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CHAPTER

Introduction

Supergravity is a field theory that combines general relativity with local supersymmetry.
It serves as a framework for studying a large variety of phenomena, such as black holes and
cosmology. Supergravity also describes the low-energy degrees of freedom associated with
string theory. String theory, or its conjectured extension M-theory, has been proposed as
a consistent theory of quantum gravity. It describes the dynamics of extended objects,
such as strings and membranes, which propagate in 10 (string theory) or 11 (M-theory)
space-time dimensions. To make contact with the four-dimensional world we see around
us, one usually assumes that the extra dimensions are compactified. This means that
they are curled up in a compact space, which is so small that it is not directly observable
in present-day experiments.

Symmetries play an important role in applications of supergravity. Therefore we
start this chapter with an overview of some of the properties of these symmetries, which
gradually leads us to supergravity. After discussing some of the general properties of
supergravity, we will turn more specifically to the subject of this thesis: deformations
of supergravity. In sections [1.2| and we introduce, by means of simple examples, two
concepts that are central in this thesis: gauge equivalence and electric/magnetic duality.

Finally, in section [1.4] we will summarize the content of this thesis.

1.1 Symmetries and deformations

It is useful to distinguish between two types of symmetries, namely space-time and

internal symmetries. Let us first consider space-time symmetries. In the absence of
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gravity, i.e. when space-time is flat, a relativistic theory should be invariant under
Lorentz transformations and translations, collectively called Poincaré transformations.
When gravitational forces become important we know that special relativity is replaced
by general relativity. Space-time can become curved and the transformations that play
a role are general coordinate transformations, also called space-time diffeomorphisms,
which are arbitrary reparametrizations of the space-time coordinates.

Internal symmetries, on the other hand, act on an internal space, which is not related
to space-time. Internal symmetries transform a set of fields into each other. For example,
a number of non-interacting fields, all of the same mass, can rotate into each other.
As a result, their equations of motion rotate into an equivalent set of equations. The
Lagrangian from which the field equations can be derived is then invariant under these
internal rotations.

When transformations are the same at every point in space-time, they are called rigid
and when they are allowed to differ at different points in space-time, local. There is a
well-defined procedure for promoting a rigid symmetry to a local symmetry, which is
sometimes called gauging. It requires the introduction of so-called gauge fields, which
can propagate the information of these transformations from one space-time point to
another. A well-known example of a theory with local internal symmetry is Maxwell’s
theory of electrodynamics. The photon field acts as the gauge field associated with local
phase transformations. Also space-time symmetries can be divided into rigid and local.
For instance, the Poincaré transformations of special relativity are rigid, whereas general

coordinate transformations of general relativity are local space-time symmetries.

Supersymmetry

Supersymmetry is different from the symmetries above. In some sense it acts like an
internal symmetry, since it transforms fields into each other. What makes supersymmetry
special is that it relates fields of half-integer spin to fields of integer spin. Fields of integer
spin describe bosons, which are particles with the property that they can occupy the
same quantum state. Fields of half-integer spin describe fermions, which, in contrast to
bosons, cannot occupy the same quantum state. In relativistic field theories, fermions
are described by anti-commuting spinors. A spinor is a representation of the Lorentz
group, and hence it transforms non-trivially under Lorentz transformations. Since super-
symmetry relates bosons to fermions, the generators and parameters of supersymmetry
transformations must also be spinors. This is in contrast to the internal symmetries

we discussed before, where the generators and transformation parameters are Lorentz
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scalars. Another defining property of supersymmetry is that two successive supersym-
metry transformations lead to a space-time translation. Therefore supersymmetry is in
some sense both an internal and a space-time symmetry.

Just like any symmetry, supersymmetry can be realized rigidly or locally. The fact
that supersymmetry and space-time symmetries are related has an important and in-
triguing consequence. When a theory is invariant under rigid supersymmetry, it must
also be invariant under rigid space-time symmetries. On the other hand, when a theory is
invariant under local supersymmetry, it must necessarily be invariant under local space-
time transformations, i.e. general coordinate transformations, the symmetries of general
relativity. Hence space-time can be curved. Accordingly, theories that are invariant
under local supersymmetry are called supergravity. Among the fields of supergravity is
the spin-2 metric field, associated with the graviton. Its supersymmetric partner is the
gauge field of supersymmetry, called the gravitino field, which has spin %

Historically, supergravity was first developed as a four-dimensional theory [I], but
it was soon generalized to other space-time dimensions. It was also realized that it is
possible to have more than one kind of supersymmetry transformation, which is referred
to as extended supersymmetry. The supersymmetry generators, also called supercharges,
then transform reducibly under the Lorentz group and comprise IV irreducible Lorentz-
spinors. The number of components of such a spinor depends on the dimension (see
e.g. [2]). When there are N copies of such a spinor, the number of supercharges is N
times the number of spinor components. For instance, in four space-time dimensions,
an irreducible (Majorana) spinor has 4 real components, and hence four-dimensional
N = 2 supergravity has 4 - 2 = 8 supercharges. A supergravity theory can therefore
be characterized by two numbers, the number of supersymmetries N and the space-time
dimension d. The bosonic and fermionic fields that transform among each other by the N
supersymmetry transformations are called a supermultiplet. It is clear that, the higher
the number N, the more restricted a theory is, as more fields will be related to each
other. Moreover, with increasing N, fields of higher and higher spin occur. In particular,
theories with more than 32 supercharges contain fields with spin greater than 2. These
fields cannot consistently couple to other fields or to themselves if one insists on having a
finite number of fields (for a review, see [3]). Therefore conventional supergravities have
at most 32 supercharges. Since an irreducible spinor in eleven dimensions has exactly
32 components, conventional supergravity can not be realized in dimensions higher than

eleven.
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Deformations

The fields of supergravity usually include a set of matter fields (e.g. scalar fields) and
vector gauge fields, which transform under some internal symmetry group. When this
symmetry group is realized rigidly, the vector gauge fields transform under a trivial local
abelian symmetry [U(1)]"”, where n is the number of vector fields, under which no fields
are charged, i.e. the matter fields do not couple directly to the vector fields. These
theories are sometimes referred to as ungauged supergravity theories. They arise as
effective field theories of string theory, or M-theory, compactified on a flat or Ricci-flat
manifold, such as an higher-dimensional torus, or a Calabi-Yau manifold.

One class of deformations we study in this thesis are gauge deformations. Starting
with an ungauged theory, one can assign charges to a subset of the matter fields. As a
result, some of the vector gauge fields will couple to the matter fields, consistent with the
internal symmetry group. This is referred to as gauged supergravity [4, B]. To preserve
supersymmetry the theory typically needs to be extended with a scalar potential, which
can have important consequences. Depending on its form, this scalar potential can for
instance generate (partial) spontaneous breaking of supersymmetry, it can give masses
to the scalar fields, and it can give rise to an effective cosmological constant. All of
these features are relevant for many applications. Just like ungauged supergravity is the
low-energy limit of flat string theory compactifications, gauged supergravity is the low-
energy limit of so-called flux compactifications of string theory [6] [7]. Here the word flux
refers either to a generalization of the electric and magnetic fluxes known from Maxwell’s
theory, induced by fields in the internal manifold, or to so-called geometric fluxes, which
twist the geometry of the internal manifold.

In four space-time dimensions, which is what we consider in this thesis, gauging
internal symmetries in the manner described above is subtle due to the presence of
electric/magnetic duality. This duality is a generalization of the duality rotations in
Maxwell’s theory, under which the electric and magnetic fields and inductions are rotated

into each other according to,

E cosa  sina E D cosa  sina D
— , — . (1.1)
H —sina  cosa H B —sina  cosa B

Under such a duality rotation the Maxwell equations are transformed into an equivalent
set. The duality can be extended in the presence of charges, provided both electric and

magnetic charges occur. Under the duality these charges are then rotated into each other.
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In that case, it is only a matter of convention to specify a charge as electric, since one can
always make a duality rotation to a different frame where the charge would be magnetic.
The situation changes when one writes down a Lagrangian, from which the Maxwell

equations can be derived,
(E* - H?), (1.2)

which, as one can check, is not invariant under the rotations . Hence, electric/magne-
tic duality is not preserved at the level of the Lagrangian. This is in contrast to the
Maxwell equations, which are preserved under electric/magnetic duality, as discussed
above. Nevertheless, the Lagrangian has some special properties under electric/magnetic
duality, as the latter relates different Lagrangians with equivalent field equations. In
section we illustrate these issues in more detail in the context of an example.

Furthermore, the presence of charges in the Lagrangian requires the introduction of a
vector potential, or gauge field, from which the electric and magnetic fields can be derived.
However, whereas it is well-known how to couple this gauge field to the electric charge,
it is less trivial to couple it to the magnetic charge. In fact, generically magnetic charges
lead to the presence of non-local expressions in the Lagrangian [8]. This is reflected by
the electric/magnetic duality rotations, under which the gauge field is rotated into a dual
gauge field, which is not locally related to the old gauge field.

We now return to the issue of gauging internal symmetries of four-dimensional La-
grangians with a set of matter and abelian vector gauge fields. As mentioned before,
electric/magnetic duality transformations relate equivalent Lagrangians. A subgroup
of the electric/magnetic duality group may constitute an invariance of the generalized
Maxwell equations, which means that the electric/magnetic rotation is induced by trans-
formations of the fields in the theory. Gauging this invariance group would in general
require coupling to magnetic charges, which, as we have argued above, is problematic.
One way to deal with this is to apply an appropriate electric/magnetic duality rotation
which converts all the relevant charges to electric ones and in this frame carry out the
gauging according to the standard procedure. This can, however, be cumbersome in
practice. There is an alternative approach that avoids this and generalizes to gauge
groups including magnetic charges. This is the so-called embedding tensor approach
introduced in [9]. We will use this approach to study general gauge deformations of
four-dimensional N =2 supergravity.

Other deformations we consider in this thesis are supersymmetric higher-derivative

couplings. These couplings play an important role as next-to-leading order corrections
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to low-energy effective actions of string theory [I0]. For applications and a better
understanding of this fundamental theory, knowledge of the possible higher-derivative
invariants in supergravity theories is desired.

The importance of higher-derivative couplings can, for instance, be illustrated in the
context of black holes. As is well-known, there is a close analogy between the laws of black
hole mechanics and the laws of thermodynamics [TTHI3]. According to this analogy, the
area of the event horizon of a black hole (with a specific proportionality constant) plays
the role of a thermodynamic entropy. If string theory is indeed a consistent theory of
quantum gravity it should provide a statistical interpretation of this black hole entropy.
This can be checked explicitly for certain supersymmetric black holes, also called BPS
black holes. In string theory, these black holes are given by strings and so-called D-branes
that wrap around the compactified dimensions. The entropy of such a black hole is then
given by the logarithm of the number of D-brane configurations that lead to the same
macroscopic black hole [I4]. A description of the corresponding macroscopic black hole is
provided by suitable effective four-dimensional supergravity theories, and, as mentioned
before, its macroscopic entropy is given by the area of its event horizon. Comparing
results from the microscopic and the macroscopic description of the entropy thus provides
a highly non-trivial test on string theory. Such a comparison was performed for the first
time in [I4] and agreement was found in the limit that certain charges are large. Since
higher-derivative couplings arise as sub-leading corrections to the low energy effective
action of string theory they are needed for a more precise matching [I5HI7]. Including
higher-derivative terms in supergravity turns out to be complicated, but considerable

progress has been made.

1.2 Gauge equivalence

In this thesis we make use of the concept of gauge equivalence to describe N = 2
supergravity in a setting which has a larger local symmetry group. We will illustrate
this idea with a simple example of the gauge equivalence between a massive vector field
and a massless vector field together with a scalar field. The Lagrangian of a vector field

V,, with mass m is as follows,
L=—50,V—0,Vy)? — gm?V?2. (1.3)

The first term in the Lagrangian is invariant under the abelian gauge transformation

0V, = 0, A familiar from Maxwell’s theory. However, the mass-term does not respect this
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invariance. Hence the four field components of a massive vector describe three physical
degrees of freedom, corresponding to two transversal polarizations and one longitudinal
polarization.

We now make the following redefinition, introduced by Stueckelberg [18], in terms of
a new vector field W, and a scalar field ¢,

V,=W,—m '9,¢. (1.4)
This redefinition is not unique, as it is invariant under,
W, (z) = 0,A(x), d0p(z) = mA(z). (1.5)

Therefore also the Lagrangian is invariant under ([1.5), which we write in terms of the

new fields,
L=-20W,—0,W,)?—3D,0D"¢. (1.6)
Here D, ¢ is the covariant derivative under given by,
Dy = 0o — mW,. (1.7)

The Lagrangian takes the form of a conventional gauge invariant Lagrangian for
a scalar field coupled to a (massless) abelian gauge field. The gauge field describes
two physical degrees of freedom, corresponding to two transversal polarizations, and the
scalar field one, which adds up to the three physical degrees of freedom of the original
massive vector field. Although we have introduced a local gauge symmetry, the presence
of the scalar field ensures that the total number of degrees of freedom remains the same.
Imposing a gauge condition such as ¢ = 0 leads back to the original Lagrangian , and
hence the two models are gauge equivalent. The scalar field ¢ is called a compensating
field.

In a second example, which is particularly relevant to this thesis, we discuss a gauge
equivalent form of Einstein gravity, which, besides the usual invariance under general
coordinate transformations, admits invariance under local scale transformations, or di-

latations. Under these dilatations the metric transforms as follows,

09 = —2Ap(2) g - (1.8)
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From this one can derive,

6\/j = - 4AD\/j7
SR =2ApR — 60Ap. (1.9)

where R is the Ricci scalar and ¢ the determinant of the metric. Using a scalar field ¢
that transforms under dilatations as,

0¢ = Apo, (1.10)

one can write down the following Lagrangian which is invariant under local coordinate
transformations and dilatations,

L=+=g(0,00"¢— % R¢) . (1.11)

By choosing a gauge in which ¢ = 1 we fix the dilatational invariance and we find the
Einstein-Hilbert action,

L=-%:vV=gR(e). (1.12)

Therefore is gauge equivalent to the Einstein-Hilbert action. The scalar field ¢
compensates for the extra gauge invariance present in the conformal action.

In a similar fashion we describe supergravity with a gauge-equivalent theory, called
superconformal gravity. This theory has extra conformal invariances, but the presence of
compensating fields ensures that the total number of physical degrees of freedom remain
the same. Notice that in order to have scale invariance, the sign in front of the kinetic
term for the scalar field in is necessarily opposite to what it is for a physical scalar.
A similar situation also occurs in superconformal gravity, as we will see.

Although in these examples the benefits of taking one approach over the other are
not so obvious, in the case of supergravity there are clear advantages to using the su-
perconformal description. Since there are many more fields involved, the presence of the
extra symmetry puts welcome restrictions on the model that make it easier to construct
Lagrangians. In particular the superconformal multiplets are smaller because they are
subject to more symmetries. Also for the construction of higher-derivative invariants,
the superconformal method is superior.
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1.3 Electric/magnetic duality

As already discussed, the concept of electric/magnetic duality plays an important role in
four-dimensional supergravity models, and in fact in many effective field theories, with
or without supersymmetry. In this section we illustrate a few properties of this duality
using a simple field theory. These properties will come back in chapter [3| in a more
complicated setting.

As mentioned before, Maxwell’s theory of electrodynamics in four space-time dimen-
sions without charges is the simplest example of a theory exhibiting electric-magnetic
duality. We will slightly generalize the action such that it shows more similarities to a

generic effective action,
L=—31IF, F" — LiRe"?P F,,F), . (1.13)

Here F),, = 20,W, is the field strength written in terms of the gauge field W,. The
parameters I and R are just real constants, but in an effective field theory they may
take the form of field-dependent matrices. Hence, whereas the last term in this action is
equal to a total derivative, in a more general setting this might no longer be the case.
Therefore it is important to keep this term to see its role in the duality transformation.

Using the definitions in appendix [A] we can split the field strength into a selfdual

and anti-selfdual part and rewrite the Lagrangian as,
L=%i(rF, F " —7F} Ft) (1.14)
where 7 is given by,
T=R+Iil. (1.15)

The Lagrangian (1.13) or (1.14) is invariant under abelian transformations of which W),
is the gauge field,

SW, = 9,A. (1.16)

Since no fields are present that are charged under the abelian gauge symmetry, the gauge

fields only appear in the field strength. Therefore, the Bianchi identity and equation of
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motion for the field strength can be written in a nicely symmetric form,

Oy =0=0,G,,, (1.17)
where we have defined,
. oL
G,“, = IE/J,VpO' E . (118)

From the Lagrangian in (1.14]) we derive,
G, =7F,,. (1.19)

It is immediately apparent from (1.17) that the two equations are rotated to an

equivalent set of equations under real 2-dimensional transformations,

(o) = len) =G D)
— ") = , (1.20)
G G W V) \Gu

with parameters that satisfy UV — W Z = 1. Notice that this is a generalization of .
As before, this is called an electric/magnetic duality transformation, as it rotates the
electric and magnetic fields derived from the field strength Fj,,. After performing a
transformation, F;w satisfies a Bianchi identity, so it can be assigned to be the field
strength of a new gauge field, /Nlu. One can check that this new gauge field is non-locally
related to the old gauge field A,, except for transformations with Z = 0. Next, the
equation for G;w can be interpreted as the equation of motion derived from some new
Lagrangian £ depending on the new field strength FMW via éuu = ism,paaﬁ/(?ﬁ'pg. In
the generic case, where the Lagrangian is an arbitrary function of n field strengths, the
duality transformations must belong to the group Sp(2n;R) in order for £ to exist, as
will be discussed in chapter
The new Lagrangian can be written in the same form as the old Lagrangian,
L=

L (%F;VF—W - %F;VF+W) : (1.21)

where,

W+ Vr
T U+ Zr

7 (1.22)
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The Lagrangian does not transform as a function, since £(F) # L(F ) Now let us assume
that 7 is field-dependent, as it will be in a generic effective field theory. Hence, 7 = 7(X)
for some field X. When the transformation is induced by a transformation of this
field X, i.e. when 7(X) = 7(X), then the duality is an invariance of the theory. This
means that the Lagrangian £ remains unchanged under the duality transformation, i.e.,

L(F,X)=L(F,X). (1.23)

Note that in the literature the word duality is used both for equivalence and for invariance
transformations. In chapter [3] we are interested in duality invariances, as these are the
ones that can be gauged.

To conclude, let us consider electric/magnetic duality transformations with
Z =0,s0 UV = 1. This is called the electric subgroup of the electric/magnetic duality
group. We already noted that in this case the transformed gauge field is locally related
to the old gauge field. Under transformations with Z = 0 we find that the Lagrangian

transforms as,
L(UF) = L(F) — XiWUe"*°F,,F,, . (1.24)

So up to a total derivative £ is invariant under the electric subgroup. This is the reason
why using conventional methods only the electric subgroup of the duality group can be
gauged. In chapter [3| we will see how more general subgroups of the electric/magnetic

duality group can be gauged.

1.4 The content of this thesis

In this thesis we focus on four-dimensional N = 2 supergravity. We derive new defor-
mations related to general gaugings and higher-derivative couplings, and we study their
consequences in several applications.

This thesis is organized as follows. In chapter [2[ we present the basics of N = 2
supergravity. We introduce the N =2 supermultiplets that we consider in this thesis, and
their corresponding supersymmetry transformations. We also present the corresponding
(ungauged) Lagrangians.

In chapter [3| we review electric/magnetic duality and study general gauge deforma-

tions of N =2 supergravity theories, using the embedding tensor approach introduced in

n fact, one can show that the combination L(F)+ éia‘“’paFMV Gpo does transform as a function.
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[9). In this approach, one introduces, from the start, both electric and magnetic gauge
fields. To avoid extra degrees of freedom, tensor gauge fields must be included with
corresponding gauge symmetries. The charges are encoded in a so-called embedding
tensor. The gauge group is only restricted by two constraints on the embedding tensor.
One of these constraints implies that the charges are mutually local. This means that
there exists always an electric/magnetic duality frame in which all charges are electric.

Two interesting applications of the embedding tensor approach are considered in
chapter [l First we briefly review partial supersymmetry breaking in maximally sym-
metric space-times in the presence of general gaugings. In flat Minkowski space, it
was established that residual supersymmetry is only possible in the presence of magnetic
charges [I9H25]. We therefore briefly review the situation in the context of the embedding
tensor approach, where it is natural to have both electric and magnetic charges. As a
new application we study possible supersymmetric solutions in AdS, x S? space-times.
We find two classes of solutions. One is fully supersymmetric. It contains for instance
the near-horizon solution of ungauged supergravity that appears for BPS black holes.
The other class exhibits four supersymmetries. It contains the near-horizon solutions of
BPS black holes in N =2 gauged supergravity. The spinor parameters associated with
the four supersymmetries are AdS, Killing spinors that are constant on S2, so that they
carry no spin. Nevertheless the bosonic background is rotationally invariant. These two
examples illustrate how the embedding tensor formalism can be used to obtain rather
general results about the realizations of N =2 gauged supergravities.

In chapter [5| we introduce a systematic procedure to construct a large variety of new
higher-derivative deformations in N =2 supergravity. As an explicit example, many of
the bosonic terms of the supergravity-coupled invariants that contain F*-, R?F2-, and
R*-terms, will be discussed. Here F' denotes the abelian vector multiplet field strengths
and R the Riemann tensor. We study the possible contribution of these new couplings to
the entropy and the electric charges of BPS black holes. As it turns out we can derive a
‘non-renormalization’ theorem according to which these contributions vanish. This result
is not entirely unexpected, in view of the fact that there was already a good agreement
for the subleading contributions to the BPS entropy obtained from microstate counting
and from supergravity, in which the new couplings had so far not been incorporated.
Hence the existence of the non-renormalization theorem offers a partial explanation for

this agreement.
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Supermultiplets and Lagrangians of
N=2 superconformal gravity

In section we have seen how the concept of gauge equivalence allows one to rewrite a
theory so that it has a larger local symmetry group, using so-called compensating fields.
These compensating fields ensure that the total number of degrees of freedom remains
unchanged in the formulation with the extra local symmetry. We showed in an example
how the Einstein-Hilbert action could be constructed in terms of an action which, besides
the usual diffeomorphism invariance, is also invariant under local scale transformations,
using a scalar field as compensator.

Based on a similar construction, we will describe supergravity, sometimes referred to
as Poincaré supergravity, by superconformal gravity with suitable compensating fields
[26H28]. These compensating fields are now contained in supermultiplets. Superconfor-
mal gravity combines local conformal space-time symmetries with local supersymmetry.
Upon gauge-fixing the compensating fields, the local conformal space-time symmetries
are reduced to diffeomorphisms.

As preparation, we will start this chapter by reconsidering conformal gravity in a more
systematic manner, which paves the way for the construction of N =2 superconformal
gravity presented in section We will first introduce the gauge fields corresponding
to the conformal symmetries, and show that one can consistently impose constraints,
such that the number of independent gauge fields is reduced. Using a compensating
field, which couples to the conformal gauge fields, one can write down Lagrangians
that are invariant under conformal symmetries. We will illustrate this by re-deriving
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the Lagrangian , which was shown to be gauge-equivalent to the Einstein-Hilbert
action, upon gauge-fixing the compensating field.

In section we will then indicate how a similar constrained gauge theory can be set
up for N =2 superconformal gravity, and we will introduce the Weyl multiplet, which
contains the superconformal gauge fields. In the remainder of the chapter we introduce
matter supermultiplets, and we end in section 2.6 with a Lagrangian that describes N =2

superconformal gravity. For introductory texts on supersymmetry we refer to e.g. [29] [30].

2.1 Conformal gravity

Any relativistic theory is invariant under the Poincaré group, which consists of transla-
tions (P) and Lorentz rotations (M). For a theory without intrinsic scale, such as mass
or coupling constants, this group is extended to the conformal group, which is the group
of transformations that leave the light-cone invariant. Next to the symmetries of the
Poincaré group it consists of dilatations, or scale transformations (D) and conformal
boosts, or special conformal transformations (K). In four dimensions it is given by

the group SO(4,2). To each generator we associate a gauge field and a transformation

parameter,
generators: P M® D K¢
gauge fields: e,% w,® b,  f.° (2.1)
parameters: £ ¢  Ap Ag?,

where € is an antisymmetric tensor. The indices a,b,--- = 0,...3 label the coordinates

of a flat manifold with Minkowski signature, which at this point is still an abstract
internal space. In a moment we will see how it can be related to the tangent bundle
of space-time. The infinitesimal transformations, which follow from the Lie algebra of
SO(4,2), are given by,

de,* =D,E" — Ape,” + Eabeub ,
dw,® =D,e® +2Ae, M + 26l f,0
6bu = apAD + AKaeua - gafua )
0fu® =Dyl + Ap fu* + Sabfﬂb : (2:2)
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The derivative D,, is covariant with respect to dilatations and Lorentz transformations,

for instance,
D" = 0,8% + b, €" — w, "%, . (2.3)

Again we stress that at this point the conformal transformations are not space-time
transformations, but are treated as internal transformations. The gauge fields transform
separately as vectors under general coordinate transformations.

Using the transformation rules it is easy to construct the curvature tensors. We

list two of them that we will need below,

R(P)Wja =2 a[u el,]“ + 2 b[ﬂ e,,]“ - 20.)[#“1) €ulb s
R(M)l“,ab = 25[uw,}]ab - QW[uacwy]Cb - 4f[,u[ael,]b] . (2.4)

It is well known that by imposing so-called conventional (algebraic) constraints on the
curvatures of the superconformal fields one can relate the transformations (2.2)) to space-

@ is assumed

time transformations [31], [32]. Here the gauge field of the translations e,
to be invertible and identified as the vielbein. As a result of the constraints, the local
translations are effectively replaced by general coordinate transformations of space-time.

To see this, note that one can rewrite a P-transformation of the vielbein e, as follows,

dp e,ua = Dufa = fuaye#a + aufyeua + gl’bue,ua - fuwvabepb + guR(P),uya
=6V(€) e, +E"R(P),w” . (2.5)

Upon imposing the constraint R(P),,* = 0, the right hand side reduces to a general co-
ordinate transformation with appropriate covariantization terms, i.e. a covariant general
coordinate transformation, which we denoted in the second line by §°°V(§). Hence, after
imposing this constraint the P-transformations will be ignored.

The constraint R(P),,% = 0 can be solved for w,,,

wuab = — 26”[“8[Hey]b] — e”[aeb}oeﬂcage,,c — 2eu[aeb]”b,, ,

which identifies the gauge field w,*® with the spin connection. It differs from the standard

spin-connection of general relativity by the term proportional to b,. A second constraint
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that is imposed is given by e”bR(M),wab = 0 and can be solved for f,°,
fut = %R(w, e)ut — 1—12R(w, e)e,”, (2.6)

where R(w, €),* = R(w),, " ep” is the non-symmetric Ricci tensor, and R(w, e) the corre-

b is associated with the spin connection field

sponding Ricci scalar. The curvature R(w),,,“
w““b. It coincides with the Riemann tensor of general relativity upon setting b,, = 0. Thus
the two constraints can be solved algebraically, making w,ﬂb and f,* dependent on the
vielbein and the dilatational gauge field. Only the vielbein e,* and the dilatational gauge
field b,, are left as independent fields, and we will see below that b,, can be eliminated by
gauge-fixing.

Next we will illustrate how one can write down a Lagrangian that is invariant under
conformal symmetries, using a compensating field which couples to the conformal gauge
fields. For that purpose we consider a scalar field ¢ that is invariant under conformal
boosts, and has Weyl weight w. The Weyl weight w of a field characterizes how a field

transforms under dilatations,
6D¢ =w ¢ . (27)
Consequently the first and second covariant derivative of ¢ are given by,

D¢ = (0 —wbyu),
D, D = (9, — (w+1)b,) D¢ — w, " Dy + wf,* . (2.8)
Notice that the Weyl weight of D, ¢ is raised by one unit by the presence of the inverse
vielbein. The occurrence of the gauge field of conformal boosts f,* in the second deriva-
tive might be surprising, since ¢ was assumed to be invariant under conformal boosts.
However, the presence of the dilatational gauge field b, in the covariant derivative makes

the latter transform under K, since éxb, = Ak,. Now one can check the following

variation,
0D D = 2(1 — w)Ak“Dyp + (2 + w)ApD, D¢ . (2.9)
Thus for a scalar field with w = 1 we can write down an invariant Lagrangian,

L= —edpD,D%, (2.10)
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where e is the determinant of the vielbein. Note that b, is the only independent field
that transforms under K-transformations. Since is invariant under the latter we
can conclude that it does not depend on b,. Indeed upon substituting the expressions
for w,ﬂb and f,“ in terms of b, and e,* we find,

L=—-e¢¥p—LeR(e)p® =ed,p0"d— eR(e)d, (2.11)

where 08"V is the d’Alembertian in which only the standard spin-connection of general
relativity appears (i.e. without the term proportional to b,). In the second step we
performed a partial integration, which leads us back to the action in .

The above approach can be summarized as follows. First one constructs a constrained
gauge theory associated with the conformal algebra. Then by coupling a compensating
field to the conformal gauge fields, one finds a conformally invariant action that is gauge
equivalent to the Einstein-Hilbert action. In the next section we will generalize the above
analysis by adding supersymmetry generators, yielding a constrained gauge theory for
the V=2 superconformal group. The corresponding gauge fields will be contained in a

supermultiplet, called the Weyl multiplet.

2.2 The Weyl multiplet

In this section we introduce the Weyl supermultiplet, which contains the gauge fields
of the N = 2 superconformal algebra [26] 27, 33]. The N = 2 superconformal group
is given by the supergroup SU(2,2|2)E| The generators of the latter include, besides
the generators of the conformal group that we introduced in the previous section, two
supersymmetry generators %, which carry indices i = 1,2 [34]. They are Majorana

spinors and satisfy the following anti-commutation relation,
{Q", Q") = 24" P,5" . (2.12)

Where the N =2 Poincaré superalgebra consist of translations, Lorentz transformations
and supersymmetry transformations (generated by Q'), the N = 2 superconformal al-
gebra requires additional generators. Among these generators are two more Majorana
spinors S°, which correspond to the so-called the S-supersymmetries. Similar to ,

they satisfy an anti-commutation relation that closes into the generator of the special

INote that SU(2,2) is the double cover group of SO(4,2), the conformal group in four space-time
dimensions. Hence spinors form a representation of this double cover group.
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conformal transformations,
{8%, 87} = —4*K,0% . (2.13)

Notice that the anti-commutators are invariant under U(2)~U(1)xSU(2) transforma-
tions, which are called the automorphism, or R-symmetry, transformations. They are
part of the superconformal algebra. Since the supersymmetry generators @’ and S° are
Majorana spinors, one can show that the U(2) transformations act in a chiral fashion, i.e.
the positive (left) and negative (right) chirality components transform in conjugate rep-
resentations. Therefore we introduce so-called chiral notation [35] B6], where one writes
the SU(2) index as an upper index when it transforms in the fundamental representation
and with a lower index when it transforms in the anti-fundamental representation. This
implies that upper and lower SU(2) indices have a specific chirality, and for each spinor
it is a matter of definition whether one associates an upper index with left or with right
chirality. The relevant assignments are listed in various tables in this thesis, see e.g.
table in appendix [B] for the chirality of the fields in the Weyl multiplet. Note that
hermitian conjugation is always accompanied by raising or lowering of the SU(2) indices.
We refer to appendix [A] for more information on this chiral notation.

Thus in order to form the N = 2 superconformal algebra, the generators of the
conformal group and their corresponding parameters and gauge fields written in

are extended by,

generators: QS Vi A
gauge fields: ,° ¢," V. A, (2.14)
parameters: ¢ 1" Asuwe)’; Avq).

where V,,%; is the anti-hermitian and traceless gauge field of the chiral SU(2), and A,
the gauge field of the U(1). Just as in the previous section, conventional constraints are
imposed on the curvatures, which determine the fields w#‘”ﬂ fu® and ¢, in terms of the
other fields of the multiplet [4] 27, 28]. In order to balance the bosonic and fermionic
degrees of freedom three additional fields are needed: a Majorana spinor doublet x¢, a
scalar D, and a selfdual Lorentz tensor T,p;;, which is anti-symmetric in [ab] and [ij].
The resulting Weyl multiplet consists of 24+24 degrees of freedom and forms an off-shell
representation of the N =2 superconformal algebra. This means that the commutators
of the algebra, of which we will consider the most non-trivial one in the next paragraph,
close on the fields without the use of field equations. We refer to appendix [B] for an
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extended summary of the superconformal transformations of the Weyl multiplet fields,
the expressions for the curvatures and other useful identities.

As a result of the constraints the local translations are again discarded and effectively
replaced by covariant general coordinate transformations [37]. Thus the anti-commutator
now closes into such a covariant general coordinate transformation. The presence
of the auxiliary fields x*, D, and Topi; further modify the algebra. We present the
decomposition of the commutator of two infinitesimal Q-supersymmetry transformations,

with parameters €; and es,
[0(e1),8(e2)] = 6°°¥(&) + Ons(€) + 0k (Ak) + 65(n) + dgauge » (2.15)

where the parameters of the various infinitesimal transformations on the right-hand side

are given byE|

5# =2 €2i,yl»’«eu + h.c. y
&,ab =¢;'ed’? Tabij + h.c.,
a =i J ba 3zt a
AK = 6162j DbT ij — o €27 €14 D + h.c. ,

n' =6¢en"ey’ x; (2.16)

The variation dgauge denotes an additional, internal gauge symmetry, which commutes
with the superconformal algebra. It is not relevant for the fields of the Weyl multiplet,
since they do not transform under such a gauge symmetry. It will play a role for the
vector multiplets, which we will introduce in section Asin , d°°Y(€) denotes the
infinitesimal covariant general coordinate transformation, which includes contributions
from all the field-dependent gauge transformations such as a Q- and S-supersymmetry
transformation with parameters f%fpwpi and f%gqupi, such that the combined result
takes a supercovariant form.

The Weyl multiplet provides the necessary gauge fields that are needed to find an
action that is invariant under N =2 superconformal gauge transformations. However,
just as in the case with only conformal symmetry, one cannot write down an action that
is gauge equivalent to Poincaré supergravity without the use of compensating fields.
These compensating fields must be provided for by other supermultiplets, i.e. other
representations of the superconformal algebra. Different choices are possible, leading
to inequivalent versions of Poincaré supergravity [27, B8]. In this thesis we take the

2Full supercovariant derivatives are denoted by D,,, while D,, denotes a covariant derivative with
respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations (see appendix.



28 Supermultiplets and Lagrangians of N=2 superconformal gravity

compensating fields to be provided for by a vector multiplet and a hypermultiplet, which
we will introduce in section [2.4] and respectively. In general we will introduce more
than one vector and hypermultiplet, so that there will be additional matter fields present.
Vector multiplets can be derived from a more general multiplet, called a chiral multiplet.
These chiral multiplets are also very useful for the construction of higher derivatives, as
we will see in chapter Therefore we will start by presenting these multiplets in the

next section.

2.3 Chiral multiplets

Chiral superfields in flat N = 2 superspace were first discussed in [39]. Subsequently
they were derived in a conformal supergravity background [27, [36]. The latter result was
formulated in components and the same approach is followed in this thesis, although it
is convenient to make use of superfield notions at the same time. N =2 superspace is
obtained upon supplementing the four bosonic coordinates of space-time x* with four
chiral and four anti-chiral anti-commuting coordinates, §° and 6;. The concept of a
field is extended to a superfield, which in general is a function of z*, 6% and ;. Since
the fermionic coordinates are anti-commuting, a Taylor expansion in terms of these
coordinates is finite. The z*-dependent components of the expansion define the field
components of a superfield. A general complex scalar superfield ®(x, %, 6;) gives rise to
256 + 256 degrees of freedom. One can however impose the constraint that the superfield
does not depend on the anti-chiral coordinates 6;. This defines a scalar chiral superfield,
which contains 16 + 16 components. These multiplets carry a Weyl weight w and a
chiral U(1) weight ¢, which is opposite to the Weyl weight, i.e. ¢ = —w. The weights
indicate how the lowest-6 component of the superfield scales under Weyl and chiral U(1)
transformations. Anti-chiral multiplets can be obtained from chiral ones by complex
conjugation, so that anti-chiral multiplets will have equal Weyl and chiral weights, hence
w = c.

The components of a generic scalar chiral multiplet are a complex scalar A, a Majo-
rana spinor W;, a complex symmetric scalar B;;, an anti-selfdual tensor F;,, a Majorana
spinor A;, and a complex scalar C. The assignment of their Weyl and chiral weights
is shown in table 2] The spinors ¥; and A; transform as doublets under the R-
symmetry group SU(2), which is realized locally with gauge fields V#ij belonging to

the superconformal background. The Q- and S-supersymmetry transformations for a
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A v, B;; F, A; c
w w w—i—% w+1 w+1 w—i—% w + 2
c —w —w—i—% —w+1 —w+1 —w—|—% —w+2
5 + +

Table 2.1: Weyl and chiral weights (w and ¢) and fermion chirality (v5) of the
chiral multiplet component fields.

scalar chiral multiplet of weight w, are as follows,

A =€, ,
6V, =2 DAe; + Byj e + %fy“bF;b i€ +2wAn;,
6By =28 DV ;) — 28 Njiej +2(1 — w) 7Y,
SF, =29 eDvap ¥ + 1€y — (1 +w) e vap ¥,
6A; = — 2P DF e, — PBije’* e + Ceij el + L(DAY Topij +w A Py Topi;) e e
— 3708 ex X7 ¥y — (14 w) Bige? i + 5(1 —w) " Foymi
6C = —2eYEDA; — 6&x; e By
— 1T (w — 1) &Y PTupju V1 + &7 Tapji DY) + 2w A (2.17)

The transformation rules are linear in the chiral multiplet fields, and contain other fields
associated with the superconformal background, such as the self-dual tensor field Tgp;;
and the spinor x*. Other superconformal fields are contained in the superconformal
derivatives D,. Like the Weyl multiplet, the chiral supermultiplet forms an off-shell
representation of the superconformal algebra.

Products of chiral superfields constitute again a chiral superfield, whose Weyl weight
is equal to the sum of the Weyl weights of the separate multiplets. Also functions of
chiral superfields may describe chiral superfields, assuming that they can be assigned a
proper Weyl weight. For instance, homogeneous functions of chiral superfields of the same
Weyl weight w define a chiral supermultiplet whose Weyl weight equals the product of
w and the degree of homogeneity. This is called supermultiplet calculus and the relevant
formulae are presented in appendix [D.1}

Chiral multiplets of w = 1 are special, because they are reducible [36], 39]. Some

details about these multiplets are given in appendix For a scalar chiral multiplet
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with w = 1 the tensor F_, + F;l’) is subject to a Bianchi identity, which can be solved
in terms of a vector gauge field. The reduced scalar chiral multiplet thus describes the
covariant fields and field strength of a vector multiplet, which encompasses 8 4+ 8 bosonic
and fermionic components: a complex scalar X, a Majorana doublet spinor €;, a vector
gauge field W, and a triplet of auxiliary fields Y;;. In the next section we will discuss
the vector multiplet in more detail.

There also exists an anti-selfdual tensor version of the chiral multiplet with w = 1
that is reducible. This multiplet, which comprises 24 + 24 off-shell degrees of freedom,
contains all the covariant fields and curvatures of N = 2 superconformal gravity. It is
especially useful for the construction of higher-derivative invariants [I6] [I7, 0], as we
will demonstrate in chapter |5 It is also called the Weyl supermultiplet, since it is based
on the same fields as the Weyl multiplet introduced in the previous section. It will be
clear from the context whether we refer to the multiplet of superconformal gauge fields
or to the corresponding chiral multiplet.

Another special chiral multiplet is the so-called ‘kinetic’ multiplet, which has Weyl
weight w = 2. This multiplet is constructed from an anti-chiral multiplet with w = 0. It
will be discussed in detail in chapter

Finally, scalar chiral multiplets with w = 2 lead to superconformal actions when
including a conformal supergravity background. Their highest #-component C' has Weyl
weight 4, and chiral weight 0. To define a Lagrangian that is invariant under local

superconformal transformations one makes use of a density formula [36],

e 'L =C— " "Ny — 3uiTap juy v U VM — L A(Toyi56)?
— 20,7 Yy By el + e inhy (™M — SATH 1 M)
- %Eijgkle_lguypol/;#iwuj (&pk'}/a\yl + ipk"baj A) . (218)

As such it is not yet a sensible Lagrangiadﬂ since it does not contain any kinetic terms.
We will indicate in the next section how it can be used to construct a Lagrangian for
vector multiplets. It will also play a central role in the construction of higher-derivative

invariants in chapter

3Notice that one should add the complex conjugate of the density formula in order to obtain a
real-valued Lagrangian.
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XA QiA WP«A YYijA

w 1 3 0 2
c -1 -3 0 0
5 +

Table 2.2: Weyl and chiral weights (w and c)
and fermion chirality (7y5) of the vector multiplet
component fields.

2.4 Vector multiplets

In the previous section we introduced the vector multiplet as a reduced chiral multiplet.
In this section we will elaborate further on vector supermultiplets in a N = 2 super-
conformal background [26, 28]. Consider n + 1 of these multiplets, labeled by indices
A =0,1,...,n. Vector supermultiplets comprise complex scalar fields X, gauge fields
W#A, and Majorana spinors §;*. These spinors transform as doublets under the chiral
R-symmetry group SU(2), which is realized locally with gauge fields Vui ;j belonging to the
superconformal background. Furthermore there are auxiliary fields YijA, which satisfy
the pseudo-reality constraint (Y,-jA)* = e%eily}; A so that they transform as real vectors
under SU(2). The tensors F/fEVA are the (anti-)selfdual (complex) components of the field

strengths, which will be expressed in terms of vector fields W#A. These vector fields are

subject to abelian gauge transformations,
SW,A = a,AN. (2.19)

The transformations of the vector multiplet fields under dilatations and chiral trans-
formations are given in table Under local Q- and S-supersymmetry they are as
follows [27],

sXMN =,
W, =& (14" + 200, X0) + €4, (1,0 4 + 29,7 XN
QN = 2$XA61' + %'y“”ﬁ';VAEijej + YijAej + 2XA77i ,
8N = 28 D™ + 2.8 R POQDA (2.20)
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The field strengths F; WA =2 8[HW,,}A are contained in the supercovariant combination,

Eu® = FEAM 4+ Fo = 900" + 90, X0 — e ()@t + 4,7 XY
— L (XA Tij e + XA T ;). (2.21)

As before, the full superconformally covariant derivatives are denoted by D,,, while D,,
will denote a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and

SU(2) transformations. As an example of the latter, we note the definitions,

D, X" = (0, — b, +i4,) X",
DMQZ'A = (8“ - iwﬂab%b - %b# + %1A#)QZA - %V#jz QjA . (222)

Just like any chiral multiplet, the vector multiplet is an off-shell representation of the
superconformal algebra. However, since the vector field is subject to abelian gauge trans-
formations , the commutator of two infinitesimal Q-supersymmetry transformations
contains a gauge transformation §gauge(AA) with parameter,

AN =4 XA €2i€1j €5 + h.c., (2.23)

in addition to the other terms specified in (2.16)). To see this, let us evaluate the

supersymmetry commutator on the vector fields WHA,

[6(61)a 6(62)]W;LA - EPFPMA + BHAA
— &7 (L e 0 7V + 2, X2, 10,7 + heel) (2.24)

where the parameters £ and A® are as in (2.16) and (2.23). Now we use the following
equality,

EPE, N =€P0,W, N + 0,6PW,A — 0, (€PW,M) (2.25)

Substituting this identity into (2.24) shows that the £#-dependent terms decompose into
a general coordinate transformation with parameter £#, an abelian gauge transformation
with parameter —§”WMA and a supersymmetry transformation with parameter —%gwm.
Together they constitute a covariant general coordinate transformation with parameter
&F. Consequently the supersymmetry commutator closes on VVMA according to .
We now assume a holomorphic function F(X) of the fields X*, which is homogeneous
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of second degree, i.e.,
F(AX) = MF(X), (2.26)

for any complex parameter A [4 41]. As explained in the previous section, this defines a
chiral multiplet of Weyl weight 2 according to (D.2|). Therefore one can use the highest
component of this multiplet based on F'(X) in the density formula to write down a
consistent action for the vector multiplets in the superconformal background provided by
the Weyl multiplet fields. We will refrain from doing this explicitly here. In section [2.6
we will give the complete Lagrangian for vector multiplets.

We will end this section with some identities and definitions concerning the function
F(X), also called the pre-potential. From one can show that,

F(X)=3iF X",
Fy =FsX™,
Fasr X' =0, (2.27)

where Fy = OF/0X? and similarly for higher derivatives.

As we will see more explicitly in section [2.6] when we introduce the Lagrangian for
vector multiplets, the scalar fields parameterize a so-called Kéahler manifold. This implies
that the metric Ny, that encodes the coupling of the kinetic terms for the scalar fields
can be derived from a scalar function K, called the Kéahler potential,

K =i(XAF)y — XAF)\) = Nys XAXE. (2.28)
The metric Ny, whose inverse will be denoted by NA¥ is then given by,
Nps = Op0s K = —iFps +iFpx . (2.29)

This metric is not of definite sign, due to fact that one of the vector multiplets is a
compensating multiplet. This is familiar from the discussion at the end of section (1.2)).
Before we present the Lagrangian for the vector multiplets, we will first discuss

superconformal hypermultiplets in the next section.
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2.5 Hypermultiplets

Another representation of the superconformal algebra that is important for this thesis is
the hypermultiplet. In this section we give a rather technical synopsis of superconformal
hypermultiplets and their superconformal transformations, following the framework of
[42]. The ny + 1 hypermultiplets are described by 4(ng + 1) real scalars ¢, 2(ng + 1)
positive-chirality spinors (* and 2(nyg + 1) negative-chirality spinors ¢(*. Hence target-
space indices A, B, ... take values 1,2, ...,4(ng+1), and the indices a, 3, ... and &, 3, ...
run from 1 to 2(nyg + 1). The chiral and anti-chiral spinors are related by complex
conjugation (as we are dealing with 2(ng + 1) Majorana spinors) under which indices are
converted according to o <> @. For superconformally invariant Lagrangians, the scalar
fields of the hypermultiplets parametrize a 4(ng + 1)-dimensional hyperk&hler cone [42}-

45]. Such a cone has a homothetic conformal Killing vector x*,
DaxB =647, (2.30)
which, locally, can be expressed in terms of a hyperkahler potential y,
xa=0ax. (2.31)

The cone metric can thus be written as gap = D49gx. This relation does not define
the metric directly, because of the presence of the covariant derivative which contains

the Christoffel connection. We also note the relation,
X = 3948 X" X" (2.32)

Just like the Kéhler metric Ny for the scalar fields of the vector multiplets, the hy-
perkéahler metric gap is not of definite sign, due to fact that one of the hypermultiplets
is a compensating multiplet.

Hyperkahler spaces have three hermitian, complex structures J;; = Jj;, that are

covariantly constant and satisfy the algebra of quaternions,

¢ 7ij ki
Jijap =(J7 aB)" = cireiJ" aB,

J 40 S g =160eli g g 4+ 0 J0D 4 (2.33)

As it turns out, the hyperkéhler potential serves as a Kéahler potential for each of the

complex structures.
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Hyperkéhler cones have SU(2) isometries; the corresponding Killing vectors are ex-

pressed in terms of the complex structures and the homothetic Killing vector,
kig = Ji; P X, (2.34)

from which it follows that,
Dak¥p = —JY 4p. (2.35)

From the above results, it follows that the homothetic Killing vector x“ and the three
SU(2) Killing vectors k%4 are mutually orthogonal,

x*xa =2y, I A I E X kY4 =0. (2.36)

The hypermultiplet fields transform under dilations, associated with the homothetic
Killing vector, and the SU(2) x U(1) transformations of the superconformal group, with
parameters Ap, Agu(2) and Ay(y), respectively,

5¢™ =Ap x* + Asu(e)'n e7F ki
8¢+ 66T 4% ¢ = (3Ap — 3iAuq))C™. (2.37)

Here I' 4“3 denote the connections associated with field-dependent reparametrizations
of the fermions of the form ¢* — S%(¢)(¢?. Naturally the conjugate connections
['4%5 are associated with the reparametrizations ¢* — S%(¢) ¢P. These tangent-space
reparametrizations act on all quantities carrying indices @ and @&. The corresponding
curvatures Rap®s and Rap®j take their values in sp(ny 4 1) = usp(2nu + 2; C). These
curvatures are linearly related to the Riemann curvature R4 gcP of the target space, as
we shall see later.

To define the supersymmetry transformations one needs the notion of quaternionic
vielbeine, which can convert the 4(ng + 1) target-space indices A, B, ... to the tangent-
space indices o, 3,..., &, 3... carried by the fermions. All quantities of interest can be
expressed in terms of these vielbeine. For instance, the scalar fields transform as follows
under supersymmetry,

5™ = 2(yin € + 75 @), (2:38)
where the pseudoreal quantity v/ (4) corresponds to the (4ny + 4) x (4ny + 4) inverse

quaternionic vielbein. Its inverse is the vielbein denoted by V3i® which is needed for
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writing down the supersymmetry transformation of the fermions. So we have,

_,Z&'Vfﬁ =5ij 5&5’
VAV + APV =67 6% (2.39)

As before, SU(2) indices are raised and lowered by complex conjugation. The quater-

nionic vielbeine are covariantly constant, e.g.,
Davfy = 0aviz + Tac®yi —Ta’s %% =0. (2.40)

Observe that it is not necessary to introduce a SU(2) connection here. When coupling to
the superconformal fields, the SU(2) symmetry will be realized locally and a connection
will be provided by the gauge field V,,; of the Weyl multiplet. The fact that the vielbeine
are covariantly constant provides a relation between the Riemann curvature R 4 scP and

the tangent-space curvature Rap®p,
Rapc” % — Rap’svf =0. (2.41)
Both curvatures can actually be written in terms of,
Wagss = 2Rapcep via 75 ’quy P, (2.42)

which appears as the coeflicient of the four-spinor term in the supersymmetric Lagrangian

(cf. @50)).

A typical feature of the superconformal hypermultiplets is that they can be formulated
in terms of local sections A;%(¢) of an Sp(ny+1) xSp(1) bundleﬁ This section is provided
by,

A4;%(9) = x"(0) Vii(9) .- (2.43)

Obviously the vielbeine can be re-obtained from these sections, as we easily derive,

DpA® =Vg, . (2.44)

4The existence of such an associated quaternionic bundle was established based on a general analysis of
quaternion-K&hler manifolds [46]. Here Sp(1) = SU(2) denotes the corresponding R-symmetry subgroup
of the N =2 superconformal group.
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Table 2.3: Weyl and chiral weights
(w and ¢) and fermion chirality (vs5) of

the hypermultiplet fields.

We note a few relevant equations,

gAB DAAia DBAJﬂ =E€ij Qaﬁ 5
9B D4 A D AP =57 GOF (2.45)
which defines two tensors, Q%% and GoB , which are skew symmetric and hermitian,

respectively. Obviously both tensors are covariantly constant. We also note the following

relations,

Gas Vi, =cij Qap Vi’ = gani

=i (2.46)

The first one establishes the fact that the quaternionic vielbein V§; is pseudoreal.

Furthermore we note,
QupAi® DpAP =Leiixp + kijn
Qup DaA;®* DpA,P = 3€i5 948 — Jij AB
A% = (A =70 Gy, A (2.47)

For additional relations we refer to [42].
Let us now introduce the local Q- and S-supersymmetry transformations of the hy-
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permultiplet fields, employing the sections A;*,

JA® +0¢PT 55 A7 =2&(* +26,5,G°PQ, (7,
¢ + 00 T 4% P =PAS € + A" ',
0% + 87T % CF = PAI® ¢ + Ay, (2.48)

The Weyl and chiral weights of these sections and the fermion fields are listed in table
The reader can easily verify that these weight assignments are consistent with the above
supersymmetry transformations. The bosonic part of the covariant derivative on the

scalar and fermion fields is given by,

D¢ = 80" —bux + 3V, e’ kfj" '
DA™ =0, A% — by A + M0 A% 4 0,67 T 4% A,
D, (" =00 — %wuab'Yab ¢ = %buca + %iAuCa + a/t¢A L'4% CB ) (2.49)

where we have now introduced the superconformal gauge fields, in addition to the target-
space connections. The covariantization of the above derivatives with respect to Q- and
S-supersymmetry follows immediately from (2.48). We note that, in contrast to the
vector and the Weyl multiplet, the hypermultiplets form an on-shell representation of
the superconformal algebra. This is inevitable for hypermultiplets based on a finite

number of fields.

2.6 Superconformal Lagrangians

In this section we consider the superconformally invariant Lagrangians for the vector
and hypermultiplets. These Lagrangians can be found in the literature (see, e.g., [
27, 28], [42]), including certain terms quartic in the fermions that we will neglect here.
We have not eliminated any auxiliary fields, so that the results pertain to fully off-
shell couplings, with the exception of the hypermultiplets. In the formula below, we
have substituted the explicit expressions for the dependent gauge fields associated with
Lorentz transformations, conformal boosts and S-supersymmetry written in .

All Lagrangians given below can be viewed as matter Lagrangians in a given supercon-
formal supergravity background. However, for the Lagrangian of the vector multiplets,
one of the vector multiplets acts as a compensating field: its scalar and spinor degrees

of freedom are not physical and only the vector field and the corresponding triplet of
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auxiliary fields remain. Physical fields can be identified that are invariant under scale
transformations and S-supersymmetry, so that effectively we will be dealing with super-
gravity coupled to only n vector supermultiplets. For the hypermultiplet Lagrangian, a
similar rearrangement of degrees of freedom will take place. One of the hypermultiplets
will play the role of a compensator with respect to the local SU(2). The precise choice
of the compensator multiplets is irrelevant, and the resulting theories remain gauge
equivalent. Therefore it is best to not make any particular choice for the compensating
multiplets at this stage and keep the formulae in their most symmetric form. At the
end one may then select fields that are invariant under certain local superconformal
transformations, so that the compensating fields decouple from the Lagrangian, or one
may simply adopt a convenient gauge choice.
We decompose the Lagrangian for the vector multiplets into four separate parts,

Lucctor = L8) 4 L) 4 Lo + Leont - (2.50)
The first term in contains the kinetic terms of the scalar and spinor fields,
e 1LY = — Nan D XA DX — LN,y [0APQ,S + QA PO
— L [FAsr QA PXZQT — Frsr QA PXTQ;T]
+ INas [0 DX Q7 — i PX Ay QF) (2.51)

The kinetic terms for the vector fields and their moment couplings to the tensor and

fermion fields are contained in El(jr)l,

e 1LY = L [y F, NF~ 0% — Fry FEAFHVE]

+ [0 F A = NY O, 075 +hel, (2.52)

where (’);V A is defined by,

- 1. A5 T _ij 1 AR POIE
O;wA = — EIFAZF Q" v, 8 eV — gNAEEzﬂbp VP82

— ANAS X" €0, Y Y the? + ENAS X Ty ey . (2.53)
The reason for writing the terms in (2.52)) in this particular form, including a term

quadratic in the tensors O, has to do with electric/magnetic duality. The first line is of
the form (|1.14]), with the field-dependent matrix Fx replacing the constant parameter 7.
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The second line behaves under electric/magnetic duality in a similar way [9]. We will
discuss electric/magnetic duality in detail in section

The terms associated with the auxiliary fields YijA are given in L,y [47],
e Loux = %NAE (NAFYijF + 3i(Faro Q.7 — Farq riﬁm&'wﬂ))

X (NZEYUE + %i(FZEA QmEQnAEimzfjn — FEEA QiEQjA)) . (254)

Again, this particular combination of terms is convenient in the light of electric/magnetic
duality, as we will discuss in due course. The last part of the Lagrangian describes the

remaining couplings of the vector multiplet fields to conformal supergravity,
e Loons = %K {R + (eflguupaﬂjﬂi,yupp%i _ d’,uiwuj TH 1 + h.c.)}
-K [D + 29, X + %l/;;twuxi}
— (Ba[3e e Bty Do X + 45 it 102 T97| 4 hic.)
_ (KA [%Qi%ﬂ@w/ - QiAXZ} n h.c.) , (2.55)

where K is defined in . In this part of the Lagrangian we suppress terms quartic in

the fermion fields. Note that and do contain terms quartic in the fermion

fields, due to their significance to electric/magnetic duality, as we mentioned before.
We now exhibit the superconformal Lagrangian for hypermultiplets [42] [45],

e Lhyper =2 X [R + (€71 e PP, Y, Dthoi — 1, T THY 5 + h.c.)}
+5X {D + 5% X+ %%W“X"]
- %G&ﬂ DuAiﬂ DHA™ — G&B(Ea@CB + 557?45“) - iWan E&WCE @’Y#CS
— X4 ('YAia [%5‘5‘7“”7?“%1' + 8 = L Pyt T“”“} + h.c.)
|35 Qi CV iz ¢ = § Co9 9 i (B G ¥ + 6 D $5C7)
+ Gap (PP PA Y, — Le e P Gap Py vy AiPD, AT + h.c.] ,
(2.56)

where Wsg5s was defined in (2.42)), and the hyperkéahler potential was introduced in sec-
tion As mentioned in section the target-space geometry is that of a hyperkihler
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cone. This hyperkéhler cone is a cone over a so-called tri-Sasakian manifold [42] [48]. The
latter is a fibration of Sp(1) over a 4(ny — 1)-dimensional quaternion-Kéhler manifold
Q*™1=1)_ Hence the hyperkihler cone can be written as R* x (Sp(1) x Q*(u—1)),

We have now introduced all the necessary ingredients to study the subject of the
thesis: deformations of N = 2 supergravity. We will study these deformations in a
superconformal setting, it is never necessary to gauge-fix the extra conformal symmetries.
In the next chapter we will study general gaugings of N = 2 superconformal gravity
theories based on vector multiplets and hypermultiplets. The vector fields contained in
the vector multiplets will play the role of gauge fields for the internal symmetry group of
the theory. In chapter [f] we will introduce deformations in the form of higher-derivative
couplings. These couplings will be based on vector multiplets, the Weyl multiplet and
possible other multiplets based on chiral multiplets.






CHAPTER

General gauge deformations of N=2
superconformal gravity

As discussed in the introduction of this thesis, in four space-time dimensions, La-
grangians with abelian gauge fields have generically less symmetry than their correspond-
ing equations of motion. The full invariance group of the combined field equations and
Bianchi identities in principle involves a subgroup of the electric/magnetic duality group,
Sp(2n, R) for n vector fields, suitably combined with transformations of the matter fields.
Subgroups of the symmetry group of the Lagrangian can be gauged in the conventional
way by introducing covariant derivatives and covariant field strengths. Introducing gauge
groups which involve elements of the electric/magnetic duality group that do not belong
to the symmetry group of the Lagrangian, are not possible in this way.

To circumvent this problem, one may therefore first convert the Lagrangian by an
electric/magnetic equivalence transformation to a different, but equivalent, Lagrangian
that has the desired gauge group as a symmetry. However, this procedure is cumbersome.
One reason for this is that the gauge fields in the old and in the new electric/magnetic
duality frame are not generically related by local field redefinitions. The effect of chang-
ing the duality frame is therefore not straightforward, and it is by no means trivial to
explicitly obtain the new Lagrangian (see e.g. [49]). A related aspect is that, when the
gauge fields belong to supermultiplets, their relation with other fields of the multiplet
will be affected by changes of the duality frame, unless one simultaneously performs
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corresponding redefinitions of these fields as wellE| The embedding tensor approach
circumvents all these problems by introducing, from the start, both electric and magnetic
gauge fields as well as tensor gauge fields. In this approach the gauge group is not
restricted to a subgroup of the invariance group of the Lagrangian, but it must only
be a subgroup of the symmetry group of field equations and Bianchi identities. The
formalism is straightforwardly applicable to any given Lagrangian, and the gauge group
is only restricted by two group-theoretical constraints on the embedding tensor [9].

In this chapter we study general gaugings of N = 2 superconformal gravity theo-
ries based on vector supermultiplets and hypermultiplets, using the embedding tensor
formalism. This study is facilitated by the fact that the embedding tensor framework
has already been considered for rigid N =2 supersymmetric gauge theories [47], without
paying particular attention to the class of superconformally invariant models. The present
chapter fills this gap by presenting a complete treatment of the embedding tensor method
in the context of locally superconformal N =2 theories.

Theories with N = 2 supersymmetry are special with respect to electric/magnetic
duality. For N =1 supersymmetry the transformations of the matter fields under elec-
tric/magnetic duality, and thus under the gauge group, are not a priori defined, and will
depend on the details of the model. On the other hand, in theories with N > 2 supersym-
metries all of the matter fields are closely linked to the vector fields, because they belong
to common supermultiplets. Theories with N =2 supersymmetries are exceptional in that
they exhibit both of these characteristic features. The complex scalars belonging to the
vector multiplets transform in a well-defined way under electric/magnetic duality so that
the Lagrangian will retain its standard form expressed in terms of a holomorphic function,
while the scalars of the hypermultiplets have no a priori defined transformations under
electric/magnetic duality. Prior to switching on the gauging, the hypermultiplets are
invariant under some rigid symmetry group that is independent of the electric/magnetic
duality group. Once the gauge group has been embedded in the latter group, then one
has to separately specify its embedding into the symmetry group associated with the
hypermultiplets.

The embedding tensor approach of [9] makes use of both electric and magnetic charges
and their corresponding gauge fields. The charges are encoded in terms of an embedding
tensor, which specifies the embedding of the gauge group into the full rigid invariance
group. This embedding tensor is treated as a spurionic object (a quantity that is treated

as a dynamical field, but that is frozen to a constant at the end of the calculation), so

1One way to circumvent this is by describing the scalar fields in terms of sections whose parametriza-
tion is linked to a specific frame (see, for instance, [50]).
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that the electric/magnetic duality structure of the ungauged theory is preserved when
the charges are turned on. Besides introducing a set of dual magnetic gauge fields,
also tensor gauge fields are required transforming in the adjoint representation of the
rigid invariance group. These extra fields carry additional off-shell degrees of freedom,
but the number of physical degrees of freedom remains the same owing to extra gauge
transformations. Prior to [9] it had already been discovered that magnetic charges tend
to be accompanied by tensor fields. An early example of this was presented in [51], and
subsequently more theories with magnetic charges and tensor fields were constructed, for
instance, in [62H54], mostly in the context of abelian gauge groups. The embedding tensor
approach has already been explored for many supersymmetric theories in four space-time
dimensions. For instance, it was successfully applied to N = 4 supergravity [55] and to
N = 8 supergravity [56]. More recently it has also been discussed for N =1 supergravity
[57). In [47] some applications to N =2 supergravity were already presented, under the
assumption that the conformal multiplet calculus [4 27, 28] is applicable. As it turned
out, the results of the embedding tensor approach confirm and/or clarify various previous
results in the literature, especially for abelian gaugings [68, [59]. The embedding tensor
is ideally suited for the study of flux compactifications in string theory (for a review, see
[6]). It has also been used to construct stable de Sitter vacua [60-H62], where the presence
of magnetic charges is crucial [63]. Recently it was successfully employed in a study of
partial breaking of N=2 to N =1 supersymmetry [24] [25].

This chapter is organized as follows. In section we review the relevant features
of electric/magnetic duality in the context of N = 2 superconformal vector multiplets,
and discuss the electric and magnetic gauge fields. Isometries of hypermultiplets are
introduced in a superconformal setting in section Section [3.3] contains a discussion of
the possible gauge transformations, the electric and magnetic charges, and the embedding
tensor. In section 3.4 we describe the introduction of tensor fields, needed in the presence
of general charge assignments. Section deals with the algebra of superconformal
transformations in the presence of a gauging. It presents the extra masslike terms and
the scalar potential in the vector multiplet and hypermultiplet Lagrangians that are
induced by these gaugings.

3.1 Vector multiplets and electric/magnetic duality

In section we introduced vector multiplets and their supersymmetry transformations.

Their corresponding Lagrangian was given in section [2.6] where we already alluded to the
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presence of electric/magnetic duality. In this section we will consider electric/magnetic
duality transformations on vector multiplets. Parts of this discussion will generalize the
analysis in section We will consider an extension of the field representation of the
vector multiplet that will facilitate the treatment of electric/magnetic duality in the
presence of non-zero gauge charges.

In the absence of charged fields, abelian gauge fields WuA appear exclusively through
the field strengths, F; l“,A =2 8[HWV]A. The field equations for these fields and the Bianchi
identities for the field strengths comprise 2(n + 1) equations,

a[uFVP]A =0=0Gupa (3.1)
where,
oL
Gur=lecpg =—— . (3.2)
Iz pvp OF N

From the Lagrangian in (2.52)) we derive the following decomposition for G (and
likewise for G:V A)s

Gron = FasF,” - 210,

v (33)

with O, as in (2.53).

It is convenient to combine the tensors F, #,,A and G,a into a 2(n + 1)-dimensional

A
G — (F“” ) | (3.4

G;,WA

vector,

so that (3.1) reads 8,G, ;™ = 0. Obviously these 2(n+1) equations are invariant under
real 2(n + 1)-dimensional electric/magnetic duality rotations of the tensors G, M,

FA UAE ZAE FZ
— , (3.5)
(GA> <WA2 VAE> <G2>
which generalizes . Half of the rotated tensors can be adopted as new field strengths
defined in terms of new gauge fields, and the Bianchi identities on the remaining tensors
can then be interpreted as field equations belonging to some new Lagrangian expressed
in terms of the new field strengths. In order that such a Lagrangian exists, the real
matrix in must belong to the group Sp(2n + 2;R) [64]. This group consists of real



3.1 Vector multiplets and electric/magnetic duality 47

matrices that leave the skew-symmetric tensor {2,y invariant,

0 1
(2 1), "

The conjugate matrix QMY is defined by QMVQyp = —6Mp. Here we employ an
Sp(2n+2; R) covariant notation for the 2(n+1)-dimensional symplectic indices M, N, .. .,
such that ZM = (ZM Zs). Likewise we use vectors with lower indices according to
Yar = (Ya, Y?®), transforming according to the conjugate representation so that ZM Y;,
is invariant.

The Lagrangian depends on the electric/magnetic duality frame and is therefore not
unique. Different Lagrangians related by electric/magnetic duality lead to equivalent field
equations and thus belong to the same equivalence class. These alternative Lagrangians
remain supersymmetric but because the field strengths (and thus the underlying gauge
fields) have been redefined, the standard relation between the various fields belonging to
the vector supermultiplet, encoded in , is lost. However, upon a suitable redefinition
of the other vector multiplet fields (possibly up to terms that will vanish subject to
equations of motion) this relation can be preserved. It is to be expected that the new
Lagrangian is again encoded in terms of a holomorphic homogeneous function, expressed
in terms of the redefined scalar fields. Just as the Lagrangian changes, this function
will change as well. Hence, different functions F'(X) can belong to the same equivalence
class. The new function is such that the vector XM = (XA F,) transforms under

electric/magnetic duality according to,

XA XA UAZ ZA% Xz
— | . | = . (3.7)
FA FA WAZ VAE FE
The new function F' ()~( ) of the new scalars XA follows from integration of lb and takes
the form,
F(X)=F(X) - 3XAFA(X) + L(UTW) s XAX®
+ UV + WT2)\EXAF(X) + 3(ZTV)A Py (X) Fe(X). (3.8)
There are no integration constants because the function must remain homogeneous of

second degree.
In general it is not easy to determine F(X) from (3.8)) as it involves the inversion of
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XA = UM X 4 ZAPFy(X). As we emphasized in the beginning of this chapter, this is
the reason why one prefers to avoid changing the electric/magnetic duality frame. The
duality transformations on higher derivatives of F(X) follow by differentiation and we

note the results,

Frs(X) = (VAT Fre + Waz) [ST1Es,

Frsr(X) =Feao [ST'FA[S %0 [57')%r, (3.9)
where,
oXA
Sty = X UMy, + 27T Fry, . (3.10)

The symmetric real matrix Nay that we introduced in (2.29) transforms under elec-

tric/magnetic duality according to,

Nas(X,X) = Npa [S7Y A [S 12y (3.11)

To determine the action of the dualities on the fermion fields, we consider supersym-
metry transformations of the symplectic vector XM = (XA Fy,), according to (2.20),
which can be written as §X™ = €, thus defining an Sp(2n+2; R) covariant fermionic

QA
QM = (F 0 E) : (3.12)
AX 844

Complex conjugation leads to a second vector, Q'™ of opposite chirality. From (3.12))
one derives that, under electric/magnetic duality,

vector, ;M

QA =840, (3.13)
Another useful transformation rule that one can now check is,

=0, - [S7EA. (3.14)

pnvA /IVZ
Note the identity,

Qun XN =0, (3.15)

which implies that supersymmetry variations of ;M are subject to Quy XM 60,V =0
as well, up to terms quadratic in the vector multiplet spinors. This observation explains

some of the identities that we will encounter in due course, especially in the next chapter.
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The supersymmetry transformation of ;™ also follows from (2.20)), and we decom-

pose it into the following form,
6QiM = 2$XM61‘ + %’}/”VG;VMEZ‘]‘ ¢ + ZijMEj + 2XM771' . (316)

Here the quantities ZijM are defined by,

YA
ZiM = ( T > , (3.17)
Frs V" — 2 Fasr Q2Q;0

which suggests that ZijM transforms under electric/magnetic duality as a symplectic
vector. However, this is only possible provided we impose a pseudo-reality condition
on Zijpn. As one can check, this constraint can be understood as the result of the field
equation for Y;;* associated with the Lagrangian presented in the section

From we also find a symplectic array of anti-selfdual supercovariant field

strengths,
. G A
G M= (f‘ ) : (3.18)

GMIJA

[

where G;VA = [ M with F’H_VA defined in (2.21)), and C;’;VA is defined by,

Grn = FasFp,” — tFasr 79,9, €7 . (3.19)

A similar symplectic vector of the field strengths was given in (3.3) and by comparing
with (3.4)) we can make the identification (which generalizes (2.21))),

G =GN + G M = 9P (M + Y XM — et (Y M + 4,7 XM)

— i(XM Tuyij Eij —|—XM ijij Eij). (320)

The homogeneity of F'(X) is crucial for deriving these results. The relation shows
that also G;VM transforms as a symplectic vector under electric/magnetic duality.

The field strengths G, M satisfy a Bianchi identity. For G,,* = F},,* this is obvious,
and it implies that FWA can be expressed in terms of a vector potential WHA. For the
field strengths G, A the Bianchi identity is provided by the field equation for the vector
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fields This is similar to the situation with ZijM , where the pseudo-reality of
Zija is implied by the field equation of YijA. From the fact that the field strengths
G are subject to a Bianchi identity, it follows that they can be expressed in terms of
magnetic duals W,x. Hence we introduce these magnetic gauge fields, whose role will
eventually become clear in the context of the embedding tensor formalism which will be
introduced in due courseﬂ Together with the electric gauge fields WuA, the magnetic
duals constitute a symplectic vector, W, = (WMA,W#A), where G,,,M = 28[HW,,]M.
As we shall see, this relationship is, however, not exact and the identification is subject
to terms that depend on equations of motion. The supersymmetry transformations of

W#M are conjectured to take a duality covariant form,
SW, M = & (y, M + 29, X M) + e (v, UM 4+ 249, I XM (3.21)

Observe that, with this transformation rule, the field strengths GWM are supercovari-
ant. As mentioned above, G A and 29, W, are not identical! This can be seen by
calculating the supersymmetry variation of 29, W,s and showing that it only coincides
with the supersymmetry variation of up to equations of motion.

The consistency, up to equations of motion, of introducing dual gauge fields W,z
is also confirmed when considering the closure of the supersymmetry algebra, based on
. Although we started with an off-shell definition of the vector multiplets, so that
all superconformal transformations will close under commutation without the use of field
equations, this is not necessarily the case for the newly introduced gauge field W .
The validity of on W, can be derived in direct analogy with the calculation of
the commutation relation on W#A in , upon replacing G,a by 20, W,ja. The
abelian gauge transformation dgauge contained in the commutation relation acts on both
the electric and the magnetic gauge fields, and its parameter is given by (compare with
£23)),

AM = 4XM €2i61j Eij + h.c.. (322)

We now turn once more to the Lagrangian for the vector multiplets (2.50). The
kinetic terms of the scalar and spinor fields (2.51]) can now be rewritten in a symplectic

2Tt should be obvious that also the field strengths G‘MUM satisfy a Bianchi-type identity of a more
complicated form. Identities of this type have been presented in [27] for GHVA.

3In the presence of gauge charges in the context of embedding tensor formalism, the Lagrangian can
depend simultaneously on electric and magnetic gauge fields, as is described in later sections.
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form,

e L) — — iy DL XM DEXN 4+ Loy, y [V PQ,N — QM POiN]
- %IQMN [’Q/;Hi'pXM’yM QZ‘N — QZM@XM’)/H QiN] . (323)

Also the Kihler potential can be written in a symplectic form, K = iQ;y XM XN,
The four parts of the Lagrangian are each separately consistent with electric/magnetic
duality, as was already hinted toEI We stress that this is not a invariance property.
As mentioned before, the electric/magnetic duality transformations define equivalence
classes of Lagrangians. A subgroup thereof may constitute an invariance of the theory,
meaning that the Lagrangian and its underlying function F(X) do not change [4, [65].
More specifically, an invariance implies,

F(X) = F(X), (3.24)

so that the result of the duality leads to a Lagrangian based on F'(X' ) which is identical to
the original Lagrangian. Because F(X) # F(X), as is obvious from , F(X) is not an
invariant function. Instead the above equation implies that the substitution X* — XA
into the function F'(X) and its derivatives, induces precisely the duality transformationsﬂ
For example, we obtain,

FA(X) =VATFy(X) + Wae X®,
Fys(X) = (VA" Fre + Waz) [S71%s,
Fysr(X) =Fepo [STEA ST ST (3.25)

In section we are precisely interested in this subclass of electric/magnetic duality
transformations, as these are the ones that can be gauged.

This concludes the discussion about the transformation of vector multiplets under
electric/magnetic duality. In the next section we will turn to the isometries of supercon-
formal hypermultiplets.

4We note that (2.52)) can be written as,
1,2 1.7 oA STn— SA (— =~ —A
e L) = L[FAG s +he] —i[07H s NZNGY,, — Far i) +hel.
Modulo the field equation of the vector fields, the first term can be written as a total derivative, whereas
the second term is manifestly consistent with electric/magnetic duality as follows from (3.11)), (3.25)) and
(13.14).
This discussion can be compared to the discussion below (|1.22)).



52 General gauge deformations of N=2 superconformal gravity

3.2 Isometries of hyperkahler cones

As mentioned in the beginning of this chapter, hypermultiplets have no a priori defined
transformations under electric/magnetic duality. Before switching on the gauging, the
hypermultiplets are invariant under some rigid symmetry group that is independent of
the electric/magnetic duality group. In section we will consider general gaugings
of the invariance group of the electric/magnetic dualities and the symmetry group of
the hypermultiplets. Once the gauge group has been embedded in the electric/magnetic
duality group, then one has to separately specify its embedding into the symmetry group
associated with the hypermultiplets.

In this section we will discuss possible isometries of hyperkahler cones that commute
with supersymmetry. Again, we follow the framework of [42]. The isometries are charac-
terized by Killing vectors k“,(¢), labeled by indices m, n, p, etcetera. They generate a
group of motions, denoted by Ghyper, that leaves the complex structures invariant so that
they are called tri-holomorphic. Furthermore, they commute with SU(2) R-symmetry

and dilatations. These three properties are reflected in the following equations,

kS m 0T ap — 2004k m J¥ 10 =0,
kij” Dpk?m = Dk kP m = I 5 kP,
XAkt =0. (3.26)
Such tri-holomorphic isometries can be gauged by coupling to the (electric and/or mag-
netic) gauge fields belonging to the vector multiplets, as we shall discuss in due course.

The structure constants of Gpyper are denoted by fmaP, and follow from the Lie bracket

relation,
kP 0pk?y — kB 0k m = — fon® K45 . (3.27)

We note that derivatives of Killing vectors are constrained by the Killing equation, which

induces constraints on multiple derivatives, as is shown below,
Dakp+ Dpka =0, DaDpke = Rpcap k? . (3.28)
The infinitesimal transformations act on the hypermultiplet fields according to,

3¢t =g A" kA (0),
5C* + 0T 4% P =g A™ tn3(0) ¢°, (3.29)
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where we introduced a generic coupling constant g and ¢-dependent matrices tm®3(¢)
which take values in sp(ng + 1), and are proportional to Dak®,,. Explicit definitions

will be given later, but we already note that they satisfy the following relations,

Datm®s = Rap®s k% m
[tm, tn}aﬁ menp (tp)ag —l—kAm k’Bn RABaﬂ . (3.30)

This result is consistent with the Jacobi identity. The above results can be summa-
rized by noting that the linear combinations, Xn%g = 64 kA D4 — tm“s, close under
commutation according toﬂ

[Xm7Xn]a/3 = _fmnp paﬁ . (331)

One can show that the curl of J% 45 kB, vanishes, so that these vectors can be solved
in terms of the derivative of the so-called Killing potentials, or moment maps, denoted by
1% . On the hyperkihler cone there are no integration constants, and one can explicitly
determine these potentials,

P = =3k g kAL (3.32)
This can easily be verified by showing that Oau*n, = J% 45k, making use of
and the Killing equation given in . Using also one derives the so-called
equivariance condition,

JijAB kAm an = _fmnp Nijp . (333)

The Killing potentials scale with weight w = 2 under dilatations and transform covari-

antly under the isometries and SU(2) transformations,

5/1'ijm = (g A" kAn + ASU(Q)km Slm kklA) aA:U'?ﬁ]
=(—gA" famP p, +2 ASU(2)(ik Hj)km) . (3.34)

An expression for the generators ¢, associated with the tri-holomorphic Killing vectors
follows from requiring the invariance of the quaternionic vielbeine V§; up to a target-
space rotation,

(tm)% = 3V 75" Dpk*m . (3.35)

6To be precise, the X are the generators acting of ¢-dependent tangent-space tensors (provided the
matrix tm is replaced by the appropriate generator for the corresponding tensor representation).
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The invariance implies that target-space scalars satisfy algebraic identities such as,

tm’Y& G:,ﬁ + thIB Gd'y = t_m’Y[& QB]:Y = 0 5 (336)

which confirm that the matrices ¢ take values in sp(ny + 1). Furthermore we note

the relations,

K Ve =k Dadi® = tn5 A,
Hijm = — %kAij kAm = _%Qa,ﬁ Aia th.YAjA/ . (337)

For a more complete list of identities we refer to [42].

3.3 Gauge invariance, electric and magnetic charges,

and the embedding tensor

Possible gauge groups must be embedded into the rigid invariance group Gyigiqa of the
theory. Since we consider both vector and hypermultiplets, we are in principle dealing
with a product group, Giigia = Gsymp X Ghyper, Where Ggymp refers to the invariance
group of the electric/magnetic dualities, which acts exclusively on the vector multiplets,
and Gpyper refers to the possible invariance group of the hypermultiplet sector generated
by the tri-holomorphic Killing vectors. Here we first concentrate on the gauge group
embedded into Geymp, which constitutes a subgroup of the electric/magnetic duality
group Sp(2n+2;R) related to the matrices considered in . The corresponding gauge
group generators thus take the form of (2n + 2)-by-(2n + 2) matrices Ths. Since we
are assuming the presence of both electric and magnetic gauge fields, these generators
decompose according to Ty = (T, T?). Obviously the gauge-group generators Thsn’
must generate a subalgebra of the Lie algebra associated with Sp(2n + 2;R), which
implies,

Tavin® Qpig =0, (3.38)

or, in components,

Trn” = —Tux Taas) = 0 = oM. (3.39)
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Denoting the gauge group parameters by A | infinitesimal variations of generic 2(n+1)-
dimensional Sp(2n + 2;R) vectors Y and Z), thus take the form,

SYM = —gAN Ty pMY P, 62y = gAY Ty Zp, (3.40)

where g denotes a universal gauge coupling constantﬂ Covariant derivatives can easily
be constructed, and readﬁ

DYM =9, YM 4+ gW, N TnpM Y?
=0, YM £ gW ATApM YT + gWa T pM YT, (3.41)

and similarly for D,,Z;. The gauge fields then transform according to,
SW,M =D AM = 9,AM + gTp™ W, A9 . (3.42)

Note that, for constant parameters AM, W, should transform according to (3.40). Con-
sistency with ([3.42) then requires that Ty is antisymmetric in [M N]. Nevertheless,
as we shall see, antisymmetry of Thsn* is not necessary in the general case. Rather, it

is sufficient that the Thyn? are subject to the so-called representation constraint [9)],

TWUED) —

2T(FA)E _ TZAF

Tiun® Qpyg =0 = ’ (3.43)

Tiasr) =0,
2Tirn" = T=ar .

which does not imply antisymmetry of Thyy? in [M, N]. However, for the conventional
electric gaugings, where the magnetic gauge fields 4,5 decouple and where TANP =0
and Th>"' =0, does imply that Trs is antisymmetric in [T'x].

Note that full covariance of the derivative defined in has not yet been estab-
lished to order g2, since we have not discussed the closure of the gauge group generators.
This point will be addressed later in this section.

"The generators follow by expanding the symplectic matrix appearing in and (3.7) about
the identity. Comparing with (3.40)), one establishes the correspondence, Uty =~ 6y — gAM T2,
VAZ & 6a% + gAM T p 2, 285 =~ —gAM Ty A2, Was & —gAM Tarps.

8In this section and in section we suppress the covariantization with respect to superconformal
symmetries. Starting with section the derivative D,, will indicate covariantization with respect to

Lorentz, dilatation, and chiral symmetries, and with the newly introduced gauge symmetries associated
with the fields W, M.
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Let us first consider some generic features of the infinitesimal transformations ([3.40)).
Combining the two equations (3.8) and (3.24) leads to an expression for F(X) — F(X),
which, for an infinitesimal symmetry transformation 6 X* = —g AM Ty ™ XV, yields,

FpoXh = —1gAM (TM AsXAXE 4 TMAEFAFg) . (3.44)
Substituting the expression for §X* then leads to the condition [4],
Tun9Qpo XN XP = Tyas XA XT — 2Ty a " XA Fy — Ty A FAFx = 0. (3.45)

which must hold for general X*. The solution of this condition will specify all continuous
symmetries of the vector Lagrangian (2.50). There are two more useful identities that
follow from it. First one takes the derivative of (3.45) with respect to X4,

Truna XY = Fas Tun™ X", (3.46)
and subsequently applies a supersymmetry transformation leading to,
TaunauY = Fas Tun =N + Fasr Q% Tun" X7V (3.47)

The latter two identities show that the gauge covariantization of the kinetic term for the
scalars and spinors in will not involve Thsas.

By introducing a vector UM = (U”, FysU?¥), it is possible to cast in the
symplectically covariant form, Th;n? rPQX NUP = 0. This equation can be rewritten
by making use of the representation constraint . Note, for instance, the following
identities,

Touny” XMUN =0,
Tun® Qpg XMXNXT =i Ty n® XMXN Nag X =0. (3.48)

As a side remark we note that the Killing potential (or moment map) associated with
the isometries considered above, is related to,

Vpnr = gTMNQQPQXNXP. (349)

Its derivative takes the form dyvys = iNax X, as follows from making use of (3.46)).
Finally we return to the gauge transformations of the auxiliary fields YijA, which can
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be derived by requiring that £,y written in (2.54) is gauge invariant. A straightforward
calculation leads to the following result,

§Yit = —1gAM TN (ZiN + einejy 28 (3.50)
where Z;;M was defined in (3.17). Note that this result is in accord with the elec-
tric/magnetic dualities suggested for ZijM .

In the remainder of this section we consider the gauge group embedding in more detail.
The embedding into the rigid invariance group Gyigia = Gsymp X Ghyper is encoded in
a so-called embedding tensor. This tensor must be specified separately for the vector

multiplet and for the hypermultiplet sector, so that we have the following definitions,

P a P
Tun" =0nm"tan'

EAv =00k, Tu®s =0Ou™tns, (3.51)

where the ¢, denote the generators of Ggymyp, and k4., and t, the tri-holomorphic Killing
vectors and the corresponding matrices of the group Guyper- Because these generators
belong to different groups and act on different multiplets, they carry different indices
(namely, indices M, N, ... for the vector multiplets and indices a, 8, . .. for the hypermul-
tiplets). The embedding tensor can be further decomposed into electric and magnetic
components, according to 3,2 = (0,2,0%2), and O™ = (©,™,0*™). With these
definitions, we can now also present the gauge-covariant derivatives on the hypermultiplet
fields (we remind the reader that in this section and in the next one, we suppress the

covariantization with respect to the superconformal symmetries),

D¢ = 0,0 — gW, Mk,
DMA,‘& :@LAZ-‘* - gWHM TMQBAiﬁ 5
D¢ =0,C* + 0,0 Ta% ¢F — gW,MT%5¢P . (3.52)

In particular the covariant derivative of the spinor field is not entirely straightforward, in
view of the fact that matrices tm“ s depend on the fields ¢*. However, because the Jacobi
identity is satisfied on these matrices, there are no further complications associated with
this feature (see (3.30)).

The gauge group generators Tjs should close under commutation for both repre-

sentations. This leads to two equations that depend quadratically on the embedding
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tensor [66],

fabSOn2 ON® + (ta)NF O1O0p° =0,

fron? O™ ON" + (ta)nT ©07OpP =0, (3.53)

where f,,° and fmnP are the structure constants of Ggymp and Guyper, respectivelyﬂ The

above equations imply that the gauge algebra generators close according to,
[T, Tn] = —Tun" Tp , kP v0pk? y — kP N0k yr = Tun" ke, (3.54)

so that the structure constants of the gauge group are contained in
~Tunt = =032 (ta)nT, as is required by the gauge group embedding in Gsymp-
This observation was in fact used as input when deriving . Note, however, that
the gauge group structure constants are not necessarily identical to —Ta;n*, as they
may differ by terms that vanish upon contraction with the embedding tensor ©p? or
©p™. This explains why the Th ~T are not necessarily antisymmetric in M, N.

Here and henceforth, the embedding tensor will be regarded as a spurionic object
which we allow to transform under the rigid invariance group Gyigida, so that the La-
grangian and transformation rules will remain formally invariant. Therefore the embed-
ding tensor can be assigned to a (not necessarily irreducible) representation of Gyigid.
Eventually the embedding tensor will be frozen to a constant, so that the invariance
under Gyigig will be broken. In this context, it is relevant to note that (3.53)) implies
that the embedding tensor is invariant under the gauge group. The gauge group is thus
contained in the corresponding stability subgroup of Gyigiq. From symmetrizing the first

constraint (3.53)) in (M N) and making use of the linear conditions ([3.43)) and (3.38]), one

further derives that QMY ©,,2ON" (t,) p¥ must vanish. Hence,
OMN Q208" = 0 = ©0rke, Pl =0, (3.55)

which implies that the charges in the vector multiplet sector are mutually local, so that
an electric/magnetic duality must exist that converts all the charges to electric ones.
Likewise, one derives from the second constraint ((3.53)),

QMN @) 20N™ = 0 «— Orke,m =0, (3.56)

9For convenience we have ignored that the matrices tm depend on the scalar fields (see (3.31)) and the
preceding text).
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which implies that the charges in the hypermultiplet sector are mutually local with the
vector multiplet charges. It is clear that gauge fields that couple exclusively to charges
associated to hypermultiplets are not restricted by and . Their corresponding
gauge groups are necessarily abelian. To ensure that those charges are also mutually local,

we must impose an additional constraint,
QMN @ymON" = 0 — ©rme, =0, (3.57)

which is obviously not related to the closure of the gauge algebra. As it turns out, the
relations (3.59)), (3.56) and (3.57) play an crucial role when discussing the Lagrangian.
Generically only a subset of the gauge fields will be involved in the gauging, so that

the embedding tensor will project out a restricted set of (linear combinations of) gauge
fields; the rank of the tensor determines the dimension of the gauge group, up to possible
central extensions associated with abelian factors.

As stressed before, the generators Th;n’ are not required to be antisymmetric in

M, N. The symmetric part can be written as follows,
Touny” =27 dayn (3.58)
with,

davin = (ta) i’ Qnp,
ZAa — l@Aa ,
zM2 = 1gMNg s — { 21 (3.59)
Zp% = —350,°,

so that d, prv defines an Sp(2n + 2, R)-invariant tensor symmetric in (M N). Likewise

one can introduce a similar tensor ZM ™ which is relevant for the hypermultiplets,
ZAm — l@Am )
ZMm = LoMNgm  —, 2 (3.60)
Zp\™ = _%@Am .

Subsequently we note that the constraints (3.55)), (3.56|) and (3.57) can now be written

as,

ZM’a@Mb:O:ZM’a @Mm, ZM’m @Ma:O:ZM’m @Mn. (361)

This implies that Z™2 and ZM'™ vanish when contracted with the gauge-group genera-

tors Ths. Because of these constraints, only the antisymmetric part of Thsn* will appear
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in the commutation relation (3.54). What remains is to consider the Jacobi identity on
the generators Tjs. Explicit calculation based on (3.54)) leads to,

Tinp " Top™ = 32" dapiy Trg) ™ (3.62)
which shows that the Jacobi identity holds up to terms that vanish upon contraction

with the embedding tensor. In the following section we will describe how to introduce a

consistent gauging in this non-standard situation.

3.4 The gauge hierarchy

To compensate for the lack of closure noted in the previous section, and, at the same
time, to avoid unwanted degrees of freedom, the strategy is to introduce an extra gauge
invariance for the gauge fields, in addition to the usual non-abelian gauge transforma-
tions,

WM =D A — g[ZM2 2.+ 2V E, ], (3.63)

where the AM are the gauge transformation parameters and the covariant derivative
reads, D, AM = 9,AM + g Tpo™ W,PA. The transformations proportional to Z,, and
E, m enable one to gauge away those vector fields that are in the sector where the Jacobi
identity is not satisfied (this sector is perpendicular to the embedding tensor by virtue
of (3.61)). Note that the covariant derivative is invariant under the transformations
parametrized by Z,, and Z,m, because of the contraction of the gauge fields WHM
with the generators T),. However, gauge transformations do no longer form a group by

themselves, as is reflected in the commutation relation,

[0(A1),0(A2)] = 0(A3) 4+ 6(Zas) (3.64)
where,
AsM =g TinpMATAY
Espa =danp(AY DAY — AYD,AT), (3.65)
with Th,® = —03,5f.? the gauge group generators in the adjoint representation of

Ggymp- As it turns out, this commutation relation forms the beginning of a full hierarchy
of vector and tensor gauge fields that form a closed algebra [67, [68]. Other commutators
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involving §(A), §(Z,) and §(Z,) vanish on the gauge fields W,*, so that those can only
be uncovered for the higher-rank tensor gauge fields that we will introduce shortly.
Non-abelian field strengths associated with the gauge fields WHM follow from the
Ricci identity, [D,, D,] = —g]—'WM T, and depend only on the antisymmetric part of
Tunt,
Fu™t = 0, WM = 0,W,M 4 g Tinp ™ W,NW,P (3.66)

Because of the lack of closure expressed by (3.62)), these field strengths do not satisfy the
Palatini identity,

5‘FIWM = 2D[M(WVV]M —2 T(PQ)M W[MP ‘;WV}Q ) (3.67)

under arbitrary variations (5WMM , because of the last term, which cancels upon mul-
tiplication with the generators Ths. The result (3.67) shows in particular that ]-'WM
transforms under the combined gauge transformations (3.63) as,

6F ™ =g A" Tnp™ F, N — 29 ZM2 (D2 + dapg Wi,T W, 9)
=29 2" DBy, (3.68)

and is therefore not covariant. In deriving this one makes use of the fact that the tensors
ZM:a and ZM™ are invariant under the gauge group. The covariant derivative on Z,, is
defined by D,Z,. = 0uZ0a — gVV,LM TaaP=00, and similarly for Z,m. These tensor fields
belong to the adjoint representation of the group Ggymp.-

The standard strategy is therefore to define modified field strengths,
Huw™ = Fu™ +9[ZM° Buya + ZM™ By m] (3.69)

by introducing new tensor fields B, . and B, m with suitably chosen gauge transfor-
mation rules, so that covariant results are obtained. This implies that the variation
of the tensor fields should in any case absorb the unwanted non-covariant terms in
. At this point we recall that the invariance transformations in the ungauged
case transform on the field strengths G, , defined in , according to a subgroup of
Sp(2n + 2,R) (cf. ) The field strengths G,,,™ consist of the abelian field strengths
FWA and the dual field strengths G, a. The latter were decomposed in in the
form G;I/A = Fis FM_UE —2i0
interactions, the abelian field strengths Fl“,A should now be replaced by ’HWA, defined

- Obviously, in the presence of the non-abelian gauge
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in (3.69). Hence it is natural to define new covariant field strengths according to,

A
G = <H’“’ ) , (3.70)

g;J,VA

with,

- A - A
guu :HNV ’

Grvn = Fax " - 210, - (3.71)

Just as in section there exist corresponding supercovariant field strengths QAWM that
will appear in the supersymmetry transformations of the vector multiplet fermion fields.
Those will be discussed in the next section. As before, the field strengths QAWM and
QWM will only differ by fermionic bilinears and by terms proportional to the tensor field
of the Weyl multiplet.

Following [9] we subsequently introduce the following transformation rule for B,,,, and
B,um (contracted with ZMa and ZM™ respectively, because only these combinations

will appear in the Lagrangian),

ZM2 6By s =222 (DyEyja + danp W N oW, ") — 2T (np) M AP GLY
ZM ™ 5By m =2 ZM ™ Dy - (3.72)

Note that B,,, , has variations proportional to =, through the term 6W, (cf. (3.63)).
As a result of (3.72]) the modified field strengths (3.69)) are invariant under tensor gauge
transformations. Under the vector gauge transformations we derive the following result,

6G,, N = —gA"Tpn G, N — g AT p™ (G, — Ho)r

0Gn = =9 A Trna G — g Fas ATT p™ (G, — Hyp)r
(G — M) =g A’ (T pp — TV p™ Frn) (G — Hp)r - (3.73)
Hence 6G,,M = —gAPTpNM G, N, just as the variation of the abelian field strengths

G,,™ in the absence of charges, up to terms proportional to oA (Guv—Huw)a. According
to [9], the latter terms represent a set of field equations, as we will verify later (cf. (3.98)),
and so the last equation of expresses the well-known fact that, under a symmetry,
field equations transform into field equations. As a result the gauge algebra on the tensors
QWM closes according to , up to the same field equations.
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In order that the Lagrangians for the vector multiplets (2.50) and the hypermultiplets
(2.56)) become invariant under vector and tensor gauge transformations, we have to make
a number of changes. First of all, we replace the covariant derivatives on the scalars and

spinors by gauge-covariant derivatives. This ensures the invariance of 51((1317 Lecont and

Lhyper, given in (2.51)), (2.55) and (2.56]), respectively. The Lagrangian for the auxiliary

fields (2.54) is already gauge-invariant. In the following we therefore concentrate on £1(fr)l
(2.52) which depends on the abelian field strengths F, ,“,A. These abelian field-strengths

are now replaced by ”H,WA, so that,

: acvector
gwAzleg vpo “aq; A" (374)
f 1244 aHpo'A
The Lagrangian El(jr)l therefore reads,
e L = i [Fan MM Y — Fas W H )
+ [0 HA = NYO, 07" s +hel. (3.75)

It is separately invariant under the tensor gauge transformations, because the tensors
HWA are invariant under those transformations.

However, the Lagrangian is not invariant under the vector gauge transforma-
tions. To establish this, one has to take into account that also the other fields of the
vector multiplets transform under the gauge group. For instance, there are contributions
from infinitesimal gauge transformations of Fx and O, A, which follow from and

@19,

§Fas = gAM (= Tagas +2Taa" Feyr + FarTu' = Fzs)

00,0 :gAMO,:yz (Taa™ + Tas ™" Fra) - (3.76)

Nevertheless, it was shown in [9] that this is still not sufficient for gauge invariance, and

it is necessary to introduce an additional, universal, term to the Lagrangian, equal to,
Liop = 5ig e (0 Buya + O Byym)
X (2 8pWo'A + gTMNA WpMWaN - igGAbeab - ig@Aano' n)
+ Liger o Topn A WMWY (0,W,4 + LgTpo  W,P W, 9)

+ Lige" P Ty v WMWY (0,Won + 29TpoaW, W, 9) . (3.77)
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The first term represents a topological coupling of the anti-symmetric tensor fields with
the magnetic gauge fields; the last two terms are a generalization of the Chern-Simons-like
terms that were first found in [28].

Under arbitrary variations of the vector and tensor fields, and yield (up
to total derivative terms),

e’ (ijﬁl + Mtop) = — lig (gTm M —ptm M) ©,412(Byya — 2dapqW, " 6W,9)
_ ilg (g+,uuM _ H+;LVM) @Mm 5B/;ym
+ig T MOy N DWW N + hee. (3.78)
Under the tensor gauge transformations this variation becomes equal to,

e N (SLE) + 6L1op) = igH M [01°DyEra + On™DyEum] + hec.. (3.79)

We already demonstrated that Ll(jr)l is separately invariant under these transformations,
so that the above terms originate exclusively from the variation of L.,. The expression
turns out to be equal to a total derivative. To see this, note that the embedding
tensor is gauge invariant. Also there exists a Bianchi identity,

Dy Hop™ = 39[Z™* Hywpa + ZM™ Hynpm] - (3.80)
Here the gauge-covariant field strengths of the tensor fields are defined as,

Hywpa =3DByy)a + 6dane W™ (0, W) + 59T1rs) W W% + (G~ H)up) )
Huypm :3D[;LBVp}m y (381)

where D, B, pa = 0,Bvpa — gVVuMTMabBW,b, and likewise for D, B, ,m. The fully gauge-

covariant derivative of ’HWM takes the form,

D, Huw™ =0, Hu™ + gW," Ton™ G + gW, " Tnp™ (G — H) ™
=0 Hu™ + W, Ton™ H,u N +29W, 7 ZM2d,pn (G — H)™ . (3.82)
Observe that the covariantization proportional to (G—H ), " is not generated by partially
integrating the right-hand side of , but it vanishes upon contraction with the
embedding tensor. So does the right-hand side of 7 so that is indeed a
total derivative.
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As was mentioned before, the combined gauge invariance of the vector and tensor
gauge fields are important to ensure that the number of physical degrees of freedom
will not change by the introduction of the magnetic vector gauge fields and the tensor
gauge fields [09]. The combined gauge algebra is consistent for the tensor fields upon
projection with the embedding tensor, which is sufficient as the action depends only on
these projected fields. If this were not the case, new tensor fields of higher rank would
have been required [67]. The projection with the embedding tensor will determine in
which fields the physical degrees of freedom can reside. The precise way in which the
number of physical degrees is described of freedom is therefore rather subtle. From
it is indeed clear that the components of the tensor fields that are projected to zero by
multiplication with @42 or @A™, are simply not present in the action. Their absence
can be regarded as the result of an additional gauge invariance. In addition, there
are transformations of the tensor fields linear in (G — H), ., that leave the Lagrangian
invariant [47, [56],

0%6B,,. =AM (G~ H)f 5 + hec.,
®Aa§Bp,Va = A;AE)/J[# (g - H)v]pE ) (383)

where A} is an arbitrary complex parameter, and Ag =P u is real and traceless. Similar
transformations exists for variations contracted with ©A™m. Often these transformations
emerge when verifying the validity of the supersymmetry algebra.

A similar situation arises with the magnetic gauge fields W,5. Under variations of

the gauge fields W, ™ one derives,
SLE) + 6Luop = 2177 D,y Goo™ Qs oW, Y (3.84)

up to a total derivative and up to terms that vanish as a result of the field equation for

B, 5. Substituting (3.80) we can rewrite (3.84) as follows,

SLE) + 6L1op = 51677 [ = Dy Gpon SW,
+ 2 9(Hupra O™ + Hupom O™ W] - (3.85)

Because the minimal coupling of the gauge fields to matter fields is always proportional
to the embedding tensor, the full Lagrangian does not change under variations of the
magnetic gauge fields that are projected to zero by the embedding tensor components
©42 or @A™ up to terms that are generated by the variations of the tensor fields through
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the ‘universal’ variation, 6B 2 = ZdapQW[MP(FW,,]Q.
All these gauge symmetries have a role to play in balancing the degrees of freedom.
Observe that not all these symmetries have a bearing on the dynamical modes of the

theory as they also act on fields that only play an auxiliary role.

3.5 The superconformal algebra and the Lagrangian
with general gaugings

When switching on a gauging there are several qualitative changes that are of interest.
First of all, the superconformal algebra will no longer be realized off-shell (i.e. without
using the equations of motion) in the vector multiplet sector, at least for gaugings
with magnetic charges. Only for the Weyl multiplet the closure remains realized off-
shell. Naturally a generic gauging induces the presence of vector multiplet fields into
the hypermultiplet supersymmetry transformations. It is therefore not surprising that
also the vector multiplet transformations will generically acquire terms proportional to
the hypermultiplet fields. In this section we will present the full transformation rules
that include new terms of order g, and subsequently we will re-establish the closure for
general gaugings. As it turns out, additional symmetries such as , are relevant
for the closure. This feature is well known from previous applications of the embedding
tensor formalism.

A second, not unrelated, feature is that the Lagrangian must be modified by including
masslike terms for the fermions proportional to g, and a scalar potential proportional to
g2. The explicit expressions for these terms, which are relevant for many applications,
will be presented at the end of this section. These modifications are familiar from N =2
supergravity theories with purely electric charges [27) 28], [42].

Rigid N =2 supersymmetric theories with both electric and magnetic charges, have
been presented in [47], and it remains to complete these results in a fully superconformal
setting. It is clear that the modification of the results derived in [47] must be relatively
minor. The supersymmetry transformations of the matter fields will now become covari-
ant with respect to the superconformal symmetries, while at the same time they should
remain in accord with the known results for rigid theories. Modifications that supersede
previous work will therefore mainly involve terms proportional to the gravitino fields.
The most conspicuous ones are those appearing in the supersymmetry transformations
of the tensor fields B,,,. and Bym.
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To exhibit this in more detail, let us first present the full Q- and S-supersymmetry
transformations for the hypermultiplet fields. They follow straightforwardly upon super-
covariantizing the rules presented in section [2.5] including the terms of order g that were

already found in [47],

0% =2 (g €¢% + 75 &™),
0A;* + 6¢FAaﬁAlﬂ =2 gica +2 SijGO‘BQB,—Y EjCTY s
where D,, denotes the derivative fully covariantized with respect to all the superconformal

transformations and the gauge symmetries. Likewise we present the full Q- and S-

supersymmetry transformations for the vector multiplet fields,

SXM =gqM,
QM =2pXxMe; + Z;;Me + %V”VQ;VMsijej
—29TpNM XFPXNeiied + 2igQMN piined +2X M,
5WMM :5ij€i(7quM + 27/’quM) + 5ij€i(VquM + 2¢MJXM) )
8Yih =2, 0" + 2R POIA
—4g Trn™ [Q@Mekej)k XN QkMe(iaj)k XN}

+ 4ig kM e 1)a a8 + e €)C* Taal - (3.87)
Here the moment maps are defined by,
tijm = On " fhijm (3.88)

with f1;;m defined in (3.32)). The symplectic vector ZijM appearing in 6Q; is given by,

. YA
ZiM = < L Y ) . (3.89)
Fas Yi® — L Fasr Q20 + 2ig(pijn + Fas ;™)

This expression differs from the previous one for the ungauged theory, given in (3.17),
by the presence of the moment maps originating from the hypermultiplet sector. This
implies that the original pseudo-reality condition on Z;;, must be replaced by a pseudo-
reality condition on Z; jA- As this condition was previously imposed by invoking the field

equations for the auxiliary fields, it follows that those field equations must now receive
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modifications proportional to the moment maps, as we shall confirm later in this section.
Note that, in , we refrained from giving the supersymmetry transformation of Zij As
which is not an independent field.

Another tensor appearing in §€;* is the supercovariant field strength QMVM , which
is the non-abelian version of . These supercovariant field strengths are defined by,

5— A _ 94— A
g;w _pr )

Q; A =Fas 7%;1,2 — L Fpsr 7y, Q" e (3.90)

v

where 7:1#,/\ is the supercovariant extension of (3.69)). In view of 1) we expect the

following decomposition for 7:£HVA,

H" =Hu® = 9" + 00, X8 — it (0 @4 + 4,7 X
— %(XA TlWij Eij + XA T#yij Eij) . (391)

However, in the presence of a gauging, the supersymmetry variation of this expression
leads to terms proportional to the gravitini fields induced by the terms in 5§;* of order g.
As it turns out, by suitably adjusting the supersymmetry transformations of the tensor
fields, 0 B,,,a and B, m, one can ensure that the Hap™ will still transform covariantly

under Q- and S-supersymmetry,
SHa™ = —2¢4; E9a Dy — 29 Tnpy XN Q7 vape’
— 2ig kAN Yaia CEVapet — Eijﬁi'yaijA +h.c.. (3.92)
As aresult the combined transformations of the tensor fields B,,,, and B,,m under tensor
and vector gauge transformations and Q- and S-supersymmetry now read as follows,
ZM2 6B,y 2 =2ZM2D,E . + 2T (vpy M W N oW, " — ANG,L T
-2 T(NP)M [XNQl‘P’yMVEi + XNQiP’YMVEZ'
+2 XNxP (E’i’}/[;twu]i + gi’)/[/ﬂl)u]i)] )
ZM™ By m =2 ZM ™ DY E i — A9V EA N [Yaia e’ — Vo (e
+4i QMN,ujkN gt [’L/_)i[u’y,,] e + ’L/_)k[u’yy] 52’] . (3.93)

Note that the tensors transform covariantly under diffeomorphisms, and are scale invari-

ant. As was already alluded to, the moment maps ;a7 enter the transformation rules
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of the vector multiplet fields. In fact, only the magnetic moment maps ,uijA appear in
these transformation rulesE For purely electric charges and corresponding moment maps
1ijA, the supersymmetry transformations and reduce to the transformations
presented in [28] and [42]. The latter transformations still realize the supersymmetry
algebra for the vector multiplet fields (but not for the hypermultiplet fields) without the
need for imposing equations of motion.

Now that the full supersymmetry transformations have been established, we consider
the superconformal algebra. Its most non-trivial commutation relation is the one of two
Q-supersymmetries. This commutation relation, which was already specified in (2.15)),

must now be extended with tensor gauge transformations. Hence,

[6(61)7 6(62)] =0 (g) + 61\/[ (5) + 61( (AK) + 55(77) + 6gauge (AM)
+ 5tensor(E,ua) + 5tensor(Eu m) ) (394)

and it should hold modulo field equations and some of the spurious symmetries that we
discussed in the previous section. The various parameters in (3.94]) have already been
specified in (2.16)) and (3.22)), except for the parameters of the tensor gauge transforma-

tions, which read,

Epa= —2danp XV XTE,,

E#m = - 8i5ij//fjkm (€2i7/161k + €2k7u61i) > (395)

up to terms that vanish upon contraction with the embedding tensorH As before,
0°°V(€) denotes an infinitesimal covariant general coordinate transformation, which now
includes contributions from the various gauge transformations such that the combined
result takes a supercovariant form. For the vector gauge transformations the parameters
take the form AM = —fPWpM . For the corresponding field-dependent tensor gauge

transformations, the parameters take a slightly more complicated form [56],

Epa=—¢ (Bpua + daNPWpNWuP) )
E,um = - 'ngp,um . (396)

10The reader may verify that the contribution to Q; proportional to wijA vanishes against a similar
contribution contained in ZijM.

11 The result for Zum given in is new compared to previous work. It is determined by verifying
the commutator on the vector and tensor gauge fields, as will be discussed in some detail below.
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In what follows we will verify the validity of on the auxiliary fields Y;;*, W, ™
and the tensor fields B,,,2 and B,,,m, as these are most susceptible to the presence of the
new gauge transformations, thereby exhibiting a variety of subtleties that play a role.
Many aspects of this evaluation have their counterpart in a similar evaluation of N =8
supergravity, which appeared in [56]. At this point we mention two general identities
that are relevant in the present calculations. They follow from (3.46)), (3.47) and (3.48),

N :%T(MN)Pgij QZ_M,WWQ],N. (3.97)

Of course, in the calculations we must also take into account that the superconformal
gauge fields, wuab, fu.® and ¢,°, depend on the other superconformal fields, as given in

B3).

Let us first consider the supersymmetry commutator on the auxiliary fields
YijA. As it turns out, its validity requires to impose the field equations associated with
the tensor fields, which take the following form,

G)Aa g,ul/A = @Aa H;LVA ; @Am g[LUA = @Am H,ul//\ ; (398)
and the field equations associated with the magnetic gauge fields,
0= %eflguupa (ZA’aHypga + ZA,mel/p(7 m)
+ T (= 2XM DrXN 4 QiManN
+ XM,y N — XMyt N — Lem et Py, XM XY
+iGapT™. (LA DFAY — 2P + G, 'y (A — Gy’ ¢ A™)
e ey e (3.99)

where we made use of the Bianchi identity (3.80)).
Secondly we evaluate the supersymmetry commutator on the vector fields WHM ,

[6(e1), 5(62)}WMM :ﬁpgpuM + DMAM -9 zZM2 Epa—g ZMm Eum
— €0 (eij VM + e XM, 7 +hee) (3.100)

where the parameters ¢, AM, .2 and =, ., are as in (3.94). In this result one can
replace G, by H,, M. For the electric gauge fields this is trivial as g,WA and ’HWA are
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identical. For the magnetic gauge fields the replacement is effectively allowed because
W, appear in the Lagrangian contracted with the embedding tensor, as can be seen
from . Therefore, without loss of generality, one can safely contract for
the magnetic gauge fields with the embedding tensors, ©*2 or @A™ upon which one can
replace G,,a with H,,x by virtue of (3.98). Finally one uses the following equality,

ngpuM :fpaquM + auprpM — Dy (ngPM)
+ gZM2E (Byya + danpW,"W,7) + gZM " Byym - (3.101)

Substituting this identity into shows that the £¥-dependent terms decompose
into a general coordinate transformation with parameter £#, a non-abelian gauge trans-
formation with parameter —&*W, M| tensor gauge transformations with parameters
—&P (Bp#a + d, NprfVWlf’) and —£”B,,m and a supersymmetry transformation with
parameter —%f“wm. Together they constitute a covariant general coordinate transforma-
tion with parameter £#. Consequently the supersymmetry commutator closes according
to (3.94).

Subsequently we turn to the supersymmetry commutator on the tensor fields B, a.
Here it suffices to consider those fields contracted with Z*?2 because no other components
of the tensor field appear in the Lagrangian according to . Hence, we first evaluate,

ZA’a [5(61)7 5(62)}Buua =2 ZA’aID[uEV]a -2 T(MN)AAMg;U/N
+ 2Ty Wi [6(er), 6(e2)] Wiy
+ T(MN)Agp (XMQiN%eﬂ/}pi - 2&pi7[uwu]i XMXN 4 h.c.)
+ 1619 Tarny*QMP (XN 1 p &ivuner; — XN pijp 52%1/6{)
— <> — .
+ €€ vpo T(MN)Agp( -2 XM DUXN + QlM’YUQiN
+ XM PPN — XM N
_ %e_lgo-ATw’lZ))\i’yT'(/)wi XMXN> , (3102)
with the parameters ¢#, AM and Z,,, as in (3.94). The first four terms can straightfor-

wardly be compared to the variation of B, given in the first formula of (3.93). However,

there is a subtlety regarding the commutator on W, in the third term, because this

supersymmetry commutator only closes on the gauge fields, up to a term £°(G — H) p,,N .

Therefore the commutator yields the transformations indicated on the right-hand side
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of (3.94) plus this extra term Obviously the commutator on W, generates also a
diffeomorphism, which will play a role later on in the calculation. Finally the fourth term
represents precisely a supersymmetry transformation with parameter ¢’ = —%ﬁpwpi.

The remaining terms in , however, do not seem to have a role to play. At
this point we note that the Lagrangian does not depend separately on ZA’E‘BWa and
ZA"“BWm, but depends only on the linear combination ZAa B,ya+ ZAm B,y m. Con-
sequently, the algebra is required to close only on this linear combination. Therefore we
also evaluate the commutator on Z4™ B,y m,

zhm [5(61)76(62)]Buvm :2ZA7mD[MEV]m
+ lgp (kAA YAia Ea'y;wwpi - 25ijﬂjk/\,(zi[u7u]wpk - hC)
— 1619wy QMP (XN 1 p Eivuner; — XN pigp Eé%uﬁ{)
: P _ AB liézHa Y o a0
+ieeupet”[ GapT™y (A" D7AY —2(%7¢
+ @Ai,ya,yAC&Ai"/ _ ,l/_})\i,ya,y/\é-'YAi&)
— e e &AiWTwijjk,U/ikA} s (3103)
with the parameters " and =, as in (3.94). The first line establishes closure with

respect to E,m. Furthermore, the next line correctly reproduces a supersymmetry
transformation with parameter €’ = —%f”@/}pi.

When considering the sum of the two variations (3.102)) and (3.103|) there are some
cancelations, and on the remaining terms we can impose the field equation (3.99). This

leaves the following terms,

[0(e1),3(e2)](Z**Byya + Z*™ By m) = Z2 € (Hppva — 2da an WM (G — H)p, ™)
+Z8 P Hppym + (3.104)

where the dots refer to terms that have already been accounted for in the context of
(13.94). The explicit terms in (3.104]) contribute to the (covariant) general coordinate
transformation, as follows from the following identities, which can be derived straight-

12Upon contraction with ZN 2 this term vanishes by virtue of ([3.98) and we have argued that it could
therefore be suppressed in the commutator on the gauge fields on W, . See the text preceding (3.101)).
However, in the case at hand, the term is not contracted with Z~ 2, and thus the extra term has to be
retained.
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forwardly from (3.81)),

ZM2 € Hppna = 2 (€99, Bva — 201, Bjpa)

+22%° Dy, (€7Bypa — € daren Wiy MW, N)
+ 2Ty AWM G N
= 2T0un) Wi M (€90, Wiy ™ + 0,)6°W, N —2€7(G —H),),"™)
— 29Ty 2™ & W," By m

zhm & Hppwm = zhm (§p8pBW m— 2 a[ungV]p m)
+2Z8™D, (¢ By m)
+29Tuny* 2™ W,V By - (3.105)

The first two lines in the equations denote the expected general coordinate trans-
formation, and the tensor gauge transformations with parameters given in . The
third term in the first equations represents the appropriate gauge transformation. The
last terms in the two equations cancel directly, so that the only terms in that are
still unaccounted for, are given by,

[5(61), (5(62)] (ZA’aBm,a + ZA’mBm,m) = — QT(MN)AW[#M (fpa‘p‘Wl,]N + al,]prpN)
+ 2Ty Wi MEP(G = H)upp ™
NI (3.106)

The first of these terms cancels against the general coordinate transformation induced by
the supersymmetry commutator on W,V in , which we already referred to earlier.
The second term can be suppressed by virtue of the special invariance noted in ([3.83).
To see this, we note that, up to the first equation of motion , we can write the
induced variation of B,,,, as,

ZA’a (SB;,Wa X T(AME) [4 ng[NM B gGWO_M 6&](9 N H)u]pz
—rih Y W, M (G —H)ws - (3.107)

This completes our discussion of the supersymmetry algebra.
Finally we summarize the modifications to the Lagrangian that are required by the
general gaugings. As usual these concern both masslike terms for the fermions, which

are proportional to the gauge coupling g, and a scalar potential proportional to g2. The
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masslike terms independent of the gravitini follow directly from the rigid theory in the
presence of both electric and magnetic charges [47]. The terms that involve gravitini
are generalizations of the known results for the superconformal theory in the presence of
electric charges [27][28,[42]. The result includes also a non-fermionic term which describes

the coupling of the auxiliary fields )/ijA to the moments f1;;r,
e 'Ly = — g QuoTpn? e XVNOM (7 + 44, XT) + hee.
+ 29 kanyine™ CH (UM + 4, X M) + hee.
+ g 17 ar i (VM ", XM) + e,
429 [ XML 0, 0 4 XM T 0 €]
— Lg [Fasr ™ QZQ;" + Fysr pi Q20T
+ gV [pijn + 3(Fas + Fas) pi;”] - (3.108)
Upon solving the auxiliary fields Y;-jI one obtains an additional contribution to the scalar
potential of order g2. Without this contribution the scalar potential reads,
671£g2 = igz Qun TPQMXPXQ TRSNXRXS
—2g2kAM ijNgABXMXN — %QQ NAE /.LijA/.LijE. (3109)

Upon eliminating the auxiliary fields, the last term in this expression changes into,
— 197 Nas pij™ u7% — =262 [y + Far p9] N [pijs + Fez p=] . (3.110)

The above expressions are not of definite sign. From the Lagrangians in section [2.6]
one can deduce that K, xy and the metrics that appear in the kinetic terms of the physical
scalar fields should be negative. The latter metrics are proportional to two matrices, M
and G ap, that should therefore be negative definite. They are defined by,

Mys = K2 (NysNrs — NarNgz) XU X=|
Gap =x"" (948 — X "(3xaxB + kaijks")) . (3.111)

With these observations we can separate the terms in the potential in positive and
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negative ones,

e 'Ly = — ¢° K My (Tpo" XTX9) (Trs™ X X5)
—4PK kA kB Ny Gap XMXN
—2¢* K My, N [ + Fro 9] N2 [z + Fea pi®]
— 6K P XMXN piin (3.112)

where we used that y = 2 K, as is implied by the field equation associated with the
field D. It then follows that all contributions to £,z are negative, with the exception of
the last term which is positive. This decomposition generalizes a similar decomposition
known for purely electric charges [45].

The supersymmetric Lagrangians derived in this chapter incorporate gaugings in both
the vector and hypermultiplet sectors. The vector multiplets are initially defined as off-
shell multiplets, but the presence of the magnetic charges causes a breakdown of off-shell
supersymmetry. Of course, conventional hypermultiplets based on a finite number of
fields do not constitute an off-shell representation of the supersymmetry algebra irrespec-
tive of the presence of charges. We refer to a more in-depth discussion of the off-shell
aspects of the embedding tensor method in [47], where a construction was presented in
which the tensor fields associated with the magnetic charges were contained in a tensor
supermultiplet.






CHAPTER

Two applications of the embedding
tensor formalism

In the previous chapter we presented Lagrangians and supersymmetry transformations for
general superconformal systems of vector multiplets and hypermultiplets in the presence
of both electric and magnetic charges. The results were verified to all orders and are
consistent with results known in the literature based on both rigidly supersymmetric
theories and on superconformal systems without magnetic charges. In the presence of
magnetic charges the off-shell closure of the superconformal algebra is only realized on the
Weyl multiplet. The results establish a general framework for studying gauge interactions
in matter-coupled N =2 supergravity.

In this chapter we present two applications to illustrate how the embedding tensor
formalism can be used to obtain rather general results about realizations of N =2 gauged
supergravities. One concerns the supersymmetric realizations in maximally symmetric
spaces. In flat Minkowski space, it was established that residual supersymmetry is only
possible in the presence of magnetic charges [I9H23]. Here, we therefore briefly review
the situation in the context of the embedding tensor approach, where it is natural to
have both electric and magnetic charges.

A second application deals with supersymmetric solutions in AdSy x S? space-times.
Here we establish that there exist only two classes of supersymmetric solutions. One
concerns fully supersymmetric solutions. It contains the solutions described in [69] as
well as the near-horizon solution of ungauged supergravity that appears for BPS black

holes. The other class exhibits four supersymmetries and these solutions may appear as
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near-horizon geometries of BPS black holes in N =2 gauged supergravity. Interestingly
enough, solutions in AdSy x S? with only two supersymmetries are excluded. The spinor
parameters associated with the four supersymmetries are AdS, Killing spinors that are
constant on 52, so that they carry no spin. Nevertheless the bosonic background is
rotationally invariant. The spin assignments change in this background, because the
spin rotations associated with the S? isometries become entangled with R-symmetry
transformations, a phenomenon that is somewhat similar to what happens for magnetic
monopole solutions where the rotational symmetry becomes entangled with gauge trans-
formations [70]. In the superconformal perspective, these solutions have R-symmetry
connections living on S2%, and this explains the geometric origin of the entanglement. It
is to be expected that the near-horizon geometry of a recently presented static, spherically
symmetric, black hole solution [T}, [72] will coincide with one of the solutions described
in this chapter. The results of this chapter then imply that this black hole solution must

exhibit supersymmetry enhancement at the horizon.

4.1 Maximally symmetric space-times and supersym-

metry

In this application we briefly consider the question of full or partial supersymmetry in
a maximally symmetric space-time. Hence one evaluates the supersymmetry variations
of the fermion fields in the maximally symmetric background, where only g,., 4;%, X A
and Y;;* can take non-zero values, taking into account that the fermion fields transform
under both Q- and S-supersymmetry. In this particular background, it turns out that
the gravitino field strength, R(Q),," (and the related spinor x*) is S-invariant. Since its
Q-supersymmetry variation is proportional to the field D, it immediately follows that
D = 0, so that the special conformal gauge field takes the value (we assume the gauge

choice b, = 0, which leaves a residual invariance under constant scale transformations),
[ = 3R(e,w),* — 55€," R(e,w), (4.1)

where R(e,w),,,” denotes the space-time curvature.
In what follows it thus suffices to concentrate on the fermions belonging to the vector

multiplets and the hypermultiplets. We first present their variations in the background,
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which follow directly from ([3.86) and ([3.87)),

6C* =29 XM T @5 AP e + A
(SQlM = ZijMGj — 29 TPNMXPXfoijEj +2 ngMN‘LLZ‘jNGj + QXMTh . (42)

Substituting the equations of motion for the auxiliary fields Y;jA, the variation of the
independent fermion fields 6€2;* takes the following form,

(5QiA = —2g TNPA XNxP €ij el — ﬁlg.NAE (/Mjg + FEF ,u,ijr)éj + 2XA771- . (4.3)

Following the strategy adopted by [I7], we consider only combinations of fermion
fields that are invariant under S-supersymmetry. To construct S-invariant combinations

of these fermions, it is convenient to define the following two spinor fields,

CZH :X_lﬁaﬂAia Cﬁ )

Q) = - HEK ' Qun XMQN = JK7T XANASQ”, (4.4)
which are both formally invariant under electric/magnetic duality when treating the
embedding tensor as a spurion. Under supersymmetry these two spinors transform
equivalently in this background, provided we also use the field equation of the field
D, which yields x = 2 K. Indeed one easily derives,

80 = Aij e +n; = —ei;6¢77 (4.5)
where the symmetric matrix A;; is given by,
Ajj=-2gK " X0 (4.6)

Here we made use of the second equation of .

To make contact with the terms appearing in the potential (combined with
, since we eliminated the auxiliary fields YijA)7 we consider the variations of three
other spinors, which are S-invariant and consistent with duality. As it turns out, consid-
ering such variations gives important information regarding the possible supersymmetric

realizations, although it will not yet fully determine whether the corresponding solutions
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will actually be realized. The first two variations are,

g(17 4 Fax %) 612;% — 2 X2QY]
= 22 XMXNTyNT 1 peji
_ 292(MMA + Frs ukzz)NAF(MM + Fr= ukla)ei
+ K A Ajpe®
gNas Tun=XM XN 5[0, — 2 X2
=2i g?Qun(Tpo™ XX Q) (Trs™ XEX ) g€
AP XM XNy N piip e (4.7)

In deriving this result we made use of identities such as (3.46)) and (3.48)). Furthermore

we used QMNuijM HEIN = [ijA ™ — uijA tria = 0, which follows directly from (3.57)).
The third spinor variation is based on hypermultiplets,

gXMTMa,BAlﬁ Qa'y(s[c’y _|_€jkAj’Y CE] — QQXMXN k;AM kBNgAB €
—2¢* XMXN Ton® pijp €% ex

+ KA”AJk €k . (48)
Here we made use of the identity,
Tor®s A" Qo TnT5A,° = Leii kv kan + Tun” pije (4.9)

which follows from (2.47), (3.33), (3.37) and (3.54). Combining (4.8)) with the two

previous identities gives,

[e™ 'Ly 6% + 3 KA A € =0. (4.10)

This relation requires e_lﬁgz to be non-negative, confirming the known result that de
Sitter space-times cannot be supersymmetric.

According to [I7] one must also consider the symmetry variation of the supercovariant
derivative of at least one of the spinor fields. Let us, for instance, consider D, which
transforms also under S-supersymmetry. The following combination is then again S-

invariant, and changes under Q-symmetry according to,

5[DHQ}/ — %A”"}/#QVJ] = fua"}/ag — %A”Ajk "}/#Gk . (411)
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Therefore we must require that the supersymmetry parameters are subject to the eigen-
value condition,

(675 (R(e,w),* — te,"R(e,w)) — e, * A" Ay;led =0. (4.12)

Combining this result with (4.10) reproduces the Einstein equation for the maximally
symmetric space-time, irrespective of whether supersymmetry is realized fully or par-
tially. Observe that full supersymmetry requires that AikAkj = %R(e, w)d';.

The result (4.10) can also be written as,

1 p—
e L'gQ

3K

[AikAkj - %AklAkl 52J] €j = — 61‘7 (413)
where E;z pertains to the negative terms in L. For full supersymmetry we thus find that
Eg_z must vanish, while partial supersymmetry is associated with the smallest eigenvalue
of A% Ay; and Eg_z # 0. We refrain from giving more explicit details here, but we briefly
consider the special case of Minkowski space-time.

For partial supersymmetry, the unbroken supersymmetry parameter is subject to the
condition A;je/ = 0. In this context one can consider the variation of yet another spinor,

which is invariant under S-supersymmetry, but no longer under duality,

0=X"Nps 0[7 —2X= QY] = — 29X Nps [Tin™ XM XN g5 — 2ip;> ) €
+2XANAE [XZ Eik€jl Akl 7XE Aij]ﬁj. (414)

In the absence of magnetic charges, the moment map uijz vanishes. Also the first term on
the right-hand side vanishes because Thn> XM X" can be replaced by T(MN)E)_(MXN
by virtue of the second equation of . The latter vanishes without magnetic charges.
Therefore both A;; €l and A% qkek vanish, which implies that A;; vanishes. To show this
first note that one can write an (anti-)hermitian 2 x 2 matrix as #- &', where ¢; denotes
the three sigma-matrices and & denotes a Euclidian three-vector, which is real in the case
of a hermitian matrix, and purely imaginary in the case of an anti-hermitian matrix. Now
suppose that such a matrix has a zero eigenvalue for the eigenvector €, then one can
show,

i

0= (7-8)% (F-5);ed =2 = T=0, (4.15)

and hence the matrix itself vanishes. We can use these observations, by noting that the
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combination e* Ay ; — A®* ¢y ; is a hermitian, traceless 2 x 2 matrix, while % Ay ; + A% ey; is

k vanish in

an anti-hermitian, traceless 2 x 2 matrix. From the fact that A;; ¢l and AY Ejk€
the absence of magnetic charges, it then follows that A;; vanishes, so that supersymmetry
must be fully realized. This is in accord with a known theorem according to which N =2
supersymmetry can only be broken to N =1 supersymmetry in Minkowski space in the
presence of magnetic charges [I9H24]. For abelian gaugings the situation simplifies, and
one can show that Minkowski solutions with residual N = 1 supersymmetry are possible

provided that,

XM TMag Aiﬁei :0 5
(ija + Fas pij”) e =0, (4.16)

with the two terms of the abelian potential vanishing separately (this follows from the

first equation of (4.7) and from (4.8)),

XMXN kA kP N gap =0,

(1" A + Fas lF2) N2 (pgar + Frz pu®) =0. (4.17)

Without magnetic charges, one can easily verify that residual N = 1 supersymmetric
solutions are not possible.

Apart from this latter result, the above analysis only indicates which supersymmetric
solutions can, in principle, exist. To confirm that they are actually realized, one has to
also examine the supersymmetry variations of the remaining fermion fields. This can be
done, but we prefer not to demonstrate this here. Instead we will discuss this explicitly
in the application presented in the next section, which is less straightforward, and where

we will follow the same set-up as in this section.

4.2 Supersymmetry in AdS, x S?

In this second application we consider an AdSs x S? space-time background and analyze

possible supersymmetric solutions. Hence the space-time metric can be chosen equal to,

d 2
ds® = g, datdz” = v ( —r2di* + r%) + vg (d92 + sin? 0d<p2) , (4.18)
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whose non-vanishing Riemann curvature components are equal to,
-d —1l¢ cd ed —1¢ &d
R@L =2 Uq 6(171,6*, RM;C =-2 Uy 6&50 5 (419)

so that the four-dimensional Ricci scalar equals R = 2(v; ! —v; ). Observe that we used
tangent-space indices above, where a,b, ... label the flat AdSs indices (0, 1) associated
with (¢,7), and a, b, . .. label the flat S? indices (2,3) associated with (6, ). Furthermore
the non-vanishing components of the auxiliary tensor field are parametrized by a complex
scalar w,

—To1Yeij = —iTo3ey; = w. (4.20)

Using the previous results one finds the following expressions for the bosonic part of the

special conformal gauge field f,°,

fo = (vt + vy ") = 1D — g5|w[*)da” + R(A)2s &0,

fah=(—3(it+2v") - 1D+ §|w\2)5@‘3 + SR(A)or a?, (4.21)

where the two-dimensional Levi-Civita symbols are normalized by %! = ¢23 = 1. The

d

non-zero components of the modified curvature R(M),;,* are given by,

R(M)ap™ = (D + 5R) du,
R(M) ;% =(D+ LR)5,;°,
R(M) ;¢ = 5(D = §R) 022 03" — 3 R(A)23 2% — 3 R(A)on a5 (4.22)

We refer to appendix [B] for the general definitions of these quantities, which appear in
the superconformal transformation rules of the Weyl multiplet fields and are therefore
needed below.

Motivated by the maximal symmetry of the two two-dimensional subspaces, we expect
the various fields to be invariant under the same symmetry. Therefore we will assume that
the scalars X and A;* are covariantly constant (for other fields the covariant constancy
will be discussed in due course). The corresponding integrability condition then requires
that the U(1) and SU(2) R-symmetry curvatures are not necessarily vanishing, and are
related to the curvatures of the vector multiplet gauge fields. This result is consistent
with the field equations for the R-symmetry gauge fields, A, and V,,*;, which lead to the
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expressions (we again choose the gauge b, = 0),

R(A)u =g K" MM TN Qpn XOX7
R(V)lwij = - 49X71’H,uuMﬂikM €kj - (423)

Observe that the above equations only contribute for u,v = t,r, or u,v = 6, ¢, in view
of the space-time symmetry. We can rewrite these equations in a different form, which

is convenient later on,

R(A),, =g K_lfi’:l,;,A [Tag™ + Fas T=oN | Qpn X9X T,
R(v);uzj _ 49X717%;DA [IuikA + FAE HikZ] Ekj + %EikAkj T,uumngmny (424)

where we suppressed all the fermionic terms which vanish in the background and made
use of the field equations (3.98) of the tensor fields B,,, » and B,,, m, and of (3.48]).
To study supersymmetry in this background, we present the non-vanishing terms in

the supersymmetry transformations of the spinors Q;* and ¢,

(SQZ'A = %’}/IW,}:[;WA Ei]fj — 29 TNPA XNXP Eij €j
— 4 gNA® (tijs + Fsr Mijr)ﬁj +2X%;,
6¢C* =29 XM To 5 AP eej + A% ' (4.25)

Note that 69, has changed as compared to by the presence of the field strength
(3.91) (suppressing the fermionic terms, so that 7:[;1,/\ = H;,,A — %XATW,MEU), while
the expression for §¢¢ is identical to the one given in . Just as before, we make use
of the two spinors QY and (! defined in . The supersymmetry variation of these

fields in the given background are,

59}/ = iK_l )_(ANAZ'}:[;V’}/“VaijGj + Aij€j + i,
S =iy (A%, +177) (4.26)

where A;; was defined in . Supersymmetry therefore implies that the terms propor-
tional to v#¥ must vanish. As it turns out, this condition is just the field equation for
T,

XANpsH B =0. (4.27)
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Two additional fermionic variations are,

SIR(Q)ab" — %Tcdij'VCd'YabQ}/] =R(V),, € — 3R(M)ap“eac’ — $Tea" v vap Aji €,
6[Da®) — 3A17a92V7] = fa'wei + HR(A) 7" Yaei — §ROV)pei’ V" Vac)
+ %AiijcjkvbC’yaek - %AijAjk Ya €k - (4.28)

The variation of R(Q).' is given in and the variations of the superconformal
gauge fields that are contained in the supercovariant derivative of Q) are given in (B.1])
and . Observe that we have assumed, motivated by the maximal symmetry of the
two-dimensional subspaces, that also T, and A;; are covariantly constant.

The consequences of can be expressed as followsﬂ

(D + 5 R)e + [R(V)gy'; — iR(A)33 6']7% € =0,
(D — §R)e — [2iR(A)3; 0" + Fiwe™ Ay ]y =0,
[AikAkjej + iiw eik:Akj 723] ej :07
(o7 ' vyt = glw)e’ = [3iwA™ e + 2 R(V)'j + 2iR(A)3; 6] =0, (4.29)

Furthermore we note that the covariant constancy of T,,,* and A;; implies the conditions,
WR(A)w =0,  ROV)u" @ Aje = —1R(A)u Ay - (4.30)

We now turn to possible supersymmetric solutions for this background. We proceed
in two steps. First we analyze the conditions for supersymmetry, ignoring the trans-
formations . This will reveal the possible existence of three distinct classes of
supersymmetric solutions, with four or eight supersymmetries, depending on the values
of R(V),."j and A;;. The corresponding information is summarized in table As alast
step we then analyze the transformations , which lead to additional constraints.
It then follows that one of the classes listed in table is actually not realized. In
what follows we will decompose the equations in eigenstates of iv?3, denoted by
et = 1(1 £1y*®)e’. Observe that these spinors transform as a product representation
of the SU(2) isometry group associated with S? and the SU(2) R-symmetry. This

IThere are also charge conjugated equations. For instance, the first equation reads,

(D + 5 R)es + [RV)fi? +iR(A)f5 87177 ¢; = 0.
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observation will be relevant shortly. Note also that the spinors transform according
to 4’ — €;+ under charge conjugation.
We start by considering solutions with w = 0. In that case the equations (4.29) yield,

2
D =1R+ Ros(A),
iIR(V)ps'j el = [+ 2R+ L Ros(A)] €,
iIRV)S e =[F 3t +vgh) + LRas(A)] €. (4.31)

Since iR(V)4; —iR(V),; is an anti-hermitian matrix, its eigenvalues should be imaginary.
However, from ({£:31)), we find an eigenvalue given by F3(v; ' +v5 ') F1R = Fo; ', which
is real. Therefore, consistency demands that vy ! = 0. Hence taking w = 0 will only lead
to a supersymmetric solution provided v; ! = 0. Discarding this singular solution, we
thus assume R(A),, = 0. Then we consider two classes of solutions, denoted by A and
B in table depending on whether D — éR vanishes or not.

For R(A),, =0and D — éR = 0, the equations imply,

U)Aij EZ“: :0,
iR(V)Q_Bij Ezt =+ %Reii ,

[IR(V)335 — 2wA%ey,] =7 Tort vy — Hwl?) €l (4.32)

Let us now assume that A;; # 0. In that case si’“Akj must have a single null vector
in order that a supersymmetric solution exists. On the other hand, it must commute
with the SU(2) curvatures, which in this case implies that the R()),,"; must vanish.
Supersymmetry then requires that v; = v9 and,

wAij . =0, wAFey; €, = +(4v7t — 1w|?) €l . (4.33)

Again, since we* Ay; + wA®*ey; is an anti-hermitian matrix, it should have imaginary
eigenvalues, and hence from it follows that 4v;' — |w|? = 0. Then, from the
argument around 7 it is clear that these equations have no solution unless A;; = 0.
When A;; = 0 and the SU(2) curvatures are non-vanishing, one can show that
implies,

iR(V)a3'; €, = +iR€,, vt = Lwl?. (4.34)

This solution, denoted by Ay}, has generically four supersymmetries, two associated with
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two of the spinor parameters €'y, and two related with the charge-conjugated spinors €;.
The two spinors of the €, must be eigenspinors of both iy?* and iR(V)Qgij with related
eigenvalues. Therefore the supersymmetries of class Ajy) (and also of class B, as we shall
see later) cannot transform consistently under the SU(2) isometry group. We will return
to this aspect shortly.

In the special case where both A;; and the SU(2) curvatures vanish, we have
vy b= Uy = 1—16|w|2. Generically we then have eight supersymmetries. This class is
denoted by A[;). Here the supersymmetries act consistently under the action of both
SU(2) groups. This completes the discussion of the type-A solutions.

Subsequently we turn to the solutions of class B, where D — éR # 0 and R(A),, = 0.
This class is denoted by B. In that case the first two equations imply,

iR(V)Q_;jeft =+ (D+ %R) €,
lwe* Ay e = £ (D - 1R) €. (4.35)

With this result, the last two equations then yield the eigenvalue equations,

iRV)S' ek = F st oyt = Flwl?) e,
wA%ey; & = £ Lw|? el (4.36)

Again, the same strategy can be followed: first construct anti-hermitian matrices and
demand that the eigenvalues are purely imaginary or zero. If they are zero, the matrix
itself vanishes by the argument given in (4.15). In this way (4.35) and (4.36) lead to,

wAU — _ ’LUEik Ejl Akla
i 2,
R(V)za J —R(V)ig i= 1R(V)23 i= 71;2@ e* Akj
iIR(V)as'jel = Fuy '€l
D = —7(111 + 2vy ),
vt =tw]?. (4.37)

Just as in class Ay}, these solution have generically four supersymmetries, which cannot
transform consistently under the action of the SU(2) isometry group. Furthermore, note
that the solutions become singular in the limit where Vl“,ij and A;; vanish, so that this

class is really distinct from the type-A class.
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class R(V) A;j V1, Vg susy
Ap R(V)=0 A;j =0 ot =yt = Ew? 4+4
Ag) RV)s =01 —vy')  Ay=0 o' =qgluf #vy' 242

B R(V)a3'; = —U:}—iﬁ) eF Ay = O(vyt) vyt = LHuw? 2+2

Table 4.1: Three classes of supersymmetric solutions. As shown in due course, only the
classes A[;) and B are actually realized.

In view of the fact that the supersymmetry spinors do not always seem to trans-
form consistently under the action of the SU(2) transformations associated with the 52
isometries, let us now first clarify this issue and turn to a discussion of the Killing spinor
equations (in gauge b, = 0) for each of the three classes. These equations take the

following form,
6(1/&/ + Yy QW) = Q%Mei +id, e +V, el — et [Liw v + 5klAlj]fy# €. (4.38)

where %# denotes the AdS; x S? covariant derivative. Obviously we may set A, and
V, =0.
For class-A solutions (4.38)) leads to,

Vael F %w €9y, €4 =0,

o] . . . ..

Va€s + 3Va'j € F tweva 67 =0, (4.39)
where vy ! = %G\w|2. For the solution of class Apjj, we may take Vi'; = 0, so that we
obtain the standard Killing spinor equations for AdSs x S2. For the Ay solutions, the
Killing spinor equation on S? is somewhat unusual, because of the presence of the R-
symmetry connection whose strength is not related to the size of the S2. Since we will
show later that the type-Ajg solutions are in fact not realized, we refrain from further
discussion concerning these solutions.

Hence we proceed to the class-B solutions. In this case, the Killing spinor equation

(4.38) decomposes into,

o . ..
7 1 )
Vaey F ywe7y, €54 =0,
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%ael +3Vi €l =0. (4.40)

Because v 1= i|w|27 the first equation is the standard AdS, Killing spinor equation.
However, the second equation does not coincide with the standard Killing spinor equation
on S?. We note that the strength of the R-symmetry connection is proportional to vy L
and is therefore also determined by the S? radius. To elucidate the situation, let us
briefly discuss the relevant equations for the unit sphere (v = 1).

We use the standard coordinates # and ¢ on S?, with zweibeine e? = df and
e3 = sinfdy, and gamma matrices v, and 73 that satisfy the standard Clifford al-
gebra relation with positive signature. The spin connection field in our convention
equals w = w? = —w3? = cosfdy. Consequently we have that %g = 0Oy and
%w = (89(, — % cos 6 723). Now we adopt an R-symmetry transformation to bring R(V)a3";
in diagonal form. In that case we can assume V'; = —iX (03)%; cos 0 dp with X some real
constant and o3 the diagonal Pauli matrix. This leads to the corresponding field strength
R(V)23'; = i\ (03)%;. From the third equation of we conclude that [A| = 1 and
by an additional R-symmetry transformation we can ensure that A = 1. In that case
(remember that we put vy = 1) the supersymmetries are parametrized by the parameters
E}i_ and €2. It is now straightforward to verify that these spinors do not depend on the
52 coordinates as a result of the second equation .

Consequently the supersymmetries do not transform under the isometries of S2, which
implies that they carry no spin! Along the same lines one expects that also the fields in
this background will change their spin assignment. The reason that the spin assignments
change in this background, is that the spin rotations associated with the isometries of
52 become entangled with R-symmetry transformations, in a similar way as in magnetic
monopole solutions, where the rotational symmetry becomes entangled with gauge trans-
formations [70]. In the superconformal context, where one has R-symmetry connections
(which in this solution live on S2), the geometric origin of the entanglement is clear.
While such conditions on the supersymmetry spinor have been obtained previously in
the literature for a variety of four- and five-dimensional supersymmetric solutions (see,
e.g. [TIH75], this phenomenon seems not to have received special attention.

Finally we must investigate the remaining variations based on . Consider first
the variation for the fields €;*, which we parametrize as §Q;* = AijAej —2X%y;, so
that,

AijA = 27:[53A5ij723 — 2gTNpA XNXP Eij — 49]\/4\Z (,LLZ]E + FZF /,Lijr) . (441)
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Then we consider the variation of two S-invariant combinations, ;% — 2X AQ}’, and
D, (A —2XAQV) — %(AijA — 2XAAij)7aQ}/, whose vanishing under supersymmetry
imply the following identities,

(AN —2XM 4] é =0,
(AikA -2 XAA“C) (Akj - %Tbckj 'ch) Vo€’ =0, (4.42)

where we assumed that D#AA = 0 in line with our earlier ansatze. Likewise we obtain

two equations for the hypermultiplets,

[2 gXMTM&E AZB Eij — AidAij] Gj =0 5
(2 gXMTMag Ai’ﬁ Eik — AZ‘O‘AM) (Akj — %Tbckj ’ybc) 'yaej =0. (4.43)

We note the presence of a universal factor on the right-hand side of the equation in (4.42)
and (4.43)), proportional to,

Ak:j — %Tbckj ,ybc = —E&kl (ElmAmj — %iﬂ} 723 §lj) , (444)

which is the hermitian conjugate of the term that appears at the right-hand side of (4.38)).
The equations (4.42)) and (4.43)) lead to the following six conditions,

[2gN"2 ™ (s + For i) + X° ikAlcj

H_kn

€+

[2 gNAZ (,quZ + FEF 'usz) + XA Azk] Ak E‘Zt
+gTnp™ XNXP ™ Ay e

117[ — QQNAZEik (Mka] + Fxr ,ukjr) - xA Aik&:kj]
+ngNPA xXNxFP Q:

[2gXMT\ %5 AP g — A €L =

[2gXMTy%5 AP e — A2 A™] Ay €, =
J
+

[2gXMTy %5 AP e — A, A% ey 5 € (4.45)

Let us now consider the various classes of solutions shown in table {1l First of all the
solutions of type A, characterized by A;; = 0. From the second equation of (4.45) it
then follows that ?:LMUA = 0. Combining this result with the equations (4.24)) shows that
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both R(A),, and R(V),,"; must vanish. This implies that solution Ay is not realized.
Hence we are left with the fully supersymmetric solution Apyj. Therefore we proceed by

determining the additional restrictions for this solution.
The first, third, fourth and sixth equations of (4.45]) can be written as follows,

= — %TNPA(XNXP — XNXP) Eit?
iTnp (XN XE + XN XP) €L,

(4.46)

Since a hermitian matrix must have real eigenvalues, it follows that both sides of the first
two equations should vanish. Also the factors in the last two equations should vanish, so
that,

pija = pit =0,
Tnp*XVXT =0,
XMTy 5 AP =0 = XMTy %5 AP (4.47)

Note that L2 is now vanishing. For electric charges these solutions have already been
identified in [69]. Without charges this is the well-known solution that arises as a near-
horizon geometry of BPS black holes. The fact that the moment maps and certain
combinations of Killing vectors are vanishing does not warrant the conclusion that there
is no gauging. One can only conclude that the field equations require some of these
quantities to vanish for these solutions.

Now consider the type-B solution where A;; is non-vanishing. In that case the first
three equations of lead to two independent equations,

-2 QNAE etk (Mka + Fsr Nkjr) Gi:
—|—gTNpA XNxF eit =F (17:[2_3A + %Q)XA) e; ,
—2gN ™ (s + For p;") e

+9Tnp XNXP ey = F (1HSGY — dwX D)€, . (4.48)

These equations can be analyzed in a similar way as the corresponding equations in
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(4.46)). The results are as follows,

Typ*XVXP =0,
9ot ol = 7 S[(Ag — Jwx®) — (g + JiwXY)] L
ge® pupin € = £ 3[Fas(Hos® — 20X ™) — Fas (H5 + 1iwX™)] €, . (4.49)

From , it follows that the first constraint of can be generalized to
TyunP XM XN = 0. Using also the representation constraint , one reconfirms that
R(A),,, as given in , vanishes. The same argument applies to solutions of type
Apy). Furthermore, as a check one may also reconstruct the eigenvalue equation for A;;
which shows once more that must be valid.

One can use the same strategy and determine R(V)Qgij from , making use
of with Ty nP XM XN = 0. Evaluating this curvature on the supersymmetry
parameters, making use of the eigenvalue condition for this curvature presented in
as well as of ([4.27), it follows that,

vyt = 2K Nas o 1 — Hwl?. (4.50)

In the first expression on the right-hand side, one can verify, replacing Njyx; by the

negative definite metric M5 defined in and using (£.27), that this expression

must be positive, which yields an upper bound on |w|? for given field strengths Hosh.
The last three equations of lead to two equations,

XM[Ty AP + K ey ™ ar Ax®] =0,
0

XMITy3A + K ey 1% 0 Ap®] = (4.51)
From these equations, one derives, upon using ,
PXMXNEA )y kay = 5 K |w]?. (4.52)
The scalar potential in the type-B solutions thus takes the form,
e 'Ly = —2¢° K Mg N [r + Fro p?] N™= 5= + Faa pij”]
— 16K w]?, (4.53)

where the first term is negative and the second one positive. We refrain from giving
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further results.

For a single (compensating) hypermultiplet, which can only have abelian gaugings,
we expect that one of these type-B solutions describes the near-horizon geometry of the
spherically symmetric static black hole solution presented in [71l [72]. The result of this
section then ensures that this black hole solution has supersymmetry enhancement at
the horizon.






CHAPTER

Higher-derivatives couplings in N=2
superconformal gravity

The Lagrangians we have seen so far, with or without gauge deformations, were all
restricted to contain at most two derivatives of the fields. In this chapter we will consider
a rather large class of higher-derivative couplings in theories without gaugings. As we
will see, their construction is based on chiral multiplets. Therefore, the higher-derivative
couplings will only pertain to vector multiplets, the Weyl multiplet and possible other
multiplets based on chiral multiplets, as we will discuss in detail. Consequently, higher-
derivative couplings of hypermultiplets are not considered. The higher-derivative terms
are coupled to conformal supergravity and are realized off-shell. This feature greatly
facilitates their construction, which is based on previous work on N =2 supergravity (in
particular, on [27, [36]).

Supersymmetric invariants with higher-derivative couplings play a role in many appli-
cations. The first higher-derivative couplings that were considered in N =2 supergravity
involve the square of the Weyl tensor coupled to vector supermultiplets [76]. This
particular class of invariants is based on an integration over a chiral subspace of N =2
superspace. It is relevant for the topological string [77, [78], and furthermore, it has
important implications for BPS black hole entropy [16]. Another class of invariants for
vector multiplets that involve terms quartic in the field strengths, was derived in terms of
N =1 superfields, both for the abelian [79] and for the non-abelian case [80]. Unlike the
previous class, this one is based on an integral over full superspace. It yields important
contributions to the effective action of N =2 supersymmetric gauge theories (for some
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additional references, see e.g., [81H84]). A related class of locally supersymmetric higher-
derivative couplings was considered in [85] [86]. Those couplings, which involve both the
Weyl tensor and higher-order coupling of the vector field strengths, were conjectured to
describe certain deformations of the topological string partition function. This chapter
deals with an explicit construction of this rather large class of invariant couplings based
on full superspace integrals.

This chapter is organized as follows. Section describes the general strategy for
the construction of the higher-derivative couplings, based on the use of the so-called
‘kinetic supermultiplet’, which can be constructed from an anti-chiral supermultiplet of
zero Weyl weight. The components of this multiplet are given in considerable detail, fully
taking into account the presence of the superconformal background. The construction of
the bosonic terms of the higher-derivative couplings is presented in section together
with explicit examples based on a class of Lagrangians that involves terms such as F*4,
R?F? and R*. Here F denotes the abelian vector multiplet field strengths and R the
Riemann tensor. As we mentioned in the introduction, an important application of this
work is to study the possible contribution of these new couplings to the entropy and
the electric charges of BPS black holes. In section [5.3| a non-renormalization theorem
is proven, according to which these contributions vanish. Some concluding remarks are

presented in section |5.4

5.1 The kinetic chiral multiplet

General chiral multiplets were presented in section [2.3] We briefly mentioned the exis-
tence of a so-called ‘kinetic’ multiplet, which we will introduce in this section.

The term kinetic multiplet was first used in the context of the N =1 tensor calculus
[87], because this is the chiral multiplet that enables the construction of the kinetic terms,
conventionally described by a real superspace integral, in terms of a chiral superspace

integral. In flat N =1 superspace, this construction is simply effected by the conversionE
/d29 d?0 P ~ /d29 OT(P), (5.1)

up to space-time boundary terms. Here ® and @’ are two chiral superfields and ®’ is the

anti-chiral field obtained from ®’ by complex conjugation. The kinetic multiplet equals

'n this chapter we will sometimes make use of superfield notions, such as superspace integrals like
(5.1), but they are always used for illustrative purposes. Actual calculations are only made in the
component approach used throughout this thesis.
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T(®') = D?®’, where D denotes the supercovariant f-derivative. Obviously the kinetic
multiplet contains terms linear and quadratic in space-time derivatives, so that, upon
identifying ® and @', the right-hand side of does indeed give rise to the kinetic
terms of an N =1 chiral multiplet.

In [27] a corresponding kinetic multiplet was identified for N = 2 supersymmetry,
which now involves four rather than two covariant f-derivatives, i.e. T(®) oc D*®. As a

result, T(®) contains now up to four space-time derivatives, so that the expression,
/ d*0d*0 @' ~ / d*0 e T (), (5.2)

does not correspond to a kinetic term, but to a higher-order derivative coupling. Further-
more, for N =2 supersymmetry one has the option of expressing the chiral multiplets
in terms of (products of) reduced chiral multiplets. In that case, expressions such as
will correspond to higher-derivative couplings of vector multiplets. Since we are
considering the kinetic multiplets in a conformal supergravity background, their Weyl
weight is relevant. Both in N =1, 2 supergravity the kinetic multiplet carries Weyl weight
w = 2. The conversion starts from a w = 1 chiral multiplet for N=1 and from a w = 0
chiral multiplet for N =2 supersymmetry, respectively.

To demonstrate this in more detail, consider an anti-chiral N =2 supermultiplet in the
presence of the superconformal background. Its supersymmetry transformations follow
from taking the complex conjugate of . Precisely for w = 0 we note that the field
C is invariant under S-supersymmetry and transforms under Q-supersymmetry as the
lowest component of a chiral supermultiplet with w = 2. This observation proves that
we are dealing with a w = 2 chiral supermultiplet, as is also confirmed by the weight
assignments specified in table What remains is to identify the various components
of this multiplet in terms of the underlying w = 0 multiplet. This can be done by
applying successive Q-supersymmetry transformations on C, something that requires
rather tedious calculations in the presence of a superconformal background.

Denoting the components of T(®,,—g) by (4, ¥, B, F~, A, C) (@), while (A, ¥, B, F~,
A, C) will denote the components of the original w = 0 chiral multiplet, we have estab-

lished the following relation,
A‘T(é) :év
j i pkl 1 b ik 7l
Vilpg) = —2€i; DN — 6 eipejix? B — geijert v Tuy’™ D V7,

Bijlr@) = —2emej (e +3D)BM —2FF R(V)*F; ey,
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— 6en X AL+ 3eme T EDYY
Fulr@) = = (610" = $ean™)
x [AD.D°Ff,+ (DA D Ty’ + D.ADT.q")e;]

+ O0cATw e — ROV) b’ B* 45 + 2Tup" Teaij FHe — ey OF TD R(Q)at'
— 225, U Yy Dex? + 3ei; X' Vab PV + 2T ey e PF,

Ai|1r(<i>) =2 Dc@‘l’jfij + %’YC’Yab(Q DcTabij AN+ Tabij DcAj)
— 5¢ij (ROV)a” e + 21 R(A)apd” 1) 77" D T
+ L2y (3DyD — D" R(A)ay + L1079 D, T7,;) 7w
—2F " DR(Q)avi + 6ij D PUI
+3ei; (Pxe BY + PADYY)
+3(2PBYei; + DFSA" 6 + temnTas™" " DAS") xi
+ 2 (W vaxt) €7 — 2 (XivaX") ey !

Cly@y =4(0c +3D)0.A— §D, (T Top™) DA + = (Tapije)*C
+ Do (D Tyeij F° + 49T, D°FY — T, T*;; DY A)
+ (6 DyD — 8iD“R(A)qp) D'A+ -+, (5.3)

where in the last expression we suppressed terms quadratic in the covariant fermion
fields. Obviously terms involving the fermionic gauge fields, 1,° and ¢,%, are already
contained in the superconformal derivatives. Observe that the right-hand side of these
expressions is always linear in the conjugate components of the w = 0 chiral multiplet,
i.e. in (A, Wi B F;Z7 A, C). As an extra test of the correctness of we verified that
these expressions satisfy the correct transformation behaviour under S-supersymmetry.
This test cannot be performed on the last component C|y(g), because we refrained from
collecting the fermionic contributions. As an extra check we have therefore verified that
the bosonic terms of C|pg) are invariant under special conformal boosts.

The definition of the superconformal D’Alembertian O, defined by the contraction
of two superconformal derivatives D,, as well as multiple superconformal derivatives
in general, may require further comment. Therefore we have presented some relevant
material in appendix [C] Below we give the most non-trivial transformation rules under

special conformal boosts that are needed in this chapter,

ox0.0cA = — 2A%([Dq, D] D® + D°[D,, Dy]) A
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=A% 7,7 T%; DyA — 3Ak"D D, A — 2 Ak® DY (R(Q)pa V)
— 3AK" XiTap "7 0 + 30, A DX
SkODT; = Kk [L(RV)ap?s + 2iR(A)ap 673) v W; — 2D W]
+ Kk [3Bij x) — e F~ P R(Q)2, — 3ei;F v*"X] . (5.4)

These results follow from (C.6|), upon making use of the relevant curvatures.

5.2 Invariant higher-derivative couplings

Using the results of the previous section one can construct a large variety of supercon-
formal invariants for chiral multiplets with higher-derivative couplings. For unrestricted
chiral supermultiplets one cannot write down Lagrangians that are at most quadratic in
derivatives, so they usually play a role as composite fields that are expressed in terms
of reduced chiral multiplets, such as the vector multiplets and the Weyl multiplet. The
construction of the higher-order Lagrangians therefore proceeds in two steps. First one
constructs the Lagrangian in terms of unrestricted chiral multiplets of the appropriate
Weyl weights, and subsequently one expresses the unrestricted supermultiplets in terms
of reduced supermultiplets. In these expressions it is natural to introduce a variety of
arbitrary homogeneous functions.

The invariants are expressed as chiral superspace integrals, because all possible anti-
chiral fields are contained in the kinetic multiplets that we have introduced in section
A simple example of this approach was already exhibited in . The fact that
these invariants are actually based on full superspace integrals implies that they must
vanish whenever all the chiral (or, alternatively, all the anti-chiral) fields are put equal to
a constant. In the chiral formulation of the integral, this phenomenon is reflected in the
fact that the kinetic multiplet of a constant anti-chiral multiplet vanishes. This result
can easily be deduced from . Invariants can be substantially more complicated than
(5.2). The integrand does not have to be linear in a kinetic multiplet, and can depend
on a function of kinetic multiplets. One can also consider ‘nested’ situations, where a
kinetic multiplet is constructed starting from an expression of superfields among which
there are other kinetic multiplets, thus leading to even higher multiple derivatives.

The above approach is a constructive one and in general it will be hard to classify
all these invariant couplings, say, in terms of a limited number of functions, as is often
possible for supersymmetric theories. For definiteness, we henceforth restrict attention

to invariants proportional to a single kinetic multiplet, as given in (5.2). In that case,
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expressing the composite chiral multiplets in terms of vector multiplets, one obtains the
supergravity-coupled invariants corresponding to the actions derived in [T9] [80] in the
abelian limit, which contain F*-couplings. By including the Weyl multiplet, one also
obtains R2F?2- and R*-couplings. The R?F?-couplings will in principle overlap with part
of a subclass of invariants discussed in [85, 86] in connection with certain deformations
of the topological string partition function. These couplings are encoded in terms of a
single function of holomorphic and anti-holomorphic fields. In a rigid supersymmetry
background these actions exhibit K&hler geometry with this function playing the role of
a Kahler potential. As we will demonstrate below, this feature survives in the presence
of the superconformal background. Other examples of higher-derivative couplings based
on more than a single kinetic multiplet will be discussed in section [5.4]

Hence we start by writing down the bosonic terms of the Lagrangian . It is
convenient to first note the following relation,

i5\2 A 2 -
Cly@) = 15 (Tabije”)*C + 4 (D'D,)" A
—8D" [(Rua(w,e) - %R(w, e)e,* —De," + iR(A)#“)Dafl]
+ Dy [e9 D! Tyei; FTP¢ + 49 TH DFS — 2T, THe;; DPA]
T (5.5)

where we suppressed all fermionic contributions. In deriving this result we made use of
. Subsequently we derive the bosonic part of the Lagrangian corresponding to (5.2)),
up to total derivatives, by making use of the density formula (2.18) and of the product

rule (D.1)),

e 'L=4D*AD*A+8D"A[R,*(w,e) — sR(w,e) e,*|D,A+CC
— D"B;; D,B"Y + (: R(w,e) + 2 D) B;; B
— [e% By F*" R(V) s + ik BY F" R(V) "]
—8DD*AD, A+ (8iR(A)u + 2T, T,ci;)DFADY A
— [€9D* T}y DY A F T + 4 DF T, Dy A F 0]
—4[e9TH; D, ADF} + ;T D, ADF,]
+ 8D F DT+ 4 F Py R(w, €)q” + 1Tup™ Toaij F~*F 4. (5.6)

Note that we suppressed the prime on the second chiral multiplet indicated in (5.2). In
general, however, we will not always identify the two multiplets, so that the complex
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conjugated components in the above formula do not have to correspond to the same
supermultiplet. However, upon making this identification, the above Lagrangian is
manifestly real, which provides an additional check on the correctness of our result.
The reason is that the corresponding Lagrangian is also real in that case (up to
total derivatives). Note also that the Lagrangian vanishes whenever either one
of the multiplets is equal to a constant, thus confirming the analysis presented at the
beginning of this section.

We will now use the above results to write down the extension to local supersymmetry
of the class of vector multiplet Lagrangians constructed in [79, [80]. Just as above we
concentrate on the purely bosonic terms. The extension follows by writing the w = 0
chiral multiplets ® and @’ as composite multiplets expressed in terms of vector multiplets.
In 7 and correspondingly in , one thus performs the following substitutions,

D — f(DY), ' — g(oh), (5.7)

where ®* denote the (reduced) chiral multiplets associated with vector multiplets, and
the functions f and ¢ are homogeneous of zeroth degree. Upon expanding ® and &’
in terms of the vector supermultiplets, making use of the material presented in appen-
dices [D.I] and [D-2] one obtains powers of the vector multiplet components multiplied
by derivatives of f(X) and g(X), where the X* denote the complex scalars of the
vector multiplets. Homogeneity implies that X* f(X) = 0 = X* g3(X), where fa
and gz denote the first derivatives of the two functions with respect to X* and X%,
respectively. Here we recall that the expression vanishes whenever f(X) or g(X)
are constant. As noted previously, the origin of this phenomenon can be traced back
to the fact that the full superspace integral of a chiral or an anti-chiral field vanishes
(up to total derivatives). Therefore the Lagrangian will depend exclusively on mixed
holomorphic/anti-holomorphic derivatives of the product function f(X)g(X). By sum-
ming over an arbitrary set of pairs of functions f(™(X) g™ (X), we can further extend
this function to a general function H(X, X) that is separately homogeneous of zeroth
degree in X and X. Because H(X, X) is only defined up to a purely holomorphic or
anti-holomorphic function, it is thus subject to Kéhler transformations,

H(X,X) = H(X, X) + AX) + A(X). (5.8)

Hence H(X, X) can be regarded as a Kéhler potential, which may be taken real (so that
A(X) = [AX)]").
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Carrying out the various substitutions leads directly to the following bosonic con-
tribution to the supersymmetric Lagrangian (for convenience, we assume H to be real,
unless stated otherwise),

e 1L =Hyprs [% (Fa—bA fabs _ %YijA YijZ) (F;ZF frabE _ %YijF YijE)
+ 4DaXA DbXF (DaXZ DbXE + 9 F— acX F+ bcE _ i,}?ab K? YEZj)i|
+ {Hmf [4 D XA DU XED2XT - D XA VS Doy
— (F N E” = SV YT (O X" + $F,, T T eyy)
+8D XM, (DT — LD XU C”gij)} + h.c.}
+ Has 4O XY + LEEAT™ 56 QX + L P T ey;) + 4 D2XA D2 X™
4 8 D@F* abA DCF+CbE _ DaYijA rDayij > 4 %Tabij Tcdij Ffab AF+CdZ
+ (R(w,e) +2D) YA YIE p g froch fry ¥ R(w,e),
+8(RM™ (w,e) + 1T, T;; + iR(A)* ) D, X" D, X*
—8(D + iR(w,e))D, X" DHX¥
— [DXP(DTp7 =2 + 4T DUE, ey + [he; A ¢ X
et Vi A FTS ROV) o i + [hecs A < E]H , (5.9)

where (we suppress fermionic contributions),

[— A d 1 d A 1 vA i.j
Fab = (5abc - §8abc )6cuedy 8[#Wy} — 2 X TabUEij y

0. X% =D2X* + (LR(w,e) + D) X*. (5.10)

In view of the Kéhler equivalence transformations ([5.8]), the mixed derivative H 5 can
be identified as a K&hler metric. Hence we have the following results for the metric,

connection, and the curvature of the corresponding Kéhler space,

gas =Has
Myr =g Hyrs,

Rasre =Harsz — 9oy Dlar T 52 (5.11)

[
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The Lagrangian can then be written in a Kéhler covariant form,
e lp = Rypes [% (F;bA fabs _ %Y;jA YijE) (F;ZF rabE _ %Yijl“ YijE)
+4D, XA D, X" (D X™ DVXE {9 fpecS fptb = %nab}/%] YEij)]
Y ns [4(|:|CXA n %F(;ZA T, et — iFAFE(FJbF fabs _ lyily, )
« (DCXE + %F&)E Tabijé_ij . irifé(ﬁjbr F-{-abE N %Yijl“ YijE))
+4 (D*X* + T2 Dy X" DPXE) (DX ™ + T2 Dy X1 DPXF)
+8 (Daﬁ'* abA + FAFE DaXFF* abE ) (’D(:F+Cb2 + Fifg DCXF F+cb5)
- (DaYi]’A + FAFE DbXF YijE) (DayEij + Fif\é Db)_(F YijE)
+ AT T fabA frteds
+ (R(w,e) +2D) YA YIS 4 4 P M Py 2 R(w,e),
+8(RM™ (w,e) + 1T, TV, +iR(A)*) D, X" D, X~
—8(D + iR(w,e))D, X" DI X*
_ [DCXE (DT, fAab 4 gpidch (DaFC:bA n FAFEDaXFF;bE))Eij
4R YA P S RY) I+ [hees A z]]} . (5.12)

The covariantizations in the various combinations can be understood systematically by
rewriting the chiral multiplet components of the vector multiplets such that they are
covariant with respect to the complex reparametrizations of the Kéhler space (in the limit
where the fermions are suppressed). An easy way to appreciate these covariantizations
is by reorganizing the expansion of a composite chiral multiplet into vector multiplets
according to by replacing the ordinary derivatives of the function G by covariant
derivatives.

The Lagrangians and/or can also be used in the context of rigidly su-
persymmetric theories upon suppressing all the superconformal fields. The resulting
Lagrangian is then superconformally invariant in flat Minkowski space. This invariance
can be further reduced to ordinary Poincaré supersymmetry by replacing one of the
vector multiplets by a constant.

As an extension of the previous results we return to , and consider composite
chiral multiplets that depend on both vector multiplets and on the Weyl multiplet. Hence

we replace (5.7)) by, ) -
D — f(PNW?), ' — g(et, Ww?), (5.13)
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where W?2 refers to the square of the Weyl multiplet. The components of this reduced
chiral multiplet are given in . Upon expanding these functions and substituting
the results into , one obtains a Lagrangian that contains R*-, R?F?- and F*-
terms. All terms are proportional to mixed holomorphic/anti-holomorphic derivatives
of a function H(X,T?, X, T?), where T? = (T,"¢;;)? and T? = (Typij")?, and where
H is constructed from pairs of products of functions f(X,7T?) and g(X,T?). The fact
that the composite multiplets have w = 0 implies a modified homogeneity property,

XMANX, T2, X, T + 2T Hr (X, T%, X, T?) = 0, (5.14)

and likewise for the anti-holomorphic derivatives.

The Lagrangian consists of the Lagrangian plus a large number of terms that
involve multiple derivatives of H with respect to 72, T2, X» and X*. Below we con-
centrate on terms proportional to multiple derivatives of H with respect to only 72 and
T?. Among others those contain contributions of fourth order in R(M), whose leading

contribution is equal to the Weyl tensor,

(64)2e 'L =
A papagops Tabz‘jgij TCdklgk[ Tefmnffmn Tghpquq
< [R(M)apary ROM)ed® ¥ + LRV)ay’'; R(V)ed? ]
X [RIM)eser g ROIM) i 4+ LR(V) e’y ROV) g7 4]
19 {HT2T2T2 Tabijgij Tedkle,,
X [R(M)abary ROM) e + SROV)ab’; R(V) i 1]
x [R(M)Z  ROM) T 4 SROV)ET R(V)TH, — 1T D DT ™ + [hic }

+ HT2T2{}R(M);_bcdR(M)+ade + %R(V):{bij R(V)*;

_ %Tabmnl)aDeTebmn|2 + ... } . (515)

Besides the terms quartic in R(M) we have retained some of the terms that come with
them as part of the basic building blocks that emerge in the calculation (similar blocks
appear in ) Besides giving a little more information in this way, this has the
advantage that the origin of the various term will be easier to track down.

In addition to the above terms there are mixed terms which lead to explicit contri-
butions from the vector multiplets (i.e. beyond the X and X dependence in the function
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). Those include, for instance, terms proportional to [R(M)]? times the product of two
vector multiplet field strengths, F WA. We will not exhibit those terms here (they can in
principle be deduced from (5.6)) along the same lines as for the previous contributions).
Some of these terms will be shown in the equation below.

A special case, which is worth mentioning in view of the work of [85] [86], corresponds
to functions H (X, T2, X) that do not depend on T2. Hence the function  is not real.
Again we do not present all the terms, but we give all the terms that contain R(M)
(with some completions), with the exception of terms proportional to derivatives of X A
and T, or their complex conjugates,

(64) e lL =
Hragars { T ei; T er [ROM)abart ROM) o™ + RO )’ BV )ed's]
[+ T ftef= mnT =
x [ELTEIE — LymTy,,, ]+-.-}
- 4HT2T2f{Tab%j Tl ey [R(M)apary RIM)ed ¥ + LROV) a5 ROV)ed” ]
X [DCXF + %FefFTefijgij] + .- }
+ %HTMF{TCCHMQm [Fa_bAR(M)cdab - %YijAEki R(V)cd";]
% [I:’CXF + %FefFTefijEij] + . }
_ %HTQAFE{TCdlmEIm [FabAR(M)cdab _ %YijAgki R(V)cdkj}
% [FL;ZFFME _ %YijF}/ijE] 1. }
+ %’HTZFE{ [R(M) o ;R(M) =) + SR(V) ' RV) ™Y = 3T DD Ten)
% [F;;)PF-#—abE _ %YijFKjE] T }
-2 %TQF{ [R(M) g R(M) = + SR(V) 'y R(V) ™5 = $T™ Do DTty
X [DCXF + %FefFTeﬂjEij]
+ [3712Tableefk:l Fefl“ + %F;}F R(w, e)ae — %Ekm YleR(V)ablm]
X Tcdij&j R(M)Cdab
+ Togiies; DyR(M)“ab DeFAT 4 ... } . (5.16)
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5.3 A non-renormalization theorem for BPS black

hole entropy

The results of this chapter can be used in the study of black holes. Based on any linear
combination of the various N =2 locally supersymmetric Lagrangians, one can evaluate
the corresponding expressions for the Wald entropy and the electric charges in terms of
the values of the fields taken at the black hole horizon. In the case of BPS black holes, the
horizon values of the fields are highly restricted due to full supersymmetry enhancement
at the horizon, and therefore the resulting expressions for the entropy and the charges
will simplify. To explore this one must determine the possible supersymmetric field con-
figurations, preferably in an off-shell formulation so that the results do not depend on the
specific Lagrangian. This has already been done in [I7], which provided a generalization
of the attractor equations found in [88-90]. So far, generic chiral supermultiplets were
not considered, but it is convenient to do so as well. As it will turn out, it suffices to
restrict oneself to chiral multiplets of Weyl weight w = 0, for which results are rather
straightforward to obtain.

The first relevant observation is that a constant chiral superfield (i.e. a supermultiplet
with constant A and all other components vanishing) is only supersymmetric provided it
has w = 0. In fact there exist no other supersymmetric values of the chiral superfield. All
this can be derived directly from the transformation rules . The second observation
is that the kinetic multiplet constructed from a w = 0 anti-chiral multiplet, vanishes
when the latter multiplet is equal to a constant. This follows by inspection of .
These two observations prove immediately that any invariant proportional to a kinetic
multiplet, must vanish for supersymmetric field configurations. This fact can immediately
be verified from , because when the fields A and A’ are constant and all other chiral
multiplet component fields are vanishing, the expression indeed vanishes.

The above result is interesting in its own right, but we are also interested in the
first-order variation of the action induced by a change of some of the fields, evaluated for
a supersymmetric background. Given the fact that all the invariants discussed in this

chapter will contain at least one kinetic multiplet, we thus consider,
5L o / d*e [5@ T(®') + @ 6'H‘(<i>’)} , (5.17)

where ® and ®' are composite chiral fields, which are themselves expressed in various
chiral fields, including possible kinetic multiplets. They are not necessarily uniquely
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defined, and it is also possible to consider linear combinations of such terms. Since we
will be evaluating the variation at supersymmetric values of the fields, the first term in
vanishes, because the kinetic multiplet vanishes, whereas the second term can be
evaluated for constant ®.

However, rather than continuing in this way, we may simply return to and con-
sider its variation. Observe that each term is proportional to a product of one component
of ® and another one of ® (we remind the reader that in (5.6) we suppressed the prime
for notational clarity). All these components will be equal to zero in a supersymmetric
background, with the exception of A and A’, which will take constant values. However,
only space-time derivatives of A and A’ appear, and those will vanish as well. In other
words, is always quadratic in quantities that are vanishing in the supersymmetry
limit. Hence any first-order variation of any Lagrangian of this type must necessarily
vanish in a supersymmetric background!

The above result suffices to derive a non-renormalization theorem for electric charges
and the Wald entropy [91H93|] for BPS black holes. The reason is that these quantities
are always expressed in terms of first-order derivatives of the Lagrangian with respect
to certain fields, such as the abelian field strengths or the Riemann tensor, or possible
derivatives thereof. This concludes the proof of the non-renormalization theorem.

The existence of this non-renormalization theorem is a welcome result. So far good
agreement has been established for BPS black hole entropy evaluated on the basis of
supergravity and of microstate counting, suggesting that other invariants in supergravity
should contribute only marginally, or perhaps not at all, at the subleading level. The
result of this section lends support to this idea. Nevertheless the possible existence
of alternative supersymmetric invariants that do not belong to the class of invariants

discussed in this chapter, cannot be excluded at this stage.

5.4 An infinite hierarchy of higher-derivative invari-

ants

In this chapter we studied a large class of N = 2 superconformal invariants involving
higher-derivative couplings, based on full superspace integrals. For a special subclass we
have presented explicit results for some of the bosonic terms. This is the subclass that
contains only a single kinetic multiplet.

As indicated already, there are further options. The most obvious one is to include

more kinetic multiplets, based on various composite chiral and anti-chiral multiplets with



108 Higher-derivatives couplings in N=2 superconformal gravity

suitable Weyl weights,

/ d*0 &g T (@) ---T(®,,), (5.18)
where ®1,...®,, are anti-chiral superfields of zero weight and ® is a chiral superfield of
weight w = —2(n — 1). This leads to actions that contain four space-time derivatives.

However, when treating the chiral multiplets as composites of reduced chiral multiplets,
one obtains invariants with terms of 2(1 + n) powers of field strengths and/or explicit
derivatives, i.e. R2MEF2D2(ntl1-m=p)  The case of n = 1 has been dealt with in
considerable detail in section [b.2]l The expression of the composite chiral multiplets
in terms of the reduced ones allows again for the presence of functions H(™ which are
subject to a generalized version of the Kéhler transformations noted in section [5.2]

As alluded to before, one can also consider nested situations where the kinetic mul-
tiplet is constructed from a combination of (anti)chiral fields that include again other
kinetic multiplets. In this way one constructs multiplets with multiple derivatives of
arbitrary power. We are then led to introduce quantities of the type,

T? = T(®, T(®)), T® =T(®3T(®yT(P1))), ..., T =T(®, T V), (5.19)

which can be part of any superspace integrand, on the same footing as the kinetic
multiplets in (5.18). Here ®; has w = 0 and @5, @3, --- have w = —2. This extends the
number of invariants to all possible combinations of the form,

/ d*0 &, T(") T(2) ... () (5.20)

where ®j has w = —2(k — 1) and where we assume nj, > 1 with T(®;) = T(Y). When
expressing all the chiral multiplets in terms of reduced ones, then one can show that the
maximal number of derivatives of the invariants is equal to 2(1+ >, ng).

These types of invariants are not necessarily independent in the sense that there
can be linear combinations that are equal to a total derivative. For example, at the

six-derivative level, one has,
/d49<1)071‘(<i>211‘(<1>1))~/ d*0 O, T (Do) T(P4), (5.21)

up to total derivatives. Nevertheless it is clear that we are dealing with an infinite
hierarchy of higher-derivative invariants.

Of course, a relevant question is whether the invariant couplings presented in this
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chapter exhaust the possible higher-derivative invariants. Most likely, this will not be
the case. From the perspective of BPS black holes the question would then remain
whether these conjectured couplings could still contribute to the entropy and electric

charges.






APPENDIX

Conventions and useful identities

Throughout this thesis we use Pauli-Ké&llén conventions and follow the notation used e.g.
in [T7]. Space-time and Lorentz indices are denoted by p, v, ..., and a,b, . . ., respectively,
and our space-time metric has signature —+++. Our (anti-)symmetrizations are always
defined with unit strength. The completely antisymmetric tensor satisfies,

5abcd _ e—lgu,z/pael—taeybepcegd7 50123 _

i. (A1)
The selfdual and anti-selfdual part of an antisymmetric tensor Fy;, are defined by,
Fo = 3(Fup £ Fap), (A2)
where,
Fup = LeqpeaF™?. (A.3)

Notice that under complex conjugation, the selfdual tensor becomes anti-selfdual and
vice versa. We note the following useful identities for products of (anti)selfdual tensors,
+ gt 1t prte Lt ot + gt
G[a[c Hd}b] =+ gGef H / €abed — Z(Gab Hcd + ch Hab) )
+ cd +ed _ gslet dle
Gy H¥ 4 GFU = 466Gy H,

1 _abed ~yte ryt
3¢ G[c Hd]e

+
G:I:ac Hétb + G:tbc Héta — _ %nab G:tcd Hcda

:l: G:I:[ae H:I:b]e ,
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G:tac Hjb _ G:tbc Hja’
G HE =0. (A.4)

SU(2)-indices are denoted by i, j, ... and under complex conjugation the indices are

raised or lowered. For example,
(Tabij)* = abij . (A5)
We make use of the two-dimensional completely anti-symmetric tensor €%/, which satisfies

g2 =1.

Our gamma-matrices v* are unitary and satisfy,

Ya Vb = Tab + Yab ; ¥5 = 107117273 - (A.6)

We note the following useful identities involving gamma matrices,

Yab = — 2abear*™ys YV = — 27a,
lyab'yab =—-12 ) IYCd’yab’YCd = 4’7ab 5
Y YapYe =0, Yy Yap =0,
(V€5 Yab] =401} » {7 Yab} =2€a6" V574,
[Yap, 7Y = — 83, vy, {Vabs v} = — 46,505 + 2205 - (A7)

We use a charge conjugation matrix C' that satisfies,

CT :C_17 0750_1 :757
T=_c, CruCl = =T (A8)

A Majorana spinor v is defined by,

where 1) = 11y is the Dirac conjugate. Two spinors that do not form a bilinear can be

decomposed as a linear combination of bilinears by a Fierz rearrangement,

o =—1(¥d) — LWV O)va — L(Ws0)15 + 2@V 50)7a75 + 50V PO var . (A.10)
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We will give some more details about the chiral spinor notation introduced in sec-
tion and used throughout this thesis. Suppose we have two Majorana spinors 1%, with
i =1,2. We decompose 1%, into lefthanded and righthanded spinors, which consequently
are no longer Majorana spinors themselves,

UL =5+, Yh= 51— s)¢h- (A.11)

The original Majorana spinor is by definition invariant under charge conjugation, defined

by ¢ = C 4T . However, one can show that the left- and righthanded spinors transform
into each other under charge conjugation,

WL =Yk,  (WR) =9L. (A.12)

Hence it should be clear that the left- and righthanded fields transform in conjugate
representations 2 and 2 of U(2). We therefore change notation such that ¢ = ¢
and ¥; = wﬁ (or the other way around, this is just a matter of definition, and must be
specified for each fermion separately, see e.g. table with the upper index transforming
in the 2 and the lower index in the 2 representation. Notice that this is consistent with
the property that SU(2)-indices are raised or lowered under complex conjugation. For
completeness we note that if v51° = 9?, i.e. if ¢* has positive chirality, then * v5 = 1%,
and similarly for negative chirality. Now we can easily proof the following identities for
spinors 1* and ¢’ of equal chirality,

d_)lgb] = Oa &Z’Y,uqu = 07
Pt =yt (V') =gy,
Vb = — i’ (P*yuds)” =Pirud’ , (A.13)

and so on for other bilinears. Also the Fierz rearrangement (A.10) simplifies on spinors
of a definite chirality, for instance,

(X*¢) 7 = = ()X + (WYX Yab

(X6 vy = = 3("7"6;,)X Y (A.14)






APPENDIX

Superconformal gravity

In this appendix we present the transformation rules of the superconformal fields and
their relation to the superconformal algebra, as well as their covariant quantities con-
tained in the so-called Weyl supermultiplet. The superconformal algebra comprises the
generators of the general-coordinate, local Lorentz, dilatation, special conformal, chiral
SU(2) and U(1), supersymmetry (Q) and special supersymmetry (S) transformations.
The gauge fields associated with general-coordinate transformations (e,®), dilatations
(b,), chiral symmetry (V,; and A,,) and Q-supersymmetry (1) are independent fields.
The remaining gauge fields associated with the Lorentz (w,), special conformal (f,*)
and S-supersymmetry transformations (¢,°) are dependent fields. They are compos-
ite objects, which depend on the independent fields of the multiplet [4, 27, 28]. The
corresponding supercovariant curvatures and covariant fields are contained in a tensor
chiral multiplet, which comprises 24 + 24 off-shell degrees of freedom. In addition to
the independent superconformal gauge fields, it contains three other fields: a Majorana
spinor doublet x?, a scalar D, and a selfdual Lorentz tensor Tapij, which is anti-symmetric
in [ab] and [ij]. The Weyl and chiral weights have been collected in table

Under Q-supersymmetry, S-supersymmetry and special conformal transformations
the independent fields of the Weyl multiplet transform as follows,

56#(1 = gb ’ya’l/J#i =+ Ei ’yai/}#i 5
51/),/ =9 Dﬂei — éTabijyabfy“ej — ’y,mi ,
5b;¢ = %giﬁbui - %EiFYuXi - %ﬁz¢uz +h.c. + A(Il(eua ;



116 Superconformal gravity

Weyl multiplet parameters

e wui by Ay Vuij Tap" X' D W,(ib Tu® ¢ui € n'

1 3 1 1 1

w -1 -3 0 1 5 2 0 1 5 —35 3
1 1 1 1 1

Y5 + + — + —

Table B.1: Weyl and chiral weights (w and c¢) and fermion chirality (v5) of the Weyl multiplet
component fields and the supersymmetry transformation parameters.

5A[L = %lgbd)}” + %lgb’yu Xi + %lﬁlw‘ul —+ h.C. y
V' =2€¢," — 367, X" + 20 ¢," — (h.c. ; traceless),
6Tabij =8 éhR(Q)abj] P

oxt = — %"y“b lZ)Tabij € + %R(V)W,ijv‘“’ej — %iRW(A)v“”ei + D¢
+ %’YabTabijnj )
6D =& Dxi + & Px' (B.1)

Here ¢’ and ¢; denote the spinorial parameters of Q-supersymmetry, 7’ and 7; those
of S-supersymmetry, and Ax® is the transformation parameter for special conformal
boosts. The full superconformally covariant derivative is denoted by D,,, while D,
denotes a covariant derivative with respect to Lorentz, dilatation, chiral U(1), and SU(2)

transformations,
Dufi = (au - %‘%Cd Yed + %bu + %iAu)ei + %Vuij e (B.2)
The covariant curvatures of the various gauge symmetries take the following form,

R(P)uw" =20y €, +2by, e, — 2w[#“b eulp — %(ﬁ[#iw“d)y]i +h.e),
R(Q)w' =2Dpn)" — vudu)’ — 2 T Yab Yutuj »
R(A)uw =20, A0 — 1 (390, 60 + J9p"wxi — hee)
ROV)w's =20,V + Ve Vo' + 200" du)j — Uj d01') — 31" 11X — Y x’)
— 05 (" Bupe — P 001") + 265" (D xe — P x®)
R(M),"" = 20w, — 2w}, "w,.” — 4f e + L. v 6y + huc.)
+ (39 T T — 390, 7 v*"xi — ¥ ) R(Q)™Ys + hue.)
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R(D), =20,b,) = 2f(u"€ja — 3 )i + SV VX0 — 30idn)” + 20X’
R(S)u' =2Ddu)’ — 23, Yatn)" — 3PTab " Y™ vty 5 — 3701’ o)’ v X5
+ 1RV ot Y vty + HR(A)aY vt
R(K)w®* =2Dy, f)* — (01,7 buyi + b7 d0)")
+ L DT b7 — Be, ) P + 3D Y v Yy
— 49y, v, Dy R(Q)™; + h.c.) . (B.3)

There are three conventional constraints (which have already been incorporated in (B.3)),

R(P),* =0,
’YMR(Q);Wi + %’YVXi =0,
e’y R(IM) o’ — iR(A)pa + 2 Tubi; T,"7 — 3D epq =0, (B.4)

which are S-supersymmetry invariant. They determine the fields w,ﬂb, (bui and f,* as

follows,

wzb = — 26”[“8[He,,]b] — e”[aeb][’eﬂc Oye,¢ — Zeu[aeb]”b,,
i [a, b ai
Lgiylayl 4+ gy, pb + e,
=1 (Vv = 20) (Dpbe’ — BT v 1pto; + 700Xt
f = R(w,e) — D
— (e "9, Db — 50 Y T iy — 24, v xi + hee.) . (B.5)

i

We will also need the bosonic part of the expression for the uncontracted connection f,,¢,
[ =3Rw,e),* — (D + tR(w,e))e,* — %iR(A),La + T%TubijT“bij , (B.6)

where R(w,e),* = R(w),,"%ep” is the non-symmetric Ricci tensor, and R(w,e) the cor-

responding Ricci scalar. The curvature R(w),,*

field w,, %, given in (B.5).
The transformations of wu“b, ¢," and f,* are induced by the constraints (B.4)). We
present their Q- and S-supersymmetry variations, as well as the transformations under

is associated with the spin connection
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conformal boosts, below,

b - 261,7ab¢m - 531%] Tasz + 6 'Y/J’Y Xz

+ & R (Q) = 571"y + hc. + 2 Ak e, "
5" = — 2 [ "Ya€' + LROV)ap 7™ vu€? + 3R(A) ey e’ — DT gy yue;
+ 207 Ve’ — (XY U )Va€'] + 2Dpun’ + A Yathy
5fu® = — 3EU, DyT" 5 — $e, "€ Pxi — §&7" s D
+ €7 Dy R":(Q) + 377" bui + hoc. + DAk . (B.7)

a
dwy

The transformations under S-supersymmetry and conformal boosts reflect the structure
of the underlying SU(2,2|2) gauge algebra. The presence of curvature constraints and
of the non-gauge fields T,p;5, x* and D induce deformations of the Q-supersymmetry
algebra, as is manifest in the above results, in partlcular in ) and .

Combining the conventional constraints with the various Bianchi identities one
derives that not all the curvatures are independent. For instance,

YDy R(M) g =22 R(K )V + 2l + 2 [F°R(Q)S —he]. (B.S)

Furthermore it is convenient to modify two of the curvatures by including suitable

covariant terms,

R(M )’ = R(M)ap “* + 3 (Tapi; T + Top™ T°5)
R(S)ar' =R(S)ap’ + 2T x; - (B.9)

where we observe that 4**(R(S) — R(S)),," = 0. The modified curvature R(M )q™

satisfies the following relations,

R(M)H,,“b e’y :iR(A)We”“ + %D en”,
Leap® ey R(M) " = R(M)ar?,
Ecdea R(M)4 = peeq R(M) ¢4 = 2R(D)gp = 21R(A)gp - (B.10)

The first of these relations corresponds to the third constraint given in (B.4]), while the
remaining equations follow from combining the curvature constraints with the Bianchi

identities. Note that the modified curvature does not satisfy the pair exchange property;
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instead we have,
R(M)ait® = R(M)*y, + 4i6; R(A),". (B.11)

We now turn to the fermionic constraint given in (B.4]) and its consequences for the
modified curvature defined in (B.9). First we note that the constraint on R(Q),, " implies
that this curvature is anti-selfdual, as follows from contracting the constraint with 4" .y,

R(Q)Mui = _R(Q)uui . (B12)

Furthermore, combination of the Bianchi identity and the constraint on R(Q) . yields

the following condition on the modified curvature R(S)qp",
YIR(S)ap' = 2DR(Q) ey’ = =2 D R(Q) o’ - (B.13)

This identity (upon contraction with v%7.4) leads to the following identity on the anti-
selfdual part of R(S)aw’,

R(S)ar" = R(S)ar' = 2P (R(Q)ab” + F7arX’) - (B.14)






APPENDIX

Covariantization under conformal
boosts

In principle covariant (multiple) derivatives are defined by the standard procedure by
adding gauge fields to absorb all symmetry variations proportional to derivatives of the
transformation parameters. In this procedure the gauge field f,* associated with the
conformal boosts (parametrized by Ax®) appears somewhat indirectly, because the only
other fields that transform under the conformal boosts are the gauge fields b,,, w#ab and
¢,'. Therefore supercovariant derivatives of fields that are themselves invariant, will
transform under these K-transformations, and usually these variations take a relatively
simple form. We give some examples for a scalar field ¢, a spinor field ¢, and a tensor
field t,p, each of Weyl weight w,

kDo = —wAka®,
5K-Datbc = —-w AKatbc +2 ta[bAKc] -2 77(1[btc]cl AKd ;
oxDy = [ —wAkq + %AKb’yab]ll) . (C].)

These transformation rules simplify for certain contractions, such as in D%, or D,

5KDatab = (2 — ’LU)AKatab 3
0k Diatse) = (2 — w)Ak(atpe)
Py = (5 —w)fx ¢, (C.2)
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showing, for instance, that the Dirac operator on a spinor field of weight w = % is

invariant.
Applying an extra covariant derivative we explicitly indicate the presence of the K-
connection field f,%,

D,uDa(yb :DuDaQb =+ wfua ¢7
D, D%, =D, D%ap + (w — 2) f." tas
Duwlp :,Du@w + (w - %)fua'Yawa (C?’)

where D,, denotes the covariant derivative without including the field f,“. Under K-

transformations these multiple derivatives transform as,

6KDuDa¢ = - (w + 1) [AKuDa + AKaDM]¢ + euaAKbDb¢7
(5KD“Datab = — (w + 1)AKHDatab — AKbDataH + eMbAKCD“tac +(2- ’u})AKQDHtab ,
Sk Dy = [ — (w+ DAy + 5AK“Yua| P + (5 — w) M D). (C4)

Contracting the first equation with e shows that the conformal D’Alembertian trans-
forms under K-transformations as dx[c¢p = —2(w—1)Ak* D, ¢, which vanishes for w = 1.
This pattern repeats itself when considering even higher derivatives. We present the

following results,

Dch¢ :DMDC¢ + 2(’LU - 1)fuaDa¢7
DCDC¢ :IDMDMDCQZ) + (w + Q)f/AHDC¢ + 2(’LU - 1)fuaDHDa¢a
Dclmb =DHD“JD1/J + [(w + 1)f,uu - %f,ua'ylm] lD¢ + (U} - %)fua'yaDudja (C5)

and,

50 0ed = — 2(w — DA T Do — 2(w + 1) Ak Dalled
= — 2wAk" [DcDa¢ + DaDc] ¢+ 2Ak“° [DcDa - DaDc} ¢,
kO Py = — (2w — A" Do Pt — 54k [(2w — 1)Oe + [P, D¢ (C.6)

In order to obtain (5.4) we have evaluated the previous two variations for the fields A

1
LRI
quadratic in derivatives in (C.6) appear with a certain degree of anti-symmetry, such

and U;, which have weights w = 0, 5, respectively. In this case all the terms cubic and

that they become proportional to curvatures.
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Chiral multiplets

D.1 Multiplication of chiral multiplets

In this appendix we summarize the product rules for two chiral supermultiplets and the
Taylor expansion for functions of these multiplets. In the local supersymmetry setting,
we will usually be dealing with homogeneous functions of chiral multiplets with equal
Weyl weight so that a scaling weight under Weyl transformations can be assigned to the
function.

The product of two chiral multiplets, specified by the component fields (A, V;, Bj,
F. A, C’) and (a, Vi, bijs fops Ais c), respectively, leads to the following decomposition,

(A, Wi, Bij, iy Mi, C) @ (0,30, bigs Fps M €) =
(Aa, A +a¥;, Abj; + a B;j — \f/(iwj) ,
Afo+aF, — 19Uy,
AN +al; — 3eM(Bip b + bir W) — L(Fpv i + f7*0 W),
Ac+aC — Le™* I By byy + Foy f7%0 + 9T\ + i) (D.1)

A function G(®) of chiral superfields ®* defines a chiral superfield, whose component

fields take the following form,

Alg =G(4),
Vilg =G(A)n W:",
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Bijlg =G(A)a By = 3G(A)an ¥ 0,
Foplg =G(A)a FJb — §9(A)an 7T 057
(

Ai'Q :g A)A AiA - % (A)AZ [sz Ejk\:[}k + 2Fab ’Yab\:[sz}

+ 15G(A)anr 70U TPy, T

Clg =G(A) CP — 1G(A)as [Bij By el — 2 A F=ab® 4 4 b § Ay, %] |
+39(Aasr [EszﬂBz‘jA‘I’kz\I’zF — MU AR Py
+ 1559 (A)asr=s CEA RN SLcu RN T (D.2)

Here derivatives of the function G(A) with respect to the scalar fields are denoted with
a lower index A, e.g. G(A)y = 0G(A)/OAN. This result follows straightforwardly from

expanding the superfield expression in powers of the fermionic coordinates.

D.2 Reduced chiral multiplets

Chiral multiplets can be consistently reduced by imposing a reality constraint. This
usually requires specific values for the Weyl and chiral weights. The two cases that
are relevant are the vector multiplet, which arises upon reduction from a scalar chiral
multiplet, and the Weyl multiplet, which is a reduced anti-selfdual chiral tensor multiplet.
Both reduced multiplets require weight w = 1.

We will denote the components of the w = 1 multiplet that describes the vector
multiplet by (A, ¥, B, F~, A, C)|vector- The constraint for a scalar chiral supermultiplet
reads, €9 D;v,,D;® = [e9 D;vayD;®]*, which implies that Clvector and Aj|vector are
expressed in terms of the lower components of the multiplet, and imposes a reality
constraint on Blyector and a Bianchi identity on F'~ |vector [27, 36, [39]. The latter implies
that F'~ |vector can be expressed in terms of a gauge field W,,. This feature is not affected
by the presence of the superconformal background field.

Denoting the independent components of the vector multiplet by (X, .Y, F ~), the

identification with the chiral multiplet components is as follows,

Alvector =X,
\Ili|vcctor = Qi 5
Bijlvector = Yij = eire i Y™,
I ST TRPYIS S TRSSENS 2
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Ai|vector = - giijj 5
CV|vector = -2 DCX - ing Tabijgij - 3)2191 P (D3)

where F),, = 20;, W, is the field strength written in terms of the gauge field W, and Fo
denotes the supercovariant field strength. The Bianchi identity on F,;, can be written as,

Db (F(;E - Fz:b + iXTabijEij - iXTabijEij) + % ()Zi’yanEij - )Zi’yanEij) = O7 (D4)

and the reality constraint on Y;; is included in (D.3]).
The Q- and S-supersymmetry transformations for the vector multiplet take the form,

§X =€Q;,
0 =2DXe; + Sei By e + Yijel +2Xn;
W, =& (v, Q5 + 210, X) + i€ (7, + 29,7 X)),
8Y;; =26 DY + 2eme X DAY (D.5)

and, for w = 1, are in clear correspondence with the supersymmetry transformations of
generic scalar chiral multiplets given in .

Subsequently we turn to the Weyl multiplet, which is a chiral anti-selfdual tensor
multiplet subject to D;v**D; ®4,% = [D;v**D; ®4,,"]*. Its chiral superfield components

take the following form,

Awlw =T eij
Wopilw =8¢ R(Q).,
Baijlw = — 8, RV) "5 s
(Fa) “Ulw = = 8R(M) 7,
Aavilw =8 (R(S) s + 3vanPxi)
Cap|lw =4D, DTy 56" — dual. (D.6)

We give the Q- and S-supersymmetry variations for the first few components,

(;Tabij =8 E[Z.]“?'(Q)abj] 5
SR(Q)ar' = — $DPTw7 €5+ ROV) wp'j € — SR(M) ot Yeac® + $Tea™ 7 yap
SR(V) wp'j =26, DR(Q)a’ — 26 (R(S)3; + F7abPx;)
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+ 7 (2R(Q)ab" + 3vapX") — (traceless),
SR = S D RQ)ad — 1 (R(S) 3, + )
- ﬁi’YabR(Q)Cdi - %ﬁi'YCdR(Q)abi - %ﬁi’yab’YCdXi . (D?)

A scalar chiral multiplet with w = 2 is obtained by squaring the Weyl multiplet. The
various scalar chiral multiplet components are given by,

Al = (T e5)?,
Uylwe =166, R(Q)], TH® 4y,
Bijlwz = — 16, RWV)" jyap T epm — 642508 R(Q)ab™ R(Q) Y,
F e = =16 R(M)od™ T 4y — 1655 R(Q)Lgv ™ R(Q)“
Ailwz =326 7P R(Q)1, R(M) s + 16 (R(S)ap: + 371a Dy xs) TH er
— 64 R(V)at" i1 R(Q)™',
Clwz =64 R(M) ™oy R(M) " + 32 R(V) ™" R(V)
— 32T D, DTy + 128 R(S)™; R(Q)ap” + 384 R(Q)** *yuDyx; . (D.8)

These components can straightforwardly be substituted in the expression for the higher-

derivative couplings.



Nederlandse samenvatting

De Nederlandse titel van dit proefschrift is ‘Nieuwe deformaties van N = 2 supergra-
vitatie’. Supergravitatie is een theorie die zwaartekracht (gravitatie) combineert met
supersymmetrieﬂ Het woord ‘deformaties’ kan hier losjes opgevat worden als ‘uitbrei-
dingen’ of ‘variaties’. In deze samenvatting zullen we deze begrippen toelichten. We
beginnen met het bespreken van enkele kenmerkende verschijnselen die een rol spelen in
supergravitatie, zoals zwaartekracht en symmetrieén. Zo zullen we geleidelijk toewerken

naar het onderwerp van dit proefschrift: deformaties van supergravitatie.

Zwaartekracht

Zwaartekracht is een kracht waar alles en iedereen aan onderhevig is. Alles met massa
trekt elkaar aan. Zwaartekracht zorgt ervoor dat als we iets laten vallen, het op de grond
terecht komt, dat de aarde in een baan om de zon draait en de maan in een baan om
de aarde. De precieze werking van deze kracht, in situaties zoals we die tegenkomen in
het dagelijks leven, is vastgelegd in Newtons wet van de zwaartekracht. Deze wet vertelt
ons bijvoorbeeld hoe snel een steen (of een appel) naar beneden valt als deze vanaf een
bepaalde hoogte boven het aardoppervlak losgelaten wordt.

Het blijkt dat Newtons wet van de zwaartekracht niet meer toereikend is wanneer de
snelheden van objecten de lichtsnelheid benaderen, of wanneer objecten zeer grote massa’s

hebben. In deze limieten worden de effecten van een fundamentelere theorie van de

1De toevoeging ‘N =2’ duidt de klasse aan binnen supergravitatie en is verder niet relevant voor dit
hoofdstuk.
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zwaartekracht merkbaar, namelijk Einsteins algemene relativiteitstheorie. Deze situatie
is kenmerkend voor de ontwikkeling van de natuurkunde. Een theorie die gangbare
situaties goed beschrijft, blijkt bij extremere situaties niet meer consistent te zijn. Dit
vormt de drijfveer om een fundamentelere theorie te vinden, die bij algemenere situaties
geldt en waarvan de originele theorie een benadering is.

Algemene relativiteitstheorie speelt een belangrijke rol in het beschrijven van de
evolutie van het universum. Ook geeft deze theorie een bepaalde klasse van oplossingen
genaamd zwarte gaten. Een zwart gat is een object dat zo zwaar is dat niets meer aan de
zwaartekracht van het object kan ontsnappen, zelfs licht niet. De massa van een zwart gat
is geconcentreerd in één punt met oneindige dichtheid, genaamd de singulariteit. Rond
een zwart gat bevindt zich een denkbeeldig oppervlak, de waarnemingshorizon, vanwaar
licht nog net aan de zwaartekracht van het zwarte gat kan ontsnappen. De singulariteit
is dus onzichtbaar voor een waarnemer die zich buiten deze waarnemingshorizon bevindt.

De aanwezigheid van een singulariteit in de oplossingen die zwarte gaten beschrij-
ven, geeft aan dat algemene relativiteitstheorie tekort schiet in deze extreme situatie.
De theorie moet dus wederom vervangen worden door een fundamentelere theorie om
een systeem te beschrijven met zwaartekracht op hele kleine lengteschalen, net zoals
Newtons wet van de zwaartekracht vervangen moet worden door algemene relativiteits-
theorie bij grote massa’s of hoge snelheden. Op kleine lengteschalen gaan zogenaamde
kwantumeffecten een rol spelen en een nieuwe theorie van zwaartekracht moet deze
kwantumeffecten incorporeren. Het vinden van zo’'n kwantumzwaartekrachttheorie is
een belangrijk onderwerp in de huidige theoretische natuurkunde. Zwarte gaten spelen
hierbij een grote rol als test voor een mogelijke kwantumzwaartekrachttheorie, omdat in
zo’n theorie de singulariteit afwezig zou moeten zijn. We zullen hier later in dit hoofdstuk

op terugkomen.

Symmetrieén

In de natuurkunde spelen symmetrieén een belangrijke rol. Men spreekt van een symme-
trie, of invariantie, als een eigenschap van een systeem onveranderd blijft na het uitvoeren
van een transformatie. Bijvoorbeeld, een perfect ronde bol, zonder opdruk, kan men
ronddraaien, zonder dat er een verschil aan de bol te zien is. Het is duidelijk dat de
aanwezigheid van een symmetrie eisen legt aan een systeem. Als de bol niet perfect rond
is, of als er een tekening op de bol zit, dan is de bol niet symmetrisch onder rotaties.
Vaak ligt er aan een natuurkundige theorie een bepaalde symmetrie ten grondslag. Zo

ook bij algemene relativiteitstheorie. Dit heeft te maken met het feit dat zwaartekracht
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(lokaal) niet te onderscheiden is van de kracht die een object voelt onder een versnellende
beweging. Iedereen die wel eens in een hard optrekkende auto heeft gezeten, heeft deze
laatste kracht lijfelijk ervaren. Met deze kracht kan zwaartekracht ‘gesimuleerd’ worden.
Stel, je bevindt je in een raket in de ruimte, waar zwaartekracht te verwaarlozen is. Als
deze raket versneld wordt, voel je een kracht die vergelijkbaar is aan zwaartekracht en je
met beide benen op de grond houdt. Sterker nog, als de beweging van de raket precies
goed afgestemd is, en de raket geen ramen heeft, kan je niet bepalen door middel van
experimenten of je je in een stilstaande raket op aarde bevindt, of in een versnellende
raket in de ruimte. Met andere woorden, de wetten van de natuurkunde zijn hetzelfde
in beide situaties - de beide situaties zijn symmetrisch. Dit is een voorbeeld van Ein-
steins equivalentieprincipe. Einstein heeft dit idee geformaliseerd, waaruit de algemene

relativiteitstheorie volgt.

Supergravitatie

Supergravitatie, ook wel superzwaartekracht genoemd, is een theorie die algemene relati-
viteitstheorie combineert met een bijzonder soort symmetrie, genaamd supersymmetrie.
In supersymmetrische theorieén worden twee klassen van deeltjes gerelateerd. Alle ele-
mentaire deeltjes, de bouwstenen van alles om ons heen, zijn namelijk op te splitsen
in fermionen en bosonen. Fermionen zijn deeltjes die, ruwweg gezegd, niet bij elkaar
kunnen zitten, terwijl bosonen dat wel kunnen. In een supersymmetrische theorie heeft
elke boson een fermionische ‘superpartner’, die onder een supersymmetrietransformatie
in elkaar roteren. De theorie blijft hetzelfde onder deze rotaties, oftewel, de theorie is
invariant onder supersymmetrie.

Toen supergravitatie bedacht werd, hoopte men dat dit een consistente theorie van
kwantumzwaartekracht zou zijn. Inmiddels wordt supergravitatie voornamelijk gezien
als een benadering van snaartheorie, één van de huidige kandidaten om kwantumzwaar-
tekracht te beschrijven. De fundamentele objecten in snaartheorie zijn uitgebreide ob-
jecten, zoals snaren (denk aan touwtjes) en membranen (denk aan een vel papier). Deze
objecten blijken in hogere dimensies te leven dan de drie dimensies waarmee we bekend
zijn, namelijk lengte, breedte en hoogte. Het wordt aangenomen dat deze extra dimensies
niet uitgestrekt zijn, zoals de drie dimensies die wij zien, maar in plaats daarvan een klein
pakketje vormen (gecompactificeerd zijn) zodat ze te klein zijn om direct zichtbaar te
zijn voor ons en in de huidige experimenten.

De effecten van snaartheorie zijn vooral aanwezig op extreem kleine lengteschalen.

Wanneer de relevante lengteschalen niet zo klein zijn geeft supergravitatie de benadering
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van snaartheorie. Omdat veel van snaartheorie nog onbekend is, of te moeilijk is om uit
te rekenen, is het belangrijk om supergravitatie te bestuderen, zoals in dit proefschrift

gedaan wordt.

Deformaties

In dit proefschrift worden nieuwe deformaties van een specifieke vierdimensionale su-
pergravitatietheorie afgeleid. Ook worden enkele toepassingen behandeld waarin deze
deformaties een rol spelen. Deze hebben met name betrekking op zwarte gaten.

Eén klasse van deformaties heeft te maken met symmetrieén. Naast supersymme-
trie en de symmetrieén van algemene relativiteitstheorie, kan supergravitatie nog meer
symmetrieén bevatten. Symbolisch kunnen we deze symmetrieén vergelijken met de,
al eerder besproken, perfect ronde bol. Laten we nu aannemen dat op elk punt in de
ruimte zich zo'n bol bevindt. Dit kunnen we ons voorstellen als een veld vol met (even
grote) bollen. Nu laten we de bollen roteren. Dit kan op twee manieren. De eerste
manier is dat alle bollen precies tegelijkertijd en op gelijke wijze ronddraaien. Dit is in
de praktijk natuurlijk een lastige onderneming, maar in theorie eenvoudig, omdat men
alleen maar hoeft te weten hoe één bol roteert, om te weten hoe alle bollen roteren. De
tweede manier is dat alle bollen allemaal door elkaar op hun eigen wijze ronddraaien.
Dit symboliseert twee verschillende soorten van symmetrie. Als een theorie invariant
is onder ‘bollen die tegelijkertijd ronddraaien’, noemen we dit een rigide symmetrie.
Als een theorie invariant is onder ‘bollen die allemaal apart ronddraaien’, noemen we
dit een lokale symmetrie. Deze laatste eis is sterker dan de eerste, omdat de theorie
dan invariant moet zijn onder de rotaties van elke bol afzonderlijk. Daardoor ziet een
theorie die invariant is onder een lokale symmetrie er anders uit ziet dan een theorie die
invariant is onder een rigide symmetrie. Er bestaat een specifieke procedure om binnen
een theorie van een rigide symmetrie een lokale te maken. Dit noemt men het ijken
van een theorie, en de veranderingen van de theorie ten opzichte van de theorie met de
rigide symmetrie worden ijk-deformaties genoemd. Dit proefschrift beschrijft hoe men
op de meest algemene manier de symmetrieén van een specifieke supergravitatietheorie
systematisch lokaal kan realiseren en de resulterende ijk-deformaties worden afgeleid.
In een toepassing worden, in de aanwezigheid van deze ijk-deformaties, de mogelijke
supersymmetrische oplossingen bestudeerd in de buurt van de waarnemingshorizon van
bepaalde zwarte gaten.

De andere klasse van deformaties die in dit proefschrift wordt behandeld, bestaat

uit zogenaamde hogere afgeleide termen. Als men de supergravitatie-benadering van
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snaartheorie neemt, spelen deze termen een subleidende rol. Dat betekent dat ze niet
de leidende termen zijn, maar de termen die daarna het meest belangrijk zijn. Ruwweg
geldt, hoe meer we van deze termen in beschouwing nemen, hoe preciezer supergravitatie
snaartheorie benadert. Dit is bijvoorbeeld van belang bij het berekenen van bepaalde
eigenschappen van zwarte gaten, zoals hun oppervlakte en lading. Voor sommige super-
symmetrische zwarte gaten kunnen deze eigenschappen exact uitgerekend worden binnen
snaartheorie. Deze resultaten kunnen worden vergeleken met wat verkregen wordt wan-
neer deze eigenschappen vanuit de supergravitatiebenadering berekend worden. Hieruit
blijkt dat in supergravitatie hogere afgeleide termen nodig zijn om een meer precieze
overeenkomst met snaartheorie van deze eigenschappen te krijgen.

Het construeren van zulke hogere afgeleide termen binnen supergravitatie blijkt lastig
te zijn, omdat ze aan bepaalde voorwaarden moeten voldoen. Zo moeten ze de symme-
trieén van supergravitatie respecteren. In dit proefschrift staat een systematische proce-
dure beschreven waarmee het mogelijk is een grote verscheidenheid aan hogere afgeleide
termen te construeren. Het bijzondere aan de termen die via deze methode verkregen
worden is dat bewezen kan worden dat ze geen van alle bijdragen aan de oppervlakte en
lading van supersymmetrische zwarte gaten. Dit resultaat is niet helemaal onverwacht,
omdat er al een goede overeenkomst was in de subleidende termen van de oppervlakte
en lading van bepaalde supersymmetrische zwarte gaten, berekend met snaartheorie en
supergravitatie, zonder dat deze nieuwe hogere afgeleide termen waren meegenomen. Het

resultaat in dit proefschrift geeft een gedeeltelijke verklaring voor deze overeenkomst.
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