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Abstract. We study the Yang-Mills equations in the algebra of h-forms, which is developed in
the works of N. G. Marchuk and the author. The algebra of h-forms is a special geometrization
of the Clifford algebra and is a generalization of the Atiyah-Kähler algebra. We discuss an
invariant subspace of the constant Yang-Mills operator in the algebra of h-forms and present
particular classes of solutions of the Yang-Mills equations.

1. Introduction
The algebra of h-forms is developed by N. G. Marchuk [1, 2]. The algebra of h-forms is a
generalization of the Atiyah-Kähler algebra [3, 4, 5, 6] and the Clifford algebra. We use the
algebra of h-forms in the works [7, 8, 9, 10] related to the spin connection of general form and
the Yang-Mills equations.

In this paper, we discuss an invariant subspace of the constant Yang-Mills operator in the
algebra of h-forms and present particular classes of solutions of the Yang-Mills equations.

2. Yang-Mills equations in pseudo-Euclidean space
Let us consider n-dimensional pseudo-Euclidean space Rp,q, p + q = n ≥ 1, with Cartesian
coordinates xµ, µ = 1, . . . , n. The metric tensor of Rp,q is given by the diagonal matrix

η = (ηµν) = (ηµν) = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

) (1)

with its first p entries equal to 1 and the last q entries equal to −1 on the diagonal. We can raise
or lower indices of components of tensor fields with the aid of the metric tensor. For example,
Fµν = ηµαηνβFαβ. We denote partial derivatives by ∂µ = ∂

∂xµ .
Let G be a semisimple Lie group and g be the real Lie algebra of the Lie group G.

Multiplication of elements of g is given by the Lie bracket [U, V ] = −[V,U ]. Consider the
Yang-Mills equations

∂µAν − ∂νAµ − [Aµ, Aν ] = Fµν , (2)

∂µF
µν − [Aµ, F

µν ] = Jν , (3)
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where Aµ : Rp,q → g is the potential of the Yang-Mills field, Fµν : Rp,q → g is the strength
of the Yang-Mills field, and Jν : Rp,q → g is the (non-Abelian) current. The equation (2) can
be considered as a definition of the strength Fµν . We can substitute Fµν from (2) into (3) and
obtain

∂µ(∂µAν − ∂νAµ − [Aµ, Aν ])− [Aµ, ∂
µAν − ∂νAµ − [Aµ, Aν ]] = Jν . (4)

One suggests that Aµ (and Fµν) are unknown and Jν is known. The current (3) satisfies the
(non-Abelian) conservation law

∂µJ
µ − [Aµ, J

µ] = 0. (5)

The equations (2) - (5) are gauge invariant w.r.t. the transformations

Aµ → S−1AµS − S−1∂µS, Fµν → S−1FµνS, Jµ → S−1JµS, (6)

where S = S(x) : Rp,q → G.

3. The algebra of h-forms
Let us consider the real Clifford algebra (or geometric algebra) C`p,q, p+ q = n [11, 12, 13], with
the generators ea, a = 1, . . . , n, which satisfy

eaeb + ebea = 2ηabe, (7)

where η = (ηab) = (ηab) is the diagonal matrix (1) and e is the identity element. The basis
elements of C`p,q are enumerated by ordered multi-indexes of length from 0 to n:

ea1...ak = ea1 · · · eak , a1 < · · · < ak, k = 0, 1, . . . , n.

An arbitrary element U ∈ C`p,q of the Clifford algebra has the form

U = ue+ uae
a +

∑
a1<a2

ua1a2e
a1a2 + · · ·+ u1...ne

1...n, u, ua, ua1a2 , . . . , u1...n ∈ R.

We denote the subspaces of grade k by

C`kp,q := {
∑

a1<a2<···<ak

ua1...ake
a1...ak}, k = 0, 1, . . . , n.

We have

C`p,q =
n⊕
k=0

C`kp,q.

The projection of an arbitrary element U ∈ C`p,q onto the subspace C`0p,q is denoted by 〈U〉0.
Let us consider a vector field with values in the Clifford algebra hµ = hµ(x): Rp,q → C`p,q

hµ(x) = yµ(x)e+ yµa (x)ea +
∑
a<b

yµab(x)eab + · · ·+ yµ1...n(x)e1...n, (8)

which satisfy the same conditions as generators of Clifford algebra (7) in any point of pseudo-
Euclidean space:

hµhν + hνhµ = 2ηµνe, ∀x ∈ Rp,q. (9)
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In the case of odd n, the condition 〈h1(x)h2(x) · · ·hn(x)〉0 = 0 is also required (see the details
in [8]). The expression hµ is called a Clifford field vector. The expression

U = ue+ uµh
µ +

∑
µ1<µ2

uµ1µ2h
µ1µ2 + · · ·+ u1...nh

1...n (10)

= ue+ uµh
µ +

1

2!
uµ1µ2h

µ1 ∧ hµ2 + · · ·+ 1

n!
uµ1...µnh

µ1 ∧ · · · ∧ hµn , (11)

where uµ1...µj = u[µ1...µj ] are skewsymmetric tensor fields of rank j and ∧ is the wedge or exterior
product [2], is called an h-form. The set of such h-forms is called an algebra of h-forms C`[h]p,q.
In the Atiyah-Kähler algebra, we have differentials dxµ instead of Clifford field vectors hµ. The
subspaces of grades k are denoted by

C`[h]kp,q := {
∑

µ1<µ2<···<µk

uµ1...µkh
µ1...µk} = { 1

k!
uµ1...µkh

µ1 ∧ · · · ∧ hµk}, k = 0, 1, . . . , n.

We have

C`[h]p,q =

n⊕
k=0

C`[h]kp,q.

4. The invariant subspace of the constant Yang-Mills operator
The algebra of h-forms C`[h]p,q can be considered as a Lie algebra with respect to the commutator
[U, V ] = UV −V U . Particular classes of solutions of the Yang-Mills equations in the case of the
Lie algebra C`[h]p,q are considered in [1, 8].

Let us consider the following system of equations

[Aµ, [A
µ, Aν ]] = Jν , (12)

∂µ∂
µAν − ∂µ∂νAµ + ∂µ[Aµ, Aν ] + [Aµ, ∂

µAν − ∂νAµ] = 0. (13)

Solutions of the system of equations (12) - (13) are also solutions of the Yang-Mills system of
equations (4). All constant (which do not depend on x ∈ Rp,q) solutions of the system (4) are
solutions of the system (12) - (13). In some sense, the system (12) - (13) models certain aspects
of the system of the Yang-Mills equations (4), see the details in [14].

Let us consider the operator

Q(Aν) := [Aµ, [A
µ, Aν ]]. (14)

We call the operator Q the constant Yang-Mills operator because the system (12) can be also
interpreted as the system for constant solutions of the Yang-Mills equations. However, the
system (12) (or the system (12) - (13)) may also have nonconstant solutions.

Let us consider the subspace of grade 1 of the algebra of h-forms

C`[h]1p,q = {uµhµ} ⊂ C`[h]p,q.

Lemma 4.1 If Aν ∈ C`[h]1p,q, then Q(Aν) ∈ C`[h]1p,q.

Proof. The statement follows from

[C`[h]1p,q, C`[h]1p,q] ⊂ C`[h]2p,q (15)

and

[C`[h]1p,q, C`[h]2p,q] ⊂ C`[h]1p,q, (16)
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see, for example, [15]. �
We call the subspace C`[h]1p,q an invariant subspace of the constant Yang-Mills operator Q.

Let us consider the algebraic system of equations (12) in the invariant subspace C`[h]1p,q.

Suppose Aµ = σµαhα ∈ C`[h]1p,q, J
ν = ενβh

β ∈ C`[h]1p,q, where σµα, ενβ ∈ R. The operator (14) takes
the form

Q(Aν) = [Aµ, [A
µ, Aν ] = σµασ

µ
βσ

ν
λ[hα, [hβ, hλ]] = 4(σµλσ

µλσνω − σµλσµωσνλ)hω. (17)

In the case of the identity matrix Σ = (σµν ) (i.e. σµα = δµα), we get

[Aµ, [A
µ, Aν ]] = 4(n− 1)hν .

In the case of the diagonal matrices Σ = (σµν ) and E = (εµν ) with the diagonal elements σk,
k = 1, . . . , n, and εk, k = 1, . . . , n, we get the following system of equations

4σk(S − σ2k) = εk, S := σ21 + · · ·+ σ2n, k = 1, 2, . . . , n (18)

with known εk, k = 1, . . . , n, and unknown σk, k = 1, . . . , n.
From our point of view, the system (18) deserves attention. In the case n = 3, the equations

(18) are the SU(2) Yang-Mills equations for constant solutions because the element e123 lies in
the center of the Clifford algebra C`3,0 and the elements eke123, k = 1, 2, 3 constitute a basis
of the subspace C`23,0, which is a Lie algebra of the spin group Spin(3) ∼= SU(2). We use this
fact and the method of the hyperbolic SVD [16] to present all constant solutions of the SU(2)
Yang-Mills equations with arbitrary current in [17, 18].

In the next section, we study the system (18) in the case of an arbitrary natural number n.

5. General solution to the corresponding system of cubic equations
Let us consider the algebraic system of equations

4σk(S − σ2k) = εk, S = σ21 + · · ·+ σ2n, k = 1, 2, . . . , n (19)

with known εk, k = 1, . . . , n, and unknown σk, k = 1, . . . , n.
The general solution to this system in the cases n = 2, 3 is given in [17].
Note that in the case n = 3, the system (19) has the following symmetry. If the system

(19) has a solution (σ1, σ2, σ3) with all nonzero σk, k = 1, 2, 3, then the system (19) has also a

solution of the form (Kσ1 ,
K
σ2
, Kσ3 ), where K = (σ1σ2σ3)

2
3 .

Now let us consider the system with all the same ε := ε1 = · · · = εn (this is condition for the
Yang-Mills current) but in the case of an arbitrary natural number n:

4σk(S − σ2k) = ε, S = σ21 + · · ·+ σ2n, k = 1, 2, . . . , n. (20)

Lemma 5.1 The system (20), n ≥ 4, has the following symmetry. If the system (20) has a
solution with all the same σ := σ1 = · · · = σk:

(σ, σ, . . . , σ), (21)

then it has also the following n solutions

(σ(n− 2)
2
3 ,

σ

(n− 2)
1
3

, . . . ,
σ

(n− 2)
1
3

), (
σ

(n− 2)
1
3

, σ(n− 2)
2
3 , . . . ,

σ

(n− 2)
1
3

),

. . . , (
σ

(n− 2)
1
3

, . . . ,
σ

(n− 2)
1
3

, σ(n− 2)
2
3 ). (22)
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Proof. The proof is by direct substitution. �
Note that in the case n = 3 the symmetry is trivial: the system has a unique solution (not

four) because all solutions (22) coincide with (21) in this case. In the cases n ≥ 4, the symmetry
is not trivial.

Theorem 5.1 In the cases n = 2, 3, the system (20) with ε 6= 0 has a unique solution of the
form

σ = σk = 3

√
ε

4(n− 1)
, k = 1, 2, . . . , n. (23)

In the cases n ≥ 4, the system (20) with ε 6= 0 has n + 1 solutions: the solution (23) and n
solutions of the form

σ1 = 3

√
ε(n− 2)2

4(n− 1)
, σk = 3

√
ε

4(n− 1)(n− 2)
, k = 2, . . . , n, (24)

with circular permutation.
The system (20) with ε = 0 has the following solutions in the case of an arbitrary n ≥ 2:

(a, 0, . . . , 0), (0, a, . . . , 0), . . . , (0, . . . , 0, a), ∀a ∈ R. (25)

Proof. The proof is given in Appendix A. �
Note that the results of this paper can be generalized to the case of unitary and pseudo-

unitary groups in the formalism of the algebra of h-forms (see about the realization of different
classical matrix Lie groups in Clifford algebras in [15, 19, 20, 21, 22]).

In this paper, we discussed mathematical structures. The relationship of the proposed
mathematical constructions with objects of the real world (elementary particles) is beyond the
scope of this study. The explicit formulas (21) - (25) can have physical consequences.
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Appendix A. The proof of Theorem 5.1
The case of ε = 0 is trivial, we have the solutions (25).

Let us consider the case ε 6= 0. In this case, σk 6= 0, k = 1, . . . , n. Note that if ε > 0,
then σk > 0, k = 1, . . . , n. If we change the sign of ε, then we must change the sign of all σk,
k = 1, . . . , n: if ε < 0, then σk < 0, k = 1, . . . , n. Without loss of generality, we can assume that
ε > 0 and σk > 0, k = 1, . . . , n.

We use the following change of variables x1 = σ1 > 0, xk = σk
σ1
> 0, k = 2, . . . , n. The system

takes the form

4x31(x
2
2 + · · ·+ x2n) = ε, 4xkx

3
1(1 + x22 + · · ·+ x2n) = ε, k = 2, . . . , n.

We obtain the following expression for σ1

σ1 = x1 = 3

√
ε

4(x22 + · · ·+ x2n)
(A.1)
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and the following system of n− 1 equations for x2, . . . , xn:

x22 + · · ·+ x2n = x2(1 + x23 + · · ·+ x2n) = x3(1 + x22 + x24 + x25 + · · ·+ x2n)

= · · · = xn(1 + x22 + x23 + · · ·+ x2n−1).

Equating the first expression with the second expression, we get

x23(1− x2) = x2(1 + x24 + · · ·+ x2n)− (x22 + x24 + · · ·+ x2n) = (1− x2)(x2 − x24 − · · · − x2n)

i.e.
(1− x2)(x2 − x23 − x24 − · · · − x2n) = 0.

Proceeding in the same way with the rest of the equations, we obtain the system of equations

(1− xk)(xk + x2k − T ) = 0, k = 2, . . . , n, T = x22 + · · ·+ x2n. (A.2)

Let the expressions in the first brackets of all equations (A.2) are equal to zero, i.e. xk = 1,
k = 2, . . . , n. Using (A.1) and σk = x1xk, k = 2, . . . , n, we get the solution (23).

Let the expressions in the second brackets of all equations (A.2) are equal to zero. If we have
xi + x2i − T = 0 and xj + x2j − T = 0 for i 6= j, then subtracting one equation from the other,
we get (xi − xj)(xi + xj + 1) = 0 and xi = xj . We obtain x2 = · · · = xn. Denoting it by x, we

get x− (n− 2)x2 = 0, i.e. x = 1
n−2 . Finally, x1 = σ1 = 3

√
ε

4( 1
n−2

)2(n−1)
, σk = xkx1, k = 2, . . . , n,

and we get the solution (24).
Let the expressions in the first brackets of all equations (A.2), except one, are equal to zero

and the expression in the second brackets of one of the equations (for example, for k = n) is
equal to zero. Then xk = 1, k = 2, . . . , n − 1 and xn − x22 − · · · − x2n−1 = 0, i.e. xn = n − 2.
Using (A.1), we get the solutions of type (24) with circular permutation.

Let the expressions in the second brackets of 2 ≤ r ≤ n − 2 equations (for example, for
k = 2, . . . , r + 1) (A.2) are equal to zero and the expressions in the first brackets of the rest
n − r − 1 equations (for k = r + 2, . . . , n) (A.2) are equal to zero. Then x2 = · · · = xr+1 =: x,
xr+2 = · · · = xn = 1. We get x+ x2− x2r− (n− r− 1) = 0, i.e. (1− r)x2 + x+ (r+ 1− n) = 0.
The discriminant of this quadratic equation D = 1 + 4(r − 1)(r + 1 − n) is negative, because
r ≥ 2 and r ≤ n− 2. There are no solutions of this type.

The theorem is proved.
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