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ABSTRACT

A concise review of the notions of elliptic functions, modular forms, and ¥—
functions is provided, devoting most of the paper to applications to Conformal
Field Theory (CFT), introduced within the axiomatic framework of quantum field
theory. Many features, believed to be peculiar to chiral 2D (= two dimensional)
CFT, are shown to have a counterpart in any (even dimensional) globally conformal
invariant quantum field theory. The treatment is based on a recently introduced
higher dimensional extension of the concept of vertex algebra.
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1. Introduction

Arguably, the most attractive part of Conformal Field Theory (CFT) is
that involving elliptic functions and modular forms. Modular inversion,
the involutive S—transformation of the upper half-plane

_ 1
S = <‘f é) € SL(2,Z); T——> (Im7>0), (1..1)
T
relates high and low temperature behaviour, thus providing the oldest and
best studied ! example of a duality transformation [37].
The aim of these lectures is threefold:

(1) To offer a brief introduction to the mathematical background, includ-
ing a survey of the notions of elliptic functions, elliptic curve (and its
moduli), modular forms and J—functions. (The abundant footnotes are
designed to provide some historical background.)

(2) To give a concise survey of axiomatic CFT in higher (even) dimensions
with an emphasis on the vertex algebra approach developed in [51], [55].

! For a physicist oriented review of modular inversion — see [18].
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(3) To give an argument indicating that finite temperature correlation func-
tions in a globally conformal invariant (GCI) quantum field theory in
any even number of space-time dimensions are (doubly periodic) ellip-
tic functions and to study the modular properties of the corresponding
temperature mean values of the conformal Hamiltonian.

Two-dimensional (2D) CFT models provide basic known examples in which
the chiral energy average in a given superselection sector is a modular from
of weight 2. In a rational CF'T these energy mean values span a finite dimen-
sional representation of SL(2,Z). We demonstrate that modular transfor-
mation properties can also be used to derive high temperature asymptotics
of thermal energy densities in a 4-dimensional CFT.

We include in the bibliography some selected texts on the mathematical
background briefly annotated in our (half page long) “Guide to references”
at the end of the lectures. (Concerning modular forms we follow the nota-
tion of Don Zagier in [22].) A detailed exposition of the authors’ original
results can be found in [55].

2. Elliptic functions and curves

The theory of elliptic functions has been a centre of attention of the 19th
and the early 20th century mathematics (since the discovery of the double
periodicity by N. H. Abel in 1826 until the work of Hecke? and Hurwitz’s 3
book [30] in the 1920’s — see [38] for an engaging historical survey). This
is followed by a period of relative dormancy when E. Wigner ventured to
say that it is “falling into oblivion” 4. (Even today physics students rarely
get to learn this chapter of mathematics during their undergraduate years.)
The topic experiences a renaissance in the early 1970’s, which continues to
these days (see the guide to the literature until 1989 by D. Zagier in [22]
pp. 288-291). The proceedings [22] of the 1989 Les Houches Conference on
Number Theory and Physics provide an excellent shortcut into the subject
and further references. The subject continues to be a focus of mathematical
physicists’ attention (for a recent application to noncommutative geome-
try — see [14] [13]).

2.1. Elliptic integrals and functions
If we did not know about trigonometric functions when first calculat-

x
. . dt .
ing the integral z = / ————, we would have come out with a rather
V1—t2
0

nasty multivalued function z(z). Then an unprejudiced young man might

2 Erich Hecke (1887-1947) was awarded his doctorate under David Hilbert (1862
1943) in 1910 in Gottingen for a dissertation on modular forms and their application to
number theory.

3 Adolf Hurwitz (1859-1919).

4 E. Wigner, The limits of science, Proc. Amer. Phil. Soc. 94 (1950) 422; see also his
collection of Scientific Essays, Symmetries and Reflections p. 219 (Eugene Paul Wigner,
1902-1995, Nobel Prize in physics, 1963).
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have discovered that one should instead work with the inverse function
x(z) = sin z, which is a nice single valued entire periodic function. This is
more or less what happened for elliptic integrals®, say, for an integral of
the type

gs — 2793 #0. (2..1)

z:/ ! d€ ,
S A8 — ga€ — g3

The inverse function z = z(z) can be written in the Weierstrass’ notation
as a manifestly meromorphic (single valued), doubly periodic function (see
Exercise 2.2 (a)):

6

1 1 1
2(z) = p(ziwi, we) (= p(2)) = 5+ > |(——3— 5] 2.2
22 w0 ((z+w)2 w2>

where A is the 2—dimensional lattice of periods,

A:{w:mw1+nw2 : m,n € 7Z, Imﬂ>0},

w2
g2=60 Y wt,  gg=140 )  wC (2..3)
w e A\{0} w € A\{0}

Indeed, knowing the final answer (2..2) it is easy to check that x(z) satisfies
a first order differential equation (Exercise 2.2 (b)):

W = 40P —gor—gs for = p(z), y=¢(2). (2.4)

This is the counterpart of the equation y? = 1 — 22 for 2(z) = sin(z). The
condition that the third degree polynomial y? (2..4) has no multiple zero
can be expressed by the nonvanishing of the discriminant, proportional to
gs — 27g3 (in the case of coinciding roots, the integral (2..1) reduces to a
trigonometric one).

Remark 2..1. More generally, elliptic integrals are integrals over rational
functions R(x,y), when y? is a third or a fourth degree polynomial in x with

5 After nearly 200 years of study of elliptic integrals, starting with the 17th century
work of John Wallis (1616-1703) and going through the entire 18th century with con-
tributions from Leonard Euler (1707-1783) and Adrien—Marie Legendre (1752-1833), a
23—years old Norwegian, the pastor’s son, Niels Henrik Abel (1802-1829) had the bright
idea to look at the inverse function and prove that it is single valued, meromorphic and
doubly periodic. As it often happens with 19th century discoveries, Carl Friedrich Gauss
(1777-1855) also had developed this idea in his notebooks — back in 1798 — on the example
of the lemniscate (see [47] Sects. 2.3 and 2.5).

6Karl Theodor Wilhelm Weierstrass (1815-1897); the gp-function appeared in his
Berlin lectures in 1862. Series of the type (2..2) were, in fact, introduced by another
young deceased mathematician (one of the precious few appreciated by Gauss — whom
he visited in Gottingen in 1844) Ferdinand Gotthold Eisenstein (1823-1852) — see [68].
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different roots. A fourth—degree curve, 3> = agT*+a1Z°+a2T>+asZ+ay can
be brought to the Weierstrass canonical form (2..2) by what may be called
a “Mdobius ™ phase space transformation”: T = ijiz, y = ﬁy,
ad —bec # 0 # A i e, if y transforms as a derivative (with a possible
dilation of the independent variable z in accord with the realization (2..2)).

We have, in particular, to equate % to one of the zeroes of the polynomial

y%(Z), thus killing the coefficient of 2 (see Exercise 2.3). An example of
such type of integrals is the Jacobi’s® “sinus amplitudinus”,

T = sn (z,k:2) , k* £ 0,1 (2..5)

xT
| 7e=¢
z = )
N GERr)
which is proven to be a doubly periodic meromorphic function® with peri-
1

dx s 11 2
=T p(=, =1,
)(1 ]{;2 2)( 2 (2727 ’k)7

ods 4K and 2iK’, where K::/
Ve

F being the hypergeometric function) and K’ :

1
k
_/ dx
1¢w—nu—Mﬂ)
(see, e.g. [47] Sects. 2.1 and 2.5; concerning the other Jacobi functions,

en(z, k?) = y/1 —sn(z, k%) and dn(z, k?) = \/1 — k?sn(z, k2) see Sect. 2.16
of [47]).

We proceed to displaying some simple properties of elliptic functions, de-
fined as doubly periodic meromorphic functions on the complex plane. Basic
facts of complex analysis, such as Liouville’s and Cauchy’s '° theorems, al-
low one to establish far reaching non—obvious results in the study of elliptic
functions.

(1) Periodicity implies that an elliptic function f(z) is determined by its
values in a basic parallelogram, called a fundamental domain:

F={aw +fw; 0<a, f<1}.

" Augustus Ferdinand Mébius (1790-1868).

8 Carl Gustav Jacob Jacobi (1804-1851) rediscovers in 1828 the elliptic functions (by
inverting the elliptic integrals) and is the first to apply them to number theory. Jacobi,
himself, says that the theory of elliptic functions was born when Euler presented to the
Brelin Academy (in January 1752) the first series of papers, eventually proving the addi-
tion and multiplication theorems for elliptic integrals (see [69]). Bourbaki (in particular,
Jean Dieudonné) have taken as a motto his words (from a letter to Legendre of 1830,
deploring the worries of Fourier about applications): “le but unique de la science, c’est
I’honneur de I’esprit humain.”

9Tt is not difficult to show that the solution of the Newton equation of a length L and

mass m pendulum, m% + m%sin® = 0 (G being the Earth gravitational acceleration),
is expressed in terms of the elliptic sinus (2..5) — see [47] Sect. 2.1 Example 4 and p. 77.
19 Augustin-Louis Cauchy (1789-1857); Joseph Liouville (1809-1882).
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(2) If f is bounded in F, then it is a constant. Indeed, periodicity would
imply that f is bounded on the whole complex plane. The statement
then follows from Liouville’s theorem. Thus a non—constant elliptic
function must have a pole in F.

(3) The sum of the residues of the simple poles of f in F is zero. This
follows from Cauchy’s theorem, since the integral over the boundary

OF of F vanishes:
§ 1) dz -
OF

as a consequence of the periodicity. (By shifting, if necessary, the bound-
ary on opposite sides we can assume that f has no poles on 9F.) It
follows that f has at least 2 poles in F' (counting multiplicities).

(4) Let {a;} be the zeroes and poles of f in F and n; be the multiplicity of
a; (n; >0 if a; is a zero, n; < 0 if a; is a pole). Then applying (3) to

/
2 gives Y n; = 0.
f(z)
More properties of zeroes and poles of an elliptic function in a fundamental
domain are contained in Theorem (1.1.2) of Cohen in [22], p. 213 (see also
[47] Sect. 2.7). The above list allows to write down the general form of an
elliptic function f(z). If the singular part of f(z) in F' has the form:

K Sk

ZZNM—

- (2..6)
k=1s=1 (2 — 2s)

for some K,Si,...,Sx € N, NNy, € C, z, € F (k = 1,...,K

s=1,...,85;), then f(z) can be represented in a finite sum:
K Sk
=N + Z Z Nis P2 — 255 w1, wa2) (2..7)
k=1s=1
11

where pg(z; w1, wa) are ', roughly speaking, equal to:

1
pi(2; w1, wo) = Z

weA (Z + w)k .
The series (2..8) are absolutely convergent for k > 3 and z ¢ A, and

1 0

Prt1(2; wi, wo) = _E(azpk)(z§ wi, w2)  (0; = a)- (2..9)

' These are the “basic elliptic functions” of Eisenstein according to André Weil (1906
1998) who denotes them by Ej, — see [68] Chapter III.
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For k = 1,2 one should specialize the order of summation or, alternatively,
add regularizing terms. Such a regularization for the & = 2 case has been
used in fact in the definition of the Weierstrass’ p function (2..2); for k = 1,
the function

3(z;w1,w2):£+ 3 ( L _l+z>, (2..10)

2
o eA(0) 2+ w w o ow

is known as Weierstrass’ 3 function. Note that the 3—function (2..10) is not
S
elliptic (due to the above property (2)) but any linear combination > N 4

s=1

S
3(z— zs; w1, we) with > Nj g = 0 will be elliptic. This follows from the
s=1
translation property [39]

3(z 4+ wi; w1, wa2) = 3(z; wi, we) — 8W2G2(w1, wo) wy — 2mi, (2..11)
3(z 4+ wo; w1, wa2) = 3(z; wi, wo) — 8772G2(w1, wa) , (2..12)

where

—87T2G2(w1, wy) = Z ; + Z (Z (%)
nez

nez\{0} (nw2)* m e Z\{0} mwy +nws)

(2..13)
will be considered in more details in Sect. 3.2.

Exercise 2..1. Prove the absolute convergence of the series (2..13) using
the Fuler’s formulae

™

N N
lim Z = mcotgmz, lim Z (=1 = (2..14)
N +n N N Z +n sinmz

N—oo —00

(with a subsequent differentiation).

It is convenient to single out a class of elliptic functions f(z;w1,ws), which
are homogeneous in the sense that p* f(pz;pwi,pws) = f(z;wi,ws) for
p # 0 and some k = 1,2,.... The Weierstrass function (2..2) provides an
example of a homogeneous function of degree 2. In the applications to GCI
QFT a natural system of basic elliptic functions is

M N (_1)nm+)\n
PNz wi, wo) = lim lim

L
M—»oom:_M N_)OOTLZ—N (z_|_ muwi + TLWQ)

K, A=0,1

(2..15)
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(cp. with Eq. (2..14)), characterized by the (anti)periodicity condition

PNz + wi; wi, wo) = (=1)" PNz wi, we) for k+k+A>0, (2.16)
pz)‘(z + wo; w1, wo) (—1)’\ pﬁ’\(z;wl,wg) for kK, A=0,1. (2..17)

The functions p, are encountered in a family of examples, described in
Sect. 4.4; pi* with kK + A > 0 appear in the study of Gibbs states of a
chiral 2D Weyl field (Sect. 5.3); the thermal 2-point function of a free
massless scalar field in 4-dimensions is presented as a difference of two p{°

functions — see (6..13). The functions (2..15) are connected for different k
by:

1
PR (25 w1, wo) = —Z (3,2}92/\) (z; wi, wo) (2..18)
and we will set 00
pr(z; w1, wa) = py (25 wi, wa). (2..19)

Exercise 2..2. (a) Prove that o(z; w1, we) (2..2) is doubly periodic in z
with periods w; and ws. Hint: prove that the derivative —% 0. is the

elliptic function ps (2..8) so that p(z +w) — p(2) is a constant for w € A;

show that the constant is zero by taking z = -5

(b) Prove that p(z; wi, we) (2..2) satisfy the equation (2..4). Hint: prove
that the difference between the two sides of Eq. (2..4) is an entire elliptic
function vanishing at z = 0.

(¢) Prove the relations

p,lﬁo(z' w1, we) = 2pk(z; wi, 2we) — pr(z; wi, wa) (2..20)
P (25 wi, wa) = 2pk(2 2wy, wa) — pr(2; wi, wa) , (2..21)
(z, w1, wa2) = 2pk(z; wi + wa, 2we) — pi(z; wi, wa) , (2..22)

p1(z; w1, wa) = (z w1, we) + 872 Go(wi, wo) z (2..23)
Z; Wi, Wa) = , wo) — 82Ga (w1, wa) 2..24

p1(2(+ w1} wlz)w ) é 1(3; agz, wa) 2(1 2) 22..25%

- 87'['2G2(CU1, w2) (wl - w2) - 27Ti7
p1(z + wo; wi, w2) = pi(z; wy, wa) . (2..26)
Hint: to prove Egs. (2..20)—(2..22) take even M and N in Eq. (2..15) and
split appropriately the resulting sum; proving Egs. (2..23)—(2..26) one can
first show that the difference between the two sides of Eq. (2..23) is an

entire, doubly periodic, odd function and therefore, it is zero (see also
Appendix A).

Corollary 2..1. Every elliptic function f(z) satisfying the periodicity con-
ditions

f(z 4+ wi; wi, wa) = (1) f(z; w1, wa),

fz+wa; wi, w2) = (1) f(z;w1,w2), (2..27)
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for some k, A =0, 1 admits unique (nontrivial) expansion

K Sk

FE) =N+ > )" Neo oz — 25 w1, wo) (2..28)
k

=1s=1

where K,51,...,5x € N, NNy, € C, 2z, € F (k = 1,... K, s =
1,...,8k). In the case k = XA = 0 the coefficients Ny satisfy

S1
» N =0. (2..29)

s=1

Exercise 2..3. Transform the forth degree equation 3> = (z —eg) (z —e1)
(x — e3) (x — e3) (with different roots e,) into a third degree one

y? = 4(x —¢)) (x — ¢ey) (z — ¢ef), using the Mébius transformation of
Remark 2.1. (Answer: the transformation is z +— ey + (z — a)~! and
Yy %y with A2 = 1 (e — e1) (eo — e2) (ep — e3); then
(z —a) 4
3
e; =a — (e — e;)” (j = 1,2,3) where fixing a = —% (eo — €)1
j=1
3
is equivalent to the condition Z e; = 0 obeying the form (2..4).)
j=1

2.2. Elliptic curves

A nonsingular projective cubic curve with a distinguished “point at infinity”
is called elliptic. An elliptic curve E over C (or, more generally, over any
number field of characteristic different from 2 and 3) can be reduced to the
Weierstrass form (in homogeneous coordinates X, Y, 7),

E: Y*Z =4X3 - 2X7% — 37 (g5 — 27g5 #0) (2..30)
with the point at infinity, given by
e=(X:Y:Z2)=(0:1:0). (2..31)

Let A be a (2-dimensional) period lattice (as in Eq. (2..3)). The uni-
formization map

2):9(2):1) for z¢ A
e {EQi5O BrozEd (2.32)
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(p(2) = p(z;w1,w2), ©'(2) = d.p(z;w1,wsz)) from C to the projective com-
plex plane provides an isomorphism between the torus C/A and the projec-
tive algebraic curve (2..30). It follows that E is a (commutative) algebraic
group (as the quotient of the additive groups C and A). The addition
theorem for Weierstrass functions,

/ s 2
bler-+ ) = o) = ofen) + § () =)

4\ p(21) — p(22)

1" (=)
(= —2p(a1) + 1 (p’(zll)> for z9 — 21 ) (2..33)

allows to express the group law in terms of the projective coordinates as
follows.
The origin (or neutral element) of the group is the point at infinity e (2..31).
If (x=X/Z,y=Y/Z) is a finite point of E (2..30) — i. e., a solution of the
equation

y? = 423 — gox — g3, (2..34)

then its opposite under the group law is the symmetric point (x, —y) (which
also satisfies (2..34)). If P, = (21, y1), P> = (22, y2) are non—opposite finite
points of E, then their “sum” P3 = (3, y3) is defined by

m2
x3=—w1—x2+77 y3 = —y1 —m(r3 — 1) for

— 2 _

m=Y"Y2 ¢ p 4Py m= 289 ¢ op - p. (2.35)
T — T2 2y1

The structure of rational points on an elliptic curve — a hot topic of modern

mathematics — is reviewed in [58].

1117

Exercise 2..4. Compute the sum P + @ of points P = ( 9 ﬁ)’ Q=
(0, 1) of an elliptic curve y? = 23 — 2 + 1. (Answer: (z, y) = ﬂ11(159,
1861

Proposition 2..2. ([62] Proposition 4.1). Two elliptic curves E : y? =
43 — gox — g3 and E : §? = 473 — G2 — g3 are isomorphic (as complex
manifolds with a distinguished point) iff there exists p # 0, such that ga =
piga, G5 = pBg3; the isomorphism between them is then realized by the
relation T = p*x, § = p’y.

* The following text (between asterisks) is designed to widen the scope of
a mathematically oriented reader and can be skipped in a first reading.

An elliptic curve, as well as, every algebraic (regular, projective) curve
M can be fully characterized by its function field ([71]). This is the
space C(M) of all meromorphic functions over M, i.e., functions
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f such that in the vicinity of each point p € M, f takes the form
(w —w(p))¥(a + (w — w(p)) g(w)) for some local coordinate w and an an-
alytic function g(w) around p, d € Z, and a nonzero constant a for f
# 0. The number ord,f := d is then uniquely determined for nonzero f,
depending only on f and p: it is called the order of f at p. Thus, the
order is a function ord, : C(M)\{0} — Z satisfying the following natural
properties

(ordy) ord,(fg) = ord,f + ordyg;
(ords) ord,(f+g) > min{ord,f, ord,g} for f # —g;
(ord3) ord,c=0 for ce C\{0}

(it sometimes is convenient to set ord,0 := 0o0). Functions v : C(M)\{0} —
Z satistying (ordy)—(ords) are called discrete valuations (on the field C(M)).
They are in one-to-one correspondence with the points p € M: p — ord,,.
Moreover, the regular functions at p, i.e. the functions taking finite (com-
plex) values at p, are those for which ord, f > 0; these functions form a ring
R, with a (unique) maximal ideal m,, := {f : ord,f > 0}. Then the value
f(p) can be algebraically expressed as the coset [f], of f in the quotient
ring R,/m, = C (since the quotient by a maximal ideal is a field!).

On the other hand, the field C(M) of meromorphic functions on a (com-
pact) projective curve can be algebraically characterized as a degree one
transcendental extension of the field C of complex numbers: C(M) con-
tains a non algebraic element over C and every two elements of C(M) are
algebraically dependent (over C, i.e., satisfy a polynomial equation with
complex coefficients). Such fields are called function fields. The simplest
example is the field C(z) of the complex rational functions of a single vari-
able z. This is, in fact, the function field of the Riemann'? sphere P!.
Summarizing the above statements we have:

Theorem 2..3. ([71]) Chapt. VI The nonsingular algebraic projective curves
are in one—to—one correspondence with the degree one transcendental exten-
sions of C, naturally isomorphic to the fields of meromorphic functions over
the curves. x

The function field of an elliptic curve E := C/A is generated by g and ¢’
([47], Sect. 2.13),

C(E) = C(p)lp'] = Clp)[V(p—e)lp —e2)(p—es)] (2..36)
where e, ex and e3 are the roots of the third order polynomial (2..34),
40° = g20 — g5 = 4p — e1)(p — e2)(p — e3) (= (¢)?) (2..37)

(which should be different in order to have an elliptic curve). Thus, C(E)
is a quadratic algebraic extension of the field C(gp) of rational functions in

[N

!2 Georg Friedrich Bernhard Riemann (1826-1866) introduced the ” Riemann surfaces”
in his Ph.D. thesis in Gottingen, supervised by Gauss (1851).
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Exercise 2..5. Let (wj,w2) be a basis of A. Prove that the roots of
© (2..37) in the basic cell {\wy + pwa : 0 < A, u < 1} are (up to ordering)
w1/2, wa/2, (w1 +wy)/2, corresponding to e; = p(w1/2), e2 = g (w2/2),
es = o (w1 +w2)/2). Hint: use the fact that ¢’ is an odd function of z as
in Exercise 2.2. (a).

Exercise 2..6. Show that p;(z) = \/p(2) —e€j, 7 = 1,2,3 have single
valued branches in the neighbourhood of the points z; = w1 /2, z0 = wy/2,
z3 = (w1 + we)/2, respectively. Prove that they have simple poles on the
lattice A and may be standardized by fixing the residue at the origin as 1.
Demonstrate that they belong to different quadratic extensions of the field
C(E) corresponding to double covers of the torus E with primitive periods
(w1,2w2), (2w, w2) and (w1 +w2, 2ws), respectively (we shall also meet the
corresponding index 2 sublattices in Sect. 2.4). Deduce that,

p1(2) (=vp(z) —e1) = p(fl(z; w1, w2) ,
p2(2) (= p(2) — e2) = p1° (23 w1, w2) , (2..38)
03(2) (=Vp(2) — e3) = pi' (z;w1,ws)

where p4* are the functions (2..15) (see [47], Sect. 2.17).

Exercise 2..7. Find a relation between the sinus amplitudinus function
sn(z, k?) (2..5) and the functions p; of Exercise 2.6. Answer:

03(2) (= p1' (zw1,w2)) = - (zﬁ”::z ) (2..39)

Exercise 2..8. Use the change of variables z +— e3 + (e3 — e3)/x? to con-

1
vert the indefinite integral /[4 (x — e1) (x — e2) (xz — e3)] 2 dx into
B 179 (as in Exer-
€2 — €3

1
(e2 — 63)_% /[(1 — z%) (1 — k?2?)] 72 da for k? =
cise 2.3). Deduce as a consequence the relations:

€2 — €3

{sn (z1/e2 — €3, l<;2)}2 .

p(z) = ez + (2..40)

Exercise 2..9. Prove that addition of half—periods and the reflection
z — —z are the only involutions of E = C/A. Prove that the quo-
tient space E/(z ~ —z) is isomorphic to P'. Identify the quotient map
E — E/(z ~ —z) as the Weierstrass function p(z).
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2.3. Modular invariance

Proposition 2.2 implies, in particular, that two lattices, A and p A, with the
same ratio of the periods,
w1

= €eH={reC; Imt>0} (2..41)
2

correspond to isomorphic elliptic curves. The isomorphism is given by
multiplication with a non-zero complex number p:

C/A =2 C/(pA) : z (mod A) — pz (modpA) (2..42)
(x:y:1)— (pr Pty 1) = (p(pz; pwi, pwa2) : 0,0 (pz; pwi, pwa):1).

On the other hand, the choice of basis (w1, ws) in a given lattice A is not
unique. Any linear transformation of the form

(w1, w2) — (W], wh) := (awr + bwa, cwi + dwa),
a,b,e,d € Z, ad—bc = %1 (2..43)

gives rise to a new basis (w], w}) in A which is as good as the original one.
Had we been given a basis (w1, wa) for which Im (w;/w2) < 0, we could
impose (2..41) for (v}, wh) = (w2, w1). Orientation preserving transforma-
tions (2..43) form the modular group

I'(1):= SL(2,Z) = {'y— <CCL 2) ta,bc,d € Z, dety = ad —bc = 1}.

(2..44)
Thus, on one hand, we can define an elliptic curve, up to isomorphism,
factorizing C by the lattice Z7 + Z with 7 € $ and on the other, we can

pass by a modular transformation v = <Z 2) € I'(1) to an equivalent

basis (a7 + b, ¢t + d). Normalizing then the second period to 1 we obtain
the classical action of I'(1) on $) (2..41) (mapping the upper half plane onto
itself),

ar +b
— .
ct +d
This action obviously has a Zg kernel {£1} € I'(1).
Note that the series (2..10) and (2..2), as well as (2..8) for k > 3, are abso-

lutely convergent for z ¢ A. This implies, in particular, their independence
of the choice of basis,

(2..45)

3(z;wi,w2) = 3(2;awr +bws, cwi + dws),
p(z;wr,we) = p(z;awr + bwa, cwy + dws) ,
pr(zwi,w2) = pi(2; awr + bwa, cwy +dwa) (kK >3).  (2..46)
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for v = <CCL 2) € I'(1). Using the homogeneity

3(pzipwi, pwa) = p~' 3(zw1,wn)
p(pz; pwi, pwa) = p~2 p(z;w1,wa) (2..47)
pr(pz; pwr, pwz) = p~ " pr(ziw1,w2)
(p € C\{0}) and setting
3(z,7) =371, e(z7) = pz71), prz7) = p(z71)
Mz, ) = pfMzT 1) (ko A=0,1), pi(z,7) = pY0(2,7) (2..48)

(see (2..15)) we find as a result, the modular transformation laws

(ertd)3 (2, TEV) = 50,

er+d er+d
_ +b
cr+d)7? —c 7_(17' = p(z,7),
( ) p<CT—i-d C7'+d> o(27)
_ +5b
er+d)F =97 = pi(z, k>3).  (2.49
ertdFpe (2T ) = ) (h23) (249

The functions p;(z,7) and pa(z, ) obey inhomogeneous modular transfor-
mation laws since G2(wi,ws2) transforms inhomogeneously (see Sect. 3.2).
This is the price for preserving the periodicity property for z — z 4+ 1
according to (2..26). Nevertheless, all the functions PZ)‘ for k > 1 and
Kk + A > 0 transform homogeneously among themselves:

(et +d)”

ko lamtbNo [entddy ( Z @Dy oy
Pk (CT—I—d’ c7'+d) P
where [A]2 = 0,1 stands for the A mod 2.

Exercise 2..10. Prove the relation (2..50) for k& > 3 using the absolute
convergence of the series in Eq. (2..15). (For k£ = 1,2 one should use the

uniqueness property of the functions pg’\ given in Appendix A.)

2, T) (2..50)

Exercise 2..11. (a) Prove the representations

N
p1(z,7) = lim Z meotgm(z+kr) = (2..51)
N — oo R
oo qn
= mcotgmz + 4w Z g sin 2mnz (2..52)

n=1
where q := €2™7 and the series (2..51) absolutely converges forall z ¢ Z7+7Z
and 7 € $ while (2..52) absolutely converges for |q| < |e~2™*| < 1. Hint:
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take the difference between the two sides of (2..51) and prove that it is
an entire, odd, elliptic function using (2..25) and (2..26); to derive (2..52)
from (2..51) use the expansion

2miz k —omiz k
cotgm (z+ k1) + cotgm (z— k1) = —i1+6 q 1+e q

1— eZm’zqk 1— 6727rizqk

o0
=1 Z q"F sin 27mnz.

n=1

ind similar representations for pa(z,7), p;-(2,7) and p5* (2, 7).
(b) Find simil tations for pa(z,7), p!(=,7) and p}!(z,7)

2.4. Modular groups

As an abstract discrete group, I' (1) has two generators S and T satisfying
the relations

52 = (ST)? (2..53)
St =1; (2..54)

their 2 X 2 matrix realization is

S = ((1) _(1)> , T = <(1) }) : (2..55)

This can be established by the following Exercise.

Exercise 2..12. A subset D C ) is called a fundamental domain for I'(1)
if each orbit I'(1)7 of a 7 € § has at least one point in D, and if two points
of D belong to the same orbit, they should belong to the boundary of D.
Let

1 1
D:{T€5:2<R6(7)<2,|T|21}; (2..56)

prove that D is a fundamental domain of I'(1). Moreover, prove that
1) 7 € § then there exists a v € I'(1), such that y7 € D;
2)if 7 # 7/ are two points in D such that 7/ = ~ 7 then either Re(7) = F1/2
and ™ =7+1lor|r|=1and 7' = St =-1/7.

3)Let P, := PSL(2,7Z) = SL(2, Z) /Z2 be the (projective) modular group
acting faithfully on $) and let I(7) = { € P; : y7 = 7} be the stabilizer
of 7in P;. Then if 7 € D, I(7) = 1 with the following three exceptions:
T = i, then I(7) is a 2-element subgroup of P; generated by S; if

T=p0:= e then I(7) is a 3—element subgroup of P, generated by ST

if 7 = —p:=e3 then I(7) is a 3-element subgroup of P; generated
by TS.
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(See Sect. 1.2 of Chapter VII of [59].) Derive, as a corollary, that S and T
generate P;.

Exercise 2..13. Verify that there are six images of the fundamental do-
main D (2..56) under the action of T'(1) incident with the vertex e :
they are obtained from D by applying the modular transformations 1, T,
TS, TST, ST~! and S. Note that all these domains are triangles in the
Lobachevsky’s plane '3 with two 60° (= m/3) angles and a zero angle vertex
at the oricycle. They split into two orbits under the 3—element cyclic sub-

group of P; generated by T'S. Their union is the fundamental domain fo
the index six subgroup I'(2) (defined in (2..60) below; cp. [47] Sect. 4.3).

Remark 2..2. T'(1) can be viewed, alternatively, as a homomorphic image of
the braid group Bs on three strands. Indeed, the group B3 can be charac-
terized in terms of the elementary braidings b;,7 = 1,2, which interchange
the end points ¢ and ¢ + 1 and are subject to the braid relation

by by by = by by by (2..57)

On the other hand, the group T with generators S and T satisfying only
the relation (2..53) is isomorphic to the group Bs since the mutually inverse
maps

S bbby, T — by' and by — T', by TST  (2.58)

convert the relations (2..53) and (2..57) into one another. The element 52

is mapped to the generator of the (infinite) centre of Bsz. Its image S? in
I'(1) satisfies the additional constraint (2..54). It follows that B3 appears
as a central extension of I'(1).

We shall also need in what follows some finite index subgroups I' C T'(1)
(i. e. such that I'(1)/T has a finite number of cosets).

Let A’ be a sublattice of A (:= Zw; + Zws) of a finite index N. This means
that the factor group A/A’ is a finite Abelian group of order |[A/A'| = N.
The set of such sublattices, {A’: |[A/A'| = N}, is finite and the group
I'(1) acts on it via A" — ~(A") for v € T'(1) (here we assume that

yw = (am+bn)w; +(em+dn)wy = (W1,w2)7<T7rLL> for v = (ch fl)

and w = mw; + nwy € A).

3 We thank Stanislaw Woronowicz for drawing our attention to this property.
Nikolai Ivanovich Lobachevsky (1793-1856) publishes his work on the noneuclidean ge-
ometry in 1829/30. Jules—Henri Poincaré (1854-1912) proposes his interpretation of
Lobachevsky’s plane in 1882: it is the closed unit disk whose boundary is called oricycle
with straight lines corresponding to either diameters of the disk or to circular arcs inter-
secting the oricycle under right angles. The upper half plane is mapped on the Poincaré
147

disk by the complex conformal transformation 7 — z = i
T+
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Exercise 2..14. Find all index 2 sublattices A’ of the lattice A from
(2..3).  Answer: Ao = Zwi + 2Zwse, Aip := 2Zwi + Zws and
A1y :=Z (w1 + w2)+2Zws. Prove that the stabilizer of A1y, denoted further

by Fg (:: {’}/ € F(l) : ’y(AH) C AH}), is

Ty= {(‘Z Z) €I(1) : ac and bd even} . (2..59)

The group I'y can be also characterized as the index 3 subgroup of I'(1)
generated by S and T2 (see [31] Sect. 13.4).

Other important finite index subgroups of I" (1) are the (normal) principal
congruence subgroups

I'(N) = {<CCL Z)em) ca=1modN = d, b:OmodN:c}, (2..60)

(which justifies the notation I" (1) for SL(2,Z)) and the subgroups
To(N) = {(fcb Z) €T() : ¢ =0 modN}. (2..61)

Proposition 2..4. ([62] Lemma 1.38). Let SL(2,Zy) be the (finite) group
of 2 X 2 matrices v whose elements belong to the finite ring Zy = Z/NZ of
integers mod N (and such that dety =1 mod N). If f : T'(1) — SL(2,Zn)
is defined by f(vy) =~ mod N, then the sequence

1 —T(N) — (1) L SL(2,Zy) — 1 (2..62)

is exact, i.e., the factor group T' (1) /T (N) is isomorphic to SL(2,Zy).

We note that in the case N = 2 the factor group SL(2,Zs) is isomorphic to
the permutation group S3 with the identification

s1=f(T) = ((1) }) , 89 = f(TST) = G (1)> (s1=1mod2=s3). (2..63)

In general, the number of elements of the factor group SL (2, Zy) (i.e., the
index of I'(N) in I'(1), by Proposition 2.3) is

1
3
p=N H(l_ﬁ) (2..64)
pIN
(the product being taken over the primes p which divide N, [62] Sect. 1.6).

Remark 2..3. The (invariant) commutator subgroup of the braid group Bs
is the monodromy group Mj3, which can, alternatively, be defined as the
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kernel of the group homomorphism of B3 onto the 6—element symmetric
group S3 realized by the map b; — s;, i = 1,2, where s; are the elementary
transpositions satisfying (2..57) and s7 = 1. In other words, we have an
exact sequence of groups and group homomorphisms,

1— M3 — Bg — 53 — 1, i. e. 53 = Bg/Mg . (265)

Exercise 2..15. Prove that the stabilizer of the sublattice Ag; = Zwi +

2Zwy C A is the subgroup I'g (2). Thus Iy (2) and 'y are mutually con-

jugate subgroups of I' (1). Prove also that the action of ' (1) on the three

element set {Aj9, Ao1, A11} of index 2 sublattices of A is equivalent to the

above homomorphism I" (1) N (2,Z9) = Ss. In fact, this action is given
a b

by the formula, Axx — Ajgrtbrls, [ertdr]s fOT ¥ = c d> € I'(1) (note that

this is precisely the action of v on the upper indices of p’,j/\ in (2..50)).

Exercise 2..16. Let I be a finite index subgroup of I'(1). Prove that there

exists a nonzero power T" (i.e., h # 0) belonging to I. (Hint: since there
are finite number of right cosets \I'(1) there exist v € I' and hy, ho € Z,

hi # hg such that T = ~T"2))

3. Modular forms and Y—functions

3.1. Modular forms

Using the equivalence of proportional lattices we shall, from now on, nor-
malize the periods as (w1,ws) = (7,1) with 7 belonging to the upper half
plane 9 (2..41).

Let T" be a subgroup of the modular group I'(1). An analytic function
Gy, (1) defined on the upper half plane $ (3 7) is called a modular form of
weight k£ and level I if

(i) it is ['—covariant:

(CT—‘y—d)ka(Z::::cl;) = Gg(r) for <Ccl Z) el (3..1)

k
2

i.e., the expression Gi(7) (dr)2 is I'-invariant:

k ar+b
2 = 3..2
2o T ct+d ( )

Ge(y7) (d(y7))% = Gy(r) (d7)

dr
5);

in view of the identity d(v7) = ———
( v o) = v
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14

(7)) Gi(7) admits a Fourier'* expansion in non-negative powers of

g=e" (lgl <1). (3.3)

The coefficients g2(7) and g3(7) (2..4) of the Weierstrass equation provide
examples of modular forms of level T'(1) and weights 4 and 6, respectively.

Remark 3..1. The prefactor j(v,7) = (er +d) " in (3..1), called “an auto-
morphy factor”, can be replaced by a general cocycle: j(v1,7)j(v2,17) =

(2, 7) (11,72 € T). If we stick to the prefactor (¢ +d)~*, then
there are no non—zero modular forms of odd weights and level I' provided

-1 = <_(1) _(1)> € I'. Indeed, applying (3..1) to this element we find

Gr(1) = (=1)*Gy(7), i. e. Gi(7) = 0 for odd k. For this reason we will
mainly consider the case of even weights (for an example of a modular form
of weight one — see Proposition 3.8).

Remark 3..2. If the modular group I' C T'(1) contains a subgroup of type
I'(N) (2..60) we shall also use level N for the minimal such N instead of
“level I'”. In particular, a modular form of level I'(1) is commonly called a
level one form.

Remarkably, the space of modular forms of a given weight and level is finite
dimensional. This is based on the fact that every such modular form can be
viewed as a holomorphic section of a line bundle over a compact Riemann
surface. To explain this let us introduce the extended upper half plane

9 = HUQU {oc} (3..4)

on which the modular group I' (1) acts so that Q U {oo} is a single orbit.
The set $* can be endowed with a Hausdorff ' topology, extending that
of §, in such a way that the quotient space 16 r (1)\55* is isomorphic, as
a topological space (i.e., it is homeomorphic), to the Riemann sphere with
a distinguished point, the orbit Q U {oco}. The points of the set Q U {oc}
are called cusps of the group !” I'(1) as well as of any finite index subgroup
I'in I'(1). Then the quotient space -\$H” is homeomorphic to a compact

Riemann surface with distinguished points, the cusps’ orbits (with respect
to I'). For more details on this constructions we refer the reader to [62].

14 Jean Baptiste Joseph Fourier (1768-1830).

15 Felix Hausdorff (1868-1942).

16 Following the custom we will use the left coset notation for the discrete group action
while §) can be viewed as a right coset, $§ = SL(2,R) /SO (2), the maximal compact
subgroup SO (2) of SL(2,R) being the stabilizer of the point 7 in the upper half-plane.

" The cusps 7 of §* (with respect to some subgroup I' of T'(1)) are characterized by
the property that they are left invariant by an element of I" conjugate to T™ (2..55) for
some n € Z.
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Proposition 3..1. ([48] Chapt. 4) Fvery modular form of weight 2k and
level T, for a finite index subgroup T' of T'(1), can be extended to a mero-

morphic section of the line bundle of k—differentials g (T) (dT)k over the
compact Riemann surface r\H*. The degree of the pole of the resulting

meromorphic section at every cusp is not smaller than —k and the degree
of the pole at an image [T|p € r\9 of a point T € § is not smaller than

—[&(1- %)]] where e, is the order of the stabilizer of T in I'/{£1}
7,
and [a] stands for the integer part of the real number a.

Note that for the points 7 € $ having unit stabilizer in I'/{£1} (i.e.,
err = 1) the corresponding holomorphic sections of Proposition 3.1 have

no poles at [r|p. This is because then the canonical projection $* — r\H*is
local (analytic) diffeomorphism around [7]r. On the other hand, if e, > 1
then [7]r is a ramification point for the projection $H* — F\Sﬁ*, so that
a holomorphic (invariant) differential is projected, in general, to a mero-
morphic differential. For example, the weight 2 holomorphic differential
(dz)2 is invariant under the projection z — w = 22 and it is projected to
(1/4) w™" (dw)® (= (1/4) 272 (22)* (d2)*).

Exercise 2.12 implies that e, for any subgroup I' of I'(1) is either 1 or 2,
or 3. Let us set vy to be the number of points [7]r € r\9* with e;p = 14
for £ = 2,3 and let v be the number of cusps’ images in F\S’_)*.

Corollary 3..2. For k = 0 Proposition 3.1 implies that every modular
form of weight 0 is represented by holomorphic function over a compact
Riemann surface and therefore, it is constant by Liouville’s theorem.

The Liouville theorem has a generalization to meromorphic sections of line
bundles over compact complex surfaces — this is the Riemann-Roch '® the-
orem ([48], Chapt. 1) stating that the vector space of such sections with
fixed singularities is finite dimensional.

Theorem 3..3. (See [48] Theorem 2.22 and Theorem 4.9, and [62] Propo-
sition 1.40.) The vector space of modular forms of weight 2k and level T' (a
finite index subgroup of I'(1)) has finite dimension

0 for k<0
1 for k=0
dopr = (2k — 1) (gr — 1) + veok+ for k>0, (3..5)
kv 2kv
+[521+ 557

where gr is the genus of the Riemann surface P\ﬁ* which can be calculated
using the index u of the subgroup T' in I'(1) by the formula

H vy v3 Voo
SR I Voo 3.6
=t T T3 T (3.-6)

'8 Gustav Roch (1839-1866).
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Remark 3..3. In the case of level 1 modular forms: gr;) = 0, Voo = 1 and

e- (1) takes nonunit values only at the images [T]Hl) of T =iand 7 = 5
which are 2 and 3, respectively, i.e., vo = v3 = 1 (see Exercise 2.12). Then

Eq. (3..5) takes for k =1,...,17,... the form

dog. (1) = 1—k+[[§]]+[[%] =1,0,1,1,1,1,2,1,2,2,2,2,3,2,3,3,3,3, ...

(3..7)
(in the next subsection we will derive independently this formula in a more
direct fashion, establishing on the way the recurrence relation dag112,r(1)

= dyy,r1) +1). For the principal congruence subgroups I'(N) (2..60), we
have, when N > 1 (see [62], Sect. 1.6): 1o = v3 = 0, Voo = % and g is
given by Eq. (2..64). In particular, gr(yy = 0 for 1 < N < 5, gre) = 1,
grmy =3, grg) = 9, 9r(9) = 10, grao) = 13, gr11) = 26.

3.2. [Eisenstein series. The discriminant cusp form

We proceed to describing the modular forms of level one. Let My be the
space of all such modular forms. As a consequence of Corollary 3.2 and
Theorem 3.3, My is 1-dimensional (it consists of constant functions) and
My = Mok = {0}.

Examples of non—trivial modular forms are given by the Eisenstein series

(2k —
Gop(1) = >(2ri) 2k; Z mr 4+ n) " =

2k —1
:W{Zn%—kzz (m7T+mn)” } (3..8)

m=1neZ

Note that for 2k > 4 we have Goi(7) = Gok (7, 1) :
2k‘ — 1
Gop (w1, we) = Z w2k (A = Zw1 + Zwo) (3..9)
weA\{0}

where the series is absolutely convergent and therefore, it does not depend
on the basis (w1, ws):

Gop(awi + bwa, cwi + dws) = Gop(wr,w2)  for (c d> el'(1). (3..10)

It follows that, Gog(7) satisfies for 2k > 4 the conditions (¢) for modular
forms since we have

Gaok(pwi, pwa) = pf%G’gk(wlng) . (3..11)
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For 2k = 2 the series (3..8) is only conditionally convergent and it is not
modular invariant (the sum depends on the choice of lattice basis, see be-
low). To verify the second condition one can use the Lipschitz formula (see,
e. g., Zagier in [22] Appendix)

e e}

((ﬁ;wj))’l 2 (z-|-1n)k =) et (3..12)

neL =1

and deduce the Fourier expansion of Gy, (for k > 1):

G ()_—%-Fin%_l ”—1<<1—2k)+i (n)g" (3..13)
2k\T) = 1_qnq =3 02k-1\1)q -
n=1 n=1

where o;(n) = Zrl (sum over all positive divisors r of n), B; are the
rln

Bernoulli numbers'® which are generated by the Planck?® distribution
function:

i~ l
x x 1 1
SN B Y. By=1, Bi=—=, By—=~, By—--- = Bypss =0,
ra— ZEO 15 Bo 1 5 Be=5o Bs 2k+1
1 1 5 691 7
By=Bs=—— Bg=—,Bip= >, Blg= -2 p,=L . (3.14
1=Bs=—g5 Bo= 5 Buo=re Bu=—0, Bu=¢, .. (3.14)

¢(s) is the Riemann (-function?'. Remarkably, for n > 1, all Fourier

coefficients of Gy are positive integers.
Thus, for k > 2 the functions Goy, are modular forms of weight 2k (satisfying
(3..1)). For k = 1, however, we have instead

ar +b 7 c
CT+d) N GZ(T)—I_ECT—FCZ

(e + d) > Gaf (3..15)

so that only G3(7)d7 is modular invariant where G% is the non—holomorphic

19 Jacob Bernoulli (1654-1705) is the first in the great family of Basel mathematicians
(see [3], pp. 131-138 for a brief but lively account). The Bernoulli numbers are contained
in his treatise Ars Conjectandi on the theory of probability, published posthumously in
1713.

20 Max Planck (1858-1947) proposed his law of the spectral distribution of the black—
body radiation in the fall of 1900 (Nobel Prize in Physics, 1918) — see M. J. Klein in [29].

2! The functional equation F(%)ﬂfgq(s) = F(?)ﬂ'%((l — s), which allows the an-
(=]

alytic continuation of {(s) = Y  n™° as a meromorphic function (with a pole at s = 1)
n=1

to the entire complex plane s, was proven by Riemann in 1859 (see also Cartier’s lecture
in [22]).
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function
G5(1) = L lim (m7+n)"2 |mr +n|"¢
2 ' 872 e\.0
(m,n) # (0,0)
1

o = Im 7. (As the Eisenstein series (3..10) is divergent for k = 1, Eq. (3..16)
can be taken as an alternative definition of Ga(7) which can be shown to
agree with (2..13).) In fact, there is no non-zero (level 1, holomorphic)
modular form of weight 2 as a consequence of Theorem 3.3. There exist,

on the other hand, level two forms of weight 2. We shall use in applications
to CFT the fact that

T+ 1

FQ(T) = 2G2(7—) —GQ( 9

) (3..17)

is a modular form of weight 2 and level I'y (2..59).
Exercise 3..1. Prove that the functions pf*(z,7) , (2..15), (2..48),

(k=1,2,..., ks, A =0,1) have the Laurent >? expansions
1 2 [2n — 1\ 2(2mi)*
KA k KA 2n—k
) = ()RS kL e’ o (3.18

where G99(7) coincides with the above introduced Gog(7) for k =1,2,.. .,

G1(7) coincides with Fy(7) (3..17) and G4 (7) has the following absolutely
convergent, Fisenstein series representation:

G5 (1) = (2 - 1) > (=) A (4 n) =% (3..19)

2(2mi)2k
(m,n) € ZxZ\{(0,0)}

for k > 2. Using this prove that all GLi(7) (including Fo(1) = G3!(7))
are modular forms of weight 2k and level T'y for every k = 1,2,.... (See
Sect. II1.7 of [68] where the case kK = A = 0 is considered.)

If there are di > 1 modular forms of weight k and a fixed level, then one
can form dj — 1 linearly independent linear combinations Sy of them, which
have no constant term in their Fourier expansion. Such forms, characterized
by the condition S;; — 0 for ¢ — 0, are called cusp forms?3. We denote
by Sj the subspace of cusp forms. The first nonzero cusp form of level one
appears for weight 12 and, as we shall see, its properties allow to determine
the general structure of level one modular forms.

*2P.A. Laurent (1813-1854) introduces his series in 1843.
23 The notation Sy, for the cusp forms comes from the German word Spitzenform. (The
term “parabolic form” is used in the Russian literature.)
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Proposition 3..4. The 24th power of the Dedekind?* n—function
A(r) = P = ¢ JJ - (3.20)
n=1

is a cusp form of weight 12.

Proof. As A(T) clearly vanish for ¢ = 0 we have just to show that it is
a modular form of degree 12. To this end we compute the logarithmic
derivative

20 - i o > = —48miGo(T
A(T) =2 (1 24;1_(171) 487i Ga(T). (3..21)

It then follows from (3..15) that

(e (57)) = g Goeller+ a2a@))  .22)

ct+d

and hence, noting that A(7) (3..20) is T—invariant (i.e., periodic of period
1 in 7), we conclude that it is indeed a modular form of weight 12. O

Theorem 3..5. The only non—zero dimensions dp = dim My are given
(recursively) by

do=dy =dg=dg=dig=1; d12+2k:d2k+1, k=0,1,2,.... (323)

In particular, d, =0 for k <1 and dim S = 0 for k < 12.

Proof. 1. If there were a modular form f of weight —m (m > 0) then
the function f'2A™ would have had weight 0 and a Fourier expansion

with no constant term, which would contradict the Liouville theorem (cf.
Theorem 3.3).

2. There is no cusp form of weight smaller than 12. Had there been one, say
Si(7), with k£ < 12, then Si(7)/A(7) would be a modular form of weight
k — 12 < 0 in contradiction with the above argument. (Here we use the
fact that Si/A is holomorphic in $ since the product formula (3..20) shows
that 1/A has no poles in the upper half plane.)

The theorem follows by combining these results with Proposition 3.3 and
the argument that there is no level 1 modular form of weight 2. O

Remark 3..4. In fact, the linear span of all level 1 modular forms of an
arbitrary weight is the free commutative algebra generated by G4(7) and
Ge(7), i.e., it is the polynomial algebra C[G4, Gg] (D. Zagier [22]).

24 Richard Dedekind (1831-1916) also introduced (in 1877) the absolute invariant
Jj (3..27) — as well as the modern concepts of a ring and an ideal.
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Corollary 3..6. The Dedekind n—function (3..20) is proportional to the
discriminant of the right hand side of (2..34):

(2m) ' [g3(7) — 27g5(7)] (3..24)
= [20G4(7’)]3 — 3(7G6(7’))2 (6 812).

A(7)

Proof. The difference (20G4)? — 3(7Gg)? also belongs to Sy since, due to

(3..14),

Noting further that dimS13 = 1 (Theorem 3.5) and comparing the coeffi-
2
cient to ¢ in (3..25) (1 =60 <20%) +21 (%)), we verify the relation

A(T) = (20G4)® — 3(7Gg)?. The first equation (3..25) then follows from
the relations

3

20G4(1) = (277)74g2(7'); 7Ge(T) = _W g3(T).

(3..25)
O

Remark 3..5. S, is a Hilbert space, equipped with the Peterson scalar
product

— drd
(o) = [[ ATt where 7= +im, dp= 52 (3.26)
B/T(1) ’

du being the SL(2,R)—invariant measure on §.

Remark 3..6. Comparing the constant term in the expansion (3..13) of G
with the first few dimensions dgj, we notice that S, = {0} for exactly those
values of k for which — By /(4k) is the reciprocal of an integer (namely for
2k =2, 4, 6, 8, 10, and 14). The curious reader will find a brief discussion
of this (nonaccidental) fact in Sect. 1B of Zagier’s lectures in [22]. The

existence of the discriminant form A(7) (3..20) — whose zeros are precisely
the cusps of I'(1) — allows to define the modular invariant function 2°

(240 G4 (7))*

j(r) = NG g '+ 744 +196884 g+ 21493760 g2+ ... (3..27)

%5 Gauss was apparently aware of the j-function before 1800; Charles Hermite (1822
1901) used it in solving the quintic equation in 1859; Dedekind gave a nice definition
in 1877; Klein studied the function around 1880. (The authors thank John McKay for
drawing their attention to the early work of Gauss and Hermite.)
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that is analytic in the upper half plane $ but grows exponentially for
7 — 400. The following proposition shows that j is, in some sense, the
unique function with these properties.

Proposition 3..7. If ®(7) is any modular invariant analytic function in
9 that grows at most exponentially for Im T — oo then ® (1) is a polynomial

in j(7).

Proof. The function f(7) = ®(7) [A(7)]™ transforms as a modular form of
weight 12m and if m is large enough, it is bounded at infinity, hence f(7)
€ Mjioy. It then follows from Theorem 3.5 and Remark 3.4 that f is a

homogeneous polynomial of degree m in G} and A. Therefore, ® = f/A™
is a polynomial of degree not exceeding m in j. O

In fact, j can be viewed as a (complex valued) function on the set of 2-
dimensional Euclidean lattices invariant under rotation and rescaling — see
the thought provoking discussion in Sect. 6 of [46].

Remark 3..7. The function j(r) — 744 = ¢~ + 196884 ¢ + ... is called
Hauptmodul of T'(1) (see [24], Sect. 2).

Remark 3..8. As observed by McKay in 1978 (see [24] for a review and
references)

G5 = g3 (1+ 248 +4124¢% +...) (3..28)

is the character of the level 1 affine Kac-Moody algebra (Fg); (see also
Sect. 5 below).

3.3. YJ—functions

Each meromorphic (and hence each elliptic) function can be presented as
a ratio of two entire functions. According to property (2) of Sect. 2.1 these
cannot be doubly periodic but, as we shall see, they may satisfy a twisted
periodicity condition.

We shall construct a family of entire analytic functions which allow for a
multiplicative cocycle defining the twisted periodicity condition. A classical
example of this type is provided by the Riemann 9—function?S:

[e.e]
Wz, 1) = Z q%”262m”2 = 142 Z q%"2 cos2mnz, q% =™ (3..29)
nez n=1

269 functions appear before Riemann in Bernoulli’s Ars Conjectandi (1713), in the
number theoretic studies of Euler (1773) and Gauss (1801), in the study of the heat
equation of Fourier (1826), and, most importantly, in Jacobi’s Fundamenta Nova (1829).
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which belongs to the family of four Jacobi ¥-functions 7
Yu(z,7) = ™3 (5T224) (5 — % - g,T), w,v=0,1 (3..30)

(Yoo = ). They satisfy the “twisted periodicity” conditions

Y (z+1,7) = (=1)"Ou(z,71), (3..31)
Dz +7,7) = (—1)’q 2e 279, (2, 7). (3..32)

Note, in particular, that 111 is the only odd in z among the four ¥—functions
and it can be written in the form

dii(z7) =23 (~1)" g2+ sin (20 + 1) 7z (3..33)
n=0

while the others are even and can be written as follows (together with (3..29))

o
Yoi(z,7) = 1+2 Z (-1)" q%”Q cos2mnz,
n=1
> 1 1
2
Yo(z,7) = 2 Z 22" cos (2n — 1) 7z (3..34)
n=1

Thus 917 has an obvious zero for z = 0 and hence vanishes (due to the
twisted periodicity) for all z = m7 + n. In fact, this is the full set of
zeros in z of Y11 (which one can prove applying the Cauchy theorem to the
logarithmic derivative of ¥11). Using (3..30) we can then also find the zeros
of all four Jacobi ¥—functions. This allows to deduce the following infinite
product expression for ,,:

o0

Yoo (z,7) = H (1—-¢"(1+ Zq”_% cos 21z + q2”_1> )
1

n=1

Yo(z,7) = 2q§ cos 2wz H (1—q") (14 2¢" cos2mz + q2"> . (3..35)

n=1

[e.@]
011(2,7) = 2¢F sin27z H (1—¢")(1 — 24" cos 2z + q2n> .

n=1

27 A more common notation for the Jacobi Y—functions is 911 = Y1, Y10 = V2, Yoo = I3,
and Y01 = ¥4. Many authors also write ¢ = '™ instead of ¢ = €®™*7; with our choice
the exponent of ¢ will coincide with the conformal dimension — see Sects. 4-7 below. The
function 911 = Y1 plays an important role both in the study of the elliptic Calogero—

Sutherland model [41] and in the study of thermal correlation functions (Sect. 4.4 below).
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One is naturally led to the above definition by considering (as in [50]) the
action on 9 of the Heisenberg-Weyl®® group U(1) x R? that appears as a

central extension of the 2-dimensional Abelian group R?. It is generated by
the two 1-parameter subgroups U, and V; acting on (say, entire analytic)
functions f(z) as:

(Uaf)(2) = €429 f(z L ar),  (Vif)(z) = f(z+b).  (3.36)
A simple calculation gives Ug, 44y, = Uq, Uy,
2y v, = ViU, . (3..37)

The function J(z,7) (3..29) is invariant under the discrete subgroup
7? = {(a,b) : a,b € Z} which is commutative since e*™® = 1 for inte-
ger ab. If a = %, b = % then the action of VU, gives rise to the four
functions (3..30)

D (2,7) = (V_%U,%ﬁ>(z,7') . (3..38)

Similarly, for a,b € (1/1) Z we obtain [? ¥—functions (that are encountered
in CFT applications).

The functions 9, (z, 7) (3..30) are solutions of the Schrédinger equation 2
, 1 92
Zgﬁw(z, T) = 52 Y (2, 7) (3..39)

and so are, in fact, all functions of the type V,U,9.
The following fact is basic in the general theory of ¥—functions:

Proposition 3..8. (See D. Zagier [22] Sect. 1C p. 245). Given an r—di-
mensional lattice A, in which the length squared Q(x) of any vector x € A,
is an integer, the multiplicities of these lengths are the Fourier coefficients

of a modular form
Og(r) = Y ¢ (3..40)
:EEAT

of weight r/2. More precisely, there exists a positive integer N and a char-
acter x of Lo (N) such that

00 (v7) = x (d) (cT +d)2 O¢ (1) for ~ = (z Z) €Ty (N) . (3..41)

28 Werner Heisenberg (1901-1976), Nobel Prize in physics 1932; Hermann Weyl (1885
1955).

2 Eq. (3..39) was known to J. Fourier (as “the heat equation”), long before Erwin
Schrédinger (1887-1961, Nobel Prize in Physics 1933) was born.
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For Q (z) =1/2xAx where A is an even symmetric v X r matriz, the level
N is the smallest positive integer such that NA~! is again even.

Here is an r = 2 example:

Q=xl+23, Og =1+4qg+4¢* +4¢* +8¢° +4+ ...,

A= ( 0 >, N=4, x@ = (-1)7T . (3..42)

Remark 3..9. The modular form G4(7) can be expressed in terms of the
Jacobi Y-functions as:

1
240 G4(1) = §<{ﬁ80(0,7)~+»§§0(0,7)-+ 95,(0,7) }

q
= 1+240—— +.... 3..43
T2+ (3..43)

4. Quantum field theory and conformal invariance (a syn-
opsis)

For the benefit of mathematician readers we shall give a brief summary of
the general properties of quantum fields (see [63], [4], [15] for more details
and proofs), and of the role of the conformal group. (Our review will be
necessarily one-sided: such central concepts of real world quantum field
theory (QFT) as perturbative expansions, Feynman graphs, and Feynman
path integral won’t be even mentioned.)

4.1. Minkowski space axioms. Analyticity in tube domains

Quantum fields generate — in the sense of [63] — an operator algebra in a
vacuum state space V. A closely related approach, [27], [1], starts with
an abstract C*-algebra - the algebra of local observables — and constructs
different state spaces as Hilbert space representations of this algebra, defin-
ing the different superselection sectors of the theory. (Important recent
progress relating Haag’s algebraic approach to 2D CFT — see [36] — is be-
yond the scope of the present notes.)

In the Wightman approach the fields are described as operator valued dis-
tributions over Minkowski3® space-time M. It is a D-dimensional real
affine space equipped with a Poincaré invariant interval, which assumes, in
Cartesian coordinates, the form

iy = 2ty — (215)%, T12 = T1 — T2, z? = z?. (4..1)

30 Hermann Minkowski (1864-1909) introduces the 4-dimensional space-time (in 1908
in Gottingen), thus completing the creation of the special theory of relativity of Hedrik
Antoon Lorentz (1853-1928, Nobel Prize in physics, 1902), Henri Poincaré, and Albert
Einstein (1979-1955, Nobel Prize in physics, 1921).
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The state space V is a pre-Hilbert space carrying a (reducible) unitary pos-

itive energy representation U(a,A) of the (quantum mechanical) Poincaré
group Spin(D — 1,1) x RP. This means that the joint spectrum of the
(hermitian, commuting) translation generators Py, P in (the Hilbert space
completion of) V belongs to the positive light-cone V. (spectral condition):

V+:{P6RD;%ZHHEV?Q U(a,1) = e@P).  (4.2)

(Boldface letters, &, P, denote throughout (D — 1)-vectors.) Further-
more, V is assumed to have a I-dimensional translation invariant subspace
spanned by the vacuum vector |0) (which is, as a consequence, also Lorentz
invariant):

0) eV, PHO0)=0(=(U(a,A)—1)[0)), (0]0) = 1. (4..3)

The field algebra is generated by a finite number of (finite component)
spin-tensor fields ¢(z). Each ¢ is an operator valued distribution on V: the
smeared field ¢(f) for any Schwartz3! test function f(z) is defined on V and
leaves it invariant. The fields ¢ obey the relativistic covariance condition:

U(a,N) ¢(z) U (a,A) = S(A") ¢(Az + a). (4..4)

Here S(A) is a finite dimensional representation of the spinorial (quantum
mechanical) Lorentz group Spin(D — 1,1) of 2% x 29 matrices; for even
D, the case of interest here, the exponent dy coincides with the canonical
dimension of a free massless scalar field,

D2

do = =5 (4..5)

(in general, the spinorial representation has dimension 2l%71 where [p]
stands for the integer part of the positive real p); A € SO(D — 1,1

is
the (proper) Lorentz transformation corresponding to the matrices £A (—I
belonging to the centre of the group Spin(D—1,1)). We assume that S(—1T)
is a multiple (with a sign factor) of the identity operator:

S(-D)o(x) = e40(x), o = +1. (4.6)
The sign ¢, is related to the valuedness of S(K): ey = 1 for single valued
(tensor) representations of SO(D—1,1);e4 = —1, for double valued (spinor)

representations. The field ¢ and its hermitian conjugate ¢* (which is as-
sumed to belong to the field algebra whenever ¢ does) satisfy the locality
condition

¢(z1) " (22) — €4 9" (22) 6(21) =0 for a¥, >0, (4..7)

31T aurent Schwartz (1915-2002).
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which reflects the independence of the “operations” ¢(z1) and ¢*(z2) at
space-like separated points. Finally, we assume that the vacuum is a cyclic
vector of the field algebra. In other words, (smeared) vector valued mono-

mials ¢1(x1)P2(2) - .. ¢n(2n)|0) span V.
A QFT is fully characterized by its correlation (or Wightman) functions

Wy, (T12, -+ s Tp—1n) = (0] p1(x1) ... dn(xn)|0) (4..8)

which are, in fact, tempered distributions in M*(P=1) only depending (due
to translation invariance) on the independent coordinate differences x4q+1,
a=1,....n—1.

The spectral condition allows to view the above vector valued monomials
and Wightman distributions as boundary values of analytic functions.
Proposition 4..1.

(a) The vector valued distribution ¢ (x)|0) is the boundary value (fory — 0,

y° > |y|) of a vector-valued function analytic in the forward tube domain
T where

T={z=a+iye M+iM: " > |y[}. (4..9)

(b) The Wightman distribution (4..8) is a boundary value of an analytic
function wy (212, ..., Zpn—1n) holomorphic in the product of backward

tubes ‘Zf(nfl) and polynomially bounded on its boundary

n—1 _
|wn (ZlQa s 7Zn—1n)‘ < A<1 + Z ’Zaa+1|2) (main }y(zza—&-l‘) : (4"10)

a=1

The proof [63], [4] uses the spectral condition and standard properties of
Laplace transform of tempered distributions.

Each of the tube domains €., ¢ = 4, — is clearly invariant under Poincaré
transformations and uniform dilations z — pz (9o > 0). A straightforward
calculation shows that it is also invariant under the Weyl inversion w,

Isz
Z > wE = é, I (2° 2) = (2% -2). (4..11)
It follows that ¥, is actually conformally invariant — as w and the (real)
translations generate the full (D;_ 2) parameter conformal group C. More-

over, each T is a homogeneous space of C [67] 32 (see also Sect. 4.2 below).
In fact, €. is a coadjoint orbit of C equipped with a conformally invariant

symplectic form proportional to dz# A dy—‘; (see [64] Sect. 3.3).
Yy

32 This has been known earlier — e.g. to the late Vladimir Glaser (1924-1984) who
communicated it to I. Todorov back in 1962.
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Remark 4..1. Note that the n—point tubes of Proposition 4.1 (b), { (wl—H'yl,

cey Ty + zyn) P Tga+1l +iYaatr1 € ‘IE}, are not conformally invariant for
n > 1.

From now on we shall consider conformally invariant QFT models. Apart
from the free Maxwell 3 (photon) field and the massless neutrino, real world
fields are not conformally invariant. The interest in unrealistic higher sym-
metry models comes from the fact that the only (mathematically) existing
so far QFT in four space time dimensions — after three quarters of a cen-
tury of vigorous efforts — are the free field theories. Conformal QFT has
the additional advantage to provide (at least, conjecturably) the short dis-
tance behaviour of more realistic (massive) theories (for a discussion of this
point — see [66])

4.2. Conformal compactification of space—time. The conformal
Lie algebra

The quantum mechanical conformal group C of D-dimensional space—time
can be defined as (a finite covering of ) the group of real rational coordinate
transformations g : * — 2/(z) (with singularities) of Minkowski space M
for which

D
da? = w™(z,9)d2?, da® = dz®—(da®)?, da® = (da')’, (4.12)

=1

where w(z, g) is found below to be a polynomial in x* of degree not ex-

ceeding 2. An extension of the classical Liouville theorem says that, for
D > 2, C is locally isomorphic to the (D ;r 2) parameter (connected) group

C = Spin(D,2), a double cover of the of pseudo-rotation SOq (D, 2) of RP:2,
In fact, the action of C on M having singularities can be extended to entirely
regular action on a compactification of M called conformal compactification

or just compactified Minkowski space M. A classical manifestly covariant
description of compactified Minkowski space is provided by the projective

quadric in R”2) introduced by Dirac3* [17] (it generalizes to Lorentzian
metric and to higher dimension of a construction of Klein3°):

M=Q/R", Q={€cRPA\(0}: €2 = 2465 -82—¢2 (= sanabfb>(= 0}).
4.13

33 James Clerk Maxwell (1831-1879) wrote his Treatise on Electricity and Magnetism
in 1873.

34 Paul Adrian Maurice Dirac (1902-1984), Nobel Prize in physics 1933, known for his
equation and for the prediction of antiparticles, speaks (in Varenna — [29]) of his great
appreciation of projective geometry since his student years at Bristol.

35 Felix Klein (1849-1925), a believer in a preestablished harmony between physics
and mathematics, has outlined this construction without formulae in his famous 1872
Erlanger program.
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The conformal Lie algebra C, generated in the projective picture, by the

infinitesimal pseudo—rotations X, = &, — §bai£a is characterized by the

o&®
commutation relations
[Xavacd} - 770L(:4Xrbd - nchad + 7/]bdAXrac - nadec (414)
fOI' a,b,c,d = —1,0,...,D (7711 = -+ = NDD :_1 = —Too = —TN-1-1,
Nap = 0 for a # b). Then the embedding of M in M is given by
= -— = — 1422 1—22—
Z‘H{)\fl«}GMC, gm :xue,u_‘_ e_1+ €p oOr,
1
h = i, k=¢&P ¢t (4..15)
K

where {ga —1<a< D} is an orthonormal basis in RP ’2, so that the

conformal structure on M, or the isotropy relation, is encoded on M by
the (SO(D,2)-invariant relation of) orthogonality of the rays because of
the simple formula:

— — 2

le = -2 Ean gﬂf,‘g = (§x1 - 53}2) (416)

Since the vectors § . of the map (4..15) can be characterized by the condi-
tion

=80 §p =1, (4..17)

where ¢, = (—1,0,0,1), we conclude that the complement set K
M\ M, the set of points at “infinity”, is the (D — 1)-cone with tip {\¢ o }:

Koo = {{A6} €M : €00 € (=r=P 46 =ep—€1) = 0}. (4.18)

Note also that the Weyl inversion (4..11) is a proper conformal transforma-
tion given by a rotation of angle m in the (—1,0) plane: w ({-1,&0,&,&p)

= (_6—17 _507 57 gD)

Remark 4..2. One can, sure, identify the circle and the (D — 1)-sphere in
the definition (4..13) of the quadric @, as well. Indeed, the quotient space
Q@ /R4 can be defined by the equations

Q/Ry = {€€RPA(0}: 2462, =1=€2+6h} = §'x8L. (4..19)

Going from Q/Ry to M = Q/R* amounts to dividing Q/R by Zs = Z/27,
i.e., by identifying £ and — ¢ in the product of the circle and the sphere.
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Thus we conclude that M is diffeomorphic to S' x SP~1/Z,. It also follows
that M is a nonorientable manifold for odd D > 1.

The (linear) SO(D, 2) action g& = (g2£°) on @ induces the nonlinear trans-

formations (4..12) by g&, ~ & g(z) Where the proportionality coefficient
turns out to be equal to the (square root of the) conformal factor, w(z, g):

—

since the relation (4..17) together with zoo' € g(z) = 1 and Eq. (4..16) imply

2
—a(zo))? = T2 -
(g(lj) g( 2)) W(l‘l,g)w(l‘Z,g) (4 21)

(proving, in particular, the conformal property of the SO(D,2)-action).
Note that the Weyl subgroup, the Poincaré group with dilations, is charac-
terized by the condition that w(g,z) does not depend on = and w(g,z) =1
iff g is a Poincaré transformation.

There is a natural basis of the conformal Lie algebra C generating the sim-
plest transformations in Minkowski space:

e Poincaré translations ¢'* T (z) (= ¥ Pu (z)) =z +a (for z,a € M),
e Lorentz transformations eXm 0 < p<v <D —1 (X, = —X,u),
o dilations x +— px, p > 0,
r+1r2a
- 1+2a-z+a%22’

e special conformal transformations ¢! “ ¥ (z)

The generators iP, (— 1K, and the dilations are expressed in terms

0
oxH”’
of X, as:
iP,=—-X_1,—Xup, iK, =—X_1,+Xup,

pX-o(z) = pa (p>0)
(see Appen. B); the Lorentz generators X, correspond to 0 < p,v < D—1.

(4..22)

There is a remarkable complex variable parametrization of M given by:

M = {za:e%icua:CER,uQ::uQ—i—uQD:l,uERD} =
= §'x§P7Y 4, (4..23)

where z, can be extended to the whole complex Euclidean space E¢ (=

CP) thus defining a chart in the complexification Mc of compactified
Minkowski space; they are connected to the (complex) Minkowski coordi
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nates z = z +iy € Mc (:= M +iM) by the rational conformal transfor-
mation ([64], [54], [51]):

z 1-z22 1+22 0
z w(Z) ) ZD 2 w(z) ) w( ) ¢ ( )
Proposition 4..2. The rational complexr coordinate transformation

ge: Mc (3 2) — Ec (3 z), defined by (4..24), is a complex conformal map
(with singularities) between the complex Minkowski and Euclidean spaces,
such that
2 2
2 Zi2 2 2 2 dz
Ziy = , dz®(=dz*+dzp) =
27 0z w(z2) ( ) w(2)

5. (4.25)

The transformation g. is reqular in the tube domain T4 = {Z =z +1y:

y0 > ]y[} and on the real Minkowski space M. The image Ty of ¥+ under
Ge

1
Toi={seCP: |22 <1, sz = o P < 5 (14 22F) ) (4.26)
is a precompact submanifold of Ec. The closure M of the precompact image
of the real Minkowski space M in Ec has the form (4..23).
The statement is verified by a direct computation (see [54], [51]).
The transformation (4..24) generalizes the Cayley 3¢ transformation

1412

Zr z = -
1—1z

(2,2 €C) (4..27)

arising in the description of the chiral (1-dimensional light-ray) projection
of the 2D CFT (see Sect. 5). In the D = 4 dimensional case (4..24) can
be viewed as the Cayley compactification map u(2) — U(2) in the space of
(complex) quaternions C ®@g H (see [67] [64]):

M3z — i7 = iz’l+ Q-x c u(2),

M3z #:=2°Q, =21+ Q-2 €U(2), (4..28)
_ 1+ iz
T f= ,

1—izx

where Qi (k = 1,2,3) are the quaternion units (expressed in terms of the
Pauli matrices, see Sect. 6.2.). Another point of view on the transforma-
tion (4..24) is developed in [51] (see Appendix A): to each pair of mutually

36 Arthur Cayley (1821-1895) has introduced, in 1843, the notion of n-dimensional
space and is a pioneer of the theory of invariants.
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nonisotropic points, say qo, geo € M, one assigns an affine chart of M¢
with a distinguished centre g and a centre ¢, of the infinite light cone.
This is provided by the fact that the stability subgroup in C of a point, say
o, 18 isomorphic (conjugate) to the Weyl group (the group of affine con-
formal transformations). In the above 1-dimensional case gy = i, ¢oo = —1,
while in a general dimension D, gy and g~ are mutually conjugate points
in the forward and backward tubes, respectively. (Remarkably, only when
oo € T4 the corresponding affine chart entirely cover the real compact

space M ; this has no analog for signatures different from the Lorentz type

(D—-1,1)or (1,D—-1).)

Note that all pairs of mutually nonisotropic points of M (or M¢) form
a single orbit under the action of the (complex) conformal group ([53],
Proposition 2.1). In particular, the transformation g. of Proposition 4.2
can be considered as an element of Cc¢ such that g.(pocc) = ¢o,00- Thus the
stabilizer of the pair pg, peo, Which is the Lorentz group with dilations, is
conjugate to the stabilizer of qg, goo. Since gy and g are complex conju-
gate to one another, it turns out that their stabilizer in Cc is *—invariant.
Moreover, its real part coincides with the mazimal compact subgroup K of
C,

K = Spin(D) x U(1)/Zs, (4..29)

generated by X3 (a, 8 =1, ..., D) and the conformal hamiltonian,
1
Hi=iX10 = 5(Py+Ko). (4..30)

As noted by Segal 37 [60] H is positive whenever Py is (since Ko = wPyw™1
with w defined in (4..11)). The factor Spin(D) of K acts on the coordinates
z by (Euclidean) rotations while the U(1) subgroup multiplies z by a phase
factor. Thus, K appears as the stability group of the origin z =0 (i.e., qo)
in the real conformal group C. Noting further the transitivity of the action
of C on either T or 7_ we conclude that the forward tube is isomorphic
to the coset space

T, =2C/K. (4..31)

We will need the complex Lie algebra generators T, and C, for

a = 1,..., D of ztranslations e“7(z) = z 4+ w and special conformal
2

transformations eV ¢(z) = FrEw (w, z € CP) which are con-

142wz +w?z?
jugate by g. to the analogous generators —iP, and —iK . This new basis
of generators (Ty, Co, H and X,p) is expressed in terms of X as:

Ta = iXQa - X—la, Ca = —iXOa - X_1a for a = 1, . .,D (4..32)

([T, C8] = 2 (0apH — Xop), [H,C.] = —Cq, [H,T,] = T, see Ap-
pendix B). The generators Ty, C, for a = 1,..., D, together with the
above introduced X,3 (o, 3 =1,..., D) and H span an Euclidean real form

37 Irving Ezra Segal (1918-1998).
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~

(=2 spin (D +1,1)) of the complex conformal algebra. The generators Ty,
Xop and H span the subalgebra C, of the complexified conformal Lie alge-
bra C¢, the stabilizer of the central point at infinity in the z—chart which is
isomorphic to the complex Lie algebra of Euclidean transformations with
dilations. The stabilizer of z = 0 in C¢ is its conjugate Cq,

Co = Spanc {Cq, Xap, H} . (4..33)

Remark 4..3. The z—coordinates are expressed in terms of &, as
za = &/ (1€ —&-1) (in contrast with (4..15) the denominator iy — &_;

never vanishes for real £) . We could have introduced a length scale R
replacing the numerator &, by R¢,. We shall make use of the parameter R
in Sect. 7, where it is viewed as “the radius of the Universe” (in the sense
of Irving Segal [61]) and the thermodynamic (R — oo) limit is studied.

4.3. The concept of GCI QFT. Vertex algebras, strong locality,
rationality

We proceed with a brief survey of the axiomatic QFT with GCI. The as-
sumptions of the GCI QFT are the Wightman axioms [63], briefly sketched
in Sect. 4.1, and the condition of GCI for the correlation functions [53]. The

latter means that the Wightman functions 38 (0 gb%l (1) ... ¢%L (x,)]0) are
invariant (in the sense of distributions) under the substitution

ou () = [ (9)7' 15 o8 (9 (2)) (4..34)

for every conformal transformation g € C, outside its singularities. The

matrix valued function 7 (g) is called (Minkowski) cocycle and is charac-
terized by the properties

w2 (9192) = mot iy (91) ™2 (92) aM(eiwP)B _ 5B (4.35)

The transformation law (4..34) extends the Poincaré covariance (4..4) for

S(A) = 7)1 (A) to the case of (nonlinear) conformal transformations. An
example of such a transformation law is given by the electromagnetic field
that is transforming as a 2-form

Fé\f (z) dat A dx¥ = F;% (g(z)) dg(z)* A dg(x)” . (4..36)

As proven in [53], Theorem 3.1, GCI is equivalent to the rationality of
the (analytically continued) Wightman functions. Moreover ([51] Theo-

rem 9.1), the product of fields acting on the vacuum, ¢} (21) ... ¢4 (2,)]0),
are boundary values of analytic functions ¢4, (£21) ... ¢4, (£,)]0) defined

38 The superscript “M” will further mean that the corresponding objects are considered
over the Minkowski space (chart in M).
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for all sets of mutually nonisotropic points z1,..., 2, € T4 and the limit is
obtained for Im zgp1 € T_. This makes possible to consider the n—point
vacuum correlation functions of the theory as meromorphic sections of the

nth tensor power (over Mén) of a bundle. This bundle is defined over the

complex compactified Minkowski space M¢ by the cocycle (4..35) and is
called the field bundle. It is then naturally endowed with an action of the
conformal group Cc¢ via (bundle) automorphisms.

Remark 4..4. Trivializing the bundle over every affine chart on Mc¢, for
instance, in the z—coordinates (4..24), by the action of the corresponding
Abelian group of affine translations, t,, (z) (= e*7 (2)) = z+w, the action
of C¢c will take the form

(z=1{="} o ={oa}) — (9(2) . 7=(9) 6 = {r2(9)3¢5}) € CPx F (4..37)

where F' is the standard fibre and 7, (g) is the z—picture cocycle. This pro-
vides the general scheme for the passage from the GCI QF T over Minkowski
space to the theory over a complex affine chart which contains the forward
tube ¥4 (4..10) — see [51] Sect. 9. The fibre F' is the space of (classical)
field values and the coordinates ¢4 correspond to the collection of local
fields in the theory.

The (analytic) z-picture of a GCI QFT is obtained by transformation of

Minkowski space fields ¢% to the z—coordinates (4..24) as (operator valued)
sections of the field bundle:

a2 = (05 oM (61(2)  (r=ge@)  (4.39)

where g, is the transformation (4..24) viewed as an element of Cc. Differ-
ent normalization conventions in the x and z picture require an additional
numerical factor in (4..38). For instance, the canonical commutation rela-
tions yield an extra factor 27w in (4..38) for a free massless scalar field ¢,
the standard conventions for the 2—point function being

1
(0] @™ (21)M (22)]0) = : while
472 (:z122 + 20x92)

(0] 9(21)(22)[0) = i
12

(4..39)

The resulting theory is equivalent to the theory of vertex algebras ([5], [32],
[6], [19]) extended to higher dimensions (see [51]). We proceed to sum up
the properties of z-picture fields and of the more general vertexr operator
fields arising in their operator product expansion (OPE).

1) The state space V of the theory is a (pre-Hilbert) inner product space
carrying a (reducible) unitary vacuum representation U(g) of the conformal
group C, for which:



LECTURES ON ELLIPTIC FUNCTIONS AND MODULAR FORMS IN CFT 39

1la) the corresponding representation of the complex Lie algebra C¢ is such

that the spectrum of the U(1) generator H (4..30) belongs to {O, %, 1, %, . }
and has a finite degeneracy:
V= P V., (H-p)V,=0, dimV, <o, (4..40)

_nl
97075717---

each V, carrying a fully reducible representation of Spin (D) (generated
by Xag). Moreover, the central element —I of the subgroup Spin (D) is

represented on V, by (—1)*".

1b) The lowest energy space Vg is 1-dimensional: it is spanned by the
(normalized) vacuum vector|0), which is invariant under the full conformal
group C.

As a consequence (see [51], Sect. 7) the Lie subalgebra €y (4..33) of Cc has
locally finite action on V), i.e., every v € V belongs to a finite dimensional
subrepresentation of Cg. Moreover, the action of Cog can be integrated to
an action of the complex Euclidean group with dilations m (g) and the
function

T (9) == mo (t;(i) gtz) (4..41)

is rational in z with values in Endc V (the space endomorphisms of V) and
satisfies the cocycle property

T2 (9192) = Tty (91) 72 (92)  iff g1g2(2), g2(2) € CP. (4..42)

2) The fields ¢ (2) = {¢a (2)} (W (2) = {¢p (%)}, etc.) are represented by
infinite power series of the type

o(z) = Z Z (zQ)n inmy (2) 22 = Z 22, (4..43)

nezZ m=0 a=1

®{n,m} (2) being (in general, multicomponent) operator valued polynomial
in z which is homogeneous of degree m and harmonic,

D
m 0’
a=1""¢

and
¢{—n,m} (Z) v =20 (4..45)

foralm=20,1,...if n > N, € Z.
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3) Strong locality: The fields ¢, 1, ... are assumed to have Zy—parities pg,
Dy, - .- such that

1o {a (21) Py (22) — (—1)PoP¥ 4y (22) G (21)} = 0 (p12 = 25), (4..46)

for sufficiently large N.

In Minkowski space, the strong locality condition is implied by the Huy-
gens’3? principle and the Wightman positivity. Recall that the Huygens’
principle is a stronger form of the locality condition (4..7) stating that the
left hand side vanishes for all nonisotropic separations (z # 0). This is
a consequence of GCI [53] since, as we already mentioned, the mutually
nonizotropic pairs of points form a single orbit for the (connected) confor-
mal group C. Let us also note that the assumption that the field algebra
is Zg—graded, which underlies 3), fixes the commutation relations among
different fields thus excluding the so called “Klein transformations” (whose
role is discussed e. g. in [63]).

Strong locality implies an analogue of the Reeh—Schlieder theorem, the sep-
arating property of the vacuum, namely

Proposition 4..3.

(a) ([55], Proposition 3.2 (a).) The series ¢4 (2)|0) does not contain nega-
tive powers of z2.

(b) ([51], Theorem 3.1.) Ewery local field component ¢, (2) is uniquely de-
termined by the vector v, = ¢4 (0)|0).

(¢) ([51], Theorem 4.1 and Proposition 3.2.) For every vector v € V there
exists unique local filed Y (v, z) such thatY (v,0)]0) = v. Moreover, we
have

Y(v,2)|0) = Tw, 2T =2'T14+---4+2PTp. (4..47)
The part (¢) of the above proposition is the higher dimensional analogue
of the state field correspondence.
4) Covariance:

[Ta,Y (v,2)] = 8;; Y (v,2), (4..48)

[H,Y (v,2)] = z'%Y(v, 2)+Y (Hv,z), (4..49)
[(Xag, Y (v,2)] = za%Y(v,z) —zﬁ%Y(v, 2)
+Y (X587, 2), (4..50)

9 o, 9 o
[Co,Y (v,2)] = (2287 -2z z'&)Y(v,z)—Qz Y (Hv, z)

+22PY (Xpav,2) +Y (Cov, 2). (4..51)

39 The Dutch physicist, mathematician, and astronomer Christian Huygens (1629
1695) is the originator of the wave theory of light.
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If v € V is a minimal energy state in an irreducible representation of €
then Cqv = 0 (o = 1,...,D) (as C, plays role of a lowering operator:
HC,v = Co(H — 1)v); such vectors are called quasiprimary. Their lin-
ear span decomposes into irreducible representations of the maximal com-
pact subgroup K, each of them characterized by weights (d; Jlyeeosd %)
We assume that our basic fields ¢q, ¥, ..., correspond to such quasipri-

mary vectors so that the transformation laws (4..48)-(4..51) give rise to
K—induced representations of the conformal group C.

If v € V is an eigenvector of H with eigenvalue d, then Eq. (4..49) implies
that the field Y (v, z) has dimension d,:

[H,Y (v, 2)] = z-% Y (v, 2) + dy Y (v, 2) (Hv = dyv). (4..52)

It also follows from the correlation between the dimension and the spin in
the property la) and from the spin and statistics theorem that the Zs—
parity p, of v is related to its dimension by p, = 2d, mod 2; therefore

p’fg(vl’UQ){Y(vl,zl) Y (v, z2) — (1)1 %192 Y (g, 29) Y(vl,zl)} =0, (4..53)

where p (v1,v2) depends on the spin and dimensions of v; and vy while the

cocycle for Y (v, z) satisfies 7, (e2™Xe8) = (—1)24. (For a description of the
spinor representation of Spin(D,2) for any D — see Appendix C.)

5) Conjugation:

<v1 ’ Y (v+, z) Vg > = <Y (71'2*([)71 v, z*) U1 ‘ Vg > (4..54)
for every v, v1,v2 € V, where
z* = E_i (4..55)

is the z—picture conjugation (leaving invariant the real space (4..13)) and
1 is the element of C¢ representing the complex inversion

Rp (2)
I(2) := —2 R, (zl, ce zD) = (zl, B A zD) (4..56)
(I? is a central element of C while I does not belong to the real conformal
group).

The above properties also imply the Borcherds” OPE relation. The equality
Y(Ul, Zl) Y(UQ, Zz) “=7 Y(Y(Ul, 212) V2, ZQ) s (4..57)

is satisfied after applying some transformations to the formal power series
on both sides which are not defined on the corresponding series’ spaces
(see [51], Theorem 4.3). Moreover, the vector valued function

Y (v,21) Y (v2,22)|0) = Y (Y (v1, 212) v2, 22)|0)
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is analytic with respect to the Hilbert norm topology for |2Z| < |2£] < 1
and sufficiently small pis.

Proposition 4..4. Under the above assumptions the vacuum correlation
functions are (Euclidean invariant, homogeneous) rational functions of zy.

Proof. 1f we take vertex operators Y (vg,z) =: ¢x(2), k = 1,...,n, having
fixed dimensions dj then the strong locality (4..53) implies that for large
enough N € N the product

N
Fion(21, 0, 2) ::( 11 pl-j> (0] p1(21) - .- dn(20)]0)  (4..58)

1<i<j<n

Pij = 212] = (z — zj)z, is Zo symmetric under any permutation of the
factors within the vacuum expectation value. Energy positivity, on the
other hand, implies that (0| ¢1(z1) ... ¢n(2n)|0), and hence F1_ ,(z1,. .., 25)
do not contain negative powers of z2. It then follows from the symmetry
and the homogeneity of Fi._, that it is a polynomial in all zZ“ . Thus the
(Wightman) correlation functions are rational functions of the coordinate
differences. (See for more detail [51], [55]; an equivalent Minkowski space
argument based on the support properties of the Fourier transform of (the
x-space counterpart of) (4..58) is given in [53].) O

6) The concept of stress—energy tensor. The importance of assuming the
existence of a stress—energy tensor 1" along with the Wightman axioms in
a conformal field theory has been recognized long ago [45] (see also [44]).
It is simpler to introduce T in a GCI theory extended on compactified
Minkowski space. It is a rank two conserved symmetric traceless tensor
which will be written in the analytic picture in the form:

s (2.2

T Yov v

Its scale dimension is equal to the space-time dimension D. The conserva-
tion law reads:

0 o 0

—T, =0 — =

024, op(2) (8z 81))

Finally, the conformal Lie algebra generators should appear among its

modes (see (4..88)); in particular, the generators of the Lie algebra

u(1) x spin(D) of the maximal compact subgroup C of C can be expressed
by (finite) linear combinations of the zero modes of T'.

T(z;v) = Tap(z) v )T (z;v) = 0. (4..59)

T(z;v) = 0. (4..60)

4.4. Real compact picture fields. Gibbs states and the KMS
condition

The conjugation law (4..54) simplifies in the real compact picture in which

(¢, u) = e2™C p(e2™iCy,) (4..61)
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where d is the conformal dimension of ¢. The commutation relation (4..52)
of the z—picture fields with the conformal energy operator implies then

AT (¢ u) = (¢ + tyu) T, (4..62)

i.e., H appears as the translation generator in ¢ in this realization. (While
the z-picture fields correspond to the complex Euclidean invariant line
element dz? (4..25), the compact picture fields correspond to the real K-
invariant line element dz2/2z? = dx?/|w|?.) Since all dimensions of GCI
fields should be integer or half odd integer depending on their spin the cor-
responding compact picture fields are periodic or antiperiodic, respectively,

B¢+ 1u) = (—1)*¢(C,u) . (4..63)

The (anti)periodicity property (4..63) implies that ¢ has a Fourier series
expansion

Qb(C, u) = Z Z ¢Vm(u) 6_27ril/< (464)
ved+Zm=0

where ¢, (u) are operator valued homogeneous harmonic polynomials of
degree m restricted to the unit sphere (we leave it to the reader to find the
connection between the expansions (4..44) and (4..64)). Combined with
(4..62), this gives

[H, v (w)]=—voum(u) (& qH¢Vm(U) q_H:q_V¢Vm(U)» g <1). (4..65)
For a scalar field (of integer dimension) the hermiticity condition (4..54)

reads:
¢um(u)* = ¢—1/m(u) . (4..66)

We assume the existence of Gibbs 4 temperature states — i. e., the existence
of all traces of the type

try(AgH) for q=¢e*7, Im7T>0 (i.e |¢ <1) (4..67)

where A is any polynomial in the (local, GCI) fields (including A = 1) and
V is the space of finite energy states (dense in the Hilbert state space). We
then define the temperature mean of A by the standard relation:

<A>q = %try(AqH), Z(t) = try(g) Q2rImt = Z—;) (4..68)

thus identifying the imaginary part of 7 with the Planck’s energy quantum
divided by the absolute temperature. The parameter 7 of the upper half
plane $ thus appears in two guises: as a moduli labeling complex structures

40 Josiah Williard Gibbs (1839-1903) has published his last work “Elementary Princi-
ples in Statistical Mechanics developed with special reference to the Rational Foundations
of Thermodynamics” in 1902.
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on a torus (that are inequivalent on F(l)\ﬁ) and as (inverse) absolute

temperature.

For free fields the partition function Z(7) can, in fact, be computed given
the dimensions dy(n) and df(n) of 1-particle bosonic and fermionic states
of energy n and n — 1/2, respectively. The result is:

0 _1.ds(n)

L)
Z(t) = .

it (1 _ qn)db(n)

The mean thermal energy <H >q is given by the logarithmic derivative of
Z(7),

(4..69)

<H>q = mdi—@ = qdi; InZ (4..70)

so that for the generalized free field models we have

1

(H), = i 7ndb(n)nqn + i (n=3) ALY (4.71)

n=1 l_q n=1 1_’_qn7§

It has been established that the thermal (Gibbs) correlation functions are
finite linear combinations of a fixed set of elliptic functions in each of the
conformal time differences Crk+1; the coefficients that are (depending on
uy,) g-series whose convergence is conjectured (see [55] Theorem 3.5, where
we have been motivated by an intuitive argument of Zhu [72]).

Theorem 4..5. (see [55] Theorem 3.5 and Corollary 3.6) If the finite
temperature correlation functions of a set of Bose fields {¢q},

<¢1(C1a u1) - - dn(Cns Un) >q = % try {¢1(Clau1) oo On(Gny Un) qH} )
(4..72)

are meromorphic and symmetric (as meromorphic functions) with respect
to permutations of the factors ¢q, then the KMS condition (/28] [10])

<¢ (C27 UZ) 0 (Cna Un) ¢ (Cl + 7, U1)>q = <¢ (Clv ul) o (CTL) Un)>q (473)

implies that the functions (4..72) are elliptic with respect to the (n — 1)
independent differences (i1 = ¢ —Gy1 (i=1,...,n—1) of periods 1 and
T.

We shall verify that the Gibbs correlation functions of (generalized) free

fields are indeed symmetric elliptic functions of (;;41 thus confirming the
above conjecture.

It follows from the Huygens principle, established in [53], that all singular-
ities of correlation functions are poles for isotropic intervals

22, = 22t (cos 2mlap — cos 2mag) (= 0) (4..74)

a
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where 2may;, is the angle between the unit Euclidean D—vector u, and uy :
Uq - Up = COS 2T Q. (4..75)

Noting the relation
cos2m( — cos2mav = —2sin7(( + a)sin7(¢ — @) (4..76)
we deduce that the singularities of temperature means are poles in (g, for
(bt agy=n€eZ. (4..77)

The decomposition formula

1 1
SiIlTl'C+ SiIlTI'C, = Sin2ﬂ_a(COtg7TC+_COtgﬂ'C_) for Ci = C:l:a (478)

allows to separate the two poles arising in the vacuum correlation functions.

The Euler expansion for cotgw( and its fermionic counterpart for mlﬂ c
gives
N N
1 1 1 (="
tgm¢ = — i ! =— li . (4.79
cotg ¢ T NgnoonZ_N(C ) sint( 7 NgnoonZ_N (+n ( )

In the finite temperature 2—point correlators the corresponding Eisenstein-
Weierstrass type series (on the lattice Z 7 + 7Z) are expressed as linear
combinations of derivatives of both sides of (4..79) proportional to the func-
tions (2..15),

M N (_1)Nm+)\n
pZA(C,T) = ]\}im lim Z Z m, (4..80)

—00 N—oo

m=—M n=—N

koA=0,1,k=1,2,... (( =(4,(-) introduced in Sect. 2.

For a generalized free field ¢(¢,u) (= {¢a((,u)}) of (half)integer dimen-
sion d, characterized by its 2—point vacuum function, the Gibbs correlation
functions can be also expressed in terms of the 2—point Wightman function.
The result looks very simple ([55], Theorem 4.1):

(6(CLu) dGau) ), = D (1P W (ot hriun,uz)
k=—0c0
W (Crojur, uz) == (0] ¢(C1,ur) ¢(Ca, u2)|0) (4..81)

To derive (4..81) one combines the KMS condition with the canonical
(anti)commutation relations. Using the fact the canonical (anti)commutator
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is a c-number (i.e., proportional to the unit operator), equal to its vacuum
expectation value (and that (1 >q = 1), we find the following relation for
the thermal mean value of products of ¢—modes:

(Duims (1) Gpyimg (42)), = (=1 (D, (12) Gy (1)),
= 61, (O] (Gurms (1) Dy (112) (4..82)
~(=1)*G 1y (42) Gorm, (1)) ]0) 5
on the other hand, the KMS condition together with (4..65) gives
(Gusina (42) Sy (1)), = (Durmy (1) 47 By (w2) 4™,
= 7 {Pumy (1) Doy, (u2)), , (4..83)

and therefore,

(Grrns (1) g (12)), = 2722 (0] By (11) By, (02)[0)

L= (=1)*Ig"
0—vy,1,q" b3
+ T- (-1)2g% (O] (@up1my (u2) O—vigmy (u1)]0) (4..84)
where the first term is nonzero for v; = —vy > 0 (|¢"| < 1) while the
second is nonzero for v = —v1 > 0 (|¢"2| < 1). Further, we expand the

1

W in the I‘lght hand side Of (484) m ‘q’ < 1, as

prefactors

in Exercise 2.11, and take the corresponding sum (4..64) over the modes

which gives (4..81) since, for instance, the term ((—I)qu”l)k multiplying

the vacuum expectation in the fist term (4..84) gives (after summing in v;)
the expression (—1)** W (Cig + k7; w1, ug) (k=0,1,...).

To illustrate the conclusions of Theorem 4.5 in the case of a two point
bosonic thermal correlation function let us choose as a basis of “bosonic”

elliptic functions those of the generalized free scalar fields of dimension
k=1,2,...

o0 2k

7T
Pe(Grosur,ug;7) == Y

W sin®r (¢4 4n7) sin®m (C_4n7)

(4..85)

(Cx+ = (12 £, cos2ma = uy - uz). Then a corollary of Theorem 4.5 states
that for any two GCI bosonic fields ¢ and v which obey the Huygens’
principle (4..46) with some N € N the Gibbs two point function can be
presented as

N

<q§(§1,u1)w(@,u2)>q = Z Fy(ur, u2; 7) Pr (Cro; ut, ug; 7) (4..86)

k=1
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whose coefficients Fy(u1,ug; T) are in general g-series. We will see in Sect. 6
that these coefficients carry an additional physical information that may
recover quantities like the mean thermal energy.

Remark 4..5. The compact picture stress-energy tensor has a mode expan-
sion of the form

T(C,u;v) = 2PTC T (2 0) = Z Z T (u;v) €276 (4..87)
n=—-oom=0

where T, (u; v) are operator valued, separately homogeneous and harmonic
polynomials in v and v of degrees m and 2, respectively. Among all such
polynomials there is exactly one, up to proportionality, which is SO(D)—

invariant: (u - v)2 — % u?v2. Then the conformal hamiltonian corresponds

to the operator coefficient to this polynomial in the zero-mode part,

To2(u;v) = No H ((u- v)* — %u27}2) + Z To2:0 O (u;v),  (4..88)

where Ny = %, if the volume of the unite (D — 1)-sphere is normalized
to one, and K (u;v) is a basis in the SO(D)-nonscalar space. It follows
from the K—invariance of the thermal expectation values that

<T(C,u;v)>q = Np <H>q ((u-v)2 - %u2v2) . (4..89)

5. Chiral fields in two dimensions

The simplest, long known example of a quantum field theory with elliptic
correlation functions is provided by 2-dimensional (2D) (Euclidean) CFT
on a torus or equivalently, by finite temperature 2D CF'T on compactified
Minkowski space M (for a rigorous discussion — see [72]). We adopt the
latter point of view since it is the one that extends to higher dimensions.

The variables (1 (4..78) can be viewed for D = 2 as global coordinates

on (the universal covering of) M. Conserved currents and higher rank
tensors (including the stress—energy tensor) split into chiral components
depending on one of these variables. (This is simpler to derive in Minkowski
space coordinates — see [23].) The vertex algebra corresponding to the
full 2D theory then usually splits into tensor product of two copies of a
vertex algebra over the real line satisfying the postulates of Sect. 4.3 with
D = 1. A GCI chiral field ¢(z) in this case is a formal Laurent series in a
single complex variable z (one of the compactified light ray variables z; or
z_ whose physical values belong to the circle S!), and the strong locality
condition (4..46) for a pair of hermitian conjugate fields of dimension d
assumes the form

A5 {3 (1) 6 (22) = (-9 (22) $ (=)} = 0. (5..1)
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5.1. U(1l) current, stress energy tensor, and the free Weyl field

A conformal U(1) current j,(x) in 2D behaves as the gradient of a (dimen-
sionless) free massless scalar field. Hence both its divergence and its curl
vanish implying its splitting into chiral components:

Ou* =0=00j1 —djo = (D) +£5°)=0. (5.2)

Similarly, the symmetry and tracelessness of the conserved stress—energy
tensor imply

(Do £ 0 (TP +T))=0. (5..3)

We leave it to the reader to verify, on the other hand, that for z given by
(4..23) with D = 2, 2 = x and the inverse transformation given, in general,
by

22 0 122
_ S B el A 5.4
:c 1+ 22+ 2zp v 1422+ 2zp (5-4)
setting in the D = 2 case zo + iz = 2™+ we find
2%+ 2! =tannly (for D=2, wu = (sin27a,cos2ra)). (5..5)

Thus the “left movers” compact picture current and stress—energy tensor
are functions of a single chiral variable (_:

JE) = 5+, T(C) = S (THT) = (BT T (5.6)

The same is valid for the Weyl components of a free D = 2 Dirac field ¥(z)
(and its conjugate V). Introducing real off-diagonal 2D y—matrices

o8, 0 (20).
\I’(a:)—(gl), PO = 0= (@ + 00y, W)= (01,9)) (5.7)

we find

*

V(1)U = U () () (5.8)

N =

JC) = ST+ =

(¥(2) == W(z)0)-
Omitting from now on the arrow sign on the left mover’s Weyl field ¥(()
(= U1(¢)) we obtain the chiral field ¥(¢) as a 1-component complex field

which, together with its conjugate CIkl, can be written in the compact picture

form @ o
i _ i ir(1—2n)¢ * _
() = En no1€ ;o (W) =0 (5..9)

1
n—3 2
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(here ¢ plays the role of a (compactified, chiral) light cone variable, say
(— of (4..78)). The ¥—modes obey the canonical anticommutation relations
and their index labels the energy they carry,

[Fop By =0 [Py ¥y ] 0,
[LO,\I/%_H} = (n— %)\Ifl_n, (5..10)
where Lg stands for the Virasoro energy operator,
> 1.« ”
Lo :nz::l(”_ 5) (\I’%,n‘l’n,% +‘1’%,n\11n,%) , (5..11)

the counterpart of H in D =1 (in fact, the full 2D conformal hamiltonian

is a sum of chiral energy operators, H = Lg + Lo, see, e.g., [16] or [23]).
Energy positivity implies that the negative frequency modes annihilate the
vacuum:

*)
ﬁjn% 0)=0 for n=1,2,.... (5..12)
Then the vacuum 2-point correlation function is
* 1
G v 0) = —. 5..13
01w () FE)I0) = 5 (5.13)

If we formally replace the normal product sum in (5..11) by the divergent
sum over all integer n,

~ 1. x *
LO = Z( - i)qlé—n\lln—% = (n_ 5)\11%—71 n—%
nel nez
1 o0
=Lo—5 21(271 —1), (5..14)
n—=

the last infinite term being understood by (—function regularization:

S (2n—1) “=" Yn— Y 2n “=" —((~1), we will obtain*!
n=1 n=1 n=1
=~ 1 B 1 ‘ _ D
Ly = Lo+ 2(( 1) = Ly 51 (as ¢(1—2k) = ok ). (5..15)

41 Note that the passage from Lo to Eo can be interpreted as the result of the non
Mobius transformation z — ¢ under which Lo acquires a Schwarz derivative term: Lo =
" ” 2
Lo —l—% {z,2miC} where {z, w} := ZZ,((;U)) —% (i/((g))) . (Hermann Amandus Schwarz,
1843-1921 introduces his derivative in 1872.)
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The calculations (4..82)—(4..84) in this case give

_1 X x *
<\Ijm—% qn 2 \P%—n >q = <\P%—n\pm—% >q = Omn — <\Ijm—%qj%—n >q ’
% 0.
<\11m7%\1:%7n>q = ﬁ (5..16)

Inserting (5..16) into the Gibbs 2-point function of the local Fermi field
(5..9) we find (see Exercises 2.11 and 3.1, and F5(7) = 2G2(7)—G2 <T —2'— 1>
(3..17))

1

* 1 o qn_§
<‘I’(§1)‘IJ (C2)>q = —+ 22'2 — sin(2n—1)w(1o =
2i sin w(19 n=11+¢""2
_ b -
= —p1 (G2, 7) (5..17)
211

(see Exercise 2.11 and the derivation of (4..81)). The temperature mean
value of the chiral energy (5..11) is computed by Eq. (4..71) with dy(n) =0
and d¢(n) =1+ 1 =2 (for the two charges):

LIPS Y S s DL A Sy R
(Lo), = 24+2nzl< 2>1+qn_% By(1) (= 2G5 (7). (5.18)

Exercise 5..1. Verify the relation (5..18) for Fy(7) defined by Eq. (3..17).
1

(Hint: use the relation ¢ (TTH) = —q% for q% = q(7)2 = "™ and cancel
the terms with even n in the expansion of % Go (TTH) with the expansion

of Ga(7).)

According to Sect. 3.2 (see Exercise 3.1), the free energy F» is a modular
form of weight two and level I'y.

For H := Ly we can integrate and exponentiate (4..70) (5..18) with the

result
o

Z(r) = ¢ % IIa +q"7)2. (5..19)

n=1

It follows from the I'y invariance of the 1-form Fy(7)d7 that the partition
function (5..19) is I'y invariant. (It is, sure, not a modular form since it is
not analytic for ¢ = 0.) This invariance property of the partition function
is peculiar for space-time dimension D = 2 since the leading term of the
energy mean value has weight D and only for D = 2 the fact, that Gp(7) is
a modular form of weight D, implies that the 1-form Gp(7)dr is invariant.
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Remark 5..1. Minkowski space of dimension D = 8n + 2, n = 0,1,...
is smgled out by the property of admitting Majorana- Weyl spinors (i. e.

955 —component real semispinors). Thus, the Majorana-Weyl chiral field is

a hermitian field ¥(¢) obeying (5..9) with ¥ = \I*J, and similar results can be
obtained in this case, too. In particular, the free energy is Fr(7) = Fa(7)/2

and the partition function is Z(7) := Z(T)%, the partition function for the
Neveu-Schwarz sector of the chiral Ising model (hence the index I on F and
Z). Note that Fr and Zj are transformed under the modular transformation
ST to the free energy and partition function of the Ramond sector

Fir) = (STE)() = —Fy (1- 3) — Gy(7) — 2Ga(27),

7'2 T

g2 ﬁ (5..20)

The Neveu-Schwarz 0—point energy Eyg is the g-independent term —1/48
in F7 and it is uniquely determined by the modular covariance of F; which
thus selects Weyl symmetrization (accompanied by (—function regulariza-
tion) rather than the normal ordering. The O—point energy Fr in the Ra-
mond sector differs from Eyg by the minimal conformal weight (eigenvalue
of Lp) in that sector, Ag. It is calculated from (3..13) and (5..20) with the
result

By 1
E :_<__):—:E A -
R 1 Y NS+ AR
1 1 1
A :_ - = .21
R=9718 = 16 (5.:21)

the magnetization field of the 2—dimensional Ising model has (left, right)
conformal weight (1/16,1/16) — i. e., dimension 1/8 and “spin” 0.

The knowledge of the energy eigenvalues does not suffice to label the states
of the complex Weyl field. We also need the charge operator which appears
as the zero mode of a composite field, the current

T(Q) = 5 190, W(Q)] =W W)= Y he ™™ (5.2
where -
Jo = Z(\Ill_ \Ijn % - \I[% n\IIZ_l)a
n=l ° : (5..23)
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The current modes are characterized by their commutation relations

[ H(©] =2 (0), W (O) =~ U (),
[Ty o] = 10— - (5..24)

The conformal energy (5..14) can be reexpressed in terms of the current
modes — providing a special case of the so called Sugawara formula:

~ 1 1
Lo =+ —ndn =1L -¢(=1),
0 5 En J_nd, 0+2C( )
- (5..25)
L —1J2+ZJ J, 1<(—1)——i
07 970 LT g T

While the energy is coupled in the partition function with the (complex-
ified) inverse temperature 7 we shall express the charge distribution by a
parameter p called the chemical potential introducing the generalized par-
tition function of Neveu—-Schwarz sector

Zns (7, p) = try (qLOq,;’O) g =€ (5..26)

Remark 5..2. The complex Weyl field model can be viewed as “the square
of the chiral Ising model” of Remark 5.1. If we split ¥ into its real and

imaginary parts v2¥ (¢) = ¥!(¢) — i¥? (¢), then we shall have (setting
(T (¢1) 2 (¢2))o = 0)

(U ()T (G))o = (T ()T (@) = (W2 ()2 (G)o,  (5.27)

the energy of the charged field (5..14) being twice the energy of the Ising
model.

Exercise 5..2. Set (A),,, = try (quoqjo); use the generalized

Z(1,p)
KMS condition (ABr ,)q, = (BA)g, for qLOq/{0 B = By ,,q*0¢” to prove
(W 0t >W:5m—"1, (W, >W:5m—"l, (5..28)
n72 2_m ’ 1 + q,uqn—g TL—E §7m ’ 1 + qulqm—i
6i7rm(2u+ﬁ)

2mi (@ () (G2)), = P (G2 o) = (5..29)

T
sin (i +%: sin w(C12 + m7)
(cf. Appendix A).
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Inserting (5..28) into the mean value of Lo (5..14), we find the following
generalization of (5..18):

00 _ _1 _1
~ 1 1 q 1qn 2 q qn 2
(Lo)gu = _ﬂJFZ("_g)( r ———1 + = — | - (5..30)

=1 I1+quq" 2 1+4quq" >

Integrating and exponentating the relation

0 19

(Lolgyu = 5—=7-log Z (7, ) = —qz (5..31)

which generalizes (4..70) we find

lo:o[ (1 + qllqn_%) (1 + quq”‘%) : (5..32)

us-l"‘

Zns (T, )

Exercise 5..3. Use (5..25) and the KMS condition to derive the expression

[e.o]

Zns (1, 1) = 1975#(6’7)7) =g II a-am qu ¢ (5.33)
m=1

(9(= Yoo)) being the Riemann theta function (3..29); 7, the Dedekind 7—
function of (3..20)).

Comparison between (5..32) and (5..33) yields a nontrivial identity called
the Jacobi triple product formula.

We can repeat the study of modular properties of the chiral Ising model
(Remark 5.1) for the model at hand of a complex Weyl field with the
following results:

i 1
ZNs(T+ 1, u) = e 12 Zng <77 M+2> ,
(5..34)

here

Zp (1, p) = q12 ( +q5> H (T+q,'q") (1 + quq™) (5..35)

n=1

where Zp is the partition function of the Ramond sector characterized by
charge and conformal weight of its lowest energy state

1 1
er =+3, Ap= e%:§. (5..36)

N | =
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We conclude this section with a discussion of the possibility to reconstruct
the Gibbs mean energy from the thermal 2—-point functions. Let 1¢4(z) and

1[5 4(%) be a pair of hermitian conjugate complex chiral fields of (half)integer
dimension d in the analytic picture. Let us assume that the stress—energy

tensor T'(z) contributes to the OPE of dkdzbd:

1 /% " N, N
> <¢d (21) Ya (22) + Ya (21) Py (22)) = ot s T(Voi22) + ... =
2 12 12
= % (1 + %d 2o T(y/2122) + O(zﬁ)) , (5..37)
12

where the Ward identities (property 7) of Sect. 4.3 imply that N; = 2?d N,

c = 2215 (0] T(21)T(22)|0) being the Virasoro central charge (see [23],
Sect. 3.5). It is important for the validity of (5..37) that the product
224 (ﬁd(zl) Ya(z2) + Ya(z1) @;d(ZQ)) is a symmetric dimensionless bilocal
field of (21, 22) for both even and odd 2d. Passing to the compact picture
fields, ¥a(Cr) = 2™k ehg(21), T(Cr) = T (21), 21, = ™% (k = 1,2)
Eq. (5..38) takes the form

% (ﬁd (C1) P (C2) +a (C1) ¥g (C2)> = (5..38)
No G+ ¢

2 . ,
= ——— 1+ — (2isin7 T
(2isin7r(12)d ( ¢ ( Giz) ( 2

0) + O(sin* 71'{12)) .

This implies the following Laurent expansions in sinnw(is and (15 of the
(symmetric under charge conjugation) thermal 2—point function:

% (g (C1) Wa (C2) + ¥a () g (¢2)), = (5..39)
N 2d . .
= m (1 +— <Lo>q (2i sinw¢12)? + O(sin® 7TC12)>
N 2d ,~ , _ .
- W <1 * c <L0>q (27TZ<12)2 + O((fz)) , Lo:=1Lo— i .

(We have already encountered a Laurent expansion of this type in Exer-
cise 3.1 for the case of our basic elliptic functions.) In the case of the
complex Weyl field we have d = 1/2, ¢ = 1 and Ny = 1 (N7 = 1) repro-

duces the result for <Z0>q (cp. with (5..15) and (5..18)). This gives an

interpretation of the passage Lo — Ly as an exchange, sin w(i2 — (12, of
the expansion variable which thus makes all coefficients modular invariant
if the left hand side is. We can also write (5..39) as an expansion in homo-
geneous elliptic functions: for 2d > 3 the stress—energy tensor 7'(z) occurs
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in the singular part of the OPE of ¢ and then (5..39) implies

[a-3]
%<$d(€1)¢d@2) +a(C1) Jd(@»q = Z Cl Pd—ok(Ci2,T) (5..40)

k=0
= (2mi) I No p§ (Gio, 7) + (278) 2N (L), o (Gra,T) +

for some constants Cy (Co = (2mi) 29Ny, C1 = (27i) 242Ny <E0>q, etc.)
and K := 2d mod2 = 0,1 (this follows from the fact that the singular part
of each pi*((12,7) contains only the term o).

5.2. Lattice vertex algebras

An important class of vertex algebras involved as building blocks in most
known examples of 2D CFT is based on the theory of affine Kac—Moody
algebras associated with connected compact Lie groups (see [32] and Sect. 1
of [35]). Each such group is reductive: it can be written as the direct
product of a (rank r) Abelian group G = U(1)" and a semi-simple factor
which can be (and often are) treated separately. We shall briefly review
here the simpler case of a lattice vertex algebra corresponding to G (or
rather, to the affine extension of its Lie algebra g = u(1)®"). The case of
nonabelian current algebra has been surveyed by both mathematicians —
including Kac’s books [31], [32], [34] and physicist [26], [23], [16]).

We will construct first the associative algebra A generated by the fields’
modes together with its vacuum representation }V which will be the linear
space of the lattice vertex algebra. Let h be an r-dimensional real vector
space: denote by hc := b + i h its complexification. We assume that b is
endowed with an Euclidean scalar product (h ‘ n ) € R for h,h' € b and
with a rank r = dimb lattice @ C b (an additive subgroup) such that

(a ‘ ﬁ) € Z for all a, 8 € Q. Introduce the Heisenberg current Lie algebra

~

hc with generators h, for n € Z and h € h¢ such that

[ Bl] = 16— (R 1) (Ah+ph')y = Ny +puhly, A€ C).  (5.41)

Its universal enveloping algebra Ay contains three subalgebras S (H((CO ’i)),
generated by hg and by h, for Fn = 1,2,... (h € h¢), respectively. Note

that each of § (/h\((co ’i)) is a commutative algebra isomorphic to the algebra

of symmetric polynomials over the underlying vector spaces and S (B((CO )) is
central. Moreover, every element A in Ay can be represented as a (finite)
sum of normal order products: h}” . hﬁm with nq < --- < nyy, so that we
have the isomorphism of vector spaces

Ay = SO @ SOY) @ SHE). (5.42)
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For every a belonging to the lattice (Q we will now define the Fock space
representation V, generated by a vector |a) and the relations

hnloy =0, holay = (h|a)|e) (n=1,2,..., hebhe). (5..43)

In other words, V, is isomorphic to the quotient of Ay by the left ideal
generated by ({ho — (h|a) : h € bc} @ E(E;)); so that it is isomorphic, as

a vector space, to the symmetric subalgebra S (Egr) ). The vector space of
the lattice vertex algebra is defined as the sum of all Fock spaces V,:

V=& Va. (5..44)
ae@

Clearly, the algebra Ay, which is a part of the full algebra A, acts on V' as
the direct sum of its actions on V,,. To complete the definition of the algebra
A we further introduce intertwining operators E* on V for all o, 3 € Q,
defined by

EO‘(Vﬁ) g VO""‘/@ ’ [hnan] = On,0 (h ’ a) Ea,
E*|B) = e(o, B) |a+ B) ,

where h € b, n € Z and €(w, 8) are U(1)-factors 2. Egs. (5..45) completely
determine E“ since the Apy-representations V, are irreducible. We will
require that the products E*EP are proportional to E*T# E° = I, and
e(a,0) = 1 (ie., EY|0) = |a)). Computing then E*ES|0) and E*+5|0)
by (5..45) one finds

(5..45)

E*EP = ¢(a,B) E“TP. (5..46)

The algebra A is defined as the algebra generated by all £ and Ay. The
associativity implies the 2—cocycle relation:

(o, B)e(a+B,7) = e(, B+7)e(B,7) (8,7 € Q). (5..47)

The gauge transformation E® — n(a)E® (o) — n(a)la), n(0) = 1), will
give rise to a change of the 2-cocycle € by a coboundary,

() n(3)
n(a+3)

There are further restrictions on €(«, ) coming from the physical require-
ments of locality and unitarity. The first one means that we should define
a vertex algebra structure on the space V such that the field modes span
the algebra A. By the Kac’s existence theorem ([32], Chapt. 4) it is enough
to introduce a system of mutually local fields whose modes generate A.
Note that 4 is isomorphic, as a vector space, to the tensor product Ay

e(a, B) — e(a, B). (5..48)

42 e(a, B) are, in general, nonzero complex numbers but in view of the hermitian struc-
ture which we will further define they can be restricted to U(1)-factors.
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® Spanc{E® : a € Q} due to the relations (5..45) and (5..46). A system
of mutually local fields whose modes generate Ay is given by the Abelian
currents

h(z) = Y(h,z) = > hyz ™" for h€be, (5..49)
nez

which obey the canonical commutation relations

[h(z), W (w)] = (h|h) Oub(z—w), 6(z—w) =) 2'w ™" (5.50)

neL

in accord to (5..41). The fields whose modes will contain the operators E¢
are defined as follows:

—_— Z
Yo(2) = Y(EY 2) := E*2%e n>0 en>0 (5..51)

where a,, are the modes in the E corresponding to an element o € @ C b.
Note that if we introduce the “integral” field [ a(z) by

/a(z) = — %z_” = Z a?;nz" (5..52)

n#0 n#0

then (5..51) is, by definition the Wick normal ordered exponent
Yo(z) = Bz )@, (5..53)
One derives the commutation relations
(h(=), Ya(w)] = (h|a) 6(: - w) (5..54)
and the operator product expansion formula
Ya(2)Ys(w) = e(av, B) (2 — w) 1D petB00bo o [al2) + [ Bw). (5. 55)
(Eq. (5..55) follows from the Weyl property of the normal ordered exponents
oAR). . Bw). — (AR)BW)), . A(2)+B(w), (5..56)

for every two fields A(z) and B(w) whose modes belong to a Heisenberg
Lie algebra, ( A(z)B(w) ), standing for their Wick contraction. Now the
locality assumes that there exists a Zo—factor (—1)P*, p, = 0, 1, such that

(2 = )% (Ya(2) Ya(w) = (~1)P°P Ys(w)Ya(2)) = 0 (5.57)
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for Nag > 0 (in fact, for N = (Ja|* + |8]*)/2) and this combined with (5..56)
implies that

Do = ]a\Q mod?2 (|laf:= (a ‘ a)),
(5..58)

s 3) e LB (o) Hallo?
(a, B) : (7. ) (-1) ,

Note that the gauge transformations (5..48) leave invariant the statistical
factor s(a, 3). The stress—energy tensor of the lattice vertex algebra is
defined by the sum of normal products

T(z) = % S ()0 (2): (5..59)
j=1
CA(z)a(z):= Z()\,nz”_la(z) + a(z) Ap—127"))
n>0

where {a/ };:1 is basis of the lattice @ and {A;}}_, is the dual basis

(A | eF) = 65 (5..60)
spanning the dual lattice QQ*, which consists of all A € R” such that ()\ | a) €
Z for all a € Q. Eq. (5..59) represents the so called “Sugawara formula”

(for a review and references see [23]). The modes L,, in the Laurent expan-
sion of T, which are expressed in terms of the current modes,

T(z) = > Lpz "2, L, = % ZZ Njmn—mad, . (5..61)

nez j=1m

generate the Virasoro algebra, characterized by the commutation relations

(L, Lyn] = (0 — m) Lysm + % (n® = 1) p—ms [ Lm] = 0. (5..62)
We infer that
d 1, ,
Lo, Yo(2)] = (2— + = , .
0 Yolo)] = (+45 + 5 lal?) (5.63)

i.e., the conformal dimension of Y, is dy = |a|*/2 (in accord with the value
of p, in (5..58) and the spin-dimension connection (4..53)).

We proceed to define a hermitian structure on a lattice vertex algebra.
The fields h(z) having an interpretation of currents whose zero modes hg
correspond to real charges (spanning ) are, hence, assumed hermitian:

(hn)* = h_p (n€Z). (5..64)
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In particular, the hermiticity of hg together with the commutation relations
(5..45) will require that (E%*)" = o(a)E~ but we can make all o(a) equal
to 1 by a suitable gauge transformation E* — n(a)E®; so that we have

(E*)" = E~°. (5..65)

This completely determines the hermitian structure on V. It imposes the
following additional properties on the 2-cocycle:

e(—p,—a) =€, ), ela,—a) = 1 (5..66)

(the latter formula uses the fact that ¢ E=%* = E* (EY)*(= (o, —a) Iy)
is a positive operator). To summarize, the 2-cocycle e satisfies the following
conditions: (1) e (a, ) € U(1); (2) e(,0) = €(0,) = 1; (3) Eq. (5..47);
(4) Eq. (5..58); and (5) Eq. (5..66). A nontrivial example of such cocy-
cle can be given using an ordering in the lattice ). An equivalent but
different choice (with the same symmetry factor (5..58)) is made in [2]:
€(a, B) is assumed real, € : @ x Q — {£1}, and bimultiplicative (but it
does not satisfy the above condition (5), and the conjugation law reads
(B*)" = e(a, —a)LE~).

The irreducible positive energy (local field) representations of the
lattice vertex algebra are labeled by elements of the dual lattice
Q" (={\eh: ()\ ‘ a) € Z for all & € @Q}) modulo @; in other words, they
are in one-to—one correspondence with the elements of the finite Abelian
group Q*/Q. The character of a representation of weight A € Q* is given
by (1 €b)

1 ,
) =7 eS ) = oo 30ttt s.6m)
OGP
(where 7 is the Dedekind n-function (3..20), ¢ = €2™7). If the lattice Q is

even (i.e. if the norm square, |a|?, of any a € Q is an even integer) then
{x(7, 1)} span a finite dimensional representation of I'(1):

27ri<‘>\2‘2 i)
X)\(T + 17”) = ¢ X)\(Tv :u)
il C1opy x10|—5 o—2mi(A|N)
€ T XA ’ - Z ‘Q /Q‘ € X)\'(Tvlj/)v
e /Q

where |Q*/Q)| is the number of elements of (the finite group) Q*/Q. (For
odd lattices {x,} span a representation of the index three subgroup I'y (2..59)
of I'(1).)
The case of the (even) self-dual lattice Q = Eg (= Q%) is particularly
interesting (see [49], [33]); we have a single modular invariant character,
X0, in this case

(5..68)

XE5(7,0) = 0L (7,0) = ()]s (5..69)

1
[n(r)]°
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where j(7) is the absolute invariant (3..27). We have, in particular,

or(r,0) = Y ¢20h) = % [900(0, 7)84 910(0, )%+ 991 (0, 7)°]
YEEs
= 240G4(7). (5..70)

Remark 5..3. A lattice @ is self dual iff it is unimodular, i.e. iff the volume
of its fundamental cell (defined as the square root of the absolute value of
the determinant of the matrix of inner products of basis vectors (the Gram
determinant) of any given basis of ) is one. Even unimodular lattices
only exist in inner products spaces of signature divisible by 8 (see [49]
Theorem 5.1). Moreover, even unimodular lattices with indefinite inner
product (i.e. with a non-degenerate symmetric bilinear form such that
there exist vectors of positive and negative square lengths) are determined
up to isomorphism by their rank and signature ([49] Theorem 5.3). In
particular, there are unique (isomorphism classes of) even self-dual lattices
of type (25,1) and (9, 1) corresponding to bosonic and super-string theories,
respectively. This is not true for lattices equipped with positive definite
(integral) bilinear form. For instance, there are two non-isomorphic positive
definite even unimodular lattices of rank 16: I'1g (having a basis of vectors of
length squares 2 and 4 — see [49] Lemma 6.5) and Fg® Ejg; there are 24 such
lattices of rank 24. By contrast, Eg is the unique (up to isomorphism) even
unimodular lattice of signature (8,0). A canonical basis in Eg is given by
the roots a1, . .., ag whose scalar products are given by the Cartan matriz:
(v | o) = ¢ij = Cji, Cii = 2, €58 = Ciig1 = —1(= ¢iq1q) for i = 1,...,6,
cij = 0 otherwise. The reader will find more information about the Eg
lattice, its automorphism group, and the associated Lie algebra e.g. in [9]
and in [31], Chapters 4 and 6.

5.3. The N = 2 superconformal model

The N = 2 (extended) superconformal model [8] considered as a vertex
algebra (in the sense of [32]) is generated by a pair of conjugate to each

other local Fermi fields of dimension 5
GF(Q) = Y, Gre ™, [G,Gs], =0 for e=+. (5.71)
pEZ+L

Regarded as an (infinite dimensional) Lie superalgebra, the N = 2 extended
super—Virasoro algebra, SV (2), is spanned by G*, a U (1) current .J, the
stress—energy tensor T' (of modes L) and a central element c. The non—
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trivial (anti) commutation relations among their modes read:

[Gi_l,GT_m] =2Lp-mEtmm+m—1)Jp_m+ gn (n—1)dpm ,
2 2

+
[Jn7 Jm] - gnén,—my [Jna Gf] - qu:—lL:.;_pa [Jn7 Lm] - an-‘,—mv
mn
[Ln, G5] = (5 - p) Gvirp’
(L, Lon] = (0 — 1) Loy + ~— (0 = 1) 6 - (5..72)

12

Applying the KMS condition and using the first equation (5..72) and
<J0>q = 0, we find the following non—zero Gibbs average of products of

GF-modes

_1 2
_ q" 2 c 1 ~
GOy = T8 { 3 <”‘ 5) +<2L0>q}’

~ C
LOZLQ—ﬂ.

(5..73)

This gives the following g—expansion of the 2-point thermal correlation
function

(GT(Q) G (@), =
2 e

_ %{ 3+cos27r§123 o Z (n—3)"q" 2

3 4 (2isin7(12) 1 l1+4q" 2

1 X g3
. q .

L — +14 _ 2n—1 . .74
+< 0>‘1{isin7r§12+ ZZ; — sin (2n )7r§12} (5..74)
It can be expressed (as in the example of the Weyl field) in terms of

il (Cia, 7) (2..15):

ic

(GT ()G (@), = 19,3 p3 (G2, 7) — % <zo>q pit (Cia, 7). (5..75)

In this case the Laurent expansion of type (5..39) takes the form:

ic
1273

(TG (@), = (o - % (Lo), ¢z + - (5..76)

As we are no longer dealing with a free field theory the energy mean <Eo>q
is not determined from the thermal 2-point function of G*. It can be
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computed, however, using our knowledge of the representation theory of
SV (2) (see [8]).

The Neveu—Schwarz sector of positive energy unitary irreducible represen-
tations (UIR) of SV (2) are described as follows. For each of the discrete
set of values of the central charge,

6
C:Ck:?)*m, k:1,2,...7 (577)

there are (k?f) UIR (k;1, m) with representation spaces

Hlm(:H(k)), 1=0,1,....,k, 3(-m)=0,1,...,1

Im

(5..78)
(m=—-1,-1+2,...,1).

They are characterized by a charge e,, and a lowest weight Ay, given by

m L(1+2) —m?
o= Ay = T a
kv 1(k+2) so tha

e2milJo—em) _ 1] Him = 0 = [e%"(LO—Alm) - 1] Him . (5..79)

Let Xim (7, k) be the (restricted) character of the UIR (k;l, m):

Xim (T, 113 k) = try,,, (C]LOC];{O) (qM — 627”“)’

Xim (Ta k) = Xilm (7-7 07 k) .

(5..80)

Proposition 5..1. The character (5..80) span a (k;f) dimensional repre-

sentation of the modular group T'o(C I' (1)) (2..59). They are, in particular,
eigenvectors of T?,

T? Xim (7, k) = Xim (T +2, k) = 2™ Bm=k)y (7 k) . (5..81)

Each “finite ray” {77X00 (1, k) : n e C, n*ht2) = 1} is left invariant by the
finite index subgroup F((,k) of Ty such that

Ty D)T) := Ty (2k +4)NTy > T (2k +4) (5..82)

where T'(N) and Tg (N) are defined by (2..60) and (2..61), respectively.

The group Fék) is generated by T?, ST?*T%S and the central element S* of
r'(1).
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Sketch of the proof. We shall first prove that T2¢t* acts as a multiple of
the unit operator in the (finite dimensional) space spanned by Ym:

TZ(HZ)sz (1, k) = em{l(lH)_mQ—g} Xim (T, k) - (5..83)

This follows from the explicit form of ¢ (5..77) and Ay, (5..79), and from

the observation that [ (I +2) — m? is even in the range (5..78). It implies

that each xq,, is an eigenvector of Fék). One can prove using [25] that the

characters (5..80) transform among themselves under the modular inversion
according to the law Xy (—=1/7, k) = > SimrrmiXvme (7, k) with

U'm/
2 (RN E D)
I = k+2 .84
Simim k+2sm( 2 e Rt (5..84)

O

In order to get a glimpse of the rich variety of physical models captured
by the above series of representations of SV (2) we shall briefly discuss the
first two of them, corresponding to k =1, 2.

The £k = 1 model is an example of an one dimensional lattice current

algebra (with Q = Z+/3) considered in Sect. 5.2. It can be viewed as a
local extension of the U (1) current algebra — see [12]. There are just three
Neveu—Schwarz representations in this case (corresponding to I = m = 0
and to [ = 1, m = +1) which can be labeled by a single quantum number
m (giving the charge). Their conformal dimensions are proportional to the
squares of the corresponding charges:

m 3
= — =0,+1, A == (=—). 5..85
en =, m = 0,1, A= St (= ) (5..85)

The latter formula also applies to the basic local fermionic fields G* (with
e ==+, A =3/2). (The factor 3 in the numerator of A; is the reciprocal of
the central term, ¢/3 = 1/3, in the current commutation relations (5..72).)
The characters (5..80) can be computed explicitly in this case in terms of
6-like functions that is a special case of (5..67):

Xim (T, 115 3) = Ky (T, 113 3) .
Lipem 2 p4m °
N (7) Ko (7, 5 1) = >0z g2 () gt

The modular S—matrix (5..84) (for £ = 1) is then recovered from the known
transformation law (5..68) for K,:

l
1 T ‘mm/
K, <__7 H; l) ¢ E e 2 Ko (1, s 1) (5..87)
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The maximal bosonic subalgebra By of the N = 2 vertex operator algebra is
generated by a pair of opposite charged fields of charges £2 (and dimension
3/2-22 = 6). The representations of SV (2) (where we denote by SV, (2)
the Lie superalgebra with (anti)commutation relations (5..72), in which the
central charge c is replaced by its numerical value ¢ (5..77)) splits into two
pieces with respect to Bz and so do the characters K, (5..86):

Ko (7, 13 3) = Kom (7, 205 12) + Komae (T, 25 12) (5..88)
corresponding to minimal charge and conformal weight
2
e(2m):m, (2m+6)—60——m,
3 3
9 9 (5..89)
Aem) =" A@m46) =S4 ™
m)=— m =4+ ——.
6’ 2 6

For k = 2 the fields G* (¢) can be factorized into two commuting factors

G*(¢) = J*(Qv () (5..90)

where J* (¢) are su (2) currents of charge +1 and dimension 1 and 1 (¢)
is the Majorana—Weyl fermion of Remark 5.1. The Neveu—Schwarz repre-
sentations of SV (2) involve products of Zy twisted representation of the
su1 (2) current algebra. Their characters can be written in the form:

1

— = [e.9]
q 8 1
Xoo (7, 113 2) = =5 {Ko (mm2) [] (1 +4q" 2) +

n=1
1 n—l
+ Ko <T,,LL+§; 2> <17q 2)} (5..91)
n=1
q 48{
- 1+ (gu+ @) g% +¢°+. }
o U )
o0
1 n
Xim (7 15 2) = Ko (7,3 2) g2 [] 0+¢"), m =41 (5.92)
n=1

(on =5 o= () 455 =5)

1
e 1
x20 (7, p1; 2) = { (7, 15 2 H (1+q” 5)

( )R]

_ {% qu+qu)+...} (5..93)




LECTURES ON ELLIPTIC FUNCTIONS AND MODULAR FORMS IN CFT 65

o0
1
Xo2m (73 1 2) = Ko (7, 15 2) g5 [ (1

+q"*%) . m =1 (5.94)
n=1
m m? 1
<€2m = 57 AQm = I = Z) (595)

We leave it to the reader to read off the operator content of the corre-
sponding representations and derive (using (5..87) and (5..35)) Eq. (5..84)
for k = 2.

6. Free massless scalar field for even D. Weyl and Maxwell
fields for D =14

6.1. Free scalar field in D = 2dy + 2 dimensional space—time

Generalized free fields [63] in a QFT with a unique vacuum can be char-
acterized by having correlation functions expressed as sums of products of
2-point ones. It is important for our purposes that this property remains
true, as a corollary, for finite temperature expectation values. We shall
accordingly only deal with 2-point functions and the related energy mean
values in this section.

A canonical z-picture scalar field ¢(z) (of conformal dimension dy = %)
satisfies the Laplace equation A,¢(z) = 0 (A, = 02), which assumes, in
the real compact picture, the form

b 2
(Au_ <m> _d(2)> @(Cv u; dO) = 07

Ay = 02 — (u-9y) (u-0y) +2do) , 0y 0

(Note that the compact picture parametrization z = €2™u can be inter-
preted as spherical coordinates with a “logarithmic radius” ¢.)

(6..1)

Remark 6..1. The operator A, in (6.1) is an interior differentiation on
the (D — 1)-sphere u? = 1 since A, {(uv? = 1) f(u)} = (v? —1) (Ay f
~4(u-0y) f)=0for u?=1.
The Fourier modes of ¢((,u) are eigenfunctions of A,:
e(Cu) =D en(we ™™ (Ay+n®—df)gn(u) =0. (6.2)
nez

Note that ¢,(z) is a homogeneous function of z of degree —dy — n; for
n > do ¢—n(2) is a homogeneous harmonic polynomial of degree n — dj.
Moreover, we have ¢, = 0 for |n| < dyp. The compact picture 2-point
vacuum expectation value,

(0] ¢ (C1, u1) @ (G, up)|0) = 7m0 2 (6..3)

X (1 — 2cos 2ma e 2612 4 i Cm) —do
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(cos2mav := uq -ug) is proportional to the generating function for the Gegen-
bauer polynomials in x = cos 27,

(1—2zt+12)" = 0, t"C) ()

(3] —2k (6..4)
)\ n ..
k! (n—2k)!
k=0
that satisfy the differential equation
oy @ d A
(1—x)W—(2)\+1)m%+n(n+2/\) Cr(x) =0 (6..5)

and the orthogonality and normalization conditions

1
22—-1
2 /C}L (z) O, () (1_332)A—% de — LCA+N)Omn ’
4 L2 (\)n!(n+X)

(1) = (P, (6..6)

n

It follows that ¢, (u) obey the commutation relations

[on (u1), @m (u2)] = i(sn,_m Clcﬁ)l—do (cos2ma) for |n|>dy. (6..7)

|

For D = 4,dy = 1 (the case studied in [64]) these canonical commutation
relations assume an elementary explicit form:

sin 2mnao
[on(u1), om(u2)] = S ong Onem (D=4, dy=1, cos2mra = uj - ug).
(6..8)
The calculations (4..82)—(4..84) in this case give
q" { pn (u1) pn (u2) ), = ( -n (u2) Pn (u1) ), =
= <§On(ul> (P—n(UQ) >q_ Cgo_do (Ul 'u2)
and hence
Cgo_ (ul-u2) _
(nlun) p-nlu)), = =50 = a7 (ponluz) pa(wn)),  (6-9)

for n > dp. Inserting this in the Fourier expansion of the 2-point function,

<<P (C1, ur) @ (G2, u2) >q = Z <cpn (u1) p—n (u2) >q e2minG2  (6.10)

In| > do
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we find
(¢ (&1, w) ¢ (o, u2) >q = (—4sin7wCy sinw¢_ )"

oo n
q
+ 2 E cos 2mni2 Cz(ido(cos 2mar)
n=doy 1 —¢q"

1
= e Py (Cr2; ut, ug; ) (6..11)
T 0

where according to Eq. (4..81) Py, is the basic elliptic function (4..85). We
thus have found in particular, the g¢—expansion of the functions P} since the
above arguments are valid for any field dimension d.

In the case D = 4 (dy = 1), using the canonical normalization (4..39) we
deduce

1

~ &msin Ty sinm(_

(0] p(C1,u1)p(C2,u2)|0) =

1
= m (COthFC+ — COthrg_)

~ 47 sin 27a Z <§+ +n —l—n) (6..12)

nez

and the passage to the thermal 2—point function consists of replacing the
sum with the doubly periodic Eisenstein-Weierstrass series (for D = 4)

(¢ (C1, u1) @ (Cos u2) ) !

q 47 sin 2o

(1 (¢ 7) = p1(C-, 7)) (6..13)
(which corresponds to Eq. (2..52)). Similarly, for D = 6 (dp = 2) we have

0] ¢ (¢, ur) @ (G2, u2)|0) = (2sinwCy sinm¢_) 2
1

= m {(sin 7T<_)_2 + (Sin 7TC+)_2

+ 2cotg 27 (cotg m(_ — cotg 7T<+)} ,

(@ (G ) (G2, u2) ), = (4msin2ma) % {p2 (C-, 7) +p2 (4, 7)

+ 2meotg 2ma (p1 (=, 7) —p1 (4, 7)) } - (6..14)

To compute the mean thermal energy by Eq. (4..71) we have to find the di-
mensions dy(n) of the space Spanc {¢—_n(u)|0)} of the energy n one particle
states (dy(n) = 0 in this case). According to the properties of the mode
expansion of ¢((,u) every such space is isomorphic to the space of homo-
geneous harmonic polynomials in u of degree n — dy for n = dg,dy+1,. ...
Recalling that the generating function for the dimensions of the spaces is
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1—¢? . e ds ,
DR (= ) dy(n) "%, D = 2dy + 2) we find dj(n) = n? for D =4
n=dp

and for even D > 4:

277,2 do—1 do D

dp(n) = ‘ H (n® — k?) = Z c,(C Ik (6..15)
(2do)t =2 k=0

Thus, using the g—expansions (3..13) we find

try (HqH) 2 nd(n) ¢

H = ——— 7)) = _— 6..16

R T R P (010
do+1 do+1

D) Bag D
= kzl C]g_)l E + kz:l Cl(c—)lGQk (T)

for even D > 4 (Byy being the Bernoulli numbers). In particular, for the
physical 4-dimensional case we have:

1
(H + Ey), = Gu(r) for Ey = 510 (6..17)

Remark 6..2. All thermal correlation functions have well defined restric-
tions to coinciding u, on the D — 1 sphere. This is seen directly from our
formulae and is a consequence of a general observation by Borchers [7]. The
result is an expression for the corresponding correlation functions in a chiral
CFT. For instance the chiral (2D) restriction of the 2-point function (6..13),

W(Gia,7) = — (2m) 2 pa(Gra, 7) (6..18)

= SIM 7m(12 1—(]”
n=1

cos 2mn (12

coincides with the thermal 2-point function of a chiral U(1) current. The
importance of this remark stems from the fact that it is easier to verify,
say, Wightman positivity in the 1-dimensional (chiral) case, thus obtaining
a necessary condition for the existence of a consistent higher dimensional
theory.

6.2. Weyl fields

We begin by introducing the 2 x 2 matrix representation of the quaternionic
algebra (see also Appendix C) which will prove useful for studying both
spinor and antisymmetric tensor z-picture fields:

Qr=—ioy =-Qp (k=1,23), Q=1

01 0 —2 1 0
01:(1 0), U2:<i OZ), 03:<0 _1), (6..19)
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characterized by the anticommutation relations
QiQp+Q5Qa = 2005 = QuQj +QpQy for o, f=1,...,4.  (6..20)

Here and below we denote (as in Sect. 4.4) the hermitian matrix conjugation
by a superscript “4”. The matrices

. 1 . 1
100 = 5 (Q2Qs—QFQa) + 15ap = 5 (QuQF —Qu@Q)  (6.21)
are the selfdual and antiselfdual antihermitian spin(4) Lie algebra genera-
tors. We shall also use the notation
4 4

2= 2. 2% Qa, =3 2*Qf,

a=1 a=1

b : (6..22)
az = 21 Qa 87;0‘7 aj = 21 Q;r azo‘ )

Note that in the definition of #T we do not conjugate the coordinates z.
Then Egs. (6..20) are equivalent to

ot ist =t +hatf =222 (74 =4¢74" =2%). (6.23)

The Weyl generalized free fields of dimension d = 1/2, 3/2, ... are two
mutually conjugate complex 2—component fields,

O = (@) md e = () e

transforming under the elementary induced representations of spin (4) cor-
responding to the selfdual and antiselfdual representations ¢ and & (6..21),
respectively. In particular, the action of the Weyl reflection jy is,

— x(2) (= 7(z,R)x (%)),
) X)L (=R ). (6.29)
(z2)7"2

The conformal invariant 2—-point functions, characterizing the fields, have
the following matrix representation

X
O x (21) X" (z2)[0) = — P12 (6..26)

1 )
(2122) 2
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(0 Xa (#1) X3 (22)10) = (0] X (21) x5 (22)[0) = 0.

In particular, the invariance under the reflection I(z) (4..56) is ensured by
the equality

ﬁ;ﬁﬁ = ﬁ—ﬁ. (6..27)
212 12 222 zf 222

The conjugation law reads

@t (%) : (6..28)

1
("2 F

The canonical, d = 3/2, z-picture Weyl field ¢ and its subcanonical coun-
terpart y satisfy a first and a third order partial differential equation, re-

spectively:
azlb(z) = 07 Az &ZX(Z) = 0. (629)

Their vacuum correlation functions are diagonal in “the moving frame”
representation defined as follows. For given non-collinear unit real vectors
u1, ug € SP~1(C RP) such that u1 - ug = cos 27ar let v and T be the unique
complex vectors (in CP) for which

up = e""Yv+e "%, up = e "Yu+e™y. (6..30)

Their compact picture 2-point functions have the form:

(0] x (C1y ur) x T (Coy u2)|0) = i( v v ) (6..31)
’ ’ 2i \sinw(_  sinw(y /)’ B
+ _ 1 ¥ vt
OF (1 1) 07 (G2, u2)[0) = 2isinw(_ sinw(y <sin7rC_ + sin7r§+>
B 1 4 (cosm(_  cotg2ma 1
8 sin 27« ( (sin2 w(_ ~ sin m(_ sin 27a sin ﬂ(+)
—t s cosm(y  cotg2ma 1
B <sin2 n(y  sinw(y " sin2ma sinwC_ ) ) ’ (6..32)

where (+ = (12ta (as in previous sections). Let N be the “charge operator”

defined by [N, x" (2)] = xT (2), [N, x(2)] = —x (2) (and similarly for ).
We introduce the grand canonical mean value

B try (AqH eQWiMN)

< >q,/,1, T try (qH e27ri,u,N)

(6..33)
Then the grand canonical 2-point correlation functions assume the form:

<X(C17 Ul) X+(C27 U2)>q7u: % (pil(g—a T, M) ¢++ pil(c-i-v T, ,U,) %Jr) (634)
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(6 (G u) 0 (G w) )y, = g (07 (98 (Comm)

— cotg 2ma pi' (¢, 7, p) + JM) e (pél (o

sin 2w
11
P (6=,
+ cotg 2ra pr' (G4, 7, 1) — #)) ) (6..35)
where
M N . .
mim (2 put+K) LTin A
KA o . . (& e .
Pt (CGmp) = lim - lim mZ_:M D k=1,2,...
(6..36)

(for the properties of these extended p-functions, see Appendix A).

We observe that the o — 0 (u; = ug) limit of (6..34) reproduces the Gibbs
2-point function (5..29) of the chiral Weyl field for D = 2 (as y* —I—W_ ="
is equal to the unit matrix in the frame u = (0,1). It is noteworthy that
it is modular invariant for p = 0,1/2; for instance, pi'(¢,7,0) = pi*(¢, 7)
obeys (2..49) with £k = 1 and v € I'g (see (2..50) and Exercise 2.14). By
contrast, the d = 3/2 restricted 2-point function

2r)?

is a linear superposition of modular functions of weight 3 and 1, and hence,
is not modular invariant.

2
<¢(C17 U)¢+(C2, u) >q = <P:1>)1(4127 T)+ 5 p%l(Clz, T)> (6..37)

Remark 6..3. Comparing with the N = 2 superconformal model of Sect. 5.3
we observe that one would have had the same problem had one assumed
that the pair of d = 3/2 fields G* satisfy c-number anticommutation rela-
tions (instead of (5..72)). In D = 4, however, one is bound to consider the
d = 3/2 field ¢ as a free field unless one is prepared to give up Wightman
positivity. Indeed, the unique conformally invariant 2-point function (6..26)
for d = 3/2 implies (in a positive metric Hilbert space framework) the free
field equation (6..29) for ¢. It appears intriguing to try to construct an
indefinite metric model for a d = 3/2 Weyl field with a modular invariant
2-point function.

We conclude this subsection with a consideration of the Gibbs energy dis-
tributions for Weyl fields.

The temperature 2-point function (6..37) can be used to derive the mean-
value of the conformal Hamiltonian in the equilibrium (Gibbs) state at
hand. Denote by t(Ci2,7) the function Wy, (6..37), regularized by sub-

tracting its (third and first order) poles at (32 = 0. Then the canonical
expression for the conformal Hamiltonian of a free Weyl field tells us that
its Gibbs energy distribution is given by
1 0
H) =— lim —1 . 6..38
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We shall verify this formula by a direct computation that will also apply
to deriving the energy distribution of the subcanonical field .

The positive charge 1-particle state—space is a direct sum of energy eigenspa-
ces corresponding to eigenvalues Eg+n+3/2, n =0,1,..., where Ej is the
vacuum energy. Each such eigenspace is spanned by vectors of the form

wtnis/Q(u)\m and carry the irreducible representation ((n+1)/2, n/2) of

Spin(4) of dimension (n + 2)(n + 1). The dimension of the full 1-particle
space, including charge —1 states, is twice as big. It follows that

> 2 (n—i—%) (n+1) (n+2) qn+%

. (6..39)
n=0 1+ qn+§

which is verified to coincide with (6..38) (for a suitable choice of Ey). To
express this Gibbs average in terms of modular forms we use the identity

n(n+1) (n + %) =1 ((2n+1)® = (2n + 1)) with the result

1
(1), = (e
where we have set

7 By 1B 17

We now proceed to derive the Gibbs distribution of the conformal Hamilto-
nian H /5 of the subcanonical d = 1/2 Weyl field. Using the implication of

the third order equation (6..29) on the modes of x we deduce that the en-
ergy n+ 1/2 eigenspace of positive charge is isomorphic in this case to the
(pseudoorthogonal) direct sum of three irreducible Spin(4) representations,

n+l n n—1 n n—1 n—2
—_— = —_— = _— .42
(F5)e (i) (T ) e

of total dimension
d%(n) =m+2)(n+1)+nn+1)+nn—-1)=3nn+1)+2
~ 3(@2n+1)%+5
i E——
It follows that the Gibbs energy average is given in this case by

(6..43)

H (0 H. |0) 1) dy (g
< %>q_ | 1| ‘|‘n§>:0 1+q”+2 =
= %(G4(TT+1)—8G4(T)) (Gg(Tgl)—ng(r)) (6..44)

for
(6..45)
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6.3. The free Maxwell field

It is convenient to write the Maxwell field as a 2-form,
1 o 3
F(z) = §Fa5(z) dz“Ndz" , (6..46)

which makes clear not just its transformation properties but also its con-
jugation law:

(Fag(z) dz A dzﬂ)* = Fop(z*) d2°NdZ° (25 = =, (d2%)" = d (2")%).

(6..47)

L)

The free field is characterized by its 2-point function

Tayas (212) 78,85 (212) = Ta1 85 (212) 7810 (212)

(2122) ’ ’

(0] Fo,p, (21) Fo,p, (22)|0) :=

(6..48)
Tog (2) 1= ap — 2 Zzgﬁ. It is verified to satisfy the Mazwell equations
dF (z) =0, dx(F)(z) =0, (6..49)

* being Hodge conjugation x(F'),5(2) 1= €agpo F77(2).

To compute the (compact picture) finite temperature correlation functions
(Fo,p, (C1yu1) Fayp, (G2 u2) >q we use again the diagonal frame in which,

2v = (0,0, =4, 1), up2 = (0, 0, £sinma, cosma); then there exist linear
combinations of the field components

\/iFft:Fgg,:I:Fm, \/§F2:t:F31:|:F247

N (¢ = %) such that  (6..50)
V2Ff=Fis+Fyy, 2F;=F;+iF§,

O] Ff (¢1yur) F~ (G, u2)[0) = Wo (G2, @) =

1 1 cos T cotg2ma
= ——— (cotgm(_cotgm(y) — G _ o8 ;
4sin®2ra 4sin 27 \sin®w¢.  sin?w(y
O] F*(¢1yur) Fiy (G, u2)]0) = Wo (G2, —a); (6..51)
(O] F5(¢1,m) Fy (G2, u2)[0) =
1 1 1
= + +2cotg2ma (cotgm(y — cotgm(_)
4sin?2ra \sin?7¢,  sin?7(_
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((+ = (12 £ ). The corresponding finite temperature correlation functions
are:

(FE(Cu) P2 (G u2) ), =Wy (G2, @) Zm(m (C—7)—p1(Ct,7))

1 1
— 15— (5op3 (G 7) —cotg2maps (G4, 7)) 5
4sin2ma \ 27

(F*(¢,u1) Fy (G, u2) >q =W, (G2, —a);  (F5 (G,u1) Fy (Co,uz) >q =

(P2 (¢, 7)+p2 (¢, T)+2cotg2ma (p1 (¢4, 7)—p1 (¢, 7))
(6..52)

4sin® 2w«

In order to find the temperature energy mean value for the Maxwell field we
have to compute the dimension dg(n) of the 1-particle state space of con-
formal energy n, spanned by Fog. —p (2)|0) where the mode Fyg, —p (2) is a
homogeneous (harmonic) polynomial of degree n—2, satisfying the Maxwell
equations. To this end we display the SO(4) representation content of the
modes satisfying the Maxwell equations. Decomposing the antisymmetric
tensor Fy 3 into selfdual and antiselfdual parts, (1,0) & (0,1), we see that
the full space of homogeneous skewsymmetric—tensor valued polynomials
in z of degree n — 2 generically splits into a direct sum of three conjugate
pairs of SU(2) x SU(2) representations; for instance,

(for n > 3). Maxwell equations imply that only two of the resulting six
representations, those with maximal weights, appear in the energy n 1-

particle space: (%, n52> @ (nEQ, %) Thus,

dr (n) =2 (n* - 1) (6..53)

and then find

_ . By By 1
(Hr), = 2G4(1) = 2G>(1), (0] Hp|0) = —2 TREAERE T (6..54)
If A, is the gauge potential, such that F,3 = 0,Ag — 03An, then we say
that that A, — A, + I, is a conformal gauge transformation if 1, (2) is
purely longitudinal generalized free field,

Ouly = Ogla, s0that (0] la(z1)ls(22)|0) = C ~22 (6..55)

212
which, hence, satisfies the third order equation

A9-1=0. (6..56)
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One can write l4(z) = 0ys(2) where s has a logarithmic 2-point function
but there is no conformal scalar field whose gradient is l,(z). The en-
ergy n pure gauge l—particle state space is spanned by vectors of the form
12 e« Zay, |0) where 219" is a symmetric rank n tensor (due to

(6..56)). (We are using interchangeably — for writing convenience — upper
and lower Euclidean indices.) Taking (6..56) into account one computes
the dimension of this space to be

dy(n) = (”;3) - (";1) = (n+1)2+(n-12 = 2(n%+1). (6.57)

It follows that the total energy mean value is a modular form of weight
four:
(Hp+H) = 4Gy(1). (6..58)

7. The thermodynamic limit

7.1. Compactified Minkowski space as a “finite box” approxi-
mation

We shall now substitute z in Eq. (4..24) by z/R thus treating SP~1 and

St in the definition of M as a sphere and a circle of radius R (> 0). Per-

forming further the Minkowski space dilation (2R)*~'P : g/ — z//2R,
p=0,...,D—1 (see Eq. (4..22)) on the (real) variable (z =)z in (4..24)
we find z(x; R)= R z(x/2R) or

1 ——

__ zD(x;R)RM;:;’ (7..1)

x x x
2 (—) —1 T
“Gr)T'TIR 'R
The stability subgroup of z (z; R) = 0(€ T4) in C is conjugate to the
maximal compact subgroup K C C:
K(2R) = (2R)*-'P K (2R)*-1P |

X
K =K(1) 2 U(1)x Spin (D)/Z2. (7.2)

In particular, the hermitian U (1)-generator H (2R), which acts in the
z—coordinates (7..1) as the Euler vector field z - (0/0z), is conjugate to
H=H(1),

H(2R) = (2R ' H 2R ", H=H(1). (7..3)
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For large R and finite = the variables (z,zp — R) approach the (Wick ro-
tated) Minkowski space coordinates (z, iz°). In particular, for 2% = 0(= (),
the real (D — 1)-sphere z2 = R? can be viewed as a SO(D)-invariant

“box” approaching for R — oo the flat space RP~!. Thus the conformal
compactification of Minkowski space also plays the role of a convenient tool
for studying the thermodynamic limit of thermal expectation values. This
interpretation is justified in view of the following:

Proposition 7..1. The asymptotic behaviour of z (x; R) — Rep (ep =
(0,1)) and of the associated Hamiltonian for large R is:

]| g ||
z(@;R)=xz+0(——), zp(@R)—R=ia"+0(—), (7.4)
R R
H (2R) 1 1
Hp = =P +—Ko (=P+0(—) €ic), (7..5)
R 4R? R
where ||z]| == \/(2°) + |&|* for z = (2% @) € M and iPy is the real

conformal algebra generator of the Minkowski time (x°) translation (see
Sect. 4.2.). The operator Hg is the physical conformal Hamiltonian (of
dimension inverse length).

Proof. Eq. (7..4) is obtained by a straightforward computation. To derive
Eq. (7..5) one should use (4..30) and the equations

NX=1D py\=X-10 = A\ Py, N0 oA X-10 = A\ TLR

hence,

1
H (2R) = (2R)*'» H (2R)™™-'» = RPy + 15 Ko

O

Remark 7..1. The observation that the universal cover of M, the Einstein

universe M = R x SP~1 (for D = 4), which admits a globally causal struc-
ture, is locally undistinguishable from M for large R has been emphasized
over 30 year ago by Irving Segal (for a concise exposé and further refer-
ences — see [61]). For a fixed choice, X_;p, of the dilation generator in (7..2)
he identifies the Minkowski energy Py with the scale covariant component

of Hp. With this choice M is osculating M (and hence M) at the north
pole (z,zp) = (0, R) (respectively, ( = 0, u = ep), identified with the
origin z = 0 in M. (The vector fields associated with Hr and Py coincide
at this point.)

Using the Lie algebra limit limp_ ..o Hr = Py implied by (7..5), one can
approximate the Minkowski energy operator Py for large R by the physi-
cal conformal Hamiltonian Hp. As we shall see below, the fact that in all
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considered free field models in dimension D = 4 the conformal mean en-
ergy is a linear combination of modular forms Gy, (7) with highest weight
2k = 4, has a remarkable corollary: the density £ of the physical mean
energy has a limit reproducing the Stefan—Boltzmann law

Hpg
E(B) == lim ﬂ _c for gz := e’

Jim = = (7..6)

where C' is some constant, 5 = 1/(kT) is the inverse absolute temperature T
(multiplied by the Boltzmann constant k) and Vg := 272R3 is the volume

of the 3-sphere of radius R at a fixed time (say 20 = 0 = ). We will
calculate this limit for two cases: the model of a free scalar filed in D =4
(see Sect. 6.1.) which we will further denote by ¢ and the Maxwell free field
model introduced in Sect. 6.3..

Proposition 7..2. For the free scalar field ¢ in dimension D = 4 we have

the following behaviour of the mean energy density for % >1

1 tTyHRe_/BHR
" Vg tryeBHr

2 1 B 2B\ 1
:<%‘@m§ﬂ0@ 50@-

The corresponding result for of the Mazwell free field F),, is

2 142 01 3 11 B 1
m_18 8 8 g@.g@

Proof. The hermitian operators H and H (2R) are unitarily equivalent due
to Eq. (7..3). This leads to the fact that try ¢"7?) and try H (2R) ¢"(?1)
do not depend on R. Then Egs. (6..17) and (6..54) imply that in the two
models under consideration we have

' 1
G Wy L
© G " 21
ER (ﬁ) - )
RVg
5 3 1 (7..9)
i i
264(2) — 26, (0 ) - 1L
£ (8) = 2R 2R 120 '
R RVg
Using further the relations
1 -1 i 1 -1
@) = 5@(T) g G =5G(T) @10
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(which are special cases of (3..15)) we find

R .
£9(8) = i(87r2G4(2m ) — ’ ), (7..11)
Itk B 48072 R*
1 2miR  43%  2miR
R (B) = E(mw?a;( W; )+£G2( ﬂ; ) (7..12)
63 1154
T )
43R 240m° R

Finally, to obtain Eq. (7..7) one should apply the expansion (3..13) implying
that

)= 5+ 0(eF)

Remark 7..2. In order to make comparison with the familiar expression for
the black body radiation it is instructive to restore the dimensional con-

stants h and c¢ setting Hr = % H (2R) (instead of (7..4)). The counterpart
of (7..9) and (3..13) then reads

_pheB
. 00 3 R
hc thel he n-e
(Hr), =5 (Ci(-5-)—Bo) =% > —5-  (1-13)
n=1 —n—-
l—-e R

Each term in the infinite sum in the right hand side is a constant multiple
of Plank’s black body radiation formula for frequency

c
=n—. 7..14
v nR ( )

Thus, for finite R, there is a minimal frequency, ¢/R. Using the expansion
in (7..13) one can also find an alternative integral derivation of the limit

mean energy density 5%) (B) (7..9):

h
heg! —n"
1 E\"R) Y e ?
() _
&R B) = 2m2h3c3 34 Z hcf R R—oo 30h3c334
n=1 -n
l1—-e R

(7..15)
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3t 4
t dt="_.
1—et 15

oo
since the sum in the right hand side goes to the integral [
0

Remark 7..3. We observe that the constant C' in (7..6) in both considered
models is equal to ¢1/(3072) , where c; is the coefficient to the G4—modular
form in <H>q (see Eq. (6..16)). If we use in the definition (7..5) of Hg
the Hamiltonian H (2R) + E}, instead of H (2R), Hg := (H (2R) + E}))/R,
then this will only reflect on the (non-leading) terms (c4 3%)/R* in (7..7)
(7..8) replacing them by ((E}, — Fo) 8%)/(27% R*) , where Ej is the “vacuum

energy” for the corresponding models (i.e., Ep is 1/240 and 11/120 for the
fields ¢ and F),,, respectively).

7.2. Infinite volume limit of the thermal correlation functions

We shall study the R — oo limit on the example of a free scalar field ¢ in
four dimensions.

Denote by ¢ (z) (the canonically normalized) D = 4 free massless scalar
field with 2—point function

(O] oM (1) oM (22)[0) = (2m) 7% (wfy +i0a%) " (7..16)

(12 = 21 — 29, 25 = T — (:U(fz)Z, see also (4..39)). We define, in ac-
cord with Proposition 7.1., a finite volume approximation of its thermal
correlation function by

try M (z1) oM (xy) e PHr

M M o
(M (1) oM (22) )5 = = (7..17)
and will be interested in the thermodynamic limit,
(M (@) o (w2) )5 o 1= Tim (oM (1) @ (22))5 5 - (7..18)

Proposition 7..3. The limit (7..18) (viewed as a meromorphic function)
s given by

|z 12|

(M (z1) QOM(.T2)>ﬂ7OO =—@> <cosh 27 — cosh 27r—) ,
87 12| B B

(7..19)

(zial = vah =/ (eh) + (23) + () ).

We shall prove this statement by relating ¢ (z) to the compact picture

field ¢ (¢, u) (= ¢V (¢, u)) whose thermal 2-point function was computed
in Sect. 6..
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First, we use Eq. (4..38) to express ¢™(x) in terms of the z-picture field
(corresponding to the R-depending chart (7..1))

1
— =~ #r(z(7;R)) (7..20)
20(.) o

(since dz? = w(%)f2 d%f, cp. (4..25)). The factor 27 in front of ™ ac-

counts for the different normalization conventions for the z— and z—picture
fields (we set (0] p(21) @(22)]0) = (23) " instead of (7..16)).

As a second step we express @g(z) — and thus ™ (z) — in terms of the
compact picture field pr(¢,u):

2m oM (2) =

¢r((,u) = Re*™Cp(Re*™u)

1
2rpM (z) = 7334,03(@'(—) ;u(—)) . (7..21)
QR‘w(ﬁ)‘ 2R 2R

Here ¢ and u are determined as functions of % from

627rz§u _

z(x) is given by (4..24) for z = x € M); in deriving the second equation
in (7..21) we have used the relation

. R?* — T -
A P
R? 2R 2R

Next we observe that ¢r(¢,u) are mutually conjugate (for different R)
just as H (2R) in Eq. (7..3). (To see this one can use an intermediate

“dimensionless” coordinates Z(z; R) = z/R = z(x/2R), which differs from
(4..24) just by the dilation (2R)*~'P.) Tt follows that its vacuum and

thermal 2-point function with respect to the Hamiltonian H(2R) do not
depend on R and coincide with (6..13). Thus

p1(Gi2ta,7r) —p1(C12—, TR)
dm® (pM(@1) M (2))y = (7..22)
167 R? |wyws| sin 27ax

for wy = w(;%), G2 = C(%) - C(;C_]Q%), cos 2T = u(‘;—]l%) u(;—;),

TR = ——. In order to perform the R — oo limit we derive the large
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R behaviour of |wg|, (12 and a:

0 2 2
T1g 21"+ |22l
2mCrs = 2 (1 0(F L),
R R?
| 12] ||+ a2
o= (1ro( L), (7.23)
R R?
2 Ay
4lwp]*=1+0( ),
R2
(lz|| == 1/ (20)? + |2|*) following from
2
t+(55) g
cos 2n( = — N2R7 ) sin 2w @y, = —E— |
2 ]wk| 2R|wk\ (7 24)
() "
U= Tk ) Ug= 2K )
2R |wy| 2R |wg|
2 2 2
T T1||"+ ||z
R? R?

To evaluate the small 7 (large R) limit of the difference of p;—functions
in (7..22) we use (2..23), (2..49) and (3..15) to deduce

p(¢T) = % (m (é, _71) —2mi¢) . (7..25)

Eq. (7..25) implies, on the other hand, that

ClQ:f:Ot -1 1’0 ﬂ:’xlg‘ 2T R .
pi( - ’E)R:oo (12iﬂ "5 )R:;Omcoth(ﬂ

9y % |210] )

(7..26)
Inserting (7..23)—(7..26) into (7..22) we complete the proof of (7..19) and
hence of Proposition 7.2..

Remark 7..4. The physical thermal correlation functions should be, in fact,
defined as distributions which amounts to giving integration rules around
the poles. To do this one should view (7..19) as a boundary value of an

analytic function in 15 for 295 — 295 —ie, e > 0, € — 0 (cf. (7..16)). It is
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not difficult to demonstrate that the limit ¢ — 40 and R — oo in (7..18)

commute. Using (7..24) we can also compute the 76 correction to (7..19):

(M (@) ™ (22) )5 1 =y (oM (21) oM (w2) )y . — 47r2153' (7..27)

To obtain the Fourier expansion of the result we combine Egs. (7..22),
(7..23) with the g—series (2..52) and set (as in Remark 7.1.)

n 1 1 .,,n il
E—p o dp, Zl = f(R ) /f(p;a:,ﬂ) dp.  (7.28)
"= 0
The result is
2/ M M 1
@2m)* (M (z1) ™M (22) )5 oo = ——— (7..29)
x122+20l‘(1)2
2 e~ PP
0 .
+ cos (priy) sin (p |z 12]) dp.

|£B12| 1—€_ﬁp
0

To conclude: the conformal compactification M of Minkowski space M can
play a dual role.

On one hand, it can serve as a symmetric finite box approximation to M in
the study of finite temperature equilibrium states. In fact, any finite inverse
temperature (3 actually fixes a Lorentz frame (cf. [11]) so that the symmetry
of a Gibbs state is described by the 7T-parameter “Aristotelian group” of (3—
dimensional) Euclidean motions and time translations. In the passage from

M to M the Euclidean group is deformed to the (stable) compact group of
4—dimensional rotations while the group of time translations is compactified
to U (1). Working throughout with the maximal (7—parameter) symmetry
allows to write down simple explicit formulae for both finite R and the
“thermodynamic limit”.

On the other hand, taking M (and its universal cover, M = R x S3) not
as an auxiliary finite volume approximation but as a model of a static
space—time, we can view R as a (large but) finite length and use the above
discussion as a basis for studding finite R corrections to the Minkowski
space formulae. It is a challenge from this second point of view to study

the conformal symmetry breaking by considering massive fields in M.
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Guide to references

Among the books on elliptic functions and modular forms we have mostly
referred in these notes to the conference proceedings [22] (see, in particular,
the beginning of Sect. 2), to the readers-friendly text [47] (which gives a
flavor of the work of the founding fathers on the subject) and, to a lesser
extent, to Weil’s book [68] which provides both a valuable contribution to
the history and an elegant exposition of the theory of Eisenstein’s series.

The reader who enjoys learning about history of mathematics for its own
sake is probably aware without our recommendation of the entertaining
essays of Bell [3] but may find also interesting the emotionally told story
of 19th century mathematics by one of its participants [37]. We have also
referred, in passing, to books on the history of topics that are (to a varying
degree) periferal to our subject ([28], [69]).

The books by Serge Lang [39] and [40] provide a systematic background
on the mathematical part of these lectures on a more advanced level. The
electronically available lecture notes by Milne [48] are recommended for a
ready to use treatment of the Riemann-Roch theorem (applied in Sect. 3.1
to the classification of modular forms). The rather engaging exposition in
[57] is mostly directed towards the solution of algebraic equations but also
contains an elementary introduction to the arithmetic theory of elliptic
curves (Chapter 5) including an idea about Wiles’ proof of Fermat last
theorem. More systematic on number theoretic applications are the earlier
texts [59], [62]. Mumford’s book [50] on theta functions is a classic.

A rigorous treatment of the applications of elliptic functions and modular
forms to 2-dimensional conformal field theory has been given in [72]. The
mathematical theory of chiral vertex algebras was anticipated in work by
Frenkel and Kac [20] and developed by Borcherds [5], [6]. Nowadays, it is
the subject of several books: [21], [32], [19].
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Appendix A. Elliptic functions in terms of Eisenstein series

The family of functions p} A¢ ), k=1,2,..., k,A = 0,1, encountered
throughout these lectures, is uniquely determmed by the followmg set of
properties.

(i) pi*(¢,7) are meromorphic functions in (¢,7) € C x $ which have
exactly one pole at ¢ = 0 of order &k and residue 1 in the domain {on'—i— o

a, B € 0, 1)}C(CforallTijandkzl,Q,...;
() P €)=~ D () for k=12,
(iii) pf (C+ 1,7) = (=) pr (¢, 7) for k=1,2,..
(i) pr (¢ +7,7) = (1) pf* (¢, 7) for k+r+A>1;

(v) PP (—¢om) = (1)F ppr (¢o7) for k=1,2,....

One cannot require that the function pi (¢, 7)(= p{°) is doubly periodic (as
it has a simple pole in the fundamental parallelogram) and we have chosen
it to have a single period, 1, in (.

For k > 2 the above functions are readily determined: they can be written
as absolutely convergent Eisenstein(-Weierstrass) series,

> (CaT) - Z

m,neZ

_ 1\Em+An
(C(—ir;)@—T—i—n)k (k> 2), (A.1)

for ¢ outside the lattice Z1 + Z. Condition (iz) then determines each of the
four functions pf* up to an additive linear in ¢ term. Conditions (iv) and
(v) guarantee their uniqueness (provided that they exist). The existence is
established by the explicit construction (4..80) which can be rewritten in
the form

+ ,
(C,T ;L hm Z WC;)ISD j_cn;;]T)] emn(?u—f—m)' (AQ)

The resulting expressions for p; and po are related to the corresponding
Weierstrass functions by (2..23), (2..24).



LECTURES ON ELLIPTIC FUNCTIONS AND MODULAR FORMS IN CFT 85

The above p-functions admit an extension, needed when dealing with a
chemical potential, in which the character (—1)® in condition (iv) is re-
placed by a more general one:

ACHT TR = (D e A (¢ T ) (A.3)

The resulting pi-functions have a manifestly meromorphic representation
in terms of ratios of Jacobi ¥ functions:

KA _ (841911)(077—) Q91*)\17n(<+/177-)
b1 (Cv T, :U') - 1917)\17;«”(/% 7_) 7911(<77_>

— (1-X)mcotg m(p+ g)

(A.4)

(see Proposition A.1. of [55]).

Appendix B. The action of the conformal Lie algebra on dif-
ferent realizations of (compactified) Minkowski space

In this section we will sketch of the proof of the relations (4..22), (4..30)
and (4..32) between the three (complex) bases of the conformal Lie algebra
C used in Sect. 4: the basis { X4} in the projective description, the famil-
iar generators in the Minkowski (x-space) chart, and the T,, C,, and H
generators of the z-picture. We begin with an important observation.

Proposition B.1. The correspondence between the conformal Lie algebra
generators X € C and first order linear differential operators Ox, given by

(p(u) = {pa(u)}) is a Lie algebra antihomomorphism, i.e. for X, Y € C:
[—Ox,—0y] = _O[Xy}- (B.2)

As a corollary, the correspondence X — —QOx is a Lie algebra homomor-
phism.

Proof. Using the Jacobi identity for the double commutator we find

- [Y OX( (u )] ([X, o(u)]) — Ox([Y, ¢(u)])
= —[Ox,0y] d(u). (B.3)
O

Note that the derivatives’ parts of the above operators Ox y are some vector
fields Dy y and the correspondence X — Dx is again antihomomorphism.
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In order to derive Eq. (4..22) let us define the (physical) generators of
translations ¢F,, special conformal transformations ¢k, and dilations iD
by

. 8 . a
[ZP/M d’(@] = ¢("B)7 [lD, ¢A] = ¥
Oxt oz”
0 0
Ky 0@ = (o7 — ") 0(2) + M) 6(a), (B.4)

¢(z) + dpp(z)

where M (z) is some z-dependent (matrix) function (whose explicit form is
not essential for the present calculations) and dg is the field dimension. We
note that Py is the physical (hermitian) energy operator (e?*f° generating
the unitary time evolution) and is, hence, positive definite in the state space
V. Using the Klein—Dirac compactification formulae (4..15) mapping the
Minkowski space M into the quadric @ (4..13) we can find a representation
on @ of the vector fields corresponding to i P,, iK,, and ¢D: —i, —x 2 0

5 5 oxt Oxt
+ 2z — and —a¥ —, respectively (accordingly to Proposition B.1).

z

In order to express the generators iP,, 1K, and D in terms of X, we

should, in addition, factorize with respect to the Euler field faaifa (noting

that the scalar functions on M (4..13) are lifted to homogeneous functions
of degree zero on ) on which the Euler field vanishes).

Similarly, in order to prove that (4..30) and (4..32) agree with the relations
(4..48)—(4..51) we use the imbedding analogous to (4..15)

— _ — = 1422, 1—22_,
2 {AE,} e Mg, &, =2"e.+ e_1+1 €y or,
2 2
ga
5—1 o i§0
(Note that (4..15) and (B.5) reproduce (4..24).)

ZCM

(B.5)

Appendix C. Clifford algebra realization of spin(D,2) and the
centre of Spin(D,2)

Let 3,, p = 0,1,...,2r — 1 be 2" x 2" complex matrices generating the
Clifford algebra Cliff (2r — 1,1); more precisely, we assume the relations

[ﬁuaﬁu]+ = 2N (77,ul/ = diag(—1,1,...,1)), ﬁ; =gt =n"p, (C1)

(where we skip — here and in what follows — the corresponding unit matrix).
These Clifford units give rise to two collections of 2r + 2 matrices {,} and
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{ﬁva},a:—l,O,...,Qr, by settingﬁvuzﬁﬂ, for p=0,1,...,2r — 1,

Bor = " BoBr... Bor1 = Par, By =1=—f_. (C.2)

The resulting pair of matrix valued vectors are characterized by the bilinear
relations

Ba B+ BoBa = 20 = BaBy+ b Ba. (C.3)

The two 2"-dimensional spinorial representation St of spin(2r,2) are then
generated by

Sy (Xap) (Bo Ba — Ba Bb)

Yab =
(C.4)

\/ Pyp—
Yab ‘=

N

S (Xab) By Ba — Ba By) -

The matrices §, and ﬁva can be also used to construct the single spinorial
representation of the conformal group Spin(2r + 1,2) corresponding to an
odd dimensional space—time. To this end we introduce the Cliff (2r+1,2)
algebra generators

0 G I O
Pa = (/é/a Oa>, a:—l,O,l,...,Qr, F2T+1 = (0 _]I),
[FA,FB}+ = 277AB, A,B = —1,0, .. .,27’ +1 (7727«+1,27«+1 = 1); (05)

then the 2"t1 x 2"+1-dimensional spinorial representation of the spin(2r -+
1,2) generators assumes the form

1

S$(Xap) = Lap = 7 [Up.Ta). (C.6)

For a # b the generators 7y, = %ﬁb Bva (C.4) satisfy

(27a)? = (By éa)Q = —1aamp (in general, (2v,)? = 02— Naamp)-  (C.7)

It follows that the valence element v of the centre Z of Spin(2r,2) is the
common central element of U(1) and Spin(2r):

v = X100 = cosm 4 2y_jgsinm = —1 = ¢*™as, (C.8)

Note that v is mapped on the group unit by the corresponding (two-to-one)
map Spin(2r,2) — SO(2r,2). On the other hand, for even r the centre of
Spin(2r,2) is Z4 and it is generated by the product

€1 = M0 ™2 ™2rm12r — B0 B0 B fon o = i 5. (C.9)
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(In the last equation we have used the definition (C.2) of fa,.) Clearly, in
parallel with Bott periodicity property we have

c? = v forr even, 2 =1 forr=1mod 4,

(C.10)
cp =1 forr=3 mod 4.

Remark C.1. The term “valence” for the element v of Z(G) originates
from the fact that it coincides with the unit operator for single valued
representations of the pseudoorthogonal group SOg(2r,2) and corresponds
to multiplication by —I on its double valued representations (i.e. for exact
representations of Spin(2r,2)).

We note that the centre of Spin(2r + 1,2) is Zo with non-trivial element
v (C.8). The centre of Spin(2r,2) for odd r is Zy x Za (see Appendix A
to [35]).

We end up with some additional remarks about the case C = SU(2,2) of
chief interest.

Here is a realization of the matrices G, and 74 for D = 4 in terms of the
quaternion units of Sect. 7:

fo= ("0 ) =2 5= ¥):

Ba = 16013283 = (_(ﬁ _(])I>

(QiQk = €uQ1 — jk, QF = —Qj, 4, k, 1 =1,2,3);

1 1 . 1
Y31 = 2 (%2 Q02>7 Yi4 = B} <%j _22],>7 V=la = §ﬂa (C-12)

(1=1,2,3, a=1,2,3,4).

The positive energy unitary irreducible representations U(g) of SU(2,2)
[43] are labeled by triples (d; j1, j2) of non-negative half integers (j; and ja
being the spins giving the IR of the semisimple part Spin(4) = SU(2) x
SU(2) of the maximal compact subgroup K). The lowest energy subspace
Va(J1,j2) has dimension (251 +1)(2j2+1). The triples are restricted by the
conditions:

d+j1+j2eN;

(C.11)

d>24 71+ 79 for j17 0;

St for Bt (€.13)
d>21+4+j1+7j2 if j1j2=0.
The fields which give rise to representations with d 4+ j1 + j2 (j1j2 = 0)
satisfy free field equations. The symmetric tensor fields, corresponding to
J1 =Jo =4/2,d =0+2 ¢ =1,2,..., are conserved. It follows from
the first relation (C.13) that the representation Uy.j, j,(v) of the valence
element (C.8) of SU(2,2) is given by

Udijr jp(v) = (=142 = (=1)*, (C.14)
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