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Chapter 1
Introduction

Supergravity is a field theory that combines general relativity with local supersymmetry.

It serves as a framework for studying a large variety of phenomena, such as black holes and

cosmology. Supergravity also describes the low-energy degrees of freedom associated with

string theory. String theory, or its conjectured extension M-theory, has been proposed as

a consistent theory of quantum gravity. It describes the dynamics of extended objects,

such as strings and membranes, which propagate in 10 (string theory) or 11 (M-theory)

space-time dimensions. To make contact with the four-dimensional world we see around

us, one usually assumes that the extra dimensions are compactified. This means that

they are curled up in a compact space, which is so small that it is not directly observable

in present-day experiments.

Symmetries play an important role in applications of supergravity. Therefore we

start this chapter with an overview of some of the properties of these symmetries, which

gradually leads us to supergravity. After discussing some of the general properties of

supergravity, we will turn more specifically to the subject of this thesis: deformations

of supergravity. In sections 1.2 and 1.3 we introduce, by means of simple examples, two

concepts that are central in this thesis: gauge equivalence and electric/magnetic duality.

Finally, in section 1.4 we will summarize the content of this thesis.

1.1 Symmetries and deformations

It is useful to distinguish between two types of symmetries, namely space-time and

internal symmetries. Let us first consider space-time symmetries. In the absence of
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gravity, i.e. when space-time is flat, a relativistic theory should be invariant under

Lorentz transformations and translations, collectively called Poincaré transformations.

When gravitational forces become important we know that special relativity is replaced

by general relativity. Space-time can become curved and the transformations that play

a role are general coordinate transformations, also called space-time diffeomorphisms,

which are arbitrary reparametrizations of the space-time coordinates.

Internal symmetries, on the other hand, act on an internal space, which is not related

to space-time. Internal symmetries transform a set of fields into each other. For example,

a number of non-interacting fields, all of the same mass, can rotate into each other.

As a result, their equations of motion rotate into an equivalent set of equations. The

Lagrangian from which the field equations can be derived is then invariant under these

internal rotations.

When transformations are the same at every point in space-time, they are called rigid

and when they are allowed to differ at different points in space-time, local. There is a

well-defined procedure for promoting a rigid symmetry to a local symmetry, which is

sometimes called gauging. It requires the introduction of so-called gauge fields, which

can propagate the information of these transformations from one space-time point to

another. A well-known example of a theory with local internal symmetry is Maxwell’s

theory of electrodynamics. The photon field acts as the gauge field associated with local

phase transformations. Also space-time symmetries can be divided into rigid and local.

For instance, the Poincaré transformations of special relativity are rigid, whereas general

coordinate transformations of general relativity are local space-time symmetries.

Supersymmetry

Supersymmetry is different from the symmetries above. In some sense it acts like an

internal symmetry, since it transforms fields into each other. What makes supersymmetry

special is that it relates fields of half-integer spin to fields of integer spin. Fields of integer

spin describe bosons, which are particles with the property that they can occupy the

same quantum state. Fields of half-integer spin describe fermions, which, in contrast to

bosons, cannot occupy the same quantum state. In relativistic field theories, fermions

are described by anti-commuting spinors. A spinor is a representation of the Lorentz

group, and hence it transforms non-trivially under Lorentz transformations. Since super-

symmetry relates bosons to fermions, the generators and parameters of supersymmetry

transformations must also be spinors. This is in contrast to the internal symmetries

we discussed before, where the generators and transformation parameters are Lorentz
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scalars. Another defining property of supersymmetry is that two successive supersym-

metry transformations lead to a space-time translation. Therefore supersymmetry is in

some sense both an internal and a space-time symmetry.

Just like any symmetry, supersymmetry can be realized rigidly or locally. The fact

that supersymmetry and space-time symmetries are related has an important and in-

triguing consequence. When a theory is invariant under rigid supersymmetry, it must

also be invariant under rigid space-time symmetries. On the other hand, when a theory is

invariant under local supersymmetry, it must necessarily be invariant under local space-

time transformations, i.e. general coordinate transformations, the symmetries of general

relativity. Hence space-time can be curved. Accordingly, theories that are invariant

under local supersymmetry are called supergravity. Among the fields of supergravity is

the spin-2 metric field, associated with the graviton. Its supersymmetric partner is the

gauge field of supersymmetry, called the gravitino field, which has spin 3
2 .

Historically, supergravity was first developed as a four-dimensional theory [1], but

it was soon generalized to other space-time dimensions. It was also realized that it is

possible to have more than one kind of supersymmetry transformation, which is referred

to as extended supersymmetry. The supersymmetry generators, also called supercharges,

then transform reducibly under the Lorentz group and comprise N irreducible Lorentz-

spinors. The number of components of such a spinor depends on the dimension (see

e.g. [2]). When there are N copies of such a spinor, the number of supercharges is N

times the number of spinor components. For instance, in four space-time dimensions,

an irreducible (Majorana) spinor has 4 real components, and hence four-dimensional

N = 2 supergravity has 4 · 2 = 8 supercharges. A supergravity theory can therefore

be characterized by two numbers, the number of supersymmetries N and the space-time

dimension d. The bosonic and fermionic fields that transform among each other by the N

supersymmetry transformations are called a supermultiplet. It is clear that, the higher

the number N , the more restricted a theory is, as more fields will be related to each

other. Moreover, with increasing N , fields of higher and higher spin occur. In particular,

theories with more than 32 supercharges contain fields with spin greater than 2. These

fields cannot consistently couple to other fields or to themselves if one insists on having a

finite number of fields (for a review, see [3]). Therefore conventional supergravities have

at most 32 supercharges. Since an irreducible spinor in eleven dimensions has exactly

32 components, conventional supergravity can not be realized in dimensions higher than

eleven.
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Deformations

The fields of supergravity usually include a set of matter fields (e.g. scalar fields) and

vector gauge fields, which transform under some internal symmetry group. When this

symmetry group is realized rigidly, the vector gauge fields transform under a trivial local

abelian symmetry [U(1)]n, where n is the number of vector fields, under which no fields

are charged, i.e. the matter fields do not couple directly to the vector fields. These

theories are sometimes referred to as ungauged supergravity theories. They arise as

effective field theories of string theory, or M-theory, compactified on a flat or Ricci-flat

manifold, such as an higher-dimensional torus, or a Calabi-Yau manifold.

One class of deformations we study in this thesis are gauge deformations. Starting

with an ungauged theory, one can assign charges to a subset of the matter fields. As a

result, some of the vector gauge fields will couple to the matter fields, consistent with the

internal symmetry group. This is referred to as gauged supergravity [4, 5]. To preserve

supersymmetry the theory typically needs to be extended with a scalar potential, which

can have important consequences. Depending on its form, this scalar potential can for

instance generate (partial) spontaneous breaking of supersymmetry, it can give masses

to the scalar fields, and it can give rise to an effective cosmological constant. All of

these features are relevant for many applications. Just like ungauged supergravity is the

low-energy limit of flat string theory compactifications, gauged supergravity is the low-

energy limit of so-called flux compactifications of string theory [6, 7]. Here the word flux

refers either to a generalization of the electric and magnetic fluxes known from Maxwell’s

theory, induced by fields in the internal manifold, or to so-called geometric fluxes, which

twist the geometry of the internal manifold.

In four space-time dimensions, which is what we consider in this thesis, gauging

internal symmetries in the manner described above is subtle due to the presence of

electric/magnetic duality. This duality is a generalization of the duality rotations in

Maxwell’s theory, under which the electric and magnetic fields and inductions are rotated

into each other according to,(
E

H

)
−→

(
cosα sinα

− sinα cosα

)(
E

H

)
,

(
D

B

)
−→

(
cosα sinα

− sinα cosα

)(
D

B

)
. (1.1)

Under such a duality rotation the Maxwell equations are transformed into an equivalent

set. The duality can be extended in the presence of charges, provided both electric and

magnetic charges occur. Under the duality these charges are then rotated into each other.
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In that case, it is only a matter of convention to specify a charge as electric, since one can

always make a duality rotation to a different frame where the charge would be magnetic.

The situation changes when one writes down a Lagrangian, from which the Maxwell

equations can be derived,

L = 1
2

(
E2 −H2

)
, (1.2)

which, as one can check, is not invariant under the rotations (1.1). Hence, electric/magne-

tic duality is not preserved at the level of the Lagrangian. This is in contrast to the

Maxwell equations, which are preserved under electric/magnetic duality, as discussed

above. Nevertheless, the Lagrangian has some special properties under electric/magnetic

duality, as the latter relates different Lagrangians with equivalent field equations. In

section 1.3 we illustrate these issues in more detail in the context of an example.

Furthermore, the presence of charges in the Lagrangian requires the introduction of a

vector potential, or gauge field, from which the electric and magnetic fields can be derived.

However, whereas it is well-known how to couple this gauge field to the electric charge,

it is less trivial to couple it to the magnetic charge. In fact, generically magnetic charges

lead to the presence of non-local expressions in the Lagrangian [8]. This is reflected by

the electric/magnetic duality rotations, under which the gauge field is rotated into a dual

gauge field, which is not locally related to the old gauge field.

We now return to the issue of gauging internal symmetries of four-dimensional La-

grangians with a set of matter and abelian vector gauge fields. As mentioned before,

electric/magnetic duality transformations relate equivalent Lagrangians. A subgroup

of the electric/magnetic duality group may constitute an invariance of the generalized

Maxwell equations, which means that the electric/magnetic rotation is induced by trans-

formations of the fields in the theory. Gauging this invariance group would in general

require coupling to magnetic charges, which, as we have argued above, is problematic.

One way to deal with this is to apply an appropriate electric/magnetic duality rotation

which converts all the relevant charges to electric ones and in this frame carry out the

gauging according to the standard procedure. This can, however, be cumbersome in

practice. There is an alternative approach that avoids this and generalizes to gauge

groups including magnetic charges. This is the so-called embedding tensor approach

introduced in [9]. We will use this approach to study general gauge deformations of

four-dimensional N=2 supergravity.

Other deformations we consider in this thesis are supersymmetric higher-derivative

couplings. These couplings play an important role as next-to-leading order corrections
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to low-energy effective actions of string theory [10]. For applications and a better

understanding of this fundamental theory, knowledge of the possible higher-derivative

invariants in supergravity theories is desired.

The importance of higher-derivative couplings can, for instance, be illustrated in the

context of black holes. As is well-known, there is a close analogy between the laws of black

hole mechanics and the laws of thermodynamics [11–13]. According to this analogy, the

area of the event horizon of a black hole (with a specific proportionality constant) plays

the role of a thermodynamic entropy. If string theory is indeed a consistent theory of

quantum gravity it should provide a statistical interpretation of this black hole entropy.

This can be checked explicitly for certain supersymmetric black holes, also called BPS

black holes. In string theory, these black holes are given by strings and so-called D-branes

that wrap around the compactified dimensions. The entropy of such a black hole is then

given by the logarithm of the number of D-brane configurations that lead to the same

macroscopic black hole [14]. A description of the corresponding macroscopic black hole is

provided by suitable effective four-dimensional supergravity theories, and, as mentioned

before, its macroscopic entropy is given by the area of its event horizon. Comparing

results from the microscopic and the macroscopic description of the entropy thus provides

a highly non-trivial test on string theory. Such a comparison was performed for the first

time in [14] and agreement was found in the limit that certain charges are large. Since

higher-derivative couplings arise as sub-leading corrections to the low energy effective

action of string theory they are needed for a more precise matching [15–17]. Including

higher-derivative terms in supergravity turns out to be complicated, but considerable

progress has been made.

1.2 Gauge equivalence

In this thesis we make use of the concept of gauge equivalence to describe N = 2

supergravity in a setting which has a larger local symmetry group. We will illustrate

this idea with a simple example of the gauge equivalence between a massive vector field

and a massless vector field together with a scalar field. The Lagrangian of a vector field

Vµ with mass m is as follows,

L = − 1
4 (∂µVν − ∂νVµ)2 − 1

2m
2V 2
µ . (1.3)

The first term in the Lagrangian is invariant under the abelian gauge transformation

δVµ = ∂µΛ familiar from Maxwell’s theory. However, the mass-term does not respect this
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invariance. Hence the four field components of a massive vector describe three physical

degrees of freedom, corresponding to two transversal polarizations and one longitudinal

polarization.

We now make the following redefinition, introduced by Stueckelberg [18], in terms of

a new vector field Wµ and a scalar field φ,

Vµ = Wµ −m−1∂µφ . (1.4)

This redefinition is not unique, as it is invariant under,

δWµ(x) = ∂µΛ(x) , δφ(x) = mΛ(x) . (1.5)

Therefore also the Lagrangian is invariant under (1.5), which we write in terms of the

new fields,

L = − 1
4 (∂µWν − ∂νWµ)2 − 1

2DµφD
µφ . (1.6)

Here Dµφ is the covariant derivative under (1.5) given by,

Dµφ = ∂µφ−mWµ . (1.7)

The Lagrangian (1.6) takes the form of a conventional gauge invariant Lagrangian for

a scalar field coupled to a (massless) abelian gauge field. The gauge field describes

two physical degrees of freedom, corresponding to two transversal polarizations, and the

scalar field one, which adds up to the three physical degrees of freedom of the original

massive vector field. Although we have introduced a local gauge symmetry, the presence

of the scalar field ensures that the total number of degrees of freedom remains the same.

Imposing a gauge condition such as φ = 0 leads back to the original Lagrangian (1.3), and

hence the two models are gauge equivalent. The scalar field φ is called a compensating

field.

In a second example, which is particularly relevant to this thesis, we discuss a gauge

equivalent form of Einstein gravity, which, besides the usual invariance under general

coordinate transformations, admits invariance under local scale transformations, or di-

latations. Under these dilatations the metric transforms as follows,

δgµν = −2ΛD(x)gµν . (1.8)
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From this one can derive,

δ
√
−g = − 4ΛD

√
−g ,

δR = 2ΛDR− 6�ΛD . (1.9)

where R is the Ricci scalar and g the determinant of the metric. Using a scalar field φ

that transforms under dilatations as,

δφ = ΛDφ , (1.10)

one can write down the following Lagrangian which is invariant under local coordinate

transformations and dilatations,

L =
√
−g
(
∂µφ∂

µφ− 1
6 Rφ

2
)
. (1.11)

By choosing a gauge in which φ = 1 we fix the dilatational invariance and we find the

Einstein-Hilbert action,

L = − 1
6

√
−g R(e) . (1.12)

Therefore (1.11) is gauge equivalent to the Einstein-Hilbert action. The scalar field φ

compensates for the extra gauge invariance present in the conformal action.

In a similar fashion we describe supergravity with a gauge-equivalent theory, called

superconformal gravity. This theory has extra conformal invariances, but the presence of

compensating fields ensures that the total number of physical degrees of freedom remain

the same. Notice that in order to have scale invariance, the sign in front of the kinetic

term for the scalar field in (1.11) is necessarily opposite to what it is for a physical scalar.

A similar situation also occurs in superconformal gravity, as we will see.

Although in these examples the benefits of taking one approach over the other are

not so obvious, in the case of supergravity there are clear advantages to using the su-

perconformal description. Since there are many more fields involved, the presence of the

extra symmetry puts welcome restrictions on the model that make it easier to construct

Lagrangians. In particular the superconformal multiplets are smaller because they are

subject to more symmetries. Also for the construction of higher-derivative invariants,

the superconformal method is superior.
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1.3 Electric/magnetic duality

As already discussed, the concept of electric/magnetic duality plays an important role in

four-dimensional supergravity models, and in fact in many effective field theories, with

or without supersymmetry. In this section we illustrate a few properties of this duality

using a simple field theory. These properties will come back in chapter 3 in a more

complicated setting.

As mentioned before, Maxwell’s theory of electrodynamics in four space-time dimen-

sions without charges is the simplest example of a theory exhibiting electric-magnetic

duality. We will slightly generalize the action such that it shows more similarities to a

generic effective action,

L = − 1
4IFµνF

µν − 1
8 iRεµνρσFµνFρσ . (1.13)

Here Fµν = 2∂[µWν] is the field strength written in terms of the gauge field Wµ. The

parameters I and R are just real constants, but in an effective field theory they may

take the form of field-dependent matrices. Hence, whereas the last term in this action is

equal to a total derivative, in a more general setting this might no longer be the case.

Therefore it is important to keep this term to see its role in the duality transformation.

Using the definitions in appendix A, we can split the field strength into a selfdual

and anti-selfdual part and rewrite the Lagrangian as,

L = 1
4 i
(
τF−µνF

−µν − τ̄F+
µνF

+µν
)
, (1.14)

where τ is given by,

τ = R+ iI . (1.15)

The Lagrangian (1.13) or (1.14) is invariant under abelian transformations of which Wµ

is the gauge field,

δWµ = ∂µΛ . (1.16)

Since no fields are present that are charged under the abelian gauge symmetry, the gauge

fields only appear in the field strength. Therefore, the Bianchi identity and equation of
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motion for the field strength can be written in a nicely symmetric form,

∂[µFνρ] = 0 = ∂[µGνρ] , (1.17)

where we have defined,

Gµν ≡ i εµνρσ
∂L
∂Fρσ

. (1.18)

From the Lagrangian in (1.14) we derive,

G−µν = τF−µν . (1.19)

It is immediately apparent from (1.17) that the two equations are rotated to an

equivalent set of equations under real 2-dimensional transformations,(
Fµν

Gµν

)
−→

(
F̃µν

G̃µν

)
=

(
U Z

W V

)(
Fµν

Gµν

)
, (1.20)

with parameters that satisfy UV −WZ = 1. Notice that this is a generalization of (1.1).

As before, this is called an electric/magnetic duality transformation, as it rotates the

electric and magnetic fields derived from the field strength Fµν . After performing a

transformation, F̃µν satisfies a Bianchi identity, so it can be assigned to be the field

strength of a new gauge field, Ãµ. One can check that this new gauge field is non-locally

related to the old gauge field Aµ, except for transformations with Z = 0. Next, the

equation for G̃µν can be interpreted as the equation of motion derived from some new

Lagrangian L̃ depending on the new field strength F̃µν , via G̃µν = i εµνρσ∂L̃/∂F̃ρσ. In

the generic case, where the Lagrangian is an arbitrary function of n field strengths, the

duality transformations must belong to the group Sp(2n;R) in order for L̃ to exist, as

will be discussed in chapter 3.

The new Lagrangian can be written in the same form as the old Lagrangian,

L̃ = 1
4 i
(
τ̃ F̃−µν F̃

−µν − ¯̃τF̃+
µν F̃

+µν
)
, (1.21)

where,

τ̃ =
W + V τ

U + Zτ
. (1.22)
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The Lagrangian does not transform as a function, since L̃(F̃ ) 6= L(F ).1 Now let us assume

that τ is field-dependent, as it will be in a generic effective field theory. Hence, τ = τ(X)

for some field X. When the transformation (1.22) is induced by a transformation of this

field X, i.e. when τ̃(X̃) = τ(X̃), then the duality is an invariance of the theory. This

means that the Lagrangian L remains unchanged under the duality transformation, i.e.,

L̃(F̃ , X̃) = L(F̃ , X̃) . (1.23)

Note that in the literature the word duality is used both for equivalence and for invariance

transformations. In chapter 3 we are interested in duality invariances, as these are the

ones that can be gauged.

To conclude, let us consider electric/magnetic duality transformations (1.20) with

Z = 0, so UV = 1. This is called the electric subgroup of the electric/magnetic duality

group. We already noted that in this case the transformed gauge field is locally related

to the old gauge field. Under transformations with Z = 0 we find that the Lagrangian

transforms as,

L̃(UF ) = L(F )− 1
8 iWUεµνρσFµνFρσ . (1.24)

So up to a total derivative L is invariant under the electric subgroup. This is the reason

why using conventional methods only the electric subgroup of the duality group can be

gauged. In chapter 3 we will see how more general subgroups of the electric/magnetic

duality group can be gauged.

1.4 The content of this thesis

In this thesis we focus on four-dimensional N = 2 supergravity. We derive new defor-

mations related to general gaugings and higher-derivative couplings, and we study their

consequences in several applications.

This thesis is organized as follows. In chapter 2 we present the basics of N = 2

supergravity. We introduce the N=2 supermultiplets that we consider in this thesis, and

their corresponding supersymmetry transformations. We also present the corresponding

(ungauged) Lagrangians.

In chapter 3 we review electric/magnetic duality and study general gauge deforma-

tions of N=2 supergravity theories, using the embedding tensor approach introduced in

1In fact, one can show that the combination L(F ) + 1
8

i εµνρσFµν Gρσ does transform as a function.
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[9]. In this approach, one introduces, from the start, both electric and magnetic gauge

fields. To avoid extra degrees of freedom, tensor gauge fields must be included with

corresponding gauge symmetries. The charges are encoded in a so-called embedding

tensor. The gauge group is only restricted by two constraints on the embedding tensor.

One of these constraints implies that the charges are mutually local. This means that

there exists always an electric/magnetic duality frame in which all charges are electric.

Two interesting applications of the embedding tensor approach are considered in

chapter 4. First we briefly review partial supersymmetry breaking in maximally sym-

metric space-times in the presence of general gaugings. In flat Minkowski space, it

was established that residual supersymmetry is only possible in the presence of magnetic

charges [19–25]. We therefore briefly review the situation in the context of the embedding

tensor approach, where it is natural to have both electric and magnetic charges. As a

new application we study possible supersymmetric solutions in AdS2 × S2 space-times.

We find two classes of solutions. One is fully supersymmetric. It contains for instance

the near-horizon solution of ungauged supergravity that appears for BPS black holes.

The other class exhibits four supersymmetries. It contains the near-horizon solutions of

BPS black holes in N = 2 gauged supergravity. The spinor parameters associated with

the four supersymmetries are AdS2 Killing spinors that are constant on S2, so that they

carry no spin. Nevertheless the bosonic background is rotationally invariant. These two

examples illustrate how the embedding tensor formalism can be used to obtain rather

general results about the realizations of N=2 gauged supergravities.

In chapter 5 we introduce a systematic procedure to construct a large variety of new

higher-derivative deformations in N = 2 supergravity. As an explicit example, many of

the bosonic terms of the supergravity-coupled invariants that contain F 4-, R2F 2-, and

R4-terms, will be discussed. Here F denotes the abelian vector multiplet field strengths

and R the Riemann tensor. We study the possible contribution of these new couplings to

the entropy and the electric charges of BPS black holes. As it turns out we can derive a

‘non-renormalization’ theorem according to which these contributions vanish. This result

is not entirely unexpected, in view of the fact that there was already a good agreement

for the subleading contributions to the BPS entropy obtained from microstate counting

and from supergravity, in which the new couplings had so far not been incorporated.

Hence the existence of the non-renormalization theorem offers a partial explanation for

this agreement.



Chapter 2
Supermultiplets and Lagrangians of
N=2 superconformal gravity

In section 1.2 we have seen how the concept of gauge equivalence allows one to rewrite a

theory so that it has a larger local symmetry group, using so-called compensating fields.

These compensating fields ensure that the total number of degrees of freedom remains

unchanged in the formulation with the extra local symmetry. We showed in an example

how the Einstein-Hilbert action could be constructed in terms of an action which, besides

the usual diffeomorphism invariance, is also invariant under local scale transformations,

using a scalar field as compensator.

Based on a similar construction, we will describe supergravity, sometimes referred to

as Poincaré supergravity, by superconformal gravity with suitable compensating fields

[26–28]. These compensating fields are now contained in supermultiplets. Superconfor-

mal gravity combines local conformal space-time symmetries with local supersymmetry.

Upon gauge-fixing the compensating fields, the local conformal space-time symmetries

are reduced to diffeomorphisms.

As preparation, we will start this chapter by reconsidering conformal gravity in a more

systematic manner, which paves the way for the construction of N = 2 superconformal

gravity presented in section 2.2. We will first introduce the gauge fields corresponding

to the conformal symmetries, and show that one can consistently impose constraints,

such that the number of independent gauge fields is reduced. Using a compensating

field, which couples to the conformal gauge fields, one can write down Lagrangians

that are invariant under conformal symmetries. We will illustrate this by re-deriving
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the Lagrangian (1.11), which was shown to be gauge-equivalent to the Einstein-Hilbert

action, upon gauge-fixing the compensating field.

In section 2.2 we will then indicate how a similar constrained gauge theory can be set

up for N = 2 superconformal gravity, and we will introduce the Weyl multiplet, which

contains the superconformal gauge fields. In the remainder of the chapter we introduce

matter supermultiplets, and we end in section 2.6 with a Lagrangian that describes N=2

superconformal gravity. For introductory texts on supersymmetry we refer to e.g. [29, 30].

2.1 Conformal gravity

Any relativistic theory is invariant under the Poincaré group, which consists of transla-

tions (P) and Lorentz rotations (M). For a theory without intrinsic scale, such as mass

or coupling constants, this group is extended to the conformal group, which is the group

of transformations that leave the light-cone invariant. Next to the symmetries of the

Poincaré group it consists of dilatations, or scale transformations (D) and conformal

boosts, or special conformal transformations (K). In four dimensions it is given by

the group SO(4,2). To each generator we associate a gauge field and a transformation

parameter,

generators: P a Mab D Ka

gauge fields: eµ
a ωµ

ab bµ fµ
a

parameters: ξa εab ΛD ΛK
a ,

(2.1)

where εab is an antisymmetric tensor. The indices a, b, · · · = 0, . . . 3 label the coordinates

of a flat manifold with Minkowski signature, which at this point is still an abstract

internal space. In a moment we will see how it can be related to the tangent bundle

of space-time. The infinitesimal transformations, which follow from the Lie algebra of

SO(4,2), are given by,

δeµ
a =Dµξa − ΛDeµ

a + εabeµb ,

δωµ
ab =Dµεab + 2 Λ

[a
Keµ

b] + 2 ξ[afµ
b] ,

δbµ = ∂µΛD + ΛK
aeµa − ξafµa ,

δfµ
a =DµΛK

a + ΛDfµ
a + εabfµb . (2.2)
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The derivative Dµ is covariant with respect to dilatations and Lorentz transformations,

for instance,

Dµξa = ∂µξ
a + bµξ

a − ωµabξb . (2.3)

Again we stress that at this point the conformal transformations are not space-time

transformations, but are treated as internal transformations. The gauge fields transform

separately as vectors under general coordinate transformations.

Using the transformation rules (2.2) it is easy to construct the curvature tensors. We

list two of them that we will need below,

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] . (2.4)

It is well known that by imposing so-called conventional (algebraic) constraints on the

curvatures of the superconformal fields one can relate the transformations (2.2) to space-

time transformations [31, 32]. Here the gauge field of the translations eµ
a is assumed

to be invertible and identified as the vielbein. As a result of the constraints, the local

translations are effectively replaced by general coordinate transformations of space-time.

To see this, note that one can rewrite a P-transformation of the vielbein eµ
a as follows,

δP eµ
a = Dµξa = ξν∂νeµ

a + ∂µξ
νeν

a + ξνbνeµ
a − ξνωνabeµb + ξνR(P )µν

a

= δcov(ξ) eµ
a + ξνR(P )µν

a . (2.5)

Upon imposing the constraint R(P )µν
a = 0, the right hand side reduces to a general co-

ordinate transformation with appropriate covariantization terms, i.e. a covariant general

coordinate transformation, which we denoted in the second line by δcov(ξ). Hence, after

imposing this constraint the P-transformations will be ignored.

The constraint R(P )µν
a = 0 can be solved for ωµ

ab,

ωµ
ab = − 2eν[a∂[µeν]

b] − eν[aeb]σeµc∂σeν
c − 2eµ

[aeb]νbν ,

which identifies the gauge field ωµ
ab with the spin connection. It differs from the standard

spin-connection of general relativity by the term proportional to bµ. A second constraint
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that is imposed is given by eνbR(M)µνa
b = 0 and can be solved for fµ

a,

fµ
a = 1

2R(ω, e)µ
a − 1

12R(ω, e)eµ
a , (2.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the corre-

sponding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection field

ωµ
ab. It coincides with the Riemann tensor of general relativity upon setting bµ = 0. Thus

the two constraints can be solved algebraically, making ωµ
ab and fµ

a dependent on the

vielbein and the dilatational gauge field. Only the vielbein eµ
a and the dilatational gauge

field bµ are left as independent fields, and we will see below that bµ can be eliminated by

gauge-fixing.

Next we will illustrate how one can write down a Lagrangian that is invariant under

conformal symmetries, using a compensating field which couples to the conformal gauge

fields. For that purpose we consider a scalar field φ that is invariant under conformal

boosts, and has Weyl weight w. The Weyl weight w of a field characterizes how a field

transforms under dilatations,

δDφ = wφ . (2.7)

Consequently the first and second covariant derivative of φ are given by,

Dµφ = (∂µ − w bµ)φ ,

DµDaφ = (∂µ − (w + 1)bµ)Daφ− ωµabDbφ+ wfµ
a . (2.8)

Notice that the Weyl weight of Dµφ is raised by one unit by the presence of the inverse

vielbein. The occurrence of the gauge field of conformal boosts fµ
a in the second deriva-

tive might be surprising, since φ was assumed to be invariant under conformal boosts.

However, the presence of the dilatational gauge field bµ in the covariant derivative makes

the latter transform under K, since δKbµ = ΛKµ. Now one can check the following

variation,

δDaDaφ = 2(1− w)ΛK
aDaφ+ (2 + w)ΛDDaDaφ . (2.9)

Thus for a scalar field with w = 1 we can write down an invariant Lagrangian,

L = −e φDaDaφ , (2.10)
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where e is the determinant of the vielbein. Note that bµ is the only independent field

that transforms under K-transformations. Since (2.10) is invariant under the latter we

can conclude that it does not depend on bµ. Indeed upon substituting the expressions

for ωµ
ab and fµ

a in terms of bµ and eµ
a we find,

L = −e φ�gravφ− 1
6 eR(e)φ2 = e ∂µφ∂

µφ− 1
6 eR(e)φ2 , (2.11)

where �grav is the d’Alembertian in which only the standard spin-connection of general

relativity appears (i.e. (2.6) without the term proportional to bµ). In the second step we

performed a partial integration, which leads us back to the action in (1.11).

The above approach can be summarized as follows. First one constructs a constrained

gauge theory associated with the conformal algebra. Then by coupling a compensating

field to the conformal gauge fields, one finds a conformally invariant action that is gauge

equivalent to the Einstein-Hilbert action. In the next section we will generalize the above

analysis by adding supersymmetry generators, yielding a constrained gauge theory for

the N = 2 superconformal group. The corresponding gauge fields will be contained in a

supermultiplet, called the Weyl multiplet.

2.2 The Weyl multiplet

In this section we introduce the Weyl supermultiplet, which contains the gauge fields

of the N = 2 superconformal algebra [26, 27, 33]. The N = 2 superconformal group

is given by the supergroup SU(2, 2|2).1 The generators of the latter include, besides

the generators of the conformal group that we introduced in the previous section, two

supersymmetry generators Qi, which carry indices i = 1, 2 [34]. They are Majorana

spinors and satisfy the following anti-commutation relation,

{Qi, Q̄j} = 2γaPaδ
ij . (2.12)

Where the N=2 Poincaré superalgebra consist of translations, Lorentz transformations

and supersymmetry transformations (generated by Qi), the N = 2 superconformal al-

gebra requires additional generators. Among these generators are two more Majorana

spinors Si, which correspond to the so-called the S-supersymmetries. Similar to (2.12),

they satisfy an anti-commutation relation that closes into the generator of the special

1Note that SU(2, 2) is the double cover group of SO(4, 2), the conformal group in four space-time
dimensions. Hence spinors form a representation of this double cover group.
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conformal transformations,

{Si, S̄j} = −γaKaδ
ij . (2.13)

Notice that the anti-commutators are invariant under U(2)'U(1)×SU(2) transforma-

tions, which are called the automorphism, or R-symmetry, transformations. They are

part of the superconformal algebra. Since the supersymmetry generators Qi and Si are

Majorana spinors, one can show that the U(2) transformations act in a chiral fashion, i.e.

the positive (left) and negative (right) chirality components transform in conjugate rep-

resentations. Therefore we introduce so-called chiral notation [35, 36], where one writes

the SU(2) index as an upper index when it transforms in the fundamental representation

and with a lower index when it transforms in the anti-fundamental representation. This

implies that upper and lower SU(2) indices have a specific chirality, and for each spinor

it is a matter of definition whether one associates an upper index with left or with right

chirality. The relevant assignments are listed in various tables in this thesis, see e.g.

table B.1 in appendix B for the chirality of the fields in the Weyl multiplet. Note that

hermitian conjugation is always accompanied by raising or lowering of the SU(2) indices.

We refer to appendix A for more information on this chiral notation.

Thus in order to form the N = 2 superconformal algebra, the generators of the

conformal group and their corresponding parameters and gauge fields written in (2.1)

are extended by,

generators: Qi Si V ij A

gauge fields: ψµ
i φµ

i Vµij Aµ

parameters: εi ηi ΛSU(2)
i
j ΛU(1) ,

(2.14)

where Vµij is the anti-hermitian and traceless gauge field of the chiral SU(2), and Aµ

the gauge field of the U(1). Just as in the previous section, conventional constraints are

imposed on the curvatures, which determine the fields ωµ
ab, fµ

a and φµ
i in terms of the

other fields of the multiplet [4, 27, 28]. In order to balance the bosonic and fermionic

degrees of freedom three additional fields are needed: a Majorana spinor doublet χi, a

scalar D, and a selfdual Lorentz tensor Tabij , which is anti-symmetric in [ab] and [ij].

The resulting Weyl multiplet consists of 24+24 degrees of freedom and forms an off-shell

representation of the N = 2 superconformal algebra. This means that the commutators

of the algebra, of which we will consider the most non-trivial one in the next paragraph,

close on the fields without the use of field equations. We refer to appendix B for an
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extended summary of the superconformal transformations of the Weyl multiplet fields,

the expressions for the curvatures and other useful identities.

As a result of the constraints the local translations are again discarded and effectively

replaced by covariant general coordinate transformations [37]. Thus the anti-commutator

(2.12) now closes into such a covariant general coordinate transformation. The presence

of the auxiliary fields χi, D, and Tabij further modify the algebra. We present the

decomposition of the commutator of two infinitesimal Q-supersymmetry transformations,

with parameters ε1 and ε2,

[δ(ε1), δ(ε2)] = δcov(ξ) + δM (ε) + δK(ΛK) + δS(η) + δgauge , (2.15)

where the parameters of the various infinitesimal transformations on the right-hand side

are given by,2

ξµ = 2 ε̄2
iγµε1i + h.c. ,

εab = ε̄1
iε2

j T abij + h.c. ,

ΛaK = ε̄i1ε2
j DbT

ba
ij − 3

2 ε̄
i
2γ
aε1iD + h.c. ,

ηi = 6 ε̄[1
iε2]

j χj , (2.16)

The variation δgauge denotes an additional, internal gauge symmetry, which commutes

with the superconformal algebra. It is not relevant for the fields of the Weyl multiplet,

since they do not transform under such a gauge symmetry. It will play a role for the

vector multiplets, which we will introduce in section 2.4. As in (2.5), δcov(ξ) denotes the

infinitesimal covariant general coordinate transformation, which includes contributions

from all the field-dependent gauge transformations such as a Q- and S-supersymmetry

transformation with parameters − 1
2ξ
ρψρ

i and − 1
2ξ
ρφρ

i, such that the combined result

takes a supercovariant form.

The Weyl multiplet provides the necessary gauge fields that are needed to find an

action that is invariant under N = 2 superconformal gauge transformations. However,

just as in the case with only conformal symmetry, one cannot write down an action that

is gauge equivalent to Poincaré supergravity without the use of compensating fields.

These compensating fields must be provided for by other supermultiplets, i.e. other

representations of the superconformal algebra. Different choices are possible, leading

to inequivalent versions of Poincaré supergravity [27, 38]. In this thesis we take the

2Full supercovariant derivatives are denoted by Dµ, while Dµ denotes a covariant derivative with
respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations (see appendix B).
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compensating fields to be provided for by a vector multiplet and a hypermultiplet, which

we will introduce in section 2.4 and 2.5, respectively. In general we will introduce more

than one vector and hypermultiplet, so that there will be additional matter fields present.

Vector multiplets can be derived from a more general multiplet, called a chiral multiplet.

These chiral multiplets are also very useful for the construction of higher derivatives, as

we will see in chapter 5. Therefore we will start by presenting these multiplets in the

next section.

2.3 Chiral multiplets

Chiral superfields in flat N = 2 superspace were first discussed in [39]. Subsequently

they were derived in a conformal supergravity background [27, 36]. The latter result was

formulated in components and the same approach is followed in this thesis, although it

is convenient to make use of superfield notions at the same time. N = 2 superspace is

obtained upon supplementing the four bosonic coordinates of space-time xµ with four

chiral and four anti-chiral anti-commuting coordinates, θi and θi. The concept of a

field is extended to a superfield, which in general is a function of xµ, θi and θi. Since

the fermionic coordinates are anti-commuting, a Taylor expansion in terms of these

coordinates is finite. The xµ-dependent components of the expansion define the field

components of a superfield. A general complex scalar superfield Φ(x, θi, θi) gives rise to

256+256 degrees of freedom. One can however impose the constraint that the superfield

does not depend on the anti-chiral coordinates θi. This defines a scalar chiral superfield,

which contains 16 + 16 components. These multiplets carry a Weyl weight w and a

chiral U(1) weight c, which is opposite to the Weyl weight, i.e. c = −w. The weights

indicate how the lowest-θ component of the superfield scales under Weyl and chiral U(1)

transformations. Anti-chiral multiplets can be obtained from chiral ones by complex

conjugation, so that anti-chiral multiplets will have equal Weyl and chiral weights, hence

w = c.

The components of a generic scalar chiral multiplet are a complex scalar A, a Majo-

rana spinor Ψi, a complex symmetric scalar Bij , an anti-selfdual tensor F−ab, a Majorana

spinor Λi, and a complex scalar C. The assignment of their Weyl and chiral weights

is shown in table 2.1. The spinors Ψi and Λi transform as doublets under the R-

symmetry group SU(2), which is realized locally with gauge fields Vµij belonging to

the superconformal background. The Q- and S-supersymmetry transformations for a
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A Ψi Bij F−ab Λi C

w w w + 1
2 w + 1 w + 1 w + 3

2 w + 2

c −w −w + 1
2 −w + 1 −w + 1 −w + 3

2 −w + 2

γ5 + +

Table 2.1: Weyl and chiral weights (w and c) and fermion chirality (γ5) of the

chiral multiplet component fields.

scalar chiral multiplet of weight w, are as follows,

δA = ε̄iΨi ,

δΨi = 2 /DAεi +Bij ε
j + 1

2γ
abF−ab εijε

j + 2wAηi ,

δBij = 2 ε̄(i /DΨj) − 2 ε̄kΛ(i εj)k + 2(1− w) η̄(iΨj) ,

δF−ab = 1
2ε
ij ε̄i /DγabΨj + 1

2 ε̄
iγabΛi − 1

2 (1 + w) εij η̄iγabΨj ,

δΛi = − 1
2γ

ab /DF−abεi − /DBijε
jkεk + Cεij ε

j + 1
4

(
/DAγabTabij + wA /DγabTabij

)
εjkεk

− 3 γaε
jkεk χ̄[iγ

aΨj] − (1 + w)Bijε
jk ηk + 1

2 (1− w) γab F−abηi ,

δC = − 2 εij ε̄i /DΛj − 6 ε̄iχj ε
ikεjlBkl

− 1
4ε
ijεkl

(
(w − 1) ε̄iγ

ab /DTabjkΨl + ε̄iγ
abTabjk /DΨl

)
+ 2wεij η̄iΛj . (2.17)

The transformation rules are linear in the chiral multiplet fields, and contain other fields

associated with the superconformal background, such as the self-dual tensor field Tabij

and the spinor χi. Other superconformal fields are contained in the superconformal

derivatives Dµ. Like the Weyl multiplet, the chiral supermultiplet forms an off-shell

representation of the superconformal algebra.

Products of chiral superfields constitute again a chiral superfield, whose Weyl weight

is equal to the sum of the Weyl weights of the separate multiplets. Also functions of

chiral superfields may describe chiral superfields, assuming that they can be assigned a

proper Weyl weight. For instance, homogeneous functions of chiral superfields of the same

Weyl weight w define a chiral supermultiplet whose Weyl weight equals the product of

w and the degree of homogeneity. This is called supermultiplet calculus and the relevant

formulae are presented in appendix D.1.

Chiral multiplets of w = 1 are special, because they are reducible [36, 39]. Some

details about these multiplets are given in appendix D.2. For a scalar chiral multiplet
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with w = 1 the tensor F−ab + F+
ab is subject to a Bianchi identity, which can be solved

in terms of a vector gauge field. The reduced scalar chiral multiplet thus describes the

covariant fields and field strength of a vector multiplet, which encompasses 8 + 8 bosonic

and fermionic components: a complex scalar X, a Majorana doublet spinor Ωi, a vector

gauge field Wµ, and a triplet of auxiliary fields Yij . In the next section we will discuss

the vector multiplet in more detail.

There also exists an anti-selfdual tensor version of the chiral multiplet with w = 1

that is reducible. This multiplet, which comprises 24 + 24 off-shell degrees of freedom,

contains all the covariant fields and curvatures of N = 2 superconformal gravity. It is

especially useful for the construction of higher-derivative invariants [16, 17, 40], as we

will demonstrate in chapter 5. It is also called the Weyl supermultiplet, since it is based

on the same fields as the Weyl multiplet introduced in the previous section. It will be

clear from the context whether we refer to the multiplet of superconformal gauge fields

or to the corresponding chiral multiplet.

Another special chiral multiplet is the so-called ‘kinetic’ multiplet, which has Weyl

weight w = 2. This multiplet is constructed from an anti-chiral multiplet with w = 0. It

will be discussed in detail in chapter 5.

Finally, scalar chiral multiplets with w = 2 lead to superconformal actions when

including a conformal supergravity background. Their highest θ-component C has Weyl

weight 4, and chiral weight 0. To define a Lagrangian that is invariant under local

superconformal transformations one makes use of a density formula [36],

e−1L =C − εij ψ̄µiγµΛj − 1
8 ψ̄µiTab jkγ

abγµΨl ε
ijεkl − 1

16A(Tab ijε
ij)2

− 1
2 ψ̄µiγ

µνψνj Bkl ε
ikεjl + εijψ̄µiψνj(F

−µν − 1
2AT

µν
kl ε

kl)

− 1
2ε
ijεkle−1εµνρσψ̄µiψνj(ψ̄ρkγσΨl + ψ̄ρkψσj A) . (2.18)

As such it is not yet a sensible Lagrangian3, since it does not contain any kinetic terms.

We will indicate in the next section how it can be used to construct a Lagrangian for

vector multiplets. It will also play a central role in the construction of higher-derivative

invariants in chapter 5.

3Notice that one should add the complex conjugate of the density formula in order to obtain a
real-valued Lagrangian.



2.4 Vector multiplets 31

XΛ Ωi
Λ Wµ

Λ Yij
Λ

w 1 3
2 0 2

c −1 − 1
2 0 0

γ5 +

Table 2.2: Weyl and chiral weights (w and c)

and fermion chirality (γ5) of the vector multiplet

component fields.

2.4 Vector multiplets

In the previous section we introduced the vector multiplet as a reduced chiral multiplet.

In this section we will elaborate further on vector supermultiplets in a N = 2 super-

conformal background [26, 28]. Consider n + 1 of these multiplets, labeled by indices

Λ = 0, 1, . . . , n. Vector supermultiplets comprise complex scalar fields XΛ, gauge fields

Wµ
Λ, and Majorana spinors Ωi

Λ. These spinors transform as doublets under the chiral

R-symmetry group SU(2), which is realized locally with gauge fields Vµij belonging to the

superconformal background. Furthermore there are auxiliary fields Yij
Λ, which satisfy

the pseudo-reality constraint (Yij
Λ)∗ = εikεjlYkl

Λ, so that they transform as real vectors

under SU(2). The tensors F±µν
Λ are the (anti-)selfdual (complex) components of the field

strengths, which will be expressed in terms of vector fields Wµ
Λ. These vector fields are

subject to abelian gauge transformations,

δWµ
Λ = ∂µΛΛ . (2.19)

The transformations of the vector multiplet fields under dilatations and chiral trans-

formations are given in table 2.2. Under local Q- and S-supersymmetry they are as

follows [27],

δXΛ = ε̄iΩ Λ
i ,

δWµ
Λ = εij ε̄i(γµΩj

Λ + 2ψµjX
Λ) + εij ε̄

i(γµΩj Λ + 2ψµ
jX̄Λ) ,

δΩi
Λ = 2 /DXΛεi + 1

2γ
µν F̂−µν

Λεijε
j + Yij

Λεj + 2XΛηi ,

δYij
Λ = 2 ε̄(i /DΩj)

Λ + 2 εikεjl ε̄
(k /DΩl)Λ . (2.20)



32 Supermultiplets and Lagrangians of N=2 superconformal gravity

The field strengths Fµν
Λ = 2 ∂[µWν]

Λ are contained in the supercovariant combination,

F̂µν
Λ =F+

µν
Λ + F−µν

Λ − εijψ̄[µ i(γν]Ωj
Λ + ψν]jX

Λ)− εijψ̄[µ
i(γν]Ω

j Λ + ψν]
jX̄Λ)

− 1
4 (XΛ Tµνij ε

ij + X̄Λ Tµν
ij εij) . (2.21)

As before, the full superconformally covariant derivatives are denoted by Dµ, while Dµ
will denote a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and

SU(2) transformations. As an example of the latter, we note the definitions,

DµXΛ =
(
∂µ − bµ + iAµ

)
XΛ ,

DµΩi
Λ =

(
∂µ − 1

4ωµ
abγab − 3

2bµ + 1
2 iAµ

)
Ωi

Λ − 1
2Vµ

j
i Ωj

Λ . (2.22)

Just like any chiral multiplet, the vector multiplet is an off-shell representation of the

superconformal algebra. However, since the vector field is subject to abelian gauge trans-

formations (2.19), the commutator of two infinitesimal Q-supersymmetry transformations

(2.15) contains a gauge transformation δgauge(ΛΛ) with parameter,

ΛΛ = 4 X̄Λ ε̄2
iε1

j εij + h.c. , (2.23)

in addition to the other terms specified in (2.16). To see this, let us evaluate the

supersymmetry commutator on the vector fields Wµ
Λ,

[δ(ε1), δ(ε2)]Wµ
Λ = ξρFρµ

Λ + ∂µΛΛ

− ξρ
(

1
2 εij ψ̄ρ

iγµΩjΛ + εijX̄
Λψ̄ρ

iψµ
j + h.c.

)
, (2.24)

where the parameters ξµ and ΛΛ are as in (2.16) and (2.23). Now we use the following

equality,

ξρFρµ
Λ = ξρ∂ρWµ

Λ + ∂µξ
ρWρ

Λ − ∂µ
(
ξρWρ

M
)
. (2.25)

Substituting this identity into (2.24) shows that the ξµ-dependent terms decompose into

a general coordinate transformation with parameter ξµ, an abelian gauge transformation

with parameter −ξµWµ
Λ and a supersymmetry transformation with parameter − 1

2ξ
µψµi.

Together they constitute a covariant general coordinate transformation with parameter

ξµ. Consequently the supersymmetry commutator closes on Wµ
Λ according to (2.15).

We now assume a holomorphic function F (X) of the fields XΛ, which is homogeneous
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of second degree, i.e.,

F (λX) = λ2F (X) , (2.26)

for any complex parameter λ [4, 41]. As explained in the previous section, this defines a

chiral multiplet of Weyl weight 2 according to (D.2). Therefore one can use the highest

component of this multiplet based on F (X) in the density formula (2.18) to write down a

consistent action for the vector multiplets in the superconformal background provided by

the Weyl multiplet fields. We will refrain from doing this explicitly here. In section 2.6

we will give the complete Lagrangian for vector multiplets.

We will end this section with some identities and definitions concerning the function

F (X), also called the pre-potential. From (2.26) one can show that,

F (X) = 1
2FΛX

Λ ,

FΛ =FΛΣX
Σ ,

FΛΣΓX
Γ = 0 , (2.27)

where FΛ = ∂F/∂XΛ and similarly for higher derivatives.

As we will see more explicitly in section 2.6, when we introduce the Lagrangian for

vector multiplets, the scalar fields parameterize a so-called Kähler manifold. This implies

that the metric NΛΣ that encodes the coupling of the kinetic terms for the scalar fields

can be derived from a scalar function K, called the Kähler potential,

K = i(XΛF̄Λ − X̄ΛFΛ) = NΛΣX
ΛX̄Σ . (2.28)

The metric NΛΣ, whose inverse will be denoted by NΛΣ is then given by,

NΛΣ = ∂Λ∂Σ̄K = −iFΛΣ + iF̄ΛΣ . (2.29)

This metric is not of definite sign, due to fact that one of the vector multiplets is a

compensating multiplet. This is familiar from the discussion at the end of section (1.2).

Before we present the Lagrangian for the vector multiplets, we will first discuss

superconformal hypermultiplets in the next section.
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2.5 Hypermultiplets

Another representation of the superconformal algebra that is important for this thesis is

the hypermultiplet. In this section we give a rather technical synopsis of superconformal

hypermultiplets and their superconformal transformations, following the framework of

[42]. The nH + 1 hypermultiplets are described by 4(nH + 1) real scalars φA, 2(nH + 1)

positive-chirality spinors ζᾱ and 2(nH + 1) negative-chirality spinors ζα. Hence target-

space indices A,B, . . . take values 1, 2, . . . , 4(nH +1), and the indices α, β, . . . and ᾱ, β̄, . . .

run from 1 to 2(nH + 1). The chiral and anti-chiral spinors are related by complex

conjugation (as we are dealing with 2(nH +1) Majorana spinors) under which indices are

converted according to α ↔ ᾱ. For superconformally invariant Lagrangians, the scalar

fields of the hypermultiplets parametrize a 4(nH + 1)-dimensional hyperkähler cone [42–

45]. Such a cone has a homothetic conformal Killing vector χA,

DAχ
B = δA

B , (2.30)

which, locally, can be expressed in terms of a hyperkähler potential χ,

χA = ∂Aχ . (2.31)

The cone metric can thus be written as gAB = DA∂Bχ. This relation does not define

the metric directly, because of the presence of the covariant derivative which contains

the Christoffel connection. We also note the relation,

χ = 1
2gAB χ

AχB . (2.32)

Just like the Kähler metric NΛΣ for the scalar fields of the vector multiplets, the hy-

perkähler metric gAB is not of definite sign, due to fact that one of the hypermultiplets

is a compensating multiplet.

Hyperkähler spaces have three hermitian, complex structures Jij = Jji, that are

covariantly constant and satisfy the algebra of quaternions,

JijAB ≡ (J ijAB)∗ = εikεjlJ
kl
AB ,

J ijA
C JklCB = 1

2ε
i(kεl)j gAB + ε(i(k J l)j)AB . (2.33)

As it turns out, the hyperkähler potential serves as a Kähler potential for each of the

complex structures.
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Hyperkähler cones have SU(2) isometries; the corresponding Killing vectors are ex-

pressed in terms of the complex structures and the homothetic Killing vector,

kij
A = Jij

AB χB , (2.34)

from which it follows that,

DAk
ij
B = −J ijAB . (2.35)

From the above results, it follows that the homothetic Killing vector χA and the three

SU(2) Killing vectors kijA are mutually orthogonal,

χAχA = 2χ , kij
A kklA = δ(i

k δj)
l χ , χA kijA = 0 . (2.36)

The hypermultiplet fields transform under dilations, associated with the homothetic

Killing vector, and the SU(2)×U(1) transformations of the superconformal group, with

parameters ΛD, ΛSU(2) and ΛU(1), respectively,

δφA = ΛD χ
A + ΛSU(2)

i
k ε

jk kij
A ,

δζα + δφA ΓA
α
β ζ

β =
(

3
2ΛD − 1

2 iΛU(1)

)
ζα . (2.37)

Here ΓA
α
β denote the connections associated with field-dependent reparametrizations

of the fermions of the form ζα → Sαβ(φ) ζβ . Naturally the conjugate connections

Γ̄A
ᾱ
β̄ are associated with the reparametrizations ζᾱ → S̄ᾱβ̄(φ) ζ β̄ . These tangent-space

reparametrizations act on all quantities carrying indices α and ᾱ. The corresponding

curvatures RAB
α
β and R̄AB

ᾱ
β̄ take their values in sp(nH + 1) ∼= usp(2nH + 2;C). These

curvatures are linearly related to the Riemann curvature RABC
D of the target space, as

we shall see later.

To define the supersymmetry transformations one needs the notion of quaternionic

vielbeine, which can convert the 4(nH + 1) target-space indices A,B, . . . to the tangent-

space indices α, β, . . . , ᾱ, β̄ . . . carried by the fermions. All quantities of interest can be

expressed in terms of these vielbeine. For instance, the scalar fields transform as follows

under supersymmetry,

δφA = 2(γAiᾱ ε̄
iζᾱ + γ̄Aiα ε̄iζ

α) , (2.38)

where the pseudoreal quantity γAiᾱ(φ) corresponds to the (4nH + 4) × (4nH + 4) inverse

quaternionic vielbein. Its inverse is the vielbein denoted by V̄ iᾱA , which is needed for
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writing down the supersymmetry transformation of the fermions. So we have,

V̄ iᾱA γAjβ̄ = δij δ
ᾱ
β̄ ,

γAiᾱV̄
jᾱ
B + γ̄Ajα V αBi = δi

j δAB . (2.39)

As before, SU(2) indices are raised and lowered by complex conjugation. The quater-

nionic vielbeine are covariantly constant, e.g.,

DAγ
B
iᾱ = ∂Aγ

B
iᾱ + ΓAC

BγCiᾱ − Γ̄A
β̄
ᾱ γ

B
iβ̄ = 0 . (2.40)

Observe that it is not necessary to introduce a SU(2) connection here. When coupling to

the superconformal fields, the SU(2) symmetry will be realized locally and a connection

will be provided by the gauge field Vµij of the Weyl multiplet. The fact that the vielbeine

are covariantly constant provides a relation between the Riemann curvature RABC
D and

the tangent-space curvature R̄AB
ᾱ
β̄ ,

RABC
D γCiᾱ − R̄ABβ̄ᾱ γDiβ̄ = 0 . (2.41)

Both curvatures can actually be written in terms of,

Wᾱβγ̄δ = 1
2RABCD γ

A
iᾱ γ̄

iB
β γCjγ̄ γ̄

jD
δ , (2.42)

which appears as the coefficient of the four-spinor term in the supersymmetric Lagrangian

(cf. (2.56)).

A typical feature of the superconformal hypermultiplets is that they can be formulated

in terms of local sections Ai
α(φ) of an Sp(nH+1)×Sp(1) bundle.4 This section is provided

by,

Ai
α(φ) ≡ χB(φ)V αBi(φ) . (2.43)

Obviously the vielbeine can be re-obtained from these sections, as we easily derive,

DBAi
α = V αBi . (2.44)

4The existence of such an associated quaternionic bundle was established based on a general analysis of
quaternion-Kähler manifolds [46]. Here Sp(1) ∼= SU(2) denotes the corresponding R-symmetry subgroup
of the N=2 superconformal group.
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Ai
α ζα

w 1 3
2

c 0 − 1
2

γ5 −

Table 2.3: Weyl and chiral weights

(w and c) and fermion chirality (γ5) of

the hypermultiplet fields.

We note a few relevant equations,

gAB DAAi
αDBAj

β = εij Ωαβ ,

gAB DAAi
αDBA

jβ̄ = δi
j Gαβ̄ , (2.45)

which defines two tensors, Ωαβ and Gαβ̄ , which are skew symmetric and hermitian,

respectively. Obviously both tensors are covariantly constant. We also note the following

relations,

Gᾱβ V
β
A i = εij Ωᾱβ̄ V̄

jβ̄
A = gAB γ

B
iᾱ ,

Gγ̄αΩ̄γ̄δ̄Gδ̄β = Ω̄αβ ,

Ωᾱβ̄Ω̄β̄γ̄ = − δᾱγ̄ ,

Ω̄αβ Ai
αAj

β = εijχ . (2.46)

The first one establishes the fact that the quaternionic vielbein V αAi is pseudoreal.

Furthermore we note,

Ω̄αβAi
αDBAj

β = 1
2εijχB + kijB ,

Ω̄αβ DAAi
αDBAj

β = 1
2εij gAB − Jij AB ,

Aiᾱ ≡ (Ai
α)∗ = εij Ω̄ᾱβ̄ Gβ̄γ Aj

γ . (2.47)

For additional relations we refer to [42].

Let us now introduce the local Q- and S-supersymmetry transformations of the hy-
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permultiplet fields, employing the sections Ai
α,

δAi
α + δφBΓB

α
βAi

β = 2 ε̄iζ
α + 2 εijG

αβ̄Ωβ̄γ̄ ε̄
jζ γ̄ ,

δζα + δφA ΓA
α
β ζ

β = /DAi
α εi +Ai

α ηi ,

δζᾱ + δφA Γ̄A
ᾱ
β̄ ζ

β̄ = /DAiᾱ εi +Aiᾱ ηi . (2.48)

The Weyl and chiral weights of these sections and the fermion fields are listed in table 2.3.

The reader can easily verify that these weight assignments are consistent with the above

supersymmetry transformations. The bosonic part of the covariant derivative on the

scalar and fermion fields is given by,

DµφA = ∂µφ
A − bµ χA + 1

2Vµ
i
k ε

jk kAij ,

DµAiα = ∂µAi
α − bµAiα + 1

2Vµi
jAj

α + ∂µφ
AΓA

α
βAi

β ,

Dµζα = ∂µζ
α − 1

4ωµ
abγab ζ

α − 3
2bµζ

α + 1
2 iAµζ

α + ∂µφ
A ΓA

α
β ζ

β , (2.49)

where we have now introduced the superconformal gauge fields, in addition to the target-

space connections. The covariantization of the above derivatives with respect to Q- and

S-supersymmetry follows immediately from (2.48). We note that, in contrast to the

vector and the Weyl multiplet, the hypermultiplets form an on-shell representation of

the superconformal algebra. This is inevitable for hypermultiplets based on a finite

number of fields.

2.6 Superconformal Lagrangians

In this section we consider the superconformally invariant Lagrangians for the vector

and hypermultiplets. These Lagrangians can be found in the literature (see, e.g., [4,

27, 28, 42]), including certain terms quartic in the fermions that we will neglect here.

We have not eliminated any auxiliary fields, so that the results pertain to fully off-

shell couplings, with the exception of the hypermultiplets. In the formula below, we

have substituted the explicit expressions for the dependent gauge fields associated with

Lorentz transformations, conformal boosts and S-supersymmetry written in (B.5).

All Lagrangians given below can be viewed as matter Lagrangians in a given supercon-

formal supergravity background. However, for the Lagrangian of the vector multiplets,

one of the vector multiplets acts as a compensating field: its scalar and spinor degrees

of freedom are not physical and only the vector field and the corresponding triplet of



2.6 Superconformal Lagrangians 39

auxiliary fields remain. Physical fields can be identified that are invariant under scale

transformations and S-supersymmetry, so that effectively we will be dealing with super-

gravity coupled to only n vector supermultiplets. For the hypermultiplet Lagrangian, a

similar rearrangement of degrees of freedom will take place. One of the hypermultiplets

will play the role of a compensator with respect to the local SU(2). The precise choice

of the compensator multiplets is irrelevant, and the resulting theories remain gauge

equivalent. Therefore it is best to not make any particular choice for the compensating

multiplets at this stage and keep the formulae in their most symmetric form. At the

end one may then select fields that are invariant under certain local superconformal

transformations, so that the compensating fields decouple from the Lagrangian, or one

may simply adopt a convenient gauge choice.

We decompose the Lagrangian for the vector multiplets into four separate parts,

Lvector = L(1)
kin + L(2)

kin + Laux + Lconf . (2.50)

The first term in (2.50) contains the kinetic terms of the scalar and spinor fields,

e−1L(1)
kin = −NΛΣDµXΛDµX̄Σ − 1

4NΛΣ

[
Ω̄iΛ /DΩi

Σ + Ω̄i
Λ /DΩiΣ

]
− 1

4 i
[
FΛΣΓΩ̄i

Λ /DXΣΩiΓ − F̄ΛΣΓΩ̄iΛ /DX̄ΣΩi
Γ
]

+ 1
2NΛΣ

[
ψ̄µ

i /DX̄Λγµ Ωi
Σ − ψ̄µi /DXΛγµ ΩiΣ

]
. (2.51)

The kinetic terms for the vector fields and their moment couplings to the tensor and

fermion fields are contained in L(2)
kin,

e−1L(2)
kin = 1

4 i
[
FΛΣ F

−Λ
µν F−µνΣ − F̄ΛΣ F

+ Λ
µν F+µνΣ

]
+
[
O−µνΛF

−µνΛ −NΛΣO−µνΛO
−µν

Σ + h.c.
]
, (2.52)

where O−µνΛ is defined by,

O−µνΛ = − 1
16 iFΛΣΓ Ω̄i

ΣγµνΩj
Γ εij − 1

8NΛΣεijψ̄ρ
iγµνγ

ρΩjΣ

− 1
8NΛΣX̄

Σ εijψ̄ρ
iγρσγµνψσ

j + 1
8NΛΣX̄

Σ Tµν
ijεij . (2.53)

The reason for writing the terms in (2.52) in this particular form, including a term

quadratic in the tensors O, has to do with electric/magnetic duality. The first line is of

the form (1.14), with the field-dependent matrix FΛΣ replacing the constant parameter τ .
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The second line behaves under electric/magnetic duality in a similar way [9]. We will

discuss electric/magnetic duality in detail in section 3.1.

The terms associated with the auxiliary fields Yij
Λ are given in Laux [47],

e−1Laux = 1
8N

ΛΣ
(
NΛΓYij

Γ + 1
2 i(FΛΓΩ Ω̄i

ΓΩj
Ω − F̄ΛΓΩ Ω̄kΓΩlΩεikεjl)

)
×
(
NΣΞY

ijΞ + 1
2 i(FΣΞ∆ Ω̄m

ΞΩn
∆εimεjn − F̄ΣΞ∆ Ω̄iΞΩj∆)

)
. (2.54)

Again, this particular combination of terms is convenient in the light of electric/magnetic

duality, as we will discuss in due course. The last part of the Lagrangian describes the

remaining couplings of the vector multiplet fields to conformal supergravity,

e−1Lconf = 1
6K

[
R+ (e−1εµνρσψ̄µ

iγνDρψσi − ψ̄µiψνj Tµνij + h.c.)
]

−K
[
D + 1

2 ψ̄µ
iγµχi + 1

2 ψ̄µiγ
µχi
]

−
(
KΛ

[
1
4e
−1εµνρσψ̄µiγνψρ

iDσXΛ + 1
48 ψ̄iµγ

µγρσΩj
Λ T ijρσ

]
+ h.c.

)
−
(
KΛ

[
1
3 Ω̄i

ΛγµνDµψνi − Ω̄i
Λχi
]

+ h.c.
)
, (2.55)

where K is defined in (2.28). In this part of the Lagrangian we suppress terms quartic in

the fermion fields. Note that (2.52) and (2.54) do contain terms quartic in the fermion

fields, due to their significance to electric/magnetic duality, as we mentioned before.

We now exhibit the superconformal Lagrangian for hypermultiplets [42, 45],

e−1Lhyper = 1
6 χ
[
R+ (e−1εµνρσψ̄µ

iγνDρψσi − 1
4 ψ̄µ

iψν
j Tµνij + h.c.)

]
+ 1

2 χ
[
D + 1

2 ψ̄µ
iγµχi + 1

2 ψ̄µiγ
µχi
]

− 1
2Gᾱβ DµAi

β DµAiᾱ −Gᾱβ(ζ̄ᾱ /Dζβ + ζ̄β /Dζᾱ)− 1
4Wᾱβγ̄δ ζ̄

ᾱγµζ
β ζ̄ γ̄γµζδ

− χA
(
γAiᾱ

[
2
3 ζ̄
ᾱγµνDµψνi + ζ̄ᾱχi − 1

6 ζ̄
ᾱγµψνj T

µνij
]

+ h.c.
)

+
[

1
16 Ω̄αβ ζ̄

αγµνTµνijε
ijζβ − 1

2 ζ̄
αγµγνψµi

(
ψ̄ν

iGαβ̄ ζ
β̄ + εij Ω̄αβ ψ̄νjζ

β
)

+Gᾱβ ζ̄
βγµ /DAiᾱψµi − 1

4e
−1εµνρσGᾱβ ψ̄µ

iγνψρj Ai
βDσAjᾱ + h.c.

]
,

(2.56)

where Wᾱβγ̄δ was defined in (2.42), and the hyperkähler potential was introduced in sec-

tion 2.5. As mentioned in section 2.5, the target-space geometry is that of a hyperkähler
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cone. This hyperkähler cone is a cone over a so-called tri-Sasakian manifold [42, 48]. The

latter is a fibration of Sp(1) over a 4(nH − 1)-dimensional quaternion-Kähler manifold

Q4(nH−1). Hence the hyperkähler cone can be written as R+ × (Sp(1)×Q4(nH−1)).

We have now introduced all the necessary ingredients to study the subject of the

thesis: deformations of N = 2 supergravity. We will study these deformations in a

superconformal setting, it is never necessary to gauge-fix the extra conformal symmetries.

In the next chapter we will study general gaugings of N = 2 superconformal gravity

theories based on vector multiplets and hypermultiplets. The vector fields contained in

the vector multiplets will play the role of gauge fields for the internal symmetry group of

the theory. In chapter 5 we will introduce deformations in the form of higher-derivative

couplings. These couplings will be based on vector multiplets, the Weyl multiplet and

possible other multiplets based on chiral multiplets.





Chapter 3
General gauge deformations of N=2
superconformal gravity

As discussed in the introduction of this thesis, in four space-time dimensions, La-

grangians with abelian gauge fields have generically less symmetry than their correspond-

ing equations of motion. The full invariance group of the combined field equations and

Bianchi identities in principle involves a subgroup of the electric/magnetic duality group,

Sp(2n,R) for n vector fields, suitably combined with transformations of the matter fields.

Subgroups of the symmetry group of the Lagrangian can be gauged in the conventional

way by introducing covariant derivatives and covariant field strengths. Introducing gauge

groups which involve elements of the electric/magnetic duality group that do not belong

to the symmetry group of the Lagrangian, are not possible in this way.

To circumvent this problem, one may therefore first convert the Lagrangian by an

electric/magnetic equivalence transformation to a different, but equivalent, Lagrangian

that has the desired gauge group as a symmetry. However, this procedure is cumbersome.

One reason for this is that the gauge fields in the old and in the new electric/magnetic

duality frame are not generically related by local field redefinitions. The effect of chang-

ing the duality frame is therefore not straightforward, and it is by no means trivial to

explicitly obtain the new Lagrangian (see e.g. [49]). A related aspect is that, when the

gauge fields belong to supermultiplets, their relation with other fields of the multiplet

will be affected by changes of the duality frame, unless one simultaneously performs



44 General gauge deformations of N=2 superconformal gravity

corresponding redefinitions of these fields as well.1 The embedding tensor approach

circumvents all these problems by introducing, from the start, both electric and magnetic

gauge fields as well as tensor gauge fields. In this approach the gauge group is not

restricted to a subgroup of the invariance group of the Lagrangian, but it must only

be a subgroup of the symmetry group of field equations and Bianchi identities. The

formalism is straightforwardly applicable to any given Lagrangian, and the gauge group

is only restricted by two group-theoretical constraints on the embedding tensor [9].

In this chapter we study general gaugings of N = 2 superconformal gravity theo-

ries based on vector supermultiplets and hypermultiplets, using the embedding tensor

formalism. This study is facilitated by the fact that the embedding tensor framework

has already been considered for rigid N=2 supersymmetric gauge theories [47], without

paying particular attention to the class of superconformally invariant models. The present

chapter fills this gap by presenting a complete treatment of the embedding tensor method

in the context of locally superconformal N=2 theories.

Theories with N = 2 supersymmetry are special with respect to electric/magnetic

duality. For N = 1 supersymmetry the transformations of the matter fields under elec-

tric/magnetic duality, and thus under the gauge group, are not a priori defined, and will

depend on the details of the model. On the other hand, in theories with N > 2 supersym-

metries all of the matter fields are closely linked to the vector fields, because they belong

to common supermultiplets. Theories with N=2 supersymmetries are exceptional in that

they exhibit both of these characteristic features. The complex scalars belonging to the

vector multiplets transform in a well-defined way under electric/magnetic duality so that

the Lagrangian will retain its standard form expressed in terms of a holomorphic function,

while the scalars of the hypermultiplets have no a priori defined transformations under

electric/magnetic duality. Prior to switching on the gauging, the hypermultiplets are

invariant under some rigid symmetry group that is independent of the electric/magnetic

duality group. Once the gauge group has been embedded in the latter group, then one

has to separately specify its embedding into the symmetry group associated with the

hypermultiplets.

The embedding tensor approach of [9] makes use of both electric and magnetic charges

and their corresponding gauge fields. The charges are encoded in terms of an embedding

tensor, which specifies the embedding of the gauge group into the full rigid invariance

group. This embedding tensor is treated as a spurionic object (a quantity that is treated

as a dynamical field, but that is frozen to a constant at the end of the calculation), so

1One way to circumvent this is by describing the scalar fields in terms of sections whose parametriza-
tion is linked to a specific frame (see, for instance, [50]).
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that the electric/magnetic duality structure of the ungauged theory is preserved when

the charges are turned on. Besides introducing a set of dual magnetic gauge fields,

also tensor gauge fields are required transforming in the adjoint representation of the

rigid invariance group. These extra fields carry additional off-shell degrees of freedom,

but the number of physical degrees of freedom remains the same owing to extra gauge

transformations. Prior to [9] it had already been discovered that magnetic charges tend

to be accompanied by tensor fields. An early example of this was presented in [51], and

subsequently more theories with magnetic charges and tensor fields were constructed, for

instance, in [52–54], mostly in the context of abelian gauge groups. The embedding tensor

approach has already been explored for many supersymmetric theories in four space-time

dimensions. For instance, it was successfully applied to N = 4 supergravity [55] and to

N = 8 supergravity [56]. More recently it has also been discussed for N=1 supergravity

[57]. In [47] some applications to N = 2 supergravity were already presented, under the

assumption that the conformal multiplet calculus [4, 27, 28] is applicable. As it turned

out, the results of the embedding tensor approach confirm and/or clarify various previous

results in the literature, especially for abelian gaugings [58, 59]. The embedding tensor

is ideally suited for the study of flux compactifications in string theory (for a review, see

[6]). It has also been used to construct stable de Sitter vacua [60–62], where the presence

of magnetic charges is crucial [63]. Recently it was successfully employed in a study of

partial breaking of N=2 to N=1 supersymmetry [24, 25].

This chapter is organized as follows. In section 3.1 we review the relevant features

of electric/magnetic duality in the context of N = 2 superconformal vector multiplets,

and discuss the electric and magnetic gauge fields. Isometries of hypermultiplets are

introduced in a superconformal setting in section 3.2. Section 3.3 contains a discussion of

the possible gauge transformations, the electric and magnetic charges, and the embedding

tensor. In section 3.4 we describe the introduction of tensor fields, needed in the presence

of general charge assignments. Section 3.5 deals with the algebra of superconformal

transformations in the presence of a gauging. It presents the extra masslike terms and

the scalar potential in the vector multiplet and hypermultiplet Lagrangians that are

induced by these gaugings.

3.1 Vector multiplets and electric/magnetic duality

In section 2.4 we introduced vector multiplets and their supersymmetry transformations.

Their corresponding Lagrangian was given in section 2.6, where we already alluded to the
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presence of electric/magnetic duality. In this section we will consider electric/magnetic

duality transformations on vector multiplets. Parts of this discussion will generalize the

analysis in section 1.3. We will consider an extension of the field representation of the

vector multiplet that will facilitate the treatment of electric/magnetic duality in the

presence of non-zero gauge charges.

In the absence of charged fields, abelian gauge fields Wµ
Λ appear exclusively through

the field strengths, Fµν
Λ = 2 ∂[µWν]

Λ. The field equations for these fields and the Bianchi

identities for the field strengths comprise 2(n+ 1) equations,

∂[µFνρ]
Λ = 0 = ∂[µGνρ] Λ , (3.1)

where,

Gµν Λ = ie εµνρσ
∂L

∂FρσΛ
. (3.2)

From the Lagrangian in (2.52) we derive the following decomposition for G−µνΛ (and

likewise for G+
µνΛ),

G−µνΛ = FΛΣF
−
µν

Σ − 2iO−µνΛ , (3.3)

with O−µνΛ as in (2.53).

It is convenient to combine the tensors Fµν
Λ and GµνΛ into a 2(n + 1)-dimensional

vector,

Gµν
M =

(
Fµν

Λ

GµνΛ

)
, (3.4)

so that (3.1) reads ∂[µGνρ]
M = 0. Obviously these 2(n+1) equations are invariant under

real 2(n+ 1)-dimensional electric/magnetic duality rotations of the tensors Gµν
M ,(

FΛ

GΛ

)
−→

(
UΛ

Σ ZΛΣ

WΛΣ VΛ
Σ

)(
FΣ

GΣ

)
, (3.5)

which generalizes (1.20). Half of the rotated tensors can be adopted as new field strengths

defined in terms of new gauge fields, and the Bianchi identities on the remaining tensors

can then be interpreted as field equations belonging to some new Lagrangian expressed

in terms of the new field strengths. In order that such a Lagrangian exists, the real

matrix in (3.5) must belong to the group Sp(2n+ 2;R) [64]. This group consists of real
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matrices that leave the skew-symmetric tensor ΩMN invariant,

Ω =

(
0 1

−1 0

)
. (3.6)

The conjugate matrix ΩMN is defined by ΩMNΩNP = −δMP . Here we employ an

Sp(2n+2;R) covariant notation for the 2(n+1)-dimensional symplectic indices M,N, . . .,

such that ZM = (ZΛ, ZΣ). Likewise we use vectors with lower indices according to

YM = (YΛ, Y
Σ), transforming according to the conjugate representation so that ZM YM

is invariant.

The Lagrangian depends on the electric/magnetic duality frame and is therefore not

unique. Different Lagrangians related by electric/magnetic duality lead to equivalent field

equations and thus belong to the same equivalence class. These alternative Lagrangians

remain supersymmetric but because the field strengths (and thus the underlying gauge

fields) have been redefined, the standard relation between the various fields belonging to

the vector supermultiplet, encoded in (2.20), is lost. However, upon a suitable redefinition

of the other vector multiplet fields (possibly up to terms that will vanish subject to

equations of motion) this relation can be preserved. It is to be expected that the new

Lagrangian is again encoded in terms of a holomorphic homogeneous function, expressed

in terms of the redefined scalar fields. Just as the Lagrangian changes, this function

will change as well. Hence, different functions F (X) can belong to the same equivalence

class. The new function is such that the vector XM = (XΛ, FΛ) transforms under

electric/magnetic duality according to,(
XΛ

FΛ

)
−→

(
X̃Λ

F̃Λ

)
=

(
UΛ

Σ ZΛΣ

WΛΣ VΛ
Σ

)(
XΣ

FΣ

)
. (3.7)

The new function F̃ (X̃) of the new scalars X̃Λ follows from integration of (3.7) and takes

the form,

F̃ (X̃) =F (X)− 1
2X

ΛFΛ(X) + 1
2 (UTW )ΛΣX

ΛXΣ

+ 1
2 (UTV +WTZ)Λ

ΣXΛFΣ(X) + 1
2 (ZTV )ΛΣFΛ(X)FΣ(X) . (3.8)

There are no integration constants because the function must remain homogeneous of

second degree.

In general it is not easy to determine F̃ (X̃) from (3.8) as it involves the inversion of
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X̃Λ = UΛ
ΣX

Σ + ZΛΣFΣ(X). As we emphasized in the beginning of this chapter, this is

the reason why one prefers to avoid changing the electric/magnetic duality frame. The

duality transformations on higher derivatives of F (X) follow by differentiation and we

note the results,

F̃ΛΣ(X̃) = (VΛ
ΓFΓΞ +WΛΞ) [S−1]ΞΣ ,

F̃ΛΣΓ(X̃) =FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ , (3.9)

where,

SΛ
Σ =

∂X̃Λ

∂XΣ
= UΛ

Σ + ZΛΓFΓΣ . (3.10)

The symmetric real matrix NΛΣ that we introduced in (2.29) transforms under elec-

tric/magnetic duality according to,

ÑΛΣ(X̃, ˜̄X) = NΓ∆ [S−1]ΓΛ [S̄−1]∆Σ . (3.11)

To determine the action of the dualities on the fermion fields, we consider supersym-

metry transformations of the symplectic vector XM = (XΛ, FΛ), according to (2.20),

which can be written as δXM = ε̄iΩi
M , thus defining an Sp(2n+2;R) covariant fermionic

vector, Ωi
M ,

Ωi
M =

(
Ωi

Λ

FΛΣ Ωi
Σ

)
. (3.12)

Complex conjugation leads to a second vector, ΩiM , of opposite chirality. From (3.12)

one derives that, under electric/magnetic duality,

Ω̃i
Λ = SΛ

Σ Ωi
Σ . (3.13)

Another useful transformation rule that one can now check is,

Õ−µνΛ = O−µνΣ [S−1]ΣΛ . (3.14)

Note the identity,

ΩMN X
MΩi

N = 0 , (3.15)

which implies that supersymmetry variations of Ωi
M are subject to ΩMN X

M δΩi
N = 0

as well, up to terms quadratic in the vector multiplet spinors. This observation explains

some of the identities that we will encounter in due course, especially in the next chapter.
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The supersymmetry transformation of Ωi
M also follows from (2.20), and we decom-

pose it into the following form,

δΩi
M = 2 /DXM εi + 1

2γ
µνĜ−µν

Mεij ε
j + Zij

M εj + 2XMηi . (3.16)

Here the quantities Zij
M are defined by,

Zij
M =

(
Yij

Λ

FΛΣ Yij
Σ − 1

2FΛΣΓ Ω̄i
ΣΩj

Γ

)
, (3.17)

which suggests that Zij
M transforms under electric/magnetic duality as a symplectic

vector. However, this is only possible provided we impose a pseudo-reality condition

on ZijΛ. As one can check, this constraint can be understood as the result of the field

equation for Yij
Λ associated with the Lagrangian presented in the section 2.6.

From (3.16) we also find a symplectic array of anti-selfdual supercovariant field

strengths,

Ĝ−µν
M =

(
Ĝ−µν

Λ

Ĝ−µνΛ

)
. (3.18)

where Ĝ−µν
Λ = F̂−µν

Λ, with F̂−µν
Λ defined in (2.21), and Ĝ−µνΛ is defined by,

Ĝ−µνΛ = FΛΣF̂
−
µν

Σ − 1
8FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (3.19)

A similar symplectic vector of the field strengths was given in (3.3) and by comparing

with (3.4) we can make the identification (which generalizes (2.21)),

Ĝµν
M =G+

µν
M +G−µν

M − εijψ̄[µ i(γν]Ωj
M + ψν]jX

M )− εijψ̄[µ
i(γν]Ω

j M + ψν]
jX̄M )

− 1
4 (XM Tµνij ε

ij + X̄M Tµν
ij εij) . (3.20)

The homogeneity of F (X) is crucial for deriving these results. The relation (3.20) shows

that also Ĝ−µν
M transforms as a symplectic vector under electric/magnetic duality.

The field strengths Gµν
M satisfy a Bianchi identity. For Gµν

Λ = Fµν
Λ this is obvious,

and it implies that Fµν
Λ can be expressed in terms of a vector potential Wµ

Λ. For the

field strengths GµνΛ the Bianchi identity is provided by the field equation for the vector
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fields (3.1).2 This is similar to the situation with Zij
M , where the pseudo-reality of

ZijΛ is implied by the field equation of Yij
Λ. From the fact that the field strengths

GµνΛ are subject to a Bianchi identity, it follows that they can be expressed in terms of

magnetic duals WµΛ. Hence we introduce these magnetic gauge fields, whose role will

eventually become clear in the context of the embedding tensor formalism which will be

introduced in due course.3 Together with the electric gauge fields Wµ
Λ, the magnetic

duals constitute a symplectic vector, Wµ
M = (Wµ

Λ,WµΛ), where Gµν
M = 2 ∂[µWν]

M .

As we shall see, this relationship is, however, not exact and the identification is subject

to terms that depend on equations of motion. The supersymmetry transformations of

Wµ
M are conjectured to take a duality covariant form,

δWµ
M = εij ε̄i(γµΩj

M + 2ψµjX
M ) + εij ε̄

i(γµΩj M + 2ψµ
jX̄M ) . (3.21)

Observe that, with this transformation rule, the field strengths Ĝµν
M are supercovari-

ant. As mentioned above, GµνΛ and 2 ∂[µWν]Λ are not identical! This can be seen by

calculating the supersymmetry variation of 2 ∂[µWν]Λ and showing that it only coincides

with the supersymmetry variation of (3.3) up to equations of motion.

The consistency, up to equations of motion, of introducing dual gauge fields WµΛ

is also confirmed when considering the closure of the supersymmetry algebra, based on

(3.21). Although we started with an off-shell definition of the vector multiplets, so that

all superconformal transformations will close under commutation without the use of field

equations, this is not necessarily the case for the newly introduced gauge field WµΛ.

The validity of (2.15) on WµΛ can be derived in direct analogy with the calculation of

the commutation relation on Wµ
Λ in (2.24), upon replacing GµνΛ by 2 ∂[µWν]Λ. The

abelian gauge transformation δgauge contained in the commutation relation acts on both

the electric and the magnetic gauge fields, and its parameter is given by (compare with

(2.23)),

ΛM = 4 X̄M ε̄2
iε1

j εij + h.c. . (3.22)

We now turn once more to the Lagrangian for the vector multiplets (2.50). The

kinetic terms of the scalar and spinor fields (2.51) can now be rewritten in a symplectic

2It should be obvious that also the field strengths ĜµνM satisfy a Bianchi-type identity of a more

complicated form. Identities of this type have been presented in [27] for ĜµνΛ.
3In the presence of gauge charges in the context of embedding tensor formalism, the Lagrangian can

depend simultaneously on electric and magnetic gauge fields, as is described in later sections.
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form,

e−1L(1)
kin = − iΩMN DµXM DµX̄N + 1

4 iΩMN

[
Ω̄iM /DΩi

N − Ω̄i
M /DΩiN

]
− 1

2 iΩMN

[
ψ̄µ

i /DX̄Mγµ Ωi
N − ψ̄µi /DXMγµ ΩiN

]
. (3.23)

Also the Kähler potential (2.28) can be written in a symplectic form, K = iΩMNX
M X̄N .

The four parts of the Lagrangian are each separately consistent with electric/magnetic

duality, as was already hinted to.4 We stress that this is not a invariance property.

As mentioned before, the electric/magnetic duality transformations define equivalence

classes of Lagrangians. A subgroup thereof may constitute an invariance of the theory,

meaning that the Lagrangian and its underlying function F (X) do not change [4, 65].

More specifically, an invariance implies,

F̃ (X̃) = F (X̃) , (3.24)

so that the result of the duality leads to a Lagrangian based on F̃ (X̃) which is identical to

the original Lagrangian. Because F̃ (X̃) 6= F (X), as is obvious from (3.8), F (X) is not an

invariant function. Instead the above equation implies that the substitution XΛ → X̃Λ

into the function F (X) and its derivatives, induces precisely the duality transformations.5

For example, we obtain,

FΛ(X̃) =VΛ
ΣFΣ(X) +WΛΣX

Σ ,

FΛΣ(X̃) = (VΛ
ΓFΓΞ +WΛΞ) [S−1]ΞΣ ,

FΛΣΓ(X̃) =FΞ∆Ω [S−1]ΞΛ [S−1]∆Σ [S−1]ΩΓ . (3.25)

In section 3.3 we are precisely interested in this subclass of electric/magnetic duality

transformations, as these are the ones that can be gauged.

This concludes the discussion about the transformation of vector multiplets under

electric/magnetic duality. In the next section we will turn to the isometries of supercon-

formal hypermultiplets.

4We note that (2.52) can be written as,

e−1L(2)
kin = 1

4
i
[
F−Λ
µν G−µν

Λ + h.c.
]
− i

[
O−µν

Σ N
ΣΛ

(
G−
µνΛ − F̄ΛΓ F

−
µν

Λ
)

+ h.c.
]
.

Modulo the field equation of the vector fields, the first term can be written as a total derivative, whereas
the second term is manifestly consistent with electric/magnetic duality as follows from (3.11), (3.25) and
(3.14).

5This discussion can be compared to the discussion below (1.22).
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3.2 Isometries of hyperkähler cones

As mentioned in the beginning of this chapter, hypermultiplets have no a priori defined

transformations under electric/magnetic duality. Before switching on the gauging, the

hypermultiplets are invariant under some rigid symmetry group that is independent of

the electric/magnetic duality group. In section 3.3 we will consider general gaugings

of the invariance group of the electric/magnetic dualities and the symmetry group of

the hypermultiplets. Once the gauge group has been embedded in the electric/magnetic

duality group, then one has to separately specify its embedding into the symmetry group

associated with the hypermultiplets.

In this section we will discuss possible isometries of hyperkähler cones that commute

with supersymmetry. Again, we follow the framework of [42]. The isometries are charac-

terized by Killing vectors kAm(φ), labeled by indices m, n, p, etcetera. They generate a

group of motions, denoted by Ghyper, that leaves the complex structures invariant so that

they are called tri-holomorphic. Furthermore, they commute with SU(2) R-symmetry

and dilatations. These three properties are reflected in the following equations,

kCm ∂CJ
ij
AB − 2∂[Ak

C
m J

ij
B]C = 0 ,

kij
B DBk

A
m = DBkij

A kBm = Jij
A
B k

B
m ,

χA k
A
m = 0 . (3.26)

Such tri-holomorphic isometries can be gauged by coupling to the (electric and/or mag-

netic) gauge fields belonging to the vector multiplets, as we shall discuss in due course.

The structure constants of Ghyper are denoted by fmn
p, and follow from the Lie bracket

relation,

kBm ∂Bk
A
n − kBn ∂Bk

A
m = −fmn

p kAp . (3.27)

We note that derivatives of Killing vectors are constrained by the Killing equation, which

induces constraints on multiple derivatives, as is shown below,

DAkB +DBkA = 0 , DADBkC = RBCAE k
E . (3.28)

The infinitesimal transformations act on the hypermultiplet fields according to,

δφA = gΛm kAm(φ) ,

δζα + δφAΓA
α
β ζ

β = gΛm tm
α
β(φ) ζβ , (3.29)
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where we introduced a generic coupling constant g and φ-dependent matrices tm
α
β(φ)

which take values in sp(nH + 1), and are proportional to DAk
B
m. Explicit definitions

will be given later, but we already note that they satisfy the following relations,

DAtm
α
β =RAB

α
β k

B
m ,

[ tm, tn ]αβ = fmn
p (tp)

α
β + kAm k

B
nRAB

α
β . (3.30)

This result is consistent with the Jacobi identity. The above results can be summa-

rized by noting that the linear combinations, Xm
α
β = δαβ k

A
mDA − tmαβ , close under

commutation according to,6

[Xm, Xn]
α
β = −fmn

pXp
α
β . (3.31)

One can show that the curl of J ijAB k
B
m vanishes, so that these vectors can be solved

in terms of the derivative of the so-called Killing potentials, or moment maps, denoted by

µijm. On the hyperkähler cone there are no integration constants, and one can explicitly

determine these potentials,

µijm = − 1
2k

ij
A k

A
m . (3.32)

This can easily be verified by showing that ∂Aµ
ij

m = J ijAB k
B
m, making use of (3.26)

and the Killing equation given in (3.28). Using also (3.27) one derives the so-called

equivariance condition,

J ijAB k
A
m k

B
n = −fmn

p µijp . (3.33)

The Killing potentials scale with weight w = 2 under dilatations and transform covari-

antly under the isometries and SU(2) transformations,

δµijm =
(
gΛn kAn + ΛSU(2)

k
m ε

lm kkl
A
)
∂Aµ

ij
m

=
(
− gΛn fnm

p µijp + 2 ΛSU(2)
(i
k µ

j)k
m

)
. (3.34)

An expression for the generators tm associated with the tri-holomorphic Killing vectors

follows from requiring the invariance of the quaternionic vielbeine V αAi up to a target-

space rotation,

(tm)αβ = 1
2V

α
Ai γ̄

Bi
β DBk

A
m . (3.35)

6To be precise, the Xm are the generators acting of φ-dependent tangent-space tensors (provided the
matrix tm is replaced by the appropriate generator for the corresponding tensor representation).
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The invariance implies that target-space scalars satisfy algebraic identities such as,

t̄m
γ̄
ᾱGγ̄β + tm

γ
β Gᾱγ = t̄m

γ̄
[ᾱ Ωβ̄]γ̄ = 0 , (3.36)

which confirm that the matrices tm
α
β take values in sp(nH + 1). Furthermore we note

the relations,

kAm V
α
Ai = kAmDAAi

α = tm
α
β Ai

β ,

µijm = − 1
2kAij k

A
m = − 1

2 Ω̄αβ Ai
α tm

β
γAj

γ . (3.37)

For a more complete list of identities we refer to [42].

3.3 Gauge invariance, electric and magnetic charges,

and the embedding tensor

Possible gauge groups must be embedded into the rigid invariance group Grigid of the

theory. Since we consider both vector and hypermultiplets, we are in principle dealing

with a product group, Grigid = Gsymp × Ghyper, where Gsymp refers to the invariance

group of the electric/magnetic dualities, which acts exclusively on the vector multiplets,

and Ghyper refers to the possible invariance group of the hypermultiplet sector generated

by the tri-holomorphic Killing vectors. Here we first concentrate on the gauge group

embedded into Gsymp, which constitutes a subgroup of the electric/magnetic duality

group Sp(2n+2;R) related to the matrices considered in (3.5). The corresponding gauge

group generators thus take the form of (2n + 2)-by-(2n + 2) matrices TM . Since we

are assuming the presence of both electric and magnetic gauge fields, these generators

decompose according to TM = (TΛ, T
Λ). Obviously the gauge-group generators TMN

P

must generate a subalgebra of the Lie algebra associated with Sp(2n + 2;R), which

implies,

TM [N
Q ΩP ]Q = 0 , (3.38)

or, in components,

TMΛ
Σ = −TMΣ

Λ , TM [ΛΣ] = 0 = TM
[ΛΣ] . (3.39)
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Denoting the gauge group parameters by ΛM , infinitesimal variations of generic 2(n+1)-

dimensional Sp(2n+ 2;R) vectors YM and ZM thus take the form,

δYM = −gΛN TNP
M Y P , δZM = gΛN TNM

P ZP , (3.40)

where g denotes a universal gauge coupling constant.7 Covariant derivatives can easily

be constructed, and read,8

DµYM = ∂µY
M + gWµ

N TNP
M Y P

= ∂µY
M + gWµ

Λ TΛP
M Y P + gWµΛ T

Λ
P
M Y P , (3.41)

and similarly for DµZM . The gauge fields then transform according to,

δWµ
M = DµΛM = ∂µΛM + g TPQ

MWµ
P ΛQ . (3.42)

Note that, for constant parameters ΛM , Wµ
M should transform according to (3.40). Con-

sistency with (3.42) then requires that TMN
P is antisymmetric in [MN ]. Nevertheless,

as we shall see, antisymmetry of TMN
P is not necessary in the general case. Rather, it

is sufficient that the TMN
P are subject to the so-called representation constraint [9],

T(MN
Q ΩP )Q = 0 =⇒


T (ΛΣΓ) = 0 ,

2T (ΓΛ)
Σ = TΣ

ΛΓ ,

T(ΛΣΓ) = 0 ,

2T(ΓΛ)
Σ = TΣ

ΛΓ .

(3.43)

which does not imply antisymmetry of TMN
P in [M,N ]. However, for the conventional

electric gaugings, where the magnetic gauge fields AµΛ decouple and where TΛ
N
P = 0

and TΛ
ΣΓ = 0, (3.43) does imply that TΓΣ

Λ is antisymmetric in [ΓΣ].

Note that full covariance of the derivative defined in (3.41) has not yet been estab-

lished to order g2, since we have not discussed the closure of the gauge group generators.

This point will be addressed later in this section.

7The generators follow by expanding the symplectic matrix appearing in (3.5) and (3.7) about
the identity. Comparing with (3.40), one establishes the correspondence, UΛ

Σ ≈ δΛ
Σ − gΛMTMΣ

Λ,
VΛ

Σ ≈ δΛΣ + gΛMTMΛ
Σ, ZΛΣ ≈ −gΛMTMΛΣ, WΛΣ ≈ −gΛMTMΛΣ.

8In this section and in section 3.4, we suppress the covariantization with respect to superconformal
symmetries. Starting with section 3.5 the derivative Dµ will indicate covariantization with respect to
Lorentz, dilatation, and chiral symmetries, and with the newly introduced gauge symmetries associated
with the fields Wµ

M .
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Let us first consider some generic features of the infinitesimal transformations (3.40).

Combining the two equations (3.8) and (3.24) leads to an expression for F (X̃)− F (X),

which, for an infinitesimal symmetry transformation δXΛ = −gΛMTMN
ΛXN , yields,

FΛ δX
Λ = − 1

2gΛM
(
TMΛΣX

ΛXΣ + TM
ΛΣFΛFΣ

)
. (3.44)

Substituting the expression for δXΛ then leads to the condition [4],

TMN
QΩPQX

NXP = TMΛΣX
ΛXΣ − 2TMΛ

ΣXΛFΣ − TMΛΣFΛFΣ = 0 . (3.45)

which must hold for general XΛ. The solution of this condition will specify all continuous

symmetries of the vector Lagrangian (2.50). There are two more useful identities that

follow from it. First one takes the derivative of (3.45) with respect to XΛ,

TMNΛX
N = FΛΣ TMN

ΣXN , (3.46)

and subsequently applies a supersymmetry transformation leading to,

TMNΛΩi
N = FΛΣ TMN

ΣΩi
N + FΛΣΓ Ωi

Σ TMN
ΓXN . (3.47)

The latter two identities show that the gauge covariantization of the kinetic term for the

scalars and spinors in (3.23) will not involve TMΛΣ.

By introducing a vector UM = (UΛ, FΛΣU
Σ), it is possible to cast (3.46) in the

symplectically covariant form, TMN
Q ΩPQX

NUP = 0. This equation can be rewritten

by making use of the representation constraint (3.43). Note, for instance, the following

identities,

T(MN)
P XM UN = 0 ,

TMN
Q ΩPQ X̄

MXN X̄P = iTMN
Λ X̄MXN NΛΣ X̄

Σ = 0 . (3.48)

As a side remark we note that the Killing potential (or moment map) associated with

the isometries considered above, is related to,

νM = g TMN
QΩPQX̄

NXP . (3.49)

Its derivative takes the form ∂ΛνM = iNΛΣ δX̄
Σ, as follows from making use of (3.46).

Finally we return to the gauge transformations of the auxiliary fields Yij
Λ, which can
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be derived by requiring that Laux written in (2.54) is gauge invariant. A straightforward

calculation leads to the following result,

δYij
Λ = − 1

2gΛMTMN
Λ(Zij

N + εikεjl Z
klN ) , (3.50)

where Zij
M was defined in (3.17). Note that this result is in accord with the elec-

tric/magnetic dualities suggested for Zij
M .

In the remainder of this section we consider the gauge group embedding in more detail.

The embedding into the rigid invariance group Grigid = Gsymp × Ghyper is encoded in

a so-called embedding tensor. This tensor must be specified separately for the vector

multiplet and for the hypermultiplet sector, so that we have the following definitions,

TMN
P = ΘM

a taN
P ,

kAM = ΘM
m kAm , TM

α
β = ΘM

m tm
α
β , (3.51)

where the ta denote the generators of Gsymp, and kAm and tm the tri-holomorphic Killing

vectors and the corresponding matrices of the group Ghyper. Because these generators

belong to different groups and act on different multiplets, they carry different indices

(namely, indices M,N, . . . for the vector multiplets and indices α, β, . . . for the hypermul-

tiplets). The embedding tensor can be further decomposed into electric and magnetic

components, according to ΘM
a = (ΘΛ

a,ΘΛ a), and ΘM
m = (ΘΛ

m,ΘΛm). With these

definitions, we can now also present the gauge-covariant derivatives on the hypermultiplet

fields (we remind the reader that in this section and in the next one, we suppress the

covariantization with respect to the superconformal symmetries),

DµφA = ∂µφ
A − gWµ

M kAM ,

DµAiα = ∂µAi
α − gWµ

M TM
α
βAi

β ,

Dµζα = ∂µζ
α + ∂µφ

A ΓA
α
β ζ

β − gWµ
MTM

α
β ζ

β . (3.52)

In particular the covariant derivative of the spinor field is not entirely straightforward, in

view of the fact that matrices tm
α
β depend on the fields φA. However, because the Jacobi

identity is satisfied on these matrices, there are no further complications associated with

this feature (see (3.30)).

The gauge group generators TM should close under commutation for both repre-

sentations. This leads to two equations that depend quadratically on the embedding
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tensor [66],

fab
c ΘM

a ΘN
b + (ta)N

P ΘM
aΘP

c = 0 ,

fmn
p ΘM

m ΘN
n + (ta)N

P ΘM
aΘP

p = 0 , (3.53)

where fab
c and fmn

p are the structure constants of Gsymp and Ghyper, respectively.9 The

above equations imply that the gauge algebra generators close according to,

[TM , TN ] = −TMN
P TP , kBM∂Bk

A
N − kBN∂BkAM = TMN

P kAP , (3.54)

so that the structure constants of the gauge group are contained in

−TMN
P ≡ −ΘM

a (ta)N
P , as is required by the gauge group embedding in Gsymp.

This observation was in fact used as input when deriving (3.53). Note, however, that

the gauge group structure constants are not necessarily identical to −TMN
P , as they

may differ by terms that vanish upon contraction with the embedding tensor ΘP
a or

ΘP
m. This explains why the TMN

P are not necessarily antisymmetric in M,N .

Here and henceforth, the embedding tensor will be regarded as a spurionic object

which we allow to transform under the rigid invariance group Grigid, so that the La-

grangian and transformation rules will remain formally invariant. Therefore the embed-

ding tensor can be assigned to a (not necessarily irreducible) representation of Grigid.

Eventually the embedding tensor will be frozen to a constant, so that the invariance

under Grigid will be broken. In this context, it is relevant to note that (3.53) implies

that the embedding tensor is invariant under the gauge group. The gauge group is thus

contained in the corresponding stability subgroup of Grigid. From symmetrizing the first

constraint (3.53) in (MN) and making use of the linear conditions (3.43) and (3.38), one

further derives that ΩMN ΘM
aΘN

b (tb)P
Q must vanish. Hence,

ΩMN ΘM
aΘN

b = 0 ⇐⇒ ΘΛ [aΘΛ
b] = 0 , (3.55)

which implies that the charges in the vector multiplet sector are mutually local, so that

an electric/magnetic duality must exist that converts all the charges to electric ones.

Likewise, one derives from the second constraint (3.53),

ΩMN ΘM
aΘN

m = 0 ⇐⇒ ΘΛ [aΘΛ
m] = 0 , (3.56)

9For convenience we have ignored that the matrices tm depend on the scalar fields (see (3.31) and the
preceding text).
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which implies that the charges in the hypermultiplet sector are mutually local with the

vector multiplet charges. It is clear that gauge fields that couple exclusively to charges

associated to hypermultiplets are not restricted by (3.55) and (3.56). Their corresponding

gauge groups are necessarily abelian. To ensure that those charges are also mutually local,

we must impose an additional constraint,

ΩMN ΘM
mΘN

n = 0 ⇐⇒ ΘΛ [mΘΛ
n] = 0 , (3.57)

which is obviously not related to the closure of the gauge algebra. As it turns out, the

relations (3.55), (3.56) and (3.57) play an crucial role when discussing the Lagrangian.

Generically only a subset of the gauge fields will be involved in the gauging, so that

the embedding tensor will project out a restricted set of (linear combinations of) gauge

fields; the rank of the tensor determines the dimension of the gauge group, up to possible

central extensions associated with abelian factors.

As stressed before, the generators TMN
P are not required to be antisymmetric in

M,N . The symmetric part can be written as follows,

T(MN)
P = ZP,a daMN , (3.58)

with,

daMN ≡ (ta)M
P ΩNP ,

ZM,a ≡ 1
2ΩMNΘN

a =⇒

{
ZΛa = 1

2ΘΛa ,

ZΛ
a = − 1

2ΘΛ
a ,

(3.59)

so that daMN defines an Sp(2n + 2,R)-invariant tensor symmetric in (MN). Likewise

one can introduce a similar tensor ZM,m, which is relevant for the hypermultiplets,

ZM,m ≡ 1
2ΩMNΘN

m =⇒

{
ZΛm = 1

2ΘΛm ,

ZΛ
m = − 1

2ΘΛ
m .

(3.60)

Subsequently we note that the constraints (3.55), (3.56) and (3.57) can now be written

as,

ZM,a ΘM
b = 0 = ZM,a ΘM

m , ZM,m ΘM
a = 0 = ZM,m ΘM

n . (3.61)

This implies that ZM,a and ZM,m vanish when contracted with the gauge-group genera-

tors TM . Because of these constraints, only the antisymmetric part of TMN
P will appear
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in the commutation relation (3.54). What remains is to consider the Jacobi identity on

the generators TM . Explicit calculation based on (3.54) leads to,

T[NP
R TQ]R

M = 2
3Z

M,a daR[N TPQ]
R , (3.62)

which shows that the Jacobi identity holds up to terms that vanish upon contraction

with the embedding tensor. In the following section we will describe how to introduce a

consistent gauging in this non-standard situation.

3.4 The gauge hierarchy

To compensate for the lack of closure noted in the previous section, and, at the same

time, to avoid unwanted degrees of freedom, the strategy is to introduce an extra gauge

invariance for the gauge fields, in addition to the usual non-abelian gauge transforma-

tions,

δWµ
M = DµΛM − g

[
ZM,a Ξµ a + ZM,m Ξµm

]
, (3.63)

where the ΛM are the gauge transformation parameters and the covariant derivative

reads, DµΛM = ∂µΛM + g TPQ
M Wµ

PΛQ. The transformations proportional to Ξµ a and

Ξµm enable one to gauge away those vector fields that are in the sector where the Jacobi

identity is not satisfied (this sector is perpendicular to the embedding tensor by virtue

of (3.61)). Note that the covariant derivative is invariant under the transformations

parametrized by Ξµ a and Ξµm, because of the contraction of the gauge fields Wµ
M

with the generators TM . However, gauge transformations do no longer form a group by

themselves, as is reflected in the commutation relation,

[δ(Λ1), δ(Λ2)] = δ(Λ3) + δ(Ξa 3) , (3.64)

where,

Λ3
M = g T[NP ]

MΛN1 ΛP2 ,

Ξ3µ a = daNP (ΛN1 DµΛP2 − ΛN2 DµΛP1 ) , (3.65)

with TMa
b = −ΘM

cfca
b the gauge group generators in the adjoint representation of

Gsymp. As it turns out, this commutation relation forms the beginning of a full hierarchy

of vector and tensor gauge fields that form a closed algebra [67, 68]. Other commutators
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involving δ(Λ), δ(Ξa) and δ(Ξm) vanish on the gauge fields Wµ
Λ, so that those can only

be uncovered for the higher-rank tensor gauge fields that we will introduce shortly.

Non-abelian field strengths associated with the gauge fields Wµ
M follow from the

Ricci identity, [Dµ, Dν ] = −gFµνM TM , and depend only on the antisymmetric part of

TMN
P ,

FµνM = ∂µWν
M − ∂νWµ

M + g T[NP ]
M Wµ

NWν
P . (3.66)

Because of the lack of closure expressed by (3.62), these field strengths do not satisfy the

Palatini identity,

δFµνM = 2D[µδWν]
M − 2g T(PQ)

M W[µ
P δWν]

Q , (3.67)

under arbitrary variations δWµ
M , because of the last term, which cancels upon mul-

tiplication with the generators TM . The result (3.67) shows in particular that FµνM

transforms under the combined gauge transformations (3.63) as,

δFµνM = gΛPTNP
M FµνN − 2g ZM,a

(
D[µΞν]a + daPQW[µ

P δWν]
Q
)

− 2g ZM,mD[µΞν]m , (3.68)

and is therefore not covariant. In deriving this one makes use of the fact that the tensors

ZM,a and ZM,m are invariant under the gauge group. The covariant derivative on Ξνa is

defined by DµΞνa = ∂µΞνa − gWµ
MTMa

bΞνb, and similarly for Ξνm. These tensor fields

belong to the adjoint representation of the group Gsymp.

The standard strategy is therefore to define modified field strengths,

HµνM = FµνM + g
[
ZM,aBµν a + ZM,mBµν m

]
, (3.69)

by introducing new tensor fields Bµν a and Bµν m with suitably chosen gauge transfor-

mation rules, so that covariant results are obtained. This implies that the variation

of the tensor fields should in any case absorb the unwanted non-covariant terms in

(3.68). At this point we recall that the invariance transformations in the ungauged

case transform on the field strengths Gµν
M , defined in (3.4), according to a subgroup of

Sp(2n+ 2,R) (cf. (3.5)). The field strengths Gµν
M consist of the abelian field strengths

Fµν
Λ and the dual field strengths GµνΛ. The latter were decomposed in (3.3) in the

form G−µνΛ = FΛΣ F
−
µν

Σ − 2iO−µνΛ. Obviously, in the presence of the non-abelian gauge

interactions, the abelian field strengths Fµν
Λ should now be replaced by HµνΛ, defined
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in (3.69). Hence it is natural to define new covariant field strengths according to,

GµνM =

(
HµνΛ

GµνΛ

)
, (3.70)

with,

G−µνΛ =H−µνΛ ,

G−µνΛ =FΛΣH−µνΣ − 2iO−µνΛ . (3.71)

Just as in section 3.1, there exist corresponding supercovariant field strengths ĜµνM that

will appear in the supersymmetry transformations of the vector multiplet fermion fields.

Those will be discussed in the next section. As before, the field strengths ĜµνM and

GµνM will only differ by fermionic bilinears and by terms proportional to the tensor field

of the Weyl multiplet.

Following [9] we subsequently introduce the following transformation rule for Bµνa and

Bµνm (contracted with ZM,a and ZM,m, respectively, because only these combinations

will appear in the Lagrangian),

ZM,a δBµν a = 2ZM,a
(
D[µΞν]a + daNPW[µ

NδWν]
P
)
− 2T(NP )

MΛPGµνN ,

ZM,m δBµν m = 2ZM,mD[µΞν]m . (3.72)

Note that Bµν a has variations proportional to Ξµm through the term δWµ
M (cf. (3.63)).

As a result of (3.72) the modified field strengths (3.69) are invariant under tensor gauge

transformations. Under the vector gauge transformations we derive the following result,

δG−µνΛ = − gΛPTPN
Λ G−µνN − gΛPTΓ

P
Λ (G−µν −H−µν)Γ ,

δG−µνΛ = − gΛPTPNΛ G−µνN − g FΛΣ ΛPTΓ
P

Σ (G−µν −H−µν)Γ ,

δ(G−µν −H−µν)Λ = gΛP (TΓ
PΛ − TΓ

P
Σ FΣΛ) (G−µν −H−µν)Γ . (3.73)

Hence δGµνM = −gΛPTPN
M GµνN , just as the variation of the abelian field strengths

Gµν
M in the absence of charges, up to terms proportional to ΘΛ,a(Gµν−Hµν)Λ. According

to [9], the latter terms represent a set of field equations, as we will verify later (cf. (3.98)),

and so the last equation of (3.73) expresses the well-known fact that, under a symmetry,

field equations transform into field equations. As a result the gauge algebra on the tensors

GµνM closes according to (3.64), up to the same field equations.
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In order that the Lagrangians for the vector multiplets (2.50) and the hypermultiplets

(2.56) become invariant under vector and tensor gauge transformations, we have to make

a number of changes. First of all, we replace the covariant derivatives on the scalars and

spinors by gauge-covariant derivatives. This ensures the invariance of L(1)
kin, Lconf and

Lhyper, given in (2.51), (2.55) and (2.56), respectively. The Lagrangian for the auxiliary

fields (2.54) is already gauge-invariant. In the following we therefore concentrate on L(2)
kin

(2.52) which depends on the abelian field strengths Fµν
Λ. These abelian field-strengths

are now replaced by HµνΛ, so that,

Gµν Λ = ie εµνρσ
∂Lvector

∂HρσΛ
. (3.74)

The Lagrangian L(2)
kin therefore reads,

e−1L(2)
kin = 1

4 i
[
FΛΣH−Λ

µν H−Σµν − F̄ΛΣH+Λ
µν H+µνΣ

]
+
[
O−µνΛH

−µνΛ −NΛΣO−µνΛO
−µν

Σ + h.c.
]
. (3.75)

It is separately invariant under the tensor gauge transformations, because the tensors

HµνΛ are invariant under those transformations.

However, the Lagrangian (2.50) is not invariant under the vector gauge transforma-

tions. To establish this, one has to take into account that also the other fields of the

vector multiplets transform under the gauge group. For instance, there are contributions

from infinitesimal gauge transformations of FΛΣ and OµνΛ, which follow from (3.25) and

(3.14),

δFΛΣ = gΛM
(
− TMΛΣ + 2TM(Λ

ΓFΣ)Γ + FΛΓTM
ΓΞFΞΣ

)
,

δO−µνΛ = gΛMO−µνΣ

(
TMΛ

Σ + TM
ΣΓFΓΛ

)
. (3.76)

Nevertheless, it was shown in [9] that this is still not sufficient for gauge invariance, and

it is necessary to introduce an additional, universal, term to the Lagrangian, equal to,

Ltop = 1
8 ig εµνρσ

(
ΘΛaBµν a + ΘΛmBµν m

)
×
(
2 ∂ρWσΛ + gTMN ΛWρ

MWσ
N − 1

4gΘΛ
bBρσ b − 1

4gΘΛ
nBρσ n

)
+ 1

3 ig εµνρσTMN ΛWµ
MWν

N
(
∂ρWσ

Λ + 1
4gTPQ

ΛWρ
PWσ

Q
)

+ 1
6 ig εµνρσTMN

ΛWµ
MWν

N
(
∂ρWσΛ + 1

4gTPQΛWρ
PWσ

Q
)
. (3.77)



64 General gauge deformations of N=2 superconformal gravity

The first term represents a topological coupling of the anti-symmetric tensor fields with

the magnetic gauge fields; the last two terms are a generalization of the Chern-Simons-like

terms that were first found in [28].

Under arbitrary variations of the vector and tensor fields, (3.75) and (3.77) yield (up

to total derivative terms),

e−1
(
δL(2)

kin + δLtop

)
= − 1

4 ig
(
G+µνM −H+µνM

)
ΘM

a(δBµνa − 2daPQWµ
P δWν

Q)

− 1
4 ig

(
G+µνM −H+µνM

)
ΘM

m δBµνm

+ iG+µνMΩMN DµδWν
N + h.c. . (3.78)

Under the tensor gauge transformations this variation becomes equal to,

e−1
(
δL(2)

kin + δLtop

)
= igH+µνM

[
ΘM

aDµΞνa + ΘM
mDµΞνm

]
+ h.c. . (3.79)

We already demonstrated that L(2)
kin is separately invariant under these transformations,

so that the above terms originate exclusively from the variation of Ltop. The expression

(3.79) turns out to be equal to a total derivative. To see this, note that the embedding

tensor is gauge invariant. Also there exists a Bianchi identity,

D[µHνρ]M = 1
3g
[
ZM,aHµνρ a + ZM,mHµνρm

]
. (3.80)

Here the gauge-covariant field strengths of the tensor fields are defined as,

Hµνρ a = 3D[µBνρ] a + 6 daNP W[µ
N
(
∂νWρ]

P + 1
3gT[RS]

PWν
RWρ]

S + (G −H)νρ]
P
)
,

Hµνρm = 3D[µBνρ]m , (3.81)

where DµBνρa = ∂µBνρa − gWµ
MTMa

bBνρb, and likewise for DµBνρm. The fully gauge-

covariant derivative of HµνM takes the form,

DρHµνM = ∂ρHµνM + gWρ
P TPN

M GµνN + gWρ
P TNP

M (G −H)µν
N

= ∂ρHµνM + gWρ
P TPN

M HµνN + 2 gWρ
P ZM,adaPN (G −H)µν

N , (3.82)

Observe that the covariantization proportional to (G−H)µν
N is not generated by partially

integrating the right-hand side of (3.79), but it vanishes upon contraction with the

embedding tensor. So does the right-hand side of (3.80), so that (3.79) is indeed a

total derivative.



3.4 The gauge hierarchy 65

As was mentioned before, the combined gauge invariance of the vector and tensor

gauge fields are important to ensure that the number of physical degrees of freedom

will not change by the introduction of the magnetic vector gauge fields and the tensor

gauge fields [9]. The combined gauge algebra is consistent for the tensor fields upon

projection with the embedding tensor, which is sufficient as the action depends only on

these projected fields. If this were not the case, new tensor fields of higher rank would

have been required [67]. The projection with the embedding tensor will determine in

which fields the physical degrees of freedom can reside. The precise way in which the

number of physical degrees is described of freedom is therefore rather subtle. From (3.78)

it is indeed clear that the components of the tensor fields that are projected to zero by

multiplication with ΘΛa or ΘΛm, are simply not present in the action. Their absence

can be regarded as the result of an additional gauge invariance. In addition, there

are transformations of the tensor fields linear in (G − H)µνΛ that leave the Lagrangian

invariant [47, 56],

ΘΛaδBµνa = ∆
[ΛΣ]
1 (G −H)+

µνΣ + h.c. ,

ΘΛaδBµνa = ∆
(ΛΣ)ρ
2 [µ (G −H)ν]ρΣ , (3.83)

where ∆ΛΣ
1 is an arbitrary complex parameter, and ∆ΛΣρ

2 µ is real and traceless. Similar

transformations exists for variations contracted with ΘΛm. Often these transformations

emerge when verifying the validity of the supersymmetry algebra.

A similar situation arises with the magnetic gauge fields WµΛ. Under variations of

the gauge fields Wµ
M one derives,

δL(2)
kin + δLtop = 1

2 i εµνρσ DνGρσMΩMNδWµ
N , (3.84)

up to a total derivative and up to terms that vanish as a result of the field equation for

Bµν a. Substituting (3.80) we can rewrite (3.84) as follows,

δL(2)
kin + δLtop = 1

2 i εµνρσ
[
−DνGρσΛ δWµ

Λ

+ 1
6g
(
Hνρσa ΘΛa +Hνρσm ΘΛm

)
δWµΛ

]
. (3.85)

Because the minimal coupling of the gauge fields to matter fields is always proportional

to the embedding tensor, the full Lagrangian does not change under variations of the

magnetic gauge fields that are projected to zero by the embedding tensor components

ΘΛa or ΘΛm, up to terms that are generated by the variations of the tensor fields through
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the ‘universal’ variation, δBµνa = 2 daPQW[µ
P δWν]

Q.

All these gauge symmetries have a role to play in balancing the degrees of freedom.

Observe that not all these symmetries have a bearing on the dynamical modes of the

theory as they also act on fields that only play an auxiliary role.

3.5 The superconformal algebra and the Lagrangian

with general gaugings

When switching on a gauging there are several qualitative changes that are of interest.

First of all, the superconformal algebra will no longer be realized off-shell (i.e. without

using the equations of motion) in the vector multiplet sector, at least for gaugings

with magnetic charges. Only for the Weyl multiplet the closure remains realized off-

shell. Naturally a generic gauging induces the presence of vector multiplet fields into

the hypermultiplet supersymmetry transformations. It is therefore not surprising that

also the vector multiplet transformations will generically acquire terms proportional to

the hypermultiplet fields. In this section we will present the full transformation rules

that include new terms of order g, and subsequently we will re-establish the closure for

general gaugings. As it turns out, additional symmetries such as (3.83), are relevant

for the closure. This feature is well known from previous applications of the embedding

tensor formalism.

A second, not unrelated, feature is that the Lagrangian must be modified by including

masslike terms for the fermions proportional to g, and a scalar potential proportional to

g2. The explicit expressions for these terms, which are relevant for many applications,

will be presented at the end of this section. These modifications are familiar from N=2

supergravity theories with purely electric charges [27, 28, 42].

Rigid N = 2 supersymmetric theories with both electric and magnetic charges, have

been presented in [47], and it remains to complete these results in a fully superconformal

setting. It is clear that the modification of the results derived in [47] must be relatively

minor. The supersymmetry transformations of the matter fields will now become covari-

ant with respect to the superconformal symmetries, while at the same time they should

remain in accord with the known results for rigid theories. Modifications that supersede

previous work will therefore mainly involve terms proportional to the gravitino fields.

The most conspicuous ones are those appearing in the supersymmetry transformations

of the tensor fields Bµνa and Bµνm.
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To exhibit this in more detail, let us first present the full Q- and S-supersymmetry

transformations for the hypermultiplet fields. They follow straightforwardly upon super-

covariantizing the rules presented in section 2.5, including the terms of order g that were

already found in [47],

δφA = 2 (γAiᾱ ε̄
iζᾱ + γ̄Aiα ε̄iζ

α) ,

δAi
α + δφΓA

α
βAi

β = 2 ε̄iζ
α + 2 εijG

αβ̄Ωβ̄γ̄ ε̄
jζ γ̄ ,

δζα + δφA ΓA
α
β ζ

β = /DAi
α εi + 2gXM TM

α
βAi

β εijεj +Ai
α ηi . (3.86)

where Dµ denotes the derivative fully covariantized with respect to all the superconformal

transformations and the gauge symmetries. Likewise we present the full Q- and S-

supersymmetry transformations for the vector multiplet fields,

δXM = ε̄iΩi
M ,

δΩi
M = 2 /DXM εi + Ẑij

M εj + 1
2γ

µν Ĝ−µνMεijεj

− 2g TPN
M X̄PXNεijε

j + 2 igΩMNµijN ε
j + 2XMηi ,

δWµ
M = εij ε̄i(γµΩj

M + 2ψµjX
M ) + εij ε̄

i(γµΩj M + 2ψµ
jX̄M ) ,

δYij
Λ = 2 ε̄(i /DΩj)

Λ + 2 εikεjlε̄
(k /DΩl)Λ

− 4g TMN
Λ
[
Ω̄(i

M εkεj)k X̄
N − Ω̄kM ε(iεj)kX

N
]

+ 4 ig kAΛ
[
εk(i γj)ᾱAε̄

kζᾱ + εk(i ε̄j)ζ
α γ̄kαA

]
. (3.87)

Here the moment maps are defined by,

µijM = ΘM
mµijm , (3.88)

with µijm defined in (3.32). The symplectic vector Ẑij
M appearing in δΩi

M is given by,

Ẑij
M =

(
Yij

Λ

FΛΣ Yij
Σ − 1

2FΛΣΓ Ω̄i
ΣΩj

Γ + 2 ig[µijΛ + FΛΣ µij
Σ]

)
. (3.89)

This expression differs from the previous one for the ungauged theory, given in (3.17),

by the presence of the moment maps originating from the hypermultiplet sector. This

implies that the original pseudo-reality condition on ZijΛ must be replaced by a pseudo-

reality condition on ẐijΛ. As this condition was previously imposed by invoking the field

equations for the auxiliary fields, it follows that those field equations must now receive
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modifications proportional to the moment maps, as we shall confirm later in this section.

Note that, in (3.87), we refrained from giving the supersymmetry transformation of ẐijΛ,

which is not an independent field.

Another tensor appearing in δΩi
M is the supercovariant field strength ĜµνM , which

is the non-abelian version of (3.18). These supercovariant field strengths are defined by,

Ĝ−µνΛ = Ĥ−µνΛ ,

Ĝ−µνΛ =FΛΣ Ĥ−µνΣ − 1
8FΛΣΓ Ω̄i

ΣγµνΩj
Γ εij . (3.90)

where ĤµνΛ is the supercovariant extension of (3.69). In view of (2.21), we expect the

following decomposition for ĤµνΛ,

ĤµνΛ =HµνΛ − εijψ̄[µ i(γν]Ωj
Λ + ψν]jX

Λ)− εijψ̄[µ
i(γν]Ω

j Λ + ψν]
jX̄Λ)

− 1
4 (XΛ Tµνij ε

ij + X̄Λ Tµν
ij εij) . (3.91)

However, in the presence of a gauging, the supersymmetry variation of this expression

leads to terms proportional to the gravitini fields induced by the terms in δΩi
Λ of order g.

As it turns out, by suitably adjusting the supersymmetry transformations of the tensor

fields, δBµνa and δBµνm, one can ensure that the ĤabΛ will still transform covariantly

under Q- and S-supersymmetry,

δĤabΛ = − 2 εij ε̄
iγ[aDb]Ω

jΛ − 2g T(NP )
ΛX̄N Ω̄i

P γabε
i

− 2ig kAΛ γAiᾱ ζ̄
ᾱγabε

i − εij η̄iγabΩjΛ + h.c. . (3.92)

As a result the combined transformations of the tensor fields Bµνa and Bµνm under tensor

and vector gauge transformations and Q- and S-supersymmetry now read as follows,

ZM,a δBµν a = 2ZM,aD[µΞν]a + 2T(NP )
M
[
W[µ

NδWν]
P − ΛNGµνP

]
− 2T(NP )

M
[
X̄N Ω̄i

P γµνε
i +XN Ω̄iP γµνεi

+ 2 X̄NXP
(
ε̄iγ[µψν]i + ε̄iγ[µψν]

i
)]
,

ZM,m δBµν m = 2ZM,mD[µΞν]m − 2iΩMNkAN
[
γAiᾱ ζ̄

ᾱγµνε
i − γ̄iAα ζ̄αγµνεi

]
+ 4 i ΩMNµjkN ε

ij
[
ψ̄i[µγν]ε

k + ψ̄k[µγν]εi
]
. (3.93)

Note that the tensors transform covariantly under diffeomorphisms, and are scale invari-

ant. As was already alluded to, the moment maps µijM enter the transformation rules
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of the vector multiplet fields. In fact, only the magnetic moment maps µij
Λ appear in

these transformation rules.10 For purely electric charges and corresponding moment maps

µijΛ, the supersymmetry transformations (3.86) and (3.87) reduce to the transformations

presented in [28] and [42]. The latter transformations still realize the supersymmetry

algebra for the vector multiplet fields (but not for the hypermultiplet fields) without the

need for imposing equations of motion.

Now that the full supersymmetry transformations have been established, we consider

the superconformal algebra. Its most non-trivial commutation relation is the one of two

Q-supersymmetries. This commutation relation, which was already specified in (2.15),

must now be extended with tensor gauge transformations. Hence,

[δ(ε1), δ(ε2)] = δcov(ξ) + δM (ε) + δK(ΛK) + δS(η) + δgauge(ΛM )

+ δtensor(Ξµ a) + δtensor(Ξµm) , (3.94)

and it should hold modulo field equations and some of the spurious symmetries that we

discussed in the previous section. The various parameters in (3.94) have already been

specified in (2.16) and (3.22), except for the parameters of the tensor gauge transforma-

tions, which read,

Ξµ a = − 2 daNP X̄
NXP ξµ ,

Ξµm = − 8 i εijµjkm
(
ε̄2iγµε1

k + ε̄2
kγµε1i

)
, (3.95)

up to terms that vanish upon contraction with the embedding tensor.11 As before,

δcov(ξ) denotes an infinitesimal covariant general coordinate transformation, which now

includes contributions from the various gauge transformations such that the combined

result takes a supercovariant form. For the vector gauge transformations the parameters

take the form ΛM = −ξρWρ
M . For the corresponding field-dependent tensor gauge

transformations, the parameters take a slightly more complicated form [56],

Ξµ a = − ξρ
(
Bρµ a + daNPWρ

NWµ
P
)
,

Ξµm = − ξρBρµm . (3.96)

10The reader may verify that the contribution to Ωi
M proportional to µijΛ vanishes against a similar

contribution contained in Ẑij
M .

11The result for Ξµm given in (3.95) is new compared to previous work. It is determined by verifying
the commutator (3.94) on the vector and tensor gauge fields, as will be discussed in some detail below.
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In what follows we will verify the validity of (3.94) on the auxiliary fields Yij
Λ, Wµ

M

and the tensor fields Bµνa and Bµνm, as these are most susceptible to the presence of the

new gauge transformations, thereby exhibiting a variety of subtleties that play a role.

Many aspects of this evaluation have their counterpart in a similar evaluation of N = 8

supergravity, which appeared in [56]. At this point we mention two general identities

that are relevant in the present calculations. They follow from (3.46), (3.47) and (3.48),

T(MN)
PXM Ẑij

N = 1
2 T(MN)

P Ω̄i
MΩj

N − 2igT(MN)
PXMΩNQµijQ ,

T(MN)
PXM Ĝ−µνN = 1

8 T(MN)
P εij Ω̄i

MγµνΩj
N . (3.97)

Of course, in the calculations we must also take into account that the superconformal

gauge fields, ωµ
ab, fµ

a and φµ
i, depend on the other superconformal fields, as given in

(B.5).

Let us first consider the supersymmetry commutator (3.94) on the auxiliary fields

Yij
Λ. As it turns out, its validity requires to impose the field equations associated with

the tensor fields, which take the following form,

ΘΛa GµνΛ = ΘΛaHµνΛ , ΘΛm GµνΛ = ΘΛmHµνΛ , (3.98)

and the field equations associated with the magnetic gauge fields,

0 = 1
6e
−1εµνρσ

(
ZΛ,aHνρσ a + ZΛ,mHνρσm

)
+ T(MN)

Λ
(
− 2 X̄M

↔
DµXN + Ω̄iMγµΩi

N

+ X̄M ψ̄ν
iγµγνΩi

N −XM ψ̄νiγ
µγνΩiN − 1

2e
−1εµνρσψ̄νiγρψσ

i X̄MXN
)

+ iGᾱβT
Λβ

γ

(
1
2A

iᾱ
↔
DµAiγ − 2ζ̄ᾱγµζγ + ψ̄ν

iγµγνζᾱAi
γ − ψ̄νiγµγνζγAiᾱ

)
− ie−1εµνρσψ̄ν

iγρψσjε
jkµik

Λ , (3.99)

where we made use of the Bianchi identity (3.80).

Secondly we evaluate the supersymmetry commutator on the vector fields Wµ
M ,

[δ(ε1), δ(ε2)]Wµ
M = ξρGρµM +DµΛM − g ZM,a Ξµ a − g ZM,m Ξµm

− ξρ
(

1
2 εij ψ̄ρ

iγµΩjM + εijX̄
M ψ̄ρ

iψµ
j + h.c.

)
, (3.100)

where the parameters ξµ, ΛM , Ξµ a and Ξµm are as in (3.94). In this result one can

replace GµνM by HµνM . For the electric gauge fields this is trivial as GµνΛ and HµνΛ are
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identical. For the magnetic gauge fields the replacement is effectively allowed because

WµΛ appear in the Lagrangian contracted with the embedding tensor, as can be seen

from (3.85). Therefore, without loss of generality, one can safely contract (3.100) for

the magnetic gauge fields with the embedding tensors, ΘΛa or ΘΛm, upon which one can

replace GµνΛ with HµνΛ by virtue of (3.98). Finally one uses the following equality,

ξρHρµM = ξρ∂ρWµ
M + ∂µξ

ρWρ
M −Dµ

(
ξρWρ

M
)

+ gZM,aξρ
(
Bρµ a + daNPWρ

NWµ
P
)

+ gZM,mξρBρµm . (3.101)

Substituting this identity into (3.100) shows that the ξµ-dependent terms decompose

into a general coordinate transformation with parameter ξµ, a non-abelian gauge trans-

formation with parameter −ξµWµ
M , tensor gauge transformations with parameters

−ξρ
(
Bρµ a + daNPW

N
ρ W

P
µ

)
and −ξρBρµm and a supersymmetry transformation with

parameter − 1
2ξ
µψµi. Together they constitute a covariant general coordinate transforma-

tion with parameter ξµ. Consequently the supersymmetry commutator closes according

to (3.94).

Subsequently we turn to the supersymmetry commutator on the tensor fields Bµν a.

Here it suffices to consider those fields contracted with ZΛ,a because no other components

of the tensor field appear in the Lagrangian according to (3.78). Hence, we first evaluate,

ZΛ,a [δ(ε1), δ(ε2)]Bµν a = 2ZΛ,aD[µΞν]a − 2T(MN)
ΛΛMGµνN

+ 2T(MN)
ΛW[µ

M [δ(ε1), δ(ε2)]Wν]
N

+ T(MN)
Λξρ

(
X̄M Ω̄i

Nγµνψρ
i − 2ψ̄ρ

iγ[µψν]i X̄
MXN + h.c.

)
+ 16 i g T(MN)

ΛΩMP
(
XN µijP ε̄2iγµνε1j − X̄N µijP ε̄

i
2γµνε

j
1

)
+ e εµνρσ T(MN)

Λξρ
(
− 2 X̄M

↔
DσXN + Ω̄iMγσΩi

N

+ X̄M ψ̄λ
iγσγλΩi

N −XM ψ̄λiγ
σγλΩiN

− 1
2e
−1εσλτωψ̄λiγτψω

i X̄MXN
)
, (3.102)

with the parameters ξµ, ΛM and Ξµ a as in (3.94). The first four terms can straightfor-

wardly be compared to the variation of Bµνa given in the first formula of (3.93). However,

there is a subtlety regarding the commutator on Wν
N in the third term, because this

supersymmetry commutator only closes on the gauge fields, up to a term ξρ(G −H)ρν
N .

Therefore the commutator yields the transformations indicated on the right-hand side
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of (3.94) plus this extra term.12 Obviously the commutator on Wν
N generates also a

diffeomorphism, which will play a role later on in the calculation. Finally the fourth term

represents precisely a supersymmetry transformation with parameter εi = − 1
2ξ
ρψρ

i.

The remaining terms in (3.102), however, do not seem to have a role to play. At

this point we note that the Lagrangian does not depend separately on ZΛ,aBµν a and

ZΛ,mBµν m, but depends only on the linear combination ZΛ,aBµν a + ZΛ,mBµν m. Con-

sequently, the algebra is required to close only on this linear combination. Therefore we

also evaluate the commutator on ZΛ,mBµν m,

ZΛ,m [δ(ε1), δ(ε2)]Bµν m = 2ZΛ,mD[µΞν]m

+ i ξρ
(
kAΛ γAiᾱ ζ̄

ᾱγµνψρ
i − 2 εijµjk

Λψ̄i[µγν]ψρ
k − h.c.

)
− 16 igT(MN)

ΛΩMP
(
XN µijP ε̄2iγµνε1j − X̄N µijP ε̄

i
2γµνε

j
1

)
+ ie εµνρσξ

ρ
[
GᾱβT

Λβ
γ

(
1
2A

iᾱ
↔
D σAi

γ − 2 ζ̄ᾱγσζγ

+ ψ̄λ
iγσγλζᾱAi

γ − ψ̄λiγσγλζγAiᾱ
)

− e−1εσλτω ψ̄λ
iγτψωjε

jkµik
Λ
]
, (3.103)

with the parameters ξµ and Ξµm as in (3.94). The first line establishes closure with

respect to Ξµm. Furthermore, the next line correctly reproduces a supersymmetry

transformation with parameter εi = − 1
2ξ
ρψρ

i.

When considering the sum of the two variations (3.102) and (3.103) there are some

cancelations, and on the remaining terms we can impose the field equation (3.99). This

leaves the following terms,

[δ(ε1), δ(ε2)]
(
ZΛ,aBµν a + ZΛ,mBµν m

)
=ZΛ,a ξρ

(
Hρµν a − 2 daMNW[µ

M (G −H)ν]ρ
N
)

+ ZΛ,m ξρHρµν m + · · · , (3.104)

where the dots refer to terms that have already been accounted for in the context of

(3.94). The explicit terms in (3.104) contribute to the (covariant) general coordinate

transformation, as follows from the following identities, which can be derived straight-

12Upon contraction with ZN a this term vanishes by virtue of (3.98) and we have argued that it could
therefore be suppressed in the commutator on the gauge fields on Wν

N . See the text preceding (3.101).
However, in the case at hand, the term is not contracted with ZN a, and thus the extra term has to be
retained.
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forwardly from (3.81),

ZΛ,a ξρHρµν a =ZΛ,a
(
ξρ∂ρBµν a − 2 ∂[µξ

ρBν]ρ a

)
+ 2ZΛ,aD[µ

(
ξρBν]ρ a − ξρdaMNWν]

MWρ
N
)

+ 2T(MN)
ΛξρWρ

MGµνN

− 2T(MN)
ΛW[µ

M
(
ξρ∂|ρ|Wν]

N + ∂ν]ξ
ρWρ

N − 2 ξρ(G −H)ν]ρ
N
)

− 2 g T(MN)
ΛZM,m ξρWρ

NBµν m ,

ZΛ,m ξρHρµν m =ZΛ,m
(
ξρ∂ρBµν m − 2 ∂[µξ

ρBν]ρm

)
+ 2ZΛ,mD[µ(ξρBν]ρm)

+ 2 g T(MN)
ΛZM,m ξρWρ

NBµν m . (3.105)

The first two lines in the equations (3.105) denote the expected general coordinate trans-

formation, and the tensor gauge transformations with parameters given in (3.96). The

third term in the first equations represents the appropriate gauge transformation. The

last terms in the two equations cancel directly, so that the only terms in (3.104) that are

still unaccounted for, are given by,

[δ(ε1), δ(ε2)]
(
ZΛ,aBµν a + ZΛ,mBµν m

)
= − 2T(MN)

ΛW[µ
M
(
ξρ∂|ρ|Wν]

N + ∂ν]ξ
ρWρ

N
)

+ 2T(MN)
ΛW[µ

Mξρ(G −H)ν]ρ
N

+ · · · . (3.106)

The first of these terms cancels against the general coordinate transformation induced by

the supersymmetry commutator on Wν
N in (3.102), which we already referred to earlier.

The second term can be suppressed by virtue of the special invariance noted in (3.83).

To see this, we note that, up to the first equation of motion (3.98), we can write the

induced variation of Bµνa as,

ZΛ,a δBµνa ∝T (Λ
M

Σ) [4 ξρW[µ
M − ξσWσ

M δρ[µ](G −H)ν]ρΣ

− T [Λ
M

Σ] ξσWσ
M (G −H)µνΣ . (3.107)

This completes our discussion of the supersymmetry algebra.

Finally we summarize the modifications to the Lagrangian that are required by the

general gaugings. As usual these concern both masslike terms for the fermions, which

are proportional to the gauge coupling g, and a scalar potential proportional to g2. The
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masslike terms independent of the gravitini follow directly from the rigid theory in the

presence of both electric and magnetic charges [47]. The terms that involve gravitini

are generalizations of the known results for the superconformal theory in the presence of

electric charges [27, 28, 42]. The result includes also a non-fermionic term which describes

the coupling of the auxiliary fields Yij
Λ to the moments µijM ,

e−1Lg = − 1
2 igΩMQTPN

Q εij X̄N Ω̄i
M
(
Ωj

P + γµψµjX
P
)

+ h.c.

+ 2g kAMγ
A
iᾱε

ij ζ̄ᾱ
(
Ωj

M + γµψµjX
M
)

+ h.c.

+ g µijM ψ̄µi
(
γµΩj

M + γµνψνjX
M
)

+ h.c.

+ 2g
[
X̄MTM

γ
α Ω̄βγ ζ̄

αζβ +XMTM
γ̄
ᾱ Ωβ̄γ̄ ζ̄

ᾱζ β̄
]

− 1
4g
[
FΛΣΓ µ

ijΛ Ω̄i
ΣΩj

Γ + F̄ΛΣΓ µij
Λ Ω̄iΣΩjΓ

]
+ g Y ijΛ

[
µijΛ + 1

2 (FΛΣ + F̄ΛΣ)µij
Σ
]
. (3.108)

Upon solving the auxiliary fields Yij
I one obtains an additional contribution to the scalar

potential of order g2. Without this contribution the scalar potential reads,

e−1Lg2 = ig2 ΩMN TPQ
MXP X̄Q TRS

N X̄RXS

− 2g2kAM kBN gAB X
M X̄N − 1

2g
2NΛΣ µij

Λ µijΣ . (3.109)

Upon eliminating the auxiliary fields, the last term in this expression changes into,

− 1
2g

2NΛΣ µij
Λ µijΣ −→ −2 g2

[
µijΛ + FΛΓ µ

ijΓ
]
NΛΣ

[
µijΣ + F̄ΣΞ µij

Ξ
]
. (3.110)

The above expressions are not of definite sign. From the Lagrangians in section 2.6

one can deduce that K, χ and the metrics that appear in the kinetic terms of the physical

scalar fields should be negative. The latter metrics are proportional to two matrices, MΛΣ

and GAB , that should therefore be negative definite. They are defined by,

MΛΣ̄ =K−2 (NΛΣNΓΞ −NΛΓNΣΞ) X̄ΓXΞ ,

GAB =χ−1
(
gAB − χ−1( 1

2χAχB + kAijkB
ij)
)
. (3.111)

With these observations we can separate the terms in the potential in positive and
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negative ones,

e−1Lg2 = − g2KMΛ̄Σ (TPQ
ΛXP X̄Q) (TRS

ΣX̄RXS)

− 4 g2K kAM kBN GAB X
M X̄N

− 2 g2KMΛ̄ΣN
ΛΓ
[
µijΓ + FΓΩ µ

ijΩ
]
NΣΞ

[
µijΞ + F̄Ξ∆ µij

∆
]

− 6 g2K−1XM X̄N µijM µijN , (3.112)

where we used that χ = 2K, as is implied by the field equation associated with the

field D. It then follows that all contributions to Lg2 are negative, with the exception of

the last term which is positive. This decomposition generalizes a similar decomposition

known for purely electric charges [45].

The supersymmetric Lagrangians derived in this chapter incorporate gaugings in both

the vector and hypermultiplet sectors. The vector multiplets are initially defined as off-

shell multiplets, but the presence of the magnetic charges causes a breakdown of off-shell

supersymmetry. Of course, conventional hypermultiplets based on a finite number of

fields do not constitute an off-shell representation of the supersymmetry algebra irrespec-

tive of the presence of charges. We refer to a more in-depth discussion of the off-shell

aspects of the embedding tensor method in [47], where a construction was presented in

which the tensor fields associated with the magnetic charges were contained in a tensor

supermultiplet.





Chapter 4
Two applications of the embedding
tensor formalism

In the previous chapter we presented Lagrangians and supersymmetry transformations for

general superconformal systems of vector multiplets and hypermultiplets in the presence

of both electric and magnetic charges. The results were verified to all orders and are

consistent with results known in the literature based on both rigidly supersymmetric

theories and on superconformal systems without magnetic charges. In the presence of

magnetic charges the off-shell closure of the superconformal algebra is only realized on the

Weyl multiplet. The results establish a general framework for studying gauge interactions

in matter-coupled N=2 supergravity.

In this chapter we present two applications to illustrate how the embedding tensor

formalism can be used to obtain rather general results about realizations of N=2 gauged

supergravities. One concerns the supersymmetric realizations in maximally symmetric

spaces. In flat Minkowski space, it was established that residual supersymmetry is only

possible in the presence of magnetic charges [19–23]. Here, we therefore briefly review

the situation in the context of the embedding tensor approach, where it is natural to

have both electric and magnetic charges.

A second application deals with supersymmetric solutions in AdS2 × S2 space-times.

Here we establish that there exist only two classes of supersymmetric solutions. One

concerns fully supersymmetric solutions. It contains the solutions described in [69] as

well as the near-horizon solution of ungauged supergravity that appears for BPS black

holes. The other class exhibits four supersymmetries and these solutions may appear as
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near-horizon geometries of BPS black holes in N = 2 gauged supergravity. Interestingly

enough, solutions in AdS2×S2 with only two supersymmetries are excluded. The spinor

parameters associated with the four supersymmetries are AdS2 Killing spinors that are

constant on S2, so that they carry no spin. Nevertheless the bosonic background is

rotationally invariant. The spin assignments change in this background, because the

spin rotations associated with the S2 isometries become entangled with R-symmetry

transformations, a phenomenon that is somewhat similar to what happens for magnetic

monopole solutions where the rotational symmetry becomes entangled with gauge trans-

formations [70]. In the superconformal perspective, these solutions have R-symmetry

connections living on S2, and this explains the geometric origin of the entanglement. It

is to be expected that the near-horizon geometry of a recently presented static, spherically

symmetric, black hole solution [71, 72] will coincide with one of the solutions described

in this chapter. The results of this chapter then imply that this black hole solution must

exhibit supersymmetry enhancement at the horizon.

4.1 Maximally symmetric space-times and supersym-

metry

In this application we briefly consider the question of full or partial supersymmetry in

a maximally symmetric space-time. Hence one evaluates the supersymmetry variations

of the fermion fields in the maximally symmetric background, where only gµν , Ai
α, XΛ

and Yij
Λ can take non-zero values, taking into account that the fermion fields transform

under both Q- and S-supersymmetry. In this particular background, it turns out that

the gravitino field strength, R(Q)µν
i (and the related spinor χi) is S-invariant. Since its

Q-supersymmetry variation is proportional to the field D, it immediately follows that

D = 0, so that the special conformal gauge field takes the value (we assume the gauge

choice bµ = 0, which leaves a residual invariance under constant scale transformations),

fµ
a = 1

2R(e, ω)µ
a − 1

12eµ
aR(e, ω) , (4.1)

where R(e, ω)µν
ab denotes the space-time curvature.

In what follows it thus suffices to concentrate on the fermions belonging to the vector

multiplets and the hypermultiplets. We first present their variations in the background,
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which follow directly from (3.86) and (3.87),

δζα = 2gXM TM
α
βAi

β εijεj +Ai
α ηi ,

δΩi
M = Ẑij

M εj − 2g TPN
M X̄PXNεijε

j + 2 igΩMNµijN ε
j + 2XMηi . (4.2)

Substituting the equations of motion for the auxiliary fields Yij
Λ, the variation of the

independent fermion fields δΩi
Λ takes the following form,

δΩi
Λ = −2g TNP

Λ X̄NXP εij ε
j − 4 gNΛΣ

(
µijΣ + F̄ΣΓ µij

Γ
)
εj + 2XΛηi . (4.3)

Following the strategy adopted by [17], we consider only combinations of fermion

fields that are invariant under S-supersymmetry. To construct S-invariant combinations

of these fermions, it is convenient to define the following two spinor fields,

ζH
i =χ−1Ω̄αβAi

α ζβ ,

ΩV
i = − 1

2 iK−1ΩMN X̄
MΩi

N = 1
2K
−1 X̄ΛNΛΣΩi

Σ , (4.4)

which are both formally invariant under electric/magnetic duality when treating the

embedding tensor as a spurion. Under supersymmetry these two spinors transform

equivalently in this background, provided we also use the field equation of the field

D, which yields χ = 2K. Indeed one easily derives,

δΩV
i = Aij ε

j + ηi = −εij δζH j , (4.5)

where the symmetric matrix Aij is given by,

Aij = −2 g K−1 X̄MµijM . (4.6)

Here we made use of the second equation of (3.48).

To make contact with the terms appearing in the potential (3.109) (combined with

(3.110), since we eliminated the auxiliary fields Yij
Λ), we consider the variations of three

other spinors, which are S-invariant and consistent with duality. As it turns out, consid-

ering such variations gives important information regarding the possible supersymmetric

realizations, although it will not yet fully determine whether the corresponding solutions
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will actually be realized. The first two variations are,

g
(
µijΛ + FΛΣ µ

ijΣ
)
δ[Ωj

Λ − 2XΛΩV
j ]

= − 2 g2 X̄MXNTMN
PµijP εjk ε

k

− 2 g2(µklΛ + FΛΣ µ
klΣ)NΛΓ(µklΓ + F̄ΓΞ µ

klΞ)εi

+KAijAjkε
k ,

gNΛΣ TMN
ΣXM X̄N δ[Ωi

Λ − 2XΛΩV
i ]

= 2 i g2ΩMN (TPQ
MXP X̄Q) (TRS

N X̄RXS) εijε
j

− 4 g2XM X̄NTMN
PµijP ε

j . (4.7)

In deriving this result we made use of identities such as (3.46) and (3.48). Furthermore

we used ΩMNµijM µklN = µijΛ µkl
Λ − µijΛ µklΛ = 0, which follows directly from (3.57).

The third spinor variation is based on hypermultiplets,

g X̄MTM
α
βAi

β Ω̄αγ δ
[
ζγ + εjkAj

γ ζH
k

]
= − g2X̄MXN kAM kBN gAB εi

− 2 g2X̄MXN TMN
P µijP ε

jk εk

+KAijA
jk εk . (4.8)

Here we made use of the identity,

TM
α
βAi

β Ω̄αγ TN
γ
δAj

δ = 1
2εij k

A
M kAN + TMN

P µijP , (4.9)

which follows from (2.47), (3.33), (3.37) and (3.54). Combining (4.8) with the two

previous identities gives, [
e−1Lg2 δij + 3KAikAkj

]
εj = 0 . (4.10)

This relation requires e−1Lg2 to be non-negative, confirming the known result that de

Sitter space-times cannot be supersymmetric.

According to [17] one must also consider the symmetry variation of the supercovariant

derivative of at least one of the spinor fields. Let us, for instance, consider DµΩV
i , which

transforms also under S-supersymmetry. The following combination is then again S-

invariant, and changes under Q-symmetry according to,

δ
[
DµΩV

i − 1
2AijγµΩV j

]
= fµ

aγaεi − 1
2AijA

jk γµεk . (4.11)
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Therefore we must require that the supersymmetry parameters are subject to the eigen-

value condition, [
δij
(
R(e, ω)µ

a − 1
6eµ

aR(e, ω)
)
− eµaAikAkj

]
εj = 0 . (4.12)

Combining this result with (4.10) reproduces the Einstein equation for the maximally

symmetric space-time, irrespective of whether supersymmetry is realized fully or par-

tially. Observe that full supersymmetry requires that AikAkj = 1
12R(e, ω)δij .

The result (4.10) can also be written as,

[
AikAkj − 1

2A
klAkl δ

i
j

]
εj = −

e−1L−g2
3K

εi , (4.13)

where L−g2 pertains to the negative terms in Lg2 . For full supersymmetry we thus find that

L−g2 must vanish, while partial supersymmetry is associated with the smallest eigenvalue

of AikAkj and L−g2 6= 0. We refrain from giving more explicit details here, but we briefly

consider the special case of Minkowski space-time.

For partial supersymmetry, the unbroken supersymmetry parameter is subject to the

condition Aijε
j = 0. In this context one can consider the variation of yet another spinor,

which is invariant under S-supersymmetry, but no longer under duality,

0 = XΛNΛΣ δ[Ωi
Σ − 2XΣ ΩV

i ] = − 2 gXΛNΛΣ

[
TMN

Σ X̄MXN εij − 2iµij
Σ
]
εj

+ 2XΛNΛΣ

[
X̄Σ εikεjlA

kl −XΣAij
]
εj . (4.14)

In the absence of magnetic charges, the moment map µij
Σ vanishes. Also the first term on

the right-hand side vanishes because TMN
ΣX̄MXN can be replaced by T(MN)

ΣX̄MXN

by virtue of the second equation of (3.48). The latter vanishes without magnetic charges.

Therefore both Aijε
j and Aijεjkε

k vanish, which implies that Aij vanishes. To show this

first note that one can write an (anti-)hermitian 2×2 matrix as ~x ·~σij , where ~σij denotes

the three sigma-matrices and ~x denotes a Euclidian three-vector, which is real in the case

of a hermitian matrix, and purely imaginary in the case of an anti-hermitian matrix. Now

suppose that such a matrix has a zero eigenvalue for the eigenvector εi, then one can

show,

0 = (~x · ~σ)ik (~x · ~σ)kj ε
j = ~x · ~x εi =⇒ ~x = 0 , (4.15)

and hence the matrix itself vanishes. We can use these observations, by noting that the
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combination εikAkj−Aikεkj is a hermitian, traceless 2×2 matrix, while εikAkj+A
ikεkj is

an anti-hermitian, traceless 2×2 matrix. From the fact that Aijε
j and Aijεjkε

k vanish in

the absence of magnetic charges, it then follows that Aij vanishes, so that supersymmetry

must be fully realized. This is in accord with a known theorem according to which N=2

supersymmetry can only be broken to N = 1 supersymmetry in Minkowski space in the

presence of magnetic charges [19–24]. For abelian gaugings the situation simplifies, and

one can show that Minkowski solutions with residual N = 1 supersymmetry are possible

provided that,

X̄M TM
α
β Ai

βεi = 0 ,

(µijΛ + F̄ΛΣ µij
Σ) εj = 0 , (4.16)

with the two terms of the abelian potential vanishing separately (this follows from the

first equation of (4.7) and from (4.8)),

X̄MXN kAM kBN gAB = 0 ,

(µklΛ + FΛΣ µ
klΣ)NΛΓ(µklΓ + F̄ΓΞ µkl

Ξ) = 0 . (4.17)

Without magnetic charges, one can easily verify that residual N = 1 supersymmetric

solutions are not possible.

Apart from this latter result, the above analysis only indicates which supersymmetric

solutions can, in principle, exist. To confirm that they are actually realized, one has to

also examine the supersymmetry variations of the remaining fermion fields. This can be

done, but we prefer not to demonstrate this here. Instead we will discuss this explicitly

in the application presented in the next section, which is less straightforward, and where

we will follow the same set-up as in this section.

4.2 Supersymmetry in AdS2 × S2

In this second application we consider an AdS2×S2 space-time background and analyze

possible supersymmetric solutions. Hence the space-time metric can be chosen equal to,

ds2 = gµνdxµdxν = v1

(
− r2 dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θ dϕ2

)
, (4.18)
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whose non-vanishing Riemann curvature components are equal to,

Rab
cd = 2 v−1

1 δab
cd , Râb̂

ĉd̂ = −2 v−1
2 δâb̂

ĉd̂ , (4.19)

so that the four-dimensional Ricci scalar equals R = 2(v−1
1 −v

−1
2 ). Observe that we used

tangent-space indices above, where a, b, . . . label the flat AdS2 indices (0, 1) associated

with (t, r), and â, b̂, . . . label the flat S2 indices (2, 3) associated with (θ, ϕ). Furthermore

the non-vanishing components of the auxiliary tensor field are parametrized by a complex

scalar w,

− T01
ijεij = −iT23

ijεij = w . (4.20)

Using the previous results one finds the following expressions for the bosonic part of the

special conformal gauge field fa
b,

fa
b =

(
1
6 (2 v−1

1 + v−1
2 )− 1

4D −
1
32 |w|

2
)
δa
b + 1

2R(A)23 εa
b ,

fâ
b̂ =

(
− 1

6 (v−1
1 + 2 v−1

2 )− 1
4D + 1

32 |w|
2
)
δâ
b̂ + 1

2R(A)01 εâ
b̂ , (4.21)

where the two-dimensional Levi-Civita symbols are normalized by ε01 = ε23 = 1. The

non-zero components of the modified curvature R(M)ab
cd are given by,

R(M)ab
cd = (D + 1

3R) δab
cd ,

R(M)âb̂
ĉd̂ = (D + 1

3R) δâb̂
ĉd̂ ,

R(M)ab̂
cd̂ = 1

2 (D − 1
6R) δa

c δb̂
d̂ − 1

2R(A)23 εa
c δb̂

d̂ − 1
2R(A)01 δa

c εb̂
d̂ . (4.22)

We refer to appendix B for the general definitions of these quantities, which appear in

the superconformal transformation rules of the Weyl multiplet fields and are therefore

needed below.

Motivated by the maximal symmetry of the two two-dimensional subspaces, we expect

the various fields to be invariant under the same symmetry. Therefore we will assume that

the scalars XM and Ai
α are covariantly constant (for other fields the covariant constancy

will be discussed in due course). The corresponding integrability condition then requires

that the U(1) and SU(2) R-symmetry curvatures are not necessarily vanishing, and are

related to the curvatures of the vector multiplet gauge fields. This result is consistent

with the field equations for the R-symmetry gauge fields, Aµ and Vµij , which lead to the
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expressions (we again choose the gauge bµ = 0),

R(A)µν = g K−1HµνMTMQ
NΩPN X̄

QXP ,

R(V)µν
i
j = − 4gχ−1HµνMµikM εkj . (4.23)

Observe that the above equations only contribute for µ, ν = t, r, or µ, ν = θ, ϕ, in view

of the space-time symmetry. We can rewrite these equations in a different form, which

is convenient later on,

R(A)−µν = g K−1Ĥ−µνΛ
[
TΛQ

N + FΛΣ T
Σ
Q
N
]
ΩPN X̄

QXP ,

R(V)−µν
i
j = − 4gχ−1Ĥ−µνΛ

[
µikΛ + FΛΣ µ

ikΣ
]
εkj + 1

4 ε
ikAkj Tµν

mnεmn , (4.24)

where we suppressed all the fermionic terms which vanish in the background and made

use of the field equations (3.98) of the tensor fields Bµν a and Bµν m, and of (3.48).

To study supersymmetry in this background, we present the non-vanishing terms in

the supersymmetry transformations of the spinors Ωi
Λ and ζα,

δΩi
Λ = 1

2γ
µνĤ−µνΛ εijε

j − 2g TNP
Λ X̄NXP εij ε

j

− 4 gNΛΣ
(
µijΣ + F̄ΣΓ µij

Γ
)
εj + 2XΛηi ,

δζα = 2gXM TM
α
βAi

β εijεj +Ai
α ηi . (4.25)

Note that δΩi
Λ has changed as compared to (4.3) by the presence of the field strength

(3.91) (suppressing the fermionic terms, so that Ĥ−µνΛ = H−µνΛ − 1
4X̄

ΛTµν
ijεij), while

the expression for δζα is identical to the one given in (4.2). Just as before, we make use

of the two spinors ΩV
i and ζH

i defined in (4.4). The supersymmetry variation of these

fields in the given background are,

δΩV
i = 1

4K
−1 X̄ΛNΛΣĤ−µνγµνεijεj +Aijε

j + ηi ,

δζH
i = εij

(
Ajkεk + ηj

)
, (4.26)

where Aij was defined in (4.6). Supersymmetry therefore implies that the terms propor-

tional to γµν must vanish. As it turns out, this condition is just the field equation for

Tab
ij ,

X̄ΛNΛΣ Ĥ−Σ
ab = 0 . (4.27)
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Two additional fermionic variations are,

δ[R(Q)ab
i − 1

8Tcd
ijγcdγabΩ

V
j ] =R(V)−ab

i
jε
j − 1

2R(M)ab
cdγcdε

i − 1
8Tcd

ij γcdγabAjk ε
k ,

δ
[
DaΩV

i − 1
2AijγaΩV j

]
= fa

bγbεi + 1
4 iR(A)−cdγ

cdγaεi − 1
8R(V)−bci

jγbcγaεj

+ 1
16AijTbc

jkγbcγaεk − 1
2AijA

jk γa εk . (4.28)

The variation of R(Q)ab
i is given in (D.7) and the variations of the superconformal

gauge fields that are contained in the supercovariant derivative of ΩV
i are given in (B.1)

and (B.7). Observe that we have assumed, motivated by the maximal symmetry of the

two-dimensional subspaces, that also Tab
ij and Aij are covariantly constant.

The consequences of (4.28) can be expressed as follows,1

(D + 1
12R)εi +

[
R(V)−23

i
j − iR(A)−23 δ

i
j

]
γ23 εj = 0 ,

(D − 1
6R)εi −

[
2iR(A)−23 δ

i
j + 1

2 iw εikAkj
]
γ23 εj = 0 ,[

AikAkjε
j + 1

4 iw εikAkj γ
23
]
εj = 0 ,

(v−1
1 + v−1

2 − 1
8 |w|

2)εi −
[

1
2 iw̄Aikεkj + 2R(V)+

23
i
j + 2iR(A)+

23 δ
i
j

]
γ23εj = 0 . (4.29)

Furthermore we note that the covariant constancy of Tab
ij and Aij implies the conditions,

wR(A)µν = 0 , R(V)µν
k

(iAj)k = −iR(A)µν Aij . (4.30)

We now turn to possible supersymmetric solutions for this background. We proceed

in two steps. First we analyze the conditions for supersymmetry, ignoring the trans-

formations (4.26). This will reveal the possible existence of three distinct classes of

supersymmetric solutions, with four or eight supersymmetries, depending on the values

of R(V)µν
i
j and Aij . The corresponding information is summarized in table 4.1. As a last

step we then analyze the transformations (4.26), which lead to additional constraints.

It then follows that one of the classes listed in table 4.1 is actually not realized. In

what follows we will decompose the equations (4.29) in eigenstates of iγ23, denoted by

εi± = 1
2 (1 ± iγ23)εi. Observe that these spinors transform as a product representation

of the SU(2) isometry group associated with S2 and the SU(2) R-symmetry. This

1There are also charge conjugated equations. For instance, the first equation reads,

(D + 1
12
R)εi +

[
R(V)+

23i
j + iR(A)+

23 δi
j
]
γ23 εj = 0 .
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observation will be relevant shortly. Note also that the spinors transform according

to ε±
i → εi∓ under charge conjugation.

We start by considering solutions with w = 0. In that case the equations (4.29) yield,

R(A)±23 = 1
2R(A)23 ,

D = 1
6R±R23(A) ,

iR(V)−23
i
j ε
j
± =

[
± 1

4R+ 1
2R23(A)

]
εi± ,

iR(V)+
23
i
j ε
j
± =

[
∓ 1

2 (v−1
1 + v−1

2 ) + 1
2R23(A)

]
εi± . (4.31)

Since iR(V)+
23− iR(V)−23 is an anti-hermitian matrix, its eigenvalues should be imaginary.

However, from (4.31), we find an eigenvalue given by ∓ 1
2 (v−1

1 +v−1
2 )∓ 1

4R = ∓v−1
1 , which

is real. Therefore, consistency demands that v−1
1 = 0. Hence taking w = 0 will only lead

to a supersymmetric solution provided v−1
1 = 0. Discarding this singular solution, we

thus assume R(A)µν = 0. Then we consider two classes of solutions, denoted by A and

B in table 4.1, depending on whether D − 1
6R vanishes or not.

For R(A)µν = 0 and D − 1
6R = 0, the equations (4.29) imply,

wAij ε
j
± = 0 ,

iR(V)−23
i
j ε
j
± = ± 1

4Rε
i
± ,[

iR(V)+
23
i
j − 1

4 w̄A
ikεkj

]
εj± = ∓ 1

2 (v−1
1 + v−2

2 − 1
8 |w|

2) εi± . (4.32)

Let us now assume that Aij 6= 0. In that case εikAkj must have a single null vector

in order that a supersymmetric solution exists. On the other hand, it must commute

with the SU(2) curvatures, which in this case implies that the R(V)µν
i
j must vanish.

Supersymmetry then requires that v1 = v2 and,

wAij ε
j
± = 0 , w̄Aikεkj ε

j
± = ±(4 v−1

1 − 1
4 |w|

2) εi± . (4.33)

Again, since w εikAkj + w̄Aikεkj is an anti-hermitian matrix, it should have imaginary

eigenvalues, and hence from (4.33) it follows that 4v−1
1 − 1

4 |w|
2 = 0. Then, from the

argument around (4.15), it is clear that these equations have no solution unless Aij = 0.

When Aij = 0 and the SU(2) curvatures are non-vanishing, one can show that (4.32)

implies,

iR(V)23
i
j ε
j
± = ± 1

2Rε
i
± , v−1

1 = 1
16 |w|

2 . (4.34)

This solution, denoted by A[2], has generically four supersymmetries, two associated with
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two of the spinor parameters εi±, and two related with the charge-conjugated spinors εi∓.

The two spinors of the εi± must be eigenspinors of both iγ23 and iR(V)23
i
j with related

eigenvalues. Therefore the supersymmetries of class A[2] (and also of class B, as we shall

see later) cannot transform consistently under the SU(2) isometry group. We will return

to this aspect shortly.

In the special case where both Aij and the SU(2) curvatures vanish, we have

v−1
1 = v−1

2 = 1
16 |w|

2. Generically we then have eight supersymmetries. This class is

denoted by A[1]. Here the supersymmetries act consistently under the action of both

SU(2) groups. This completes the discussion of the type-A solutions.

Subsequently we turn to the solutions of class B, where D− 1
6R 6= 0 and R(A)µν = 0.

This class is denoted by B. In that case the first two equations (4.29) imply,

iR(V)−23
i
jε
j
± = ± (D + 1

12R) εi± ,

1
2w ε

ikAkj ε
j
± = ± (D − 1

6R) εi± . (4.35)

With this result, the last two equations then yield the eigenvalue equations,

iR(V)+
23
i
jε
j
± = ∓ 1

2 (v−1
1 + v−1

2 − 1
4 |w|

2) εi± ,

1
2 w̄ A

ikεkj ε
j
± = ± 1

8 |w|
2 εi± . (4.36)

Again, the same strategy can be followed: first construct anti-hermitian matrices and

demand that the eigenvalues are purely imaginary or zero. If they are zero, the matrix

itself vanishes by the argument given in (4.15). In this way (4.35) and (4.36) lead to,

w̄ Aij = − w εik εjlAkl ,

R(V)−23
i
j =R(V)+

23
i
j = 1

2R(V)23
i
j = − 2i

v2 w̄
εik Akj ,

iR(V)23
i
jε
j
± = ∓ v−1

2 εi± ,

D = − 1
6

(
v−1

1 + 2v−1
2

)
,

v−1
1 = 1

4 |w|
2 . (4.37)

Just as in class A[2], these solution have generically four supersymmetries, which cannot

transform consistently under the action of the SU(2) isometry group. Furthermore, note

that the solutions become singular in the limit where Vµνij and Aij vanish, so that this

class is really distinct from the type-A class.
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class R(V) Aij v1, v2 susy

A[1] R(V) = 0 Aij = 0 v−1
1 = v−1

2 = 1
16 |w|

2 4 + 4̄

A[2] R(V)23 = O(v−1
1 − v−1

2 ) Aij = 0 v−1
1 = 1

16 |w|
2 6= v−1

2 2 + 2̄

B R(V)23
i
j = − 4i

v2 w̄
εikAkj = O(v−1

2 ) v−1
1 = 1

4 |w|
2 2 + 2̄

Table 4.1: Three classes of supersymmetric solutions. As shown in due course, only the

classes A[1] and B are actually realized.

In view of the fact that the supersymmetry spinors do not always seem to trans-

form consistently under the action of the SU(2) transformations associated with the S2

isometries, let us now first clarify this issue and turn to a discussion of the Killing spinor

equations (in gauge bµ = 0) for each of the three classes. These equations take the

following form,

δ
(
ψµ

i + γµ ΩVi
)

= 2
◦
∇µεi + iAµ ε

i + Vµij εj − εik
[

1
4 iw γ23δk

j + εklA
lj
]
γµ εj . (4.38)

where
◦
∇µ denotes the AdS2 × S2 covariant derivative. Obviously we may set Aµ and

Va = 0.

For class-A solutions (4.38) leads to,

◦
∇aεi± ∓ 1

8w ε
ijγa εj± = 0 ,

◦
∇âεi± + 1

2Vâ
i
j ε
j
± ∓ 1

8w ε
ijγâ εj∓ = 0 , (4.39)

where v−1
1 = 1

16 |w|
2. For the solution of class A[1], we may take Vâij = 0, so that we

obtain the standard Killing spinor equations for AdS2 × S2. For the A[2] solutions, the

Killing spinor equation on S2 is somewhat unusual, because of the presence of the R-

symmetry connection whose strength is not related to the size of the S2. Since we will

show later that the type-A[2] solutions are in fact not realized, we refrain from further

discussion concerning these solutions.

Hence we proceed to the class-B solutions. In this case, the Killing spinor equation

(4.38) decomposes into,

◦
∇aεi± ∓ 1

4w ε
ijγa εj± = 0 ,
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◦
∇âεi± + 1

2Vâ
i
j ε
j
± = 0 . (4.40)

Because v−1
1 = 1

4 |w|
2, the first equation is the standard AdS2 Killing spinor equation.

However, the second equation does not coincide with the standard Killing spinor equation

on S2. We note that the strength of the R-symmetry connection is proportional to v−1
2 ,

and is therefore also determined by the S2 radius. To elucidate the situation, let us

briefly discuss the relevant equations for the unit sphere (v2 = 1).

We use the standard coordinates θ and ϕ on S2, with zweibeine e2 = dθ and

e3 = sin θ dϕ, and gamma matrices γ2 and γ3 that satisfy the standard Clifford al-

gebra relation with positive signature. The spin connection field in our convention

equals ω = ω23 = −ω32 = cos θ dϕ. Consequently we have that
◦
∇θ = ∂θ and

◦
∇ϕ =

(
∂ϕ− 1

2 cos θ γ23
)
. Now we adopt an R-symmetry transformation to bring R(V)23

i
j

in diagonal form. In that case we can assume Vij = −iλ (σ3)ij cos θ dϕ with λ some real

constant and σ3 the diagonal Pauli matrix. This leads to the corresponding field strength

R(V)23
i
j = iλ (σ3)ij . From the third equation of (4.37) we conclude that |λ| = 1 and

by an additional R-symmetry transformation we can ensure that λ = 1. In that case

(remember that we put v2 = 1) the supersymmetries are parametrized by the parameters

ε1+ and ε2−. It is now straightforward to verify that these spinors do not depend on the

S2 coordinates as a result of the second equation (4.40).

Consequently the supersymmetries do not transform under the isometries of S2, which

implies that they carry no spin! Along the same lines one expects that also the fields in

this background will change their spin assignment. The reason that the spin assignments

change in this background, is that the spin rotations associated with the isometries of

S2 become entangled with R-symmetry transformations, in a similar way as in magnetic

monopole solutions, where the rotational symmetry becomes entangled with gauge trans-

formations [70]. In the superconformal context, where one has R-symmetry connections

(which in this solution live on S2), the geometric origin of the entanglement is clear.

While such conditions on the supersymmetry spinor have been obtained previously in

the literature for a variety of four- and five-dimensional supersymmetric solutions (see,

e.g. [71–75], this phenomenon seems not to have received special attention.

Finally we must investigate the remaining variations based on (4.25). Consider first

the variation for the fields Ωi
Λ, which we parametrize as δΩi

Λ = Aij
Λεj − 2XΛηi, so

that,

Aij
Λ = 2 Ĥ−23

Λεijγ
23 − 2g TNP

Λ X̄NXP εij − 4 gNΛΣ
(
µijΣ + F̄ΣΓ µij

Γ
)
. (4.41)
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Then we consider the variation of two S-invariant combinations, Ωi
Λ − 2XΛΩV

i , and

Da(ΩiΛ − 2X̄ΛΩiV) − 1
2 (AijΛ − 2 X̄ΛAij)γaΩV

j , whose vanishing under supersymmetry

imply the following identities, [
Aij

Λ − 2XΛAij
]
εj = 0 ,(

AikΛ − 2 X̄ΛAik
) (
Akj − 1

8Tbckj γ
bc
)
γaε

j = 0 , (4.42)

where we assumed that DµAΛ = 0 in line with our earlier ansätze. Likewise we obtain

two equations for the hypermultiplets,[
2 gX̄M T̄M

ᾱ
β̄ A

iβ̄ εij −AiᾱAij
]
εj = 0 ,(

2 gXMTM
α
β Ai

β εik −AiαAik
) (
Akj − 1

8Tbckj γ
bc
)
γaε

j = 0 . (4.43)

We note the presence of a universal factor on the right-hand side of the equation in (4.42)

and (4.43), proportional to,

Akj − 1
8Tbckj γ

bc = −εkl
(
εlmAmj − 1

4 iw̄ γ23 δlj
)
, (4.44)

which is the hermitian conjugate of the term that appears at the right-hand side of (4.38).

The equations (4.42) and (4.43) lead to the following six conditions,[
2 gNΛΣ εik

(
µkjΣ + F̄ΣΓ µkj

Γ
)

+XΛ εikAkj
]
εj±

−g TNPΛ X̄NXP εi± = ± iĤ−23
Λ εi± ,[

2 gNΛΣ
(
µikΣ + FΣΓ µ

ikΓ
)

+ X̄ΛAik
]
Akj ε

j
±

+g TNP
ΛXN X̄P εik Akj ε

j
± = 1

4 iw̄ Ĥ+
23

Λ εi± ,

w̄
[
− 2 gNΛΣεik

(
µkjΣ + FΣΓ µkj

Γ
)
− X̄ΛAikεkj

]
εj±

+w̄ g TNP
ΛXN X̄P εi± = 4i Ĥ+

23
Λ εikAkj ε

j
± ,[

2 gX̄M T̄M
ᾱ
β̄ A

iβ̄ εij −AiᾱAij
]
εj± = 0 ,[

2 gXMTM
α
β Ai

β εik −AiαAik
]
Akj ε

j
± = 0 ,[

2 gXMTM
α
β Ai

β εik −AiαAik
]
εkj ε

j
± = 0 . (4.45)

Let us now consider the various classes of solutions shown in table 4.1. First of all the

solutions of type A, characterized by Aij = 0. From the second equation of (4.45) it

then follows that ĤµνΛ = 0. Combining this result with the equations (4.24) shows that
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both R(A)µν and R(V)µν
i
j must vanish. This implies that solution A[2] is not realized.

Hence we are left with the fully supersymmetric solution A[1]. Therefore we proceed by

determining the additional restrictions for this solution.

The first, third, fourth and sixth equations of (4.45) can be written as follows,

iεikµkj
Λ εj± = − 1

2TNP
Λ(X̄NXP −XN X̄P ) εi± ,

iNΛΣεik
(
2µkjΣ + (FΣΓ + F̄ΣΓ)µkj

Γ
)
εj± = 1

2 iTNP
Λ(X̄NXP +XN X̄P ) εi± ,

X̄M T̄M
ᾱ
β̄ A

iβ̄ εij ε
j
± = 0 ,

XMTM
α
β Ai

β εi± = 0 . (4.46)

Since a hermitian matrix must have real eigenvalues, it follows that both sides of the first

two equations should vanish. Also the factors in the last two equations should vanish, so

that,

µijΛ = µij
Λ = 0 ,

TNP
ΛXN X̄P = 0 ,

XMTM
α
β Ai

β = 0 = X̄MTM
α
β Ai

β . (4.47)

Note that Lg2 is now vanishing. For electric charges these solutions have already been

identified in [69]. Without charges this is the well-known solution that arises as a near-

horizon geometry of BPS black holes. The fact that the moment maps and certain

combinations of Killing vectors are vanishing does not warrant the conclusion that there

is no gauging. One can only conclude that the field equations require some of these

quantities to vanish for these solutions.

Now consider the type-B solution where Aij is non-vanishing. In that case the first

three equations of (4.45) lead to two independent equations,

−2 gNΛΣ εik
(
µkjΣ + F̄ΣΓ µkj

Γ
)
εj±

+g TNP
Λ X̄NXP εi± = ∓

(
iĤ−23

Λ + 1
4 w̄X

Λ
)
εi± ,

−2 gNΛΣεik
(
µkjΣ + FΣΓ µkj

Γ
)
εj±

+g TNP
ΛXN X̄P εi± = ∓

(
i Ĥ+

23
Λ − 1

4wX̄
Λ
)
εi± . (4.48)

These equations can be analyzed in a similar way as the corresponding equations in
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(4.46). The results are as follows,

TNP
ΛX̄NXP = 0 ,

gεikµkj
Λ εj± = ∓ 1

2

[(
Ĥ−Λ

23 − 1
4 iw̄XΛ

)
−
(
Ĥ+Λ

23 + 1
4 iwX̄Λ

)]
εi± ,

gεikµkjΛ ε
j
± = ± 1

2

[
FΛΣ

(
Ĥ−Σ

23 − 1
4 iw̄XΣ

)
− F̄ΛΣ

(
Ĥ+Σ

23 + 1
4 iwX̄Σ

)]
εi± . (4.49)

From (3.46), it follows that the first constraint of (4.49) can be generalized to

TMN
P X̄MXN = 0. Using also the representation constraint (3.43), one reconfirms that

R(A)µν , as given in (4.24), vanishes. The same argument applies to solutions of type

A[1]. Furthermore, as a check one may also reconstruct the eigenvalue equation for Aij

which shows once more that (4.27) must be valid.

One can use the same strategy and determine R(V)23
i
j from (4.24), making use

of (4.49) with TMN
P X̄MXN = 0. Evaluating this curvature on the supersymmetry

parameters, making use of the eigenvalue condition for this curvature presented in (4.37)

as well as of (4.27), it follows that,

v−1
2 = −2K−1NΛΣĤ−Λ

23 Ĥ
+Σ
23 − 1

8 |w|
2 . (4.50)

In the first expression on the right-hand side, one can verify, replacing NΛΣ by the

negative definite metric MΛΣ̄ defined in (3.111) and using (4.27), that this expression

must be positive, which yields an upper bound on |w|2 for given field strengths Ĥ23
Λ.

The last three equations of (4.45) lead to two equations,

XM
[
TM

α
βAi

β +K−1εij µ
jk
M Ak

α
]

= 0 ,

X̄M
[
TM

α
βAi

β +K−1εij µ
jk
M Ak

α
]

= 0 . (4.51)

From these equations, one derives, upon using (4.9),

g2X̄MXN kAM kAN = 1
16K |w|

2 . (4.52)

The scalar potential in the type-B solutions thus takes the form,

e−1Lg2 = − 2 g2KMΛ̄ΣN
ΛΓ
[
µijΓ + FΓΩ µ

ijΩ
]
NΣΞ

[
µijΞ + F̄Ξ∆ µij

∆
]

− 3
16K |w|

2 , (4.53)

where the first term is negative and the second one positive. We refrain from giving
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further results.

For a single (compensating) hypermultiplet, which can only have abelian gaugings,

we expect that one of these type-B solutions describes the near-horizon geometry of the

spherically symmetric static black hole solution presented in [71, 72]. The result of this

section then ensures that this black hole solution has supersymmetry enhancement at

the horizon.





Chapter 5
Higher-derivatives couplings in N=2
superconformal gravity

The Lagrangians we have seen so far, with or without gauge deformations, were all

restricted to contain at most two derivatives of the fields. In this chapter we will consider

a rather large class of higher-derivative couplings in theories without gaugings. As we

will see, their construction is based on chiral multiplets. Therefore, the higher-derivative

couplings will only pertain to vector multiplets, the Weyl multiplet and possible other

multiplets based on chiral multiplets, as we will discuss in detail. Consequently, higher-

derivative couplings of hypermultiplets are not considered. The higher-derivative terms

are coupled to conformal supergravity and are realized off-shell. This feature greatly

facilitates their construction, which is based on previous work on N=2 supergravity (in

particular, on [27, 36]).

Supersymmetric invariants with higher-derivative couplings play a role in many appli-

cations. The first higher-derivative couplings that were considered in N=2 supergravity

involve the square of the Weyl tensor coupled to vector supermultiplets [76]. This

particular class of invariants is based on an integration over a chiral subspace of N = 2

superspace. It is relevant for the topological string [77, 78], and furthermore, it has

important implications for BPS black hole entropy [16]. Another class of invariants for

vector multiplets that involve terms quartic in the field strengths, was derived in terms of

N=1 superfields, both for the abelian [79] and for the non-abelian case [80]. Unlike the

previous class, this one is based on an integral over full superspace. It yields important

contributions to the effective action of N = 2 supersymmetric gauge theories (for some
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additional references, see e.g., [81–84]). A related class of locally supersymmetric higher-

derivative couplings was considered in [85, 86]. Those couplings, which involve both the

Weyl tensor and higher-order coupling of the vector field strengths, were conjectured to

describe certain deformations of the topological string partition function. This chapter

deals with an explicit construction of this rather large class of invariant couplings based

on full superspace integrals.

This chapter is organized as follows. Section 5.1 describes the general strategy for

the construction of the higher-derivative couplings, based on the use of the so-called

‘kinetic supermultiplet’, which can be constructed from an anti-chiral supermultiplet of

zero Weyl weight. The components of this multiplet are given in considerable detail, fully

taking into account the presence of the superconformal background. The construction of

the bosonic terms of the higher-derivative couplings is presented in section 5.2, together

with explicit examples based on a class of Lagrangians that involves terms such as F 4,

R2F 2 and R4. Here F denotes the abelian vector multiplet field strengths and R the

Riemann tensor. As we mentioned in the introduction, an important application of this

work is to study the possible contribution of these new couplings to the entropy and

the electric charges of BPS black holes. In section 5.3 a non-renormalization theorem

is proven, according to which these contributions vanish. Some concluding remarks are

presented in section 5.4.

5.1 The kinetic chiral multiplet

General chiral multiplets were presented in section 2.3. We briefly mentioned the exis-

tence of a so-called ‘kinetic’ multiplet, which we will introduce in this section.

The term kinetic multiplet was first used in the context of the N =1 tensor calculus

[87], because this is the chiral multiplet that enables the construction of the kinetic terms,

conventionally described by a real superspace integral, in terms of a chiral superspace

integral. In flat N=1 superspace, this construction is simply effected by the conversion,1∫
d2θ d2θ̄ Φ Φ̄′ ≈

∫
d2θ ΦT(Φ̄′) , (5.1)

up to space-time boundary terms. Here Φ and Φ′ are two chiral superfields and Φ̄′ is the

anti-chiral field obtained from Φ′ by complex conjugation. The kinetic multiplet equals

1In this chapter we will sometimes make use of superfield notions, such as superspace integrals like
(5.1), but they are always used for illustrative purposes. Actual calculations are only made in the
component approach used throughout this thesis.
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T(Φ̄′) = D̄2Φ̄′, where D̄ denotes the supercovariant θ̄-derivative. Obviously the kinetic

multiplet contains terms linear and quadratic in space-time derivatives, so that, upon

identifying Φ and Φ′, the right-hand side of (5.1) does indeed give rise to the kinetic

terms of an N=1 chiral multiplet.

In [27] a corresponding kinetic multiplet was identified for N = 2 supersymmetry,

which now involves four rather than two covariant θ̄-derivatives, i.e. T(Φ̄) ∝ D̄4Φ̄. As a

result, T(Φ̄) contains now up to four space-time derivatives, so that the expression,∫
d4θ d4θ̄ Φ Φ̄′ ≈

∫
d4θΦT(Φ̄′) , (5.2)

does not correspond to a kinetic term, but to a higher-order derivative coupling. Further-

more, for N = 2 supersymmetry one has the option of expressing the chiral multiplets

in terms of (products of) reduced chiral multiplets. In that case, expressions such as

(5.2) will correspond to higher-derivative couplings of vector multiplets. Since we are

considering the kinetic multiplets in a conformal supergravity background, their Weyl

weight is relevant. Both in N=1, 2 supergravity the kinetic multiplet carries Weyl weight

w = 2. The conversion starts from a w = 1 chiral multiplet for N =1 and from a w = 0

chiral multiplet for N=2 supersymmetry, respectively.

To demonstrate this in more detail, consider an anti-chiral N=2 supermultiplet in the

presence of the superconformal background. Its supersymmetry transformations follow

from taking the complex conjugate of (2.17). Precisely for w = 0 we note that the field

C̄ is invariant under S-supersymmetry and transforms under Q-supersymmetry as the

lowest component of a chiral supermultiplet with w = 2. This observation proves that

we are dealing with a w = 2 chiral supermultiplet, as is also confirmed by the weight

assignments specified in table 2.1. What remains is to identify the various components

of this multiplet in terms of the underlying w = 0 multiplet. This can be done by

applying successive Q-supersymmetry transformations on C̄, something that requires

rather tedious calculations in the presence of a superconformal background.

Denoting the components of T(Φ̄w=0) by (A,Ψ, B, F−,Λ, C)|T(Φ̄), while (A,Ψ, B, F−,

Λ, C) will denote the components of the original w = 0 chiral multiplet, we have estab-

lished the following relation,

A|T(Φ̄) = C̄ ,

Ψi|T(Φ̄) = − 2 εij /DΛj − 6 εikεjlχ
jBkl − 1

4εijεkl γ
abTab

jk
↔
/D Ψl ,

Bij |T(Φ̄) = − 2 εikεjl
(
�c + 3D

)
Bkl − 2F+

abR(V)ab ki εjk
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− 6 εk(i χ̄j)Λ
k + 3 εikεjlΨ̄

(k /Dχl) ,

F−ab|T(Φ̄) = −
(
δa

[cδb
d] − 1

2εab
cd
)

×
[
4DcD

eF+
ed + (DeĀDcTde

ij +DcĀD
eTed

ij)εij
]

+ �cĀ Tab
ijεij −R(V)−ab

i
k B

jk εij + 1
8Tab

ij TcdijF
+cd − εkl Ψ̄k

↔
/D R(Q)ab

l

− 9
4εij Ψ̄iγcγabDcχ

j + 3 εijχ̄
iγab /DΨj + 3

8Tab
ijεij χ̄kΨk ,

Λi|T(Φ̄) = 2�c /DΨjεij + 1
4γ

cγab(2DcT
ab
ij Λj + T abij DcΛ

j)

− 1
2εij

(
R(V)ab

j
k + 2iR(A)abδ

j
k

)
γcγabDcΨ

k

+ 1
2 εij

(
3DbD − 4iDaR(A)ab + 1

4Tbc
ij
↔
Da T

ac
ij

)
γbΨj

− 2F+ab /DR(Q)abi + 6 εijD /DΨj

+ 3 εij
(
/Dχk B

kj + /DĀ /Dχj
)

+ 3
2

(
2 /DBkjεij + /DF+

abγ
ab δki + 1

4εmnTab
mn γab /DĀ δi

k
)
χk

+ 9
4 (χ̄lγaχl) εijγ

aΨj − 9
2 (χ̄iγaχ

k) εklγ
aΨl ,

C|T(Φ̄) = 4(�c + 3D)�cĀ− 1
2Da

(
T abij Tcb

ij
)
DcĀ+ 1

16 (Tabijε
ij)2C̄

+Da

(
εijDaTbcij F

+bc + 4 εijT abij D
cF+
cb − Tbc

ij T acij D
bĀ
)

+
(
6DbD − 8iDaR(A)ab

)
DbĀ+ · · · , (5.3)

where in the last expression we suppressed terms quadratic in the covariant fermion

fields. Obviously terms involving the fermionic gauge fields, ψµ
i and φµ

i, are already

contained in the superconformal derivatives. Observe that the right-hand side of these

expressions is always linear in the conjugate components of the w = 0 chiral multiplet,

i.e. in (Ā,Ψi, Bij , F+
ab,Λ

i, C̄). As an extra test of the correctness of (5.3) we verified that

these expressions satisfy the correct transformation behaviour under S-supersymmetry.

This test cannot be performed on the last component C|T(Φ̄), because we refrained from

collecting the fermionic contributions. As an extra check we have therefore verified that

the bosonic terms of C|T(Φ̄) are invariant under special conformal boosts.

The definition of the superconformal D’Alembertian �c, defined by the contraction

of two superconformal derivatives Da, as well as multiple superconformal derivatives

in general, may require further comment. Therefore we have presented some relevant

material in appendix C. Below we give the most non-trivial transformation rules under

special conformal boosts that are needed in this chapter,

δK�c�cA = − 2 ΛaK
(
[Da, Db]D

b +Db[Da, Db]
)
A
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= 1
4ΛaK Tac

ij T bcij DbA− 3 ΛK
aDDaA− 2 ΛK

aDb(R̄(Q)baΨi)

− 3
4ΛK

a χ̄iTab
ijγbΨj + 3

4Ψi /ΛK /Dχ
i ,

δK�c /DΨi = /ΛK

[
1
4

(
R(V)ab

j
i + 2iR(A)ab δ

j
i

)
γabΨj − 3

2DΨi

]
+ /ΛK

[
3
2Bij χ

j − εijF− abR(Q)jab −
3
4εijF

−
ab γ

abχj
]
. (5.4)

These results follow from (C.6), upon making use of the relevant curvatures.

5.2 Invariant higher-derivative couplings

Using the results of the previous section one can construct a large variety of supercon-

formal invariants for chiral multiplets with higher-derivative couplings. For unrestricted

chiral supermultiplets one cannot write down Lagrangians that are at most quadratic in

derivatives, so they usually play a role as composite fields that are expressed in terms

of reduced chiral multiplets, such as the vector multiplets and the Weyl multiplet. The

construction of the higher-order Lagrangians therefore proceeds in two steps. First one

constructs the Lagrangian in terms of unrestricted chiral multiplets of the appropriate

Weyl weights, and subsequently one expresses the unrestricted supermultiplets in terms

of reduced supermultiplets. In these expressions it is natural to introduce a variety of

arbitrary homogeneous functions.

The invariants are expressed as chiral superspace integrals, because all possible anti-

chiral fields are contained in the kinetic multiplets that we have introduced in section

5.1. A simple example of this approach was already exhibited in (5.2). The fact that

these invariants are actually based on full superspace integrals implies that they must

vanish whenever all the chiral (or, alternatively, all the anti-chiral) fields are put equal to

a constant. In the chiral formulation of the integral, this phenomenon is reflected in the

fact that the kinetic multiplet of a constant anti-chiral multiplet vanishes. This result

can easily be deduced from (5.3). Invariants can be substantially more complicated than

(5.2). The integrand does not have to be linear in a kinetic multiplet, and can depend

on a function of kinetic multiplets. One can also consider ‘nested’ situations, where a

kinetic multiplet is constructed starting from an expression of superfields among which

there are other kinetic multiplets, thus leading to even higher multiple derivatives.

The above approach is a constructive one and in general it will be hard to classify

all these invariant couplings, say, in terms of a limited number of functions, as is often

possible for supersymmetric theories. For definiteness, we henceforth restrict attention

to invariants proportional to a single kinetic multiplet, as given in (5.2). In that case,
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expressing the composite chiral multiplets in terms of vector multiplets, one obtains the

supergravity-coupled invariants corresponding to the actions derived in [79, 80] in the

abelian limit, which contain F 4-couplings. By including the Weyl multiplet, one also

obtains R2F 2- and R4-couplings. The R2F 2-couplings will in principle overlap with part

of a subclass of invariants discussed in [85, 86] in connection with certain deformations

of the topological string partition function. These couplings are encoded in terms of a

single function of holomorphic and anti-holomorphic fields. In a rigid supersymmetry

background these actions exhibit Kähler geometry with this function playing the role of

a Kähler potential. As we will demonstrate below, this feature survives in the presence

of the superconformal background. Other examples of higher-derivative couplings based

on more than a single kinetic multiplet will be discussed in section 5.4.

Hence we start by writing down the bosonic terms of the Lagrangian (5.2). It is

convenient to first note the following relation,

C|T(Φ̄) = 1
16 (Tabijε

ij)2C̄ + 4
(
DµDµ

)2
Ā

− 8Dµ
[(
Rµ

a(ω, e)− 1
3R(ω, e) eµ

a −Deµ
a + iR(A)µ

a
)
DaĀ

]
+Dµ

[
εijDµTbcij F+bc + 4 εijTµbij DcF+

cb − 2Tbc
ij Tµcij DbĀ

]
+ · · · , (5.5)

where we suppressed all fermionic contributions. In deriving this result we made use of

(B.6). Subsequently we derive the bosonic part of the Lagrangian corresponding to (5.2),

up to total derivatives, by making use of the density formula (2.18) and of the product

rule (D.1),

e−1L = 4D2AD2Ā+ 8DµA
[
Rµ

a(ω, e)− 1
3R(ω, e) eµ

a
]
DaĀ+ C C̄

−DµBij DµBij + ( 1
6R(ω, e) + 2D)BijB

ij

−
[
εik Bij F

+µν R(V)µν
j
k + εik B

ij F−µνR(V)µνj
k
]

− 8DDµADµĀ+
(
8 iR(A)µν + 2Tµ

cij Tνcij
)
DµADνĀ

−
[
εijDµTbcijDµAF+bc + εijDµTbcijDµĀ F−bc

]
− 4
[
εijTµbij DµADcF+

cb + εijT
µbij DµĀDcF−cb

]
+ 8DaF−abDcF+

cb + 4F−ac F+
bcR(ω, e)a

b + 1
4Tab

ij TcdijF
−abF+cd . (5.6)

Note that we suppressed the prime on the second chiral multiplet indicated in (5.2). In

general, however, we will not always identify the two multiplets, so that the complex
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conjugated components in the above formula do not have to correspond to the same

supermultiplet. However, upon making this identification, the above Lagrangian is

manifestly real, which provides an additional check on the correctness of our result.

The reason is that the corresponding Lagrangian (5.2) is also real in that case (up to

total derivatives). Note also that the Lagrangian (5.6) vanishes whenever either one

of the multiplets is equal to a constant, thus confirming the analysis presented at the

beginning of this section.

We will now use the above results to write down the extension to local supersymmetry

of the class of vector multiplet Lagrangians constructed in [79, 80]. Just as above we

concentrate on the purely bosonic terms. The extension follows by writing the w = 0

chiral multiplets Φ and Φ′ as composite multiplets expressed in terms of vector multiplets.

In (5.2), and correspondingly in (5.6), one thus performs the following substitutions,

Φ→ f(ΦΛ) , Φ̄′ → ḡ(Φ̄Λ) , (5.7)

where ΦΛ denote the (reduced) chiral multiplets associated with vector multiplets, and

the functions f and g are homogeneous of zeroth degree. Upon expanding Φ and Φ̄′

in terms of the vector supermultiplets, making use of the material presented in appen-

dices D.1 and D.2, one obtains powers of the vector multiplet components multiplied

by derivatives of f(X) and ḡ(X̄), where the XΛ denote the complex scalars of the

vector multiplets. Homogeneity implies that XΛ fΛ(X) = 0 = X̄Λ ḡΛ̄(X̄), where fΛ

and ḡΛ̄ denote the first derivatives of the two functions with respect to XΛ and X̄Λ,

respectively. Here we recall that the expression (5.6) vanishes whenever f(X) or ḡ(X̄)

are constant. As noted previously, the origin of this phenomenon can be traced back

to the fact that the full superspace integral of a chiral or an anti-chiral field vanishes

(up to total derivatives). Therefore the Lagrangian will depend exclusively on mixed

holomorphic/anti-holomorphic derivatives of the product function f(X) ḡ(X̄). By sum-

ming over an arbitrary set of pairs of functions f (n)(X) ḡ(n)(X̄), we can further extend

this function to a general function H(X, X̄) that is separately homogeneous of zeroth

degree in X and X̄. Because H(X, X̄) is only defined up to a purely holomorphic or

anti-holomorphic function, it is thus subject to Kähler transformations,

H(X, X̄)→ H(X, X̄) + Λ(X) + Λ̄(X̄) . (5.8)

Hence H(X, X̄) can be regarded as a Kähler potential, which may be taken real (so that

Λ̄(X̄) = [Λ(X)]∗).
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Carrying out the various substitutions leads directly to the following bosonic con-

tribution to the supersymmetric Lagrangian (for convenience, we assume H to be real,

unless stated otherwise),

e−1L =HΛΣΓ̄Ξ̄

[
1
4

(
F̂−ab

Λ F̂−abΣ − 1
2Yij

Λ Y ijΣ
)(
F̂+
ab

Γ F̂+abΞ − 1
2Y

ijΓ Yij
Ξ
)

+ 4DaXΛDbX̄Γ
(
DaXΣDbX̄Ξ + 2 F̂− acΣ F̂+ b

c
Ξ − 1

4η
ab Y Σ

ij Y
Ξ ij
)]

+
{
HΛΣΓ̄

[
4DaXΛDaXΣD2X̄Γ −DaXΛ Y Σ

ij DaY Γ ij

−
(
F̂−abΛ F̂−Σ

ab −
1
2Y

Λ
ij Y

Σij)
(
�cX

Γ + 1
8 F̂
−Γ
ab T abijεij

)
+ 8DaXΛF̂−Σ

ab

(
DcF̂+ cbΓ − 1

2DcX̄
ΓT ij cbεij

)]
+ h.c.

}
+HΛΣ̄

[
4
(
�cX̄

Λ + 1
8 F̂

+ Λ
ab T abijε

ij
)(
�cX

Σ + 1
8 F̂
−Σ
ab T abijεij

)
+ 4D2XΛD2X̄Σ

+ 8DaF̂− abΛ DcF̂+c
b
Σ −DaYijΛDaY ij Σ + 1

4Tab
ij Tcdij F̂

−abΛF̂+cdΣ

+
(

1
6R(ω, e) + 2D

)
Yij

Λ Y ij Σ + 4 F̂−acΛ F̂+
bc

ΣR(ω, e)a
b

+ 8
(
Rµν(ω, e) + 1

4T
µ
b
ij T νbij + iR(A)µν

)
DµXΛDνX̄Σ

− 8
(
D + 1

3R(ω, e)
)
DµXΛDµX̄Σ

−
[
DcX̄Σ

(
DcTabij F̂−Λ ab + 4T ij cbDaF̂−Λ

ab

)
εij + [h.c.; Λ↔ Σ]

]
−
[
εik Yij

Λ F̂+abΣR(V)ab
j
k + [h.c.; Λ↔ Σ]

]]
, (5.9)

where (we suppress fermionic contributions),

F̂−ab
Λ =

(
δab

cd − 1
2εab

cd
)
ec
µed

ν ∂[µWν]
Λ − 1

4 X̄
Λ Tab

ijεij ,

�cX
Λ =D2XΛ +

(
1
6R(ω, e) +D

)
XΛ . (5.10)

In view of the Kähler equivalence transformations (5.8), the mixed derivative HΛΣ̄ can

be identified as a Kähler metric. Hence we have the following results for the metric,

connection, and the curvature of the corresponding Kähler space,

gΛΣ̄ =HΛΣ̄ ,

ΓΛ
ΣΓ = gΛΞ̄HΣΓΞ̄ ,

RΛΣ̄ΓΞ̄ =HΛΓΣ̄Ξ̄ − gΠῩ ΓΠ
ΛΓ ΓῩ

Σ̄Ξ̄ . (5.11)
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The Lagrangian (5.9) can then be written in a Kähler covariant form,

e−1L =RΛΓ̄ΣΞ̄

[
1
4

(
F̂−ab

Λ F̂−abΣ − 1
2Yij

Λ Y ijΣ
)(
F̂+
ab

Γ F̂+abΞ − 1
2Y

ijΓ Yij
Ξ
)

+ 4DaXΛDbX̄Γ
(
DaXΣDbX̄Ξ + 2 F̂− acΣ F̂+ b

c
Ξ − 1

4η
ab Y Σ

ij Y
Ξ ij
)]

+ gΛΣ̄

[
4
(
�cX̄

Λ + 1
8 F̂

+ Λ
ab T abijε

ij − 1
4ΓΛ

ΓΞ(F̂−ab
Γ F̂−abΞ − 1

2Y
ijΓ Y ij

Ξ)
)

×
(
�cX

Σ + 1
8 F̂
−Σ
ab T abijεij − 1

4ΓΣ̄
Γ̄Ξ̄(F̂+

ab
Γ F̂+abΞ − 1

2Y
ijΓ Y ij

Ξ)
)

+ 4
(
D2XΛ + ΓΛ

ΓΞDbXΓDbXΞ
) (
D2X̄Σ + ΓΣ̄

Γ̄Ξ̄DbX̄ΓDbX̄Ξ
)

+ 8
(
DaF̂− abΛ + ΓΛ

ΓΞDaXΓF̂− abΞ
) (
DcF̂+c

b
Σ + ΓΣ̄

Γ̄Ξ̄DcX̄Γ F̂+c
b
Ξ
)

− (DaYijΛ + ΓΛ
ΓΞDbXΓ Yij

Ξ
) (
DaY Σ ij + ΓΣ̄

Γ̄Ξ̄DbX̄Γ Y ijΞ
)

+ 1
4Tab

ij Tcdij F̂
−abΛF̂+cdΣ

+
(

1
6R(ω, e) + 2D

)
Yij

Λ Y ij Σ + 4 F̂−acΛ F̂+
bc

ΣR(ω, e)a
b

+ 8
(
Rµν(ω, e) + 1

4T
µ
b
ij T νbij + iR(A)µν

)
DµXΛDνX̄Σ

− 8
(
D + 1

3R(ω, e)
)
DµXΛDµX̄Σ

−
[
DcX̄Σ

(
DcTabij F̂−Λ ab + 4T ij cb (DaF̂−Λ

ab + ΓΛ
ΓΞDaXΓF̂−ab

Ξ)
)
εij

+ εik Yij
Λ F̂+abΣR(V)ab

j
k + [h.c.; Λ↔ Σ]

]]
. (5.12)

The covariantizations in the various combinations can be understood systematically by

rewriting the chiral multiplet components of the vector multiplets such that they are

covariant with respect to the complex reparametrizations of the Kähler space (in the limit

where the fermions are suppressed). An easy way to appreciate these covariantizations

is by reorganizing the expansion of a composite chiral multiplet into vector multiplets

according to (D.2) by replacing the ordinary derivatives of the function G by covariant

derivatives.

The Lagrangians (5.9) and/or (5.12) can also be used in the context of rigidly su-

persymmetric theories upon suppressing all the superconformal fields. The resulting

Lagrangian is then superconformally invariant in flat Minkowski space. This invariance

can be further reduced to ordinary Poincaré supersymmetry by replacing one of the

vector multiplets by a constant.

As an extension of the previous results we return to (5.6), and consider composite

chiral multiplets that depend on both vector multiplets and on the Weyl multiplet. Hence

we replace (5.7) by,

Φ→ f(ΦΛ,W 2) , Φ̄′ → ḡ(Φ̄Λ, W̄ 2) , (5.13)
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where W 2 refers to the square of the Weyl multiplet. The components of this reduced

chiral multiplet are given in (D.8). Upon expanding these functions and substituting

the results into (5.6), one obtains a Lagrangian that contains R4-, R2F 2- and F 4-

terms. All terms are proportional to mixed holomorphic/anti-holomorphic derivatives

of a function H(X,T 2, X̄, T̄ 2), where T 2 = (Tab
ijεij)

2 and T̄ 2 = (Tabijε
ij)2, and where

H is constructed from pairs of products of functions f(X,T 2) and ḡ(X̄, T̄ 2). The fact

that the composite multiplets have w = 0 implies a modified homogeneity property,

XΛHΛ(X,T 2, X̄, T̄ 2) + 2T 2HT 2(X,T 2, X̄, T̄ 2) = 0 , (5.14)

and likewise for the anti-holomorphic derivatives.

The Lagrangian consists of the Lagrangian (5.9) plus a large number of terms that

involve multiple derivatives of H with respect to T 2, T̄ 2, XΛ and X̄Λ. Below we con-

centrate on terms proportional to multiple derivatives of H with respect to only T 2 and

T̄ 2. Among others those contain contributions of fourth order in R(M), whose leading

contribution is equal to the Weyl tensor,

(64)−2 e−1L =

4HT 2T 2T̄ 2T̄ 2 T abijεij T
cdklεkl T

ef
mnε

mn T ghpqε
pq

×
[
R(M)aba′b′R(M)cd

a′b′ + 1
2R(V)ab

i
j R(V)cd

j
i

]
×
[
R(M)efe′f ′R(M)gh

e′f ′
+ 1

2R(V)ef
i
j R(V)gh

j
i

]
+ 2

{
HT 2T 2T̄ 2 T abijεij T

cdklεkl

×
[
R(M)aba′b′R(M)cd

a′b′ + 1
2R(V)ab

i
j R(V)cd

j
i

]
×
[
R(M)+

efghR(M)+efgh + 1
2R(V)+

ef
i
j R(V)+efj

i − 1
2T

ef
mnDeD

hThf
mn
]

+ [h.c.]
}

+HT 2T̄ 2

{∣∣R(M)+
abcdR(M)+abcd + 1

2R(V)+
ab
i
j R(V)+abj

i

− 1
2T

ab
mnDaD

eTeb
mn
∣∣2 + · · ·

}
. (5.15)

Besides the terms quartic in R(M) we have retained some of the terms that come with

them as part of the basic building blocks that emerge in the calculation (similar blocks

appear in (5.9)). Besides giving a little more information in this way, this has the

advantage that the origin of the various term will be easier to track down.

In addition to the above terms there are mixed terms which lead to explicit contri-

butions from the vector multiplets (i.e. beyond the X and X̄ dependence in the function
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H). Those include, for instance, terms proportional to [R(M)]2 times the product of two

vector multiplet field strengths, F̂µν
Λ. We will not exhibit those terms here (they can in

principle be deduced from (5.6) along the same lines as for the previous contributions).

Some of these terms will be shown in the equation below.

A special case, which is worth mentioning in view of the work of [85, 86], corresponds

to functions H(X,T 2, X̄) that do not depend on T̄ 2. Hence the function H is not real.

Again we do not present all the terms, but we give all the terms that contain R(M)

(with some completions), with the exception of terms proportional to derivatives of XΛ

and Tab
ij or their complex conjugates,

(64)−1e−1L =

HT 2T 2Γ̄Ξ̄

{
T abijεij T

cdklεkl
[
R(M)aba′b′R(M)cd

a′b′ + 1
2R(V)ab

i
j R(V)cd

j
i

]
×
[
F̂+
ef

ΓF̂+efΞ − 1
2Y

mnΓYmn
Ξ
]

+ · · ·
}

− 4HT 2T 2Γ̄

{
T abijεij T

cdklεkl
[
R(M)aba′b′R(M)cd

a′b′ + 1
2R(V)ab

i
j R(V)cd

j
i

]
×
[
�cX

Γ + 1
8 F̂ef

ΓT efijεij
]

+ · · ·
}

+ 1
2HT 2ΛΓ̄

{
T cdlmεlm

[
F̂−ab

ΛR(M)cd
ab − 1

2Y
ijΛεkiR(V)cd

k
j

]
×
[
�cX

Γ + 1
8 F̂ef

ΓT efijεij
]

+ · · ·
}

− 1
8HT 2ΛΓ̄Ξ̄

{
T cdlmεlm

[
F̂ab

ΛR(M)cd
ab − 1

2Y
ijΛεkiR(V)cd

k
j

]
×
[
F̂+
ab

ΓF̂+abΞ − 1
2Y

ijΓYij
Ξ
]

+ · · ·
}

+ 1
2HT 2Γ̄Ξ̄

{[
R(M)−cdefR(M)−cdef + 1

2R(V)−cd
i
j R(V)−cdji − 1

2T
cdmnDcD

eTedmn
]

×
[
F̂+
ab

ΓF̂+abΞ − 1
2Y

ijΓYij
Ξ
]

+ · · ·
}

− 2HT 2Γ̄

{[
R(M)−abcdR(M)−abcd + 1

2R(V)−ab
i
j R(V)−abji − 1

2T
abmnDaD

cTcbmn
]

×
[
�cX

Γ + 1
8 F̂ef

ΓT efijεij
]

+
[

1
32Tab

klTefkl F̂
efΓ + 1

2 F̂
+
eb

ΓR(ω, e)a
e − 1

8εkm Y
klΓR(V)abl

m
]

× Tcdijεij R(M)cdab

+ Tcd
ijεij DaR(M)cdabDeF̂+

eb
Γ + · · ·

}
. (5.16)
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5.3 A non-renormalization theorem for BPS black

hole entropy

The results of this chapter can be used in the study of black holes. Based on any linear

combination of the various N =2 locally supersymmetric Lagrangians, one can evaluate

the corresponding expressions for the Wald entropy and the electric charges in terms of

the values of the fields taken at the black hole horizon. In the case of BPS black holes, the

horizon values of the fields are highly restricted due to full supersymmetry enhancement

at the horizon, and therefore the resulting expressions for the entropy and the charges

will simplify. To explore this one must determine the possible supersymmetric field con-

figurations, preferably in an off-shell formulation so that the results do not depend on the

specific Lagrangian. This has already been done in [17], which provided a generalization

of the attractor equations found in [88–90]. So far, generic chiral supermultiplets were

not considered, but it is convenient to do so as well. As it will turn out, it suffices to

restrict oneself to chiral multiplets of Weyl weight w = 0, for which results are rather

straightforward to obtain.

The first relevant observation is that a constant chiral superfield (i.e. a supermultiplet

with constant A and all other components vanishing) is only supersymmetric provided it

has w = 0. In fact there exist no other supersymmetric values of the chiral superfield. All

this can be derived directly from the transformation rules (2.17). The second observation

is that the kinetic multiplet constructed from a w = 0 anti-chiral multiplet, vanishes

when the latter multiplet is equal to a constant. This follows by inspection of (5.3).

These two observations prove immediately that any invariant proportional to a kinetic

multiplet, must vanish for supersymmetric field configurations. This fact can immediately

be verified from (5.6), because when the fields A and Ā′ are constant and all other chiral

multiplet component fields are vanishing, the expression (5.6) indeed vanishes.

The above result is interesting in its own right, but we are also interested in the

first-order variation of the action induced by a change of some of the fields, evaluated for

a supersymmetric background. Given the fact that all the invariants discussed in this

chapter will contain at least one kinetic multiplet, we thus consider,

δL ∝
∫

d4θ
[
δΦT(Φ̄′) + Φ δT(Φ̄′)

]
, (5.17)

where Φ and Φ′ are composite chiral fields, which are themselves expressed in various

chiral fields, including possible kinetic multiplets. They are not necessarily uniquely
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defined, and it is also possible to consider linear combinations of such terms. Since we

will be evaluating the variation at supersymmetric values of the fields, the first term in

(5.17) vanishes, because the kinetic multiplet vanishes, whereas the second term can be

evaluated for constant Φ.

However, rather than continuing in this way, we may simply return to (5.6) and con-

sider its variation. Observe that each term is proportional to a product of one component

of Φ and another one of Φ̄′ (we remind the reader that in (5.6) we suppressed the prime

for notational clarity). All these components will be equal to zero in a supersymmetric

background, with the exception of A and Ā′, which will take constant values. However,

only space-time derivatives of A and Ā′ appear, and those will vanish as well. In other

words, (5.6) is always quadratic in quantities that are vanishing in the supersymmetry

limit. Hence any first-order variation of any Lagrangian of this type must necessarily

vanish in a supersymmetric background!

The above result suffices to derive a non-renormalization theorem for electric charges

and the Wald entropy [91–93] for BPS black holes. The reason is that these quantities

are always expressed in terms of first-order derivatives of the Lagrangian with respect

to certain fields, such as the abelian field strengths or the Riemann tensor, or possible

derivatives thereof. This concludes the proof of the non-renormalization theorem.

The existence of this non-renormalization theorem is a welcome result. So far good

agreement has been established for BPS black hole entropy evaluated on the basis of

supergravity and of microstate counting, suggesting that other invariants in supergravity

should contribute only marginally, or perhaps not at all, at the subleading level. The

result of this section lends support to this idea. Nevertheless the possible existence

of alternative supersymmetric invariants that do not belong to the class of invariants

discussed in this chapter, cannot be excluded at this stage.

5.4 An infinite hierarchy of higher-derivative invari-

ants

In this chapter we studied a large class of N = 2 superconformal invariants involving

higher-derivative couplings, based on full superspace integrals. For a special subclass we

have presented explicit results for some of the bosonic terms. This is the subclass that

contains only a single kinetic multiplet.

As indicated already, there are further options. The most obvious one is to include

more kinetic multiplets, based on various composite chiral and anti-chiral multiplets with
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suitable Weyl weights, ∫
d4θ Φ0 T(Φ̄1) · · ·T(Φ̄n) , (5.18)

where Φ̄1, . . . Φ̄n are anti-chiral superfields of zero weight and Φ0 is a chiral superfield of

weight w = −2(n − 1). This leads to actions that contain four space-time derivatives.

However, when treating the chiral multiplets as composites of reduced chiral multiplets,

one obtains invariants with terms of 2(1 + n) powers of field strengths and/or explicit

derivatives, i.e. R2mF 2pD2(n+1−m−p). The case of n = 1 has been dealt with in

considerable detail in section 5.2. The expression of the composite chiral multiplets

in terms of the reduced ones allows again for the presence of functions H(n) which are

subject to a generalized version of the Kähler transformations noted in section 5.2.

As alluded to before, one can also consider nested situations where the kinetic mul-

tiplet is constructed from a combination of (anti)chiral fields that include again other

kinetic multiplets. In this way one constructs multiplets with multiple derivatives of

arbitrary power. We are then led to introduce quantities of the type,

T(2) = T(Φ̄2 T(Φ1)) , T(3) = T(Φ̄3 T(Φ2 T(Φ̄1))) , . . . , T(n) = T(Φ̄n T(n−1)) , (5.19)

which can be part of any superspace integrand, on the same footing as the kinetic

multiplets in (5.18). Here Φ1 has w = 0 and Φ2,Φ3, · · · have w = −2. This extends the

number of invariants to all possible combinations of the form,∫
d4θΦ0 T(n1) T(n2) · · · T(nk) , (5.20)

where Φ0 has w = −2(k − 1) and where we assume nk ≥ 1 with T(Φ̄1) ≡ T(1). When

expressing all the chiral multiplets in terms of reduced ones, then one can show that the

maximal number of derivatives of the invariants (5.20) is equal to 2(1 +
∑
k nk).

These types of invariants are not necessarily independent in the sense that there

can be linear combinations that are equal to a total derivative. For example, at the

six-derivative level, one has,∫
d4θΦ0 T(Φ̄2 T(Φ1)) ≈

∫
d4θ̄ Φ̄2T(Φ0)T(Φ1) , (5.21)

up to total derivatives. Nevertheless it is clear that we are dealing with an infinite

hierarchy of higher-derivative invariants.

Of course, a relevant question is whether the invariant couplings presented in this
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chapter exhaust the possible higher-derivative invariants. Most likely, this will not be

the case. From the perspective of BPS black holes the question would then remain

whether these conjectured couplings could still contribute to the entropy and electric

charges.





Appendix A
Conventions and useful identities

Throughout this thesis we use Pauli-Källén conventions and follow the notation used e.g.

in [17]. Space-time and Lorentz indices are denoted by µ, ν, . . ., and a, b, . . ., respectively,

and our space-time metric has signature −+++. Our (anti-)symmetrizations are always

defined with unit strength. The completely antisymmetric tensor satisfies,

εabcd = e−1εµνρσeµ
aeν

beρ
ceσ

d , ε0123 = i . (A.1)

The selfdual and anti-selfdual part of an antisymmetric tensor Fab are defined by,

F±ab = 1
2 (Fab ± F̃ab) , (A.2)

where,

F̃ab = 1
2εabcdF

cd . (A.3)

Notice that under complex conjugation, the selfdual tensor becomes anti-selfdual and

vice versa. We note the following useful identities for products of (anti)selfdual tensors,

G±[a[cH
±
d]b] = ± 1

8G
±
ef H

±ef εabcd − 1
4 (G±abH

±
cd +G±cdH

±
ab) ,

G±abH
∓cd +G±cdH∓ab = 4δ

[c
[aG
±
b]eH

∓d]e ,

1
2ε
abcdG±[c

eH±d]e = ±G±[a
eH
±b]e ,

G±acH±c
b +G±bcH±c

a = − 1
2η
abG±cdH±cd ,
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G±acH∓c
b =G±bcH∓c

a ,

G±abH∓ab = 0 . (A.4)

SU(2)-indices are denoted by i, j, . . . and under complex conjugation the indices are

raised or lowered. For example,

(Tabij)
∗ = Tab

ij . (A.5)

We make use of the two-dimensional completely anti-symmetric tensor εij , which satisfies

ε12 = 1.

Our gamma-matrices γa are unitary and satisfy,

γaγb = ηab + γab , γ5 = iγ0γ1γ2γ3 . (A.6)

We note the following useful identities involving gamma matrices,

γab = − 1
2εabcdγ

cdγ5 , γbγaγb = − 2γa ,

γabγ
ab = − 12 , γcdγabγcd = 4 γab ,

γcγabγc = 0 , γabγcγab = 0 ,

[γc, γab] = 4 δ[a
cγb] , {γc, γab} = 2 εab

cdγ5γd ,

[γab, γ
cd] = − 8 δ[a

[cγb]
d] , {γab, γcd} = − 4 δ[a

cδb]
d + 2 εab

cdγ5 . (A.7)

We use a charge conjugation matrix C that satisfies,

C† =C−1 , Cγ5C
−1 = γT5 ,

CT = − C , CγµC
−1 = − γTµ . (A.8)

A Majorana spinor ψ is defined by,

ψ̄ = ψTC , (A.9)

where ψ̄ = ψ†γ0 is the Dirac conjugate. Two spinors that do not form a bilinear can be

decomposed as a linear combination of bilinears by a Fierz rearrangement,

φ ψ̄ = − 1
4 (ψ̄φ)− 1

4 (ψ̄γaφ)γa − 1
4 (ψ̄γ5φ)γ5 + 1

4 (ψ̄γaγ5φ)γaγ5 + 1
8 (ψ̄γabφ)γab . (A.10)
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We will give some more details about the chiral spinor notation introduced in sec-

tion 2.2 and used throughout this thesis. Suppose we have two Majorana spinors ψiM, with

i = 1, 2. We decompose ψiM into lefthanded and righthanded spinors, which consequently

are no longer Majorana spinors themselves,

ψiL = 1
2 (1 + γ5)ψiM , ψiR = 1

2 (1− γ5)ψiM . (A.11)

The original Majorana spinor is by definition invariant under charge conjugation, defined

by ψc ≡ C ψ̄T . However, one can show that the left- and righthanded spinors transform

into each other under charge conjugation,

(ψiL)c = ψiR , (ψiR)c = ψiL . (A.12)

Hence it should be clear that the left- and righthanded fields transform in conjugate

representations 2 and 2̄ of U(2). We therefore change notation such that ψi = ψiL
and ψi = ψiR (or the other way around, this is just a matter of definition, and must be

specified for each fermion separately, see e.g. table B.1) with the upper index transforming

in the 2 and the lower index in the 2̄ representation. Notice that this is consistent with

the property that SU(2)-indices are raised or lowered under complex conjugation. For

completeness we note that if γ5 ψ
i = ψi, i.e. if ψi has positive chirality, then ψ̄i γ5 = ψ̄i,

and similarly for negative chirality. Now we can easily proof the following identities for

spinors ψi and φj of equal chirality,

ψ̄iφj = 0 , ψ̄iγµφ
j = 0 ,

ψ̄iφj = φ̄jψi ,
(
ψ̄iφj

)∗
= ψ̄iφj ,

ψ̄iγµφj = − φ̄jγµψi ,
(
ψ̄iγµφj

)∗
= ψ̄iγµφ

j , (A.13)

and so on for other bilinears. Also the Fierz rearrangement (A.10) simplifies on spinors

of a definite chirality, for instance,

(χ̄kφi) ψ̄j = − 1
2 (ψ̄jφi)χ̄k + 1

8 (ψ̄jγabφi)χ̄kγab ,

(χ̄kφi) ψ̄j = − 1
2 (ψ̄jγaφj)χ̄

kγa . (A.14)





Appendix B
Superconformal gravity

In this appendix we present the transformation rules of the superconformal fields and

their relation to the superconformal algebra, as well as their covariant quantities con-

tained in the so-called Weyl supermultiplet. The superconformal algebra comprises the

generators of the general-coordinate, local Lorentz, dilatation, special conformal, chiral

SU(2) and U(1), supersymmetry (Q) and special supersymmetry (S) transformations.

The gauge fields associated with general-coordinate transformations (eµ
a), dilatations

(bµ), chiral symmetry (Vµij and Aµ) and Q-supersymmetry (ψµ
i) are independent fields.

The remaining gauge fields associated with the Lorentz (ωµ
ab), special conformal (fµ

a)

and S-supersymmetry transformations (φµ
i) are dependent fields. They are compos-

ite objects, which depend on the independent fields of the multiplet [4, 27, 28]. The

corresponding supercovariant curvatures and covariant fields are contained in a tensor

chiral multiplet, which comprises 24 + 24 off-shell degrees of freedom. In addition to

the independent superconformal gauge fields, it contains three other fields: a Majorana

spinor doublet χi, a scalar D, and a selfdual Lorentz tensor Tabij , which is anti-symmetric

in [ab] and [ij]. The Weyl and chiral weights have been collected in table B.1.

Under Q-supersymmetry, S-supersymmetry and special conformal transformations

the independent fields of the Weyl multiplet transform as follows,

δeµ
a = ε̄i γaψµi + ε̄i γ

aψµ
i ,

δψµ
i = 2Dµεi − 1

8Tab
ijγabγµεj − γµηi ,

δbµ = 1
2 ε̄
iφµi − 3

4 ε̄
iγµχi − 1

2 η̄
iψµi + h.c. + ΛaKeµa ,
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Weyl multiplet parameters

eµ
a ψµ

i bµ Aµ Vµij Tab
ij χi D ωabµ fµ

a φµ
i εi ηi

w −1 − 1
2 0 0 0 1 3

2 2 0 1 1
2 − 1

2
1
2

c 0 − 1
2 0 0 0 −1 − 1

2 0 0 0 − 1
2 − 1

2 − 1
2

γ5 + + − + −

Table B.1: Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters.

δAµ = 1
2 iε̄iφµi + 3

4 iε̄iγµ χi + 1
2 iη̄iψµi + h.c. ,

δVµij = 2 ε̄jφµ
i − 3ε̄jγµ χ

i + 2η̄j ψµ
i − (h.c. ; traceless) ,

δTab
ij = 8 ε̄[iR(Q)ab

j] ,

δχi = − 1
12γ

ab /DTab
ij εj + 1

6R(V)µν
i
jγ
µνεj − 1

3 iRµν(A)γµνεi +Dεi

+ 1
12γabT

abijηj ,

δD = ε̄i /Dχi + ε̄i /Dχ
i . (B.1)

Here εi and εi denote the spinorial parameters of Q-supersymmetry, ηi and ηi those

of S-supersymmetry, and ΛK
a is the transformation parameter for special conformal

boosts. The full superconformally covariant derivative is denoted by Dµ, while Dµ
denotes a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2)

transformations,

Dµεi =
(
∂µ − 1

4ωµ
cd γcd + 1

2 bµ + 1
2 iAµ

)
εi + 1

2 Vµ
i
j ε
j . (B.2)

The covariant curvatures of the various gauge symmetries take the following form,

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b − 1
2 (ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i = 2D[µψν]

i − γ[µφν]
i − 1

8 T
abij γab γ[µψν]j ,

R(A)µν = 2 ∂[µAν] − i
(

1
2 ψ̄[µ

iφν]i + 3
4 ψ̄[µ

iγν]χi − h.c.
)
,

R(V)µν
i
j = 2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j + 2(ψ̄[µ

i φν]j − ψ̄[µj φν]
i)− 3(ψ̄[µ

iγν]χj − ψ̄[µjγν]χ
i)

− δji(ψ̄[µ
k φν]k − ψ̄[µk φν]

k) + 3
2δj

i(ψ̄[µ
kγν]χk − ψ̄[µkγν]χ

k) ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] + 1
2 (ψ̄[µ

i γab φν]i + h.c.)

+ ( 1
4 ψ̄µ

i ψν
j T abij − 3

4 ψ̄[µ
i γν] γ

abχi − ψ̄[µ
i γν]R(Q)abi + h.c.) ,
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R(D)µν = 2 ∂[µbν] − 2f[µ
aeν]a − 1

2 ψ̄[µ
iφν]i + 3

4 ψ̄[µ
iγν]χi − 1

2 ψ̄[µiφν]
i + 3

4 ψ̄[µiγν]χ
i ,

R(S)µν
i = 2D[µφν]

i − 2f[µ
aγaψν]

i − 1
8 /DTab

ijγabγ[µψν] j − 3
2γaψ[µ

i ψ̄ν]
jγaχj

+ 1
4R(V)ab

i
jγ
abγ[µψν]

j + 1
2 iR(A)abγ

abγ[µψν]
i ,

R(K)µν
a = 2D[µfν]

a − 1
4

(
φ̄[µ

iγaφν]i + φ̄[µiγ
aφν]

i
)

+ 1
4

(
ψ̄µ

iDbT
ba
ijψν

j − 3 e[µ
aψν]

i /Dχi + 3
2D ψ̄[µ

iγaψν]j

− 4 ψ̄[µ
iγν]DbR(Q)bai + h.c.

)
. (B.3)

There are three conventional constraints (which have already been incorporated in (B.3),

R(P )µν
a = 0 ,

γµR(Q)µν
i + 3

2γνχ
i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa + 1

8TabijTµ
bij − 3

2Deµa = 0 , (B.4)

which are S-supersymmetry invariant. They determine the fields ωµ
ab, φµ

i and fµ
a as

follows,

ωabµ = − 2eν[a∂[µeν]
b] − eν[aeb]σeµc ∂σeν

c − 2eµ
[aeb]νbν

− 1
4 (2ψ̄iµγ

[aψ
b]
i + ψ̄aiγµψ

b
i + h.c.) ,

φµ
i = 1

2

(
γρσγµ − 1

3γµγ
ρσ
) (
Dρψσi − 1

16T
abijγabγρψσj + 1

4γρσχ
i
)
,

fµ
µ = 1

6R(ω, e)−D

−
(

1
12e
−1εµνρσψ̄µ

i γνDρψσi − 1
12 ψ̄µ

iψν
jTµνij − 1

4 ψ̄µ
iγµχi + h.c.

)
. (B.5)

We will also need the bosonic part of the expression for the uncontracted connection fµ
a,

fµ
a = 1

2R(ω, e)µ
a − 1

4

(
D + 1

3R(ω, e)
)
eµ
a − 1

2 iR̃(A)µ
a + 1

16Tµb
ijT abij , (B.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the cor-

responding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection

field ωµ
ab, given in (B.5).

The transformations of ωµ
ab, φµ

i and fµ
a are induced by the constraints (B.4). We

present their Q- and S-supersymmetry variations, as well as the transformations under
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conformal boosts, below,

δωµ
ab = − 1

2 ε̄
iγabφµi − 1

2 ε̄
iψµ

j T abij + 3
4 ε̄
iγµγ

abχi

+ ε̄iγµR
ab
i(Q)− 1

2 η̄
iγabψµi + h.c.+ 2 ΛK

[aeµ
b] ,

δφµ
i = − 2 fµ

aγaε
i + 1

4R(V)ab
i
jγ
abγµε

j + 1
2 iR(A)abγ

abγµε
i − 1

8 /DT
ab ijγabγµεj

+ 3
2 [(χ̄jγ

aεj)γaψµ
i − (χ̄jγ

aψµ
j)γaε

i] + 2Dµηi + ΛK
aγaψµ

i ,

δfµ
a = − 1

2 ε̄
iψµ

iDbT
ba
ij − 3

4eµ
aε̄i /Dχi − 3

4 ε̄
iγaψµiD

+ ε̄iγµDbR
ba
i(Q) + 1

2 η̄
iγaφµi + h.c.+DµΛK

a . (B.7)

The transformations under S-supersymmetry and conformal boosts reflect the structure

of the underlying SU(2, 2|2) gauge algebra. The presence of curvature constraints and

of the non-gauge fields Tabij , χ
i and D induce deformations of the Q-supersymmetry

algebra, as is manifest in the above results, in particular in (B.3) and (B.7).

Combining the conventional constraints (B.4) with the various Bianchi identities one

derives that not all the curvatures are independent. For instance,

εabcdDbR(M)cd
ef = 2 εabc[eR(K)bc

f ] + 9
2 η

a[eχ̄iγf ]χi + 3
2

[
χ̄iγaR(Q)efi − h.c.

]
. (B.8)

Furthermore it is convenient to modify two of the curvatures by including suitable

covariant terms,

R(M)ab
cd =R(M)ab

cd + 1
16

(
Tabij T

cdij + Tab
ij T cdij

)
,

R(S)ab
i =R(S)ab

i + 3
4Tab

ijχj . (B.9)

where we observe that γab
(
R(S) − R(S)

)
ab
i = 0. The modified curvature R(M)ab

cd

satisfies the following relations,

R(M)µν
ab eνb = iR̃(A)µνe

νa + 3
2Deµ

a ,

1
4εab

ef εcdghR(M)ef
gh =R(M)ab

cd ,

εcdeaR(M)cd eb = εbecdR(M)a
e cd = 2R̃(D)ab = 2iR(A)ab . (B.10)

The first of these relations corresponds to the third constraint given in (B.4), while the

remaining equations follow from combining the curvature constraints with the Bianchi

identities. Note that the modified curvature does not satisfy the pair exchange property;
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instead we have,

R(M)ab
cd = R(M)cdab + 4iδ

[c
[a R̃(A)b]

d] . (B.11)

We now turn to the fermionic constraint given in (B.4) and its consequences for the

modified curvature defined in (B.9). First we note that the constraint on R(Q)µν
i implies

that this curvature is anti-selfdual, as follows from contracting the constraint with γν γab,

R̃(Q)µν
i = −R(Q)µν

i . (B.12)

Furthermore, combination of the Bianchi identity and the constraint on R(Q)µνi yields

the following condition on the modified curvature R(S)ab
i,

γaR̃(S)ab
i = 2DaR̃(Q)ab

i = −2DaR(Q)ab
i . (B.13)

This identity (upon contraction with γbγcd) leads to the following identity on the anti-

selfdual part of R(S)ab
i,

R(S)ab
i − R̃(S)ab

i = 2 /D
(
R(Q)ab

i + 3
4γabχ

i
)
. (B.14)





Appendix C
Covariantization under conformal
boosts

In principle covariant (multiple) derivatives are defined by the standard procedure by

adding gauge fields to absorb all symmetry variations proportional to derivatives of the

transformation parameters. In this procedure the gauge field fµ
a associated with the

conformal boosts (parametrized by ΛK
a) appears somewhat indirectly, because the only

other fields that transform under the conformal boosts are the gauge fields bµ, ωµ
ab and

φµ
i. Therefore supercovariant derivatives of fields that are themselves invariant, will

transform under these K-transformations, and usually these variations take a relatively

simple form. We give some examples for a scalar field φ, a spinor field ψ, and a tensor

field tab, each of Weyl weight w,

δKDaφ = − wΛKaφ ,

δKDatbc = − wΛKatbc + 2 ta[bΛKc] − 2 ηa[btc]d ΛK
d ,

δKDaψ =
[
− wΛKa + 1

2ΛK
bγab

]
ψ . (C.1)

These transformation rules simplify for certain contractions, such as in Datab or /Dψ,

δKD
atab = (2− w)ΛK

atab ,

δKD[atbc] = (2− w)ΛK[atbc] ,

δK /Dψ = ( 3
2 − w) /ΛK ψ , (C.2)
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showing, for instance, that the Dirac operator on a spinor field of weight w = 3
2 is

invariant.

Applying an extra covariant derivative we explicitly indicate the presence of the K-

connection field fµ
a,

DµDaφ =DµDaφ+ wfµa φ ,

DµD
atab =DµDatab + (w − 2)fµ

a tab ,

Dµ /Dψ =Dµ /Dψ + (w − 3
2 )fµ

aγaψ , (C.3)

where Dµ denotes the covariant derivative without including the field fµ
a. Under K-

transformations these multiple derivatives transform as,

δKDµDaφ = − (w + 1)
[
ΛKµDa + ΛKaDµ

]
φ+ eµaΛK

bDbφ ,

δKDµD
atab = − (w + 1)ΛKµD

atab − ΛKbD
ataµ + eµbΛK

cDatac + (2− w)ΛK
aDµtab ,

δKDµ /Dψ =
[
− (w + 1)ΛKµ + 1

2ΛK
aγµa

]
/Dψ + ( 3

2 − w) /ΛKDµψ . (C.4)

Contracting the first equation with eaµ shows that the conformal D’Alembertian trans-

forms under K-transformations as δK�cφ = −2(w−1)ΛK
aDaφ, which vanishes for w = 1.

This pattern repeats itself when considering even higher derivatives. We present the

following results,

Dµ�cφ =Dµ�cφ+ 2(w − 1)fµ
aDaφ ,

�c�cφ =DµDµ�cφ+ (w + 2)fµ
µ�cφ+ 2(w − 1)fµaD

µDaφ ,

�c /Dψ =DµDµ /Dψ +
[
(w + 1)fµ

µ − 1
2fµaγ

µa
]
/Dψ + (w − 3

2 )fµaγ
aDµψ , (C.5)

and,

δK�c�cφ = − 2(w − 1)ΛK
a�cDaφ− 2(w + 1)ΛK

aDa�cφ

= − 2wΛK
a
[
�cDaφ+Da�c

]
φ+ 2ΛK

a
[
�cDa −Da�c

]
φ ,

δK�c /Dψ = − (2w − 1)ΛK
aDa /Dψ − 1

2 /ΛK

[
(2w − 1)�c + [ /D, /D]

]
ψ . (C.6)

In order to obtain (5.4) we have evaluated the previous two variations for the fields A

and Ψi, which have weights w = 0, 1
2 , respectively. In this case all the terms cubic and

quadratic in derivatives in (C.6) appear with a certain degree of anti-symmetry, such

that they become proportional to curvatures.



Appendix D
Chiral multiplets

D.1 Multiplication of chiral multiplets

In this appendix we summarize the product rules for two chiral supermultiplets and the

Taylor expansion for functions of these multiplets. In the local supersymmetry setting,

we will usually be dealing with homogeneous functions of chiral multiplets with equal

Weyl weight so that a scaling weight under Weyl transformations can be assigned to the

function.

The product of two chiral multiplets, specified by the component fields
(
A,Ψi, Bij ,

F−ab,Λi, C
)

and
(
a, ψi, bij , f

−
ab, λi, c

)
, respectively, leads to the following decomposition,(

A,Ψi, Bij , F
−
ab,Λi, C

)
⊗
(
a, ψi, bij , f

−
ab, λi, c

)
=(

Aa , Aψi + aΨi, A bij + aBij − Ψ̄(iψj) ,

A f−ab + aF−ab −
1
4ε
ijΨ̄iγabψj ,

A λi + aΛi − 1
2ε
kl(Bik ψl + bik Ψl)− 1

4 (F−abγ
abψi + f−abγ

abΨi) ,

A c+ aC − 1
2ε
ikεjlBij bkl + F−ab f

−ab + εij(Ψ̄iλj + ψ̄iΛj)
)
. (D.1)

A function G(Φ) of chiral superfields ΦΛ defines a chiral superfield, whose component

fields take the following form,

A|G =G(A) ,

Ψi|G =G(A)Λ Ψi
Λ ,
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Bij |G =G(A)ΛBij
Λ − 1

2G(A)ΛΣ Ψ̄(i
ΛΨj)

Σ ,

F−ab|G =G(A)Λ F
−
ab

Λ − 1
8G(A)ΛΣ ε

ijΨ̄i
ΛγabΨj

Σ ,

Λi|G =G(A)Λ Λi
Λ − 1

2G(A)ΛΣ

[
Bij

ΛεjkΨk
Σ + 1

2F
−
ab

ΛγabΨk
Σ
]

+ 1
48G(A)ΛΣΓ γ

abΨi
Λ εjkΨ̄j

ΣγabΨk
Γ ,

C|G =G(A)Λ C
Λ − 1

4G(A)ΛΣ

[
Bij

ΛBkl
Σ εikεjl − 2F−ab

ΛF−abΣ + 4 εikΛ̄i
ΛΨj

Σ
]
,

+ 1
4G(A)ΛΣΓ

[
εikεjlBij

ΛΨk
ΣΨl

Γ − 1
2ε
klΨ̄k

ΛF−ab
ΣγabΨl

Γ
]

+ 1
192G(A)ΛΣΓΞ ε

ijΨ̄i
ΛγabΨj

Σ εklΨ̄k
ΓγabΨl

Ξ . (D.2)

Here derivatives of the function G(A) with respect to the scalar fields are denoted with

a lower index Λ, e.g. G(A)Λ = ∂G(A)/∂AΛ. This result follows straightforwardly from

expanding the superfield expression in powers of the fermionic coordinates.

D.2 Reduced chiral multiplets

Chiral multiplets can be consistently reduced by imposing a reality constraint. This

usually requires specific values for the Weyl and chiral weights. The two cases that

are relevant are the vector multiplet, which arises upon reduction from a scalar chiral

multiplet, and the Weyl multiplet, which is a reduced anti-selfdual chiral tensor multiplet.

Both reduced multiplets require weight w = 1.

We will denote the components of the w = 1 multiplet that describes the vector

multiplet by (A,Ψ, B, F−,Λ, C)|vector. The constraint for a scalar chiral supermultiplet

reads, εij D̄iγabDjΦ = [εij D̄iγabDjΦ]∗, which implies that C|vector and Λi|vector are

expressed in terms of the lower components of the multiplet, and imposes a reality

constraint on B|vector and a Bianchi identity on F−|vector [27, 36, 39]. The latter implies

that F−|vector can be expressed in terms of a gauge field Wµ. This feature is not affected

by the presence of the superconformal background field.

Denoting the independent components of the vector multiplet by (X,Ω, Y, F̂−), the

identification with the chiral multiplet components is as follows,

A|vector =X ,

Ψi|vector = Ωi ,

Bij |vector =Yij = εikεjlY
kl ,

F−ab|vector = F̂−ab = F−ab + 1
4

[
ψ̄ρ

iγabγ
ρΩj + X̄ ψ̄ρ

iγρσγabψσ
j − X̄ Tab

ij
]
εij ,



D.2 Reduced chiral multiplets 125

Λi|vector = − εij /DΩj ,

C|vector = − 2�cX̄ − 1
4F

+
ab T

ab
ijε

ij − 3 χ̄iΩ
i , (D.3)

where Fµν = 2∂[µWν] is the field strength written in terms of the gauge field Wµ and F̂ab

denotes the supercovariant field strength. The Bianchi identity on F̂ab can be written as,

Db
(
F̂+
ab − F̂

−
ab + 1

4XTabijε
ij − 1

4X̄Tab
ijεij

)
+ 3

4

(
χ̄iγaΩjε

ij − χ̄iγaΩjεij
)

= 0 , (D.4)

and the reality constraint on Yij is included in (D.3).

The Q- and S-supersymmetry transformations for the vector multiplet take the form,

δX = ε̄iΩi ,

δΩi = 2 /DXεi + 1
2εijF̂µνγ

µνεj + Yijε
j + 2Xηi ,

δWµ = εij ε̄i(γµΩj + 2ψµjX) + εij ε̄
i(γµΩj + 2ψµ

jX̄) ,

δYij = 2 ε̄(i /DΩj) + 2 εikεjl ε̄
(k /DΩl) , (D.5)

and, for w = 1, are in clear correspondence with the supersymmetry transformations of

generic scalar chiral multiplets given in (2.17).

Subsequently we turn to the Weyl multiplet, which is a chiral anti-selfdual tensor

multiplet subject to D̄iγ
abDj Φab

ij = [D̄iγ
abDj Φab

ij ]∗. Its chiral superfield components

take the following form,

Aab|W =Tab
ijεij ,

Ψabi|W = 8 εijR(Q)jab ,

Babij |W = − 8 εk(iR(V)−ab
k
j) ,(

F−ab
)
cd|W = − 8R(M)−ab

cd ,

Λabi|W = 8
(
R(S)−abi + 3

4γab /Dχi
)
,

Cab|W = 4D[aD
cTb]c ijε

ij − dual . (D.6)

We give the Q- and S-supersymmetry variations for the first few components,

δTab
ij = 8 ε̄[iR(Q)ab

j] ,

δR(Q)ab
i = − 1

2 /DTab
ij εj +R(V)−ab

i
j ε
j − 1

2R(M)ab
cd γcdε

i + 1
8Tcd

ij γcdγab ηj ,

δR(V)−ab
i
j = 2ε̄j /DR(Q)ab

i − 2ε̄i
(
R(S)−abj + 3

4γab /Dχj
)
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+ η̄j(2R(Q)ab
i + 3γabχ

i)− (traceless) ,

δR(M)−ab
cd = 1

2 ε̄i /Dγ
cdR(Q)ab

i − 1
2 ε̄
iγcd

(
R(S)−abi + 3

4γab /Dχi
)

− η̄iγabR(Q)cdi − 1
2 η̄iγ

cdR(Q)ab
i − 3

4 η̄iγabγ
cdχi . (D.7)

A scalar chiral multiplet with w = 2 is obtained by squaring the Weyl multiplet. The

various scalar chiral multiplet components are given by,

A|W 2 = (Tab
ijεij)

2 ,

Ψi|W 2 = 16 εijR(Q)jab T
klab εkl ,

Bij |W 2 = − 16 εk(iR(V)kj)ab T
lmab εlm − 64 εikεjl R̄(Q)ab

k R(Q)l ab ,

F−ab|W 2 = − 16R(M)cd
ab T klcd εkl − 16 εij R̄(Q)icdγ

abR(Q)cd j ,

Λi|W 2 = 32 εij γ
abR(Q)jcdR(M)cdab + 16 (R(S)ab i + 3γ[aDb]χi)T

klab εkl

− 64R(V)ab
k
i εklR(Q)ab l ,

C|W 2 = 64R(M)−cdabR(M)−cd
ab + 32R(V)−ab kl R(V)−ab

l
k

− 32T ab ij DaD
cTcb ij + 128 R̄(S)abiR(Q)ab

i + 384 R̄(Q)ab iγaDbχi . (D.8)

These components can straightforwardly be substituted in the expression for the higher-

derivative couplings.
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De Nederlandse titel van dit proefschrift is ‘Nieuwe deformaties van N = 2 supergra-

vitatie’. Supergravitatie is een theorie die zwaartekracht (gravitatie) combineert met

supersymmetrie.1 Het woord ‘deformaties’ kan hier losjes opgevat worden als ‘uitbrei-

dingen’ of ‘variaties’. In deze samenvatting zullen we deze begrippen toelichten. We

beginnen met het bespreken van enkele kenmerkende verschijnselen die een rol spelen in

supergravitatie, zoals zwaartekracht en symmetrieën. Zo zullen we geleidelijk toewerken

naar het onderwerp van dit proefschrift: deformaties van supergravitatie.

Zwaartekracht

Zwaartekracht is een kracht waar alles en iedereen aan onderhevig is. Alles met massa

trekt elkaar aan. Zwaartekracht zorgt ervoor dat als we iets laten vallen, het op de grond

terecht komt, dat de aarde in een baan om de zon draait en de maan in een baan om

de aarde. De precieze werking van deze kracht, in situaties zoals we die tegenkomen in

het dagelijks leven, is vastgelegd in Newtons wet van de zwaartekracht. Deze wet vertelt

ons bijvoorbeeld hoe snel een steen (of een appel) naar beneden valt als deze vanaf een

bepaalde hoogte boven het aardoppervlak losgelaten wordt.

Het blijkt dat Newtons wet van de zwaartekracht niet meer toereikend is wanneer de

snelheden van objecten de lichtsnelheid benaderen, of wanneer objecten zeer grote massa’s

hebben. In deze limieten worden de effecten van een fundamentelere theorie van de

1De toevoeging ‘N=2’ duidt de klasse aan binnen supergravitatie en is verder niet relevant voor dit
hoofdstuk.
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zwaartekracht merkbaar, namelijk Einsteins algemene relativiteitstheorie. Deze situatie

is kenmerkend voor de ontwikkeling van de natuurkunde. Een theorie die gangbare

situaties goed beschrijft, blijkt bij extremere situaties niet meer consistent te zijn. Dit

vormt de drijfveer om een fundamentelere theorie te vinden, die bij algemenere situaties

geldt en waarvan de originele theorie een benadering is.

Algemene relativiteitstheorie speelt een belangrijke rol in het beschrijven van de

evolutie van het universum. Ook geeft deze theorie een bepaalde klasse van oplossingen

genaamd zwarte gaten. Een zwart gat is een object dat zo zwaar is dat niets meer aan de

zwaartekracht van het object kan ontsnappen, zelfs licht niet. De massa van een zwart gat

is geconcentreerd in één punt met oneindige dichtheid, genaamd de singulariteit. Rond

een zwart gat bevindt zich een denkbeeldig oppervlak, de waarnemingshorizon, vanwaar

licht nog net aan de zwaartekracht van het zwarte gat kan ontsnappen. De singulariteit

is dus onzichtbaar voor een waarnemer die zich buiten deze waarnemingshorizon bevindt.

De aanwezigheid van een singulariteit in de oplossingen die zwarte gaten beschrij-

ven, geeft aan dat algemene relativiteitstheorie tekort schiet in deze extreme situatie.

De theorie moet dus wederom vervangen worden door een fundamentelere theorie om

een systeem te beschrijven met zwaartekracht op hele kleine lengteschalen, net zoals

Newtons wet van de zwaartekracht vervangen moet worden door algemene relativiteits-

theorie bij grote massa’s of hoge snelheden. Op kleine lengteschalen gaan zogenaamde

kwantumeffecten een rol spelen en een nieuwe theorie van zwaartekracht moet deze

kwantumeffecten incorporeren. Het vinden van zo’n kwantumzwaartekrachttheorie is

een belangrijk onderwerp in de huidige theoretische natuurkunde. Zwarte gaten spelen

hierbij een grote rol als test voor een mogelijke kwantumzwaartekrachttheorie, omdat in

zo’n theorie de singulariteit afwezig zou moeten zijn. We zullen hier later in dit hoofdstuk

op terugkomen.

Symmetrieën

In de natuurkunde spelen symmetrieën een belangrijke rol. Men spreekt van een symme-

trie, of invariantie, als een eigenschap van een systeem onveranderd blijft na het uitvoeren

van een transformatie. Bijvoorbeeld, een perfect ronde bol, zonder opdruk, kan men

ronddraaien, zonder dat er een verschil aan de bol te zien is. Het is duidelijk dat de

aanwezigheid van een symmetrie eisen legt aan een systeem. Als de bol niet perfect rond

is, of als er een tekening op de bol zit, dan is de bol niet symmetrisch onder rotaties.

Vaak ligt er aan een natuurkundige theorie een bepaalde symmetrie ten grondslag. Zo

ook bij algemene relativiteitstheorie. Dit heeft te maken met het feit dat zwaartekracht
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(lokaal) niet te onderscheiden is van de kracht die een object voelt onder een versnellende

beweging. Iedereen die wel eens in een hard optrekkende auto heeft gezeten, heeft deze

laatste kracht lijfelijk ervaren. Met deze kracht kan zwaartekracht ‘gesimuleerd’ worden.

Stel, je bevindt je in een raket in de ruimte, waar zwaartekracht te verwaarlozen is. Als

deze raket versneld wordt, voel je een kracht die vergelijkbaar is aan zwaartekracht en je

met beide benen op de grond houdt. Sterker nog, als de beweging van de raket precies

goed afgestemd is, en de raket geen ramen heeft, kan je niet bepalen door middel van

experimenten of je je in een stilstaande raket op aarde bevindt, of in een versnellende

raket in de ruimte. Met andere woorden, de wetten van de natuurkunde zijn hetzelfde

in beide situaties - de beide situaties zijn symmetrisch. Dit is een voorbeeld van Ein-

steins equivalentieprincipe. Einstein heeft dit idee geformaliseerd, waaruit de algemene

relativiteitstheorie volgt.

Supergravitatie

Supergravitatie, ook wel superzwaartekracht genoemd, is een theorie die algemene relati-

viteitstheorie combineert met een bijzonder soort symmetrie, genaamd supersymmetrie.

In supersymmetrische theorieën worden twee klassen van deeltjes gerelateerd. Alle ele-

mentaire deeltjes, de bouwstenen van alles om ons heen, zijn namelijk op te splitsen

in fermionen en bosonen. Fermionen zijn deeltjes die, ruwweg gezegd, niet bij elkaar

kunnen zitten, terwijl bosonen dat wel kunnen. In een supersymmetrische theorie heeft

elke boson een fermionische ‘superpartner’, die onder een supersymmetrietransformatie

in elkaar roteren. De theorie blijft hetzelfde onder deze rotaties, oftewel, de theorie is

invariant onder supersymmetrie.

Toen supergravitatie bedacht werd, hoopte men dat dit een consistente theorie van

kwantumzwaartekracht zou zijn. Inmiddels wordt supergravitatie voornamelijk gezien

als een benadering van snaartheorie, één van de huidige kandidaten om kwantumzwaar-

tekracht te beschrijven. De fundamentele objecten in snaartheorie zijn uitgebreide ob-

jecten, zoals snaren (denk aan touwtjes) en membranen (denk aan een vel papier). Deze

objecten blijken in hogere dimensies te leven dan de drie dimensies waarmee we bekend

zijn, namelijk lengte, breedte en hoogte. Het wordt aangenomen dat deze extra dimensies

niet uitgestrekt zijn, zoals de drie dimensies die wij zien, maar in plaats daarvan een klein

pakketje vormen (gecompactificeerd zijn) zodat ze te klein zijn om direct zichtbaar te

zijn voor ons en in de huidige experimenten.

De effecten van snaartheorie zijn vooral aanwezig op extreem kleine lengteschalen.

Wanneer de relevante lengteschalen niet zo klein zijn geeft supergravitatie de benadering
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van snaartheorie. Omdat veel van snaartheorie nog onbekend is, of te moeilijk is om uit

te rekenen, is het belangrijk om supergravitatie te bestuderen, zoals in dit proefschrift

gedaan wordt.

Deformaties

In dit proefschrift worden nieuwe deformaties van een specifieke vierdimensionale su-

pergravitatietheorie afgeleid. Ook worden enkele toepassingen behandeld waarin deze

deformaties een rol spelen. Deze hebben met name betrekking op zwarte gaten.

Eén klasse van deformaties heeft te maken met symmetrieën. Naast supersymme-

trie en de symmetrieën van algemene relativiteitstheorie, kan supergravitatie nog meer

symmetrieën bevatten. Symbolisch kunnen we deze symmetrieën vergelijken met de,

al eerder besproken, perfect ronde bol. Laten we nu aannemen dat op elk punt in de

ruimte zich zo’n bol bevindt. Dit kunnen we ons voorstellen als een veld vol met (even

grote) bollen. Nu laten we de bollen roteren. Dit kan op twee manieren. De eerste

manier is dat alle bollen precies tegelijkertijd en op gelijke wijze ronddraaien. Dit is in

de praktijk natuurlijk een lastige onderneming, maar in theorie eenvoudig, omdat men

alleen maar hoeft te weten hoe één bol roteert, om te weten hoe alle bollen roteren. De

tweede manier is dat alle bollen allemaal door elkaar op hun eigen wijze ronddraaien.

Dit symboliseert twee verschillende soorten van symmetrie. Als een theorie invariant

is onder ‘bollen die tegelijkertijd ronddraaien’, noemen we dit een rigide symmetrie.

Als een theorie invariant is onder ‘bollen die allemaal apart ronddraaien’, noemen we

dit een lokale symmetrie. Deze laatste eis is sterker dan de eerste, omdat de theorie

dan invariant moet zijn onder de rotaties van elke bol afzonderlijk. Daardoor ziet een

theorie die invariant is onder een lokale symmetrie er anders uit ziet dan een theorie die

invariant is onder een rigide symmetrie. Er bestaat een specifieke procedure om binnen

een theorie van een rigide symmetrie een lokale te maken. Dit noemt men het ijken

van een theorie, en de veranderingen van de theorie ten opzichte van de theorie met de

rigide symmetrie worden ijk-deformaties genoemd. Dit proefschrift beschrijft hoe men

op de meest algemene manier de symmetrieën van een specifieke supergravitatietheorie

systematisch lokaal kan realiseren en de resulterende ijk-deformaties worden afgeleid.

In een toepassing worden, in de aanwezigheid van deze ijk-deformaties, de mogelijke

supersymmetrische oplossingen bestudeerd in de buurt van de waarnemingshorizon van

bepaalde zwarte gaten.

De andere klasse van deformaties die in dit proefschrift wordt behandeld, bestaat

uit zogenaamde hogere afgeleide termen. Als men de supergravitatie-benadering van
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snaartheorie neemt, spelen deze termen een subleidende rol. Dat betekent dat ze niet

de leidende termen zijn, maar de termen die daarna het meest belangrijk zijn. Ruwweg

geldt, hoe meer we van deze termen in beschouwing nemen, hoe preciezer supergravitatie

snaartheorie benadert. Dit is bijvoorbeeld van belang bij het berekenen van bepaalde

eigenschappen van zwarte gaten, zoals hun oppervlakte en lading. Voor sommige super-

symmetrische zwarte gaten kunnen deze eigenschappen exact uitgerekend worden binnen

snaartheorie. Deze resultaten kunnen worden vergeleken met wat verkregen wordt wan-

neer deze eigenschappen vanuit de supergravitatiebenadering berekend worden. Hieruit

blijkt dat in supergravitatie hogere afgeleide termen nodig zijn om een meer precieze

overeenkomst met snaartheorie van deze eigenschappen te krijgen.

Het construeren van zulke hogere afgeleide termen binnen supergravitatie blijkt lastig

te zijn, omdat ze aan bepaalde voorwaarden moeten voldoen. Zo moeten ze de symme-

trieën van supergravitatie respecteren. In dit proefschrift staat een systematische proce-

dure beschreven waarmee het mogelijk is een grote verscheidenheid aan hogere afgeleide

termen te construeren. Het bijzondere aan de termen die via deze methode verkregen

worden is dat bewezen kan worden dat ze geen van alle bijdragen aan de oppervlakte en

lading van supersymmetrische zwarte gaten. Dit resultaat is niet helemaal onverwacht,

omdat er al een goede overeenkomst was in de subleidende termen van de oppervlakte

en lading van bepaalde supersymmetrische zwarte gaten, berekend met snaartheorie en

supergravitatie, zonder dat deze nieuwe hogere afgeleide termen waren meegenomen. Het

resultaat in dit proefschrift geeft een gedeeltelijke verklaring voor deze overeenkomst.
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