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1 Introduction

A wealth of observational evidence points to a universe that is undergoing an accelerated
expansion [1-3], consistent with a late time de Sitter (dS) vacuum. However, constructing
dS vacua from the top down remains a great challenge in modern physics. Despite many
interesting attempts to obtain them directly from fundamental theory (for example [4-10]),
there is little doubt that they are hard to find and even harder to do so consistently, with full
perturbative control. Indeed, the path towards finding dS vacua in string theory must get
round a number of no-go theorems [11-13] and is paved with a range of potential pitfalls. For
a sample of some of the things that can go wrong, see [14-19]. As a result of these difficulties,
it has been conjectured that dS vacua may even be fundamentally incompatible with, at the
very least, string theory [20-23]. Or in other words, they lie in the Swampland of gravitational
effective field theories. Although this view is not without nuance and opposition (see, for
example, [24-26]), it is safe to say that the debate surrounding dS remains both lively and
multi-faceted; for recent reviews on this topic, we refer the reader to [27-30]. Obtaining a
model of quintessence in string theory, where the late time acceleration is due to a dynamical
scalar field in slow roll, is arguably even more challenging [31-37].

In this work, we will attack the problem of obtaining dS slightly differently to the
mainstream approach found in the literature. Typically, you take your favourite string
theory, compactify on some Calabi-Yau, add necessary ingredients such as fluxes and branes,
and then check that the resulting effective theory is robust against g, and o corrections.
Whilst it goes without saying that heroic efforts have been made in this direction, such a
strategy also involves a preliminary choice: that we expect our universe to truly represent a
vacuum state of the full theory. If the Landscape is vast, this is by no means inconceivable.
But by making this choice, we omit by default a separate possibility that could perhaps



be as numerous as (if not more than) the number of vacua: transitions between them. To
emphasise, if some moduli locally tunnel between different vacuum configurations, it gives rise
to domain walls partitioning these spatially separated regions. The question then becomes
whether we can straightforwardly put dS on one of these domain walls. We advocate that
the answer to this question is yes.

Local physics on a domain wall is necessarily sensitive to the spacetime regions that
it delimits and typically demands a certain hierarchy of scales between them in order to
recover any realistic cosmology. One of our goals with this work is to skip this additional
requirement by focusing on a very particular process: the decay of nothing into something.
In other words, we consider the absence of spacetime and its content as the initial state and
allow it to nucleate a bubble of spacetime. Although bizarre at first glance, it is instructive
to first discuss the inverse process where spacetime decays to nothing, also known as the
“Bubble of Nothing”. In the earliest version by Witten [38], he demonstrates that the Kaluza-
Klein vacuum admits an instability that allows it to decay via bubble nucleation. As one
approaches the bubble from the outside, the size of the internal S' dynamically shrinks
until it reaches zero size and ‘pinches off’. This zero-size locus, called an End-of-the-World
(ETW) brane, becomes a new boundary of the spacetime in the sense that any point inside
the bubble is infinite geodesic distance away. A way to understand this is by recognising
that the lower-dimensional gravitational coupling diverges, RZQ ~ Vol(S l)ﬁgQ — 0. In other
words, there is effectively no spacetime inside the Bubble of Nothing, as the name suggests.
The reversed process described by the same instanton, dubbed the “Bubble of Something”,
should describe the creation of a spacetime from nothing. Alongside Bubbles of Nothing
and ETW branes, they have gained a lot of traction within the Swampland programme in
recent years [39-45], seeded by the Cobordism Conjecture [46]. Mathematically, cobordism is
an equivalence relation between compact manifolds; two manifolds of the same dimension,
say M and M’ are said to be cobordant if there exists a manifold of one dimension higher,
W, whose boundary is the disjoint union of the two, OWW = M U M’. Taking Witten’s
Bubble of Nothing as an example, the pinching off of the S' can be seen as a cobordism
to nothing, since S! is itself a boundary. The Cobordism Conjecture then states that, in
quantum gravity, the group consisting of all such equivalence classes contains only the trivial
element, i.e. any compactification can be related to nothing by a cobordism. In that regard,
the conjecture predicts that the associated ETW branes must be included in the spectrum
of domain walls. If that is the case, it appears natural for us to consider whether they can
also serve as braneworlds. This will be the focus of our work.

An interesting proposal was made by Brown and Dahlen that ‘nothing’ can in fact be
thought about as Anti-de Sitter (AdS) space with A — —oo, where A is the cosmological
constant [47]. Or equivalently, take the AdS length scale to zero, £ — 0. It is appealing
to ask whether this interpretation resonates with ideas from the Swampland programme.
The subtlety in taking this limit, however, is that it by design leads to diverging quantities,
potentially spoiling the effective description. For example, the brane tension will turn out to
be negative for up-tunnelling processes, and we will show how it diverges in the aforementioned
limit. The same was pointed out in [39] where the authors necessitate some renormalization
procedure to make the Brown-Dahlen interpretation consistent. The need to renormalize



should not be unexpected. After all, the classical gravity description is not expected to hold
in the limit where ¢ — 0, and so divergences are expected to occur from pushing the effective
field theory beyond its regime of validity. The main part of this work will be to show precisely
how to realise the required renormalization using holography.

Before outlining the content of this paper, allow us to contrast with another similar
idea, namely the “dark bubble cosmology” [48-60]. It is important to stress that it is
inherently different from what we will discuss — however, the intuition shares similar features
and will be of benefit to keep in mind. The motivation for the dark bubble stems from
the non-supersymmetric AdS Instability Conjecture [61], which poses that any such AdS
geometry supported by fluxes, must possess an instability. Provided this statement, the dark
bubble considers the decay AdSZ — AdS; (here we use +/— to denote the parent/daughter
vacua) via the nucleation of a spherical co-dimension one brane. If there is a hierarchy
A_ < Ay <0 between bulk cosmological constants, i.e. it is a down-tunnelling process, the
junction conditions admit positive tension bubble walls and finite nucleation rates. Many
aspects of the dark bubble have been explored in recent years, including black holes [51, 60],
gravitational waves [53], electromagnetism [57], and string theory embeddings [54, 55].

In the spirit of Brown and Dahlen, the Bubble of Something can be viewed as an up-
tunnelling event with Ay < A_ <0, and Ay — —oco. As we have already mentioned above,
this naively requires a bubble wall of negative tension to support the transition. However,
this is only true for the bare tension — the properly renormalized tension turns out to be
positive. Of course, the Bubble of Something as an up-tunnelling is inherently different from
the dark bubble scenario, where down-tunnelling occurs. We would also like to highlight
two additional, differing features, which will play a pivotal réle in our discussion. First is
the fact that the dark bubble requires the non-normalizable graviton zero mode in order
to give the correct effective graviton propagator on the bubble. This can be sourced by
radially stretched bulk strings attached to the bubble. For our model, we will argue that the
non-normalizable mode is not needed to recover the usual four-dimensional gravity, and that
it is nevertheless suppressed in the Ay — —oo limit. Second is the emphasis that the dark
bubble is fundamentally different from the Randall-Sundrum models [62, 63], since there is
no Zo symmetry across the brane. They are, in fact, asymmetric braneworlds [64—67] with a
well-defined notion of “inside” and “outside” [56]. Another way to see this is that only the
outside patch occupied by the initial vacuum state possesses a conformal boundary. Similarly,
we will also argue that the Bubble of Something, despite it also admitting an inside and
outside patch, can be interpreted as a one-sided version of a Randall-Sundrum like model.

Finally, we would like to emphasise the role played by Euclidean methods in delivering a
dS universe on a bubble wall. In D dimensions, the dominant instanton is expected to exhibit
O(D) symmetry [68, 69], with the domain wall corresponding to a (D—1)-dimensional spherical
hypersurface at fixed radius. Upon Wick rotating this solution to Lorentzian signature, we see
that the sphere becomes an expanding bubble wall with a (D — 1)-dimensional dS geometry.

The plan for the rest of this paper is as follows: in section 2 we will compute the Bubble of
Something instanton in two ways — first by interpreting ‘nothing’ as a vanishing contribution
to the action, and second by considering it as AdS and subsequently taking the limit A — —oo.
We discuss multiple interpretations of the instanton and provide the dS solution on the ETW



brane. In section 3 we argue that the infinities associated with the limit are artefacts of an
unrenormalized theory. We give a basic introduction to holographic renormalization and use
it to show that the different interpretations of section 2 are equivalent. We also discuss metric
perturbations and the localisation of gravity on the brane in each case. Appendix A provides
a verification that these results can also be obtained from standard braneworld computations.

2 Bubbles of something — two perspectives

In this section, we consider a dS4 brane as the boundary of a bubble of AdS;. We shall do
this in two different ways. First, we consider the Euclidean instanton action where the bubble
wall corresponds to an ETW brane cutting off spacetime entirely. From this perspective,
‘nothing’ is simply interpreted as a vanishing contribution to the action. The instanton action
is thus rendered finite because the otherwise divergent volume integral is cut off from the
conformal boundary. Alternatively, we perform a general computation of AdS} — AdSj
vacuum decays. lLe. there is a bubble of AdS; nucleating inside a parent AdS7, with +
referring to two different vacuum energies. In that case the instanton action will in general
also depend on the AdS length ¢, of the parent vacuum. We nevertheless confirm that in the
limit ¢4 — 0, the bounce yields precisely the same result as in the first case. However, the
instanton action will differ by a divergent term that can be interpreted as a tension. Later
we show that this term is precisely cancelled by holographic renormalization [70, 71].

2.1 Omne-sided AdS bubble nucleation

We start with the nucleation of a bubble of AdS; which has some boundary 3 carrying a
tension o. Its contribution to the Euclidean instanton action is

__ b 5 12y 1 4 / 4
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where A = —6¢~2 is the cosmological constant, and x?> = 87TG§\5,) the five-dimensional
gravitational coupling. The bulk metric gp;n with Ricci curvature Ry satisfies Einstein’s
equations with a negative cosmological constant

1 6
Ryn — §R9MN + 2IMN = 0. (2.2)

In practice, ¥ is really just an ETW brane. The induced metric on ¥ is h;; and the extrinsic
curvature K;; = %Enhij, where £, is the Lie derivative with respect to the outward unit
normal, n™. Now, because there is nothing ‘outside’ the bubble, we must impose boundary
conditions at the bubble wall. Adopting Neumann boundary conditions, variation of the
action with respect to the boundary metric at the bubble wall yields a one-sided version
of the Israel junction conditions [72],

1
? (Kz — Khw> = —O’hij . (23)

To find the instanton solution, we make the following O(5) symmetric ansatz

ds® = dr? + x(r)?dQ3, (2.4)



where dQ% = ~,;d¢'d¢’ is metric on a unit 4-sphere. The bulk Einstein equations yield a
Euclidean AdS with x(r) = £sinh(r/¢). The ETW brane is located at some r = rg and
has unit normal n™ 9y, = 0, pointing in the direction of increasing volume. Note that the
brane geometry is that of a 4-sphere of radius x(ro), with induced metric h;; = x*(ro)7i;-
Its extrinsic curvature is readily computed to give

X' (ro)
x(ro0)

Kz'j = hij s (2'5>

where " is the derivative with respect to the radial coordinate . Combining this with eq. (2.3)
yields an explicit expression for o. Notably, the brane tension is positive and supercritical.’
Namely, it is bounded from below, ¢ > o, where the critical tension is that of a bubble
of infinite size when compared to the AdS length.
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With these ingredients, as well as the solution to the bulk Einstein equations, R = —20¢~2,
one can compute the Euclidean action of the bubble.

_ 39463 To . To To
Sg = 5,2 {é — sinh <£> cosh (fﬂ (2.7)

Here we have pulled out an overall factor Q4 = [dQy = %7’[’2 that is the area of the unit

4-sphere. Note that this Euclidean action is always negative.

This Bubble of Something can be interpreted as the creation of an AdS5 universe with
a braneworld boundary, from nothing. Given that Sg < 0, there are two proposals for the
probability of creating such a universe,

P o eFl%El (2.8)

The choice of sign corresponds to choosing suitable boundary conditions for the wavefunction
of the universe. The upper sign corresponds to the choice of Hartle and Hawking [73],
motivated by the Hartle-Hawking wavefunction and the no-boundary proposal. The lower
sign is due to Linde [74] and Vilenkin [75], and is based on a tunnelling wavefunction. For a
recent accessible discussion on these proposals in the context of slow roll inflation, see [76].
As it happens, for the Hartle-Hawking proposal, the dominant configurations are those with
large Euclidean action in absolute value. This pushes ry to large values, or equivalently, the
ETW brane to large radius and small curvature. Oppositely, the Linde-Vilenkin proposal will
favour small values of the Euclidean action, pushing the brane towards a smaller radii. There
remains to this day no consensus in the literature about which sign is the correct one to
adopt, although in the context of the cosmological constant problem [77-79], we might prefer
the Hartle-Hawking choice. However, we urge caution in drawing any premature conclusions.
Part of the problem lies in the fact that the Euclidean action in eq. (2.7) is unbounded from

'This is slightly different from the dark bubble model, where the brane tension is subcritical. The
supercriticality here is tied to the fact that we can actually re-interpret our model as Randall-Sundrum like,
which is discussed later towards the end of section 3.



below. No matter whether one prefers Hartle-Hawking or Linde-Vilenkin, this means we are
steered towards extreme conclusions: either rg/¢ — oo becomes absolutely favoured, or it is
infinitely suppressed. Behind the scenes, the unboundedness is nothing but a manifestation
of the famous conformal factor problem in Euclidean quantum gravity [80]. To see this more
clearly, consider fixing Mp) 5¢, which leaves the size of the bubble 7/¢ as the only relevant
scale in the theory. Varying the size of the bubble then equivalently amounts to performing a
conformal transformation. For these reasons, we do not find it reasonable to make claims
about the preferred size or tension of the bubble. Nevertheless, it is important to remember
that the tension will always be positive in our case, with the largest bubbles giving a small
effective 4d cosmological constant on the ETW brane.

The evolution of the ETW brane is obtained by Wick rotating the Euclidean solution
back to Lorentzian signature. To preserve the asymptotic structure of the AdS vacuum,
we need to do this on one of the coordinates parametrising the S*. Thus dQ3 = dT? +
sin? TdQ% — —dr? + cosh? 7dQ3 (where T = 7/2 + i7), which is precisely the global patch of
de Sitter. It is glued to the Euclidean ball at 7 = 0. The 5d metric becomes

ds® = dr? + x*(r) (—d72 + cosh? TdQ%) . (2.9)
Defining the cosmological time coordinate t = x(ro)7 = H, L7 yields in either coordinate patch

sinh(r/¢)

2
N _ 42 —2 2 2
Sinh(r0/£)> |[—de® + Hy cosh® (Hot)d0%| . (2.10)

ds? = dr? + (
The line element inside the square bracket can be identified as the metric of dS4. The Hubble
rate depends only on the radius x(ro) and for large ETW branes

2
Hoy = x(ro) ! ~ Ze—r/f <t (2.11)

Given that this set-up is essentially half of a Randall-Sundrum like model, fluctuations around
this solution will recover 4d gravity on the ETW brane at scales much larger than the AdS
length scale in the bulk [62]. Therefore, large ETW branes could mimic the gravitational
properties of our universe, described by 4d General Relativity to leading order, with a small
effective cosmological constant.

2.2 Two-sided AdS bubble nucleation

In the spirit of Brown and Dahlen [47], we now consider an alternative perspective, that is
the general decay between different AdS vacua, AdSg — AdS;, where £, denotes the AdS
radius of the parent vacuum outside the bubble, and ¢_ is that of the daughter vacuum in
the interior. In the limit where £, — 0, we will now argue that this is equivalent to the
one-sided setup described above, with an ETW brane as the domain wall. To demonstrate
the equivalence, we will need to renormalize a divergent brane tension. Later, in section 3,
we will justify this through holographic renormalization [70, 71].

The two AdS regions satisfy Einstein’s equations with the corresponding cosmological
constants. They can be described by different coordinate patches as

ds? = dr?® 4 x4 (r)dQ3 (2.12)



where x4 (r) = £y sinh(r/f1). In the parent coordinates, the bubble is located at r = ry,
whilst in the daughter coordinates it is at » = r_. The induced metric is h;; = x3 (7+)7ij-
We take r4 > 0 and in general . # r_. The relation between the two radii follows from
the fact that the induced metric on the brane must be well defined, giving the continuity
condition x4 (ry) = x—(r—), or in other words,

¢, sinh (”) = (_sinh (T> . (2.13)
i 0
This should be supplemented by the Israel junction condition [72], relating the jump in

extrinsic curvature as we cross the brane of tension o,

1
——5 [Kij - Khij]" = —ohy; . (2.14)

Here we denote [Q]" = Q4 — Q_ and Kf; = zigiihw is the extrinsic curvature of the brane

in the corresponding AdSéE bulk spacetime. Plugging in the explicit form for the jump in
extrinsic curvature for the instanton solution, we obtain

o= i [1 coth <r_) — i coth (m)
:‘12 E_ E_ E_A'_ €+

For up-tunnelling ¢4 < ¢_, the continuity condition (2.13) implies that r_/¢_ < r; /¢4 and

. (2.15)

so o < 0. This negative tension is unphysical and the reason that up-tunnelling between AdS
vacua in General Relativity is ruled out (see [81] for a loophole in Gauss-Bonnet gravity).
Our interest here lies in the limiting case £/, — 0 where the tension diverges towards minus
infinity 0 — —oo. More precisely, if x, = x+(r+) = x—(r—) is the radius of the 4-sphere
at the brane, we can rewrite eq. (2.15) as

a:% Ucoth (2) —i 1+f% (2.16)
In the limit where £, — 0, holding x; fixed, we see that we can identify,
0 = Obare = Oren T Odiv (2.17)
where 5
Odiv = N (2.18)
is the divergent piece and
Oren = % coth (2:) . (2.19)

Now, as /4 — 0, it is natural to associate the daughter vacuum with the bulk geometry in
the one-sided case discussed in the previous section, identifying r_ with ro, x—(r) with x(r)
and ¢_ with ¢ and so on. If we do this, we immediately see that oy, is just the positive
tension of the ETW brane that we found in eq. (2.6).
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With some foresight we are alluding to opare and open as being respectively some “bare’
and “renormalized” tensions. The same divergent behaviour was also discussed in [39].2
Here the authors argue that a Bubble of Something realised by up-tunnelling from AdS with
{4+ — 0 requires one to take opare — —00 simultaneously, such that oo, is kept finite. In the
next section we show precisely how to realise this renormalization. Our interpretation is as
follows: the infinite negative tension is really an artefact of the action not being renormalized
near the conformal boundary. Divergences of such origin can be mended through holographic
renormalization, which introduces counterterms to the effective action on the boundary. We
will show that the appropriate counterterm one shall add kills the divergence in eq. (2.18).
This conclusion will also hold true in any d dimensions.

We now turn our attention to the decay rate for the transition between vacua in the
two-sided case. In the semi-classical theory of vacuum decay [82-84], this is given by

F B
- 2.20
Vol =€ (2.20)
where the exponent
B = Sglinstanton] — Sg[parent] (2.21)

is the difference between the Euclidean actions of the instanton describing the transition
and the parent vacuum. In computing B, we need to be slightly careful as both the parent
and instanton Euclidean actions involve radial integrals that diverge as they integrate up
to the conformal boundary at infinite radius. Take for instance the parent action. This can
be dissected into a Euclidean action for the parent interior and a parent exterior, separated
by the surface at r = rg,

Sg[parent] = S [parent] + SH*[parent] (2.22)
where
in 1 5 12 1 e /h
SE[parent] = _2/€2/r§r+d /g R+E _/€2/r=r+d EVh K, (2.23)
S9% [parent] ! / & Ry 2) 42 / dEVIE, +- (2.24)
rent] = —— — = :
E |pare 262 Jysr, T\/g Z] K2 Jrr, +

and the ellipses denote terms defined on the conformal boundary. The exterior contribution,
St [parent], is at risk of being divergent. As we will see in the next section, one can regularize
these integrals as we approach the conformal boundary and add boundary counterterms that
absorb these divergences. In principle, we could be explicit about these terms included in
the ellipses. However, it is not necessary to do this explicitly at this stage, as the instanton
action contains the exact same divergences. In particular, we find that

Sg[instanton] = S [daughter] + Sg[brane] + SH* [parent] (2.25)

2In [39] the authors discuss Bubbles of Something with a d = 4 dimensional bulk instead of d = 5. They
find a divergent behaviour ogqiv = —ﬁ. We have confirmed that for a general d the numerator is d — 2 and
that our results apply to their setup as well.



where S9'[parent] was given in eq. (2.24) and

- 1 12 1
S§ [daughter] = T d°z /g (R + €2> 3 /T:T d*evVhK_, (2.26)
Sg[brane] = a/ d*evh. (2.27)

When we compute the tunnelling exponent B, we see that the divergences coming from the
conformal boundary exactly cancel, giving

B = S®[daughter] — S%[parent] + Sg[brane] . (2.28)

After explicitly performing the integrals, we find that

3 | 5 (T— . r_ r_ 3 [ -1 (Xb) Xb Xp
B=>4 "= _sinh (- cosh ()] - ht (b)) X0y X)) 29
52 [K_ (6_ sin <£_> cos (@_)) 0 (sm ‘ ‘. + ﬁ (2.29)

Remarkably, as we take the limit £, — 0 holding x; fixed, we obtain the Euclidean action,
eq. (2.7), after identifying the daughter vacuum with the bulk geometry in the one-sided case.
Employing the Hamiltonian formalism instead of CdL to analyse vacuum transitions via
bubble nucleation further supports this result [85]. In this limit, the tunnelling rate obtained
from semi-classical methods scales like the Hartle-Hawking formula for the probability of
creating the AdSs vacuum with an ETW brane, from nothing.

3 Holographic renormalization

In this section we will show that the two interpretations of the bubble of AdS from nothing,
described in section 2, can be made fully consistent with one another. Our resolution relies
on the holographic duality between the gravitational theory in the AdS bulk and the CFT
living on the conformal boundary [86]. For asymptotically AdS spacetimes, the AdS/CFT
correspondence [87] states that the partition function for bulk fields ® with boundary value
¢o is identified with the generating functional of the boundary CFT, with ¢g serving as
sources for dual operators, O,

Do e 51 = <e_f¢00> (3.1)

CFT ~

ZsUGRA (o] = /

P~ao

On the CFT side, it is well-appreciated that we should employ renormalization techniques in
order to get rid of any UV divergences and make further sense of the theory. Holography
tells us that they are to be mapped to IR divergences in the bulk, i.e. as one approaches
the conformal boundary. In fact, we already saw this in the previous section; the on-shell
Euclidean action admits divergences associated to the infinite volume of AdS. The procedure
to render them finite is dubbed holographic renormalization. See for instance [70, 71] for
pedagogical introductions to the topic. The strategy essentially amounts to expanding the bulk
action near the conformal boundary whereafter one can read off the counterterms required to
render the Euclidean action finite. We will make use of some well-known results that can
be found in [88, 89], but let us nevertheless provide a minimal introduction to provide some
context for our main results. For the remainder of this paper, we work in Lorentzian signature.



In the coordinates we have used so far, the conformal boundary lies beyond the bubble
at r — 0o. However, these are not the most useful coordinates for understanding the theory
in this radial limit. Instead, it is standard to rewrite asymptotically AdS spacetimes in
terms of Fefferman-Graham (FG) coordinates

2 2
4s? = Jde® + 030, )A€ dE (32)
where ¢ = e 2/¢ and
3ij(0.€) = 85)(€) + 085 (€) + & (3 (€) +log(2)h(€)) + O(e) . (33)

In these new coordinates, the conformal boundary is located at ¢ — 0 and has metric g(‘?). The

ij
~(2) ~(4) ~(0)

following term g;;" and the trace of § g;;" is completely determined by g;;” and its associated

~(4)

covariant derivative [89]. However the transverse-traceless part of § g;;” is in general not fixed
and depends on the choice of boundary conditions [90]. This fact will become important

when we later discuss the linearised perturbations on the bubble. Finally, D which is

i
accompanied by the logarithm, only appears when the boundary dimension is éven, and is
related to the holographic Weyl anomaly [91, 92].

The on-shell action for gravity diverges at the conformal boundary and must be renor-
malized. To see this, we introduce a radial cutoff at some 9o = ¢ < 1 in FG coordinates,

so that the gravitational action reads

1

252 o>e

12 1
Sreg,e = dSJZ vV —g (R + €2> + ?/ d4§ v—hK. (34)
o=¢
This yields a regularised action containing a finite number of terms that diverge in the
limit ¢ — 0, of the form

Srege = / ' /=50 (720 47 L) ~log() LW + O()) (3.5)
0o=¢

The £®2") are covariant objects of gg?)

removed by adding a counterterm action on the boundary,

Sct,z-: = —div (Sreg,s) = _/ d4£ \/ — ( 2£(0) +e ﬁ(2) — log(s)ﬁ(4)) . (3.6)

o=

to be determined. These are the ones that are to be

In the end we get a renormalized action that is well-behaved in the limit ¢ — 0, where
the cutoff brane is effectively removed.

Sren = gg% Sren,s ) Sren,e = Orege T+ Sct,a (3-7>

It is from this renormalized action that we are able to compute correlation functions of bound-
ary operators. For instance, the one-point function of the renormalized energy momentum
tensor of the boundary CFT is obtained from the variation with respect to the boundary

metric QZ(]Q) .

but rather at some hypersurface of fixed ¢ where the bubble is located. Of course, the bubble

However our final goal is not to describe the theory on the conformal boundary,
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separates two spacetimes, labelled with +. The exterior 4+ spacetime has o < g4 with the bub-

ble wall at o = g4. The interior — spacetime has ¢ > p_ with the bubble wall at o = p_. It is

useful to refer to p_ as the size of the bubble, taking the perspective of the interior spacetime.
The induced metric on the bubble wall in FG coordinates is simply

2 02
hij(€) = Qf@% No_,6) = iaﬁf 01, 6). (3.8)

In principle, this continuity condition gives an expression for g4 as a function of g_, though
the exact form will not be important to us. The extrinsic curvature of the bubble in the
+ spacetime is given by

Kt —

_0 9 G
ij gi 8@ [ (39>

5 Jii (o, 5)]

0=0+

Now we are ready to derive the renormalized action for the two-sided AdS bubble described in
the previous section. It is just the Lorentzian version of the instanton action and is given by

Sbubble - Sin[_] + Sbare [brane] + Sout[+] . (31())
where
1 12 1
Sin[:l:] = —2/ d5513 v —g (R—l- 2) + 72/ d4§ Vv —hf(i (311)
26% Jo>or 03 K* Jo=ox
1 5 12 1 4 +
Sout[j:]:j/ dl’\/—g R+7 —72/ df\/—hK + - (312)
2K% Jo<ox 3 K* Jo=0x
and

Share|brane| = /d4£ V—=h (—=0bare + L) (3.13)

A few comments are in order here. As in the previous section, the ellipses in the exterior
action, Sout[£], include the terms defined on the (regulated) conformal boundary, including
counterterms that absorb the divergences. This is the renormalization procedure we have
just described, and so we note that

Sout[£] = Sren|£] — Sin[£] . (3.14)

where Spen[£] the renormalized action for the full £+ spacetime. Eq. (3.14) is simply the
statement that one can split the full renormalized action into an interior and a renormalized
exterior. The interior action does not require any renormalization since it is already finite
— at least for finite values of £1. This is because it is just the regulated action with a
cutoff at ¢ = p4, or in other words, Sin[£] = Sieg, 0. [£]. The bare action for the brane,
eq. (3.13), contains the bare tension, opare, and the bare Lagrangian for any localized matter
excitations on the brane, L,,.

It is important to highlight that o1, as cutoffs, receive special treatment compared to the
usual holographic renormalization recipe. Indeed, we would usually renormalize by placing
a cutoff at some ¢, add counterterms, and subsequently send ¢ — 0. But g+ are not some
arbitrary quantities to later be discarded. In principle, they are finite physical scales that
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influence the effective physics on the domain wall. There are, however, subtleties that emerge
as we take /4 — 0, holding /_ and o_ fixed. In this limit, o, — 0% and so it indeed becomes
more appropriate to work with a renormalized action in the + spacetime,

Sren,@+ [+] = Sreg,g+ [+] + Sct,g+ [+] : (3~16>

In contrast, there is no need to introduce a similar renormalized action in the — spacetime
Sren,o_ [—], since we never take p_ — 0 and Syeg, [—] is always finite. This is unlike the
holographic treatment of the dark bubble in [59], where the renormalization scheme was
run from both sides of the bubble simultaneously.

Bringing everything together, we note that

Sout[+] = Sren[+] - Sreg,g+ [+]

(3.17)
= Sren["’] - Sren79+ H’] + Sct79+ H’]
so that eq. (3.10) becomes
Shubble = Sin[_] + Sren[brane] + ASren[—l-] , (3.18)
where
ASren["i_] = Sren[+] - Sren,g+ [+] (319)
and we have introduced the following renormalized action for the brane
Sren|brane] = Spare[brane] + Sei o, [+] - (3.20)

Let us digest the terms appearing in this rewritten version of the action. First off, Siy[—]
remains unchanged, and is the bulk contribution from inside the bubble. From a holographic
perspective, it is the gravitational dual of a UV-cutoff CFT living on the bubble. Next,
Sren[brane] gives the induced gravitational action on the brane. When ¢ # 0 the counterterms
appear as higher-curvature corrections to the action. The fact that counterterms diverge as
0+ — 0 signals an increasing localization of gravity on the brane [93]. Finally, ASien[+] is an
entirely finite action describing bulk contributions from outside the bubble. We expect it to
vanish completely in the limit £; — 0, since o4 — 0 and s0 Sren,p, — Sren by definition.

3.1 Algorithm for computing counterterms

To determine the counterterms starting from the bulk action, one could explicitly integrate
out ¢ and identify the divergent terms that are to be minimally subtracted. This turns out
to be a laborious task — especially because the counterterms in this way yield an action
on the conformal boundary, whereas we are interested in an action on the bubble. Luckily
there exist straightforward algorithms to compute these counterterms iteratively in orders

3This is readily shown using our reparameterization to FG coordinates as well as eq. (2.13). The leading
order behaviour of o4 in terms of /4 and Hy is

2
o —2ry Jey £+ Ho 2 72 £4+—0
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of £. Here we closely follow the method developed in [88] which has also been applied in a
similar fashion in [93]. We focus on the case where the boundary dimension is d = 4.

The intuitive picture to have in mind is the following: counterterms associated to the
outside bulk effectively imprint a (generally) higher curvature gravity theory on the bubble.
On the other hand, the bulk theory from inside the bubble is holographically dual to a cutoff
CFT. In this way, the bubble observer who does not immediately realise the physics in the
bulk, experiences a gravitationally coupled holographic QFT.

Now we focus on the outside contribution. It is useful to think in terms of the associated
boundary energy momentum tensor

Fahw /d%ﬂﬁ (3.21)

with £ some Lagrangian obtained from regularising S[+] along the lines of eq. (3.5). The
idea is then to extract counterterms that cancel the divergences, flij = —div(Il;;), which
we argued from eq. (3.18) is what gets imprinted on the bubble. They can be written as
a curvature expansion

M =00+ 0+, £=£040 4. (3.22)

where £ ¢3""'R"[h]. Moreover, one can show that "™ = (4 — 2n)£™ by looking at
the properties of eq. (3.21) under local Weyl transformations [88]. This holds up to total
derivatives and is valid as long as £ is local. On the other hand, it clearly breaks down
for n = 2 due to the holographic Weyl anomaly, which we recall, also involves a non-local
logarithmic piece. In order to recover the correct result, it was shown that it is sufficient to
replace (4 — 2n) with (log o, )~! whenever we would have to insert n = 2. Next, consider
the Gauss-Codazzi equations, which correspond to solving the bulk Einstein equations of
S[+] at the bubble. Here we use the scalar constraint

CrunlglnMn® = % @f#n? I — R[h]) (3.23)
where II = A% IT;;. The left-hand side gives on-shell the usual 66;2 from the bulk vacuum
equation. Using the expansion of eq. (3.22) it is now possible to solve for II and hence
extract £ order by order in /.

3
0 - _°2
E H2£+
L
(CO I 24
L 4K2R[h] (3.24)
23 log o o1
2 _ =+ + Pl T p2
L 32 <RUR 3R )

The counterterm Lagrangian is precisely the sum of these three leading terms but with an
opposite overall sign. The respective action gives

Setpn[+] = — / a4V Th (L0 + £+ £®)

) 2 log o+ o (3.25)
/df\/ + R+(Rin”—3R) .

8
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Recall then that the renormalized brane action is given by Syen[brane] = Spare[brane| +
Sct,0, [+] with the bare action involving the bare tension in eq. (2.17). If £ # 0, a local-
ized observer on the bubble would feel the effects of the exterior spacetime through these
gravitational corrections. The sign of the Einstein-Hilbert coupling is negative, reflecting
the fact that gravitational fluctuations localize near the conformal boundary, rather than
at the brane. However, let us explore what happens to Sien[brane] when taking the limit
{4 — 0. What we find is that all curvature counterterms vanish and the part that remains
surgically eliminates the divergence contained in the tension.

3

—— 14
I{2€+ + O( +)

lim Spen[brane] = lim d4§ vV—"h {— (Oven + Oaiv) + L —
€+~>0 €+‘)0

(3.26)
= /d4§ \/jh(_aren + £m)
Here we have used egs. (2.17) and (2.18). Thus, the divergent tension that is apparent when
one considers the decay AdS; — AdS; with £, — 0 is just an artefact of the action not
being renormalized. After performing holographic renormalization, the effective tension is
both finite and positive, oen > 0, and an observer on the bubble sees a dS spacetime. The
effective cosmological constant is small for large bubbles.
In total, the renormalized bubble action in the limit ¢, — 0 effectively reduces to

lim Spubble = Sin[—] + /d4f vV —h (—Gren + Em) , (3.27)
Z+—>0

which we interpret as the total absence of spacetime outside the bubble. In other words, the
bubble effectively becomes an ETW brane in this limit. It further motivates the proposal by
Brown and Dahlen that ‘nothing’ can be thought of as AdS with A — —oco. However, what
we also demonstrate is that ETW branes via Bubbles of Something can be a way to obtain a
dS cosmology, possibly even from string theory. Holographic renormalization is in fact the
missing link if we want to think of this as the up-tunnelling from AdS with A — —o0.
Finally, there is a third way of interpreting eq. (3.27), which we already alluded to in
section 2. Taking two copies of the bubble and gluing them along their boundaries gives the
same action as a Randall-Sundrum like model, where the brane tension is twice that of the
ETW brane, ors = 20ven. In Euclidean signature this has a nice topological picture: the two
inner bulks are each topologically equivalent to the 5-dimensional disc. Gluing them along
the bubble that is the S* boundary can be seen in one dimension higher as gluing the two
hemispheres of S°. Therefore, we could consider our bubble as a Randall-Sundrum like model
by performing a pushout to S°. The three different perspectives are summarized in figure 1.

3.2 A closer look at perturbations

The above analysis applies quite generally and explicitly demonstrates the equivalence
between a one-sided Randall-Sundrum like model and a two-sided setup. In the first case,
the braneworld is an ETW brane. In the second picture, the braneworld is a bubble
separating interior and exterior spacetimes endowed with respectively a finite and infinitely
negative cosmological constant. The key to matching the two descriptions is holographic
renormalization. However, this equivalence immediately prompts a puzzle. Fluctuations
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N othing \

0 = 20;en

Figure 1. Illustrating the three perspectives of the bubble of something: a) the common one-sided
picture of a finite volume of AdS where spacetime ends past the bubble wall. b) replace ‘nothing’
outside with AdS with vacuum energy A, — —oo. This two-sided picture leads to an infinite negative
tension domain wall. But as we argue, this infinity can be isolated and cancelled by holographic
renormalization. c¢) gluing two bubbles together and thereby imposing Z, symmetry leads to an
Randall-Sundrum like braneworld carrying twice the finite tension.

around the vacuum solution in the one-sided case closely follow those of a standard Randall-
Sundrum setup (for a review of fluctuations in Randall-Sundrum gravity, see, for example [94]).
In particular, since the bulk volume is finite, there exists a normalizable graviton zero mode,
implying that an observer on the ETW brane will recover 4d gravity at low energies. In
contrast, for the two-sided case, the exterior spacetime includes the conformal boundary of
AdS, making the bulk spacetime volume infinite. Here there is no normalizable graviton zero
mode. One would therefore argue that an observer living on the bubble does not recover
4d gravity at low energies. There seems to be a contradiction?

At this point it is useful to note that the absence of a normalizable graviton zero mode is
also a problem for the dark bubble. There, the problem is solved by introducing sources on the
conformal boundary in the exterior spacetime [50]. To understand this in a broader sense, let
us digress from bubbles and branes for the moment and consider some general asymptotically
AdS spacetime, M, described by a renormalized action Syen[M)]. The vacuum solution is an
AdS spacetime with an AdS length scale £. Now consider bulk perturbations, dgasn, which
admit an FG expansion near the conformal boundary. We identify the transverse-traceless
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parts of & Qg))

-1

and 0 ﬁz(;l) as the non-normalizable and normalizable zero modes, which come with

factors o™+ and p respectively. The normalizable mode vanishes on the conformal boundary
as o — 0, while the non-normalizable mode does not. Of course, the non-normalizable mode
is also not uniquely defined, since superposing it with a normalizable mode makes a new non-
normalizable mode. From a holographic perspective, the non-normalizable mode is supported

by sources in the boundary CFT. More precisely, there is a non-vanishing one-point function

5‘91'81’1
(Tij) = 0)is (3.28)
/ 59( J
For pure gravity, this is well known and has been computed in [89] to be
3 1 o) 2 o2 1.9
(Tij) = {2918) i [(trg@)) tr(9@) ] - (g@))ij +505 wa? | (329)

Note that indices are raised and lowered with respect to the boundary metric fjg)), such that

tr§? = g<0>ijg@) and ( (2)) = g( )g( )k g (2) , and so on. The bulk equations of motion can
~(2) .

;; is given by the Schouten tensor for g( ) [89],

be used to show that g;

o = _% ( Rylg®) — % R[g@)]gg?)) ‘ (3.30)
Now we return our attention to branes and bubbles. In doing so, we need to clarify some of the
language used in the previous paragraph. The identification of the transverse-traceless parts
of (5@2-)) and 5@5;1) as the non-normalizable and normalizable zero modes is rather standard
within the holographic community. However, this terminology might confuse those more
familiar with the braneworld literature. In the braneworld literature, a normalizable mode is
one that vanishes far away from the brane.* In the exterior + spacetime, the braneworld
definition of normalizable and non-normalizable mode agrees with the holographic definition.
This is because the exterior spacetime contains the conformal boundary. However, in the
interior — spacetime, the region far away from the brane includes the centre of AdS as
opposed to its boundary. This implies that the braneworld definition of normalizable and
non-normalizable modes is flipped relative to the holographic definition. From a physics
point of view, this is not a problem — but it can understandably cause confusion when
the two communities come together!

Still, all can agree that to recover 4d gravity on the bubble, we need a graviton zero
mode. The wavefunction for a zero mode scales like the background, growing as o~ ! as
we approach the conformal boundary. This corresponds to the non-normalizable mode by
the holographic definition and must be supported by the source on the boundary. In other
words, it is sourced by the boundary energy momentum tensor, <7;j>, given by eq. (3.29) for
¢ = {,. This is the essence behind the fix in the dark bubble proposal, but it can also apply

to our two-sided case for finite /. However, as we send ¢4 — 0, we see that the boundary

4More precisely, the linearised equations of motion for the transverse-traceless fluctuations in the braneworld
setup involve a self-adjoint operator allowing us to define an inner product for the corresponding modes. A
normalizable mode is one whose norm is finite under this inner product.
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energy momentum tensor vanishes, (7;;r> — 0. In other words, in this particular limit, we
can support a graviton zero mode in the absence of a boundary energy momentum tensor.
Gravity is fully localised on the bubble wall in the ¢, — 0 limit without any sources on the
conformal boundary of the exterior spacetime. This now agrees with the one-sided case,
where gravity is localised on the ETW brane without any boundary gymnastics.

4 Discussion

In this paper we discussed Bubbles of Something and in particular the nucleation of AdSs
from nothing, using the Coleman-de Luccia prescription. We showed that it is possible to
obtain a dS4 universe on the boundary ETW brane. Our proposal was motivated by the
Cobordism Conjecture within the Swampland programme, which suggests that such ETW
branes are necessary defects in quantum gravity and in the absence of global symmetries.
It is therefore interesting to understand whether they can be used for braneworld model
building. For example, in order to obtain the correct brane tension, we are forced to nucleate
AdSs in the bulk. This could originate from a well-studied background in string theory, such
as AdSs x S° or AdSs x S°/7Z;, ala [95]. A similar line of thought was suggested in [96] for
the Bubble of Nothing. Although we did not discuss the internal manifold explicitly, our
work should serve as a proof of concept to pursue such string embeddings. It nevertheless
remains an open question how to embed the closely related Randall-Sundrum model in a
consistent string theory solution. Thus we do not expect it to be a simple task. Perhaps
the key lies in identifying a microscopic proposal for ETW branes.

In understanding the réle of spacetime in quantum gravity, it becomes significantly
meaningful to understand the absence of it. Brown and Dahlen proposed that ‘nothing’ can
be interpreted as AdS with A — —oo. From a holographic point of view this is not bewildering;
the dual theory on the boundary simply does not describe any propagating degrees of freedom.
However, for the Bubble of Something, it leads to the impression that the brane requires
infinite negative tension in order to satisfy the Israel junction conditions. While it is the
case that string theory accommodates O-planes that carry negative tension, these objects
are non-dynamical, and therefore we do not expect them to describe the bubble nucleation.
Rather, we argue that the negative tension is remnant of the fact that the holographic dual
description is un-renormalized. We gave a brief overview of holographic renormalization and
showed that, indeed, all the associated infinities cancel once it is taken into account. The
domain wall then effectively becomes a boundary of the spacetime with positive tension.

So far we focused purely on the gravitational sector of the theory. From the point of
view of both cosmology and fundamental physics, it will be interesting and necessary to
study dynamics by including additional ingredients such as bulk scalar fields or gauge fields.
These will also need to be accounted for in the holographic renormalization, and one has to
check that the Brown-Dahlen picture remains consistent. In a similar spirit, it may also be
tempting to consider the reverse scenario of a Bubble of Nothing, with the ‘nothing’ viewed
as an infinitely curved AdS vacuum. However, for the Bubble of Something explored above, it
was crucial that the infinitely curved AdS was connected to the conformal boundary, allowing
us to perform holographic renormalization in the standard way. For that reason it is not yet
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understood whether the same can be done for the Bubble of Nothing, where the region of
infinitely curved AdS includes the centre as opposed to the conformal boundary.

Since we started by motivating our work through the Swampland programme and some
of its conjectures, allow us to also make some final remarks in this direction. It has become
increasingly well-appreciated that ETW branes can be associated to infinite distance limits
in moduli space [97, 98]. L.e. as one approaches the ETW brane in the bulk, the vev of
some modulus undergoes a diverging field excursion. The simplest example is of course circle
compactification, where the radius of the circle pinches off, R — 0, as the radion traverses
infinite distance. Invoking the Swampland Distance Conjecture, there is an associated tower
of winding modes becoming light, my, ~ R, gradually spoiling the EFT. But the Swampland
Distance Conjecture also describes a dual limit, namely the decompactification, R — oo,
where instead the KK tower becomes light, mgk ~ 1/R. Viewing nothing as an AdS vacuum
— albeit a peculiar one — we can surmise whether there is a similar analogy in terms of the
AdS Distance Conjecture [99]. The vanilla version of the conjecture states that in taking a
flat space limit, |A| — 0, there is an associated tower of states becoming light, mower ~ |A|*
with a ~ O(1), causing the EFT to break down. Does this also possess a “dual” statgment?
That is, as |A] — oo, is there always a tower of states becoming light, m—— ~ [1/A|%, with
a ~ O(1) (and possibly related to «)? It is at the very least consistent with the generalized
notion of distance between vacua proposed in [100].° The Brown-Dahlen interpretation of
nothing seems to suggest some nuance to this statement, although we acknowledge that it is
mainly speculation at this point. Just like there is an oppositeness between decompactification
and ‘pinching off’, is there a likewise relation between ‘nothing’ and Minkowski? We leave
this as food for thought.
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A Asymmetric Shiromizu-Maeda-Sasaki equations

Throughout the main parts of this paper, we defaulted to techniques coming from holography
and holographic renormalization, in order to extract the theory induced on the brane. Here
we show that the same results can also be obtained from a standard braneworld computation.
With this, we hope to cement that the three perspectives (one-/two-sided AdS bubble
nucleation and RSII) discussed in section 2 are really synonymous to one another. The
derivation of the effective Einstein field equations on the brane is reminiscent to the Shiromizu-
Maeda-Sasaki equations [101], but generalized to the asymmetric case. Hence, we will start

5The distance between two AdS, vacua is suggested to be (in d-dimensional Planck units)

A = ylog(ts /i) (4.1)

with v some constant related to the nature of the tower of states becoming light. Indeed, both tunnelling from
Minkowski (¢4 — oo0) and nothing (/4 — 0) correspond to opposite infinite distance limits A — +o0o for any
finite final ¢_.

,18,



by reviewing the calculations done in [66, 67], and finally apply it to our model, taking
{; — 0. Consider therefore some 5d line element

ds? = dr? + hyj(r,£)de'dgd (A1)

and a brane at some 7 = ro(¢) that has unit normal n™. In full generality this brane

M

can be in motion and has acceleration a™ = nNVynM. The induced metric and extrinsic

curvature are given by the usual

1
hij = g,-j — nmj s Kij = ij = §L’ng¢j . (AQ)

Following [101], one finds from the Gauss-Codazzi equations

) 2 1 5 1
Gl(j) - §G~({i;'} + iGée)nknghij + Fj — ith'j — Ejj (A.3)
VK] — ViK = hln*G)
RW = RO L p_9g (A.5)

where we have defined the quantities

1
Qijy = (h? hj — 4hz'jhk€> Qre » (A.6)
Fyj = KKij — Ky Kj | (A7)
| PN
A@jEJW}—gGM}, (A.8)
Jij = KK} — Lo Kij + Vja; — aa; . (A.9)

Bracketed indices thus denote the transverse-traceless projection with respect to h;;. Moreover,
it is essentially J;; that carries information about the motion of the brane. Next one can
impose the Israel junction conditions

1
Sh@‘) — [K]i— = gﬁgs (A.lO)

1
3

[t =0,  [Kylf=—x3 <5ij -
where S;; is the brane energy momentum tensor and QY = Q4 — Q_ is the jump. At
this point we depart from [101] where they assume Zs symmetry and o™ = 0. We shall
however allow for full generality and focus in particular on when the two sides are different.
It will become useful for us to define the a-average, which will allow us to compare our
computations in the one- and two-sided pictures,

purely outside
two-sided : (A.11)

purely inside

Q=(1-2)Qi+aQ-, a=

= o= O

Now, since h;; must be smooth across the brane, then so must GZ(?) . This condition can be
consistently written in terms of the a-average for the cases we are interested in,

=) _ ()
a) =a. (A.12)

j
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When S;; = —oh;; we have pure tension® and one can recast

@W_2-6 Ym0, L F o E
Gij —gG{zj}+§<GkZ”k”)hZJ+FlJ_§Fhm_EU

=390y 3 4
— = — =k
+ (K Ky - KuKyy) — By

= zG@ (;Ag) + 104(1 — a)Kao? + ! (FZ - Kini])) hi; (A.13)

In the above we have made use of the algebraic identity

AB =A B+ a(l —a)[AT[B]" (A.14)

and the junction condition. Furthermore, define

(A.15)

- == = =k =2 = ke
Lij=K K;; — KyK, —5<K ~ KK ) by . (A.16)

Note that L;; is fully determined by the a-averaged extrinsic curvature and diverges in
the limit ¢, — 0 whenever a@ # 1. We can then rewrite the extrinsic curvature terms
in eq. (A.13) using the trace and transverse-traceless part of L;;. What remains on the
right-hand side can be grouped by the tensor structure and anything that accompanies a
factor of h;; therefore conspires towards an effective 4d cosmological constant. Indeed, if
we cast the 4d Einstein field equation as

Gz(;’l) = —Ashij + Ly — Eij + P, (A.17)
the last three terms are all transverse-traceless and there is an effective 4d cosmological
constant . . ,

Ay = §K5 + ga(l —a)kio?® — ZZ' (A.18)

Finally, for the O(5) instanton, we can plug in our results from section 2.2. One finds

sy
Ay = 5/\5 + 3(X> . (A.lg)

In the limit of £; — 0 we expect A4 to remain finite in agreement with the main part of the
paper. Still, let us recall that on their own, A; = —6612 and x¥’|+ ~ Ejrl diverge in this limit.
There is however a magical cancellation between the bulk and boundary contributions only

when A} is negative. Expanding eq. (A.19) to significant orders in ¢4 shows

Ay =3(1—a) 1+1+1+O(£2) +3 L )\ (A.20)
4= —o)| =5+ 5+ al——= . .

2 Etg Tt z Xb
50ne could otherwise consider matter on the brane Sij = —ohij + 7i;. In fact, adding 7;; is the only way

to check the effective gravitational coupling on the brane since it is defined through the prefactor that shows
up in the Einstein field equation. It is shown in [101] that k3 = Lx3|o]|.
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Now we see that the limit £y — 0 is fully consistent. It gives
TO —2 2
lim Ay =3 (2 sinh <>> = 3H? (A.21)
€+4)O g,

where Hj is nothing but the Hubble rate on the bubble, as we saw in eq. (2.10). This result
holds for any value of «, which means that the two-sided picture (o = %) is exactly the same
as if we just considered the inside (v = 1). The brane cosmological constant approaches

Ay — 0T for large bubbles r/¢— — oo.

B More on perturbations

This appendix serves as a supplement to our discussion of metric perturbations in section 3.2.
The aim is to exemplify in further detail how holographic renormalization intertwines with
the normalizable and non-normalizable graviton zero modes. Or rather, for the cautious
reader, we will perform part of the boundary gymnastics that we posed was superfluous, and
demonstrate that one indeed reaches the same conclusion as with our main argument. To
recap, we argued that one can support a graviton zero mode on the bubble even in the absence
of a boundary energy momentum tensor. In fact, in the limit ¢, — 0, metric fluctuations from
outside the bubble will not influence the effective description at all. For the purpose of showing
this, it becomes more instructive to recast the renormalized bubble action in eq. (3.18) as

Sbubble = Sin[_] - Sin[+] + Sbare [brane] + Sren[+] . (Bl)

Varying the first three terms with respect to the brane metric h;; gives the usual Israel junction

2 0
V/—h ohii

We already say in eq. (3.28) how the remaining term, Sye,[+], relates to the one-point function

1
(Sin[—] — Sin[+] + Sbare[brane]) = E [Kij — Kh”]i_ — Ubarehij . (BQ)

of some boundary CFT. Allow us to return to this later. First, consider what would happen if
we did not include this term when computing the variation of the bubble action. That is, if we
do not take into account holographic renormalization at the junction. If eq. (B.2) happened
to reduce to the one-sided junction in the limit £, — 0, including metric perturbations,
the task would be done. However, it does not. By performing a brute force expansion of
eq. (3.9) in terms of the FG metric, one can compute the outside contribution to the junction.
Together with the bare tension, it gives

1 3 20 ~(4 junction
) (KZ"J' — K+hij) — Obarelij = <—K2€hij - ?;_QJrgi(j) + T HongO); Q+]>
+ (B.3)

3
_ (_/%_ + O(£+> + Uren) hij .
From this we can infer that the divergent part of the tension cancels, even when taking
into account perturbations of h;;. But there remains two additional terms — one that is

proportional to QZ-(;) containing the normalizable zero mode, and another, which is a more
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complicated function of the boundary metric,
junction 14 ~(2 ~(0 A ~(2 A
TImeon 500, ) = — L (g§j) — 30 trg® — 0191 trg®
) (B.4)
(0 N A(0) A
+o4dy tr (3%) - 20105 tr 9(4)) :

The way we interpret it is as an effective energy momentum tensor contribution due to
(0)
]
through its trace. Therefore it is insensitive to normalizable

the junction. Note that traces here are meant with respect to §;.” and furthermore that

ijnction (4)
1) )
transverse-traceless fluctuations. All in all, whilst the divergent tension is effectively rendered

only depends on §

finite, as was also shown in section 3, the same cannot yet be said about metric perturbations
in the Ad85+ part of the bulk. However, we should emphasise an important point at this
stage: it is useful to think about metric perturbations in the FG expansion because we can
(0) ~(4)

ij with the non-normalizable zero mode and 5gij the normalizable
zero mode. But the fluctuations that are actually seen by an observer on the bubble are

immediately associate 0§

not the FG omnes, but rather oh;; = dg;j(0+,£). In other words, we ought to rescale the
FG modes by appropriate conformal factors

62
Non-normalizable: Shij = iég@) , (B.5)
Ty Y
Normalizable: Shij = 02 Q.;.(SQ%Q . (B.6)

This rescaling instructs how to infer the sensitivity of eq. (B.3) with respect to the normalizable
(4)
j
glance harmless in the limit /; — 0 (which accordingly sends g4 — 0). But the bubble
observer would see the normalizable zero mode from the outside as

2
:‘Q2£+

and non-normalizable modes. For example, the term of the form ~ ¢, 04 §.;;" appears at first

5hij ) (B'7)

which diverges as ¢y — 0. How can we save the bubble dweller from these divergent
fluctuations? The missing ingredient is indeed Syen[+], which we interpret as an “ambient”
renormalized AdS;r action, that contains information about the conformal boundary at infinity

and the necessary holographic counterterms thereof. Varying with respect to h;; one obtains

2 5Sren[+] [ o+ 2 5Sren[+]
/—h Ohii (g%_ ) 60 + O(o+)

=<g>«ﬁw+0@n)

To leading order it is proportional to the one-point function of the energy momentum in the
theory dual to AdSZ. The one-point function is (cf. eq. (3.29))

(B.8)

203 .
T =50 + Xula), (B.9)

—
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where

EB

KJQ

X3l =

L) A (0), 2\ l.o, .
(49§j)(tr9(2))2 — o g+ (3%) 545 trg(z)) (B.10)

is a function of the boundary metric, its covariant derivative, and curvature tensors. If one

(4)

allows g;;” to fluctuate, these modes grow by a factor g4/ €2+ as they propagate towards the

bubble, as can be seen from eq. (B.8). In terms of what the bubble observer sees,

Oty 2 s
E%— <’7;]> ’i2€+6hw N (Bl]_)

Just as we had expected, this is precisely the term needed to kill the divergent perturbation
in eq. (B.7). Combining egs. (B.2) to (B.11) the variation of the renormalized bubble action
then reads

2 OSpubble _ 1
V=h O0hii K2

All that is left to consider is the non-normalizable mode. In general, however, the two

0 A
S Xi[g"]. (B.12)

_ _ junctiony
(K = K~ hij) = 0venhij + T5" (505 0] + Z]

remaining source terms do not cancel. We can compute it explicitly using eq. (3.30), yielding

jun in 0 f A ~ .
pimtio g;X 53 (G 15 +Q+jo[g(0)]) . (B.13)

Here Clij (9] is the Einstein tensor with respect to g}f’

quadratic in curvature, which we allow ourselves to abbreviate by some tensor RZQJ Just as

. At subleading order appear terms

before, we ought to translate to the language of the bubble observer by a conformal rescaling.
However, to leading order the Einstein does not scale under conformal transformations,
and so we find

Timetion | g;X 2%2 (Gijlh) + AR [B] + O HGY)) - (B.14)
For ¢4 > 0, there appears an induced higher-curvature gravity theory imprinted on the bubble
from the outside AdS;. Yet, here comes the up-shot: because the prefactor vanishes as we
take ¢4 — 0, the non-normalizable zero mode becomes entirely negligible and completely
decouples from physics on the bubble. In other words, they are neither needed to recover
the one-sided bubble of something, nor do they play an important rdle in obtaining localised
gravity on the bubble. This is inherently related to the intuition we presented in section 3.2;
the boundary energy momentum tensor vanishes, <7'+> — 0, so we can support a graviton
zero mode even in the absence of any boundary sources.
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