters defined in Section 4.4.2
p pressure
pert(n) heuristic criterion for the validity of perturbation theory,

defined in Eq. (4.6.157)
P scalar field induced pressure in the z- direction

on the upper plate of cannex
R Radius of a sphere / in Section 2: Ricci scalar
r radial coordinate for spherical of cylindrical coordinates
RI(ρ)

1
µρ

Rµν Ricci tensor
REM Maximum Earth-Moon separation
S when used as subscript it refers to the symmetron field
s s = r for the cross section of a cylinder or a sphere,

s = z for the one and two mirror geometries
t time
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Tµν energy-momentum tensor
T φ
µν Tµν of a scalar field: ∂µφ∂µφ− gµν

�
1
2
∂α∂

αφ− V (φ)
�

U gravitational self-energy ( 1
8πm2

pl

1
2

� ρ(x⃗)ρ(x⃗′)
|x⃗−x⃗′| d3xd3x′)

UX Scalar field induced potential of a neutron, defined in Eq. (5.2.219)
(neutron interferometry) and Eq. (5.3.231) (qBounce)

UM(i) Meshes defined in Section 4.4.2
UX;P (r, z) represents the scalar field potential within the vacuum or air chamber

at pressure P
uµ four-velocity
V (φ) self-interaction potential of scalar fields
V,φ

∂V
∂φ

V0 dilaton parameter V (φ) = V0e
−λφ/mpl

Veff effective scalar field potential Veff = V (φ) +
�
A(φ)− 1

�
ρ

Veff,φ
∂Veff

∂φ

W Lambert W function, defined as inverse function of xex

w pressure-to-energy-density ratio
X used to distinguish between dilaton (D), chameleon (C)

and symmetron (S) models
x, y, z Cartesian coordinates
x⃗ position vector in three dimensions

z0 3

�
1

2m2g
∼ 5.9 µm, length-scale associated with neutron wave functions

zmax maximum value of z up to which we can linearize a scalar field potential
of a neutron, see Eq. (4.6.160)

α ΔϕX;Vacuum −ΔϕX;Air

β(φ) full coupling to matter β(φ) ≃ mpl
dA
dφ
(φ)

Γ Paramteter that takes the value 0 for one and two mirror geometries,
0.5 for cylindrical geometries and 1 for spherical geometries

γ dilaton parameter γ := log10
�
V0/MeV4

�
Γα
µν Christophel Symbol

Δ Laplace operator
ΔEpq Difference between p’th and q’th energy state
ΔϕX;P = δϕX;P (0)− δϕX;P (0.015 m)
δφ redefined dilaton field φ = φM + δφ
δf(r) centripetal acceleration of the Moon caused by the dilaton field of Earth
δϕX;P (r) Scalar field induced phase shift for a neutron flying in a cylinder

at radius r, with gas pressure P
δEpq difference between scalar field induced energy shifts between states

p and q computed using perturbation theory to first order

δem
a
φ♁−a

φ�
aG

, where aφ♁, aφ� refer to the scalar field induced acceleration

of the Earth and Moon towards the sun, whereas aG is the regular
Newtonian acceleration towards the sun.

δsim :=−QX
m2

n

k0

� L/2

−L/2
dz

�
AX

�
φ(0, z)

�− AX

�
φAir

��
δapprox :=−QX

m2
n

k0
L
�
AX

�
φV

�− AX

�
φAir

��
η Nodtvedt parameter for violations of the SEP (n = 0) in GR
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ηµν Minkowski metric
Λ0 Cosmological constant

Λ Chameleon field parameter V (φ) = Λn+4

φn

λ dilaton parameter V (φ) = V0e
−λφ/mpl

λS Symmetron parameter V (φ) = −mu2

2
φ2 + λS

4
φ4

λn wavelength of the neutron in neutron interferometry (= 2.72 Å)

µ Symmetron parameter V (φ) = −µ2

2
φ2 + λS

4
φ4, or 10−6

µρ scalar field mass at material density ρ
ξ δϕX,P1(0)− δϕX,P0(0)
ρ density
ρM material density
ρV vacuum density
ρΛ0 density of dark energy
ρc critical density to make the universe flat
σ(d) Measurement sensitivity of cannex at a CL of 68 %, as function of d
Σ symbol for sums
φ Symbol for scalar fields
φρ(x⃗) positive solution of Veff,φ

�
φρ(x⃗), ρ(x⃗)

�
= 0

φ0 value of φ at z = 0
φV potential minimum inside vacuum
φM potential minimum inside material
φρ potential minimum at material density ρ
φ(n) n′th guess of φ in Newton’s method
ϕi FEM basis functions
ϕij Kronecker Delta symbol
χ Original string dilaton not investigated in this work, see Section 3.1
χ0 value of χ for which the coupling to matter is minimized
ψ neutron wave function
ψi Standard Model fields, or value of ψ at zi
ψn n’th energy state of the neutron
Ω (average density of the universe) / (density to make the universe flat)
Ωf = ω0-ωS

Ω̂ Domain over which a PDE is solved
ΩΛ0 contribution of dark energy density to Ω
Ωmatter contribution of matter energy density to Ω
ω0 Moon’s orbital frequency
ωS Sun’s orbitan frequency

∂Ω̂D Boundary of domain where Dirichlet boundary conditions apply

∂Ω̂N Boundary of domain where Neumann boundary conditions apply
∂αφ partial derivative of φ with respect to xα, notation used in relativistic context
∂
∂xi

partial derivative with respect to coordinate xi,

notation used in non-relativistic context
∇ν covariant derivative

∇⃗ gradient
QX screening charge, definitions in Eq. (5.1.201) for the dilaton
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and for the chameleon and symmetron we used the definitions
provided in [3, 61, 62]� D’Alembert operator nµν∂µ∂ν

ḟ time derivative of f
df
du

derivative of function f that only depends on u
||φ||2 Euclidean norm of φ� quantitity associated with the Moon

♁ quantity associated with the Earth
∼ A ∼ above a quantity refers to the corresponding Jordan frame expression
≪, ≫ much smaller, much greater
∧ logical and
∨ logical or�
Ω̂
f(u)du integral of f(u) over Ω̂

164



Hauke Fischer
Curriculum Vitae hauke.fischer@tuwien.ac.at

Scientific Career

6/2021 - current Project assistant
In the group of Privatdoz. Dipl.-Ing. Dr.techn. Mario Pitschmann,
at the Atominstitut of the Technische Universität Wien.

Education

6/2021 - current PhD in Physics, Technische Universität Wien
Thesis: Search for Dark Energy and Modified Gravity with Tabletop Experiments
Supervisor: Privatdoz. Dipl.-Ing. Dr.techn. Mario Pitschmann

10/2018 - 2/2021 Master of Science in Physics (average grade 1.0), Universität Wien
Thesis: Investigation of the phase transition from low- to high chalcocite in
nanorods using High-Dimensional Neural Network Potentials
Supervisor: Univ.-Prof. Mag. Dr. Christoph Dellago

10/2016 - 11/2018 Bachelor of Science in Physics (average grade 1.2), Universität Wien
Thesis: A general review on dark matter, culminating in possible detection
methods using molecule interferometry
Supervisors: Univ.-Prof. Dr. Markus Arndt, Dipl.-Ing. Dr. Armin Shayeghi

10/2012 - 7/2015 Bachelor of Science in Mathematics (average grade 1.1), Universität Wien
Thesis 1: The Central Limit Theorem, Following a Method by J.W. Lindeberg
Supervisor: Assoz. Prof. Mag. Dr. Roland Zweimüller
Thesis 2: Differentiation on normed spaces
Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Gerald Teschl

Publications & preprints
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