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Abstract In this paper, we concern about applying gen-
eral relativistic tests on the spacetime produced by a static
black hole associated with cloud of strings, in a universe filled
with quintessence. The four tests we apply are precession of
the perihelion in the planetary orbits, gravitational redshift,
deflection of light, and the Shapiro time delay. Through this
process, we constrain the spacetime’s parameters in the con-
text of the observational data, which results in about ∼ 10−9

for the cloud of strings parameter, and ∼ 10−20 m−1 for
that of quintessence. The response of the black hole to the
gravitational perturbations is also discussed.
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1 Introduction and motivation

The dark side of the universe has found its way into the
physical observations, regarding the flat galactic rotation
curves, anti-lensing, and the accelerated expansion of the
universe [1–6]. This, in fact, has affected the way we look at
the astrophysical phenomena. Among these, and since the
end of the last century, two main observational discover-
ies have appeared as the keys to obtain a better understat-
ing of our universe. First, the confirmation of the highly
isotropic black body radiation, of the order 10−5 of the tem-
perature fluctuations, observed for the cosmic microwave
background radiation (CMBR) [7], and second, the discov-
ery of the accelerated expansion of the universe (in the con-
text of the Friedmann–Lamaître–Robertson–Walker (FLRW)
metric), using the type Ia supernovae observations [4,5]. In
this context, a concordance model emerges from the obser-
vations, which is the so-called Lambda-Cold Dark Matter
(�CDM) model.

Despite being simple, this model has been able to give
a fairly good description of a wealth amount of the obser-
vational data, although its deep theoretical origin is still a
mystery, and no clue has been given so far, for the origin and
the value of the included cosmological constant. One of the
main issues here is the coincidence problem, or why we live
in the exact epoch where the contribution of this constant is
of the same order of magnitude as that of matter? In fact, in
the extended versions of the model that assume a dynamical
source, even no fundamental idea has been put forward to
understand this component.

Nevertheless, there is an approach that has been able to
successfully ameliorate the coincidence problem, by replac-
ing the cosmological constant with a quintessence field, in
which, the case of an inflaton field during the inflationary
epoch, is used as a guide. In order to study the astrophysical
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phenomena, therefore, it seems logical to consider this model
as a conservative approach, since no better explanation exists.
Such phenomena may include supernovae, galaxy clusters, or
quasars, in addition to which, black hole astrophysics can be
named. Black holes, in particular, have appeared among the
most interesting astrophysical objects, and the recent imaging
of the M87* [8] has shown that black holes, beside stemming
in theoretical concepts, are potentially observable.

On the other hand, taking into account the cosmological
dynamics, the evolution of black holes can also be affected by
the dark side of the universe, in which they reside. This pro-
cess has been discussed extensively in the context of general
relativity and alternative theories of gravity (see for example
Refs. [9–12]). Geometrically, such calculations would add
a dark component to the black hole spacetime under con-
sideration, which is inferred from the cosmological energy-
momentum constituents. Such calculations may include the
consideration of a dark matter halo [13,14], or the coupling
of the spacetime with a quintessential field [15–17]. Fur-
thermore, for the case that the cosmological perfect fluid
is regarded as a relativistic dust cloud, consisting of one-
dimensional strings (instead of point particles), a specific
form of spacetime generalization was done in Ref. [18],
which associates the black hole to the so-called cloud of
strings. This spacetime was generalized further in Ref. [19]
to a gauge-invariant version, and its geodesic structure has
been investigated, recently, in Ref. [20].

In this paper, however, we take into account a static black
hole spacetime which is associated with both the quintessen-
tial field and the cloud of strings. Such black has been derived
and discussed in Refs. [21–23], and its geodesic structure
regarding the radial orbits has been investigated in Ref. [24].
Furthermore, a rotating version of the black was generated in
Ref. [25], together with discussing its thermodynamics. One
interesting feature of this black hole spacetime, is that it can
include both the effects of dark matter and dark energy, in the
sense that the included quintessential component, as well as
stemming from the accelerated expansion of the universe, can
act as an extra potential granted to the spacetime, to recover
the unseen galactic matter. As represented in the next section,
such contribution can be found in the Mannheim–Kazanas
solution to the fourth order conformal Weyl gravity, that is
proposed to recover the flat galactic rotation curves [26].
The cloud of strings is, however, related to a cosmological
model, in which the extended (string-like) objects play role
as the sources of gravity, and construct the universe [19]. On
the other hand, the respected parameters of the mentioned
components are supposed to be appropriately calibrated in
the context of standard observations. According to the fact
that such study is missing in the existing literature, in this
work, we make the aforementioned black hole to undergo
four standard astrophysical tests, in order to be able to con-
strain the parameters associated with the cloud of strings and

quintessence. To elaborate this, in Sect. 2, we give a brief
introduction to the spacetime and its components. In Sect. 3,
we begin with the precession of perihelion in the planetary
orbits as the first test in the solar system. This is followed
by the gravitational redshift, gravitational lensing, and the
Shapiro time delay. In this section, we use the observational
data in the solar system, in order to constrain the spacetime’s
parameters. As it will be calculated, these values are to small,
so that they can appear as perturbations on the Schwarzschild
spacetime. To close our discussion, in Sect. 4, we also present
some details about the response of black hole to the gravi-
tational perturbations. We conclude in Sect. 5. Throughout
this work, we apply a geometrized system of units, in which
G = c = 1.

2 The black hole solution in the dark background

The static, spherically symmetric black hole solution in the
quintessential background, which is surrounded by a cloud
of strings, is described by the following metric in the xμ =
(t, r, θ, φ) coordinates:

ds2 = gμνdxμdxν = −B(r)dt2 + B−1(r)

dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

with the lapse function defined as [21–23]

B(r) = 1 − α − 2M

r
− γ

r3wq+1 , (2)

in which, α, M , γ and wq , represent, respectively, the dimen-
sionless string cloud parameter (0 < α < 1), the black
hole mass, the quintessence parameter and the equation of
state (EoS) parameter. For a perfect fluid distribution of mat-
ter/energy, this latter is defined by Pq = wqρq , with Pq and
ρq as the quintessential energy pressure and density, and lies
within the range −1 < wq < −1/3. This parameter is set
to be responsible for the cosmological acceleration and the
special case of wq = −1 recovers the cosmological constant.

To proceed further with our study, we will consider the
case of wq = −2/3 which corresponds to the black hole
spacetime with the lapse function

B(r) = 1 − α − 2M

r
− γ r, (3)

located in a matter dominated universe [27]. Note that, the last
term resembles the dark matter-related term included in the
Mannheim–Kazanas static spherically symmetric solution to
the vacuum Bach equations, which is proposed to recover the
flat galactic rotation curves [26]. In this sense, the parameter
γ can be related to both the dark matter/energy constituents
of the spacetime, based on its value (for smaller values, it is
mostly related to dark matter).
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This spacetime is not asymptotically flat, however, its
three-dimensional subspace has an asymptotic deficit of
angle [28]. Such effect is also intensified by the presence
of the cloud of strings. Note that, for this particular choice
for the wq , the dimension of γ is m−1.

Defining [25,29]

ρ(r) = M + αr

2
+ γ r2

2
, (4)

for a quintessential energy tensor Tμν = (ε, Pr , Pθ , Pφ) with
a constituent of cloud of strings, one can confirm that [25]

ε = 2ρ′

8π
= −Pr , (5a)

Pθ = Pr − ρ′′r + 2ρ′

8πr
= Pφ, (5b)

with primes denoting differentiation with respect to the r -
coordinate, hold in the context of general relativity Gμν =
8πTμν , where Gμν is the Einstein tensor. Hence, the solu-
tion (3) can be regarded as a static black hole spacetime
surrounded by a cloud of strings, that is located in a uni-
verse filled with quintessential dark energy. Note that, for a
comoving time-like observer with a velocity four-vector field
uμ = (1, 0, 0, 0), the values in Eq. (5) provide

Tμνu
μuν = α + 2γ r

8πr2 . (6)

It is straightforward to verify that for the specific choice of

wq = −2/3, we have 0 < γ <
(1−α)2

8M ≡ γc, and hence,
Tμνuμuν > 0. One can therefore infer that the weak energy
condition (WEC) is respected. Note that γc → 0 for α → 1,
and γc = 1

8M for α → 0.
This black hole spacetime admits two horizons located at

the real roots of the equation B(r) = 0, which are

r++ = 1 − α

γ
cos2

[
1

2
arcsin

(
2
√

2Mγ

1 − α

)]
, (7)

r+ = 1 − α

γ
sin2

[
1

2
arcsin

(
2
√

2Mγ

1 − α

)]
, (8)

denoting, respectively, the (quintessential) cosmological, and
the event horizons, which will merge to r+ = r++ = rs =
2M at the limits α → 0 and γ → 0. Accordingly, one can re-
express the lapse function as B(r) = γ (r − r+)(r++ − r)/r .
Note that, for every specific choice of α within its allowed
range, an extremal black hole is obtained for the case of
γ = γc, with the only horizon located at re = 4M

1−α
, whereas

γ > γc corresponds to a naked singularity.
In the next section, we continue our discussion by inspect-

ing the astrophysical implications of this black hole space-
time through its parameters, by means of the observational
and experimental data inferred from standard general rela-
tivistic tests. These include, the precession of perihelion in
the planetary orbits and the deflection of light.

3 Astrophysical implications

In this section, we proceed with comparing the theoretical
inferences of doing standard tests on the black hole, with the
relevant observational data. Through this process, one can
establish reliable bounds on the parameters of the spacetime.
In what follows, we apply four distinct tests on the black hole,
and infer appropriate numerical values of the parameters α

and γ , according to which, the observational and experimen-
tal results can be recovered. Note that, since these tests are
standard, their explanations can be therefore found in any
textbook on general relativity. Hence, we skip the introduc-
tory notes and proceed directly to the calculations. We begin
with calculating the precession in the perihelion of planetary
orbits in the solar system.

3.1 The advance of the perihelion

An elementary method to study this effect was presented
by Cornbleet in Ref. [30], which was later applied to other
spacetimes in Refs. [31,32]. The general idea is to compare
the Keplerian elliptic orbits in the Minkowski spacetime (pre-
sented in a Lorentzian coordinate system), with those given
in the Schwarzschild coordinates. This way, the desired gen-
eral relativistic corrections are emerged. Let us consider the
unperturbed Lorentzian metric

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2, (9)

in the (t, r, θ, φ) coordinates, together with metric (1), which
we now assume to be in the (t ′, r ′, θ, φ) coordinates. Accord-
ingly, the relation between (t, r) and (t ′, r ′) can be given in
the binomial approximations

dt ′ =
(

1 − α

2
− M

r
− γ

2
r

)
dt, (10a)

dr ′ =
(

1 + α

2
+ M

r
+ γ

2
r

)
dr. (10b)

Therefore, in the invariant plane θ = π/2, the element of
area in the Lorentzian system is dA = ∫ R

0 rdrdφ = 1
2 R

2dφ,
where R is the areal distance from the planet to the source.
This way, the Kepler’s second law can be cast as

dA

dt
= 1

2
R2 dφ

dt
. (11)

On the other hand, in the Schwarzschild coordinates we have

dA′ =
∫ R

0
rdr ′dφ =

∫ R

0

(
r + α

2
r + M + γ

2
r2

)
drdφ

= R2

2

(
1 + α

2
+ 2M

R
+ γ

3
R

)
dφ. (12)
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Therefore, by means of the transformations (10), the Kepler’s
second law is written as

dA′

dt ′
= 1

2
R2

(
1 + α

2
+ 2M

R
+ γ

3
R

)
dφ

dt ′

= 1

2
R2

(
1 + α

2
+ 2M

R
+ γ

3
R

)

×
(

1 + α

2
+ M

R
+ γ

2
R

)
dφ

dt

� 1

2
R2

(
1 + α + 3M

R
+ 4Mγ

3

)
dφ

dt
. (13)

In fact, since the law must be held covariant in all coordinate
systems, one can infer from Eqs. (11) and (13), that dφ′ =
(1 + α + 3M/R + 4Mγ /3)dφ. Accordingly, for an angular
increment �φ′, one gets
∫ �φ′

0
dφ′ =

∫ �φ=2π

0

(
1 + α + 3M

R
+ 4Mγ

3

)
dφ, (14)

for a single orbit. Knowing that R = l/(1 + ε cos φ), for an
ellipse with the eccentricity ε and the semi-latus rectum l,
one gets

�φ′ = 2π

(
1 + α + 4Mγ

3

)
+ 3M

l

∫ 2π

0
(1 + ε cos φ)dφ

= 2π + �φgr + �φcs + �φq , (15)

where

�φM = 6πM

l
, (16a)

�φα = 2πα, (16b)

�φγ = 8πMγ

3
, (16c)

correspond, respectively, to the corrections due to general
relativity, cloud of strings and quintessence.

To test the above relation in the solar system, we let M =
M� = 1476.1 m, and therefore, the advance of perihelion in
arcseconds per century, is obtained as

δ ≡ �φ′ − 2π = 573.912
v

l
+ 1.296vα + 2.55072vγ, (17)

in which, v corresponds to the number of orbits per year, l is
given in 109 m, α is of order of 10−8, and γ of 10−11 m−1,
in accordance with the observed planetary precession in the
perihelion in the solar system (see Fig. 1).

3.2 Gravitational redshift

The famous frequency shift for photons passing a static
source, can be inferred from the famous relation [33]

ν

νi
=

√
B(r)

B(ri )
. (18)

Fig. 1 Constraining the parameters α and γ , based on the values for
the precession in the perihelion of Mercury (blue lines), Venus (green
lines), and Earth (red lines) (see Ref. [30] for the respected values)

which is a result of the existence of a time-like Killing vec-
tor associated with the spacetime. Here, (ri , νi ) and (r, ν)

are, respectively, the initial and the observed values of the
radial distance to the source and frequency. For the near-earth
experiments, however, we have α 	 1 and γ r 	 2M/r . One
can therefore approximate Eq. (18) as

ν

νi
�

(
ν

νi

)
gr

+
(
r − ri
ri r

)
Mα − (r − ri )

2
γ, (19)

where(
ν

νi

)
gr

≡ 1 − M

r
+ M

ri
, (20)

is the general relativistic value due to the massive source,
which has been tested with the hydrogen maser in the Gravity
Probe A (GP-A) redshift experiment, with an accuracy of the
order of 10−14 [34]. Accordingly, the following constraint is
obtained:∣∣∣∣
(
r − ri
ri r

)
Mα − (r − ri )

2
γ

∣∣∣∣ � 10−14. (21)

Comparing the initial position ri = r⊕ on the Earth of mass
M = M⊕ = 4.453 × 10−3 m, and the observer on a satellite
at a height of 15,000 km above the Earth, the above relation
yields

|4.877α − 7.5γ | � 1, (22)

which constrains α ∼ 10−4 and γ ∼ 10−20 m−1 (see Fig. 2).

3.3 Deflection of light

The process of light deflection, or the so-called gravitational
lensing, can be approached, theoretically, by means of the
geodesic equations for the light rays (null geodesics). Indi-
cating ẋμ ≡ dxμ/ds, one can get from the line element (1)
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Fig. 2 The confidence range for α and γ , in accordance with the red-
shift observed in the GP-A (for the respected values, see Ref. [34])

that

ε = − E2

B(r)
ṫ2 + ṙ2

B(r)
+ L2

r2 , (23)

where E ≡ B(r)ṫ and L ≡ r2φ̇ are the constants of
motion, and as in the previous subsections, we have consid-
ered the equatorial trajectories corresponding to θ = π/2.
The parameter ε indicates the nature of the geodesics, in the
sense that the null and the time-like trajectories are identi-
fied, respectively, by ε = 0, and ε = −1. Accordingly, the
first order, angular, equation of motion for the light rays (i.e.
photons as the test particles) passing the black hole, is given
by

(
ṙ

φ̇

)2

=
(

dr

dφ

)2

= r4

b2 − (1 − α)r2 + 2Mr + γ r3, (24)

in which, b ≡ L/E is the impact parameter. Performing the
change of variable r = 1/u, the above equation yields

(
du

dφ

)2

= 1

b2 − (1 − α)u2 + 2Mu3 + γ u, (25)

that reduces to the standard Schwarzschild equation of light
deflection in the limit of α → 0 and γ → 0. Differentiating
Eq. (25) with respect to φ, gives

u′′ + u = 3Mu2 + αu + γ

2
, (26)

where the primes denote differentiations with respect to φ.
Following the procedure established in Ref. [35], we obtain

u = 1

b
sin φ + 3M

2b2 + α
√

2

2b
+ γ

2

+
(

M

2b2 + α
√

2

12b

)
cos(2φ). (27)

Fig. 3 The constraints on α and γ for the deflection angle of the Sun

Note that, u → 0 results in φ → φ∞, with

− φ∞ = 2M

b
+ 7α

√
2

12
+ γ b

2
. (28)

The deflection angle of the light rays passing the black hole
is, therefore, obtained as

ϑ̂ = 2 |−φ∞| = 4M

b
+ 7α

√
2

6
+ γ b, (29)

which recovers the famous form of ϑ̂Sch = 4M/b for the
Schwarzschild black hole in the limits α → 0 and γ →
0. This latter, if applied for the Sun as the massive source,
provides ϑ̂Sch = 4M�/R� = 1.75092 arcsec. Note that, the
observed deflection angle by the Sun has been measured as
ϑ̂� = 1.7520 arcsec for the prograde position, and ϑ̂� =
1.7519 arcsec for the retrograde one [36], which produces
an error of about 0.0001 arcsec. This error constrains the
parameters as α ∼ 10−9 and γ ∼ 10−17 m−1 (see Fig. 3).

3.4 Gravitational time delay

Claimed as the fourth test of general relativity, the Shapiro
time delay has appeared as an interesting effect which is of
observational significance. This effect, which refers to the
delay in the radar echos of the electromagnetic signals pass-
ing massive objects, was proved experimentally by, approx-
imately, the same time of its proposition [37,38]. Further-
more, as inferred from recent astrophysical observations,
this effect can be seen for two other mass-less energy prop-
agators, namely the neutrinos and the gravitational waves,
which act in favor of the existence of dark matter [39]. In
this subsection, we proceed with the determination of the
resultant Shapiro effect for photons that pass the black hole,
by calculating the time difference between the emission and
the observation of a light ray, which is sent from the point
P1 = (t1, r1), travels to P2 = (t2, r2), and returns back to
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P1. Accordingly, we are concerned with the time interval

t12 = 2 t (r1, ρ0) + 2 t (r2, ρ0), (30)

with ρ0 as closest approach to the black hole. Taking into
account the definitions given in the previous subsection, we
have

ṙ = ṫ
dr

dt
= E

B(r)

dr

dt
, (31)

from which, one can recast Eq. (23) as

E

B(r)

dr

dt
=

√
E2 − L2

r2 B(r), (32)

for mass-less particles. According to the fact that at r = ρ0,
the radial velocity of the test particle is vanished, it is straight-
forward to infer b−2 = B(ρ0)/ρ

2
0 . This way, the coordinate

time is found to vary as

t (r, ρ0) =
∫ r

ρ0

dr

B(r)

√
1 − ρ2

0
B(ρ0)

B(r)
r2

, (33)

during its journey from ρ0 to r . So, to the first order of cor-
rections we obtain

t (r, ρ0) ≈
√
r2 − ρ2

0 + tM (r, ρ0)

+tα(r, ρ0) + tγ (r, ρ0), (34)

where

tM (r, ρ0) = M

⎡
⎣

√
r − ρ0

r + ρ0
+ 2 ln

⎛
⎝r +

√
r2 − ρ2

0

ρ0

⎞
⎠

⎤
⎦ ,

(35a)

tα(r, ρ0) = α

√
r2 − ρ2

0 , (35b)

tγ (r, ρ0) = γρ2
0

⎡
⎣

√
r − ρ0

r + ρ0
− ln

⎛
⎝r +

√
r2 − ρ2

0

ρ0

⎞
⎠

⎤
⎦

+ γ

2

⎡
⎣r

√
r2 − ρ2

0 + ρ2
0 ln

⎛
⎝r +

√
r2 − ρ2

0

ρ0

⎞
⎠

⎤
⎦ . (35c)

Defining the time difference �t := t12 − t E12 as the
delay for the journey P1 → P2 → P1, with t E12 =
2

(√
r2

1 − ρ2
0 +

√
r2

2 − ρ2
0

)
being the travel time interval

between the same points in the Euclidean space, one obtains

�t = �tM + �tα + �tγ , (36)

in which

�tM = 2M

[√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0
+ 2 ln

(
t̃E12

ρ2
0

)]
,

(37a)

�tα = αt E12, (37b)

�tγ = 2γ ρ2
0

[√
r1 − ρ0

r1 + ρ0
+

√
r2 − ρ0

r2 + ρ0
− ln

(
t̃E12

ρ2
0

)]

+ γ

[
r1

√
r2

1 − ρ2
0 + r2

√
r2

2 − ρ2
0 + ρ2

0 ln

(
t̃E12

ρ2
0

)]
, (37c)

and t̃E12 =
(
r1 +

√
r2

1 − ρ2
0

)(
r2 +

√
r2

2 − ρ2
0

)
. The expres-

sion in Eq. (36) is, therefore, the time delay in the echo of
light rays passing the black hole. In order to achieve a sensi-
ble value for this delay, let us confine ourselves to the solar
system, which demands ρ0 	 r1, r2. This way, the above
difference is approximated as

�t� ≈ 4M

[
1 + ln

(
4r1r2

ρ2
0

)]

+2α(r1 + r2) + γ

[
r2

1 + r2
2 − ρ2

0 ln

(
4r1r2

ρ2
0

)]
. (38)

Hence, by letting M → M�, α → 0, and γ → 0, we recover

�tSch = 4M�
[

1 + ln

(
4r1r2
ρ2

0

)]
, as the Schwarzschild limit

of the Shapiro time delay in the solar system. Considering r1

and r2 to be, respectively, the Earth–Sun and the Sun–Mars
distances, and ρ0 ≈ R� + (5 × 106) m, as the approximate
radial distance from the Sun’s center to its corona, one cal-
culates �tSch ≈ 246 µs. Note that, the measured error in the
observed time difference for the round trip during the Viking
mission was about 10 ns [40]. This is related to the confidence
values α ∼ 10−9 and γ ∼ 10−21 m−1 (see Fig. 4).

So far, we dealt with some standard general relativistic
tests for the black hole, and we constrained the values of the
metric parameters, regarding the components of the cloud
of strings and quintessence. Since the most important tests
have been given sufficient attention, we close this section at
this point, and continue our discussion with a more specific
concept of the astrophysical black holes.

4 Black hole’s response to gravitational perturbations
and the quasi-normal modes

The damping oscillations of the field perturbations in the
black hole spacetimes, or the black holes’ quasi-normal
modes (QNMs), have been of interest among astrophysicists,
because of their direct relation to the propagation of the grav-
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Fig. 4 The constraints of α and γ regarding the time delay in the solar
system

itational waves. In fact, the late-time wave form of the black
hole ringing is typically identified by a QN frequency [41–
43], which has raised in importance ever since the recent
detection of the gravitational waves [44,45]. The QNMs are
therefore absorbing a great deal of attention from the scien-
tific community, since they are also applicable in the gravita-
tional wave astronomy (see for example Refs. [46–50]). In a
more general view, the QNMs are responses of the black holes
(or stars) to perturbations. For the Schwarzschild black holes
surrounded by a cloud of strings, the QNMs have been cal-
culated in Refs. [51,52]. For scalar perturbations, the scalar
QNMs for a Reissner–Nordström black hole associated with
quintessence and cloud of strings have given in Ref. [23]. In
this paper, we continue with calculating the QNMs for the
Schwarzschild case, however, we take into account the gravi-
tational perturbations, and confine ourselves to the parameter
values that have been determined in the previous subsections.
For the black hole under consideration, the metric can be per-
turbed as

gμν = gμν + hμν, (39)

according to which, the Einstein equation varies as δGμν =
8πδTμν . This perturbation problem can be reduced to a single
wave equation, by decomposing it into tensorial spherical
harmonics, in the following manner [47]:

χ(xμ) =
∑
�,m

X�,m(t, r)

r
Y�,m(θ, φ), (40)

where the function X�,m(t, r) is, in fact, a combination of the
all ten independent components of hμν . Note that, since the
spacetime under consideration is spherically symmetric, one
can omit the index m in the spherical harmonics. Accord-
ingly, we consider the Schrödinger-like wave equation

∂2X�

∂t2 −
(

∂2

∂r2∗
− V�(r)

)
X� = 0, (41)

to govern the radial perturbations outside the event horizon,
in which

r∗ = r+ ln(r − r+) − r++ ln(r++ − r)

γ (r++ − r+)
, (42)

is the corresponding “tortoise” radial coordinates obeying
dr∗ = dr/B(r), and V�(r) is the Regge–Wheeler effective
potential [53]. The above equation admits two kinds of per-
turbations, each of which, has an appropriate parity of the
effective potential:

• For the odd-parity (axial) perturbations, that transform as
(−1)�+1 under the parity transformation, we have

V−
� (r) = B(r)

[
�(� + 1)

r2 + σ

r
B ′(r)

]
, (43)

where σ = 0, 1 and −3, correspond, respectively, to the
electromagnetic, scalar, and gravitational perturbations.

• For the even-parity (polar) perturbations, that transform
as (−1)� under the parity transformation, we have

V+
� (r) = 2B(r)

r3

×
[

9M3 + 9kM2r + 3k2Mr2 + k2(k + 1)r3 − 9Mr(α + γ r)

(3M + kr)2

]
,

(44)

where 2k = (� − 1)(� + 2). For the case of α = γ = 0,
the above relation reduces to the Zerilli effective potential
for the perturbations on Schwarzschild black hole [54].

The potentials have a peak near r = r+, and clearly, they both
vanish at the horizons. Considering this, and among several
methods in the calculation of the QNMs (see Ref. [47] for
a review), we apply the Schutz-Will semi-analytic formula
[55]

(Mωn)
2 = V�(r0) − i

(
n + 1

2

) √
−2

d2V�(r0)

dr2∗

= V�(r0) − i

(
n + 1

2

) √
−2B(r0)

d

dr

[
B(r0)

dV�(r0)

dr

]
, (45)

which originates from the WKB method of solving the wave
scattering problem. Here, ωn is the complex QNM frequency,
and r0 is the aforementioned potential peak at the vicinity of
the event horizon.

Let us consider the fundamental mode, that corresponds
to � = 2 and n = 0. Accordingly, and applying the potential
(43) with σ = −3, we get

Mω0 = 1

r2
0

×
[

− ir0

√
−120M2 − 36(α − 3)Mr0 + 3r2

0

[
α(γ r0 + 6) + γ r0 − 6

]
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Fig. 5 The Regge–Wheeler effective potentials, plotted for α = 2 ×
10−8, γ = 2×10−20/M , and the three cases of � = 2, 3 and 4. The red
dashed line indicates the event horizon, and for each of the cases, the

potential peak has been indicated by r0.The behavior of the potentials
are the same up to 5.54% of difference. The unit of length along the axes
is M , and the gravitational perturbations have been taken into account

Table 1 The first four QNMs of
the black hole for � = 2, 3, and
4, regarding the parameters
given in Fig. 5

n � = 2 � = 3 � = 4

0 0.43973 − 0.205123i 0.65644 − 0.243493i 0.857432 − 0.260443i

1 0.597172 − 0.453131i 0.836703 − 0.573103i 1.04025 − 0.644016i

2 0.730026 − 0.617779i 1.00316 − 0.79668i 1.22435 − 0.911962i

3 0.843535 − 0.748508i 1.14892 − 0.97385i 1.38999 − 1.1246i

+12M2 + 6(α − 3)Mr0 − 3r2
0 (γ r0 + 2)(α + γ r0 − 1)

] 1
2
. (46)

The determination of the modes however depends explicitly
on the values of α and γ , which also identify r0 for each of
the cases. To elaborate this, we consider Fig. 5, where we
have plotted the potentials given in Eqs. (44) and (43), based
on definite values of the metric parameters which have been
constrained in the previous subsections in accordance with
the observational data, for � = 2, 3, and 4, and for the case
of gravitational perturbations (σ = −3).

Based on the small difference revealed from the potentials
V∓

� (r), we take into account the critical distance r0, which
is inferred from V−

� , reading as r0 ≈ 3.28M . This way, the
fundamental mode is calculated as Mω0 ≈ 0.44 − 0.21i . To
infer the corresponding value in kHz, one needs to multiply it
by 2π(5142 Hz) × (M�/M), which provides the frequency
of approximately 1.4 kHz with the damping time 0.66 ms,
for a black hole of M = 10M�. The first four QNMs of the
black hole have been given in Table 1, for � = 2, 3 and 4.
Furthermore, in Fig. 6, more modes have been shown in the
complex plane, whose number for each value of the harmonic
index �, can be infinite [56,57]. Also, as it can be seen from
the diagrams, the absolute values of the imaginary parts of

the frequencies grow rapidly, which implies that the higher
modes do not contribute significantly in the emitted gravita-
tional wave signals. This can been seen, as well, in a single
mode by growing �.

Taking into account the astrophysical constraints we made
on the spacetime’s parameters, the above QNMs are the most
reliable ones for the black hole, since they relate to the confi-
dence level of the aforementioned parameters. We summarize
the general results of this paper in the next section.

5 Summary and the concluding remarks

We studied the astrophysical implications of a Schwarzschild
black hole which is associated with cloud of strings and
quintessence. This was done by performing standard gen-
eral relativistic tests in the solar system. The corresponding
parameters α and γ are supposed to include the effect of
extended sources of gravity, as well as dark matter and dark
energy. and the four standard tests could infer the ranges
10−9 ≤ α ≤ 10−4 and 10−21 ≤ γ M ≤ 10−11. As the
smallest values of the parameters appear inside the confi-
dence range for the experiments related to light propagation

123



Eur. Phys. J. C           (2021) 81:866 Page 9 of 10   866 

Fig. 6 The spectrum of the QNMs for � = 2 (red), � = 3 (blue), and
� = 4 (green)

in the spacetime, it can be inferred that null trajectories are
the most sensitive to changes in these parameters. This, in
fact, confirms the pretty well-known observational principle,
that the impacts of the possible dark components of the uni-
verse, would be first noticeable within the optical and spec-
troscopic astronomical data. The observational constraints
we obtained for this black hole could also pave the way for
further studies, in the sense that the physical inferences one
obtains can be calibrated within the data reported here. In
this paper, also, we calculated the QNMs as the black hole’s
response to gravitational perturbations, based on particular
choices for the parameters, as the most reliable ones. For
higher degrees of �, each of these modes showed to be of
stronger damping, and therefore, of less contribution in the
emitted gravitational waves. This feature is in common with
other black hole spacetimes, as studied extensively in the
literature. For a future work, we aim at studying the thermo-
dynamics of this black hole in the framework of adiabatic
processes, so that the observational constraints we presented
in this paper can help us having a more realistic vision.
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