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We establish an exact formulation for wave scattering of a massless field with spin and charge by a
Kerr–Newman–de Sitter black hole. Our formulation is based on the exact solution of the Teukol-
sky equation in terms of the local Heun function, and does not require any approximation. It
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1. Introduction

Observational efforts to prove black holes (BHs) finally began to bear fruit in the last few years:
direct detection of gravitational waves (GWs) emanating from a merger of binary BHs [1], and
electromagnetic observations with very-long-baseline interferometry (VLBI) [2]. The growing global
network of ground-based GW interferometers and VLBI multi-wavelength observations at higher
resolutions in the near future will be powerful tools to unveil the nature of BHs or to test the Kerr
hypothesis. By virtue of the uniqueness of the Kerr solution in general relativity, they allow us
unprecedented tests of gravity in the strong-field regime. Theoretical prediction of the propagation
of fields with different spins on BH geometry is thus important.

While in the short-wavelength regime one can rely on the geometrical optics approximation, in
the long-wavelength regime the approximation breaks down and one needs to take into account
wave optics. Most of the physically interesting cases of the wave equations on BH geometries can
be solved by separation of variables. The separability of the Klein–Gordon equation for the Kerr–
Newman family with a cosmological constant was clarified by Carter [3–5]. This result, with the aid
of the Newman–Penrose formalism [6], was generalized to higher-spin wave equations for the Kerr
background [7–10] and for the Kerr–de Sitter background [11,12].With the separated master equation
known as the Teukolsky equation, one can investigate wave propagation, for which scattering analysis
is a powerful approach [13]. Observables in the wave optics have been commonly evaluated in the
literature with certain approximations such as the WKB approximation.

In Ref. [14], Suzuki, Takasugi, and Umetsu (STU) showed that both angular and radial parts of the
Teukolsky equations for a massless field with spin and charge on the Kerr–Newman–de Sitter (KNdS)
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spacetime can be transformed into the Heun equation1. This result was further generalized to Petrov
type-D vacuum backgrounds with a cosmological constant [33]. The Heun equation is a second-
order linear homogeneous ordinary differential equation with four regular singular points [34–38].
There are several types of exact solutions for the Heun equation, depending on the analyticity around
singular points. Among them, in a series of works [14,39,40], STU adopted a series of the hypergeo-
metric functions to construct an exact solution for the Teukolsky equation on the KNdS background,
along the same lines as the Mano–Suzuki–Takasugi formalism [18–20] for the asymptotically flat
background. They derived an exact formula for the absorption rate in terms of an infinite series.
Their formalism was also applied to the calculation of the quasinormal mode (QNM) frequencies for
the Kerr–de Sitter black hole [41], generalizing Leaver’s method [42]. On the other hand, in recent
work [43] on the Kerr–de Sitter background, Hatsuda employed a simpler exact solution known as
the local Heun function or simply the local solution, and obtained a compact formula for the QNM
frequencies with arbitrary high precision.

In this paper, we consider a massless test field with spin and charge on the KNdS background,
and establish an exact formulation of the scattering problem using the local Heun function. The
formulation based on the local Heun function is transparent and provides us with concise formulae
for black hole physics such as the greybody factor and Green function. One can evaluate specific
values of the local Heun function by using a modern technical computing system, Mathematica,
which implemented the various Heun functions as built-in functions in the version 12.1 update in
2020.

The rest of the paper is organized as follows. In Sect. 2, we transform the Teukolsky equation for
a massless field on the KNdS background to the Heun equation, and provide the exact solution in
terms of the local Heun function. In Sect. 3, we consider the boundary condition at the horizons and
obtain the connection coefficients, which allow us to solve the scattering problem with the exact
solution. In Sect. 4, we highlight several applications of our formulation such as QNMs, S-matrix,
cross section, reflection/absorption rate, and Green function. Section 5 is devoted to the conclusion.

2. Exact solution

In this section, following Refs. [14,43], we present the exact solution of the Teukolsky equation on
the KNdS background. After summarizing our notation of the KNdS metric in Sect. 2.1, we review
the transformation of the angular and radial parts of the Teukolsky equation into the Heun equation
in Sect. 2.2. In Sect. 2.3 we provide the exact solution in terms of the local Heun function. We
consider the boundary condition of the angular solution in Sect. 2.4, and deal with the radial solution
in Sect. 3.

2.1. Kerr–Newman–de Sitter spacetime

As a rotating and charged black hole solution in the presence of the cosmological constant, we
consider the KNdS spacetime. The KNdS metric in Boyer–Lindquist coordinates takes the following
form:

ds2 = − �

(1 + α)2ρ2 (dt − a sin2 θdϕ)2 + ρ2
(

dr2

�
+ dθ2

1 + α cos2 θ

)

1 For the asymptotically flat spacetime, the Teukolsky equations can be transformed into the confluent Heun
equation [15–26]. See also Refs. [27–32] for analyses of massive fields in the context of the Heun equations.
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+ (1 + α cos2 θ) sin2 θ

(1 + α)2ρ2 [adt − (r2 + a2)dϕ]2, (1)

where

�(r) = (r2 + a2)

(
1 − �

3
r2
)

− 2Mr + Q2, α = �a2

3
, ρ2 = r2 + a2 cos2 θ . (2)

Here,� is the cosmological constant, and M , aM , and Q are respectively the mass, angular momen-
tum, and charge of the black hole. The electromagnetic field caused by the charge of the black hole
is given by

Aμdxμ = − Qr

(1 + α)2ρ2 (dt − a sin2 θdϕ). (3)

One can consider several limiting cases. For instance, Q = 0 reproduces the Kerr–de Sitter spacetime,
whereas Q = 0 and a = 0 reproduce the Schwarzschild–de Sitter (SdS) spacetime.

Throughout the paper, we assume � > 0, and focus on the case where �(r) = 0 has four distinct
real roots under the condition [44]

α < 7 − 4
√

3, Mc,− < M < Mc,+, (4)

where

Mc,± = (1 − α)3/2

3
√

2�

√
1 ± γ (2 ∓ γ ), γ =

√
1 − 12(α + β)

(1 − α)2
, β = �Q2

3
. (5)

We denote the four roots of �(r) = 0 as r±, r′±. We can then factorize �(r) as

�(r) = −�
3
(r − r−)(r − r+)(r − r′+)(r − r′−). (6)

We set the ordering of the four roots as r′− < 0 ≤ r− < r+ < r′+, where r−, r+, and r′+ are the inner
(Cauchy) horizon, outer (event) horizon, and cosmological horizon, respectively. We are interested
in the scattering problem in the range r+ ≤ r ≤ r′+. Comparing Eq. (6) with Eq. (2), it holds that

r′− + r− + r+ + r′+ = 0. (7)

Note that so long as �(r) = 0 has four distinct roots, our arguments in Sect. 2 apply to the
asymptotically AdS geometry with � < 0, except for the ordering of the four roots.

For the KNdS spacetime with �M 2 � 1, we have

r± � M ±
√

M 2 − a2 − Q2, r′± � ±
√

3

�
. (8)

For the SdS case, if 0 < �M 2 < 1/9, there are four real roots, which can be expressed in a simple
expression:

r′− = −2M Re(ξ), r− = 0, r+ = 2M Re(eiπ/3ξ), r′+ = 2M Re(e−iπ/3ξ), (9)

where

ξ =
(

1

�M 2

)1/3
(

3 + i

√
1

�M 2 − 9

)1/3

. (10)
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For �M 2 � 1,

ξ � eiπ/6
√
�M 2

(1 − i
√
�M 2), (11)

and hence

r+ � 2M , r′± � ±
√

3

�
. (12)

For instance, for the SdS with �M 2 = 10−3, we have r′−/M = −55.75, r+/M = 2.005, r′+/M =
53.74.

The tortoise coordinate r∗ is defined by

dr∗ = (1 + α)(r2 + a2)

�(r)
dr (13)

or

r∗ = ln |r − r+|
2κ(r+)

+ ln |r − r′+|
2κ(r′+)

+ ln |r − r′−|
2κ(r′−)

+ ln |r − r−|
2κ(r−)

, (14)

where

κ(rh) = �′(rh)

2(1 + α)(r2
h + a2)

(15)

yields the surface gravity at the horizons.

2.2. Transformation of the Teukolsky equation into the Heun equation

We consider the propagation of a massless field with spin s and charge e on the KNdS background.
In terms of the Newman–Penrose formalism, the master variables ψs are given by

ψs =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�0 or ρ−4�4, (s = 2 or − 2),

�0 or ρ−2�2, (s = 1 or − 1),

χ0 or ρ−1χ1, (s = 1
2 or − 1

2),

φ (s = 0),

(16)

where each case corresponds to the gravitational, electromagnetic, Dirac, and scalar field, respec-
tively. Note that s = 0 corresponds to a conformally coupled massless scalar field, whose equation
of motion is given by (�−R/6)φ = 0, where �φ = 1√−g Dν(

√−ggμνDμφ)with Dμ = ∂μ− ieAμ.

The Teukolsky equations for spin 0, 1
2 , 1, 3

2 , 2 fields on the Kerr–de Sitter background and those
for spin 0, 1

2 fields on the KNdS are separable and take the unified form [40]. With

ψs = Rs(r)Ss(θ)e
−iωteimϕ (17)
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and the separation constant λ, the angular and radial parts of the Teukolsky equation are given by2

[
d

dx
(1 + αx2)(1 − x2)

d

dx
+ λ− s(1 − α)− 2αx2

+ 4sx(1 + α)[mα − c(1 + α)]
1 + αx2 − (1 + α)2[m + sx − (1 − x2)c]2

(1 + αx2)(1 − x2)

]
Ss(x) = 0, (18)

[
�−s d

dr
�s+1 d

dr
+ J 2 − isJ�′

�
+ 2isJ ′ − 2α

a2 (s + 1)(2s + 1)r2 + 2s(1 − α)− λ

]
Rs(r) = 0,

(19)

where x = cos θ , c = aω, �′ = d�/dr, and

J (r) = (1 + α)K − eQr, (20)

K(r) = ω(r2 + a2)− am. (21)

It was clarified in Ref. [14] that the angular and radial Teukolsky equations on the KNdS background
can be transformed into Heun equations, and the exact solution was constructed in terms of a series
of hypergeometric functions. Regarding the transformation from the Teukolsky equation to the Heun
equation, there are 4! = 24 independent transformations depending on how to map the four regular
singular points. For the angular part we follow the transformation adopted in Ref. [14], whereas for
the radial part we follow the transformation adopted in Ref. [43] for the Kerr–de Sitter background,
so that our parameter regions of interest, −1 ≤ x ≤ 1 or r+ ≤ r ≤ r′+, are mapped to 0 ≤ z ≤ 1,
where z is the independent variable after the transformation.

Further, it was shown in Ref. [33] that, for a massless field on Petrov type-D vacuum backgrounds
with a cosmological constant, the separated Teukolsky equations can be transformed into Heun
equations. While we focus on Eqs. (18) and (19) on the KNdS background, our analysis can be
straightforwardly generalized to such a case.

2.2.1. Angular part
Let us begin with the angular part (18) of the Teukolsky equation. Since Eq. (18) does not depend
on the charge Q, the argument on the angular part remains the same regardless of the charge. Note
also that the cosmological constant � enters the equation only via α = �a2/3. Therefore, for the
nonrotating limit a → 0, for which α (and c) vanishes, the equation does not depend on �.

For simpler geometries, the angular Teukolsky equation (18) allows a simple exact solution. For
a nonrotating black hole, i.e., a Schwarzschild(–de Sitter) or Reissner–Nordström(–de Sitter) black
hole, the exact solution is known as the spin-weighted spherical harmonics, Ss(θ)eimϕ = sY�m(θ ,ϕ),
with the eigenvalue λ = �(�+ 1)− s(s − 1). The explicit form is given by

sY�m(θ ,ϕ) = (−1)m
√
(�+ m)!(�− m)!(2�+ 1)

4π(�+ s)!(�− s)! sin2�
(
θ

2

)

2 There is a typographical error in the angular equation (3.1) in Ref. [40]: The second last term −2m(1+α)ξ
in the second line should be +2m(1 + α)ξ . With the corrected sign, Eq. (3.1) is consistent with Eq. (2.7)
and their definition of A3. In Eq. (18), we rewrite Eq. (3.1) in a more compact form, reflecting the correction.
Equation (18) is also consistent with Eq. (2.4) in Ref. [43].
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�−s∑
p=0

(
�− s

p

)(
�+ s

p + s − m

)
(−1)�−p−seimϕ cot2p+s−m

(
θ

2

)
. (22)

For the Kerr or Kerr–Newman geometry, the exact solution is denoted as the spin-weighted spheroidal
function. No analytic expression for the eigenvalue λ is known in this case.

For the more general case of a rotating black hole in the presence of the cosmological constant,
the spin-weighted spheroidal function is not the analytic solution. However, we can still derive the
exact solution since the angular equation (18) can be transformed into the Heun equation. With a
nonzero cosmological constant, the angular Teukolsky equation (18) has four regular singular points
at x = ±1, ±i/

√
α after removing a removable singularity at x = ∞. We transform the independent

and dependent variables as

z = (1 − i/
√
α)(x + 1)

2(x − i/
√
α)

, (23)

Ss(x) = zA1(z − 1)A2(z − za)
A3(z − z∞)y(a)s (z) (24)

to map the four regular singular points (−1, 1, −i/
√
α, i/

√
α) to (0, 1, za, ∞). Here, the superscript

(a) denotes the angular part. Note that the boundaries x = −1, 1 are now mapped to z = 0, 1,
respectively. Here, we denote z∞ = z|x→∞ and za = z|x→−i/

√
α , namely,

z∞ = 1 − i/
√
α

2
, za = −(1 − i/

√
α)2

4i/
√
α

, (25)

and define

A1 = m − s

2
, A2 = −m + s

2
,

A3 = 1

2

[
s + i

(
1 + α√
α

c − m
√
α

)]
, A4 = 1

2

[
s − i

(
1 + α√
α

c − m
√
α

)]
, (26)

which satisfy an identity

A1 + A2 + A3 + A4 = 0. (27)

The transformations (23) and (24) allow us to rewrite the angular equation (18) as

d2y(a)s

dz2 +
(

2A1 + 1

z
+ 2A2 + 1

z − 1
+ 2A3 + 1

z − za

)
dy(a)s

dz
+ ρ+ρ−z + u

z(z − 1)(z − za)
y(a)s = 0, (28)

where

ρ+ = 1, ρ− = 1 − 2A4, u = −
[

iλ

4
√
α

+ 1

2
+ A1 +

(
m + 1

2

)
(A3 − A4)

]
. (29)

Equation (28) is nothing but the Heun equation, at which we shall take a closer look in Sect. 2.3.

2.2.2. Radial part
Next, we proceed to the radial part of the Teukolsky equation (19). The equation has four regular
singular points at r = r±, r′± after removing a removable singularity at r = ∞. We transform the
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independent and dependent variables as

z = r′+ − r−
r′+ − r+

r − r+
r − r−

, (30)

Rs(r) = zB1(z − 1)B2(z − zr)
B3(z − z∞)2s+1y(r)s (z) (31)

to map the four regular singular points (r+, r′+, r′−, r−) to (0, 1, zr , ∞). Here, the superscript (r)
denotes the radial part. To avoid notational complexity, here we use z to denote the independent
variable as in the angular part, but no confusion should occur as the arguments on the angular
and radial parts are independent of each other. Note that the black hole horizon r = r+ and the
cosmological horizon r = r′+ are now mapped to z = 0, 1, respectively. Therefore, again, the
parameter range that we are interested in is 0 ≤ z ≤ 1. Here we denote z∞ = z|r→∞ and zr = z|r→r′− ,
namely,

z∞ = r′+ − r−
r′+ − r+

, zr = z∞
r′− − r+
r′− − r−

, (32)

both of which are larger than unity. Also, we define a purely imaginary function

B(r) = iJ (r)

�′(r)
, (33)

and denote

B1 = B(r+), B2 = B(r′+), B3 = B(r′−), B4 = B(r−), (34)

which satisfy an identity

B1 + B2 + B3 + B4 = 0. (35)

With the transformations (30) and (31) and the identities (7) and (35), the radial Teukolsky
equation (19) can be rewritten as

d2y(r)s

dz2 +
(

2B1 + s + 1

z
+ 2B2 + s + 1

z − 1
+ 2B3 + s + 1

z − zr

)
dy(r)s

dz
+ σ+σ−z + v

z(z − 1)(z − zr)
y(r)s = 0, (36)

where

σ+ = 2s + 1, (37)

σ− = s + 1 − 2B4, (38)

v = λ− 2s(1 − α)− �
3 (s + 1)(2s + 1)(r+r− + r′+r′−)

�
3 (r− − r′−)(r+ − r′+)

− i(2s + 1)[2(1 + α){ω(r+r− + a2)− am} − eQ(r+ + r−)]
�
3 (r− − r′−)(r− − r+)(r+ − r′+)

. (39)

These expressions are much simpler than those in Ref. [14] and a natural generalization of those in
Ref. [43] for Q = 0.
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2.3. Local Heun function

In Sects. 2.2.1 and 2.2.2, we see that we can transform the angular and radial Teukolsky equations
into Eqs. (28) and (36) respectively, which are the same type of differential equation, as pointed out
first in Ref. [14]. This type of differential equation, i.e., the second-order Fuchsian equation with
four regular singular points on the Riemann sphere, is known as the Heun equation [35–37], which
is given by

d2y

dz2 +
(
γ

z
+ δ

z − 1
+ ε

z − a

)
dy

dz
+ αβz − q

z(z − 1)(z − a)
y = 0, (40)

with the condition

γ + δ + ε = α + β + 1, a �= 0, 1. (41)

The Heun equation has six independent parameters. a is called a singularity parameter, α,β, γ , δ
(and ε) are called exponent parameters, and q is called an accessory parameter. In Sect. 2.3 only,
we use α,β, γ , a to denote the parameters of the Heun equation, rather than the parameters for the
KNdS geometry.

The angular and radial Teukolsky equations in the forms (28) and (36) are nothing but the Heun
equation (40) with

a = za, q = −u, α = ρ+, β = ρ−, γ = 2A1 + 1, δ = 2A2 + 1, ε = 2A3 + 1, (42)

and

a = zr , q = −v, α = σ+, β = σ−, γ = 2B1 +s+1, δ = 2B2 +s+1, ε = 2B3 +s+1,
(43)

respectively. Note that the conditions (41) are satisfied by virtue of the identities (27) and (35).
The Heun equation has four regular singular points at z = 0, 1, a, ∞. At the vicinity of each regular

singular point, we can construct two linearly independent local solutions, or Frobenius solutions.
Following the standard notation, we denote the local Heun function Hl(a, q;α,β, γ , δ; z) as the
canonical local solution of the Heun equation at z = 0, namely,

Hl(a, q;α,β, γ , δ; z) =
∞∑

k=0

ckzk , (44)

where the coefficients ck are defined by the three-term recurrence relation

c−1 = 0 c0 = 1,

(k + 1)(k + γ )ack+1 − {k[(k + γ + δ − 1)a + (k + γ + ε − 1)] + q} ck

+ (k + α − 1)(k + β − 1)ck−1 = 0. (45)

The local Heun function (44) converges for |z| < min(1, |a|). Therefore the maximum of the radius
of convergence is unity for |a| > 1. However, the local Heun function Hl can be analytic at z = 0, 1
for some discrete values q = qm (m = 0, 1, 2, . . .). In this case the function is called the Heun
function and is denoted by Hf . Further, it can be analytic at z = 0, 1, a with α = −n (n = 0, 1, 2, . . .)
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and q = qm (m = 0, 1, 2, . . . , n). In this case the function becomes polynomial and is called the
Heun polynomial Hp. In this paper, we only use the local Heun function (44).

The local Heun functions at z = 0, 1 are of special interest to us in discussing scattering from
black holes. Two local Heun functions at z = 0 are given by

y01(z) = Hl(a, q;α,β, γ , δ; z), (46)

y02(z) = z1−γHl(a, (aδ + ε)(1 − γ )+ q;α + 1 − γ ,β + 1 − γ , 2 − γ , δ; z), (47)

and two local Heun functions at z = 1 are given by

y11(z) = Hl(1 − a,αβ − q;α,β, γ , δ; 1 − z), (48)

y12(z) = (1 − z)1−δHl(1 − a, ((1 − a)γ + ε)(1 − δ)

+ αβ − q;α + 1 − δ,β + 1 − δ, 2 − δ, γ ; 1 − z). (49)

The asymptotic behavior of the exact solutions (46)–(49) is determined by the characteristic
exponents

y01(z) = 1 + O(z), y02(z) = z1−γ [1 + O(z)], (z → 0), (50)

y11(z) = 1 + O(1 − z), y12(z) = (1 − z)1−δ[1 + O(1 − z)], (z → 1). (51)

The local Heun functions at z = 0 are related to the local Heun functions at z = 1 via linear
combinations:

y01(z) = C11y11(z)+ C12y12(z), (52)

y02(z) = C21y11(z)+ C22y12(z). (53)

The connection coefficients are formally given by the ratio of the Wronskians as

C11 = Wz[y01, y12]
Wz[y11, y12] , C12 = Wz[y01, y11]

Wz[y12, y11] , C21 = Wz[y02, y12]
Wz[y11, y12] , C22 = Wz[y02, y11]

Wz[y12, y11] , (54)

where Wz[u, v] = u dv
dz − du

dz v. Note that from Eq. (36) it holds that, for linearly independent solutions
ya, yb,

zγ (z − 1)δ(z − zr)
εWz[ya, yb] = const. (55)

Therefore, while the Wronskian itself is not constant, the ratio between two Wronskians is constant.
Conversely, the local Heun functions at z = 1 can be expressed as

y11(z) = D11y01(z)+ D12y02(z), (56)

y12(z) = D21y01(z)+ D22y02(z), (57)

where

(
D11 D12

D21 D22

)
=
(

C11 C12

C21 C22

)−1

= Wz[y11, y12]
Wz[y01, y02]

(
C22 −C12

−C21 C11

)
, (58)
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namely,

D11 = Wz[y11, y02]
Wz[y01, y02] , D12 = Wz[y11, y01]

Wz[y02, y01] , D21 = Wz[y12, y02]
Wz[y01, y02] , D22 = Wz[y12, y01]

Wz[y02, y01] . (59)

While the connection coefficients can be formally written down analytically [45], this approach
requires the evaluation of the local Heun function on the maximum convergence radius, and in general
it is not clear whether it is convergent [46]. Even if it is convergent, it typically requires the analytic
continuation of the local Heun function, which has a high computational cost. The expressions (54)
or (59) are more practical. To obtain the connection coefficients Cij or Dij, one can evaluate the
right-hand sides of Eqs. (54) or (59) at any z within the overlapping region of the two disks of
convergence. The advantage of this formulation is that the scattering problem is defined between
z = 0 and 1 and the calculation remains within the circle of convergence of local Heun functions
at z = 0 and 1. This situation should be compared with the case where one needs a calculation
outside the circle of convergence, for which one needs analytic continuation or other types of exact
solutions of the Heun equation valid for a wider range, such as hypergeometric function series. In
our case, we can calculate the connection coefficients at some point between z = 0 and 1 without
analytic continuation. We shall see in Sect. 3 that the connection coefficients play a central role for
the scattering problem.

For the specific calculations in the present paper, we use the built-in function HeunG implemented
in Mathematica 12.1 or later, which yields the local Heun function Hl (44) inside the circle of conver-
gence, whereas it gives an analytic continuation of Hl outside the circle of convergence. The analytic
continuation typically takes more computational time, and sometimes causes a multi-value issue. For
the radial Teukolsky equation, since a = zr > 1 holds, the radius of convergence for the local Heun
functions (46) and (47) at z = 0 is unity. Therefore, there always exists an overlapping region of the
two disks of convergence for the local Heun functions at z = 0 and z = 1, where we can use both local
Heun functions without analytic continuation. The general solution of the radial Teukolsky equa-
tion (36) can thus be written as a linear combination of y(r)01,s, y(r)02,s or y(r)11,s, y(r)12,s. Here, y(r)Ii,s denotes the
radial exact solution, i.e., the exact solution yIi with the parameter set (43) for I = 0, 1 and i = 1, 2.
We define the angular exact solution y(a)Ii,s in the same manner with the parameter set (42). For the
scattering problem, we shall focus on two specific radial solutions imposing a certain set of boundary
conditions, which we shall discuss in Sect. 3. We shall also see that both local Heun functions are
useful to see the asymptotic behavior close to the black hole horizon or cosmological horizon.

2.4. Angular solution

Before proceeding to the scattering problem with the radial solution in Sect. 3, let us check the
requirement on the regularity of the angular solution in terms of the exact solutions. Since the angular
Teukolsky equation (18) does not depend on the charge Q, we can directly apply the argument of
the angular part in Ref. [43] for the Kerr–de Sitter case. From Eqs. (50) and (51), we see that the
angular function SIi,s = zA1(z − 1)A2(z − za)

A3(z − z∞)y(a)Ii,s(z) satisfies

S01,s(x) ∝ (1 + x)(m−s)/2[1 + O(1 + x)], S02,s(z) ∝ (1 + x)(s−m)/2[1 + O(1 + x)], (x → −1),
(60)

S11,s(x) ∝ (1 − x)−(m+s)/2[1 + O(1 − x)], S12,s(z) ∝ (1 − x)(m+s)/2[1 + O(1 − x)], (x → 1).
(61)
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The general solution Ss(x) is given by a linear combination of SIi,s(x). To make the angular solution
regular at x = ±1, we should respectively choose S01,s(x) or S02,s(x) for s − m � 0, and S11,s(x) or
S12,s(x) for m+ s � 0. For Ss(x) to satisfy both regularities at x = ±1, we require linear dependence
of the exact solutions, namely,

Wz[y(a)0i,s, y(a)1j,s] = 0, i =
{

1, (m − s ≥ 0),

2, (m − s < 0),
j =

{
1, (m + s ≤ 0),

2, (m + s > 0),
(62)

For a nonrotating black hole with a/M = 0, this equation is satisfied by the eigenvalue λ =
�(�+1)− s(s−1). For a rotating black hole, this equation depends on λ and ω implicitly. For a fixed
frequency ω, this condition determines λ, which we can obtain by using a root-finding algorithm. On
the other hand, to obtain the QNM frequencies, we should solve Eq. (62) and a boundary condition
on the radial solution to obtain λ and ω simultaneously, as we shall see in Sects. 3 and 4. In either
case, we need an initial input value sufficiently close to the roots.

In Fig. 1, we present the eigenvalue λ for scalar waves on the Kerr–de Sitter background obtained
by the above method. We compare our exact results with the analytic expansion formula given by
Eq. (4.18) in Ref. [14] for small aω and �a2/3. We denote these two results as λHeun and λSTU,
respectively. So long as one considers low-frequency waves scattered by a slowly rotating black hole
with a small cosmological constant, the analytic expansion formula works well and the difference
between λHeun and λSTU is negligible. To see its validity and limitation, we consider a rapidly rotating
black hole a/M = 0.9 with a small cosmological constant �M 2 = 10−3. In the left panel of Fig. 1,
λHeun and λSTU are shown by solid and dashed curves, respectively, for m = � and � = 2, 4, 6.
For the calculation of λHeun, we pick up sampling points with the interval �(Mω) = 0.05 for the
range 0 ≤ Mω ≤ 3. We take λ = λSTU as the initial input value for the root-finding algorithm
FindRoot in Mathematica, and set PrecisionGoal→ 15. For the algorithm to work well with
this initial input, we need to set PrecisionGoal larger than 12. To get the plots in Fig. 1, we use
ParallelTable with eight cores and get the list of data. The computation time for each curve
is about 2.5 s. In the right panel of Fig. 1, we present the relative errors between λHeun and λSTU.
As expected, the relative error increases as the frequency increases. In this setup, we see that for
Mω ≤ 1 and � ≥ 2, the error remains O(10−1)%, so it is reasonable for this parameter range to
use the analytic expansion formula. On the other hand, for low-multipole and high-frequency waves,
the error of the analytic expansion formula becomes large, and hence one should use the exact
formula.

As a test of the application range of the present method, we check the case where λ = 0 is
adopted as the initial input value. For this initial value, the root-finding algorithm requires a longer
computational time and larger value of PrecisionGoal since the initial values for larger � are
far from the true value. For example, if we set PrecisionGoal smaller than 15 for � = 2, the
method does not work well with the initial input λ = 0. In practice, one can also adopt the eigenvalue
λ = �(�+1)−s(s−1) for the nonrotating case (a = 0) as a simpler initial input value thanλSTU, while
in that case the computation time becomes about 1.5 times as long as the case with λSTU. However,
the precision reaches, e.g., 20 digits so long as one requires the option PrecisionGoal → 20.

3. Scattering problem

In this section we focus on the radial solution and provide the exact solution for the scattering
problem. In Sect. 3.1 we consider the asymptotic solution at the black hole and cosmological horizons,
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Fig. 1. Left: The eigenvalue λ evaluated as the root of the exact formula (62) (solid curves) and that obtained
by the analytic expansion formula (4.18) in Ref. [14] for the scalar wave (s = 0) of m = � and � = 2 (blue),
4 (red), 6 (green) scattered by the Kerr–de Sitter black hole with a/M = 0.9 and �M 2 = 10−3. Right: The
relative errors of the analytic expansion formula.

respectively. We shall see that the asymptotic solutions correspond to in/outgoing waves and are
consistent with the asymptotic form of the exact solution in terms of the local Heun function obtained
in Sect. 2. In Sect. 3.2 we exploit the asymptotic solution as the boundary condition, and write down
the coefficients for in/outgoing waves in terms of the connection coefficients for the local Heun
function.

For the following we omit the superscript (r) from the radial solution y(r)Ii,s for simplicity. Since we

do not discuss the angular solution y(a)Ii,s below, no confusion should occur.

3.1. Asymptotic behavior

We can obtain the boundary condition by considering the asymptotic behavior of the radial equation
at the black hole and cosmological horizons, for which the Schrödinger form is useful. We employ
the tortoise coordinate r∗ defined in Eq. (13) as an independent variable, and transform the dependent
variable as

Ys = �s/2(r2 + a2)1/2Rs. (63)

We can then rewrite the radial Teukolsky equation (19) in the Schrödinger form(
d2

dr2∗
+ Vs

)
Ys = 0, (64)

with the potential

Vs(r) = 1

(1 + α)2(r2 + a2)2

(
J − is�′

2

)2

+ �

(1 + α)2(r2 + a2)2

[
2is {2(1 + α)ωr − eQ} − 2

3
�r2(2s2 + 1)+ s(1 − α)− λ

+ 2r2 − a2

(r2 + a2)2
�− r

r2 + a2�
′
]

. (65)

The potential depends on the spin only via s2 and is, except s(1 −α)−λ, apparently. Actually, the
combination s(1 − α)− λ is invariant under s → −s [40]. Hence, the potential (65) has a symmetry
V ∗−s(r) = Vs(r), where z∗ is a complex conjugate of z. This implies that Ys(r∗) and Y∗−s(r∗) are two
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linearly independent solutions of the same differential equation (64). Therefore, if Rs = �−s/2(r2 +
a2)−1/2Ys is a solution of the radial Teukolsky equation, �−sR∗−s = �−s/2(r2 + a2)−1/2Y∗−s is the
solution linearly independent to Rs.

The potential asymptotically approaches a constant value

Vs(r) → − �′2
h

(1 + α)2(r2
h + a2)2

(
Bh + s

2

)2
, (r → rh), (66)

where we denote r1 = r+, r2 = r′+, and fh = f (rh) for h = 1, 2. Consequently, the asymptotic
behavior of two independent solutions is given by

Ys(r∗) → exp

[
± �′

h

(1 + α)(r2
h + a2)

(
Bh + s

2

)
r∗

]
, (r → rh). (67)

From Eq. (14), at the vicinity of the horizon r+ or r′+, the tortoise coordinate behaves as

r∗ → (1 + α)(r2
h + a2)

�′
h

ln |r − rh|, (r → rh). (68)

Using Eq. (68), we obtain

exp

[
�′

h

(1 + α)(r2
h + a2)

r∗

]
→ |r − rh| �

∣∣∣∣�(r)�′
h

∣∣∣∣ , (r → rh). (69)

Plugging Eq. (69) into Eq. (67) and multiplying �−s/2(r2 + a2)−1/2, we obtain the asymptotic
solutions of the radial Teukolsky equation

Rs(r) → �Bh and �−Bh−s, (r → rh), (70)

where we have omitted proportional constants. One can check that for the SdS case the asymptotic
solutions (70) are eiωr∗ and �−se−iωr∗ , respectively.

3.2. Scattered waves

In general, the asymptotic behavior of a general solution Rs(r) is given by a linear combination of the
two asymptotic solutions (70). For the scattering problem, we focus on two independent solutions
Rin(r) and Rup(r) that satisfy the following asymptotic behaviors [47]:

Rin,s(r) →
{

C(trans)
s �−B1−s, (r → r+),

C(ref )
s �B2 + C(inc)

s �−B2−s, (r → r′+),
(71)

Rup,s(r) →
{

D(up)
s �B1 + D(ref )

s �−B1−s, (r → r+),
D(trans)

s �B2 , (r → r′+).
(72)

The physical meaning is transparent once combined with the time-dependent part e−iωt . The “in”
solution is defined by the boundary condition that there is no wave coming out from the black hole
horizon. On the other hand, the “up” solution is defined by the boundary condition that there is no
incoming wave from the cosmological horizon. Both boundary conditions are appropriate for the
classical picture of the horizons. Combined with two other solutions defined by

Rout,s = �−sR∗
in,−s, Rdown,s = �−sR∗

up,−s, (73)
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any two solutions among the four solutions (71)–(73) are linearly independent solutions for the same
radial Teukolsky equation. For the scattering problem, we mainly use Rin,s and Rup,s.

In the definition of Rin,s in Eq. (71) and Rup,s in Eq. (72) there are six coefficients. Not all the
coefficients are independent. Clearly, one can omit the overall factors as the degrees of freedom for
the normalization, but here we keep them for later convenience. On the other hand, we can derive
relations between coefficients for Rin,s and Rup,s as follows. From Eq. (19), for a set of two linearly
independent solutions R1, R2, it holds that

�s+1Wr[R1, R2] = const, (74)

where Wr[R1, R2] = R1
dR2
dr − dR1

dr R2. Plugging in (R1, R2) = (Rin,s, Rup,s) and (Rout,s, Rup,s), we
obtain

D(trans)
s

D(up)
s

= Fs
C(trans)

s

C(inc)
s

, (75)

D(trans)
s

D(ref )
s

= −Fs
C(trans)∗

−s

C(ref )∗
−s

, (76)

where

Fs = �′(r+)(2B1 + s)

�′(r′+)(2B2 + s)
. (77)

Note that F∗−s = Fs holds. The ratios between the coefficients Cs, Ds determine the scattering problem
and yield the S-matrix, reflection/transmission rate, and so on. Our aim in this section is thus to write
down the coefficients Cs, Ds using the exact solution in terms of the local Heun function given in
Sect. 2.

As we shall see below, the asymptotic behavior suggests that Rin,s(r), Rup,s(r) respectively
corresponds to y02,s(z), y11,s(z), namely,

Rin,s(r) =
{

R02,s(r), (r → r+),
C21,sR11,s(r)+ C22,sR12,s(r), (r → r′+),

(78)

Rup,s(r) =
{

D11,sR01,s(r)+ D12,sR02,s(r), (r → r+),
R11,s(r), (r → r′+),

(79)

where each RIi,s is defined by Eq. (31) with the corresponding solution yIi,s, with I = 0, 1 and
i = 1, 2. Note that here we are not using any approximation but using the exact relations (53) and
(56). Rin,s, Rup,s are given exactly by the local Heun functions at z = 0 and z = 1, and each two
expressions coincide with each other for the region where two disks of convergence overlap.

Using r − rh � �(r)/�′
h for r → rh, we obtain

z � A�(r), (z → 0; r → r+), (80)

1 − z � A′�(r), (z → 1; r → r′+), (81)

where

A = z∞
(r+ − r−)�′(r+)

, A′ = z∞(r+ − r−)
−(r′+ − r−)2�′(r′+)

. (82)

14/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/8/083E03/6330633 by D

ESY-Zentralbibliothek user on 18 Septem
ber 2021



PTEP 2021, 083E03 H. Motohashi and S. Noda

With these relations and the asymptotic expansions (50) and (51), we see that the solutions (78), (79)
indeed satisfy the boundary conditions given in Eqs. (71), (72), respectively.

Hence, we can express the coefficients Cs, Ds in Eqs. (71) and (72) as

C(inc)
s = C22,s(−1)B2(1 − zr)

B3(1 − z∞)2s+1A′−B2−s, (83)

D(up)
s = D11,s(−1)B2(−zr)

B3(−z∞)2s+1AB1 , (84)

C(ref )
s = C21,sD

(trans)
s

= C21,s(−1)B2(1 − zr)
B3(1 − z∞)2s+1A′B2 , (85)

D(ref )
s = D12,sC

(trans)
s

= D12,s(−1)B2(−zr)
B3(−z∞)2s+1A−B1−s. (86)

For the scattering problem, the “squares” of the coefficients are important; these take the following
form without A and A′:

C(inc)
s C(inc)∗

−s = C22,sC
∗
22,−se

2iπ(B2+B3)(z∞ − 1)2, (87)

C(ref )
s C(ref )∗

−s = C21,sC
∗
21,−se

2iπ(B2+B3)(z∞ − 1)2, (88)

C(trans)
s C(trans)∗

−s = e2iπ(B2+B3)z2∞, (89)

D(up)
s D(up)∗

−s = D11,sD
∗
11,−se

2iπ(B2+B3)z2∞, (90)

D(ref )
s D(ref )∗

−s = D12,sD
∗
12,−se

2iπ(B2+B3)z2∞, (91)

D(trans)
s D(trans)∗

−s = e2iπ(B2+B3)(z∞ − 1)2. (92)

In addition, from Eqs. (75) and (76) we obtain the following relations:

D11,s

C22,s
=
(

zr − 1

zr

)2B3
(

z∞ − 1

z∞

)4s+2 ( A

A′

)s

F−1
s , (93)

D12,s

C∗
21,−s

= −
(

z∞ − 1

z∞

)2

F−1
s . (94)

Here we implicitly assume that C22,s and C∗
21,−s are nonvanishing. If we consider C22,s = 0, for

instance, then we should go back to Eq. (58) and see D11,s = 0.
To summarize, we have solved the scattering problem exactly in the sense that we have expressed

the coefficients for the “in” and “up” solutions in terms of the connection coefficients between the
local Heun function, which is the exact solution of the Teukolsky equation. Our calculation does not
rely on any approximations such as the high-/low-frequency limit or slow-rotation limit. A specific
example is the WKB or eikonal approximation for the high-frequency regime, which is commonly
used in the literature. Such approaches with approximations are helpful to extract a simple intuitive
picture and formulae for a limited setup. On the other hand, our exact formulation actually provides
a simple expression without restriction of the parameter set. This allows us to use a simple and fast
computation to understand black hole physics, which we shall explore in Sect. 4.

4. Applications

In this section, we highlight several applications of the exact formulation of the scattering problem
in Sect. 3. We discuss the quasinormal modes in Sect. 4.1, the S-matrix and cross section in Sect.
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4.2, the reflection and absorption rates, greybody factor, and superradiant scattering in Sect. 4.3, and
the Green function in Sect. 4.4. Our exact formulation serves as a simple and fast computational
method with arbitrary high precision compared to the direct numerical integration of the Teukolsky
equation.

4.1. Quasinormal modes

We can obtain QNM frequencies by requiring the regularity condition (62) on the angular part, as
well as the boundary condition on the radial part with a purely ingoing wave at the black hole horizon
r → r+ and a purely outgoing wave at the cosmological horizon r → r′+. Specifically, the condition
on the radial part is given by C22,s = 0, i.e.,

Wz[y02,s, y11,s] = 0. (95)

From Eq. (58), this condition is equivalent to D11,s = 0. It is also clear from Eqs. (78) and (79)
that Rin,s with C22,s = 0 and Rup,s with D11,s = 0 coincide with each other up to normalization.
For both cases one ends up with waves that satisfy the boundary condition for the QNM. Note
that, from the point of view of computational cost, the condition (95) is better than directly using
C22,s = Wz[y02,s,y11,s]

Wz[y12,s,y11,s] = 0 as the condition, since we do not need to calculate the Wronskian in the
denominator.

In parallel to the angular condition (62), the radial condition (95) also depends onω andλ implicitly.
For a nonrotating black hole, we can plug in the eigenvalue λ = �(�+ 1)− s(s − 1) and solve Eq.
(95) only to obtain the QNM frequencies with a root-finding algorithm. For a rotating black hole, we
obtain ω and λ by solving Eqs. (62) and (95) simultaneously. The Wronskian is given by the exact
solution in terms of the local Heun function, which in practice we can calculate by using the built-in
function HeunG implemented in Mathematica 12.1 or later. This method gives us an arbitrary-
precision arithmetic for the QNM frequencies. As already shown in Ref. [43] for the Kerr–de Sitter
black hole, this method is quite fast, typically within O(1) second, and yields QNM frequencies that
are consistent with the results in the literature. Therefore, we do not repeat the calculation of the
QNM frequencies here. A caveat is that, to numerically find out the correct root, one needs to set an
initial value sufficiently close to the root.

Let us note some technical details. To optimize the calculation, one can choose the evaluation point
of the Wronskians either within the overlapping region of both disks of convergence for the local
Heun functions at z = 0 and 1, or outside but still near the overlapping region. While the radius of
convergence for y02,s is always 1 and does not depend on the parameters of the KNdS geometry or
scattered waves, this is not the case for y11,s. Specifically, as one takes smaller �M 2, the radius of
convergence for y11,s becomes smaller. In such a case we find that z = 0.9 is a convenient choice
that yields a short computation time.

Let us note some differences from Leaver’s method [42]. Leaver’s method is one of the most
successful algorithms to calculate the QNM frequencies, and it is implemented in the Kerr–de Sitter
black hole in Ref. [41]. Both Leaver’s method and the above method yield QNM frequencies with
arbitrary high precision without any approximations, and there are the following qualitative differ-
ences. In Leaver’s method, one solves three-term recurrence relations associated with the angular
and radial equations in terms of infinite continued fractions. The boundary conditions determine the
eigenvalues and the QNM frequencies implicitly as roots of two equations containing infinite contin-
ued fractions. One should then truncate the continued fractions appropriately, and use a root-finding
algorithm. In principle this procedure allows one to obtain an analytic expansion formula. However,
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for high-precision computation one should take care with the convergence of the truncation. On the
other hand, for the root-finding procedure for Eqs. (62) and (95), the ambiguities of the truncation
do not appear. One can control the precision of the QNM frequencies solely by the precision of the
calculation of the Wronskians. However, the Wronskians are calculated numerically and their ana-
lytic expressions are unclear. Therefore, the two arbitrary-precision arithmetics have complementary
advantages.

4.2. S-matrix and cross section

By definition (71), the “in” solution Rin,s is the solution satisfying the boundary condition with the
purely ingoing boundary condition at the black hole horizon. We can then define the S-matrix S�,s(ω)
as a ratio between the coefficients for the ingoing and outgoing waves at the cosmological horizon:

S�,s(ω) = (−1)�+1 C(ref)
s

C(inc)
s

. (96)

For numerical calculation, one can evaluate the S-matrix by numerically integrating the radial Teukol-
sky equation (64) by requiring the boundary condition. On the other hand, with the exact solution, we
can use Eqs. (83) and (85) to obtain C(ref)

s /C(inc)
s = A′2B2+sC21,s/C22,s. Further, plugging C21,s, C22,s

into Eq. (54), we obtain

S�,s(ω) = (−1)�+1A′2B2+s Wz[y12,s, y02,s]
Wz[y02,s, y11,s] . (97)

Again, this expression reduces the number of Wronskians and minimizes the computational cost.
This formula does not require numerical integration. We can obtain the S-matrix by calculating the
ratio of the Wronskians of the local Heun function.

Given the S-matrix, we can write down the differential cross sections and the scattering amplitudes,
which are defined through an infinite series of the partial wave expansion. In practice, one needs to
truncate the infinite series at some finite �max. However, it is known that a naive truncation of the
partial wave expansion introduces a numerical error, and hence special care is required [48]. The
situation is analogous to the computation of the Coulomb scattering series [49]. Since our main goal
in the present paper is to establish the analytic formulation of the wave scattering from black holes,
here we do not address this issue further.

4.3. Reflection and absorption rates

We can express the conserved current of the scattered wave [50] in terms of the exact solution.
We shall see below that the exact formulation provides a simple formula for the reflection rate and
absorption (transmission) rate or the greybody factor.

As we explained above, Rs and�−sR∗−s are linearly independent solutions of the same differential
equation (19). Plugging (R1, R2) = (Rin,s,�−sR∗

in,−s) and (Rup,s,�−sR∗
up,−s) into Eq. (74) and

evaluating it at r → r+ and r → r′+, we obtain

C(inc)
s C(inc)∗

−s = C(ref )
s C(ref )∗

−s + FsC
(trans)
s C(trans)∗

−s , (98)

D(up)
s D(up)∗

−s = D(ref )
s D(ref )∗

−s + F−1
s D(trans)

s D(trans)∗
−s . (99)

These relations imply energy conservation [50]. While we do not specify the relative normalization
between the s and −s solutions, the normalization degrees of freedom do not enter if we write down
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the energy conservation in the form

1 = C(ref )
s C(ref )∗

−s

C(inc)
s C(inc)∗

−s

+ Fs
C(trans)

s C(trans)∗
−s

C(inc)
s C(inc)∗

−s

, (100)

1 = D(ref )
s D(ref )∗

−s

D(up)
s D(up)∗

−s

+ F−1
s

D(trans)
s D(trans)∗

−s

D(up)
s D(up)∗

−s

. (101)

The physical meaning is transparent. The first term on the right-hand side of Eq. (100) indicates
the probability of the incoming wave being reflected by the black hole, whereas the second term
means the probability of the incoming wave transmitting the effective potential and falling into the
black hole. Therefore, the first and second terms yield the reflection rate Rs and transmission rate
Ts, respectively. Note that, in the context of black hole scattering, Ts is also called the absorption
rate since transmission through the effective potential means absorption by the black hole. Similar
logic also holds for each term on the right-hand side of Eq. (101). In particular, the second term on
the right-hand side of Eq. (101) is the greybody factor �s, which is the probability of the outgoing
wave reaching the cosmological horizon. With Eqs. (75) and (76), we can see that Eqs. (100) and
(101) are equivalent. Namely, we can rewrite them as

Rs + Ts = 1, (102)

where

Rs ≡ C(ref )
s C(ref )∗

−s

C(inc)
s C(inc)∗

−s

= D(ref )
s D(ref )∗

−s

D(up)
s D(up)∗

−s

, (103)

Ts ≡ Fs
C(trans)

s C(trans)∗
−s

C(inc)
s C(inc)∗

−s

= F−1
s

D(trans)
s D(trans)∗

−s

D(up)
s D(up)∗

−s

≡ �s. (104)

The relation (104) guarantees that the absorption rate Ts coincides with the greybody factor �s.
Using the exact solution, we can derive the following simple expression:

Rs = Wz[y12,s, y02,s]
Wz[y02,s, y11,s]

(
Wz[y12,−s, y02,−s]
Wz[y02,−s, y11,−s]

)∗
, (105)

where we have used Eqs. (96) and (97). The absorption rate is then given byTs = 1−Rs.Alternatively,
from Eqs. (87) and (89), we obtain

Ts = Fs

(
z∞

z∞ − 1

)2 1

C22,sC∗
22,−s

. (106)

By virtue of Eq. (104), these formulae also allow us to calculate the greybody factor �s.
In particular, for the scalar wave s = 0, the absorption rate can be written as

T0 = F0

(
z∞

z∞ − 1

)2 1

|C22,0|2 . (107)

Therefore, the absorption rate can be negative if F0 = J (r+)/J (r′+) < 0 is satisfied. This is nothing
but superradiant scattering. The condition J (r+)/J (r′+) < 0 can be rewritten as

am + eQr′+
1+α

r′2+ + a2
< ω <

am + eQr+
1+α

r2+ + a2
. (108)
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Here we stress that we have obtained these formulae exactly without any approximations, e.g.,
the high-/low-frequency limit. Recalling that z∞ and Fs defined in Eq. (77) can be algebraically
obtained, the only necessary calculation that one needs to perform to obtain Eqs. (105) or (106)
is the evaluation of the Wronskians between two local Heun functions at z = 0 and 1, which is
achievable within the overlapping region of the two disks of convergence. Furthermore, compared
to the calculation for the QNM frequencies in Sect. 4.1, the calculation for the reflection/absorption
rate does not require an initial value close to the solution.

In Fig. 2, we present the reflection rate Rs of the scalar wave with � = 2, 4, 6 by the SdS black hole
with �M 2 = 10−3 as a function of Mω. We calculated Rs for 0 ≤ Mω ≤ 1.7 with the sampling
mesh size �(Mω) = 0.02. The solid curves are the results obtained by the exact formula (105).
As a consistency check, we also calculated the reflection rate numerically using Mathematica. First,
using NDSolve with the method “StiffnessSwitching”, we numerically integrate the radial
Teukolsky equation in the Schrödinger form (64) with the ingoing boundary condition near the BH
horizon for Ys, which is the negative sign of Eq. (67). We then fit the behavior of the obtained wave
function for the large-r∗ region, where the effective potential converges as Eq. (66), by the asymp-
totic solutions and read off the coefficients for the in/outgoing waves. Here we use the asymptotic
solutions (67) in terms of the tortoise coordinate r∗ rather than r since the frequency of oscillation
diverges in r space. Note that the numerical calculation is done with the default machine precision.
For the sake of clarity, let us note the specifications of our computer for the numerical calculation.
We use a Mac Pro with a 3 GHz, eight-core processor and the command ParallelTable is used
to get the list of data. For all the numerical calculations for the reflection rate in the present paper
(Figs. 2 and 3), we adopt the above method.

The results of the numerical integration are shown by dashed curves in Fig. 2 and are in good
agreement with the results of the exact formula shown by solid curves. While analytic calculations
known in the literature are valid under certain approximations such as high/low multipoles, our exact
formula is based on the exact solution without approximation and hence can be used for a wider
range of multipoles �. The result in Fig. 2 is also consistent with physical intuition since partial waves
with � � �c are absorbed by black holes, where �c = 3

√
3Mω is the critical angular momentum.

This is because partial waves with the impact parameter ∼ bc ≡ �c/ω = 3
√

3M are marginally
scattered at the vicinity of the peak of the effective potential.

There are several differences between the exact formula (105) and the numerical calculation. First
of all, the exact formula allows us to obtain the reflection rate with arbitrary high precision. One
can easily improve the precision by requiring higher precision for the root-finding algorithm. On the
other hand, for the numerical integration, it is more difficult to control the precision since one needs
to take account of several processes to solve the differential equation. For the above calculations,
the computation time for the exact formula is comparable to the numerical calculation. Specifically,
to obtain each curve in Fig. 2, it takes about 10 s for the numerical calculation without setting
PrecisionGoal in Mathematica (the machine precision) and about 20 s for the exact formula
with PrecisionGoal → 15, respectively.

For scalar waves (s = 0) scattered by the Kerr–de Sitter black hole (Q = 0, a/M = 0.9, �M 2 =
10−3), we plot the reflection rate Rs of m = ±� modes with � = 2 in Fig. 3. For the eigenvalue
λ, instead of solving the angular part, we use the analytic expansion formula [14] since the error
remains O(10−1)% for this setup, as shown in Fig. 1. We obtain the solid curves by using the exact
formula (105), and the dashed curves by numerical integration. The sampling mesh size is�(Mω) =
0.01; i.e., we take 120 points in the range 0 ≤ Mω ≤ 1.2. We used PrecisionGoal → 15 for
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Fig. 2. The reflection rate Rs for the scalar wave (s = 0)with � = 2 (blue), 4 (red), 6 (green) by the SdS black
hole with �M 2 = 10−3 obtained by the exact formula (105) (solid) and numerical integration (dashed).

Fig. 3. Left: The reflection rate Rs for the scalar wave (s = 0) of m = +� (blue) and m = −� (red) modes
with � = 2 scattered by the Kerr–de Sitter black hole with a/M = 0.9 and�M 2 = 10−3 obtained by the exact
formula (105) (solid) and numerical integration (dashed). Right: Close-up plot of the left panel to highlight
the superradiance. The dashed vertical line is the upper bound of the superradiant frequency (108).

the exact formula, and the default machine precision for the numerical calculation. Using Table to
list the data, the computation time to get each curve in Fig. 3 is 100 s for numerical calculation and
240 s for the exact formula. We see that the two results are in good agreement. The blue (red) curve
depicts m = � (m = −�), corresponding to the case where the angular momentum of the black hole
and incident wave are (oppositely) aligned. The difference in the alignment causes the difference in
the critical impact parameter bc ≡ �c/ω at which a transition occurs from absorption to reflection.

In the right panel of Fig. 3, we show a closer look of the left panel to confirm the superradiant
scattering for m = +�. Indeed, we can see that the reflection rate exceeds unity, shown by the
horizontal dashed line. For this parameter set, the condition (108) on the superradiant frequency
reads 6.23 × 10−4 < Mω < 6.25 × 10−1. The vertical dashed line corresponds to the upper bound
of the superradiant freqeuncy, which is consistent with our calculations.

4.4. Green function

In this section, we construct the Green function for the wave scattering problem by a KNdS black
hole in terms of the local Heun function. We choose the KNdS black hole as the origin of the spherical
coordinate system (r, θ ,ϕ) with the rotation axis at θ = 0. We assume a stationary point source,
whose spatial location is denoted by xs = (rs,ϑs,ϕs), and the observing point at x = (r,ϑ ,ϕ), where
ϑ is related to the polar angular variable θ of the spherical coordinates as ϑ = π/2 − θ . Therefore,
ϑ = 0 is the equatorial plane of the KNdS black hole. The relationship between these points and the
black hole is shown in Fig. 4.
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Fig. 4. The configuration of the wave scattering problem.

For the case where a spin-s wave is emitted by a stationary point source, the spatial part of the
Green function G(x, xs) can be expanded with the partial waves as

G(x, xs) =
∞∑
�=0

�∑
m=−�

G̃�(r, rs)sS�m(θ)sS
∗
�m(θs)e

imϕe−imϕs , (109)

where sS�m(θ ,ϕ) is the modified spin-weighted spheroidal harmonics due to the presence of the
cosmological constant, which can be expressed by the local Heun function as given in Eq. (24).

The differential equation that the radial part G̃(r, rs) obeys can be derived from the master equation
for the spin-s wave with Dirac’s δ function as the source term as

[
�−s d

dr
�s+1 d

dr
+ J 2 − isJ�′

�
+ 2isJ ′ − 2α

a2 (s + 1)(2s + 1)r2 + 2s(1 − α)− λ

]
G̃�(r, rs)

= −δ(r − rs). (110)

As we discussed in Sect. 3, the homogeneous equation (19) can be exactly solved in terms of the local
Heun function, and satisfies the relation (74). Following the standard prescription, we can construct
the Green function by using the two linearly independent solutions and the constant (74), which is
given by

G̃�(r, rs) = −�s(rs)

�s+1Wr[Rin, Rup]
{
Rin(rs)Rup(r)�(r − rs)+ Rin(r)Rup(rs)�(rs − r)

}
, (111)

where �(r) is the unit step function. Here, we have chosen Rin and Rup given in Eqs. (78) and
(79), respectively, as a suitable pair of independent solutions to the radial Teukolsky equation by
considering the boundary condition of the wave scattering problem by black holes. Note that we omit
the subscript s of Rin,s and Rup,s for the spin-s wave for simplicity. The denominator�s+1Wr[Rin, Rup]
is the constant given in Eq. (74), which should be evaluated at some r between r+ < r < r′+, or
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0 < z < 1. Plugging Eq. (111) into Eq. (109), we obtain the spatial part of the Green function as

G(x, xs)

=
∞∑
�=0

�∑
m=−�

−�s(rs)
{
Rin(rs)Rup(r)�(r − rs)+ Rin(r)Rup(rs)�(rs − r)

}
�s+1Wr[Rin, Rup] sS�m(θ)sS

∗
�m(θs)e

imϕe−imϕs .

(112)

In particular, as mentioned in Sect. 2.2.1, for the scattering of scalar waves by a nonrotating black
hole, the angular solution is given by the spherical harmonics. In this case we can use the addition
theorem for the spherical harmonics:

m=�∑
m=−�

Y�m(θ ,ϕ)Y ∗
�m(θs,ϕs) = 2�+ 1

4π
P�(cos γ ), (113)

where the variable γ represents the angle between source and observer, which is defined by
cos γ = cos θ cos θs + sin θ sin θs cos (ϕ − ϕs). We then arrive at

G(x, xs) =
∞∑
�=0

2�+ 1

4π

−�s(rs)
{
Rin(rs)Rup(r)�(r − rs)+ Rin(r)Rup(rs)�(rs − r)

}
�s+1Wr[Rin, Rup] P� (cos γ ) .

(114)
Let us check whether this formula reproduces the formula derived with asymptotic solutions of

scalar fields (s = 0) in Schwarzschild spacetime [51]. We use the rescaled radial function Ys (63)
with a = 0 and s = 0, and the tortoise coordinate r∗. The relationship between the Wronskian for
Rs with respect to r and that for Ys with respect to r∗ is then given by

�Wr[Rin, Rup] = Wr∗[Yin, Yup]. (115)

Plugging this into the Green function (114) yields

G(x, xs) = −
∞∑
�=0

2�+ 1

4πrrs

Yin(rs)Yup(r)�(r − rs)+ Yin(r)Yup(rs)�(rs − r)

Wr∗[Yin, Yup] P� (cos γ ) , (116)

which amounts to the Green function derived in Ref. [51].
Let us highlight several differences between the exact Green function (112) and the analysis

performed in Ref. [51]. First, in Ref. [51] the Green function (116) was evaluated by substituting the
asymptotic forms of the radial function corresponding to Eqs. (71) and (72). However, in that case
the sum over the partial waves does not converge due to 1/r behavior of the gravitational potential.
This issue originates from the use of the asymptotic solutions. Indeed, in Ref. [51], the convergence
issue was circumvented by adding a finite-distance correction to the asymptotic solutions, which
play the role of regulator for the partial wave sum. In contrast, for the exact Green function (112),
there is no convergence issue intrinsically. This is because the exact Green function does not rely on
the asymptotic solution or approximations, and inherits finite-distance effects at nonlinear order.

Second, in Ref. [51], it is assumed that both the source and observer are located at a sufficiently
distant r/M , rs/M � 1, but are finite points so that one can substitute the asymptotic solution with the
correction term into the Green function. Furthermore, the wavelength of the scalar wave is restricted
to the short-wavelength case Mω � 1 to evaluate the phase shift within the WKB approximation.
A small deflection angle (ϑ ∼ 0, ϕ ∼ 0) was additionally assumed to obtain a simple formula. In
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contrast, in our formulation there is no approximation and no restriction on the scattered wave and the
configuration of the source and the observer since the radial functions Rin/up represented in terms of
the local Heun function are the exact solution to the radial Teukolsky equation. Moreover, our Green
function (109) applies to a more general case, i.e., spin 0, 1

2 , 1, 3
2 , 2 massless fields on the Kerr–de

Sitter background and those for spin 0, 1
2 massless fields on the KNdS background. Therefore, the

Green function (112) is the most general exact formula for wave scattering by a KNdS black hole.
In Fig. 5, we present the power spectrum, i.e., the absolute square of the Green function (114)

measured at r = 20M for forward scattering by the SdS black hole with �M 2 = 10−3 of scalar
waves emitted from the source located at (rs,ϑs,ϕs) = (6M , 0,π). To obtain the power spectrum,
we evaluate Rin/up in the following two ways: First, we employ the exact solution (78), (79) in terms
of the local Heun function with PrecisionGoal → 25, which is shown as solid red curves in
Fig. 5. On the other hand, the power spectrum obtained by the numerical integration is shown by
dashed blue curves. For the numerical integration, here we improve a similar calculation performed
in Ref. [52]. In Ref. [52], the WKB approximation was partially employed, but here we do not use
the approximation. Here, to obtain Rin/up, we numerically integrate the differential equations (64)
and (13) with the boundary conditions (71) and (72). We choose the location to impose the boundary
conditions sufficiently close to each horizon, and confirm that the results are almost unaffected
by some change of the location. Specifically, we start the numerical integration with the purely
ingoing boundary condition as the initial condition at a nearby point of the black hole horizon
ri/M = r+/M + 10−6 ∼ 2.0027 and solve the radial equation towards the source point rs/M = 6,
whereas, for Rup, the radial equation is solved with a purely outgoing boundary condition from a
point near the de Sitter horizon rf/M = r′+/M − 0.74 ∼ 53 to rs/M = 6. Then, substituting these
solutions into Eq. (114), the Green function is obtained. To get both results, we truncate the partial
wave sum at �max = 8Mω + 6, which we find yields a good convergence. As shown in Fig. 5, the
two curves are in good agreement. The computational time to obtain the curves in Fig. 5 is about
30 min for the exact formula and 1 min for the numerical integration. While the exact formula
takes longer, note that the numerical integration here does not have high precision. Actually, the
numerical result matches the exact result up to three digits only. To improve the numerical result,
one needs to choose the location for the boundary condition closer to each horizon, and to require
higher precision for the root-finding algorithm and the differential equation solver. For instance, if
we take rf/M = r′+/M − 10−6, the numerical result matches the exact result up to five digits, and
the computational time is 3 min in this case. It would thus be fair to say that the exact formula serves
as a simple calculation method with high precision. It allows an arbitrary high-precision calculation
and it is easier to control the precision without numerically solving the differential equation.

For exact forward scattering with (r,ϑ ,ϕ) = (20M , 0, 0) in the left panel of Fig. 5, the behavior
that |G|2 increases linearly stems from the property of the caustics at the forward position of the
present scattering problem, which will diverge for Mω → ∞. The period of oscillation on the
linear growth reflects the scale of the peak of the effective potential. This corresponds to the position
of the unstable circular photon orbit in the geometrical optics limit, and is evaluated as M�ω ∼
1/(3

√
3) ∼ 0.2 for �M 2 � 1. On the other hand, for the case of the slightly off forward scattering

with (r,ϑ ,ϕ) = (20M , 0,π/10) in the right panel of Fig. 5, there is one more oscillating scale with
a longer period. This originates from the breaking of the symmetry of the relative relation of the
source–black hole–observer positions, which causes interference due to the difference of light ray
paths in the limit of the geometrical optics.
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Fig. 5. The power spectrum of the scalar wave s = 0 emitted from the source at (rs,ϑs,ϕs) = (6M , 0,π) and
scattered by the SdS black hole with �M 2 = 10−3. The observer is located at the exactly forward direction
(r,ϑ ,ϕ) = (20M , 0, 0) (left) and slightly off forward direction (r,ϑ ,ϕ) = (20M , 0,π/10) (right). The Green
function (114) is obtained by the exact solution in terms of the local Heun function (solid red) and the numerical
integration of the radial Teukolsky equation (dashed blue), respectively.

Fig. 6. Angular dependence of the absolute square of the exact Green function (114) for the scattered scalar
waves for fixed frequency Mω = 7, 4, 1 with (r,ϑ) = (20M , 0) and (rs,ϑs,ϕs) = (6M , 0,π).

As another demonstration, we present the angular dependence of the absolute square of the scattered
scalar wave for fixed frequency Mω = 7, 4, 1 in Fig. 6. As expected, it shows a peak at ϕ = 0 and
decays with oscillations depending on the fixed frequency. We see that our exact formula is valid for
a wide range of the azimuthal angle.

We have provided several examples of scalar wave scattering by the SdS black hole with a small
cosmological constant and compared the results with previous works. Since the main goal of the
present paper is to establish the formulation, we have avoided to present too many specific calcula-
tions. However, our formula (112) is quite general and applies to the wave scattering of the spin-s
field from the KNdS black hole. We will investigate the details of several observables in wave optical
gravitational lensing for a more general case in future work.

5. Conclusion

In this paper we have established the exact formulation for the wave scattering problem by the KNdS
black hole. We consider the propagation of a massless field with spin and charge on the KNdS
background. The Teukolsky equations for spin 0, 1

2 , 1, 3
2 , 2 fields on the Kerr–de Sitter background

and those for spin 0, 1
2 fields on the KNdS are separable and take the unified form. Here, the spin

0 field corresponds to a scalar field conformally coupled to gravity. Transforming the angular and
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radial Teukolsky equations into Heun equations, we can write down the exact solution in terms of the
local Heun functions at regular singular points. For the angular solution, we can impose the regularity
condition by requiring the linear dependence of the local Heun functions. For the radial equation,
with the appropriate transformation, we can respectively map the black hole horizon r = r+ and
the cosmological horizon r = r′+ into z = 0 and 1, and discuss the scattering problem within the
range 0 ≤ z ≤ 1. For this setup, there exists an overlapping region of the two disks of convergence
of the local Heun functions at z = 0 and 1, and we can discuss the scattering problem. We can
write down the “in” and “up” solutions, which satisfy certain boundary conditions, in a fully analytic
way without any approximations. We have expressed the coefficients for the asymptotic in/outgoing
waves exactly in terms of the connection coefficients for the local Heun functions at z = 0 and 1,
which are given as the ratio of the Wronskians of the local Heun function. Once the coefficients are
obtained exactly, we can write down various important quantities for black hole scattering exactly.

We have highlighted several applications of our exact formulation. It has already been shown in
Ref. [43] that the local Heun function is a powerful tool to calculate the QNM frequencies for the
Kerr–de Sitter black hole with arbitrary high precision. Given a sufficiently close initial value as an
input, one can obtain the QNM frequencies very quickly. We have generalized this result to the KNdS
geometry and provided arbitrary-precision arithmetic for the KNdS QNM frequencies for spin 0, 1

2
massless fields for the first time. We can also write down the S-matrix, with which the differential
cross sections and the scattering amplitudes can be written down. Further, we have explored the
conserved current for the scattering problem in terms of the exact solution, and derived simple
formulae for the reflection/absorption rate and the greybody factor (see also Ref. [53] for a recent
study on the greybody factor and Hawking radiation for the Kerr–de Sitter black hole in this context).
We have checked the consistency between the results obtained by our exact formula and numerical
integration, and clarified the efficiency of our formula for the reflection rate in comparison with the
numerical integration. Finally, we have constructed the Green function for the wave scattering from
the KNdS black hole. We have calculated the power spectrum as the absolute square of the Green
function to see the frequency dependence of the forward and slightly off forward scattering, as well
as the angular dependence for the fixed frequency waves. They are consistent with the numerical
results as well as the previous results in the literature, where some approximations were employed.

Our exact formulation of the wave scattering from the KNdS black hole provides simple and prac-
tical formulae, which are arbitrary-precision arithmetics. Unlike known (semi-)analytic calculations
in the literature, we do not use any approximations. There is no restriction on parameters such as
the frequency of the scattered waves, or the relative locations of the source of the waves, black hole,
and observer. The exact formulae predict the scattering problem with arbitrary high accuracy. While
we have highlighted several specific applications, it would be intriguing to apply our formulation to
more general cases or other observables. We leave these topics for future work.

Acknowledgements

H.M. was supported by a Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research (KAKENHI) No. JP18K13565. S.N. gratefully acknowledges the hospitality of Kogakuin University,
where part of this work was done, and thanks Yasusada Nambu of Nagoya University for fruitful discussions.

References
[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 116, 061102 (2016)

[arXiv:1602.03837 [gr-qc]] [Search INSPIRE].

25/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/8/083E03/6330633 by D

ESY-Zentralbibliothek user on 18 Septem
ber 2021

https://doi.org/10.1103/PhysRevLett.116.061102
http://www.arxiv.org/abs/1602.03837
http://www.inspirehep.net/search?p=find+EPRINT+1602.03837
http://www.inspirehep.net/search?p=find+EPRINT+1602.03837


PTEP 2021, 083E03 H. Motohashi and S. Noda

[2] K. Akiyama et al. [Event Horizon Telescope Collaboration], Astrophys. J. Lett. 875, L6 (2019)
[arXiv:1906.11243 [astro-ph.GA]] [Search INSPIRE].

[3] B. Carter, Phys. Lett. A 26, 399 (1968).
[4] B. Carter, Phys. Rev. 174, 1559 (1968).
[5] B. Carter, Commun. Math. Phys. 10, 280 (1968).
[6] E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
[7] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
[8] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[9] W. Unruh, Phys. Rev. Lett. 31, 1265 (1973).

[10] S. Chandrasekhar, Proc. R. Soc. Lond. A 349, 571 (1976).
[11] U. Khanal, Phys. Rev. D 28, 1291 (1983).
[12] C. M. Chambers and I. G. Moss, Class. Quantum Grav. 11, 1035 (1994) [arXiv:gr-qc/9404015] [Search

INSPIRE].
[13] J. A. H. Futterman, F. A. Handler, and R. A. Matzner, Scattering from Black Holes (Cambridge

University Press, Cambridge, UK, 1988), Cambridge Monographs on Mathematical Physics.
[14] H. Suzuki, E. Takasugi, and H. Umetsu, Prog. Theor. Phys. 100, 491 (1998) [arXiv:gr-qc/9805064]

[Search INSPIRE].
[15] G. Marcilhacy, Lett. Nuovo Cimento 37, 300 (1983).
[16] J. Blandin, R. Pons, and G. Marcilhacy, Lett. Nuovo Cimento 38, 561 (1983).
[17] D. V. Gal’tsov and A. A. Ershov, Russ. Phys. J. 32, 764 (1989).
[18] S. Mano, H. Suzuki, and E. Takasugi, Prog. Theor. Phys. 95, 1079 (1996) [arXiv:gr-qc/9603020]

[Search INSPIRE].
[19] S. Mano, H. Suzuki, and E. Takasugi, Prog. Theor. Phys. 96, 549 (1996) [arXiv:gr-qc/9605057]

[Search INSPIRE].
[20] M. Shuhei and T. Eiichi, Prog. Theor. Phys. 97, 213 (1997) [arXiv:gr-qc/9611014] [Search INSPIRE].
[21] P. P. Fiziev, Class. Quantum Grav. 23, 2447 (2006) [arXiv:gr-qc/0509123] [Search INSPIRE].
[22] R. S. Borissov and P. P. Fiziev, Bulg. J. Phys. 37, 065 (2010) [arXiv:0903.3617 [gr-qc]] [Search

INSPIRE].
[23] P. P. Fiziev, Class. Quantum Grav. 27, 135001 (2010) [arXiv:0908.4234 [gr-qc]] [Search INSPIRE].
[24] P. Fiziev and D. Staicova, Phys. Rev. D 84, 127502 (2011) [arXiv:1109.1532 [gr-qc]] [Search

INSPIRE].
[25] V. B. Bezerra, H. S. Vieira, and A. A. Costa, Class. Quantum Grav. 31, 045003 (2014)

[arXiv:1312.4823 [gr-qc]] [Search INSPIRE].
[26] H. S. Vieira and V. B. Bezerra, Ann. Phys. 373, 28 (2016) [arXiv:1603.02233 [gr-qc]] [Search

INSPIRE].
[27] H. S. Vieira, V. B. Bezerra, and C. R. Muniz, Ann. Phys. 350, 14 (2014) [arXiv:1401.5397 [gr-qc]]

[Search INSPIRE].
[28] G. V. Kraniotis, Class. Quantum Grav. 33, 225011 (2016) [arXiv:1602.04830 [gr-qc]] [Search

INSPIRE].
[29] G. V. Kraniotis, J. Phys. Commun. 3, 035026 (2019) [arXiv:1801.03157 [gr-qc]] [Search INSPIRE].
[30] L. Hui, D. Kabat, X. Li, L. Santoni, and S. S. C. Wong, J. Cosmol. Astropart. Phys. 1906, 038 (2019)

[arXiv:1904.12803 [gr-qc]] [Search INSPIRE].
[31] J. Bamber, K. Clough, P. G. Ferreira, L. Hui, and M. Lagos, Phys. Rev. D 103, 044059 (2021)

[arXiv:2011.07870 [gr-qc]] [Search INSPIRE].
[32] C. Dariescu, M.-A. Dariescu, and C. Stelea, Adv. High Energy Phys. 2021, 5512735 (2021)

[arXiv:2102.03850 [hep-th]] [Search INSPIRE].
[33] D. Batic and H. Schmid, J. Math. Phys. 48, 042502 (2007) [arXiv:gr-qc/0701064] [Search INSPIRE].
[34] K. Heun, Math. Ann. 33, 161 (1888).
[35] A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, UK, 1995).
[36] S. Y. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities (Oxford

University Press, Oxford, UK, 2000), Oxford Mathematical Monographs.
[37] R. S. Maier, Math. Comput. 76, 811 (2007) [arXiv:math/0408317 [math.CA]].
[38] M. Hortaçsu, Adv. High Energy Phys. 2018, 8621573 (2018) [arXiv:1101.0471 [math-ph]] [Search

INSPIRE].
[39] H. Suzuki, E. Takasugi, and H. Umetsu, Prog. Theor. Phys. 102, 253 (1999) [arXiv:gr-qc/9905040]

[Search INSPIRE].

26/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/8/083E03/6330633 by D

ESY-Zentralbibliothek user on 18 Septem
ber 2021

https://doi.org/10.3847/2041-8213/ab1141
http://www.arxiv.org/abs/1906.11243
http://www.inspirehep.net/search?p=find+EPRINT+1906.11243
http://www.inspirehep.net/search?p=find+EPRINT+1906.11243
https://doi.org/10.1016/0375-9601(68)90240-5
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1007/BF03399503
https://doi.org/10.1063/1.1724257
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevLett.31.1265
https://doi.org/10.1098/rspa.1976.0090
https://doi.org/10.1103/PhysRevD.28.1291
https://doi.org/10.1088/0264-9381/11/4/019
http://www.arxiv.org/abs/gr-qc/9404015
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9404015
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9404015
https://doi.org/10.1143/PTP.100.491
http://www.arxiv.org/abs/gr-qc/9805064
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9805064
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9805064
https://doi.org/10.1007/BF02818244
https://doi.org/10.1007/BF02785992
https://doi.org/10.1007/BF00898303
https://doi.org/10.1143/PTP.95.1079
http://www.arxiv.org/abs/gr-qc/9603020
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9603020
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9603020
https://doi.org/10.1143/PTP.96.549
http://www.arxiv.org/abs/gr-qc/9605057
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9605057
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9605057
https://doi.org/10.1143/PTP.97.213
http://www.arxiv.org/abs/gr-qc/9611014
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9611014
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9611014
https://doi.org/10.1088/0264-9381/23/7/015
http://www.arxiv.org/abs/gr-qc/0509123
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0509123
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0509123
http://www.bjp-bg.com/paper1.php?id=547
http://www.arxiv.org/abs/0903.3617
http://www.inspirehep.net/search?p=find+EPRINT+0903.3617
http://www.inspirehep.net/search?p=find+EPRINT+0903.3617
https://doi.org/10.1088/0264-9381/27/13/135001
http://www.arxiv.org/abs/0908.4234
http://www.inspirehep.net/search?p=find+EPRINT+0908.4234
http://www.inspirehep.net/search?p=find+EPRINT+0908.4234
https://doi.org/10.1103/PhysRevD.84.127502
http://www.arxiv.org/abs/1109.1532
http://www.inspirehep.net/search?p=find+EPRINT+1109.1532
http://www.inspirehep.net/search?p=find+EPRINT+1109.1532
https://doi.org/10.1088/0264-9381/31/4/045003
http://www.arxiv.org/abs/1312.4823
http://www.inspirehep.net/search?p=find+EPRINT+1312.4823
http://www.inspirehep.net/search?p=find+EPRINT+1312.4823
https://doi.org/10.1016/j.aop.2016.06.016
http://www.arxiv.org/abs/1603.02233
http://www.inspirehep.net/search?p=find+EPRINT+1603.02233
http://www.inspirehep.net/search?p=find+EPRINT+1603.02233
https://doi.org/10.1016/j.aop.2014.07.011
http://www.arxiv.org/abs/1401.5397
http://www.inspirehep.net/search?p=find+EPRINT+1401.5397
http://www.inspirehep.net/search?p=find+EPRINT+1401.5397
https://doi.org/10.1088/0264-9381/33/22/225011
http://www.arxiv.org/abs/1602.04830
http://www.inspirehep.net/search?p=find+EPRINT+1602.04830
http://www.inspirehep.net/search?p=find+EPRINT+1602.04830
https://doi.org/10.1088/2399-6528/ab1046
http://www.arxiv.org/abs/1801.03157
http://www.inspirehep.net/search?p=find+EPRINT+1801.03157
http://www.inspirehep.net/search?p=find+EPRINT+1801.03157
https://doi.org/10.1088/1475-7516/2019/06/038
http://www.arxiv.org/abs/1904.12803
http://www.inspirehep.net/search?p=find+EPRINT+1904.12803
http://www.inspirehep.net/search?p=find+EPRINT+1904.12803
https://doi.org/10.1103/PhysRevD.103.044059
http://www.arxiv.org/abs/2011.07870
http://www.inspirehep.net/search?p=find+EPRINT+2011.07870
http://www.inspirehep.net/search?p=find+EPRINT+2011.07870
https://doi.org/10.1155/2021/5512735
http://www.arxiv.org/abs/2102.03850
http://www.inspirehep.net/search?p=find+EPRINT+2102.03850
http://www.inspirehep.net/search?p=find+EPRINT+2102.03850
https://doi.org/10.1063/1.2720277
http://www.arxiv.org/abs/gr-qc/0701064
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0701064
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0701064
https://doi.org/10.1007/BF01443849
https://doi.org/10.1090/s0025-5718-06-01939-9
http://www.arxiv.org/abs/math/0408317
https://doi.org/10.1155/2018/8621573
http://www.arxiv.org/abs/1101.0471
http://www.inspirehep.net/search?p=find+EPRINT+1101.0471
http://www.inspirehep.net/search?p=find+EPRINT+1101.0471
https://doi.org/10.1143/PTP.102.253
http://www.arxiv.org/abs/gr-qc/9905040
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9905040
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9905040


PTEP 2021, 083E03 H. Motohashi and S. Noda

[40] H. Suzuki, E. Takasugi, and H. Umetsu, Prog. Theor. Phys. 103, 723 (2000) [arXiv:gr-qc/9911079]
[Search INSPIRE].

[41] S. Yoshida, N. Uchikata, and T. Futamase, Phys. Rev. D 81, 044005 (2010).
[42] E. W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985).
[43] Y. Hatsuda, Class. Quantum Grav. 38, 025015 (2020) [arXiv:2006.08957 [gr-qc]] [Search INSPIRE].
[44] F. Belgiorno and S. L. Cacciatori, J. Phys. A: Math. Theor. 42, 135207 (2009) [arXiv:0807.4310

[math-ph]] [Search INSPIRE].
[45] L. Dekar, L. Chetouani, and T. F. Hammann, J. Math. Phys. 39, 2551 (1998).
[46] M. Hortaçsu, Eur. Phys. J. Plus 136, 13 (2021) [arXiv:2004.09132 [gr-qc]] [Search INSPIRE].
[47] P. L. Chrzanowski and C. W. Misner, Phys. Rev. D 10, 1701 (1974).
[48] S. R. Dolan, Class. Quantum Grav. 25, 235002 (2008) [arXiv:0801.3805 [gr-qc]] [Search INSPIRE].
[49] D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev. 95, 500 (1954).
[50] S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).
[51] Y. Nambu and S. Noda, Class. Quantum Grav. 33, 075011 (2016) [arXiv:1502.05468 [gr-qc]] [Search

INSPIRE].
[52] Y. Nambu, S. Noda, and Y. Sakai, Phys. Rev. D 100, 064037 (2019) [arXiv:1905.01793 [gr-qc]]

[Search INSPIRE].
[53] R. Gregory, I. G. Moss, N. Oshita, and S. Patrick, arXiv:2103.09862 [gr-qc] [Search INSPIRE].

27/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/8/083E03/6330633 by D

ESY-Zentralbibliothek user on 18 Septem
ber 2021

https://doi.org/10.1143/PTP.103.723
http://www.arxiv.org/abs/gr-qc/9911079
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9911079
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9911079
https://doi.org/10.1103/PhysRevD.81.044005
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1088/1361-6382/abc82e
http://www.arxiv.org/abs/2006.08957
http://www.inspirehep.net/search?p=find+EPRINT+2006.08957
http://www.inspirehep.net/search?p=find+EPRINT+2006.08957
https://doi.org/10.1088/1751-8113/42/13/135207
http://www.arxiv.org/abs/0807.4310
http://www.inspirehep.net/search?p=find+EPRINT+0807.4310
http://www.inspirehep.net/search?p=find+EPRINT+0807.4310
https://doi.org/10.1063/1.532407
https://doi.org/10.1140/epjp/s13360-020-01003-5
http://www.arxiv.org/abs/2004.09132
http://www.inspirehep.net/search?p=find+EPRINT+2004.09132
http://www.inspirehep.net/search?p=find+EPRINT+2004.09132
https://doi.org/10.1103/PhysRevD.10.1701
https://doi.org/10.1088/0264-9381/25/23/235002
http://www.arxiv.org/abs/0801.3805
http://www.inspirehep.net/search?p=find+EPRINT+0801.3805
http://www.inspirehep.net/search?p=find+EPRINT+0801.3805
https://doi.org/10.1103/PhysRev.95.500
https://doi.org/10.1086/153180
https://doi.org/10.1088/0264-9381/33/7/075011
http://www.arxiv.org/abs/1502.05468
http://www.inspirehep.net/search?p=find+EPRINT+1502.05468
http://www.inspirehep.net/search?p=find+EPRINT+1502.05468
https://doi.org/10.1103/PhysRevD.100.064037
http://www.arxiv.org/abs/1905.01793
http://www.inspirehep.net/search?p=find+EPRINT+1905.01793
http://www.inspirehep.net/search?p=find+EPRINT+1905.01793
http://www.arxiv.org/abs/2103.09862
http://www.inspirehep.net/search?p=find+EPRINT+2103.09862
http://www.inspirehep.net/search?p=find+EPRINT+2103.09862

