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Abstract
In current times, the study hadronic collisions is a prominent research field in

experimental and theoretical physics. Simulations of hadronic collisions are typically
based on a hydrodynamic description that relies on equilibration. But accurate depic-
tions of the early time period or of collisions with few produced particles may require
a non-equilibrium description of the dynamics. In this work we describe equilibrium
and non-equilibrium effects in hadronic collisions ranging from small to large systems
within model descriptions based on kinetic theory and compare to hydrodynamics.
We focus on results for cooling due to longitudinal expansion and radial as well as
anisotropic flow.

We employ an effective kinetic description, based on the Boltzmann equation in the
relaxation time approximation, to study the space-time dynamics and development of
transverse flow of small and large collision systems. By combining analytical insights
in the small opacity limit with numerical simulations at larger opacities, we are able
to describe the development of transverse flow from very small to very large opacities.
Suprisingly, we find that deviations between kinetic theory and hydrodynamics persist
even in the limit of very large opacities, which can be attributed to the presence of
the early pre-equilibrium phase.

For decades hydrodynamics has been used as the main tool for simulating heavy
ion collisions, being highly successful in describing their phenomenology. However, a
priori it is not clear why this description should be as accurate as it is in simulating
a system whose size is not necessarily large compared to the mean free path of its
constituents, with possibly sizable local fluctuations involving large gradients and a
far-from-equilibrium initial state. A rigorous global examination of possible problems
of this description has yet to be performed. In this work, we present our results
of comparing hydrodynamic and hybrid simulations to kinetic theory in a simplified
dynamical model. We point out inaccuracies of hydrodynamical models and present
modified setups that can improve them.
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Chapter 1

Introduction

One of the main tasks of modern physics is to assess the question of the makeup
of the universe on the most fundamental level, in order to improve the capability of
scientific theories to explain why the world behaves the way it does. As this quest
has progressed, its objects of interest have become smaller and smaller as they have
been found to be made up of more fundamental objects. First, it was discovered
that atoms are made up of a bunch of negatively charged electrons surrounding a
positively charged atomic core, the nucleus, which are held together via the electro-
magnetic interaction. The latter has been found to consist of so-called nucleons, which
fall into the categories of neutrons and protons. They are bound by a short-range in-
ternucleonic force that is mostly attractive but repulsive at very small distances. The
contemporary consensus on the most fundamental objects of nature as described in
the standard model of particle physics is that elementary particles called quarks and
gluons are what makes up nucleons by binding together via the strong interaction,
which is described by a non-abelian gauge theory called quantum chromodynamics
(QCD). It remains to be seen whether this picture will again be challenged by the
discovery of even more elementary building blocks.

As it stands currently, the behaviour of strongly interacting particles is not yet fully
understood. This is in part due to the fact that under ordinary circumstances, quarks
and gluons can not be observed in their free state due to the binding strength of the
strong interaction. However, recent findings have verified that at high temperatures
or densities, strongly interacting particles can collectively form a medium in which
they can propagate more freely, the so-called Quark Gluon Plasma (QGP). The study
of its properties is in the focus of many areas of high energy physics.

Due to the extreme conditions that are required for a QGP to form, it is hard to
study it experimentally. The main means to do this is by artificially creating small
droplets of QGP in a highly energetic collision of hadronic particles. These take place
on very short time and energy scales, such that the QGP cannot be measured di-
rectly and information of its properties has to be extracted from the distribution of
particles coming from the collision. This requires a large amount of statistics and
the extraction of specific observables that can be related to the collective behaviour
in the QGP medium, such as anisotropies in the angular distribution of the particle
momenta, which is referred to as anisotropic flow. The fact that these collisions un-
dergo a complicated evolution from excited far-from-equilibrium quantum fields over
the QGP back to hadronic particles makes the theoretical modelling of this process
a complex task, which nevertheless is required to make sense of the measurements.
Modern simulation frameworks utilizing different model setups for different stages of
the collision are able to extract properties of the created medium by comparing with
experimental results [2–6].

The dynamics of the QGP is commonly described in terms of relativistic viscous
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hydrodynamics, which provides an accurate description of many of the observed col-
lective phenomena [7–12]. However, hydrodynamics is an effective model that by
construction relies on some degree of equilibration of the system it describes. This
is certainly not the case in the very early stages of the collision, where the system is
very far from equilibrium. Similarly, at late times the expansion will drive it out of
equilibrium and render hydrodynamics inapplicable. Thus, it has to be complemented
with additional dynamical models describing these stages of the collision. Many re-
cent works have investigated how and on what timescales the system equilibrates to
a point where hydrodynamics becomes applicable [13–15] (see also [16, 17] for recent
reviews). Theoretical assessments of the early-time stage have led to the discovery of
a universal attractor behaviour [18–33], where the time evolution of several quantities
related to pressure and energy for different initial conditions quickly collapses to a uni-
versal attractor curve. This behaviour is observed in a variety of model descriptions.
Still, many of the details are yet unclear.

Another recent topic of interest has been the discovery of anisotropic flow in small
collision systems [34–39]. This term refers to collisions with protons or very small
ions like hydrogen or helium, as opposed to the so-called large systems, where heavy
ions like lead or gold are collided. In hadronic collisions with protons, very few par-
ticles are expected to be created which would form a medium that is too dilute to
equilibrate and form a QGP phase. Hence, small systems were conceptually under-
stood as a baseline measurement of hadronic collisions without collective effects, that
measurements from large systems could be compared to. Theoretical models of p-p
collisions often times describe them via high energy physics event generators that are
based on the factorization of perturbative QCD [40, 41], which is in sharp contrast to
the modelling of heavy ion collisions [42]. Thus, small systems developing anisotropic
flow was an unexpected discovery and called for theoretical studies of its origin, which
have been performed in a variety of different evolution models [1, 15, 37–39, 43–86].

Both the pre-equilibrium stage of heavy ion collisions as well as the dilute medium
in small systems are not necessarily compatible with the theoretical foundation of
hydrodynamics, which is based on an expansion around thermal equilibrium. An
appropriate alternative dynamical model is kinetic theory, which is a mesoscopic de-
scription of the phase space distribution of interacting particles and is therefore less
constrained in its applicability to very dilute systems and far-from-equilibrium dynam-
ics. Applications of kinetic theory to heavy ion collisions have been proposed already
30 years ago [87–91] and have been used in different model scenarios to various levels
in complexity. This has lead to the development of several simulation codes based
on these dynamics, like UrQMD [92], BAMPS [93, 94], AMPT [95], PHSD [96] and
SMASH [97]. Based on these codes as well as analytical considerations, also in recent
years applications of kinetic theory have been used to gain further insights into many
aspects of non-equilibrium dynamics in hadronic collisions.

This work is concerned with employing a simplified version of kinetic theory to
describe the time evolution of hadronic collisions from very small to very large systems
in order to asses the questions of how collective flow emerges in small systems and
how large systems evolve towards hydrodynamic behaviour. In Chapter 2, we provide
additional details on the motivation for heavy ion collisions, the experimental setup
and the extraction and interpretation of observables. Chapter 3 provides an overview
of the theoretical description of the dynamics in heavy ion collisions in kinetic theory
and hydrodynamics, including specifications of the modelling choices that were made
in this work. We then proceed to the practical part of this work, starting in Chapter 4
with a detailed discussion of the Bjorken flow attractor and how it can be applied to
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early times of simulations with transverse expansion. Chapter 5 discusses the devel-
opment of anisotropic flow and cooling as a function of the size of the collision system,
with a comparison to a linearized scheme for small opacities and hydrodynamics at
large opacities. While the former provides a very accurate description in its realm
of applicability, hydrodynamics is observed to be in disagreement with kinetic the-
ory due to its pre-equilibrium behaviour. Thus in Chapter 6, we go on to perform
a more global comparison of the two model descriptions where we present an alter-
native initialization scheme of hydrodynamics tht can counteract the differences in
pre-equilibrium. We also compare with hybrid models using kinetic theory for early
time and switching to hydrodynamics at later time. We provide a criterion of when
hydrodynamics becomes applicable, which is corroborated by comparing hybrid sim-
ulation results at various switching times. In Chapter 7 we provide a global summary
of our findings, discuss possible extensions of our work and point out connections
to related topics in the current research on heavy ion collisions. There are several
Appendices that provide additional details for the results presented in Chapters 5
and 6.
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Chapter 2

Studying Heavy Ion Collisions

The introduction has already provided a global overview of the scientific basis of this
work. We will now discuss further details of the purpose of heavy ion collisions in
general and this work in particular.

2.1 Motivation for HICs

As physics has progressed to study smaller and smaller objects, direct measurements of
their internal structure have become impossible. Instead, one has to perform scattering
experiments in which a large number of particles are accelerated to high speeds and
then collided which each other. The scattering products and their angular distribution
then allow to indirectly measure the structure of the colliding particles. The first
experiment of this type was Rutherford’s scattering experiment [98], where a beam
of α-particles was scattered on a thin piece of gold foil. The measured distribution
of outgoing particles led to the conclusion that the positive charges in the atom are
contained in a small area making up a tiny fraction of its volume: the nucleus.

Nowadays, scattering experiments are one of the main ways to probe models of
particle physics. The study of deep inelastic scattering processes, in which a lepton
- typically an electron - is scattered off of hadronic particles, has led to a precise
picture of the internal structure of a proton. It can be viewed as a collection of
pointlike scattering centers of different types, the so-called “partons”. The partons
have since been found to be different kinds of elementary particles, the quarks and
gluons. When probing the proton at different scales, its makeup is also different. This
is expressed by the “parton distribution functions” (pdfs) fα(x,Q

2), which gives for
a parton carrying the fraction x of the total momentum of the proton its probability
to be of type α. In principle, this also depends on the resolution scale Q2 of the
probing scattering process, however according to the Bjorken scaling argument [99],
this dependence drops out at high Q2 due to the pointlike structure of the partons.
Experimental results reveal this behaviour to be approximately true in nature [100],
however there are logarithmic corrections to perfect scaling [101–103] due to higher
order corrections to the scattering processes. Figure 2.1 shows at a resolution scale
Q2 = 10 GeV the proton pdfs for valence up (u) and down (d) quarks, as well as for
sea quarks (S) and gluons (g). At small x, the gluon pdf dominates over the others.
At these scales, the proton is made up of a fluctuating sea of lots of gluons.

Deep inelastic scattering probes the proton via electroweak interactions. Differ-
ent insights might be obtained by performing scattering experiments also with two
hadrons, which will mainly proceed via the strong interaction. As it turns out, these
scatterings have a very rich phenomenology due to the amount and variety of produced
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Figure 2.1: Plot of the parton distribution functions for the proton as a function
of the longitudinal momentum fraction x at a squared probing energy scale of Q2 =
10 GeV2. The parton types considered here are valence up (uv) and down (dv)

quarks as well as sea quarks (S) and gluons (g). Figure taken from [104].

particles1. When colliding heavy ions, the detectors typically measure thousands of
particles coming from a single collision. Naturally, the produced particles will also
interact with each other, making it harder to interpret the distributions of outgoing
particles. However, these circumstances also allow to study the collective properties of
strongly interacting matter, which is rich in possibilities, as described in the following
sections of this chapter.

2.2 Heavy Ion Collisions in Experiment

HICs are performed in a large variety of different systems in order to vary several dif-
ferent paramters that govern its behaviour. However, these experimental parameters
do not translate directly into parameters of the theoretical description. Instead, one
typically adjusts the theoretical parameters in order to reproduce the experimental
ones, such that a comparison of theory and experiment can be performed.

By varying the type of ions that are collided, one can adjust the typical number
of particles created in a collision and its geometrical properties. For the latter, one
can vary the typical spatial extent of the created medium, but also its anisotropy. For
example, deformed nuclei will on average produce larger spatial anisotropies in the
created medium than spherical ones.

One can adjust the energy of the collision, which is quantified in terms of the center
of mass collisional energy

√
sNN per nucleon-nucleon pair in the colliding nuclei. For

larger
√
sNN , one expects a higher temperature of the created medium, but also a

1The pdfs are universal and the results from deep inelastic scattering can still be used to describe
hard processes in hadronic collisions. However, as will be described shortly, there are other effects
that cannot be described as straightforwardly.
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Figure 2.2: Heatmap of the probability distribution of simulated Pb-Pb collision
events at

√
sNN = 2.76 TeV in terms of two pairs of observables to illustrate the

correlation of impact parameter b with number of participants Npart and of Npart

with the event multiplicity. Figure taken from [105].

lower baryon chemical potential. This is because the total baryon number is fixed by
the colliding nuclei and at higher energies fewer baryons are stopped in the collision
and most of them quickly leave the collision area in directions close to the beam axis.

The difference between theoretical and experimental parameters becomes very
apparent when it comes to the impact parameter b. In theoretical descriptions, this is
the transverse distance of the centerpoints of the two colliding nuclei, which strongly
affects how many nucleons will partake in the collision, how much energy will be
deposited in the medium and how anisotropic the medium is. In experiment, nuclei
collide at high frequency with random impact parameters that can not be determined
in measurements. Instead, the collisions are classified by the number of outgoing
particles that are measured in the detector, the so-called multiplicity. This is then
re-expressed in terms of the so called “centrality percentile”, defined as the fraction
of collision events that have an equal or higher number of produced particles than
the event in question. The expectation is that events with lower centrality percentile
should typically have a smaller impact parameter.

While this quantity does correlate with the impact parameter, the correlation is
not perfect. For fixed impact parameter b, one expects a washed-out distribution
in multiplicity and vice-versa. This is illustrated by Fig. 2.2, which shows heatmap
plots of the probability distributions of simulated collision events in the b −Npart as
well as Npart−Multiplicity planes for Pb-Pb collisions at

√
sNN = 2.76 TeV. Npart

is the total number of nuleons in the two nuclei that participate in the collision. In
both cases, there is some correlation between the quantities, but the distribution is
by no means a narrow line. The quality of this correlation also depends on the type
of nuclei that are collided and is worse for smaller nuclei [105]. Hence, one typically
considers a coarse-grained parametrization via bins in the centrality percentile, so-
called “centrality classes”, where all events in a given range of the centrality percentile
are grouped together. The analysis is then restricted to statistical statements about
the centrality classes.

2.3 Strong interaction

The strong interaction is one of the four known fundamental forces in physics. It binds
quarks to bound states like nucleons. The residual forces of the strong interaction are
what hold nucleons together in nuclei, similar to how in the case of the electromagnetic
interaction, the Van-der-Waals force holds molecules together. The quantum field
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Figure 2.3: Plot showing experimental results and a fit curve for the dependence
of the strong coupling αs = g2s/4π on the energy scale Q of scattering processes.

Figure taken from [107]

theory of the strong interaction is called Quantum Chromo Dynamics (QCD). In this
theory, the strong interaction is described by an SU(3) gauge interaction of the quark
and gluon fields, where the gluons are the gauge bosons. In order to gain a heuristic
understanding of the three involved quantum charges, one typically associates them
with the colors green, blue and red, hence the name QCD. The bound states of QCD
are called hadrons and are made up of multiple quarks that alltogether are color
neutral. They can be formed e.g. by a blue and an anti-blue or by a red, a blue and
a green quark. Particles made up of two quarks are called mesons, while particles
containing three quarks are called baryons.

There are six different quark flavors, which from lightest to heaviest are called up,
down, strange, charm, bottom and top. Each of them has three color variants, which
form a triplet of the SU(3) gauge group. For the gauge bosons, there are 32 − 1 = 8
possibilities of their color state as given by the generators of SU(3). Additionally, since
they are spin-1 particles, there are different possibilities for their spin polarization.

Despite the theoretical model description leading to an explanation for the large
variety of observed hadron types, many of the properties of strongly interacting matter
remain unclear. This is because the coupling of the strong interaction is typically
too large for perturbation theory to be applicable. Hence, it is not straightforward
to calculate these properties from the QCD Lagrangian. Non-perturbative ab-initio
calculations require to simulate QCD on a lattice in spacetime, which at present is
restricted to small net baryon densities. Other than that, QCD at large coupling can
only be described in effective model descriptions, such as the linear σ Model [106].

2.4 Quark Gluon Plasma

On ordinary scales of temperature and density, strongly interacting particles occur
exclusively in bound states that have a neutral net color charge. This is referred to as
confinement of the color charges. The reason is the large size of the strong coupling,
which gives rise to non-perturbative behaviour. The force between strongly interacting
particles is in fact so strong, that the energy required for separating them is sufficient
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Figure 2.4: Sketch of popular conjectures on the structure of the QCD phase
diagram in the baryon-density temperature plane. Figure originally taken from the

website of the GSI Helmholtzzentrum für Schwerionenforschung (www.gsi.de).

to produce additional strongly interacting particles. Thus, instead of separating color
charges, a color neutral bound object will split into two neutral objects and the color
charges remain confined.

However, the coupling constant depends on the energy scale of strong interaction
processes. This is illustrated by Fig. 2.3, which shows experimental measurements and
a fit curve for the size of αs = g2s/4π as a function of the negative four-momentum
transfer squared Q2 of the examined scattering processes. On large energy scales,
the coupling becomes small and can be treated perturbatively. This phenomenon is
referred to as “asymptotic freedom”.

For the macroscopic behaviour of a system of strongly interacting matter, this
means that the coupling becomes weak at large temperatures or densities. In these
cases, particles with color charges are supposed to be able to move freely inside of
a thermal medium of strongly interacting matter. This state is called the Quark
Gluon Plasma (QGP), because similarly to a plasma of electrons and ions, the quarks
and gluons do not form bound states. However, the picture of a very dilute state of
matter does not apply to the QGP, as it is essential for its existence to have a dense
background medium. The transition from hadronic matter with confined color charges
to the QGP is called the “deconfinement phase transition”.

The QGP is one of the most recent discoveries of exotic phases of matter and
a lot of its properties are still not known in detail. Its experimental, theoretical
and phenomenological study is a large and active area of research. One important
aspect of this research is to unveil the structure of the QCD phase diagram, which
is illustrated schematically in Fig. 2.4. Despite giving a quite detailed view, many of
the aspects of this diagram are only conjectured but not known. We do know that
strongly interacting matter consists of hadrons at small temperature and density,
which transitions to the QGP when increasing temperature or density. Simulations of
QCD on the Lattice have shown, that for small chemical potential, the transition is a
crossover.

However, in the case of at least three vanishing quark masses, the transition is
always first order [108]. More realistic model studies suggest that a first order transi-
tion line exists also in the physical case, which ends in a second order critical point.
Other predictions about the phase diagram include for example a color superconduct-
ing phase at large densities or an inhomogeneous chiral phase inbetween the hadronic
and QGP phases.
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Figure 2.5: Illustration of the theoretical modelling of the stages of a heavy ion
collision and their time scales. Figure taken from [111].

Another crucial topic in the research of the QGP are its equilibrium and dynamical
properties, quantified by equations of state and the so-called transport coefficients.
These can be calculated in Lattice QCD2, but experimental measurements are diffi-
cult, as in heavy ion collisions the QGP is created only for a short amount of time
and cannot be measured directly. Instead, one has to infer their values by compar-
ing results of simulations with experimental data in a Bayesian analysis framework.
Another way to deduce the properties of the QGP is to study neutron stars, which
are hypothesised to contain a QGP in their core. By comparing theoretical stability
constraints with observed stars, it is possible to extract information on the equations
of state at high density and low temperature. It is also possible to extract information
on QGP properties from the gravitational wave signal of neutron star mergers.

2.5 Stages of a HIC

In a heavy ion collision, extreme conditions are created on small time- and length
scales on the order of 10 fm. During this time, the created medium rapidly transitions
through several orders of magnitude in its effective temperature and departure from
equilibrium and therefore also different regimes of its dynamical behaviour. Modern
simulation setups for the evolution of the system therefore use different model descrip-
tions of the different stages of this evolution, some of which are introduced in more
detail in Chapter 3. Fig. 2.5 nicely illustrates these stages.

To start off, an initial state has to be generated. Viewing nuclei as having a static
internal structure, the initial condition is motivated purely by the geometric argument
of the transverse overlap area and thickness distribution of the two colliding nuclei.
However, nuclei are quantum objects, and their internal structure undergoes quan-
tum fluctuations, such that the precise structure at the moment of the collision varies
between events. Modern initial state generators typically model these fluctuations in

2Technically Lattice QCD only describes the equilibrium state. In order to extract transport
coefficients, the close-to-equilibrium behaviour has to be related to the in-equilibrium one in a non-
straightforward way [109, 110].
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the geometry of the colliding nuclei by randomly sampling hot spots from an aver-
age density distribution. Simulations using this type of initial condition are called
"event-by-event" simulations. Due to the complex time evolution of the collision, the
properties of the initial state are hard to constrain. Hence, there are several different
initial state models in use today [112–115] that may vary a lot in the distinct local
features of the initial states they produce.

The dynamics at times τ ≲ 1 fm is typically described by a model based on
kinetic theory, a mesoscopic description of the particle distribution in phase space,
which typically assumes some degree of diluteness but can describe even systems that
are far away from equilibrium. Phenomenologically, it has been shown that the pre-
equilibrium stage has a non-negligible influence on final state observables [1, 116, 117]
and it is therefore crucial to employ realistic descriptions thereof.

During these early times, the system quickly equilibrates, such that after an evo-
lution time of typically τ ∼ 1 fm, the system is further evolved using hydrodynamics,
which is the centerpiece of the simulation. In this time, the system forms a strongly
interacting close-to-thermal medium, which reflects itself in many of the measured ob-
servables like collective flow, jet quenching and quarkonium suppression, as explained
in the following subsection.

Eventually, at times τ ∼ 10 fm, the medium cools down to the point where color
charged particles become confined in hadronic bound states again. In theoretical
simulations, at this point a thermal particle distribution is sampled, which is then
further propagated in a hadronic transport description based on kinetic theory. In
the further evolution, the hadrons scatter among each other and decay into lighter
hadrons. Eventually, all hadrons will decay into stable (or long-lived) states and
propagate without further interactions.

2.6 How to make sense of the measurements

The detectors placed around the collision points in experimental setups of HICs can
only measure the outgoing particles, long after interactions have taken place. On
these scales, spatial distances of the particles in that phase can not be resolved. The
detectors can only measure the momentum distribution for different species X of pro-
duced particles in a collision of the hadrons Y and Z, denoted as dNX

Y Z/d
2p⊥dy. p⊥

is the momentum in the transverse plane to the beam axis, while y is a measure of the
longitudinal momentum. The momentum coordinates used in heavy ion collisions are
introduced in more detail in Sec. 3.1. From these distributions, many different observ-
ables can be computed that allow more direct insights into the collective behaviour of
the particles in the collision.

The type of observable that is studied most extensively are the nuclear modification
factors RX

Y Z(p⊥, y), which are ratios of the distribution of produced particles of type
X in collisions of hadrons Y and Z to the same distribution in proton-proton collisions,
normalized to the average number NY Z of colliding nucleon pairs in a given centrality
class of collisions of Y and Z. This can be mathematically expressed as

RX
Y Z(p⊥, y) =

1

NY Z

dNX
Y Z

d2p⊥dy

dNX
pp

d2p⊥dy

. (2.1)

This ratio quantifies how much the interacting medium that is produced in the colli-
sion of Y and Z modifies the particle distribution and therefore measures some aspects
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Figure 2.6: 2D distribution of pairs of particles in relative azimuthal angle ∆ϕ and
relative pseudorapidity ∆η as measured in Pb-Pb collisions at

√
sNN = 2.76 TeV.

Figure taken from [118].

of the collective behaviour in a QGP. Some examples of such effects that are stud-
ied on the basis of nuclear modification factors are jet quenching and quarkonium
suppression.

High-momentum particles carrying a color charge propagate in bunches together
with similarly high-momentum particles, which are called jets. These particles lose
energy by fragmentation, i.e. by splitting off low-momentum particles. When propa-
gating in a strongly interacting medium, there is additional medium induced radiation
and the jet undergoes interactions with the medium which leads to an extra deposition
of energy and momentum, such that the jet loses energy at a higher rate compared to
propagation in vacuum. This is referred to as jet quenching.

Quarkonia are bound states of a quark and the corresponding anti-quark. Inside of
a strongly interacting medium, the binding forces are modified and not as strong as in
vacuum. Due to interactions with the medium, the quark-antiquark pair may be split
up and separated. This is the explanation for the fact that in the final distribution
of particles, heavy ion collisions are observed to produce a lower amount of quarkonia
than expected from proton-proton collisions.

Another crucial aspect of the studies of produced particle distributions is their
anisotropy in transverse momentum. Fig. 2.6 shows results for the distribution of
particle pairs in Pb-Pb collisions at

√
sNN = 2.76 TeV as a function of their differ-

ence in longitudinal momentum ∆η and in azimuthal angle ∆ϕp. The peak at zero
difference comes from genuine two-particle correlations such as those between parti-
cles coming from the same decay of another particle. However, there is also a more
global angular correlation that is approximately independent of ∆η. This is commonly
referred to as “the ridge”. These global momentum anisotropies can be described by
the hydrodynamic response of the medium to the geometric properties of the colliding
nuclei, which is explained in more detail in Sec. 3.8. Therefore, they are interpreted
as another measure of the collective behaviour inside the thermal QGP medium.
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Figure 2.7: Sketch of the theoretical modelling framework of small systems showing
the different stages and their timescales. Figure taken from [119].

2.7 Small systems

The term small systems refers to collisions involving protons or ions of hydrogen or
helium. In these collisions, very few particles are created and it is unlikely that an
equilibrated medium could emerge. As illustrated in Fig 2.7 the image of how to
describe small systems is different to the case of heavy ion collisions, since due to
the presumably low degree of equilibration, hydrodynamics can not be expected to
be applicable. Instead, the evolution of the medium has to be fully modelled in a
non-equilibrium description. Due to the smaller size, the system will also cool down
faster and transition to hadrons at times τ ∼ 1− 3 fm.

Originally, p-p collisions were considered as a baseline of collisions without col-
lective effects, which one can compare results from other collision systems to, hence
many observables are defined as a ratio between nucleus-nucleus and p-p collisions.
Indeed, while experiments have found quarkonium suppression in p-A collisions, in
p-p collisions they have so far found no conclusive evidence of many in-medium ef-
fects such as jet quenching or quarkonium suppression [38]. However, the detection of
collective flow effects has challenged this paradigm. Figure 2.8 shows the distribution
of particle pairs in relative azimuthal angle ∆ϕp and relative longitudinal momentum
quantified by ∆η for p-p collisions at a collisional energy of

√
sNN = 13 TeV. While

it is much more faint than in the case of Pb-Pb collisions as seen in Fig. 2.6, a global
“ridge” also appears in this plot.

It has been in the recent focus of the research field to explain this collective be-
haviour. Some efforts have been concerned with applying hydrodynamics also for the
dynamical description of small systems [43–50, 52–58], which were able to describe
experimental results for collective flow in p-A and p-p collisions[37–39]. However, they
suffer from poor constraints on the initial condition [53, 59, 60]. More importantly, it
remains the question of whether one can reconcile its theoretical foundation with the
properties of the medium in small systems. Others have put forward the argument
that flow could already be present in the initial state and explored this possibility in
Color Glass Condensate descriptions [61–72]. Ultimately, these efforts have resulted
in the realization that the model fails to describe important features and that corre-
lations in the initial state are too short-range to account for the phenomenon [73].

An appropriate alternative dynamical model for small systems is kinetic theory,
which is a mesoscopic description of the phase space distribution of interacting par-
ticles and is therefore less constrained in its applicability to very dilute systems and
far-from-equilibrium dynamics. Several efforts have succeeded in describing transverse
dynamics and the buildup of transverse flow within this description [1, 74–84], in some
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Figure 2.8: 2D distribution of pairs of particles in relative azimuthal angle ∆ϕ
and relative pseudorapidity ∆η as measured in p-p collisions at

√
sNN = 13 TeV.

Figure taken from [120].

cases even with event-by-event simulations [15, 66, 85, 86].
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Chapter 3

Dynamical description of hadronic
collisions

After giving a general introduction into the topic of hadronic collisions, we will now
provide an overview of the theoretical foundation for the model descriptions used in
this work. We will use descriptions based on kinetic theory as well as hydrodynamics,
which are introduced below. For more detailed discussions and derivations, we refer
to textbooks on these topics [121–124].

3.1 Coordinates

As is often the case in physics, the theoretical description of the expaning plasma
created in a hadronic collision takes a simpler form if described in a fitting set of
coordinates. The set of spatial coordinates xµ = (τ,x⊥, η) that are commonly used
in this context are called Milne coordinates and are defined in the following way. The
plane transverse to the particle beam is parametrized via cartesian coordinates x⊥ =
(x1, x2). The time x0 and the longitudinal x3-coordinate along the beam direction are
transformed to the new coordinates

τ =
p
(x0)2 − (x3)2 , η = artanh(x3/x0) , (3.1)

where τ is called the proper time and η is called the spacetime rapidity. For the
momentum coordinates, one can define the rapidity

y = artanh(p3/p0) . (3.2)

This definition of the rapidity takes into account only the longitudinal momentum
component, which is useful when describing particle collisions. In some other physics
contexts, the rapidity is defined alternatively as w = artanh(|p⃗|/p0).

The benefit of this coordinate system becomes apparent from the behaviour under
boosts in the longitudinal direction: these will keep τ invariant and modify η and y by
an additive constant, specifically the rapidity of the boost. This behaviour is especially
useful when describing a boost-invariant system. Its symmetry simply translates to
phase space densities depending only on the difference y − η, while spatial densities
cannot depend on η at all.

In Milne coordinates, the metric becomes

gµν = diag(1,−1,−1,−τ2) . (3.3)
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The corresponding covariant momentum coordinates are pµ = (pτ ,p⊥, pη), where
p⊥ = (p1, p2) is the cartesian transverse momentum and

pτ = p⊥ cosh(y − η) , pη =
p⊥
τ
sinh(y − η) . (3.4)

with p⊥ = |p⊥|. Similarly, we also define x⊥ = |x⊥| as well as ϕx and ϕp as the
azimuthal angles in transverse position and momentum space.

3.2 Kinetic theory and the Boltzmann equation

Kinetic theory describes the evolution of the phase space distribution f of particles
or quasiparticles, which can be mathematically expressed as

f(t, x, p) = (2π)3ν
dN

d3xd3p
(t) , (3.5)

where ν is the number of degrees of freedom, e.g. polarization states, for the given
type of particle. Here, f is to be understood as a probability distribution representing
the probability to find a particle in the phase space volume element d3xd3p, meaning
that kinetic theory does not deal with exact microscopic states of the system but with
a statistical description thereof.

Depending on the context, one may also introduce multiple different phase space
distributions fi to distinguish multiple particle types labelled by i. In this work, we will
describe massless bosonic degrees of freedom, which could technically be distinguished
into different particle types according to their associated quantum charges. However,
we will use a simplified model of the time evolution that treats all particle types in
the same way. Therefore, we do not need to distinguish them and instead describe
them via an average distribution

f(t, x, p) =
(2π)3

νeff

dN

d3xd3p
(3.6)

where “N ” now counts all particle types and the factor 1
νeff

indicates the average over
particle types by dividing by the effective number of degrees of freedom.

The time evolution of the phase space distribution f is described by the Boltzmann
equation. Its relativistic formulation is given as

�
pµ∂µ +m

∂

∂pµ
Kµ

�
f = C[f ] . (3.7)

This equation contains three terms describing different sources of changes in f . pi∂if
describes changes due to the movement of particles according to their momenta.
m∂/∂pµ(Kµf) describes the reaction of the system to external forces Kµ, which
change the momenta of the particles. In many model descriptions such as the one
we will use in this work, external forces can be neglected and this term is dropped.
Finally, C[f ] is called the collision kernel or collision integral and encodes changes
due to the interaction of the particles described by the phase space distribution f .
The specific form of C[f ] is a choice of physics modelling. Particle interactions can be
described for example by scatterings of hard spheres, by scattering crosssections ob-
tained from transition amplitudes that can be computed in more fundamental models
like a non-equilibrium quantum field theoretical description of QCD, or by an effective
model that approximates the effect of the microscopic dynamics. It is a functional of
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f , making the Boltzmann equation an integro-differential equation for f . Typically,
the interactions encoded in the collision kernel drive the system to equilibrium, and
the equilibrium distribution feq remains unchanged under scatterings, C[feq] = 0.

Technically the Boltzmann equation can be derived as a special case of more gen-
eral descriptions. We do not go into further details here, but we state the conditions
under which we can accurately approximate the system’s dynamics by using the Boltz-
mann equation.

As the formulation of kinetic theory discussed here describes a particle distribution
in phase space with three momentum coordinates, it deals with on-shell particles whose
energy is fully determined by their momentum. Strictly speaking, for this picture to
be applicable the notion at the very least of quasiparticles has to be sensible, as an
arbitrary state of excited quantum fields as might be realized shortly after the collision,
before these particles have formed, technically can not be exactly described. Still, this
model can be used to obtain at least some approximation of the early time dynamics.

Furthermore, we restrict the model to a one-particle distribution, meaning we
neglect n-particle correlations when considering the microscopic scatterings of the
particles. One might also consider dynamics of joint distributions of n particles, which
can systematically be truncated to distributions of fewer particles. This hierarchy of
particle distribution functions is called the BBGKY hierarchy. Here, we truncate this
hierarchy already at the one-particle level. Specifically, the underlying assumption
is that correlations between particles decay dynamically on timescales that are much
shorter than the typical time between interactions. This also means that interactions
are assumed to be short-range and involve only two particles at a time. The notion
of the collision kernel typically assumes that interactions happen on small time and
length scales compared to the typical interparticle distance and can be assumed to
be local and instantaneous, in a coarse-grained picture of the particle distribution. In
this sense, the Boltzmann equation describes a “dilute gas”.

3.2.1 Relaxation Time Approximation

When introducing the Boltzmann equation, we stated that there are different possible
modelling choices for the collision kernel C[f ]. The Relaxation Time Approximation
(RTA) falls into the category of effective descriptions of the microscopic scattering
dynamics and is often used in practice due to its simple form. In RTA, the collision
kernel is approximated as [125, 126]

CRTA[f ] = −pµuµ
τR

(f − feq) . (3.8)

The key feature of this description is the fact that the change of f is proportional
to the difference to the local equilibrium distribution feq, meaning that all deviations
from this equilibrium distribution will decay exponentially in a similar way, governed
by the relaxation time τR. The quantity uµ appearing in this equation denites the
local restframe flow velocity of the collective medium. The factor pµuµ simply comes
from the fact that Lorentz invariance requires to consider the dynamics of each part
of the system in its local restframe.

There are multiple modelling choices for the relaxation time τR with different de-
grees of complexity, some of which even take into account dependencies on the particle
momenta [127]. The simplest choice certainly is that of a constant relaxation time.
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However, this choice introduces a scale into the system. If we want to describe a con-
formal system1, the natural relation of the relaxation time to the local thermodynamic
properties is an inverse proportionality to temperature. Within conformal RTA, the
shear viscosity is given as η = 4τRP/5 and the entropy density as s = 4P/T , where P
is the pressure. These relations can be inverted to fix the prefactor of the relaxation
time in terms of the specific shear viscosity η/s as

τR = 5
η

s
T−1 . (3.9)

Another object in the RTA collision kernel that allows some freedom of choice
is the local equilibrium distribution feq. Its form should be chosen according to
the conserved quantities in the model description, like particle numbers. The local
equilibrium distribution is then adjusted to reproduce the same local density of these
quantities as the phase space density f and thereby locally depends on f . We will
focus on the simplest case, where only energy is conserved and the local equilibrium
distribution matches the local effective temperature T of the system. To do this,
one first has to establish a sensible notion of temperature for a system that is out of
equilibrium. We postpone this discussion to Sec. 3.6.

feq also depends on the type of particles that are described. When modelling
particles that behave classically, it is simply the Boltzmann distribution.

feq = exp

�
−pµuµ

T

�
(3.10)

In the case of fermions resp. bosons, quantum statistics have to be considered and the
equilibrium distribution is given as the Fermi-Dirac distribution resp. Bose-Einstein
distribution:

feq =
1

exp
�
pµuµ

T

�
± 1

. (3.11)

As stated before, we will describe the medium created in a heavy-ion collision by
kinetic theory in RTA for bosonic degrees of freedom and hence the equilibrium dis-
tribution will be given as the Bose-Einstein distribution. However, the actual QGP in
nature has many gluonic and quarkionic constituents. If one is to describe its physical
properties as accurately as possible, it is not immediately clear how many bosonic
degrees of freedom (νeff) one should choose the model to have, especially since some
particles carry a mass, which does not fit our model description of a conformal system.
However, we can certainly choose to reproduce one of the QGPs most defining prop-
erties, its equation of state as determined from high temperature Lattice QCD [128,
129]. In our model, the conformal equation of state is given as

ϵ = νeff
π2

30
T 4 , (3.12)

so we simply adjust νeff to reproduce the physical value, which comes out to be
νeff ≈ 402.

1This means that one assumes that conformal symmetry holds. As we will only deal with im-
plications of this symmetry, we only give a rough idea of what this means. Among other features,
conformal symmetry requires scale invariance, such that no extra scales like particle masses can be
present. This symmetry holds for N = 4 supersymmetric Yang-Mills theory, which is in some ways
similar to QCD. This led to the belief that QCD could behave similarly to a conformal field theory.

2Specifically, we used νeff = 40 in Chapter 5 and νeff = 42.25 in Chapter 6
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As we will explain in more detail in Section 5.1.2, one can show [80] that in boost-
invariant conformal RTA, the time evolution of the system depends only on one single
parameter, the opacity γ̂ defined as

γ̂ =
1

5η/s

�
R

π

30

νeffπ2

dE0
⊥

dη

�1/4

, (3.13)

where R as introduced in Eq. 3.48 is a measure of the system size in transverse space.
The opacity is a measure of the typical size of interaction effects in the system.

Evidently, in RTA the dynamics are radically simplified, which is not always a
good approximation. Modelling all non-equilibrium modes to decay in the same way
neglects e.g. kinematic constraints of scatterings. For example, in more realistic
descriptions, high-energy excitations are more long-lived than low-energy ones. When
applying this model to heavy ion collisions, it can only describe the soft bath of
excitations, but not localizes hard modes. Jets evolve by splitting into a lot of soft
particles and low-p⊥ heavy quarks experience only small changes in momentum via
interactions with the medium and undergo a Brownian-like motion. Neither of these
two processes can be expected to be well described in RTA. However, in our study
we focus on the cooling and flow properties of the system, which are collective effects
that are mainly dictated by the soft bath. Hence, we can neglect the dynamics of
hard excitations.

3.2.2 Opacity expansion for dilute systems

The Boltzmann equation as an integro-differential equation is in general too compli-
cated to solve analytically. However analytical solutions can be computed in certain
special cases, like the free-streaming case of a system without interactions

pµ∂µf = 0 , (3.14)

where all particles move on straight lines according to their momentum, so in cartesian
coordinates the solution is given as

f(t, x, p) = f

�
t0, x− p

|p|(t− t0), p

�
. (3.15)

If one wants to describe a system in the weakly interacting regime close to free-
streaming, which corresponds to the limit of small opacities, one may devise an ap-
propriate expansion scheme [74, 75] that allows to find an analytical approximate
solution also for this system. To do this, we expand around the free-streaming limit
corresponding to zero opacity, denoted as f (0), which satisfies Eq. (3.14). The first
order correction f (1) is obtained by approximating the effect of particle collisions by
computing the scattering rate from the zeroth order result.

pµ∂µf
(1) = C[f (0)] (3.16)

The simplification of this equation when compared to the full Boltzmann now lies in
the fact that f (0) is already known and thus the right-hand-side of the equation is fully
determined and just constitutes an inhomogeneous term for the partial differential
equation in Eq. (3.14), which can be treated e.g. with the method of Green’s functions.
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In cartesian coordinates, one obtains the solution

f (1)(t, x, p) =

Z t

t0

dt′
C[f ]

|p|

�
t′, x− p

|p|(t− t′), p
�

. (3.17)

This expansion can be continued by considering in the next step the effect of the
scattering rates of the first order solution. However, in practice typically one stops at
first order because the exact computation of higher order corrections becomes more
complex.

3.3 Hydrodynamics

Relativistic hydrodynamics is an effective macroscopic description based on conserva-
tion laws and a gradient expansion scheme around the equilibrium case. When only
the conservation of energy and momentum is considered, hydrodynamics describes
only the dynamics of the energy-momentum tensor T µν via the conservation equa-
tions

∇µT
µν = 0 . (3.18)

A priori, this is a system of four dynamical equations for a total of ten independent
components of T µν , as it is a symmetric 4×4 matrix. In order to find unique solutions,
some extra equations have to be provided. This should not be surprising, as clearly,
the dynamical behaviour of a fluid depends on its physical properties, as for example
honey does not move in the same way as water does. The additional properties of
the system have to be supplied in the form of equations that relate the independent
components of T µν to each other.

In order to be able to identify things like the local restframe energy density ϵ
or the local flow velocity uµ, which play a huge role in the decomposition of the
energy-momentum tensor, these equations typically have to be defined in a specific
reference frame of the fluid, i.e. a specific choice of ho to define the local restframe,
or equivalently, a choice of how to define the local flow velocity uµ. It should be
noted that while mathematically this choice is arbitrary, as redefinitions shift the
decomposition of T µν only in the presence of gradients and equilibrium definitions are
always the same, however it does have a physical meaning: by choosing a reference
frame, one fixes the frame in which the system will equilibrate [130]. A common
choice is the Landau frame, which defines the local flow velocity as the flow of energy
as expressed by Eq. 3.45, such that energy currents vanish in the local restframe. The
energy-momentum tensor can then be decomposed into different tensor structures
derived from uµ. In the Landau frame, this decomposition takes the following form:

Tµν = ϵuµuν − (P +Π)∆µν + πµν . (3.19)

The term uµuν projects onto the local flow velocity, and ϵ is the local restframe energy
density. ∆µν = gµν − uµuν is a projection onto the orthogonal parts to uµ, i.e. the
spatial directions in the fluid restframe. Thus, P + Π is the physical pressure of the
system, which is divided into a hydrostatic part P and a dynamical part Π, the so-
called bulk pressure. The hydrostatic pressure relates to the local restframe energy
density via an equilibrium equation of state P = P (ϵ), which is one of the additional
equations required to close the system of evolution equations. In our work, P = ϵ/3
for a conformal system. The bulk viscous pressure describes the deviation from the
hydrostatic pressure due to the movement of the fluid. Finally, the shear stress tensor
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πµν is symmetric, traceless and transverse to uµ. It describes the stress due to velocity
differences between neighboring fluid layers.

By construction, hydrodynamics is a coarse-grained macroscopic effective theory,
even more so than kinetic theory in RTA, as it discards information on the momen-
tum distribution of microscopic constituents. Hence it has the same limitation of
being suited only to describe the soft bulk of the system, which however is sufficient
for describing observables related to the collective behaviour. On top of that, by
construction its applicability can only be assured for systems that are close to equi-
librium. Though “non-hydrodynamic” excitations [80, 131, 132], i.e. non-equilibrium
modes that hydrodynamics can not describe, may decay quickly and render hydro-
dynamics applicable within a fraction of the lifetime of the system, one certainly can
not expect it to accurately describe the far-from-equilibrium initial state. Therefore
in practice it is only applied after some “hydrodynamization time” has passed, which
is typically assumed to be O(1 fm/c). The early time behaviour has to be described
in a non-equilibrium time evolution, for example with the KøMPøST-code that is
discussed in Sec. 3.4.

3.3.1 Ideal hydrodynamics

In ideal hydrodynamics, the system is assumed to always be in equilibrium. Micro-
scopically, this assumption means that particle interactions are so frequent, that in
response to any macroscopic change of the system’s state due to fluid motion, they
immediately bring the system into the new associated equilibrium state, i.e. the
interaction rate is assumed to be infinite. For the different components of the energy-
momentum tensor, the assumption of equilibrium means that the pressure is always
fully determined by the equation of state, i.e. the bulk pressure vanishes, and that
the system is fully isotropic and there is no shear stress. Thus, the energy-momentum
tensor is fully determined by ϵ, P and uµ,

Tµν = ϵuµuν − P∆µν , (3.20)

and therefore contains only five independent components. Together with the equation
of state P = P (ϵ), the conservation equations (3.18) now constitute a closed set of
evolution equations.

3.3.2 Viscous hydrodynamics

In viscous hydrodynamics, the quantities Π and πµν are nonzero. Here one no longer
assumes that the microscopic state of the system can immediately respond to changes
due to fluid motion and Π as well as πµν are determined in terms of gradients of
the flow velocity uµ. Conceptually, one collects all independent scalar resp. trace-
less symmetric transverse tensor structures that can be formed with these gradients.
There are different "orders" of viscous hydrodynamics, which refers to the order to
which one performs the expansion in gradients. In the case of the simplest first or-
der hydrodynamics, sometimes referred to as Navier-Stokes hydrodynamics due to its
non-relativistic counterpart, the bulk pressure and shear stress tensor are given as

Π = −ζθ = −ζ∇µu
µ , (3.21)

πµν = 2ησµν = 2η∇⟨µuν⟩ = 2η

�
1

2
∆µ

α∆
ν
β +

1

2
∆ν

α∆
µ
β − 1

3
∆µν∆αβ

�
∇αuβ . (3.22)
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The bulk viscosity ζ and shear viscosity η are properties of the medium that have to
be measured or computed in a more fundamental description of its equilibrium state
and then fed into the hydrodynamic equations. Generally, the coefficients that show
up in the hydrodynamic expansion scheme are referred to as transport coefficients.
In Navier-Stokes hydrodynamics, some excitations violate causality as they propagate
faster than the speed of light. Recently, it has been shown that these non-causalities
can be eliminated in certain choices of the reference frame [130, 133].But this prob-
lem has also led to other formulations of hydrodynamics called Müller-Israel-Stewart
hydrodynamics [134–136] that promote Π and πµν to dynamical quantities with their
own evolution equations

τΠΠ̇+Π = −ζθ + extra terms , (3.23)

τππ̇
⟨µν⟩ + πµν = 2ησµν + extra terms , (3.24)

which introduces the relaxation timescales τΠ and τπ for these quantities as additional
medium properties. The extra terms are again determined in a gradient expansion
scheme according to the type of hydrodynamics that is considered, but can now also
depend on Π and πµν .

In this work, we will apply second order Müller-Israel-Stewart hydrodynamics for
the case of conformal symmetry, which brings simplifications [137] such as vanishing
bulk viscous pressure Π ≡ 0. In this case, the evolution equation for πµν is

τππ̇
⟨µν⟩ + πµν = 2ησµν + 2τππ

⟨µ
λ ων⟩λ − δπππ

µνθ − τπππ
λ⟨µσν⟩

λ + ϕ7π
⟨µ
α πν⟩α , (3.25)

where ωµν is the vorticity tensor, defined as

ωµν =
1

2
(∇µuν −∇νuµ) . (3.26)

This equation again introduces some more transport coefficients δππ, τππ and ϕ7 .
In order to meaningfully compare results from hydrodynamics and kinetic theory in
RTA, which is one of the goals of this work, all transport coefficients must be set to
those of a system that obeys the dynamical laws of said kinetic theory. The next
section briefly explains how to do this.

3.3.3 Obtaining Hydrodynamics from kinetic theory

For this work, only the conceptional relation between kinetic theory and hydrody-
namics is important, but not the details. We will therefore give only a rough outline
of this connection. The main idea is the following: hydrodynamics is an expansion
around equilibrium, which can also be accurately described in a suitable version of
kinetic theory. But for the latter, all medium properties are already determined by
the properties of the microscopic interactions, i.e. by the collision kernel. Therefore,
we can match hydrodynamics to the model description of a given kinetic theory by
computing its transport coefficients. Here, “suitable” means that in the kinetic theory
description, effects that drive the system out of equilibrium, like e.g. expansion, should
be negligible compared to the effect of interactions that drive it towards equilibrium.
Mathematically, one writes

�
pµ∂µ +m

∂

∂pµ
Kµ

�
f =

1

ϵ
C[f ] , (3.27)
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such that interaction rates are large when ϵ is small. We can then consider the time
evolution of a phase space distribution that slightly deviates from the equilibrium
distribution f

(0)
C−E = feq and expand it in ϵ.

f = f
(0)
C−E + ϵf

(1)
C−E + ϵ2f

(2)
C−E + ... (3.28)

This type of expansion is known as Chapman-Enskog expansion. In this setup, the
equilibrium transport properties of the given kinetic theory can be computed. For
RTA, the transport coefficients required in the second order viscous hydrodynamics
scheme we want to employ take on the values [138–140]

τπ = τR , η =
4

5
τRP , δππ =

4τR
3

, τππ =
10τR
7

, ϕ7 = 0 . (3.29)

Generally, when describing any arbitrary system in a kinetic theory model as well as
in hydrodynamics matched to that kinetic theory model, one should thus expect that
the two descriptions agree whenever interaction rates in the kinetic theory model are
large compared to non-equilibrium effects.

3.4 KøMPøST

Since they describe the dynamics of phase space distributions, models based on kinetic
theory a priori have more degrees of freedom than effective macroscopic descriptions
like hydrodynamics. In order to make these models viable for realistic simulations,
some simplifications have to be applied in order to reduce the computational effort.
This is especially true in the case of event-by-event heavy ion collision simulations,
where it is required to run thousands of simulations in a reasonable amount of time to
produce accurate statistics. Since here most of the time evolution can be described in
hydrodynamics, it is sufficient to employ a suitable approximate early time description
for the pre-equilibrium stage that can subsequently be matched to hydro.

The open-source simulation code KøMPøST [141] implements a linearized non-
equilibrium time evolution of the energy-momentum tensor T µν based on the dynamics
of a kinetic theory description. It has been developed as a practical tool for describing
the early-time far-from-equilibrium dynamics of heavy ion collisions, where the sys-
tem has not yet hydrodynamized and a non-equilibrium description is required. The
original version of KøMPøST was based specifically on the effective kinetic theory for
pure glue QCD [142, 143]. To perform accurate comparisons with the other evolution
models used in this paper, a modified version based on the dynamics of RTA was used.
For this, we imported the RTA Green’s functions calculated in [144]. This version of
KøMPøST is available on Github [145].

KøMPøST evolves a given input initial state from an initial time τ0 to a final time
τ in a single propagation step. Conceptionally, the output is expected to describe
a hydrodynamized system and can be used as input for a subsequent hydrodynamic
evolution model. Since the computation of this step involves linearizations in pertur-
bations around a local average value, KøMPøST has a limited range of applicability
in the evolution time.

More specifically, in its default mode with energy perturbations, KøMPøST prop-
agates the energy momentum tensor in the following way: the values at each point
x in the final state are computed from the initial values of T µν at all causally con-
nected points x′ in the initial state, meaning points that fulfill |x − x′| < c(τ − τ0).
The energy-momentum tensor is divided into a spatial average of the causal past and
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Figure 3.1: Approach to the universal attractor curve for the ratio χ = PL/PT of
longitudinal and transverse pressure as a function of the scaling variable w̃ = Tτ

4πη/s

for various initial conditions and values of the specific shear viscosity η/s for a parton
gas simulated in hydrodynamics and kinetic theory (left) and energy E(w̃) as well
as transverse energy fE⊥(w̃) attractor curves for RTA kinetic theory (right). Left

plot adapted from [146].

perturbations around this average:

Tµν
x (τ0,x

′) = T̄µν
x (τ0) + δTµν

x (τ0,x
′) ,

where the subscribt x denotes the fact that the average depends on the position for
which the causal past is considered. The average value is evolved according to the
laws of Bjorken flow dynamics, assuming local homogeneity in the transverse plane
and boost invariance, while the perturbations are propagated in a linear response
scheme:

δTµν(τ,x) =

Z
d2x′ Gµν

αβ(x,x
′, τ, τ0)δTαβ

x (τ0,x
′)
T̄ ττ
x (τ)

T̄ ττ
x (τ0)

. (3.30)

The Green’s functions Gµν
αβ(x,x

′, τ, τ ′) have been computed in the respective under-
lying kinetic theory description and are included in KøMPøST.

Energy perturbations (δT µν) can also be switched off, in which case KøMPøST
propagates only the average energy-momentum tensor taken over the causal past, as
discussed above.

3.5 Bjorken Flow attractor

The dynamics of the medium created in a hadronic collision can be described in many
different models with varying degrees of complexity. Bjorken flow is a simplistic model
description that assumes boost invariance and homogeneity in the transverse plane,
such that the dynamics is restricted to one dimension only. In Bjorken flow, the
energy-momentum tensor is diagonal,

Tµν = diag(ϵ, PT , PT , PL) , (3.31)

where PT is the transverse pressure and PL is the longitudinal pressure. A recent
finding of its theoretical treatment is the realization that conformal Bjorken Flow
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features a universal attractor behaviour [18–33] across different initial states and even
different model descriptions. In particular, for several observables related to pressure
and energy, the time evolution curves of different initial states will quickly collapse
onto a common attractor curve, if the time dependence is expressed via the conformal
scaling variable w̃ defined as

w̃ =
T τ

4πη/s
, (3.32)

where η/s is the specific shear viscosity of the system and T is its (effective) temper-
ature, which itself depends on time, such that the total time dependence is nonlinear.

The left plot in Figure 3.1 shows this collapsing behaviour of time evolutions for
different initial conditions and different specific shear viscosities for the example of
the ratio χ = PL/PT in a parton gas described in kinetic theory (solid lines) as
well as hydrodynamics (dashed lines). The attractor curves plotted in black have a
slightly different early time (w̃ ≪ 1) behaviour in the two different model descriptions.
The early time limit of the curve is χ = 0 for kinetic theory, but in hydrodynamics, it
takes a negative value of χ = −23+

√
505

4 ≈ −0.132 [31, 147]. The (close-to-)equilibrium
behaviour at late times w̃ ≳ 1 is the same in both descriptions and the curves converge.
The fact that longitudinal pressure vanishes at early times was discovered early on
after physicist started modelling hadronic collisions in kinetic theory [148], but the
attractor behaviour was discovered only recently [20].

Similar attractor curves exist also for energy and transverse energy. The existence
of each of these curves is not separate from the others, but rather ties into each other.
As an example, following a discussion in [30] we outline how to relate the attractor
curve of χ to the one for energy.

As can be derived from energy momentum conservation, Bjorken flow follows the
evolution equation

τ∂τ ϵ = −(ϵ+ PL) . (3.33)

If we rewrite χ to PL/ϵ = χ/(χ+ 2) and denote the attractor curve for this quantity
as f(w̃), then on this attractor the evolution equation becomes

τ∂τ ϵ = −ϵ(1 + f(w̃)) . (3.34)

The possibility to write the time derivative of energy as a function of w̃ in this way
directly extends also to the temperature, as T = const.× ϵ1/4. Since w̃ is defined as a
product of time and temperature, this property then allows to rewrite time derivatives
to derivatives in w̃:

τ∂τ = a(w̃)w̃∂w̃ , a(w̃) =
3

4
− 1

4
f(w̃) . (3.35)

Thus, the existence of the attractor curve for χ also implies the existence of an energy
attractor curve, which is the solution of Eq. 3.34 in terms of w̃ and can be obtained
by integration.

ϵ(w̃) = ϵ(w̃0) exp

�
−
Z w̃

w̃0

dw̃

w̃

1 + f(w̃)

a(w̃)

�
(3.36)

To make the late time equilibrium behaviour manifest, it is useful to consider
quantities scaled by a fitting power of time. The attractor curves E(w̃) ∝ τ 4/3ϵ and
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fE⊥(w̃) ∝ τ1/3dE⊥/dη for the case of RTA kinetic theory are shown in the right plot
of Figure 3.1. They interpolate between a constant in the late time equilibrium case
(w̃ ≫ 1) and a power law ∼ w̃γ for early times (w̃ ≪ 1). The exponent γ in this power
law is model dependent, meaning that different model descriptions feature different
pre-equilibrium behaviour of the attractor curve. γ takes on a value of 4/9 in kinetic
theory, which means that dE⊥/dη is constant at early times. More generally, it is
known that kinetic theory features an early time free-streaming period [26].

We will give a more detailed mathematical description of the attractor curve in
Chapter 4, including a discussion of how we apply it to systems with transverse
expansion. In Chapters 5 and 6, we will present some results from this discussion,
however for an understanding of the conceptual idea the basic explanation provided
above is already sufficient.

3.6 Observables

We have discussed how to describe the time evolution of either the phase space density
f or the energy-momentum tensor T µν as the fundamental objects of a given model
description. In order to gain a better physical understanding of the state of the system
at each point in time, we will derive certain observables from these fundamental
quantities that carry specific physical meaning.

As the phase space density is a probability density of microscopic constituents in
phase space, it is fairly straightforward to define momentum-integrated totals of local
momentum observables O(p) as

⟨O⟩ ≡
Z

dPfO , (3.37)

where dP = νeff
√−gd3p/[(2π)3p0] is the generally-covariant integration measure in

momentum space. For example, we can compute the transverse energy per unit ra-
pidity and area in transverse space as the total transverse momentum of all particles.
Naturally, the total transverse energy per unit rapidity dE/dη can then be obtained
via integration over transverse space

R
x⊥

≡
R
d2x⊥.

dE⊥
dηd2x⊥

= ⟨pτp⊥⟩ ⇒ dE⊥
dη

=

Z

x⊥
⟨pτp⊥⟩ . (3.38)

This observable will play a role in defining the initial state in kinetic theory.
Conversely, we can also integrate over space to obtain the momentum distribution

of all particles in the system at fixed proper time τ . in Milne coordinates, the four-
volume transformation entails an extra functional determinant for the 3d hypersurface
integration at fixed proper time τ , such that

dN

d2p⊥dy
=

νeff
(2π)3

Z

x⊥

Z
dη p⊥τ cosh(y − η) f . (3.39)

As in heavy ion collisions, only the final momentum distributions of particles
can be measured, dN/dyd2p⊥(τ → ∞) is closely related to experiment and many
observables are derived from it. As the distribution is observed to be anisotropic in
momentum space, one defines the so-called flow harmonics vn(p⊥) as the normalized
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Fourier coefficients in the azimuthal angle [149–151].

vn(p⊥) =

R
dϕp cos[n(ϕp −Ψn)]

dN
dyd2p⊥R

dϕp
dN

dyd2p⊥

, n ≥ 1. (3.40)

Ψn is the n-th symmetry plane angle defined by the maximum of the n-th harmonic
in the spectrum. Alternatively, one can define the flow harmonics with a complex
weight einϕp and study the real and imaginary part (or sine and cosine part). In
systems without boost symmetry, where the phase space density can depend on y and
η independently instead of just on their difference, the flow harmonics vn may also
depend on y.

In practice, depending on the method of how the distributions are obtained, in
some cases it might be impossible or at least unreasonably hard to obtain a p⊥-
differential theoretical result in the out-of-equilibrium case. Therefore one often con-
siders weighted moments of these functions, e.g. their expectation value under the
particle distribution, which we will refer to as the particle-number-weighted flow har-
monics vNn . In this work, we will mostly consider energy-weighted flow harmonics,
defined as

vEn =

R
x⊥

R d3p
(2π)3

p⊥ einϕp f
R
x⊥

R d3p
(2π)3

p⊥ f
=

R
x⊥

D
(pτ )2

p
1− v2ze

inϕp

E

R
x⊥

D
(pτ )2

p
1− v2z

E , (3.41)

If one wants to compare hydrodynamics and kinetic theory, it is convenient to
define observables on the basis of the energy-momentum tensor T µν , which is the
fundamental dynamical object in hydrodynamics and can be obtained in kinetic theory
as

Tµν = ⟨pµpν⟩ . (3.42)

As a substitute for dE⊥/dη, one may define the integral of the transverse part of the
trace of the energy-momentum tensor, ϵtr ≡ T ττ − τ2T ηη = T xx + T yy, computed as

dEtr

dη
= τ

Z

x⊥
(T xx + T yy), (3.43)

which is equal to the actual transverse energy per rapidity dE⊥/dη whenever the
rapidity component of the particles’ momenta is negligible, pη ≃ 0. Similarly, as a
substitute for the flow harmonics vn, one may define the ellipticity of the energy flow
ϵp in terms of the transverse components of the energy-momentum tensor as [152, 153]

ϵpe
2iΨp =

R
x⊥

(T xx − T yy + 2iT xy)R
x⊥

(T xx + T yy)
, (3.44)

where Ψp is the symmetry plane angle of the elliptic flow ϵp. It is harder to define suit-
able analogues of the other flow harmonics vn with n ̸= 2, since according to Eq. 3.42
the energy-momentum tensor depends quadratically on the momentum components
pµ, while vn depends on a polynomial of the momentum components of degree n, e.g.
v3 ∼ ⟨p3x − 3pxp

2
y⟩ (for Ψ3 = 0). These polynomials are related to the Chebyshev

polynomials Tn [154, Ch. 18] fulfilling cos(nϕ) = Tn(cos(ϕ)).
Defining the local restframe as the frame where energy flow vanishes, we can also

obtain observables that are defined in this restframe. In this case, the local restframe
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energy density ϵ and the local flow velocity uµ can be determined as the timelike
(uµuµ = +1) eigenvalue and -vector of the energy-momentum tensor T µν :

uµT
µν = ϵuν . (3.45)

Now we can also establish the notion of an effective temperature by assuming that ϵ
is the energy density that the system would have if it was in equilibrium and employ
an equation of state ϵ = ϵ(T ) to obtain the effective temperature. As already stated
in Section 3.2.1, we work with the conformal equation of state

ϵ = νeff
π2

30
T 4 . (3.46)

The energy density is often used to quantify the spatial distribution of the system.
After normalization, it can be interpreted as a spatial probability distribution. We
define the energy-weighted spatial average of observables O(τ,x⊥) by

⟨O⟩ϵ (τ) =
R
x⊥

O(τ,x⊥)ϵ(τ,x⊥)R
x⊥

ϵ(τ,x⊥)
. (3.47)

This allows to define several observables related to the geometry of the system. Tech-
nically, these are mostly used to characterize the initial state at τ = τ0, but they can
be computed at arbitrary times. We can define the RMS radius of the system as

R2 =


x⊥

2
�
ϵ
. (3.48)

As we will not examine its time dependence, in the following we will denote by R the
RMS radius of the initial state. Spatial anisotropies of the system are quantified by
the eccentricites [155, 156]

ϵne
inΨn = −



einϕxxn⊥

�
ϵ


xn⊥
�
ϵ

, n ≥ 2 , (3.49)

where ϵn describes the size of modes with n-fold rotational symmetry and takes values
between zero and one, while Ψn is the n-th symmetry plane angle defined by the
direction of the minimum of the corresponding mode. The minus sign is a convention
that will be explained in Sec. 3.8.

Going back to the energy-momentum tensor, we can define its equilibrium part in
the Landau frame as

Tµν
eq = (ϵ+ P )uµuν − Pgµν , (3.50)

where for this work the pressure is given as P = ϵ/3 for a conformal system. Accord-
ingly, the non-equilibrium part, i.e. the shear stress tensor, is given as

πµν = Tµν − Tµν
eq . (3.51)

The local departure from equilibrium can then be characterized in terms of the inverse
Reynolds number,

Re−1(τ,x⊥) =
�
6πµν(τ,x⊥)πµν(τ,x⊥)

ϵ2(τ,x⊥)

�1/2
. (3.52)



3.7. Initial state 29

With the above normalization, Re−1 = 1 when T µν = diag(ϵ, ϵ/2, ϵ/2, 0), correspond-
ing to the initial pre-equilibrium free-streaming limit, which is given in more detail in
Sec. 3.5. This quantity is reduced whenever there are frequent interactions, but can be
increased in expansion, especially in free-streaming. To characterize the average shear
in the entire system, we will use the energy-weighted average



Re−1

�
ϵ
. Similarly, we

will study the average transverse flow velocity given as

⟨u⊥⟩ϵ =
D

u2x + u2y
�1/2E

ϵ
(3.53)

to characterize the rate of transverse expansion.

3.7 Initial state

Of course, dynamical descriptions of hadronic collisions have to be provided with a
suitable initial state. However, its form can not be assessed in experiment and has
to be computed in a theoretical model description. Technically the features of these
models should be tested by comparing simulation results to actual data, but due to the
nonlinear time evolution as well as the uncertainties of the actual detailed properties
of the QGP medium, the initial state is not well constrained by data. Hence, there
are very different models for event-by-event initial states.

Here, we will not go into further detail about the intricacies of initial state models.
As we are interested in the typical behaviour of cooling and development of transverse
flow at different opacities, we neglect event-by-event fluctuations and consider more
well-behaved initial states. In Chapter 5, we will consider an academic form of the
initial condition that is not necessarily realistic, but easy to treat in dynamical models.
Chapter 6 will deal with a smooth initial condition that was obtained as an average
of events. Both will be described in more details in the respective chapters.

One thing that many models of the initial state have in common is that they only
provide an initial energy density profile. Despite the fact that kinetic theory describes
a distribution in 6D phase space, under reasonable assumptions, the initial state is
nevertheless sufficiently determined by specifying ϵ(τ0,x⊥), as we will now argue.

At early times, particles can be assumed to have vanishing longitudinal momen-
tum, pη = 0. This is the case for the early time attractor of Bjorken flow in kinetic
theory, but also emerges in Color Glass Condensate descriptions [157]. Assuming also
boost invariance, the initial condition for the phase space distribution takes the form

f(τ0,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τ0p⊥

dN0

d2x⊥d2p⊥dy
, (3.54)

where the particle density on the right hand side no longer depends on y. Assuming an
isotropic distribution in transverse momentum, it also does not depend on ϕp. Under
the given assumptions, the particle distribution relates to the energy density via

ϵ(τ0,x⊥) =
1

τ0

Z
d2p⊥ p⊥

dN0

d2x⊥d2p⊥dy
. (3.55)

Due to the particularly simple nature of RTA, as will be explained in more detail in
Sec. 5.1.2, we need not specify the remaining dependence on p⊥ and instead choose
to describe a reduced distribution function F given by

F(τ,x⊥,ϕp, y − η) ∝
Z

dp p3f(τ,x⊥,p⊥, y − η) , (3.56)
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Figure 3.2: Sketch of the mechanisms that convert spatial anisotropies in the
energy density distribution to momentum anisotropies in the pictures of hydrody-

namics (left) and kinetic theory (right). Left Figure taken from [165].

such that at initial time

F(τ0,x⊥,ϕp, y − η) ∝ δ(y − η)ϵ(τ0,x⊥) (3.57)

3.8 Relation of Eccentricities and Flow

It is well understood that typically, the main source of the measured momentum
anisotropies in the final state is the systems collective dynamical response to spa-
tial anisotropies in the initial state [149, 155, 158–160]. Technically, the relation
between these anisotropies, as quantified by many kinds of observables even beyond
the eccentricities and flow hamonics we discuss here, have been examined in detail
by studying their correlations in event-by-event simulations [86, 161–164]. But our
work is restricted to idealised initial states, so here, we will only state the underlying
conceptional idea, especially when it comes to nonlinear responses.

In the hydrodynamic picture, this relation can be understood as follows [10]. The
smaller the systems spatial extent in a given direction, the larger the pressure gradient
in that direction. The pressure gradient is what drives the hydrodynamic expansion,
i.e. a larger pressure gradient will cause a larger expansion rate. If the spatial extent
of the system is initially anisotropic, then during its evolution so will be the expansion
rate and therefore also the microscopic momenta of the particles. This is illustrated
by the left part of Fig. 3.2.

The relation can also be understood in the microscopic picture of kinetic the-
ory [75]. A particle that is emitted into a direction where the system has a smaller
spatial extent, then it is less probable that it will scatter on its path and change direc-
tions. Therefore, more particles going into directions of a denser part of the system
are scattered into directions of a more dilute part of the system than the other way
around, causing the final momentum anisotropy. This mechanism is illustrated by the
right schematic in Fig. 3.2.

As discussed in Section 3.6, spatial anisotropies are quantified via the eccentricities
ϵn and momentum anisotropies are measured as the flow harmonics vn. Note that in
the dynamical process described above, the momentum anisotropy develops maxima
in the directions where the spatial distribution had its minima. This is the reason
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why the definition of ϵn in equation 3.49 contains a minus sign. In this way, typically
the vn and ϵn will have the same sign.

The mechanism discussed above describes the immediate response to the intial
state. However, the spatial distribution of the system also evolves in time. For
example, the anisotropy in expansion rate will at later times have an effect back on
the spatial anisotropies of the system. But it is also possible that the initial response
couples again to anisotropies in the system and produce higher order responses [163,
164, 166, 167]. One can expect the initial response to be linear in the initial state
eccentricities and the “response to the response” to be quadratic. It is also possible
that a mixed response to two different initial state eccentricities develops, e.g. a v5 in
response to ϵ2ϵ3. Similarly, there can be even higher order responses that scale with
higher powers of the eccentricities. In particular, in addition to the linear response
of elliptic flow to initial state ellipticity, there can also be an additional contribution
that is cubic in the ellipticity.
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Chapter 4

Early Time Attractor in systems
with Transverse Dynamics

Before studying the global dynamics in hadronic collisions, we first focus on early
times, where the presence of universal behaviour simplifies the dynamics. Under-
standing this behaviour will provide insights into the results obtained in simulations
of the full dynamics.

The attractor behaviour described in Sec. 3.5 a priori only exists in Bjorken flow.
However, it turns out that it can also be used as a local early time approximation
of the dynamics in systems with transverse expansion. This is because before the
onset of transverse expansion, at times τ ≪ R, the system’s dynamics is dominated
by longitudinal expansion and the effects of transverse expansion can be neglected.
Under these conditions, at each point in the transverse plane the system evolves in-
dependently of the transverse neighbourhood and can locally be described by 0+1-D
longitudinally boost-invariant Bjorken flow. After equilibration during this period, the
system always evolves in the same way. And if it is initialized on the attractor, then
its entire time evolution is given by the attractor curve. We will describe the features
of the attractor scaling solution for both the Müller-Israel-Stewart-type second-order
hydrodynamics theory and for conformal kinetic theory in RTA. In Subsection 4.1,
the quantities describing the attractor solutions are introduced. Subsection 4.1.1 and
4.1.2 discuss how the pre-equilibrium evolution impacts the observables of interest,
highlighting the possible discrepancies between RTA, viscous hydrodynamics and ideal
hydrodynamics. Finally, in Subsec. 6.3.2, we discuss how viscous and ideal hydrody-
namics can be brought in agreement with RTA at late times by scaling the initial
conditions.

4.1 Detailed description of the Bjorken flow attractor

The 0+1-D Bjorken flow can be described in terms of the Milne coordiantes (τ, x, y, η),
with respect to which the velocity becomes uµ∂µ = ∂τ . The energy-momentum tensor
takes the diagonal form

Tµν = diag(ϵ, PT , PT , τ
−2PL), (4.1)

where PT and PL are the transverse and longitudinal pressures, respectively. The
shear-stress tensor also becomes diagonal,

πµν = diag

�
0,−1

2
πd,−

1

2
πd,

1

τ2
πd

�
, (4.2)
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where πd can be related to PT and PL via

PT = P − πd
2
, PL = P + πd, (4.3)

such that πd = 2
3(PL − PT ). The observable of interest for the following section are

the inverse Reynolds number defined in Eq. (3.52), and the sum ϵtr = T xx + T yy,
which become:

Re−1 = −3πd
ϵ

, ϵtr =
2ϵ

3
− πd =

2ϵ

3
(1 + Re−1). (4.4)

The evolution of the energy density ϵ is governed by the conservation equation
∇µT

µν , where ∇µ is the covariant derivative, which reduces to

τ
∂ϵ

∂τ
+

4

3
ϵ+ πd = 0. (4.5)

In ideal hydrodynamics, πd = 0 and τ4/3ϵ(τ) = τ
4/3
0 ϵ0, where ϵ0 is the energy density

at initial time τ0.
In RTA, the dynamics of πd is governed directly by the Boltzmann equation. In

viscous hydrodynamics, the evolution of πd can be found from Eq. (3.25) and reads:

τ
∂πd
∂τ

+

�
λ+

4πw̃

5
+

2πw̃

5
ϕ7πd

�
πd +

16ϵ

45
= 0, (4.6)

where w̃ is the conformal parameter,

w̃ =
5τ

4πτπ
=

τT

4πη/s
. (4.7)

In the above, s = (ϵ + P )/T is the entropy density for an ultrarelativistic gas at
vanishing chemical potential, while η = 4

5τπP , as shown in Eq. (3.29). In Eq. (4.6),
we introduced the notation

λ =
δππ
τπ

+
τππ
3τπ

, (4.8)

which evaluates to 38/21 when using the values for the second-order transport coef-
ficients given in Eq. (3.29). We note that in the original MIS theory, λ evaluates to
4/3, while the value 31/15 was advocated in Ref. [31] in order to mimic the early time
attractor of RTA.

Equations (4.5) and (4.6) admit scaling solutions with respect to the conformal
parameter w̃. To see this, we note that the time derivative of w̃ satisfies

τ
dw̃

dτ
= w̃

�
2

3
− fπ

4

�
, (4.9)

where we defined
fπ =

πd
ϵ
. (4.10)

Assuming now that fπ depends only on w̃, Eq. (4.6) becomes

w̃

�
2

3
− fπ

4

�
dfπ
dw̃

+
16

45
+

�
λ− 4

3
+

4πw̃

5
+

2πw̃

5
ϕ7ϵfπ − fπ

�
fπ = 0, (4.11)
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Figure 4.1: Attractor curves for the scaling functions (top) Re−1 [cf. Eq. (4.4)];
and (bottom) E(w̃) [upper two curves, light colors, cf. Eq. (4.15)] and Etr(w̃) [lower
two curves, dark colors, cf. Eq. (4.17)], obtained for RTA (blue) and for second-
order hydrodynamics (green). The large-w̃ asymptotics are shown with dashed gray
curves. The small-w̃ asymptotics are shown with black and red dashed curves for

RTA and hydro, respectively.

where ϕ7ϵ = 27/70 evaluates to a constant according to Eq. (3.29). Demanding that
fπ remains finite when w̃ → 0, its early-time behavior can be obtained as

fπ(w̃ ≪ 1) = fπ;0 + fπ;1w̃ +O(w̃2) + . . . , (4.12)

where

fπ;0 =
1

2


λ− 4

3
−
s�

λ− 4

3

�2

+
64

45


 ,

fπ;1 =
16π
25 f2

π;0

(fπ;0 − 4
15)

2 + 16
75

�
1 +

1

2
ϕ7ϵfπ;0

�
. (4.13)

When λ = 38/21, we find fπ;0 = 1
105(25 − 3

√
505) ≃ −0.404, which is different from

the limit −1/3 in kinetic theory1. At large values of w̃, fπ(w̃) behaves like

fπ(w̃ ≫ 1) = − 4

9πw̃
+O(w̃−2), (4.14)

which is the leading order gradient expansion [20] and therefore valid in both viscous
hydrodynamics and in RTA. Due to the relations in Eq. (4.4), our observable Re−1 =
−3fπ also exhibits attractor behaviour. Its attractor curve is represented as a function
of w̃ in the top panel of Fig. 4.1. Its asymptotic forms at small and large w̃ can be
found from Eqs. (4.12) and (4.14), respectively.

1Expressing λ = fπ;0 +
4
3
− 16

45fπ;0
, it can be seen that fπ;0 = −1/3 leads to λ = 31/15, as pointed

out in Ref. [31].
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We now turn to the energy equation, Eq. (4.5). On the attractor, when fπ depends
only on w̃, it is possible to write (cf. [25, 33])

τ4/3ϵ(τ) =
τ
4/3
0 ϵ0
E(w̃0)

E(w̃), (4.15)

where the scaling function E(w̃) satisfies

w̃

�
2

3
− fπ

4

�
dE
dw̃

+ fπE = 0. (4.16)

Due to Eq. (4.4), ϵtr also admits a scaling solution,

τ4/3ϵtr(τ) =
τ
4/3
0 ϵ0
E(w̃0)

Etr(w̃), Etr(w̃) =

�
2

3
− fπ(w̃)

4

�
E(w̃). (4.17)

For w̃ ≪ 1, E(w̃) can be obtained as

E(w̃ ≪ 1) = C−1
∞ w̃γ(1 + E1w̃ + . . . ), (4.18)

where the exponent γ and the correction E1 are given by

γ =
12fπ;0

3fπ;0 − 8
, E1 = −

32
3 fπ;1

(fπ;0 − 8
3)

2
. (4.19)

The constant C∞ appearing in Eq. (4.18) is taken such that limw̃→∞ E(w̃) = 1, in
which case E has the following late-time asymptotic behavior:

E(w̃ ≫ 1) = 1− 2

3πw̃
. (4.20)

In the case of ideal hydrodynamics, obviously fπ = 0 (such that fπ;0 = γ = 0) and
E(w̃) = C∞ = 1. The functions E(w̃) and Etr(w̃) are shown in the bottom panel of
Fig. 4.1 for both viscous hydrodynamics and for kinetic theory. The normalization
factor C∞ can be obtained in each theory by computing the attractor curve [25]. For
completeness, we list below the values of γ and C∞ in the relevant theories:

RTA : γ =
4

9
, C∞ ≃ 0.88, (4.21a)

Visc. Hydro : γ =

√
505− 13

18
, C∞ ≃ 0.82, (4.21b)

Ideal Hydro : γ = 0, C∞ = 1. (4.21c)

Due to the normalization limw̃→∞ E(w̃) = 1, the quantities τ−2/3w̃ and τ4/3ϵ can
be rewritten as

τ−2/3w̃ = (τ−2/3w̃)∞E1/4(w̃), (4.22a)

τ4/3ϵ = (τ4/3ϵ)∞E(w̃), (4.22b)
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where (τ−2/3w̃)∞ and (τ4/3ϵ)∞ represent the corresponding asymptotic, late-time
hydrodynamic limits, satisfying

(τ−2/3w̃)∞ =
(τ4/3ϵ)

1/4
∞

a1/44πη/s
, (τ4/3ϵ)∞ =

τ
4/3
0 ϵ0
E(w̃0)

. (4.23)

Taking now the initial time such that w̃0 ≪ 1, Eq. (4.18) can be used to obtain

(τ4/3ϵ)∞ ≃ C∞

�
4πη

s
a1/4

�γ �
τ
( 4
3
−γ)/(1−γ/4)

0 ϵ0

�1−γ/4

. (4.24)

Equation (4.24) tells us that the equilibration dynamics introduce a nontrivial relation
between energy densities in equilibrium and in the initial state, as the dependence is
nonlinear and the exponents depend on the model description, which was one of the
main points of Ref. [25].

In the pre-equilibrium regime, w̃ ≪ 1. Under the early-time approximation (4.18),
w̃ can be written in terms of (τ−2/3w̃)∞ as

w̃ ≃ τ
2
3
/(1−γ/4)

h
C−1/4
∞ (τ−2/3w̃)∞

i1/(1−γ/4)
, (4.25)

which allows ϵ(w̃ ≪ 1) to be obtained as

ϵ(w̃ ≪ 1) ≃ τ (γ−
4
3
)/(1−γ/4)

"
C−1
∞

�
4πη

s
a1/4

�−γ

(τ4/3ϵ)∞

#1/(1−γ/4)

. (4.26)

Substituting the expression (4.24) for (τ 4/3ϵ)∞ manifestly shows that τ (
4
3
−γ)/(1−γ/4)ϵ

becomes independent of τ as τ → 0:

ϵ(w̃ ≪ 1) ≃
�τ0
τ

�( 4
3
−γ)/(1− γ

4
)
ϵ0. (4.27)

4.1.1 Pre-equilibrium evolution

We now consider a system which is no longer homogeneous in the transverse plane,
such that the energy density becomes a function of both τ and x⊥, ϵ ≡ ϵ(τ,x⊥). At
early times τ ≪ R we can neglect transverse dynamics and describe the dynamics
locally by Bjorken flow (we will discuss early-time transverse expansion effects on the
build-up of flow in the Subsec. 4.1.2). Under this approximation, at each point x⊥
of the transverse plane, we can assume that ϵ(τ,x⊥) follows an evolution along the
attractor curve according to the local value of the conformal variable, w̃ ≡ w̃(τ,x⊥).
Morevoer, we consider that w̃0(x⊥) ≪ 1 throughout the system, such that the full
pre-equilibrium evolution is captured during the system’s evolution.

Neglecting the dynamics in the transverse plane, such that T xx = T yy = 1
2ϵtr,

dEtr/dη defined in Eq. (3.43) can be written as

dEtr

dη
= τ

Z

x⊥

�
2

3
− fπ

�
ϵ, (4.28)
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where Eq. (4.4) was employed to replace ϵtr and fπ = −Re−1/3. Using now Eqs. (4.22b)
and (4.24) to replace ϵ, we arrive at

dEtr

dη
= τ−1/3a

�
4πη

s

�γ Z

x⊥

�
τ
( 4
3
−γ)/(1−γ/4)

0

ϵ0
a

�1− γ
4
�
2

3
− fπ

�
C∞E . (4.29)

The above equation can be employed to estimate the evolution of dEtr/dη due solely
to longitudinal expansion over the whole range of τ .

At a fixed value of τ , the conformal parameter w̃ spans the interval 0 (reached
at infinitely large distances from the system’s center of mass) up to the value w̃max

corresponding to the maximum value of the temperature. For sufficiently small values
of τ , w̃max ≪ 1 and Eqs. (4.12), (4.27) can be used to approximate fπ and ϵ, leading
to

dEtr

dη
≃

�τ0
τ

� 1
3
(1−9γ/4)/(1−γ/4) dE0

tr

dη
. (4.30)

The above relation shows that in RTA (γ = 4/9), dEtr/dη remains constant during
pre-equilibrium. Conversely, in viscous hydrodynamics, γ > 4/9 and consequently
dEtr/dη increases with time. As expected, in ideal hydrodynamics, dEtr/dη decreases
as τ−1/3.

In the limit w̃ ≫ 1, fπ ∼ w̃−1 and E ≃ 1, as shown in Eqs. (4.14) and (4.20),
such that τ 4/3ϵ can be approximated by (τ 4/3ϵ)∞ by virtue of Eq. (4.22b). Using
Eq. (4.24), dEtr/dη reduces to

dEtr

dη
≃ 2τ−1/3

3
C∞

�
4πη

s
a1/4

�γ

τ
4
3
−γ

0

Z

x⊥
ϵ
1−γ/4
0 . (4.31)

The above equation shows that at late times, dEtr/dη decrease as τ−1/3. The amount
of energy available at a given time τ depends explicitly on the dynamical theory (ideal
and viscous hydrodynamics, RTA).

We now consider another important effect arising due to the pre-equilibrium evo-
lution, namely inhomogeneous cooling. During pre-equilibrium, neighbouring points
in the transverse plane undergo cooling at differing rates according to their local at-
tractors. As pointed out in Refs. [1, 25], the characteristics of the inhomogeneities in
the transverse plane change during pre-equilibrium, as can be seen by looking at the
eccentricity ϵn, defined as

ϵn = −

Z

x⊥
xn⊥ϵ cos[n(ϕx −Ψn)]

Z

x⊥
xn⊥ϵ

(4.32)

When w̃ ≪ 1, Eq. (4.27) can be employed to show that ϵn(τ) ≃ ϵn(τ0) and the
eccentricities ϵn remain constant during pre-equilibrium. When w̃ ≫ 1, ϵn is modified
to

ϵn ≃ −

Z

x⊥
xn⊥ϵ

1−γ/4
0 cos[n(ϕx −Ψn)]

Z

x⊥
xn⊥ϵ

1−γ/4
0

. (4.33)

The above relation shows that inhomogeneous cooling leads to modifications of all
eccentricities of the initial profile, except in the case of ideal hydrodynamics (γ = 0).

The effects of the different behaviour for global and inhomogeneous cooling in
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Figure 4.2: Early time evolution of the transverse profile of the restframe energy
density τϵ for an example event in the 30-40% centrality class of PbPb collisions
in naive viscous hydrodynamics (top), kinetic theory (middle) and scaled viscous

hydrodynamics (bottom) at an opacity 4πη/s = 0.05.
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different model descriptions are illustrated in Fig. 4.2. It shows the pre-equilibrium
evolution of the energy density profile multiplied by the Bjorken time, τϵ, for an
example event in the 30-40% centrality class of PbPb collisions in kinetic theory and
viscous hydrodynamics with either the same or a scaled initial condition. At very early
times, this quantity is constant in kinetic theory, but later it decreases slightly due to
equilibration. Meanwhile, in hydrodynamics it increases first before transitioning to
a decreasing trend. The speed of these transitions in both cases depends on the local
temperature, meaning that e.g. the peak values will start decreasing earlier than the
values in the outskirts of the system, i.e. the system cools inhomogeneously. After
equilibration, the time evolution will uniformly follow the same power law in both
models, but the differences due to the different pre-equilibrium evolution will persist.
But the knowledge of the local attractor scaling behaviour allows to anticipate the
differences between kinetic theory and hydrodynamics and apply a corresponding local
scaling prescription to the initial condition of hydro. It then initially takes smaller
values than in kinetic theory but dynamically approaches it during pre-equilibrium
and reaches agreement after equilibration. This initialization scheme is explained in
more detail in Sec. 6.3.2 of Chapter 6 which discusses comparisons of kinetic theory
and hydrodynamics.

The local scaling result can also be applied to the more common measure of trans-
verse energy, dE⊥/dη. While this quantity does not exist in hydrodynamics, a similar
scaling law to Eq. 4.15 can be derived in kinetic theory:

τ1/3
dE⊥

d2x⊥dη
= (4πη/s)4/9a1/9(ϵτ)

8/9
0 C∞ fE⊥(w̃) (4.34)

where the early time behaviour of fE⊥ is the same as that of E as longitudinal pressure
vanishes, while the late time constant value that it approaches can be deduced from
an intregal of the thermal equilibrium distribution.

fE⊥(w̃ ≫ 1) =
π

4
, fE⊥(w̃ ≪ 1) = C−1

∞ w̃4/9 . (4.35)

In the same way as e and dEtr/dη, the total dE⊥/dη can be obtained by transverse
integration over local Bjorken flows that were propagated on their attractor according
to the local value of the scaling variable w̃(τ,x⊥).

dE⊥
dη

= τ−1/3(4πη/s)4/9a1/9C∞

Z

x⊥
fE⊥(w̃(τ,x⊥)) (ϵτ)

8/9
0 (x⊥) . (4.36)

The early and late time behaviour of fE⊥ translate to early and late time be-
haviour of the integrated quantity dE⊥/dη in the cases where the majority of the
system (in an energy density weighted sense) resides in the respective limiting cases.
For γ̂(τ/R)3/4 ≪ 1, the system is free-streaming and dE⊥/dη is constant, while for
γ̂(τ/R)3/4 ≫ 1 the majority of the system is in equilibrium and dE⊥/dη ∝ τ−1/3.
The full result for the late time limit is given as

dE⊥/dη
dE0

⊥/dη
=

9

8

�
4π

5γ̂

�4/9�R

τ

�1/3

C∞fE⊥(∞) , (4.37)

which also means that in Bjorken flow, dE⊥/dη decreases with increasing opacity
according to a power law ∝ γ̂−4/9.



4.1. Detailed description of the Bjorken flow attractor 41

4.1.2 Pre-flow estimation

We now estimate the build-up of flow during the pre-equilibrium evolution, which we
quantify via the observable ⟨u⊥⟩ϵ defined in Eq. (3.53). The basis of our analysis is
to consider that the transverse dynamics represent a small perturbation on top of the
purely-longitudinal dynamics discussed in Subsecs. 4.1 and 4.1.1, which we consider to
be dominant. The idea of this calculation is similar to the one presented in Ref. [168].

At early times τ ≪ R, when the transverse flow is negligible, we can write T µν =
Tµν
B + δTµν , where T µν

B = diag(ϵB, PB;T , PB;T , PB;L) is the background (Bjorken)
solution of the local, equivalent 0 + 1-D system (we also consider that at initial time,
w̃0 ≪ 1 throughout the transverse plane). Further assuming that δT µν is small and
imposing the Landau frame condition, T µ

ν uν = ϵuµ, we write uµ = uµB + δuµ and
ϵ = ϵB + δϵ and find

δϵ = δT ττ , δui =
δT τ i

ϵB + PB;T
, (4.38)

while δuτ = 0 as required by uµBδuµ = 0. Thus, the flow build-up can be estimated
from the build-up of δT τ i.

We can now derive a dynamical equation for T τ i via the conservation equation
∇µT

µν = 0, which in a general coordinate system reads

∇µT
µν = ∂µT

µν + Γµ
λµT

λν + Γν
λµT

µλ , (4.39)

where Γλ
µν = 1

2g
λρ(∂νgρµ+∂µgρν−∂ρgµν) are the Christoffel symbols. In the Bjorken

coordinate system (τ, x, y, η), the only non-vanishing Christoffel symbols are Γτ
ηη = τ

and Γη
τη = Γη

ητ = τ−1, such that the equation for ν = i becomes:

1

τ

∂(τT τ i)

∂τ
+ ∂jT

ij = 0 . (4.40)

Splitting the energy-momentum tensor into a local Bjorken flow part and a small
perturbation as discussed above, we find:

1

τ

∂(τδT τ i)

∂τ
+ ∂iPB;T + ∂jδT

ij = 0 . (4.41)

Noting that δT ij represents a higher-order correction, the leading-order contribution
to δT τ i can be obtained by solving

∂(τδT τ i)

∂τ
≃ −τ∂iPB;T . (4.42)

To leading order, PB;T evolves according to the local Bjorken attractor, such that
PB;T ≃ ϵB


1
3 − 1

2fπ;B
�
. Using Eq. (4.22b) to replace ϵB, the spatial gradient of PB;T

can be obtained as:

∂iPT

PT
=

∂i(τ
4/3ϵ)∞

(τ4/3ϵ)∞
+

 
E ′

E −
1
2f

′
π

1
3 − 1

2fπ

!
∂iw̃, (4.43)

where the prime denotes differentiation with respect to w̃. Here and henceforth, we
will drop the B subscript for brevity, keeping in mind that all instances of PT , ϵ, fπ
and the corresponding conformal variable w̃ are evaluated according to the background
0 + 1-D Bjorken attractor.

Since (τ4/3ϵ)∞ depends on the transverse coordinates only through the initial
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profile [see Eq. (4.24)], the first term on the right-hand side of the above relation
evaluates in the limit w̃0 ≪ 1 to

∂i(τ
4/3ϵ)∞

(τ4/3ϵ)∞
=

�
1− γ

4

� ∂iϵ0
ϵ0

. (4.44)

The gradient of w̃ appearing in Eq. (4.43) can be written in terms of that of (τ−2/3w̃)∞
starting from Eq. (4.22a),

∂iw̃

w̃
=

�
1− w̃E ′

4E

�−1 ∂i(τ
−2/3w̃)∞

(τ−2/3w̃)∞

=
1

4

�
1− γ

4

��
1− w̃E ′

4E

�−1 ∂iϵ0
ϵ0

, (4.45)

where the equality on the second line is established using the relations (4.23) and
(4.44). Substituting Eqs. (4.44) and (4.45) into Eq. (4.43) gives

∂iPT

PT
=

1− γ/4

1− w̃E ′
4E

 
1− w̃f ′

π
8
3 − 4fπ

!
∂iϵ0
ϵ0

. (4.46)

Substituting Eq. (4.46) in Eq. (4.42) and integrating with respect to τ , we arrive at

δT τ i = −1

τ

�
1− γ

4

� ∂iϵ0
ϵ0

Z τ

τ0

dτ
1
3 − 1

2fπ − w̃
8 f

′
π

1− w̃
4E E ′ τϵ . (4.47)

Considering now that w̃ ≪ 1 throughout the system, we can use Eqs. (4.18), (4.12)
and (4.27) to approximate fπ ≃ fπ;0 = −(2γ/3)/(1 − γ/4), E ≃ C−1

∞ w̃γ and ϵ =
(τ0/τ)

2−αϵ0, where α = (γ+4/3)/[2(1−γ/4)], which reduces to α = 2/3, 1 and 1.071
in ideal hydro, RTA and viscous hydro, respectively. To leading order, we find

τ2−αδT τ i = −τ

2

h
1−

�τ0
τ

�αi
∂i(τ

2−α
0 ϵ0), (4.48)

which allows the macroscopic velocity to be estimated as

δui(w̃ ≪ 1) ≃ −3τ

8

�
1− γ

4

� h
1−

�τ0
τ

�αi ∂iϵ0
ϵ0

. (4.49)

As expected, the flow velocity is driven by the gradients of the initial energy density
profile. In addition, when τ ≫ τ0, δui exhibits a linear increase with τ , independently
of the value of γ. The prefactor governing the overall amplitude of δui is however
γ-dependent. We can now estimate the early-time evolution of ⟨u⊥⟩ϵ, defined in
Eq. (3.53), as follows:

⟨u⊥⟩ϵ,early ≃ 3τ

8

�
1− γ

4

� h
1−

�τ0
τ

�αi�Z

x⊥
ϵ0

�−1 Z

x⊥
|∇⊥ϵ0|, (4.50)

where |∇⊥ϵ0| = [(∂xϵ0)
2 + (∂yϵ0)

2]1/2.
In general, the time dependence of the integrand in Eq. (4.47) is too compli-

cated to integrate analytically. But it again takes a simple form in the Bjorken flow
equilibrium stage, where τ 4/3PB;T ≃ 1

3(τ
4/3ϵ)∞. At late times, when the duration of

pre-equilibrium is small compared to the elapsed time, its contribution in the time
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integration is negligible and δT τ i and δui asymptote to

δT τ i(w̃ ≫ 1) ≃ − 1

2τ1/3

�
1−

�τ0
τ

�2/3
�
∂i(τ

4/3ϵ)∞, (4.51a)

δui(w̃ ≫ 1) ≃ −3τ

8

�
1−

�τ0
τ

�2/3
�
∂i(τ

4/3ϵ)∞
(τ4/3ϵ)∞

, (4.51b)

such that ⟨u⊥⟩ϵ becomes

⟨u⊥⟩ϵ,late ≃
3τ

8

�
1−

�τ0
τ

�2/3
� R

x⊥
|∇⊥ϵ

1−γ/4
0 |

R
x⊥

ϵ
1−γ/4
0

. (4.52)

Note that the above equation was derived under the assumption that δui is small and
thus holds only when the system hydrodynamizes before transverse expansion sets in.
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Chapter 5

Development of transverse flow at
small and large opacities

We will now employ the RTA Boltzmann effective kinetic theory as described in Sec-
tion 3.2.1 to study the space-time dynamics and development of transverse flow in
small and large collision systems. Our simplified setup is introduced and discussed
in Section 5.1.1. We perform (semi-)analytic calculations to leading order in opacity
in Sec. 5.2 and subsequently in Sec. 5.3 develop two different numerical schemes that
allow us to study the evolution of the system all the way from very low to very high
opacity. Numerical results are presented in Sec. 5.4, where we analyze the longitudinal
cooling and flow response in kinetic theory as a function of opacity and compare it to
analogous calculations in ideal and viscous hydrodynamics. Sec. 5.5 provides a short
discussion of the results of this Chapter. Appendices A-D contain additional details
and explicit expressions for the (semi-) analytic calculations.

5.1 Effective kinetic description of anisotropic flow

5.1.1 Setup

We will describe a boost invariant system with vanishing initial momentum anisotropies
via RTA kinetic theory as described in Chapter 3, i.e. we describe the time evolution
of the phase space distribution f via

pµ∂µf = −pµu
µ

τR

�
f − feq

�
pµu

µ

T

��
, (5.1)

where we choose a temperature dependent relaxation time

τR =
5η/s

T
. (5.2)

As described in Sec. 3.7, the initial condition we consider is of the form

f(τ0,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τ0p⊥

dN0

d2x⊥d2p⊥dy
, (5.3)

which has vanishing longitudinal pressure (T η
η = 0). Strikingly, it can be shown

(c.f. Sec. 5.1.2) that – due to the particularly simple nature of RTA – certain energy
weighted observables do not depend on a particular form of the (isotropic) momentum
distribution dN0

d2x⊥d2p⊥dy
[80], and we will therefore not specify it further. Instead the
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dynamics is entirely described by the initial energy density distribution, which for the
initial conditions in Eq. (5.3) is determined by1

ϵ(τ0,x⊥) =
1

τ0

Z
d2p⊥ p⊥

dN0

d2x⊥d2p⊥dy
. (5.4)

We take the initial energy density ϵ(τ0,x⊥) as a superposition of an isotropic back-
ground ϵ̄(τ0, x⊥) depending only on x⊥ = |x⊥| and an anisotropic component δϵ(τ0,x⊥),
i.e.

ϵ(τ0,x⊥) = ϵ̄(τ0, x⊥) + δϵ(τ0,x⊥) . (5.5)

We follow previous works [15, 77] and consider the background to be of a rotationally
symmetric Gaussian shape

ϵ̄(τ0, x⊥) =
1

πR2τ0

dE
(0)
⊥

dη
exp

�
−x2⊥
R2

�
, (5.6)

where R denotes the transverse system size and dE
(0)
⊥

dη denotes the initial energy per
unit rapidity. Similarly, the anisotropic perturbations are taken as2

δϵ(τ0,x⊥) = ϵ̄(τ0, x⊥) δn exp
�
−α

x2⊥
R2

��x⊥
R

�n
cos(nϕ

(n)
x⊥n⊥) . (5.7)

such that upon integrating over the transverse coordinates x⊥ the perturbations do
not contribute to the total energy. By ϕ

(n)
x⊥n⊥ , we denote the angle

ϕ
(n)
x⊥n⊥ = ϕx −Ψn , (5.8)

where ϕx is the position space azimuthal angle, i.e. ϕx = arctan(x2/x1), and Ψn is
the symmetry plane angle of the n-th order angular harmonic mode. To compactify
the notation, in the following we will drop the superscript (n) and write ϕx⊥n⊥ . We
note that in accordance with Eq. (5.7), we will restrict ourselves to including only
one anisotropic mode at a time, which means that we need not specify Ψn (or rather
the relative angles between different symmetry planes). We leave the parameter α
unspecified for analytical calculations, and if not stated otherwise employ α = 1/2
when presenting numerical results.

By varying the amplitude δn of the anistropic perturbations, we can adjust the
eccentricities ϵn of the initial state energy distribution. They can be computed ana-
lytically for our form of the initial condition. Defining ᾱ = 1 + α, the results are

ϵn = −δn
n!

2Γ(n2 + 1)
ᾱ−n−1 . (5.9)

Values of the ratio ϵn/δn for n = 2, · · · , 6 in the case α = 1
2 are summarized in

Table 5.1, along with the maximally allowed values ϵmax
n for which a positive energy

density is retained throughout the entire transverse plane.
1Strictly speaking, the integration in Eq. (5.4) yields a density in d2x⊥dy. However, in the boost-

invariant case, the phase-space distribution f only depends on y − η, meaning that integration over
y and η is interchangeable and densities w.r.t.+ dy and dη are identical.

2Note that the anisotropic perturbations contains a variance modification factor α; a similar factor
in the isotropic Gaussian could always be absorbed into the definition of R.
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n 2 3 4 5 6
ϵn/δn − 8

27 − 64
81

√
π

−64
81 − 2048

729
√
π

−2560
729

ϵmax
n 0.4027 0.3845 0.3649 0.3454 0.3265

Table 5.1: Eccentricities ϵn/δn and maximum allowed eccentricity ϵmax
n for which

positivity of the initial energy density is satisfied.

5.1.2 Scaling properties

Based on the above setup, the development of anisotropic flow in small systems con-
stitutes a complicated multi-scale problem, which in general is sensitive to the typical
energy of quasi-particles Qs, the total energy per unit rapidity dE

(0)
⊥ /dη, the system

size R, as well as the dimensionless coupling strength η/s. However, due to the partic-
ular simplicity of the conformal relaxation time approximation in Eq. (5.1), the entire
dependence on these quantities can be expressed in terms of a single dimensionless
opacity parameter γ̂ [80], as we will now demonstrate.

The starting point is the Boltzmann equation (5.1), in which we assume that
the phase-space distribution f(x, p) can be expressed as an explicit function of the
curvilinear coordinates τ and x⊥, as well as of the momentum space coordinates pτ ,
vz and ϕp, defined via

�
pτ

pη

�
= pτ

�
1

τ−1vz

�
, p⊥ = pτ

p
1− v2z

�
cosϕp

sinϕp

�
. (5.10)

In this case, the Boltzmann equation (5.1) reduces to [80]
�
∂τ + v⊥ ·∇⊥ − vz(1− v2z)

τ
∂vz −

v2zp
τ

τ
∂pτ

�
f = −

�
5
η

s

�−1
T [f ]vµuµ[f ](f − feq[f ]),

(5.11)
where we denote vµ = pµ/pτ , while T and uµ are determined from the phase-space
distribution f via Landau matching, as described in the previous section.

Now the general strategy to establish the scaling properties of the system is to first
integrate out the momentum dependence and subsequently express all quantities in
terms of dimensionless variables. Since the Landau matching condition in Eq. (3.45)
only requires the knowledge of energy weighted moments of the phase-space distribu-
tion, we reformulate the problem in terms of the reduced distribution 3

F(τ,x⊥;ϕp, vz) =
νeff πR2 τ

(2π)3

 
dE

(0)
⊥

dη

!−1 Z ∞

0
dpτ (pτ )3f(τ,x⊥; p

τ ,ϕp, vz). (5.12)

where the constant prefactor is simply chosen to cancel explicit dependencies on νeff

and dE
(0)
⊥

dη in the resulting equations. Since Eq. (5.12) takes into account the correct
energy (pτ ) weigthing, the energy momentum tensor T µν can simply be expressed in
terms of the reduced distribution as

Tµν(τ,x⊥) =
1

τR2

dE
(0)
⊥

dη

Z
dΩpv

µvνF(τ,x⊥;ϕp, vz), (5.13)

3Note that our definition for F differs from the one in Ref. [80] by a factor of τ , which is introduced
in order to absorb trivial effects of the longitudinal expansion.
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where dΩp = dvzdϕp denotes the solid angle element in momentum space. By multi-
plying Eq. (5.11) with the appropriate pre-factors and performing the integration in
Eq. (5.12), we then arrive at

�
∂̃τ + v⃗⊥ · ∂̃x⃗⊥ − vz(1− v2z)

τ̃
∂vz +

4v2z − 1

τ̃

�
F

= −γ̂vµuµ[F ] τ̃−1/4T̃ [F ] (F − Feq[F ]) , (5.14)

where all quantities denoted with a tilde ˜ are explicitly dimensionless and defined as
follows. Dimensionless coordinates are expressed with respect to the system size R as

τ̃ = τ/R, x̃⊥ = x⊥/R, (5.15)

while the dimensionless energy density ϵ̃ and temperature T̃ of the system are defined
according to

ϵ̃ =
τπR2

dE
(0)
⊥ /dη

ϵ , T̃ =

 
τπR2 π2

30 νeff

dE
(0)
⊥ /dη

!1/4

T . (5.16)

Defining the stress-energy tensor with respect to the same non-dimensionalization
employed for the energy density, we have

eTµν =
τπR2

dE
(0)
⊥ /dη

Tµν =

Z
dΩpv

µvνF (5.17)

such that the Landau macthing contion in Eq. (3.45) reduces to

uν eTµν = ϵ̃uµ , (5.18)

and the equation of state takes the particularly simple form ϵ̃ = T̃ 4 in terms of the
dimensionless variables. By considering the fact that the local equilibrium distribution
is determined as feq(x, p) = feq[p

τ (v · u)/T ] , the corresponding distribution Feq can
be expressed as

Feq =
νeff πR2 τ

(2π)3

 
dE

(0)
⊥

dη

!−1
T 4

(u · v)4
Z ∞

0
dx x3 feq(x) , (5.19)

where the last integral can be computed in terms of the energy density ϵ as
Z ∞

0
dx x3 feq(x) =

(2π)3ϵ

4π νeff T 4
(5.20)

such that Feq takes the simple form

Feq =
ϵ̃

4π (u · v)4 . (5.21)

Similarly, the initial condition for F can also be obtained by integrating Eq. (5.3),
where assuming an azimuthally isotropic momentum distribution, one can express F
in terms of the initial energy density as

F(τ̃0, x̃⊥,ϕp, vz) =
δ(vz)

2π
ϵ̃(τ̃0, x̃⊥) , (5.22)
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such that the pre-factors in the definition of ϵ̃(τ̃0, x̃⊥) in Eq. (5.16) cancel with the
ones in Eq. (5.12).

By performing the above transformations, all dependencies on the system size R,

initial energy dE
(0)
⊥

dη and number of degrees of freedom νeff have thus been subsumed
into a single dimensionless opactiy parameter

γ̂ =
�
5
η

s

�−1
R3/4

 
1

πR2 π2

30 νeff

dE
(0)
⊥

dη

!1/4

. (5.23)

which appears on the right hand side of Eq. (5.14) and controls the relaxation towards
equilibrium. In order to get an idea of the typical magnitude of γ̂, we can estimate
its value as

γ̂ ≈ 0.88

�
η/s

0.16

�−1� R

0.4 fm

�1/4
 
dE

(0)
⊥ /dη

5GeV

!1/4 �νeff
40

�−1/4
. (5.24)

which indicates that in small systems realized in p + p and p + Pb, one should typ-
ically expect γ̂ of the order unity. Conversely, in large systems, the opacity can be
significantly larger, such that e.g. in central Pb + Pb collisions at LHC energies one
obtains

γ̂ ≈ 9.2

�
η/s

0.16

�−1� R

6 fm

�1/4
 
dE

(0)
⊥ /dη

4000GeV

!1/4 �νeff
40

�−1/4
. (5.25)

Based on a combination of (semi-)analytic and numerical studies, we will therefore
explore the full range of opacities γ̂ ≪ 1, γ̂ ∼ 1 and γ̂ ≫ 1 in order to investigate
possible changes in the reaction dynamics for small and large systems.

5.2 Solution to linear order in opacity γ̂ and eccentricity
ϵn

We want to employ the opacity expansion scheme described in Sec. 3.2.2 to the
setup discussed in this Chapter. We are primarily interested in the development
of anisotropic flow, i.e. the final state momentum space anisotropy quantified by the
harmonic coefficients vn, in response to the initial state coordinate space eccentricity
quantified by the amplitudes ϵn (or equivalently δn) of the harmonic perturbations
introduced in Eq. (5.7). Starting from the free-streaming regime, where there is no
production of vn, we seek to follow previous works [74–76, 78, 79, 81] in deriving ana-
lytical expressions for vn(τ̃) which are accurate to linear order for small γ̂ and small ϵn.

Since in the free-streaming system, the momenta of the particles remain un-
changed, the free-streaming dynamics is effectively 2+1 dimensional, and we will
continue to work in spatial Milne coordinates, where in contrast to other sections,
we use y for longitudinal momentum parametrization instead of pη or vz. Another
feature is that the analytical setup will quite straightforwardly also allow to treat the
problem more generally without restricting it to energy-weighted degrees of freedom.
However, this requires to specify the initial condition in (5.3) in more detail – in par-
ticular with regards to the initial momentum distribution dN0/d

2x⊥d2p⊥dy, which
will introduce additional scales that non-energy-weighted degrees of freedom will de-
pend on. We will assume that this distribution is (initially) isotropic in transverse
momentum and depends only on some non-specific but fixed function F of the ratio
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of p⊥ to the momentum scale Qs(x⊥), i.e.

dN0

d2x⊥d2p⊥dy
= F

�
Qs(x⊥)

p⊥

�
. (5.26)

where the characteristic energy scale Qs(x⊥) is related to the local energy density
ϵ(τ0,x⊥) via Eq. (5.4).

Below, we outline the calculation of observables to leading order in an expansion
in opacity γ̂ and eccentricity ϵn and quote the results for the flow harmonics vn and
the longitudinal cooling of dE⊥/dη. Details of the analytic calculation are compiled
in Appendices A-C.

5.2.1 Expansion scheme

The zeroth and first order results in the opacity expansion are obtained as

pµ∂µf
(0) = 0 , (5.27)

pµ∂µf
(1) = C[f (0)] . (5.28)

As reasoned in the previous section, we can factor out from C[f ] the opacity parameter
γ̂ as a proportionality constant containing all parametric dependencies. Therefore
γ̂ can be identified as the expansion parameter of this expansion scheme. In the
following, we will denote observables X computed in the free-streaming limit as X (0)

and their first order corrections in opacity by X (1).
Similarly, for the expansion in eccentricity, we recall from Section 5.1.1 that the

initial energy density is of the form

ϵ(τ0,x⊥) = ϵ̄(τ0, x⊥) + δϵ(τ0,x⊥) (5.29)

with isotropic ϵ̄ and purely anisotropic δϵ, which introduces a finite eccentricity ϵn.
Evidently, in free-streaming, the isotropic and anisotropic components of the phase-
space distribution f evolve independently of each other and the anisotropic pertur-
bation can be computed exactly. However, when computing the induced changes of
the phase-space distribution f (1), one is required to perform the Landau matching at
the level of the full energy-momentum tensor emerging from f (0), which introduces
a non-trivial coupling of the isotropic and anisotropic components. Hence, for sim-
plicity, we will solve the corresponding eigenvalue equation only to linear order in the
anisotropic perturbations, which formally corresponds to a leading order expansion in
ϵn. In the following, we will denote the linearized corrections to observables X due to
the anisotropic perturbation as δX.

5.2.2 Observables

Since we want to examine momentum anisotropies, all observables of interest will be
derived from the momentum distribution dN

d2p⊥dy
, which can be obtained from the

phase space density f by integrating over coordinate space variables. Specifically in
Milne coordinates, the four-volume transformation entails an extra functional deter-
minant for the 3d hypersurface integration at fixed proper time τ , such that

dN

d2p⊥dy
=

νeff
(2π)3

Z

x⊥

Z
dη p⊥τ cosh(y − η) f . (5.30)
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Based on the momentum distribution dN
d2p⊥dy

we will extract the following moments 4

Vmn =

Z

p⊥
einϕp⊥pm⊥

dN

d2p⊥dy
=

Z

x⊥

D
pτpm⊥einϕp

E
. (5.31)

that can be directly related to the observables that are of interest to us. Specifically,
one has dE⊥

dη = V10 and vEn = V1n
V10

.

5.2.3 Free streaming solution

The free-streaming solution of (5.27) can be computed e.g. via the method of charac-
teristics to be

f (0)(τ,x⊥,p⊥, y−η) = f (0)

�
τ0,x⊥−v⊥t(τ, τ0, y−η),p⊥, arsinh

�
τ

τ0
sinh(y − η)

��
,

(5.32)
where v⊥ = p⊥/|p⊥| and

t(τ, τ0, y − η) = τcosh(y − η)−
q

τ20 + τ2sinh2(y − η) . (5.33)

We note that the free-streaming result simplifies significantly for f (0)(τ0,x⊥,p⊥, y −
η) ∝ δ(y − η), as in this case

δ

�
arsinh

�
τ

τ0
sinh(y − η)

��
=

τ0
τ
δ(y − η) (5.34)

and

t(τ, τ0, 0) = τ − τ0 = ∆τ . (5.35)

By applying this simplification to our initial condition in Eq. (5.3), we obtain

f (0)(τ,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τp⊥
F

�
Qs(x⊥ − v⊥∆τ)

p⊥

�
. (5.36)

Evidently, the free-streaming evolution will not change the momentum distribution
dN

d2p⊥dy
since there are no scatterings and therefore also the moments V (0)

mn will remain
constant

V
(0)
m,n=0(τ) =V

(0)
m,n=0(τ0), V

(0)
m,n>0(τ) =0, (5.37)

where the last equality follows by noting that the initial condition is isotropic in
momentum space. Subsequently, all vEn s with n ̸= 0 vanish identically at all times τ ,
while the energy per unit rapidity remains constant

vE,(0)
n =0,

dE
(0)
⊥

dη
(τ) =

dE⊥
dη

(τ0). (5.38)

4Note that, in contrast to the different treatments described in the other sections, the analytical
treatment allows to describe more than just the energy-weighted version of the flow harmonics.
Nevertheless, there are two important reasons for extracting moments of the distributions, rater than
differential observables such as dN

d2p⊥dy
or vn(p⊥). The first is that the integral over p⊥ will be crucial

in facilitating further analytical integrations later on. But perhaps the more convincing reason is
the aforementioned simplification of the problem when restricting it to the case of m = 1 for energy
weighted observable.



52 Chapter 5. Development of transverse flow at small and large opacities

5.2.4 Landau matching

Next, the free-streaming result can be used to compute the energy momentum tensor
of the isotropic background T (0)µν and its anisotropic perturbations δT (0)µν , which
will be needed to obtain the local thermodynamic variables that enter the collision
integral C[f ]. Defining

vµ⊥ = pµ/p⊥|y−η=0 = (1,v⊥, 0) (5.39)

the isotropic part T (0)µν of the energy momentum tensor is given by

T (0)µν =
τ0
τ

Z
dϕp

2π
vµ⊥v

ν
⊥ ϵ̄(τ0,x⊥ −∆τv⊥) . (5.40)

Due to isotropy, it has only four independent entries and can be written as

T (0)µν =




T (0)ττ T (0)τ⊥x̂t
⊥ 0

T (0)τ⊥x̂⊥ T (0)11 + T (0)⊥⊥x̂⊥x̂t
⊥ 0

0 0 0


 . (5.41)

where we denote x̂⊥ = x⊥/|x⊥|. Based on the symmetries of T (0)µν , the corresponding
eigenvectors satisfying the relations

uµT
(0)µν = ϵuν , (5.42)

tµT
(0)µν = ptt

ν , (5.43)

sµT
(0)µν = pss

ν (5.44)

can be parametrized as

uµ = γ(1,βx̂⊥, 0) , (5.45)
tµ = γ(β, x̂⊥, 0) , (5.46)
sµ = (0, iσ2x̂⊥, 0) , (5.47)

where

β = 3T (0)ττ+T (0)⊥⊥

4T (0)τ⊥ −
r�

3T (0)ττ+T (0)⊥⊥
4T (0)τ⊥

�2
− 1 (5.48)

is the local rest frame velocity, γ = (1−β2)−1/2 and iσ2 =

�
0 1
−1 0

�
; the correspond-

ing eigenvalues are given by

ϵ = T (0)ττ − βT (0)τ⊥ , (5.49)

pt = βT (0)τ⊥ − T (0)⊥⊥ − T (0)1 , (5.50)

ps = −T (0)1 , (5.51)

Now, similarly to the isotropic background in Eq. (5.40), the anisotropic part of
the energy-momentum tensor can be computed as

δT (0)µν =
τ0
τ

Z
dϕp

2π
vµ⊥v

ν
⊥ δϵ(τ0,x⊥ −∆τv⊥), (5.52)

which – due to the absence of isotropy – features six independent entries and its
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eigenvalues and eigenvectors will be a complicated function of all of them. Obtaining
their exact result would be cumbersome and ultimately pointless, as it would be too
complex to perform further calculations with them, so instead we will linearize the
Landau matching condition in the perturbation, meaning that the corrections δϵ and
δuµ are computed from

δuµT
(0)µν + uµδT

(0)µν = δϵuµ + ϵδuµ , (5.53)
uµδu

µ = 0 . (5.54)

The second condition ensures that the perturbation preserves the correct normaliza-
tion of uµ to linear order. In order to solve this system of equations, we can expand

δuµ = δutt
µ + δuss

µ (5.55)

and use the orthogonality of the eigenbasis of T (0)µν to obtain via contraction with
the eigenvectors from (5.53) the following results:

δϵ = uµδT
(0)µνuν , (5.56)

δut =
uµδT

(0)µνtν
pt − ϵ

, (5.57)

δus =
uµδT

(0)µνsν
ps − ϵ

. (5.58)

While Eqns. (5.49-5.51,5.56-5.58) provide schematic expressions for the ϵ, δϵ, uµ

and δuµ, the exact forms of T (0)µν and δT (0)µν that determine these quantities consist
of lengthy expressions which are provided in Appendix B.

5.2.5 First order corrections in γ̂

Now that we have obtained the local energy densities and flow velocities, computing
the corrections δf (1) due to the first scatterings according to

pµ

pτ
∂µf

(1) =
C[f (0)]

pτ
(5.59)

is comparetively straightforward after realizing that this is just the inhomogeneous
case of the PDE we already solved for free streaming. The solution (5.32) allows to
read off the Green’s function for propagation in time and compute f (1) via

f (1)(τ,x⊥,p⊥, y − η) =

Z τ

τ0

dτ ′
C[f (0)]

pτ

�
τ ′,x⊥ − v⊥t(τ, τ

′, y − η),p⊥,

arsinh
� τ

τ ′
sinh(y − η)

��
(5.60)
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Since we will integrate over space to compute dN(1)

d2p⊥dy
according to (5.30), we can

simplify this expression by performing the following substitutions

x⊥
′ = x⊥ − v⊥t(τ, τ

′, y − η),

η′ = y − arsinh
� τ

τ ′
sinh(y − η)

�
, (5.61)

such that

d2x⊥
′ = d2x⊥, dη′ =

τ

τ ′
cosh(y − η)

cosh(y − η′)
dη, (5.62)

yielding the following result for the changes in the momentum space distribution
dN(1)

d2p⊥dy

dN (1)

d2p⊥dy
(τ,p⊥) =

Z τ

τ0

dτ ′
Z

x⊥′

Z
dη′ τ ′

νeff
(2π)3

C[f (0)]

τ ′,x⊥

′,p⊥, y − η′
�

, (5.63)

where in the following, we will drop the primes on all integration variables except for τ ′.
Since, as stated in section 5.2.2, the final observables we want to compute correspond
to d2p⊥-integrated moments of dN

d2p⊥dy
, one is then left with the calculation of the

following six dimensional integral

V
(1)
mk (τ) =

Z

p⊥
einϕppm⊥

Z τ

τ0

dτ ′
Z

x⊥

Z
dη τ ′

νeff
(2π)3

C[f (0)]

τ ′,x⊥,p⊥, y − η

�
. (5.64)

We find that four of these integrals can be carried out analytically, while the remaining
two integrals over dτ ′ and dx⊥ require numerical methods. Below we provide a brief
outline of the four analytical integrations and explain how different terms can be
categorized. Explicit expressions and further details of the analytic calculation can
be found in Appendix C.

The integration over p⊥ is performed first to obtain moments of F and feq, which
will facilitate the other integrations. Since the integrand depends mostly on u · v,
we substitute integration over the position space azimuthal angle ϕx for integration
over ϕx⊥p⊥ = ϕx − ϕp. The integral over η is straightforward for the term contain-
ing a Dirac-Delta but for other terms it is of similar complexity to the integral over
ϕx⊥p⊥ and both are performed together. After these integrations, the only remain-
ing dependence on the azimuthal momentum angle takes the form eikϕpcos(nϕp⊥n⊥)
(ϕp⊥n⊥ = ϕp − Ψn) and the last integral becomes a trigonometric orthogonality re-
lation, which signifies that eccentricities do not mix, as is to be expected due to the
linearization.

Due to the fact that we consider an isotropic background with a purely anisotropic
perturbation, the leading order expansion of the flow harmonics is given by

v(m)
n =

Vmn

Vm0
=

δV
(1)
mn

V
(0)
m0

+ nonlinear terms (5.65)

Due to this symmetry, one also finds that the leading order opacity contributions
to the observables Vmn conveniently separate into the first order isotropic corrections
V

(1)
m0 ∝ γ̂ for n = 0 on one hand and the first order anisotropic corrections δV (1)

mn ∝ γ̂δn

to only moments with n ̸= 0 on the other hand. While the former (V (1)
m0 ) represent

opacity corrections to the evolution of the isotropic background, the latter (δV (1)
mn)
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describe the systems response to the anisotropic energy perturbations.
Besides, another important mathematical as well as physical distinction is that

between terms V
(1,0)
mn coming from the decay of f (0) and terms V

(1,eq)
mn coming from

the buildup of feq. In our calculation we treat these terms separately and then sum
them to find the total observable. However, it is important to point out that in
many cases the two terms turn out to have different parametric dependencies. By
construction of the expansion scheme, all of them are proportional to γ̂. However due
to the different functional forms of f (0) and feq we obtain that the isotropic (n = 0)
corrections are given by

V
(1,0)
m0 = −γ̂V

(0)
m0 Pm(τ̃) , (5.66)

V
(1,eq)
m0 = +γ̂νeffR

−m

 
ν−1
eff

dE
(0)
⊥

dη
R

!m+3
4

Qm(τ̃) , (5.67)

and similarly for the anistropic corrections (n ̸= 0)

V (1,0)
mn = −γ̂δnV

(0)
m0 Pmn(τ̃) , (5.68)

V (1,eq)
mn = +γ̂δnνeffR

−m

 
ν−1
eff

dE
(0)
⊥

dη
R

!m+3
4

Qmn(τ̃) . (5.69)

Detailed expressions of the functions Pm(τ̃),Qm(τ̃),Pmn(τ̃),Qmn(τ̃) are given in
Eqns. (C.16,C.20,C.41,C.60). Of course, the appearance of a different parametric
behavior is not too surprising, as f0 depends on the entire momentum distribution,
whereas feq only depends on the local energy density. Generally, to fix the relative

size of decay and buildup for V (1)
mn , we need an input for dE

(0)
⊥

dη and V
(0)
m0 , which means

specifying the related moments of the initial momentum distribution F in Eq. (5.26).
Clearly, the only exception to this rule is the case m = 1 of energy weighted ob-

servables, where V
(0)
10 =

dE
(0)
⊥

dη and the calculation of V (1)
1n /V

(0)
10 does not require any

further specification of the initial momentum distribution F .

By restricting our attention to energy weighted observables, we can then perform
the residual integrals numerically, to obtain the leading order changes in the initial
energy per unit rapidity

dE
(1)
⊥

dη
(τ → ∞)

, 
γ̂
dE

(0)
⊥

dη

!
= −0.210 (5.70)

and the flow response

vE2 (τ → ∞)
�
(γ̂ϵ2) = 0.212 (5.71)

vE3 (τ → ∞)
�
(γ̂ϵ3) = 0.0665 (5.72)

vE4 (τ → ∞)
�
(γ̂ϵ4) = −0.00914 , (5.73)

which we will compare to full numerical solutions of the RTA Boltzmann equation
in the following. Beyond the results in Eqns. (5.70-5.73), which provide the asymp-
totic (τ → ∞) values of the transverse energy and flow coefficients, it is clear that
Eq. (5.64) also gives access to the time evolution of these quantities which we will
further investigate in Sec. 5.4.



56 Chapter 5. Development of transverse flow at small and large opacities

We note that the above result are obtained for the initial condition in Eqs. (5.5-
5.7) with α = 1/2, which is different than the case α = 0 considered in [78]. If we
choose α = 0 instead, we find

vE2 (τ → ∞)
�
(γ̂ϵ2) = 0.213 (5.74)

vE3 (τ → ∞)
�
(γ̂ϵ3) = 0.0621 (5.75)

vE4 (τ → ∞)
�
(γ̂ϵ4) = −0.00483 , (5.76)

in agreement with [78].5 By comparing the results for different vns in Eq. (5.71-
5.73,5.74-5.76), one finds that v2 appears to be rather insensitive to α, whereas the
higher order vns are more sensitive to α, as we will further discuss in Sec. 5.4.2.
Especially v4 changes by approximately a factor of two between the two cases, and
can even turn out to have different signs for different values of α, indicating a strong
dependence on the initial profile in the low opacity regime.

5.3 Numerical procedure for non-linear solution

We will now discuss two different schemes to obtain numerical solutions of the RTA
Boltzmann equation, which are based on a momentum moment expansion discussed in
subsec. 5.3.1 and the relativistic Lattice Boltzmann method discussed in subsec. 5.3.2.

5.3.1 Expansion in spherical harmonic moments

Within our first approach, we follow previous works [144], where instead of describ-
ing the evolution of the phase space density f , the numerical algorithm solves time
evolution equations only for some energy weighted momentum moments on a two-
dimensional lattice in transverse space. Specifically, we consider the following energy
weighted moments Cm

l of the phase-space distribution

Cm
l := τ

Z
d3p

(2π)3
Y m
l (θp,ϕp) p

τ f =

Z
d2p⊥
(2π)2

Z
dpη
2π

Y m
l (θp,ϕp)

s

p2⊥ +
p2η
τ2

f .

where Y m
l denote the spherical harmonics, which are given in terms of the associated

Legendre polynomials Pm
l as

Y m
l (θ,ϕ) = yml Pm

l (cos θ) eimϕ (5.77)

with normalization

yml =

s
2l + 1

4π

(l −m)!

(l +m)!
(5.78)

and the momentum space angles in Eq. (5.77) are parametrized by the polar and
azimuthal angles θp and ϕp defined as

cos θp =
pη/τ

pτ
, tanϕp =

p2

p1
. (5.79)

5Note that for comparison with [78], one also need to account for the factor of ϵn/δn in Eq. (5.9).



5.3. Numerical procedure for non-linear solution 57

Since only a finite number of moments can be described numerically, the algorithm
only keeps track of the moments with l < lmax for an adjustable large enough value
of lmax to achieve apparent convergence.

Initial conditions & Evolution equation for moments

By taking the corresponding moments of the initial conditions in Eq. (5.3), one obtains
the initial conditions for the spherical harmonic moments as

Cm
l (τ0) = τ0 ϵ(τ0,x⊥) y

0
l P

0
l (0) δ

m0 . (5.80)

This expression contains as a factor the Legendre polynomial evaluation P 0
l (0), which

vanishes for odd l and is otherwise given by

P 0
l (0) = (−1)l/2π−1/2 Γ


l+1
2

�

Γ

l
2 + 1

� . (5.81)

Simlarly, denoting the local rest-frame velocity as uµ = γ (1,β1,β2, 0) and taking
the corresponding moments of the Boltzmann equation (5.1) then yields the following
equation of motion for the spherical harmonic moments

∂τC
m
l =

1

τ
(bml,+2C

m
l+2 + bml,0C

m
l + bml,−2C

m
l−2)

+
1

2

�
γβ1
τR

− ∂1

�
[uml,+C

m+1
l+1 + uml,−C

m+1
l−1 + dml,+C

m−1
l+1 + dml,−C

m−1
l−1 ]

+
1

2i

�
γβ2
τR

− ∂2

�
[uml,+C

m+1
l+1 + uml,−C

m+1
l−1 − dml,+C

m−1
l+1 − dml,−C

m−1
l−1 ]

+
1

τR
Em

l (uµ, T )− γ

τR
Cm
l , (5.82)

where the terms with spatial derivatives proportional to the coefficients u, d describe
free-streaming while the terms proportional to the coefficients b are related to the
longitudinal expansion. The corresponding coefficients are given by [144]6

uml,− =

r
(l −m)(l −m− 1)

4l2 − 1
, uml,+ = −

s
(l +m+ 1)(l +m+ 2)

4l(l + 2) + 3
, (5.83)

dml,− = −
s

(l +m)(l +m− 1)

(4l2 − 1)
, dml,+ =

s
(l −m+ 1)(l −m+ 2)

4l(l + 2) + 3
, (5.84)

6Note that here bml,0 is smaller by 1
3

compared to [144] because the Cm
l are weighted with τ instead

of τ4/3.
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bml,−2 = − l + 2

2l − 1

s
(l −m)(l −m− 1)(l +m)(l +m− 1)

(2l − 3)(2l + 1)
,

bml,0 =
1− 3(l2 − l) + 5m2

4l(l + 1)− 3
,

bml,+2 =
l − 1

2l + 3

s
(l −m+ 1)(l −m+ 2)(l +m+ 2)(l +m+ 1)

(2l + 5)(2l + 1)
, (5.85)

Finally all terms that are inversely proportionals to the relaxation time τR result from
the collision kernel and describe the relaxation of the system towards local equilibrium,
with the equilibrium moments El

m given by

Em
l =

Z
d2p⊥
(2π)2

Z
dpη
2π

Y m
l (θp,ϕp) p

µuµ feq

= 2−l−2π1/2τϵY m
l

�π
2
,ϕu

�
γ−3βl Γ(l + 3)

Γ

l + 3

2

� 2F1

�
l + 3

2
,
l + 4

2
; l +

3

2
;β2

�
(5.86)

where we denote tanϕu = β1/β2 and β2 = β2
1 + β2

2 and refer to Appendix D for
further details of the calculation. We also note for later convenience, that by separately
keeping track of the free-streaming, long. expansion and collisional contributions in
Eq. (5.82), we can compute the respective contributions to the rate of change of any
observables.

Evaluation of Eq. (5.82) also requires an input for the local energy density ϵ and
flow velocity uµ, which have to be computed via Landau matching. In practice, we first
compute the various components of the energy momentum tensor from the following
linear combintations of spherical harmonic moments

τT ττ =
√
4πC0

0 (5.87)

τT τ1 =

r
2π

3
(C−1

1 − C1
1 ) (5.88)

τT τ2 =

r
2π

3
i(C−1

1 + C1
1 ) (5.89)

τT 11 =

r
4π

9

 
C0
0 −

r
1

5
C0
2

!
+

r
2π

15
(C2

2 + C−2
2 ) (5.90)

τT 22 =

r
4π

9

 
C0
0 −

r
1

5
C0
2

!
−
r

2π

15
(C2

2 + C−2
2 ) (5.91)

τT 12 =

r
2π

15
i(C−2

2 − C2
2 ) (5.92)

and subsequently perform a numerical diagonalization of T µ
ν using the Eigen C++

library [169], to obtain the rest-frame velocity uµ and local energy density ϵ as the
timelike eigenvector and eigenvalue.

With regards to the numerical implementation of Eq. (5.82), we also note that the
terms containing spatial derivatives can be efficiently computed in Fourier space, and
we employ an O(a2S) improved five-point stencil derivative. Concerning the discretiza-
tion of the time step, we employ a fourth order Runge-Kutta scheme with adaptive
time step of typically δτ = 0.01min(τ, R/10).
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Observables

Since the numerical setup is restricted to energy weighted moments of the phase-
space distribution, all observables that can be computed are necessarily weighted
with energy as well. Evidently, to compute an observable, it has to be expressed
as a linear combination of the moments Cm

l , meaning that it has to be expanded
in spherical harmonics. By making use of their orthogonality relation, one can then
express observables of the form

τ ⟨(pτ )2O⟩ =
Z

d2p⊥
(2π)2

Z
dpη
2π

pτ O(θp,ϕp) f (5.93)

as a linear combination of the coefficients

τ ⟨(pτ )2O⟩ =
X

(l,m)

αO
m,l C

m
l , (5.94)

where the expansion coefficients αO
m,l are determined as

αO
m,l =

Z
dΩpO(θp,ϕp)Y

m∗
l (θp,ϕp) . (5.95)

Specifically, for calculating the observables dE⊥/dy and vEn that are of interest to us,
we need to consider integrals of expressions of the form

On(θp,ϕp) = einϕp sin(θp) . (5.96)

Since the ϕp-dependence of Y m∗
l is simply given by e−imϕp , it is already obvious that

αOn
m,l vanishes for all m ̸= n. Additionally, for increasing l the spherical harmonics Y n∗

l

alternate between being symmetric and antisymmetric w.r.t. θp, such that αOn
n,l = 0

for l − n odd, while for l − n even, the coefficients can be computed as

αOn
n,l = 2π2−lynl

l−n
2X

k=0

(−1)k+n

�
l

n

��
2l − 2k

l

�
(l − 2k)!

(l − 2k − n)!

Γ

n+3
2

�
Γ

l−2k−n+1

2

�

Γ

l−2k+4

2

� .

(5.97)

In the special case n = 1, only one coefficient is nonvanishing, but otherwise there are
infinitely many. However, their values are decreasing with l quickly enough so that
cutting off the expansion at lmax yields a reasonable approximation.

5.3.2 Relativistic Lattice Boltzmann solver

Within our second approach, we employ a relativistic lattice Boltzmann solver inspired
by the finite difference Relativistic Lattice Boltzmann (RLB) algorithm discussed in
Refs. [170–174]. The strategy for devising the numerical method is split into three
main parts, that are described in this subsection. The structure of the kinetic equation
is presented in Sec. 5.3.2 in two forms. The first form is based on the standard Bjorken
coordinates (τ,x⊥, η), while the second relies on a set of hybrid free-streaming coor-
dinates, inspired by the approach in Ref. [80]. The momentum space discretization is
discussed in Sec. 5.3.2. The spatial and temporal discretization, as well as the numer-
ical schemes employed for the advection and time stepping, are briefly summarized in
Sec. 5.3.2.
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Boltzmann equation for the RLB approach

In the RLB method, we employ the factorization of the momentum space with respect
to the coordinates (p, vz, ϕp) introduced in Eq. (5.10). Starting from Eq. (5.11),
we apply the LB algorithm at the level of the function FRLB = τ0

τ F , where F is
introduced in Eq. (5.12). Specifically,

FRLB =
πνeffR

2τ0
(2π)3

 
dE

(0)
⊥

dη

!−1 Z ∞

0
dpτ (pτ )3f. (5.98)

Dimensionless versions of the coordinates τ and x⊥ are defined by normalization to
R3/4τ

1/4
0 [175], i.e.

τ̄ =
τ

τ
1/4
0 R3/4

=

�
R

τ0

�1/4

τ̃ ,

x̄⊥ =
x⊥

τ
1/4
0 R3/4

=

�
R

τ0

�1/4

x̃⊥, (5.99)

while the energy density and temperature are non-dimensionalized with respect to
constant quantities:

ϵ̄ =
τ0πR

2ϵ

dE
(0)
⊥ /dη

=
τ0
τ
ϵ̃,

T =

 
τ0πR

2 π2

30 νeff

dE
(0)
⊥ /dη

!1/4

T =
�τ0
τ

�1/4
T̃ , (5.100)

such that ϵ̄ = T
4. In this section, we use an overhead bar ¯ to denote dimensionless

quantities obtained using the above convention, in contrast to the overhead tilde ˜
employed in Sec. 5.1 (note that T and ϵ̄ are related to T and ϵ through constant
factors). The Boltzmann equation (5.11) written for FRLB introduced above reads
[175]:

�
∂

∂τ̄
+ v⊥ ·∇+

1 + v2z
τ

�
FRLB − 1

τ̄

∂[vz(1− v2z)FRLB]

∂vz

= −γ̂(vµuµ)T (FRLB − F eq
RLB). (5.101)

The components of the stress-energy tensor can be non-dimensionalized in the same
way as the energy density, being related to FRLB through

T
µν

=

Z
dΩp v

µvνFRLB. (5.102)

The energy-weighted flow harmonics (3.41) can be obtained via

vEn =

R
x⊥

R
dΩp

p
1− v2ze

inϕpFRLBR
x⊥

R
dΩp

p
1− v2zFRLB

. (5.103)

The Boltzmann equation in the form given in Eq. (5.101) serves as the basis of the
algorithm employed for large values of the opacity γ̂. At small values of the opacity, we
find the form in Eq. (5.101) unsuitable and instead employ free-streaming coordinates
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in momentum space. This approach is inspired from Ref. [175] but differs from the
aforementioned approach because the spatial coordinates are left unchanged. Defining

pτfs =pτ∆, vfsz =
τvz
τ0∆

,

pτ =pτfs∆fs, vz =
τ0v

fs
z

τ∆fs
, (5.104)

where

∆ =

s
1 +

�
τ2

τ20
− 1

�
v2z ,

∆fs =
1

∆
=

s
1−

�
1− τ20

τ2

�
v2z;fs. (5.105)

the Boltzmann equation (5.11) becomes

∂f

∂τ̄
+

1

∆fs
v⊥;fs ·∇⊥f = −γ̂(vµuµ)T (f − feq), (5.106)

where v⊥;fs =
q
1− v2z;fs(cosϕp, sinϕp), while vµu

µ = uτ − 1
∆fs

v⊥;fs · u⊥. We now
introduce the function Ffs, defined in analogy to Eq. (5.98) using integration with
respect to pτfs:

Ffs =
πνeffR

2τ0
(2π)3

 
dE

(0)
⊥

dη

!−1 Z ∞

0
dpτfs (p

τ
fs)

3f, (5.107)

such that Eq. (5.106) becomes

∂Ffs

∂τ̄
+

1

∆fs
v⊥;fs ·∇⊥Ffs = −γ̂(vµuµ)T (Ffs − F eq

fs ). (5.108)

Due to the changes to the momentum space degrees of freedom, the computation
of the components of the stress-energy tensor becomes more involved. Taking into
account the transformation of the measure dpτ (pτ )2dΩp = (τ0/τ)dp

τ
fs(p

τ
fs)

2dΩp;fs, the
dimensionless components T

µν can be computed as

T
ττ

=
τ0
τ

Z
dΩp;fs∆fs Ffs,

T
τ i

=
τ0
τ

Z
dΩp;fsv

i
⊥;fsFfs,

T
ij
=
τ0
τ

Z
dΩp;fs

vi⊥;fsv
j
⊥;fs

∆fs
Ffs,

τ2T
ηη

=
τ30
τ3

Z
dΩp;fs

v2z;fs
∆fs

Ffs, (5.109)

where vi⊥;fs = v⊥;fs(cosϕp, sinϕp) and v⊥;fs =
q

1− v2z;fs. Based on the the equilibrium
Bose-Einstein distribution at vanishing chemical potential

feq =
�
epµu

µ/T − 1
�−1

. (5.110)
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the functions F eq
RLB and F eq

fs in Eq. (5.98), are readily obtained as

F eq
RLB =

1

4π

ϵ

(u0 − v⊥ · u⊥)4
,

Feq
fs =

1

4π

ϵ

(u0∆fs − v⊥;fs · u⊥)4
, (5.111)

where ϵ = T
4.

The system is initialized using the Romatschke-Strickland distribution [176] for
Bose-Einstein statistics [177]

fRS =

�
exp

�
1

Λ

p
(p · u)2 + ξ0(p · η̂)2

�
− 1

�−1

, (5.112)

where η̂µ is the unit-vector along the rapidity coordinate. Simplifying to the initial
state considered in this Chapter, Eq. (5.112) reduces to

fRS =

�
exp

�
pτ

Λ

p
1 + ξ0v2z

�
− 1

�−1

. (5.113)

The function Λ ≡ Λ(x⊥) is determined from

Λ4(x⊥) = 2T 4(τ0,x⊥)
�
arctan

√
ξ0√

ξ0
+

1

1 + ξ0

�−1

, (5.114)

where T (τ0,x⊥) is obtained from the initial energy density ϵ(τ0,x⊥) via the equation
ϵ = aT 4, where a = π2νeff

30 for Bose-Einstein statistics. The anisotropy parameter ξ0
can be used to set the ratio of longitudinal and transverse pressures PL;0/PT ;0 via

PL;0

PT ;0
=

2

1 + ξ0

(1 + ξ0)
arctan

√
ξ0√

ξ0
− 1

1 + (ξ0 − 1)arctan
√
ξ0√

ξ0

. (5.115)

The case PL;0/PT ;0 = 0 implied by the initial conditions in Eq. (5.3) can be reached
only as the limit ξ0 → ∞. In our simulations, we consider finite (large) values of ξ0
and, for simplicity, we employ the same value of ξ0 throughout the whole transverse
plane. Since at initial time τ = τ0 pτfs = pτ and vz;fs = vz , it can be seen that the
initial conditions FRS

RLB and FRS
fs are equal and given by

FRS
RLB = FRS

fs =
ϵ/2π

(1 + ξ0v2z)
2

�
arctan

√
ξ0√

ξ0
+

1

1 + ξ0

�−1

. (5.116)

Momentum space discretization

In this work, we employ the discretization of the momentum space discussed in
Ref. [171]. In this scheme, we employ Qϕp ×Qz discrete values for ϕp and vz (vz;fs in
the case of the free-streaming variables), such that (ϕp, vz) or (ϕp, vz;fs) are replaced
by (ϕp;i, vz;j) and (ϕp;i, v

fs
z;j), respectively. The discrete set of distributions F ∗

ij (with
∗ ∈ {RLB, fs}) are related to the original distribution function F∗, via [171]

�FRLB
ij

F fs
ij

�
=

2π

Qϕp

wj

�FRLB(ϕp;i, vz;j)
Ffs(ϕp;i, v

fs
z;j).

�
. (5.117)
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The weight 2π/Qϕp is computed in both RLB and fs cases following the prescription of
the Mysovskikh (trigonometric) [178] quadrature, by which the trigonometric circle is
discretized equidistantly, ϕp;j = ϕ0+

2π
Qϕp


j − 1

2

�
, with 1 ≤ j ≤ Qϕp . For definiteness,

we set the arbitrary offset ϕ0 to 0. For the discretization of vz (RLB) and vz;fs (FS),
we employ two different strategies as discussed below.

RLB case. In the case of large values of γ̂, when Eq. (5.101) is considered, we
employ the Gauss-Legendre quadrature, such that wj represent the Gauss-Legendre
weights and vz;j are the roots of the Legendre polynomial of order Qz, i.e. PQz(vz;j) =
0. Their values up to quadrature orders Qz = 1000 can be found in the supplementary
material of Ref. [171]. In this approach, the term ∂[vz(1− v2z)FRLB]/∂vz is computed
by projection onto the space of Legendre polynomials,

�
∂[vz(1− v2z)FRLB]

∂vz

�

ji

=

QzX

j′=1

KP
j,j′FRLB

j′i . (5.118)

The matrix elements KP
j,j′ , given in Eq. (3.54) of Ref. [171], are

KP
j,j′ = wj

Qz−3X

m=1

m(m+ 1)(m+ 2)

2(2m+ 3)
Pm(vz;j)Pm+2(vz;j′)

− wj

Qz−1X

m=1

m(m+ 1)

2
Pm(vz;j)

"
(2m+ 1)Pm(vz;j′)

(2m− 1)(2m+ 3)

+
m− 1

2m− 1
Pm−2(vz;j′)

#
. (5.119)

The components of the stress-energy tensor are obtained by replacing the integration
with respect to dΩp with a double sum over i and j:

T
µν

=

QϕpX

i=1

QzX

j=1

FRLB
ij vµijv

ν
ij , (5.120)

where vτij = 1, (v1ij , v
2
ij) =

q
1− v2z;j(cosϕp;i, sinϕp;j) and vηij = τ−1vz;j . A similar pre-

scription is employed for the computation of the dΩp integral in the energy-weighted
flow harmonics vEn (5.103).

FS case. For small values of γ̂, the free-streaming coordinate vz;fs is discretized in
a logarithmic scale. Inspired from Eq. (A61) of Ref. [80], we first perform the change
of coordinate to

vz;fs =
1

A
tanhχ, (5.121)

where 0 < A < 1 and χ takes values between ±artanhA. In order to increase the
accuracy of the momentum space integration, we consider the rectangle method and
take the discrete values χj at the center of the Qz equidistant intervals, such that

χj =

�
2j − 1

Qz
− 1

�
artanhA, vfsz;j =

1

A
tanhχj . (5.122)
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The quadrature weights wj are then computed based on the Jacobian due to the
change of integration variable from vz;fs to χ,

wj =
2artanhA

AQz cosh
2 χj

. (5.123)

Since the discretization of vz;fs presented above is no longer given by a Gauss quadra-
ture prescription, we note that the FS approach gives rise to a numerical scheme
which is more similar to the Discrete Velocity Method (DVM) approach [179, 180].
As before, the components of the stress-energy tensor can be obtained by replacing
the integral with respect to dΩp in Eq. (5.109) with quadrature sums:

T
ττ

=
τ0
τ

X

i,j

∆fs
j F fs

ij ,

 
T
τ1

T
τ2

!
=
τ0
τ

X

i,j

vfs⊥;j

�
cosϕp;i

sinϕp;i

�
F fs

ij ,



T
11

T
12

T
22


 =

τ0
τ

X

i,j

(vfs⊥;j)
2

∆fs
j




cos2 ϕp,i

sinϕp,i cosϕp,i

sin2 ϕp,i


F fs

ij ,

τ2T
ηη

=
τ30
τ3

X

i,j

(vfsz;j)
2

∆fs
j

F fs
ij , (5.124)

where ∆fs
j = [1− (1− τ20 /τ

2)(vfsz;j)
2]1/2 and vfs⊥;j =

q
1− (vfsz;j)

2. A similar procedure

is employed for the computation of vEn (5.103).

Finite difference schemes

In order to obtain the numerical solution of Eqs. (5.101) and (5.108), we consider an
equidistant discretization of the temporal and spatial variables. Setting the time step
as δτ , the time coordinate is discretized according to τn = τ0 + nδτ . Writing the
Boltzmann equation as

∂F
∂τ

= L[F ], (5.125)

where L[F ] can be found from Eqs. (5.101) or (5.108), we employ the third-order total
variation diminishing (TVD) Runge-Kutta method proposed in Ref. [181, 182]. This
algorithm allows the values Fn+1 of the distribution functions at the new time step
to be obtained from the old ones using two intermediate stages.

The advection along the transverse directions is performed using the flux-based
upwind-biased fifth order weighted essentially non-oscillatory (WENO-5) scheme [183,
184]. Considering that the spatial domain of extent L1×L2 is discretized using N1×N2

equidistant nodes, the coordinates of the discrete points are

x1,s =x1,left +
L1

N1

�
s− 1

2

�
,

x2,r =x2,bot +
L2

N2

�
r − 1

2

�
, (5.126)
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with 1 ≤ s ≤ N1 and 1 ≤ r ≤ N2. Focusing without loss of generality on the derivative
with respect to x1, the algorithm entails

c1

�
∂F
∂x1

�

s,r

=
Fs+ 1

2
,r − Fs− 1

2
,r

δx1
, (5.127)

where δx1 = L1/N1. The velocity c1 is given in the case when γ̂ is large, when
Eq. (5.101) is solved, by c1 =

p
1− v2z cosϕp, being independent of position and

space. In the case of small values of γ̂, Eq. (5.108) shows that the advection velocity
c1 = 1

∆

p
1− ṽ2z cosϕp depends on the Bjorken time τ , however it remains constant

throughout the entire transverse plane. The stencils required to compute the fluxes
Fs± 1

2
,r are chosen in an upwind-biased manner based on the sign of c1. Since the

algorithm to compute these stencils is rather lengthy, we do not repeat it here and
instead refer the interested reader to Refs. [171, 183–185] for details.

5.4 Results

We will now analyze the space-time evolution of the system and the development of
transverse flow as a function of the opacity parameter γ̂ (c.f. Eq. (5.23)). We focus
on the range of opacities 0.01 ≤ γ̂ ≤ 400 and consider different initial eccentricities
ϵn ∈ {0.01, 0.05, 0.1, 0.2, 0.32, 0.36} (c.f. Eqns. (5.6,5.7)).

If not stated otherwise, open symbols/dashed lines correspond to results obtained
using the expansion in spherical harmonic moments in Sec. 5.3.1, where we typically
use lmax = 32,NS = 256, aS = 0.0625 R.7 Conversely, results obtained with the
relativistic lattice Boltzmann (RLB) method are represented by solid symbols/solid
lines. The RLB simulations are divided in two batches. The first batch includes
systems with γ̂ ≥ 2. For these simulations, we used the RLB algorithm for large γ̂
described in Sec. 5.3.2 with Qz = 40 and Qϕp = 80, while the number of nodes on
each semiaxis is taken to be X = 100 for ϵn ≥ 0.05 and X = 200 for ϵn < 0.05. The
anisotropy parameter in the initial state is set to ξ0 = 20, corresponding to an initial
ratio PL/PT ≃ 0.08. The second batch comprises the systems with γ̂ ≤ 2 for which
we employ the hybrid free-streaming algorithm described in Sec. 5.3.2 with Qz = 500
and Qϕp = 80. In this case, the anisotropy parameter is set to ξ0 = 100, corresponding
to PL/PT ≃ 0.02 and the spatial resolution is X = 100 nodes per semiaxis.

5.4.1 Cooling due to longitudinal expansion (dE⊥/dη)

Before we discuss the development of transverse flow, we first investigate the cooling
of the system due to work performed against the longitudinal expansion, which is
quantified by the decrease of the transverse energy per rapidity dE⊥/dη. We first
note that for a free-streaming system dE⊥/dη is constant. Increasing the opacity will
initially only have a small effect, which can be quantified in terms of the linear decrease
in γ̂ calculated in Sec. 5.2.5. However, for large opacities γ̂ ≫ 1, the system has
sufficient time to undergo pressure isotropization at early times, leading to an extended
phase of longitudinal cooling, which results in a significant decrease of dE⊥/dη. Hence,
when presenting our results for dE⊥/dy(τ) in Fig. 5.1, we have grouped them into
two plots for large opacities in the upper panel and small opacities in the lower panel.
While for large opacities, the curves are normalized by the initial value dE

(0)
⊥ /dη and

7We note that results for γ̂ ≤ 1 require a larger accuracy, and we use lmax = 48,NS = 320,
aS = 0.05 R. Similarly, for accurate calculations of dE⊥/dy we need a larger value of lmax and we
employ lmax = 96,NS = 160, aS = 0.06 R in this case.
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Figure 5.1: Evolution of dE⊥/dη (left) and ∆dE⊥/dη = dE⊥/dη − dE
(0)
⊥ /dη

(right) normalized with respect to the initial value dE
(0)
⊥ /dη for various large (left)

and small opacities (right). Colored solid lines were obtained with the RLB method,
while open symbols denote results from the moment method. The solid black line
shows the first order result in opacity expansion. Dashed black lines with black
circles corresponds to the Bjorken flow prediction derived in Eq. (4.36), and the
curves in the top are presented on double logarithmic scale. All results are obtained

for initial eccentricity ϵ2 = 0.05.

plotted on a doubly logarithmic scale to visualize the power law decay of dE⊥/dη at
intermediate times, for small opacities we show the difference of dE⊥/dη− dE

(0)
⊥ /dη,

normalized by the initial value and γ̂ to account for the linear behaviour in opacity. We
also show a comparison with the analytical result from Section 5.2.5, which provides
a good description of the curves for γ̂ ≲ 1.

Qualitatively, all curves exhibit a similar behavior starting out from the early
time fixed point of kinetic theory, where longitudinal pressure vanishes and energy
per rapidity stays almost constant. Subsequently, as longitudinal pressure develops
due to interactions work is being performed, which starts to happen earlier and earlier
the larger the opacity. Eventually, at late times τ/R ≳ 1, the transverse expansion
becomes dominant and the system rapidly cools down, resulting in a late time plateau
of the dE⊥/dη(τ)-curves.

We find that for large opacities γ̂ ≳ 10, the pressure isotropization at early times
and the onset of the transverse expansion at later times are sufficiently well separated
to observes an intermediate τ−1/3-scaling of dE/dη, which is due to the early time
Bjorken flow behaviour discussed in Section 4.1.1. The local Bjorken flow attractor
scaling scheme can be applied to this setup. Specifically, the behaviour of dE⊥/dη can
be predicted using the formula given in Eq. (4.36), which is indicated by black circles
in the upper panel of Fig. 5.1 and agrees remarkably well with numerical results for
the large opacities up to times τ/R ≲ 0.1.

Local Bjorken flow scaling predicts that dE⊥/dη decreases as τ−1/3 at intermediate
times, before the transverse expansion becomes dominant. By comparing the results
in Fig. 5.1, one finds that for sufficiently large opacities the power law behavior in
Eq. (4.37) is indeed realized at intermediate times, and discontinues once τ/R ≃ 1,
when the transverse expansion becomes dominant, such that the estimate (4.37) is no
longer applicable and dE⊥/dη

dE0
⊥/dη

attains a constant asymptotic value.
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Figure 5.2: Opacity (γ̂) dependence of the ratio of final to initial (transverse)

energy per-unit rapidity dE⊥
dη

.
dE

(0)
⊥

dη . The red solid line with filled circles denotes
results from the RLB method, while the red dotted line with open circles was ob-
tained in the moment method. Numerical results are compared to analytical results
obtained in leading order opacity expansion (black solid curve), and a power-law

scaling fit dE⊥
dη

.
dE

(0)
⊥

dη ≈ 1.4 γ̂−4/9 at large opacities (purple solid line)
.

We note that our estimate in Eq. (4.37) also shows that for sufficiently large opaci-
ties, where longitudinal cooling occurs predominantly before the transverse expansion
sets in, the final value of dE⊥/dη

dE0
⊥/dη

is propotional to γ̂−4/9, as previously argued in [80].

Numerical results for the asymptotic values of dE⊥/dη
dE0

⊥/dη
, extracted by performing ex-

trapolations of the curves of the form a+bτ̃−c, where a, b and c are fitting parameters,
are shown in Fig. 5.2 as a function of the opacity parameter γ̂. We find that at low
γ̂, the analytical result to leading order in opacity (c.f. Eq. (5.70)), represented with
a solid black line, provide an accurate description up to γ̂ ≲ 1. Conversely, for large
opacities γ̂, the decrease of the energy per unit rapidity dE⊥/dη

dE0
⊥/dη

exhibits the expected

scaling behavior, with dE⊥/dη
dE0

⊥/dη
≈ 1.4 γ̂−4/9 for γ̂ ≳ 10, as indicated by the purple line.

By comparing the numerical coefficient with Eq. (4.37), this result seems to indicate
that cooling stops at a time τstop ≃ 0.6R, which is consistent with the trend seen for
the high γ̂ curves in Fig. 5.1(a).

5.4.2 Development & opacity dependence of transverse flow har-
monics (vn)

Next, we will analyze the development of anisotropic flow in terms of the time depen-
dence of the harmonic transverse flow coefficients vEn for different opacities. We recall,
that the initial anisotropies are modeled using a single harmonic (n) perturbation and
first look at the time dependence of vE2 , vE3 and vE4 for different opacities, where in
each case the eccentricities are fixed to ϵn = 0.05, which serves as a good approxima-
tion to the small eccentricity limit. We measure the magnitude of the linear response



68 Chapter 5. Development of transverse flow at small and large opacities

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

��2 = 0.05�

�

v
E 2

�
(�

2
γ̂
)

τ/R

γ̂ = 2
1

0.5
0.25
0.04
0.01

����������
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

��2 = 0.05�

�

v
E 2

�
� 2

τ/R

γ̂ = 2
6
14
50

400

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5 3 3.5 4

��3 = 0.05�

�

v
E 3

�
(�

3
γ̂
)

τ/R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

��3 = 0.05�

�

v
E 3

�
� 3

τ/R

−0.01

0

0.01

0.02

0.03

0 0.5 1 1.5 2 2.5 3 3.5 4

��4 = 0.05�

�

v
E 4

�
(�

4
γ̂
)

τ/R

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

��4 = 0.05�

�

v
E 4

�
� 4

τ/R

Figure 5.3: Evolution of the linear flow response vEn /ϵnγ̂ at small opacities γ̂ (left)
and vEn /ϵn at large opacities γ̂ (right). Different rows correspond to elliptic flow
n = 2 (top), triangular flow n = 3 (middle) and quadrangular flow n = 4 (botom).
Colored solid lines were obtained in the RLB method, while open symbols denote
results from the moments method. Analytical results are plotted as solid black lines.

All results were obtained for an initial eccentricity ϵn = 0.05.
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Figure 5.4: (top line) Evolution at low opacities of the non-linear flow response
coefficients vE4 /ϵ

2
2γ̂ (left), vE6 /ϵ23γ̂ (middle), and vE6 /ϵ

3
2γ̂ (right). (bottom line) Evo-

lution at large opacities of vE4 /ϵ22, vE6 /ϵ23 (middle), and vE6 /ϵ
3
2 (right). Colored solid

lines were obtained in the RLB method, while open symbols denote results from the
moments method. All results were obtained for an initial eccentricity ϵn = 0.05.
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ratio vn/ϵn for each harmonic; in addition we also extract the non-linear response of
the fourth and sixth order harmonics via the ratios v4/ϵ

2
2, v6/ϵ23 and v6/ϵ

3
2.

Since the qualitative behaviour of vn is somewhat different in the regimes of small
and large opacities γ̂, we again divide our results into two categories corresponding
to γ̂ ≥ 2 and γ̂ ≤ 2, as in Fig. 5.1. Since the analytical calculation in Sec. 5.2
indicates that at small γ̂, all response coefficients increase linearly with γ̂, we will
further normalize our low opacity results (γ̂ ≤ 2) by division with respect to γ̂.

Our results are compactly summarized in Figs. 5.3 and 5.4, where we present
numerical results for the linear (v2/ϵ2, v3/ϵ3, v4/ϵ4) and non-linear (v4/ϵ22, v6/ϵ23, v6/ϵ32)
response coefficients obtained for small (top panels) and large (bottom panels) values
of γ̂. We find that for small values of γ̂ ≲ 0.04, the leading order linear dependence
of vn/ϵn on γ̂ computed in Eq. (5.71-5.73) is nicely confirmed by the asymptotic
approach of our numerical results to the analytical results, represented by a solid
black line. Similarly, a linear dependence with respect to γ̂ is also found for the non-
linear response coefficients v4/ϵ22, v6/ϵ23, v6/ϵ32, which for v4/ϵ22 is in line with the result
obtained in Ref. [78] for a slightly different initial setup. While for γ̂ ≳ 0.25, all linear
flow coefficients exhibit a positive response with respect to the initial eccentricities,
the quadrangular flow v4/ϵ4γ̂ in Fig. 5.3 shows a negative response for γ̂ ≲ 0.25.

Based on a closer inspection, one finds that the curves of v4/(ϵ4γ̂) exhibit an early
time increase similar to the behavior seen for the other harmonic flow coefficients,
however in contrast to v2, v3 the initial rise of v4 peaks around τ ≃ 1.5R, followed
by a decrease due to negative contributions received at large times. When increasing
the opacity, non-linear effects cause the elliptic flow response v2/(ϵ2γ̂) to decrease,
while v3/(ϵ3γ̂), v4/(ϵ4γ̂) as well as the non-linear v4/(ϵ

2
2γ̂) and v2/(ϵ

3
2γ̂) exhibit an

increasing trend; due to the rather complicated time dependence, the behavior of
v6/(ϵ

2
3γ̂) appears non-monotonic. Clearly, the largest effect is seen in the case of the

v4/ϵ4-response which changes sign as the late time contributions become less and less
prominent.

When considering large opacities γ̂ ≳ 2 shown in the bottom panels of Figs. 5.3
and 5.4, the curves for linear (v2/ϵ2, v3/ϵ3, v4/ϵ4) and non-linear (v4/ϵ22, v6/ϵ23, v6/ϵ32)
response coefficients retain the same qualitative time dependence and monotonically
increase as a function of γ̂, seemingly approaching a finite large opacity limit, which
we will further examine in the following. Generally, we find that the linear anisotropic
flow response develops pre-dominantly in the regime 0.5 ≲ τ/R ≲ 2 and then stay
almost constant, with the exception of the aforementioned late time decrease of linear
v4. In the case of the non-linear coefficients v4/ϵ

2
2, v6/ϵ

2
3 and v6/ϵ

3
2 the response takes

a little longer to develop, but nevertheless the asymptotic late time value is reached
on similar timescales 0.5 ≲ τ/R ≲ 4.

Beyond the time evolution of the different flow harmonics, additional insights into
the development of anisotropic flow can be gained from their production rates p(vn),
which correspond the local rate of change of these quantities. Since free-streaming
and longitudinal expansion do not change the (transverse) momentum distribution of
particles, the build up of anisotropic flow is solely due to interactions. We can thus
determine the production rate p(O) of a flow observable O =

R
d2x⊥

R d3p
(2π)3

O f as

p(O) =
dO

dx⊥dτ

����
coll

=

Z
dϕx⊥ x⊥

Z
d3p

(2π)3
O d

dτ
f

����
coll

, (5.128)
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Figure 5.5: (top row) Space-time profiles of the effective temperature T̃ along
with the temporal and radial components of the vector field uµ, presented in the
x⊥-τ -plane for ϵn = 0.05. (bottom rows) Space-time profiles of the production rates
of linear vE2 , v

E
3 and vE4 response (second to fourth row) as well as nonlinear vE4

response (fifth row) . Numerical results were obtained in the moment method.
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where the rate of change of the phase-space distribution f due to collisions is given
by

d

dτ
f

����
coll

=
vµuµ
τR

(feq − f) . (5.129)

Specifically, the observables vEn are defined according to Eq. (3.41) as quotients of two
such terms, such that the production rate p(O) receives two contributions coming from
the numerator and denominator according to the quotient rule for differentiation.

Fig. 5.5 features heat maps in the x⊥-τ -plane for p(v2), p(v3) and p(v4) as well
as p(v4,n) referring to the nonlinear response, normalized by the respective late time
asymptotic values of vn for several different opacities ranging from the analytical
results for small opactites γ̂ ≪ 1 all the way to γ̂ = 50. Besides the production rates
of different vn, the top panel of Fig. 5.5, also shows a heat-map of the dimensionless
temperature T̃ and the flow components uτ and ur to allow for a comparison with
the spatial distribution and expansion of the system. The latter showcase how with
increasing opacity, the system cools more rapidly in the center and the transverse
expansion proceeds much slower, resulting in a longer lifetime of the central fireball.
Strong correlations of the temperature profile in τ and x⊥ only develop at much later
times when compared to the free streaming limit, which exhibits a prominent diagonal
line in the T̃ -heatmap. Inspection of the p(vn)-heatmaps reveals that different regions
in the x⊥-τ -plane contribute with different signs to the development of anisotropic
flow vn. By comparing the results for v2, v3 and v4, one also observes that for larger
n the relevant regions extend more towards larger x⊥, while at the same time more of
these regions appear, causing large cancellations between the different contributions.
Specifically for small opacitites, the structure of the heatmaps of the vn production
rates can be related to the weight

|x⊥ − v⊥∆τ |n cos(nϕx⊥−v⊥∆τ,n⊥)

=

nX

j=0

(−1)j
�
n

j

�
xn⊥

�
∆τ

xT

�j h
cos(nϕx⊥n⊥) cos(jϕx⊥p⊥)−sin(nϕx⊥n⊥) sin(jϕx⊥p⊥)

i

(5.130)

with which the anisotropic perturbations of the initial phase-space distribution prop-
agate in free streaming. Since the evolution of the perturbation is expressed as a
sum of n + 1 terms containing different powers of ∆τ/x⊥ with alternating signs, it
will divide the x⊥-τ -plane into n+ 1 regions of alternating signs depending on which
one of these terms dominates. In addition, the production of the anisotropic flow vns
will be weighted with the local effective temperature T̃ of the system, such that for
small opacities most of the contributions originate from the τ ∼ x⊥ diagonal, so only
∆τ/x⊥-terms that dominate close to that region will have a significant impact on the
total vn(τ). Specifically, for n = 2, there is only one dominant term, which explains
the monotonic increase of v2 as a function of time seen in Fig. 5.3. Conversely, for
n = 3, one positive and one negative contribution are competing, with the positive
one being slightly larger than the negative one, which is why for small opacities v3/e3
is significantly smaller than v2/e2 and features a slight negative trend at late times.
Finally, in the case of n = 4, there are three relevant terms. At early times, the
two positive contribution from the inner and outer border of the system win and v4
increases, but the one negative contribution surrounded by them in the x⊥-τ -plane is
closest to the diagonal and dominates at late times, resulting in a sign change for v4
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Figure 5.6: Linear response coefficients vEn /ϵn for elliptic flow n = 2 (top left),
triangular flow n = 3 (top right) and quadrangular flow n = 4 (bottom) as a function
of τ/R for different opacities γ̂ = 8 and γ̂ = 50 and various different eccentricities
ϵn. Lines denote results from the RLB method and symbols show results from the

moment method.

observed for the smallest opacities in Fig. 5.3.
With increasing opacity one observes a clear change in the shapes of the regions,

resulting in a shift of vn production towards earlier τ and smaller x⊥ in Fig. 5.5.
However, more strikingly the increase of opacity also leads to a change of the relative
weights of different regions, developing towards a scenario with only one dominant
positive contribution for all the vns at large opacity.

We finally note that the weighting with the effective temperature T̃ plays an
important role in this mechanism, such that a different initial condition could result
in different relative weights of the regions with different sign of the production rates,
which can have notable effects on the buildup of the different flow harmonics. Clearly,
one should expect that the higher order flow harmonics, where more cancellations
appear are more sensitive to changes of the initial conditions, and indeed we find that
varying the parameter α that controls the radial profile (c.f. Sec. 5.1.1) will have a
notable influence on the v3(τ) and v4(τ)-curves at small opacities.

Beyond the opacity dependence, one may also examine how the development of
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Figure 5.7: Non-linear response coefficients vE4 /ϵ22 (top right), vE6 /ϵ23 (top left) and
vE6 /ϵ

3
2 (bottom) as a function of τ/R for different opacities γ̂ = 8 and γ̂ = 50 and

various different eccentricities ϵn. Lines denote results from the RLB method and
symbols show results from the moment method.

anisotropic flow vn(τ) changes with the amplitude ϵn of the respective initial eccen-
tricity. Fig. 5.6 and 5.7 showcase how the curves of normalized flow spread with
eccentricity for two representative fixed values of γ̂. Somewhat surprisingly, we find
that the curves exhibit only very small deviations from an entirely linear (quadratic)
dependence on eccentricity in the linear v2, v3 and v4 (quadratic v4 and v6) flow re-
sponse, even for rather large eccentricities. The only response featuring a significant
dependence on eccentricity is the cubic v6 response to ϵ2. While this holds true not
only for the final values but also for the entire build up and evolution as a function of
τ/R, we remark however, that these findings are probably specific to the particularly
simple geometry considered in our setup, and it will therefore be important to extend
such systematic studies of the opacity dependence of the flow response towards more
realistic profiles of the transverse geometry.

Next, in order to further scrutinize the eccentricity dependence, we extract the
extrapolated final values of vn/ϵn resp. nonlinear v4/ϵ22, v6/ϵ23 and v6/ϵ

3
2 at late times

and plot them as a function of the square of the relevant eccentricity for several
different opacities. Our results shown in Fig. 5.8 and 5.9 again confirm the surprisingly
small deviations from perfect linear (quadratic) scaling of the flow response, with only
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Figure 5.8: Eccentricity ϵn-dependence of the linear response coefficients κn,n =
vEn (τ → ∞)/ϵn for elliptic flow n = 2 (top left), triangular flow n = 3 (top right)
and quadrangular flow n = 4 (bottom). Solid lines with filled circles denote results
from the RLB method, while dotted lines with open circles were obtained in the

moment method.

very slight negative (positive) trends at large opacity and eccentricity. Our results in
Fig. 5.8 appear to be in conflict with results previously obtained by Kurkela et al. [15]
in the same setup. We note once again, that although the absence of significant non-
linearity in the eccentricities may seem in conflict with conventional knowledge (see
e.g. [86, 163, 164]), we attribute this to the specific initial conditions considered within
our setup, and we have explicitly checked that hydrodynamic simulations of the same
initial conditions also lead to similar results for v2/ϵ2. Vice versa, the absence non-
linearities within our setup also indicates that the significant non-linearity observed
for more realistic initial state models should be attributed to other features of the
initial states considered in hydrodynamic simulations of heavy-ion collisions, which
are not solely characterized in terms of the usual eccentricties.

Since the flow response to the initial eccentricity is essentially linear within our
setup, our findings for the development of transverse flow can be compactly summa-
rized in Fig. 5.10, where we present results for the γ̂-dependence of the response co-
efficients κn,n = limϵn→0 vn/ϵn as well as κ4,22 = limϵ2→0 v4/ϵ

2
2, κ6,33 = limϵ3→0 v6/ϵ

2
3

and κ6,222 = limϵ2→0 v6/ϵ
3
2 estimated from our data at ϵ = 0.05. Besides the numerical

results, we also indicate the linearized analytical approximation in Eqns. (5.71-5.73)
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Figure 5.9: Eccentricity (ϵn) dependence of the non-linear response coefficients
κ4,22 = vE4 (τ → ∞)/ϵ22 (top left), κ6,33 = vE6 (τ → ∞)/ϵ23 (top right) and κ6,222 =
vE6 (τ → ∞)/ϵ32 (bottom). Solid lines with filled circles denote results from the RLB
method, while dotted lines with open circles were obtained in the moment method.

and the numerical results of Kurkela et al. [15]. Despite the discrepancy in the results
for the eccentricity dependence, we generally find good agreement with Kurkela et al.
in the linear response at low opacities (γ̂ ≲ 10), which only starts to deviate slightly
at larger opacities.

Concerning the opacity dependence, one finds that at low opacities up to γ̂ ≲ 1, the
linear response coefficients are reasonably well described by the leading order opacity
expansion κn,n ∼ γ̂ in Eqns. (5.71-5.73). However, one should note that, due to the
intricate space-time structure of vn production, the higher harmonic coefficents are
increasingly sensitive to changes in the underlying dynamics, such that e.g. κ4,4, starts
to deviate from the leading order opacity expansion already at smaller values of γ̂.
When increasing the opacity further, one observes a sizeable change in the linear and
non-linear flow response coefficients for 1 ≲ γ̂ ≲ 100, which is no longer captured by
the leading order opacity expansion. Eventually, for very large opacities γ̂ ≳ 100, the
opacity dependence of the linear and nonlinear response coefficients becomes weaker
and weaker, indicating a saturation towards a finite large opacity limit. Empirically,
we find that in this regime, the opacity dependence of the response coefficients can be
well approximated by a constant asymtptotic value and a power law correction, with
the asymptotic values κ(γ̂ → ∞) indicated by horizontal arrows in Fig. 5.10.
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Figure 5.10: Opacity (γ̂) dependence of (top) the linear κn,n = limϵn→0 v
E
n (τ →

∞)/ϵn and (bottom) the non-linear κn,mm = limϵm→0 v
E
n (τ → ∞)/ϵ2m, κn,mmm =

limϵm→0 v
E
n (τ → ∞)/ϵ3m response coefficients. Colored solid lines with filled circles

denote results from the RLB method, while colored dotted lines with open circles
were obtained in the moment method. The black solid lines show the results obtained
to leading order in opacity expansion for the linear coefficients (top). Gray lines
represent the results of Kurkela et al. in [15] (no such results are available for κ6,33

in the bottom panel). Horizontal arrows indicate asymptotic values extracted from
a fit to the numerical data at large opacities (see text).

5.4.3 Energy flow & hydrodynamic limit

So far we have employed an effective kinetic description to study longitudinal cooling
and the development of transverse flow as a function of the opacity parameter γ̂. While
at small opacities γ̂ ≪ 1 the results from numerical simulations are well described
by the first interaction correction to free-streaming, one generally expects that in the
opposite limit of large opacities γ̂ ≫ 1, the effective kinetic description approaches the
limit of dissipative and eventually ideal hydrodynamics. Hence in order to investigate,
to what extent this expectation holds true, we will now compare our results from
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Figure 5.11: Opacity (γ̂) dependence of the energy-flow response ϵp/ϵ2 for two
different initialization times τ0/R = 10−2 (top) and τ0/R = 10−6 (bottom). Two
results are plotted for kinetic theory: those from the RLB method are plotted as a
green solid line with filled circles and those from the moments method are plotted

as a green dashed line with open circles. All results are for ϵ2 = 0.05.
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kinetic theory with numerical simulations in Mueller-Israel-Stewart type second order
relativistic viscous hydrodynamics.

We employ the publicly available vHLLE code originally introduced in Ref. [153],
and extend the latest GitHub branch8 to include the initial conditions considered
in this Chapter. Apart from the conservation equation for the stress-energy tensor,
∇νT

µν = 0, the code implements the Müller-Israel-Stewart equations for the evolution
of the pressure deviator πµν , which for the case of a conformal fluid reduce to [186]

π̇⟨µν⟩ =
2ησµν − πµν

τπ
− δππ

τπ
πµνθ +

ϕ7

τπ
π⟨µ
α πν⟩α − τππ

τπ
π⟨µ
α σν⟩α, (5.131)

where σµν = 2∇⟨µuν⟩ is the shear tensor, θ = ∇µu
µ is the expansion scalar, while the

transport coefficients appearing above satisfy [187]

τπ =
5η

sT
,

δππ
τπ

=
4

3
, ϕ7 =

9

70p
,

τππ
τπ

=
10

7
. (5.132)

We note already at this stage, that the early time behavior in ideal and viscous
hydrodynamics does not agree with the early time free-streaming limit of kinetic
theory, which as pointed in [15, 26] leads to an unphysical behavior of dE⊥/dη at
early times, that makes the scaling variable γ̂ ill-defined in the limit τ0 → 0. While
in [15], this problem was addressed by modifying the initial conditions and matching
the energy per unit rapidity at a later time τ/R = 1 of the evolution, we follow the
more common procedure, and choose a finite initial time τ0, where we initialize the
energy density as in Eqns. (5.6) and (5.7), and set the components of the shear stress
tensor, πµν , to9

τ−2
0 πηη = −2πxx = −2πyy = −p, (5.133)

which ensures vanishing longitudinal pressure, to comply with the initial conditions
for kinetic theory in Eq. (5.3). 10 Similarly, we fix the value of the shear viscosity
to entropy density ratio η/s for a given value of γ̂ in the same way as for RTA, via
Eq. (5.23), evaluated at initial time τ0. By comparing kinetic theory and hydrody-
namic simulations with the same finite τ0, we can then achieve a direct comparison
and in addition investigate the dependence on the initialization time τ0 in the two
different theories.

Evaluating the energy-weighted flow harmonics vEn considered in this work, a
Cooper-Frye-like mechanism should be considered to reconstruct the phase-space dis-
tribution function from the hydrodynamic fields e, uµ and πµν . We circumvent this
ambiguity by instead referring to the stress-energy anisotropy ϵp, which according
to Eq. (3.44), can be defined directly in terms of the components of the energy-
momentum tensor. Since T µν is fundamentally accessible in both kinetic theory and
hydrodynamics, a comparison between the two theories can be made unambiguously
at the level of ϵp. While the quantity ϵp measures the second harmonic modulation of
the energy flow, and in our kinetic theory simulations exhibits almost identical behav-
ior to vE2 , we are not aware of generalizations of ϵp to higher order flow harmonics, and
will therefore restrict our attention to n = 2 perturbations, with initial eccentricity

8Commit number efa9e28d24d5115a8d813485232fb342b38380f0.
9We employ a conformal equation of state e = 3p.

10Since at very early times, the evolution in viscous hydrodynamics and kinetic theory does not
agree, another conceivable option is to initialize the hydrodnamic simulation on the hydrodynamic
attractor for Bjorken flow [15, 26]. We have also performed such simulations, and find no significant
differences regarding the development of transverse flow.
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ϵ2 = 0.05.11

Our results for the elliptic energy-flow response are compactly summarized in
Fig. 5.11, where we compare the opacity dependence of ϵp/ϵ2 in kinetic theory (RTA)
and hydrodynamics (vHLLE) for two different initialization times τ0/R = 10−2, 10−6

in the top and bottom panels. When considering the larger initialization time τ0/R =
10−2, one finds that viscous hydrodynamics provides a reasonable description of kinetic
theory for γ̂ ≳ 5, with both curves smoothly approaching the ideal hydrodynamic
limit for large opacities, as indicated by the gray dashed line. When considering
a much smaller initialization time, τ0/R = 10−6, we find small deviations between
kinetic theory and hydrodynamics in the same opacity range. While these deviations
might not be very sizeable, they notably do not steadily decrease with increasing
opacity, as one would naively expect. Moreover, a perhaps more evident observation
is that neither of the two curves appears to approach the ideal hydrodynamics result,
such that even when extrapolated to infinite opacity the RTA value (≃ 0.59) slightly
differs from the vHLLE value (≃ 0.57) and both fall about 10% short of the ideal
hydrodynamic limit (≃ 0.64).

Even though this behavior may appear counterintuitive at first sight, it can ul-
timately be traced back to the non-commutativity of the limits τ0 → 0, where the
system is subject to a rapid longitudinal expansion, and γ̂ → ∞, where hydrodynam-
ics emerges from kinetic theory as the system undergoes rapid equilibration. Starting
from kinetic theory, it is clear that for any finite opacity γ̂ the system is initially far-
from equilibrium and behaves as approximately free-streaming, until on time scales
τeq/R ∼ γ̂−4/3 the system undergoes equilibration, and the subsequent evolution can
be approximately described by viscous or even ideal fluid dynamics. While in the limit
γ̂ → ∞, the equilibration time τeq/R → 0 and fluid dynamics becomes applicable at
earlier and earlier times, the early time free-streaming and initial approach towards
equilibrium is never correctly described by fluid dynamics. The results in Fig. 5.11,
thus provide a clear illustration of the fact that at very early times, the system is
necessarily out-of-equilibrium and the two limits γ̂ → ∞ and τ0 → 0 are in general
not commutative.

Even though at large opacities the mismatch between kinetic theory and hydrody-
namics occurs only at very early times, this affects e.g. the longitudinal cooling and
can still have a notable effect on the development of anisotropic flow at later times,
which is seen in Fig. 5.11. We are thus lead to conclude that a non-equilibrium descrip-
tion of the early time dynamics is inevitable to accurately describe the development
of anisotropic flow, even at relatively large opacities.

As a final remark to the comparison of opacity dependencies in the different de-
scriptions, we note that for any finite τ0 kinetic theory and viscous hydrodynamics
will approach ideal hydrodynamics for sufficiently large opacities where the equilibra-
tion time τeq becomes smaller than the initialization time τ0. While the results shown
in Fig. 5.12 provide an explicit illustration of this behavior, the convergence towards
ideal hydrodynamics at large opacities corresponds to the incorrect order of limits, as
physically one needs to account for the entire space-time evolution of the system, i.e.
the limit τ0 → 0 has to be taken before γ̂ → ∞.

One may wonder, how the increasingly short period of non-equilibrium evolution
at early times can have such a significant impact on the transverse flow, which only
develops on much later times scales τ/R ≳ 0.1. While it is true that at very early
times, the system does not develop a significant amount of transverse expansion and

11We have checked that, similar to the kinetic theory results in Fig. 5.8, non-linear contributions
ϵp ∼ e32 are sufficiently small to be neglected for the linear response analysis of ϵp/e2.
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Figure 5.12: Opacity (γ̂) dependence of the response coefficient ϵp/ϵ2 in kinetic
theory (RTA, obtained using the RLB method), viscous (vHLLE) and ideal hydro-
dynamics for different initialization times τ0/R = 10−2−10−6. Convergence towards
ideal hydrodynamics is only observed when the initialization time becomes smaller

than the equilibration time of the system.

can locally be described by Bjorken flow as discussed in Section 5.4.1, it is equally
important to realize that the early-time dynamics is nevertheless inhomogeneous in
the transverse plane. Due to the fact that the initial energy density locally sets the
scale for the Bjorken evolution, some regions will experience a faster cooling relative
to others, thereby changing the shape of the energy density distribution in transverse
space. Due to this phenomenon of inhomogenous longitudinal cooling, the geometric
eccentricities will be modified even before the transverse expansion sets in. Since
the anisotropic flow is built up solely due to transverse expansion, its magnitude
is determined by the value of the eccentricity at the onset of transverse expansion.
We therefore conclude that differences in the longitudinal cooling at early times are
ultimately responsible for the observed differences in the transverse flow.

We illustrate this behavior in Fig. 5.13, where we present the evolution of the coor-
dinate space eccentricity ϵ2 as a function of time τ/R. Different colored curves in the
top panel show the evolution of ϵ2 in kinetic theory for different opacities. Similarly,
the bottom panel shows the corresponding results obtained in viscous hydrodynamics
(vHLLE). The ideal hydrodynamics result is shown for comparison as a solid black
line in both panels. Starting around τ ∼ 0.1R all curves exhibit a significant drop due
to the onset of transverse expansion. However, in kinetic theory and viscous hydro-
dynamics, the eccentricity decreases even before that due to the previously discussed
phenomenon of inhomogeneous longitudinal cooling. Strikingly, this effect can also be
described (semi-) analytically by approximating the dynamics as a collection of local
Bjorken flows as discussed in Section 4.1.1, which yields results for the decrease of
ϵ2 that we plotted as dashed black lines. We note that the limiting behavior for this
decrease can be obtained as

lim
τ→∞

ϵ2(τ)

ϵ2;0
=

(1− γ/4)3

(1− γ/6)3
, (5.134)
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Figure 5.13: Comparison of the evolution of ϵ2 normalized to its initial value ϵ2;0
on a logarithmic timescale for kinetic theory obtained using the moments method
(left) and viscous hydrodynamics (right). Also shown are the corresponding results
in Bjorken flow scaling approximation (dashed black lines) and ideal hydrodynamics
(solid black lines). Gray dashed lines show the limit in Eq. (5.134) in the absence of

transverse expansion.

where γ is related to the behaviour of the universal function E(w̃) ∼ w̃γ at small
w̃, such that in kinetic theory γ = 4/9, whereas for the hydrodynamic theory in
Eq. (5.131), one has γ = (

√
505 − 13)/18 ≃ 0.526. Evaluating Eq. (5.134) for the

above values of γ, one obtains a ∼ 11.5% (RTA) and 13.7% (VHLLE) decrease of
ϵ2 solely due to the longitudinal expansion, as indicated by the gray dashed lines
in Fig. 5.13. Hence, this effect indeed takes on the correct magnitude to be able
to describe the difference of ∼ 10% in the large opacity limits of kinetic theory and
viscous hydro compared to ideal hydrodynamics.

5.5 Discussion

We employed the Boltzmann equation in the conformal relaxation time approximation
as a simple model to study the space-time dynamics of small and large systems created
in high-energy hadronic collisions. Within the simple effective kinetic description
described in Sec. 5.1, the evolution of the system depends on a single dimensionless
opacity parameter γ̂ that combines the system size and energy dependences, and we
estimate γ̂ to range from values ≲ 1 in p+Pb collisions to ≈ 10 in Pb+Pb collisions
at LHC energies (c.f. Eq. (5.24) and (5.25)). We considered in this chapter an
analytical form of the initial condition that might not necessarily be realistic, but
it does reproduce for our purposes the relevant features of the initial state.

We performed (semi-)analytic calculations at leading order in opacity γ̂ (c.f. Sec. 5.2)
and developed first principles numerical simulations (c.f. Sec. 5.3) to investigate the
longitudinal cooling of the transverse energy per unit rapidity, dE⊥/dη, and the de-
velopment of transverse flow quantified by the (energy weighted) flow harmonics vEn
for a large range of opacities.

We find that with increasing opacities, pressure isotropization takes place at earlier
and earlier times, such that for large opacities γ̂ ≳ 1 the onset of longitudinal cooling
of the system is well described by one dimensional Bjorken dynamics, until at later
times τ/R ≳ 0.1 the effects of the transverse expansion can no longer be ignored.
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By studying the response to anisotropic perturbations of the initial energy density,
we investigated the development of transverse flow from low to high opacities. While
for small opacities, γ̂ ≲ 1, the development of transvserse flow is reasonably well
described by the leading order opacity corrections to free-streaming, we find that
for 1 ≲ γ̂ ≲ 100 the linear and non-linear flow response exhibits a strong opacity
dependence, and eventually saturates for large opacities γ̂ ≳ 100. In contrast to large
opacities, at small opacities the time evolution of linear quartic and several non-linear
flow responses exhibit non-monotonic behaviour. In the case of the linear quartic
flow, we were able to explain this behaviour via the “flow production rates” as a radial
density and rate in time. It stands to reason that a similar explanation could be found
also for the non-linear flow responses.

Even though one naively expects the results for large opacities γ̂ ≫ 1 to approach
the hydrodynamic limit, it turns out that subtleties of the limits γ̂ → ∞ and τ0 → 0
provide a restriction on the accuracy of hydrodynamic descriptions. Since the early
time pre-equilibrium dynamics of the system cannot be accurately described by or-
dinary viscous or ideal hydrodynamics, deviations between all approaches persists
even at very large opacities. With respect to RTA results, we found discrepancies of
the viscous and ideal hydro results of the order of ∼ 2.5% and ∼ 12%, respectively.
However, as these discrepancies can be mostly attributed to the phenomenon of inho-
mogeneous longitudinal cooling, we believe that the inclusion of a more appropriate
pre-equilibrium description as in KøMPøST [141, 188] may significantly improve the
agreement between microscopic and macroscopic descriptions (see also [175]). Simi-
larly, it is also conceivable that setups of hydrodynamic simulations could be modified
in order to alleviate discrepancies with kinetic theory, which we will investigate further
in the next chapter.
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Chapter 6

Opacity dependence of
pre-equilibrium and applicability of
hydro

In Chapter 5, we found that for final state observables related to transverse flow,
results from purely hydrodynamic simulations are in disagreement with results from
kinetic theory even at very large opacities due to differences of the dynamics in these
two theories during the pre-equilibrium phase.

We now want to examine how in practice simulations of heavy ion collisions based
on hydrodynamics can be brought into agreement with kinetic theory simulations.
Therefore, we will use a more realistic initial condition that was obtained as the average
of Monte-Carlo-generated collision events, which is introduced in Sec. 6.1. The time
evolution is again modeled in simplified RTA of kinetic theory. Within this model,
we perform an analysis of the circumstances under which hydrodynamics becomes
applicable as a function of opacity and time, as determined by comparing results for
cooling and transverse flow to kinetic theory. The different evolution schemes we
used are discussed in Section 6.2. The insights from Chapter 4 about the early time
attractor can be applied to this setup as described in Section 6.3. Based on our results
for the differences of kinetic theory and hydrodynamics in this phase, we introduce a
scaling scheme for the initial condition of hydro that can counteract these differences.
This scheme relies on a timescale separation of equilibration and the onset of transverse
expansion. In Section 6.4, we discuss the time evolution of the system at three example
opacities. On the basis of transverse profiles, we indicate how the picture changes from
a close-to-free-streaming to an almost fully equilibrated system in kinetic theory. We
compare the time evolution in kinetic theory and viscous hydrodynamics as well as in
hybrid schemes. Within these hybrid schemes, the first part of the system’s evolution
is modelled using kinetic theory. Afterwards, we switch to hydrodynamics to model
the remainder of the evolution. For sufficiently large opacities, our proposed scaling
scheme indeed brings hydrodynamics into agreement with kinetic theory after pre-
equilibrium. Based on the system’s equilibration, we present a useful criterion for the
applicability of hydrodynamics, which can be used to define the switching times for
hybrid schemes. This criterion is reached at later evolution times for smaller opacities
and in some cases is never fulfilled. We find that when switching sufficiently late,
hybrid schemes are also in good agreement with kinetic theory. KøMPøST + viscous
hydro simulations yield similar results as simulations with full kinetic theory + viscous
hydrodynamics.

The range of applicability of the different schemes can best be assessed by studying
the opacity dependence of final state observables. In Section 6.5, we compare first
naive and scaled hydrodynamics to kinetic theory and establish 4πη/s ≲ 3 as the
opacity range where the scaling scheme brings agreement. We then show results from
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the two hybrid simulation schemes, which can improve on scaled hydro results in the
intermediate opacity range around 4πη/s ∼ 3.

In Sec. 6.6, we provide a brief discussion of the results of this Chapter. Appen-
dices E and F provide further details on how the linearized results in opacity expansion
were obtained, while in Appendices G and H we discuss some additional results for
the time evolution of the system.

6.1 Initial state

We will use a realistic average initial condition for the 30− 40% most central Pb-Pb
collisions at

√
sNN = 5.02TeV. This initial condition was generated numerically on

a transverse grid of size 512 × 512 in the following way . A saturation model based
initial state generator was used to generate 8 million events with aligned directions
of the impact parameter, which were then divided into centrality classes. Then the
pointwise average of all events in each centrality class was taken. We made sure that
in the resulting event averages statistical fluctuations are sufficiently suppressed by
checking that they feature no local peaks above an energy density level of 10−6 times
its maximum. More details on this event generation procedure can be found in [189].

In terms of the observables introduced in Sec. 3.6, some of the characteristic prop-
erties for the initial condition we use are summarized in Table 6.1. As we use a fixed
profile, the parameters R and dE

(0)
⊥

dη are also fixed and we vary the opacity γ̂ via η/s.
Hence, throughout this Chapter, whenever discussing opacity dependencies, we will
characterize the opacity via the value of the shear viscosity to entropy density ratio
η/s. Note, however, that these two quantities are inversely proportional.

dE
(0)
⊥ /dη [GeV] R [fm] γ̂ × 4πη/s ϵ2 ϵ4 ϵ6

1280 2.78 11.3 0.416 0.210 0.0895

Table 6.1: Characteristic properties of the initial condition for the energy density
used in this work.

6.2 Evolution Models

We want compare the dynamics of several different time evolution frameworks, which
were all introduced in Chapter 3. Specifically, we will employ RTA kinetic theory in
the numerical implementation as introduced in Sec. 5.3.2 as well as a correscponding
opacity expansion and treatment in KøMPøST. We will also employ ideal and vis-
cous hydrodynamics as implemented in the vHLLE code [153]1 with RTA transport
coefficients.

6.2.1 Validation of KøMPøST

Before employing KøMPøST to describe pre-equilibrium, we first checked to what
extend results from modified RTA-KøMPøST are in agreement with results from full
kinetic theory in RTA for our specific initial condition. This comparison was done on
the basis of the time evolution of the observables that we consider in this Chapter
but also for crosssections through profiles of the energy-momentum tensor after some
evolution time. All KøMPøST results presented here were obtained using an initial
time of τ0 = 10−6 R.

1Commit number efa9e28d24d5115a8d8134852-32fb342b38380f0.
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Figure 6.1: Time evolution of transverse energy dEtr/dη (top left, cf. Eq. 3.43),
transverse flow velocity ⟨u⊥⟩ϵ (top right, cf. Eq. 3.53), elliptic flow ϵp (bottom left,
cf. Eq. 3.44) and inverse Reynolds number ⟨Re−1⟩ϵ (bottom right, cf. Eq. 3.52).
Plotted are results from KøMPøST (RTA) with (+ symbols) and without (× sym-
bols) energy perturbations compared to full kinetic theory results (solid lines) at
three different opacities 4πη/s = 0.5 (green), 2 (yellow) and 10 (blue). In the plot
of transverse flow velocity, results at different opacities are shifted in value in order

to be distinguishable.

Fig. 6.1 shows a comparison of the time evolution of four different transverse
space integrated observables at three different values of the shear viscousity, namely
4πη/s = 0.5, 2, 10. The results from KøMPøST are plotted with symbols "+" for the
mode with and "×" for the mode without energy perturbations and are benchmarked
for times up to τ = 0.5R against the results obtained using a full kinetic theory
description plotted with lines.

The decrease of transverse energy dEtr/dη is described very well in both modes. As
without energy perturbations, the energy-momentum tensor is propagated as if there
were no local gradients, it predicts zero transverse flow velocity ⟨u⊥⟩ϵ and elliptic flow
ϵp. The mode with energy perturbations can describe the buildup of ⟨u⊥⟩ϵ correctly.
On the other hand, while giving nonzero results, it still vastly underestimates the
buildup of anisotropic flow ϵp. The inverse Reynolds number



Re−1

�
ϵ
is well described

by both modes at early times, but results from the mode with energy perturbations
deviate at very late times.

Generally, the comparison suggest that for certain observables, KøMPøST results
can be accurate even slightly beyond the timeframe it was intended for, which is on
the order of 1 fm. Other observables, in particular those related to anisotropies, are
not described correctly.
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In a further comparison of KøMPøST to full kinetic theory data, we also inves-
tigated profiles of certain components of T µν at fixed shear viscosity 4πη/s = 2 and
three different fixed times τ = 0.1R, 0.3R and 0.5R. The same comparisons were also
performed in the local rest frame with analogous quantities that are defined via the
variables ϵ, uµ and πµν . Fig. 6.2 illustrates our findings. This time, KøMPøST results
are plotted with lines and full kinetic theory results with symbols.

The results confirm that for energy or energy flow observables like T ττ , T τy and
T xx+T yy, KøMPøST works well even on a local level and in the outskirts of the system
for all evolution times that we examined. The only part of the energy-momentum
tensor for which KøMPøST results shows significant deviations are anisotropies in
the shear stress, as measured by T xx − T yy. While this observable is still correctly
reproduced in the central part of the system, it exhibits sizeable deviations of up to
a factor of five at a radial distance of r ≳ R. These deviations also explain the errors
in elliptic flow ϵp.
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Figure 6.2: Comparison of KøMPøST (RTA) and full kinetic theory via results for
the energy-momentum tensor on the line x = 0, represented at fixed times τ/R ≃ 0.1
in blue, 0.3 in yellow and 0.5 in green. The full kinetic theory results are plotted
with points (+,×), while the KøMPøST ones obtained with and without energy
perturbations are plotted with solid and dashed lines, respectively. Anisotropic
observables are nonzero only with energy perturbations and are plotted with point-
dashed lines. The upper row shows, from left to right, the following components
of the energy-momentum tensor: T ττ (left), T τy (middle), as well as T xx + T yy

and T xx − T yy (right). The lower row shows analogous local rest-frame quantities,
namely ϵ (left), ϵuy (middle), as well as πxx + πyy and πyy − πxx (right). Notice
the change in sign for the latter when compared to the upper panel. All observables
were multiplied with τ and rescaled with a constant factor to adjust their magnitudes

such that they can be plotted on the same total range of 80 GeV/fm2c.
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Kinetic Naive hydro Scaled hydro
theory Ideal Viscous Ideal Viscous

γ 4/9 0 0.526 0 0.526
α 1 2/3 1.071 2/3 1.071

R

τ

⟨u⊥⟩ϵ,early
1− (τ0/τ)α

0.614 0.691 0.600 0.658 0.606

R

τ

⟨u⊥⟩ϵ,late
1− (τ0/τ)2/3

0.658 0.691 0.652 0.658 0.658

Table 6.2: Estimates for the pre-flow generated in kinetic theory, ideal hydrody-
namics and viscous hydrodynamics (see Sec. 6.3.2 for details regarding the naive and

scaled hydrodynamics setups).

6.3 Early-time dynamics of different models

We will now discuss what we can learn from applying the insights about the early
time attractor in systems with transverse expansion described in Chapter 4 to the
setup used in this Chapter.

6.3.1 Pre-flow estimation

The pre-flow estimates obtained in Section 4.1.2 - specifically the Eqs. (4.50) and
(4.52) - can be evaluated numerically for the 30 − 40% centrality profile that we are
considering in this Chapter. The results for the different theories (kinetic theory, ideal
hydrodynamics and viscous hydrodynamics) are shown in Table 6.2. Here, we contrast
the “naive” and “scaled” initial conditions for hydrodynamics, which will be discussed
in detail in the following subsection. In the early-time regime, it can be seen that
kinetic theory leads to more flow than viscous hydrodynamics (2% and 1% more for
the naive and scaled initialization, respectively), while ideal hydrodynamics leads to
more flow than kinetic theory (13% and 7% more for the naive and scaled initializa-
tions, respectively). In the late-time limit, both ideal and viscous hydrodynamics are
brought in agreement with kinetic theory when the scaled initialization is employed.
In the case of the naive initialization, ideal hydrodynamics gives about 5% more flow,
while viscous hydrodynamics underestimates the flow by less than 1%.

6.3.2 Setting initial conditions

From the discussion in Section 4.1.1, it becomes clear that the pre-equilibrium evo-
lution of the fluid depends on the theory employed to describe it. We take as the
“correct” evolution that described by kinetic theory, when dEtr/dη remains constant
during the free-streaming stage of pre-equilibrium. This can be seen by setting γ = 4/9
in Eq. (4.30). Since in viscous hydrodynamics, γ ≃ 0.526 > 4/9, dEtr/dη will actually
increase during pre-equilibrium, thus leading for the same initial energy profile to an
unphysically higher transverse plane energy at late times, as illustrated in Fig. 4.2.
Similarly, the change in eccentricity due to the pre-equilibrium evolution will be differ-
ent compared to kinetic theory. We will now discuss how these phenomena specifically
affect the pre-equilibrium evolution of our initial state as given in Sec. 6.1 and how
they are counteracted by locally scaling the initial condition. We will then give the
quantitative details of the scaling prescription.

Fig. 6.3 illustrates the size of the effect on transverse energy dEtr/dη in the top
panel and ellipticity ϵ2 in the bottom panel. In naive hydrodynamics using the same
initial condition as kinetic theory, dEtr/dη rises to a value about 1.5× bigger than in
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kinetic theory at the onset of equilibration and will remain in disagreement throughout
the rest of the evolution. The dashed lines show predictions of the behaviour in the
local Bjorken flow scaling approximation according to Eq. (4.29). In our proposed
scheme the initial value of dEtr/dη is scaled down in such a way that it dynamically
reaches agreement with kinetic theory. Similarly, we find that the ellipticity decreases
in both kinetic theory and in hydro, but more so in the latter case. This means that
in naive hydro the eccentricity will have a smaller value at the onset of the buildup of
transverse flow than kinetic theory, which will result in smaller final values of elliptic
flow. With the scaling scheme, the initial ellipticity is scaled up in hydrodynamics
and will come into agreement with kinetic theory.

As the local scaling factor for the hydrodynamic initial condition is computed in
the local Bjorken flow approximation, it assumes that the system will fully equilibrate
before the onset of transverse expansion. How well this works in practice will be
discussed in Sec. 6.4.2.
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Figure 6.3: Early time evolution of transverse energy dEtr

dη (top, cf. Eq. 3.43) and
ellipticity ϵ2 (bottom, cf. Eq. 3.49) in kinetic theory (blue), naive hydrodynamics
(red) and scaled hydrodynamics (green). Hydrodynamics behaves differently in pre-
equilibrium, such that differences to a kinetic theory description build up. This can

be counteracted by scaling the initial condition.

We now move to the quantitative analysis of the pre-equilibrium behaviour in
the two hydro schemes. In the first one, dubbed “naive hydrodynamics”, we will
impose the same energy density ϵ0 at initial time τ0 as in kinetic theory. We first
note that the precise RTA initial conditions described in Sec. 3.7 are not compatible
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with the hydrodynamic attractor due to the vanishing longitudinal pressure. Indeed,
noting the relations PT = ϵ(13 − fπ

2 ) and PL = ϵ(13 + fπ), as well as the relation
fπ;0 = −2γ

3 /(1− γ/4) implied by Eq. (4.19), the early-time expression for T µν reads

Tµν
0 =

ϵ0
1− γ/4

× diag

�
1− γ

4
,
1

3
+

γ

4
,
1

3
+

γ

4
,
1

3
− 3γ

4

�
, (6.1)

which reduces to T µν
0 = diag (ϵ0, ϵ0/2, ϵ0/2, 0) for RTA, when γ = 4/9. Since in

hydrodynamics, γ > 4/9, the initial transverse-plane energy will be larger than in
RTA:

dE0
tr;γ

dη
=

2

3

1 + 3γ/4

1− γ/4

dE0
tr;RTA

dη
. (6.2)

This explains why even at initial time the naive hydro curve in Fig. 6.3 already starts
above the kinetic theory one.

Acknowledging that viscous hydrodynamics does not capture correctly the pre-
equilibrium evolution of the fluid, we propose to change the initialization of hydrody-
namics in such a way that the energy density ϵ locally agrees with the kinetic theory
prediction at late times. In principle, this works only when the pre-equilibrium evolu-
tion ends before the onset of transverse expansion. Taking a and η/s to be identical in
the two theories and demanding that they both reach the same (τ 4/3ϵ)∞ value when
τ → ∞, Eq. (4.24) shows that the local modification of the initial energy density in
hydrodynamics (denoted ϵ0,γ) is

ϵ0,γ =

"�
4πη/s

τ0
a1/4

� 1
2
− 9γ

8
�
CRTA
∞
Cγ
∞

�9/8

ϵ0,RTA

# 8/9
1−γ/4

, (6.3)

where the specific shear viscosity η/s is considered to have the same value in viscous
hydrodynamics and in kinetic theory. Using the above energy profile in Eqs. (4.31),
(4.33) and (4.52) shows that after pre-equilibrium (i.e., at large w̃), dEtr/dη, the
eccentricities ϵn and the average flow velocity ⟨u⊥⟩ϵ will reach the corresponding RTA
limits, irrespective of the value of γ. We note, however, that the pre-equilibrium
behaviour of all of the above observables will still be different from that in RTA.

Before ending this Section, we emphasize that the rescaling of the initial conditions
shown in Eq. (6.3) is not only possible, but also mandatory for ideal hydrodynamics
simulations, when γ = 0 and C∞ = 1. While when applying the scaling procedure
to viscous hydrodynamics, η/s was considered as an invariant physical parameter, in
ideal hydrodynamics (when η = 0), this is no longer the case. Instead, the factor η/s
helps rescale the initial energy density such that at late times, τ 4/3ϵ obtained in ideal
hydrodynamics would match the one in a hypothetical RTA system with that given
value of η/s. The agreement between ideal hydro and RTA can be expected of course
only in the limit η/s → 0. Specifically, Eq. (6.3) reduces in the case of ideal hydro to

ϵ0,id =

�
4πη

s

�4/9

RTA

CRTA
∞

a1/9

τ
4/9
0

ϵ
8/9
0,RTA. (6.4)

For definiteness, we perform the ideal hydro simulation at 4πη/s = 1, rescaling the
results appropriately when comparing to kinetic theory at other values of 4πη/s.
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Figure 6.4: Time evolution of transverse profiles of the restframe energy density τϵ
in a heatmap plot together with transverse components of the flow velocity (ux, uy)
as a vector field plot for the averaged initial condition used in this work at different
opacities 4πη/s = 0.5 (left), 3 (middle) and 10 (right). The snapshot times τ = 0.1R
(top), τ = 1R (middle) and τ = 2R (bottom) were chosen as the beginning, peak

and end of the buildup of elliptic flow εp.

6.4 Space-time evolution at different opacities and in dif-
ferent setups

The different behaviour of hydrodynamics compared to kinetic theory in pre-equilibrium
can best be assessed via the time dependence of the studied observables. This also
allows to study the behaviour during different stages of the collision. In Section 6.4.1,
we discuss the time evolution of transverse profiles of the system in kinetic theory.
Subsection 6.4.2 compares the time evolution of the tracked observables in kinetic
theory and scaled viscous hydrodynamics. These are then used as the basis for a
discussion of the time evolution in hybrid simulation schemes in Sec. 6.4.3.

6.4.1 Evolution of transverse profiles in kinetic theory

We now want to discuss the system’s time evolution at different opacities resolved
in transverse space. This is illustrated in Fig. 6.4 via heatmap plots of the time
scaled local rest frame energy density τϵ together with a vector plot of the transverse
components of the flow velocity uµ at three different values of the shear viscosity,
4πη/s = 0.5, 3, 10, which are representative of the regimes of hydrodynamic behaviour,
close-to-free-streaming behaviour and the intermediate transitioning regime. The time
evolution of these profiles is sampled at three different times, τ = 0.1R, 1R and 2R,
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Figure 6.5: Transverse profiles of the transverse anisotropy τ(T xx − T yy) of diag-
onal components of the energy-momentum tensor in kinetic theory at time τ = 1R

for different opacities 4πη/s = 0.5 (left), 3 (middle), 10 (right).

which mark the beginning, peak and end of the buildup of elliptic flow εp, as discussed
in Section 6.4.2.

At the earliest time, τ = 0.1R, transverse dynamics have not had a large effect yet:
flow velocities are negligible and the main geometric properties of the profile remain
unchanged. The only obvious difference is the overall scale. At smaller η/s, the sys-
tem starts cooling sooner, performing more work against the longitudinal expansion,
resulting in significantly smaller energy densities when compared to larger η/s.

τ = 1R marks the characteristic time where transverse expansion effects become
significant. Here, we see the profile taking on a more circular shape. We also see
significant flow velocities, which rise in magnitude with the distance from the center.
For smaller shear viscosity η/s, meaning larger interaction rates, the system tends to
lump together more, resulting in a smaller spatial extent and smaller flow velocities
compared to larger η/s.

At the largest selected time, τ = 2R, the interaction rate in the system has
significantly decreased due to the dilution caused by the transverse expansion. Over
time, the dynamics will approach a free-streaming expansion in all directions. It is
apparent in all three cases that the system has expanded mainly in the directions of
larger gradients in the initial state. For small shear viscosity η/s, the system’s energy
density is still peaked in the center due to stronger collective behaviour. On the other
hand, at large η/s, the system evolution is closer to a free-streaming propagation of
the initial state, resulting in two high-density areas at distances r ≈ τ from the center.
Though the difference is barely visible, the built-up flow velocities are larger for larger
η/s.

We can discern additional spatially resolved information on the opacity dependence
of the system’s evolution by also comparing profile plots of the anisotropic stress,
T xx−T yy, which are presented in Fig. 6.5. Per definition in Eq. (3.44), the transverse
integral of this quantity is proportional to elliptic flow εp, which builds up more at
smaller opacities. Note that the symmetry phase factor takes the value e2iϕp = −1 in
this case, such that a negative integral results in positive εp. The plots show that the
transverse plane separates into regions with different sign of the anisotropic stress. The
behaviour in the outskirts is dictated by transverse expansion, resulting in positive
values in ±x-direction and negative values in ±y-direction. The buildup of elliptic
flow seems to proceed mainly via the positive parts decaying more than negative ones.
At small opacities in the right panel, particles propagate with few interactions. Due to
the initial almond shape, most of the particles in the center propagate in ±x-direction,
resulting in a larger T xx than T yy. At large opacities in the left panel, the system is
hydrodynamized and the anisotropic stress comes mostly from the direction of flow.
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Since the flow components ux and uy are zero in the center of the system, anisotropic
stress vanishes.

6.4.2 Time evolution of observables in kinetic theory and hydrody-
namics

We will now examine the time evolution of certain characteristic transverse space inte-
grated observables in both kinetic theory and the scaled hydrodynamics scheme that
was proposed in Section 6.3.2 as a countermeasure to the unphysical pre-equilibrium
behaviour of hydrodynamics discussed in Section 4.1.1. This will provide additional
insights into the system’s behaviour but also reveal how well the scaled hydro scheme
works at different opacities. Fig. 6.6 shows comparisons of the time evolution of
transverse energy dEtr/dη, elliptic flow εp, average transverse flow velocity ⟨u⊥⟩ϵ and
average inverse Reynolds number ⟨Re−1⟩ϵ in both models at three different opacities.
Since we are using a fixed initial profile, we plot εp without normalization to the initial
state eccentricity ϵ2. As an illustration of the motivation for the scaling scheme in
hydrodynamics, for dEtr/dη and ⟨Re−1⟩ϵ we also compare with the time evolution in
the absence of transverse expansion, where we describe the system as a collection of
local Bjorken flows.

The time evolution of transverse energy dEtr/dη closely follows results from Bjorken
flow scaling at early times, as predicted in section 4.1.1. In Bjorken flow scaling, this
observable starts out being constant in the free-streaming period of kinetic theory,
while in hydrodynamics, it follows a positive power law, cf. Eq. (4.30). From there, in
both cases the time evolution smoothly transitions to a late time equilibrium power
law dEtr/dη ∼ τ−1/3. The timescale of this transition depends on the opacity and
is smaller at smaller η/s. In RTA2, it scales as τeq ∼ (η/s)4/3 [1]. By construc-
tion, results from scaled hydrodynamics agree with kinetic theory results in the late
time limit of Bjorken flow scaling. The time evolution in full simulations follows this
behaviour up to times τ ∼ R, when effects of transverse expansion become signifi-
cant. The rapid dilution due to transverse expansion decreases interaction rates and
causes dEtr/dη to approach a constant value. For large opacities like 4πη/s = 0.1,
the Bjorken flow equilibrium where both models agree sets in long before transverse
expansion and even afterwards the results will stay in agreement. Intermediate opac-
ities around 4πη/s = 1 mark the transition region where results for dEtr/dη from
both models just barely come into agreement before approaching a constant value. At
small opacities like in the case of 4πη/s = 10, the onset of transverse expansion in-
terrupts the Bjorken flow scaling period before the two model descriptions have come
into agreement. The residual discrepancy then persists throughout the evolution of
the system and leads to a mismatch of final state observables,which becomes worse as
η/s is increased.

The second line of Fig. 6.6 shows the time evolution of the elliptic flow coefficient
εp. Again, like in the case of dEtr/dη, the decrease of interaction rates due to the
dilution caused by transverse expansion, εp reaches a late-time plateau. Thus, at all
opacities, εp builds up in a timeframe of τ ≲ 2R. Contributions from early times
are negligible, such that effectively the buildup starts at τ ≳ 0.1R. As indicated in
the log-log insets, the kinetic theory curves exhibit at early times an approximate
power-law increase, εp ∝ τ8/3. In contrast, the scaled hydro curve for εp first dips
to negative values. For 4πη/s = 0.5, when equilibration is achieved before the onset
of transverse expansion, the scaled hydro curve merges into the RTA one as implied

2In general, the equilibration timescale scales with (η/s)3(1−γ/4)/2, with γ as defined in Eq. (4.19).
Numerically, the exponent 1.30 for viscous hydrodynamics is close to the one for RTA.
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Figure 6.6: Time evolution of (from top to bottom) transverse energy dEtr/dη
[cf. Eq. (3.43)], elliptic flow εp [cf. Eq. (3.44)], transverse flow velocity ⟨u⊥⟩ϵ [cf.
Eq. (3.53)] and inverse Reynolds number
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�
ϵ

[cf. Eq. (3.52)] in kinetic theory
(black) and scaled viscous hydrodynamics (purple). The time axis is scaled loga-
rithmically in all plots. The plots showing elliptic flow εp feature an inset plot of
the same quantity plotted in log-log scale. The plots of flow velocity also show the
pre-flow result from Table. (6.2) for the early-time limit for ⟨u⊥⟩ϵ /(∆τ/R) (0.614

for kinetic theory and 0.606 for scaled hydrodynamics).
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by the discussion in Sec. 6.3.2. At small opacity (4πη/s = 10), the merging process
is interrupted by transverse expansion. The scaled hydro result for εp is in perfect
agreement with kinetic theory at large opacities and stays in good agreement at inter-
mediate opacities. Due to a smaller overall interaction rate, the εp-response decreases
with decreasing opacity. For small opacities, a negative trend in the early time be-
haviour of hydrodynamics causes discrepancies with kinetic theory. This trend will
become dominant at even smaller opacities, resulting in negative values of the late
time plateaus.

As discussed in Section 4.1.2, at early times ⟨u⊥⟩ϵ builds up linearly with the
elapsed time ∆τ = τ − τ0 in kinetic theory. For finite initialization time τ0, the
detailed behaviour in hydrodynamics is slightly different, but almost indistinguishable
from linearity in ∆τ . Hence, we plot the ratio ⟨u⊥⟩ϵ

∆τ/Rand indicate the early time limit
via constant lines. The plots confirm that there are slight differences in the early time
behaviour of the flow velocities in hydrodynamics and kinetic theory, however they
come into agreement on similar timescales as dEtr/dη. This is partly owing to the
fact that early time contributions to the total ⟨u⊥⟩ϵ are negligible. ⟨u⊥⟩ϵ enters a
period of superlinear rise during transverse expansion. While this period ends earlier
at larger opacities due to dilution of the system and transition to free-streaming, the
total rise of ⟨u⊥⟩ϵ

∆τ/R is nevertheless larger. Comparing hydrodynamic results to kinetic
theory results, the late time free-streaming does not seem to be accurately reproduced,
as hydrodynamics underestimates ⟨u⊥⟩ϵ. Problems in the late time behaviour are
less relevant for the other observables we discuss, as they tend to plateau at late
times. This late time discrepancy between hydrodynamics and kinetic theory is thus
a phenomenon that mainly affects ⟨u⊥⟩ϵ among the observables that were tracked in
this work, and is not related to pre-equilibrium.

Finally, we look at the time evolution of the average inverse Reynolds number,
which is a measure of the size of non-equilibrium effects in the system. We normal-
ized this in such a way that in RTA, its initial value is equal to one (note that in
scaled hydro, Re−1 ∼ 1.212 when τ0 → 0). Like for dEtr/dη, the two model de-
scriptions will come into agreement in the late time limit of Bjorken flow scaling, on
timescales that are larger for smaller opacities. Due to equilibration, in this period
⟨Re−1⟩ϵ experiences a phase of rapid decay towards 0, as expected since Re−1 mea-
sures non-equilibrium effects. The effect of transverse expansion on this observable
is not straightforwardly understood, except for the fact that due to the additional
dilution, ⟨Re−1⟩ϵ must be larger in full simulations than in Bjorken flow scaling. For
large opacities, transverse expansion seems to only slow down the approach to equi-
librium. However, at intermediate opacities we see a significant rise in ⟨Re−1⟩ϵ. We
also computed results for the limit of vanishing opacity. Here, the inverse Reynolds
number remains constant at early times, but later increases due to transverse expan-
sion, e.g. at τ = 4R to a value of ⟨Re−1⟩ϵ(τ = 4R) = 1.322. However, an increase due
to transverse expansion cannot be the only late time effect, as we can see from the
results at 4πη/s = 10, where even after its first departure thereof, the average inverse
Reynolds number goes back to dropping at similar speeds as the Bjorken flow scaling
result, before starting to rise at late times. But what we can say with certainty is
that ⟨Re−1⟩ϵ will have a minimum value that is larger for smaller opacities. For very
small opacities, it will not drop significantly below its initial value of 1 before starting
to rise.

For a more detailed examination of the opacity dependence of the time evolution
in kinetic theory ranging from very small (4πη/s = 1000) to very large opacities
(4πη/s = 0.01), please see App. G.

After examining the time evolution of these observables and establishing some
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Figure 6.7: Opacity (γ̂ = 11.3
4πη/s ) dependence of the characteristic times where the

elliptic flow εp [cf. Eq. (3.44)] reaches 5% of its late time (τ = 4R) value (red), the
transverse flow velocity [cf. Eq. (3.53)] builds up to a value of ⟨u⊥⟩ϵ = 0.1 (purple),
or the inverse Reynolds number [cf. Eq. (3.52)] drops to a value of
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= 0.8

(pink, dashed), 0.6 (pink, solid) or 0.4 (pink, long-short dashed). The buildup in
transverse flow velocity marks the transition from the Bjorken flow scaling regime
to the regime of transverse expansion, while the drop in inverse Reynolds number

marks the region where hydrodynamics is applicable.

understanding about the implications of their buildup, we now want to invert this
logic. As the change in these observables carries information on the state of the
system, e.g. the progress of its equilibration or the onset of transverse expansion,
we want to track the first times these observables reach a specific milestone of their
time evolution as a function of opacity. Fig. 6.7 shows plots of kinetic theory results
for these curves for five different milestone criteria. Specifically, we tracked when the
average transverse flow velocity reaches a value of 0.1 as a criterion for the onset of
transverse expansion, the time when the elliptic flow response builds up to 5% of its
maximum value at the given opacity as a criterion for the beginning of the buildup of
flow, and the time when the average inverse Reynolds number reaches values of 0.4,
0.6 and 0.8, which tells us to what degree hydrodynamization has progressed. As it
turns out, the curve for the flow velocity criterion is almost perfectly flat at a value of
τc ≈ 0.15R, meaning that the early time buildup of ⟨u⊥⟩ϵ is mostly independent of the
opacity. The elliptic flow criterion is met at similar times as the flow velocity criterion
at large opacities, but at slightly later times τc ≈ 0.3R for small opacities. Despite
the general timeframe of εp-buildup being independent of opacity, it seems to start
slightly earlier at larger opacities. The most interesting criterion curves are those for
the average inverse Reynolds number. The systems adherence to early time Bjorken
flow scaling leads to a power law behaviour τc ∝ (η/s)4/3 for all three of these curves
at large opacities. The curves deviate from this power law when the criterion is not
reached before transverse expansion sets in at times τ ∼ R. For small opacities, the
criteria are never met, as the average inverse Reynolds number reaches a minimum
value larger than the criterion value, as already stated in the discussion of Fig. 6.6.
The behaviour of dEtr/dη resembles that of dE⊥/dη, which we already discussed in
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the previous Chapter. Similarly to ⟨Re−1⟩ϵ, it follows Bjorken flow scaling at early
times, resulting in a similar power law behaviour.

6.4.3 Time evolution in hybrid schemes

Another way to alleviate discrepancies due to the behaviour of hydrodynamics in the
pre-equilibrium phase as discussed in Section 4.1.1 is to model the time evolution via
a hybrid scheme, switching from a kinetic theory based description at early times
to hydrodynamics at later times, i.e. initializing the hydrodynamic simulation with
the energy-momentum tensor computed from the kinetic theory based time evolution.
This requires to fix a criterion for when to switch descriptions.

As we argue that hydrodynamics becomes viable only after some timescale related
to equilibration, we also expect the accuracy of hybrid scheme results to depend on
the switching times. Due to the opacity dependence of equilibration, it might be
beneficial to choose switching times as a function of opacity. Hence we tested both
a hybrid scheme with fixed switching times at two different times τ = 0.4 fm and
τ = 1 fm, which are in the range of switching times typically used in phenomenological
descriptions, and with dynamically determined switching times.

In order to tie this definition to the phenomenon of equilibration, we determine the
dynamical switching times on the basis of the dropoff the average inverse Reynolds
number ⟨Re−1⟩ϵ, i.e. we switch as soon as this quantity first reaches a specific value.
Specifically, we chose the values ⟨Re−1⟩ϵ = 0.8, 0.6 and 0.4 (sometimes we will
consider switching also when ⟨Re−1⟩ϵ drops below 0.2). In the case of a transver-
sally homogeneous system, Fig. 4.1 shows that these values for the inverse Reynolds
number correspond to various degrees of hydrodynamization of the system. Speicif-
ically, Re−1 = 0.8 (w̃ ≃ 0.2) corresponds to the onset of hydrodynamization. When
Re−1 = 0.6 (w̃ ≃ 0.6), the system significantly progressed through the hydrody-
namization process, while when Re−1 = 0.4 ((w̃ ≃ 1), the system has hydrodynamized
and the kinetic theory and hydrodynamics attractor curves are almost merged. Due
to the relation (4.7) between w̃ and the Bjorken time τ , the characteristic times τc
when Re−1 drops below a certain threshold increase with 4πη/s (see Sec. 6.4.2 for a
detailed discussion).

The results are illustrated by the time evolution of transverse energy dEtr/dη,
elliptic flow εp and average transverse flow velocity ⟨u⊥⟩ϵ compared for different choices
of the switching times, as plotted in Fig. 6.8 at three different opacities. The early
time evolution was computed with the RLB method of simulating kinetic theory. The
plots also compare to results from a pure kinetic theory simulation as well as from our
scaled viscous hydro scheme. Here we plot all results including the ones for elliptic
flow εp on a logarithmic scale of the time axis so that the different switching times
are discernible. The εp plots also feature an inset plot on log-log scale. It can be seen
that the curves corresponding to the hybrid setups tend to detach from the RTA curve
towards lower values of εp. Since in viscous hydro, the equilibration process leads to a
decrease of spatial eccentricity ϵ2 (see lower panel of Fig. 6.3), the hybrid simulations
with early switching times will lead to lower late-time values of εp (see the discussion
in the next section).

At a small shear viscosity of 4πη/s = 0.1, all switching schemes yield accurate
results for all three observables. Since the equilibration timescale is small for this
opacity, it has equilibrated by the time we switch descriptions such that kinetic theory
and hydrodynamics are in agreement. The ⟨Re−1⟩ϵ-based criteria are fulfilled early
on in the system’s evolution such that the dynamically chosen switching times are
significantly smaller than the fixed ones. However, when comparing results from pure
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Figure 6.8: Time evolution of transverse energy dEtr/dη [top, cf. Eq. (3.43)],
elliptic flow εp [middle, cf. Eq. (3.44)] and transverse flow velocity ⟨u⊥⟩ϵ [bottom,
cf. Eq. (3.53)] in hybrid kinetic theory + viscous hydro simulations at opacities
4πη/s = 0.5 (left), 3 (middle) and 10 (right) when switching at different values of
the inverse Reynolds number [cf. Eq. (3.52)]



Re−1

�
ϵ
= 0.8 (light red), 0.6 (red)

and 0.4 (dark red) or fixed time τ = 0.4 fm (light green) and τ = 1 fm (dark-
green). The switching points are marked with filled symbols. The time axis is
scaled logarithmically. The plots showing elliptic flow εp feature an inset plot of the
same quantity plotted in log-log scale. In the flow velocity plots, we also show the
estimate ⟨u⊥⟩ϵ,RTA = 0.614∆τ/R for the early-time build-up of pre-flow in kinetic

theory (see Table 6.2).
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kinetic theory or viscous hydrodynamics, they are within the timeframe where both
descriptions are in accaptable agreement. The only curve where a deviation from
kinetic theory is clearly visible is the one for Re = 0.8, where hydrodynamization has
only partly progressed before the onset of transverse expansion.

The results at 4πη/s = 3 now show that it is indeed necessary to give the choice
of switching times some thought, as here we see a significant increase in accuracy
of results for dEtr/dη and ⟨u⊥⟩ϵ with later switching times. For this opacity, the
dynamically chosen switching times are on a similar scale as the fixed ones. We also
see that the nature of any discrepancies with pure kinetic theory results is the same as
in the case of hydrodynamics. As soon as we switch, the curves of these observables
follow a trajectory that is qualitatively similar to the pure hydrodynamics result,
meaning that dEtr/dη is increased, while ⟨u⊥⟩ϵ and εp are decreased relative to the
kinetic theory result.

The strength of the dynamically chosen switching times is well displayed for results
at 4πη/s = 10. In this case, the system is still far from hydrodynamized at the two
fixed switching times, leading to sizeable inaccuracies in the corresponding hybrid
scheme results for all three observables, but especially for dEtr/dη. As



Re−1

�
ϵ

does
not drop low enough, two of the three criteria for the dynamical switching were not
reached. However, the result for switching at the largest of the three values of



Re−1

�
ϵ

retains a similar level of accuracy as at smaller shear viscosity and is a significant
improvement to fixed time switching results.

Overall, we find that while switching at fixed time is conceptionally straightforward
and always possible, the accuracy of this scheme strongly depends on the opacity and
results at large opacity show large deviations from full kinetic theory. They can be
far away from kinetic theory results at small opacities. On the other hand, switching
based on



Re−1

�
ϵ

is not always possible because this quantity does not drop to the
desired values at small opacities, but whenever it is possible, the accuracy of the result
can be estimated beforehand and depends only little on opacity. In other words, the
dynamical definition yields the earliest possible switching time for a desired accuracy,
and whenever



Re−1

�
ϵ

does not drop enough for it to be determined, hydrodynamics
is not viable in the first place.

Finally, we also tested hybrid schemes with the same switching times but with
an early time evolution computed in KøMPøST. We found that due to its limited
range of applicability, some of the later switching times could not be viably reached
with this description. But whenever we were able to obtain results, they were in
good agreement with the results from the previously discussed scheme, except for
some systematic errors in εp and ⟨u⊥⟩ϵ. These results are presented in more detail
in Appendix H, together with analogous time dependence plots to those presented in
Fig. 6.8.

6.5 Opacity dependence of final state observables in ki-
netic theory and beyond

The previous Section’s comparison of the time evolution in different models has pro-
vided insights into the nature of different sources of discrepancies and at what opaci-
ties to expect them. For a detailed opacity-resolved analysis, it is convenient to study
the dependence of final state observables on a wide range in opacity from the free-
streaming regime to ideal fluid behaviour. In Sec. 6.5.1, we present opacity dependen-
cies in kinetic theory, naive viscous hydrodynamics and scaled viscous hydrodynamics.
Section 6.5.2 discusses results for hybrid simulation schemes.
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6.5.1 Scaled and naive hydrodynamics compared to kinetic theory

First, we assess the performance of scaled hydrodynamics as described in Sec. 6.3.2
when compared to a common naive initialization scheme of hydrodynamics, where
the simulation is started at a time τ0 where hydrodynamization is likely to have set
in, with the same initial condition for τ0ϵ(τ0,x⊥) as we are using for kinetic theory
simulations initialized in the early time free-streaming limit. Fig 6.9 shows the opacity
dependences of transverse energy dEtr/dη, elliptic flow εp and average transverse flow
velocity ⟨u⊥⟩ϵ in kinetic theory, scaled hydrodynamics and naive hydrodynamics at
two different initialization times τ0 = 0.4 fm and τ0 = 1 fm, which are in the range of
values typically used in phenomenological descriptions.
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Figure 6.9: Opacity- (η/s-) dependence of the final (τ = 4R) values of transverse
energy dEtr/dη [top, cf. Eq. (3.43)], elliptic flow εp [middle, cf. Eq. (3.44)] and
transverse flow velocity ⟨u⊥⟩ [bottom, cf. Eq. (3.53)] for kinetic theory (black),
scaled hydro (purple) and naive hydro at two different initialization times τ0 = 0.4 fm
(brown) and 1 fm (yellow). Also plotted are the small opacity limits of an opacity-
linearized result (blue) in the top two plots, the free-streaming result (blue, dashed)
in the bottom plot as well as the opacity-scaled ideal hydrodynamics results (grey,
dashed). The latter follows a (η/s)4/9 scaling law for dEtr/dη as per the intialization
scheme in Eq. (6.4). The ideal hydro results are 611 GeV·(η/s)4/9 for dEtr/dη, 0.244
for εp and 3.01 for ⟨u⊥⟩ϵ. The red shaded region shows the realistic values for QCD

according to Bayesian estimates.

For all three observables, the kinetic theory results smoothly interpolate between
limiting cases of small and large opacities. For dEtr/dη and εp, we compare at small
opacities to results from the linear order opacity expansion that is introduced in
Sec. 3.2.2. Results from full kinetic theory are in excellent agreement with these
approximations for 4πη/s ≳ 20. In the case of ⟨u⊥⟩ϵ, we present results for the
free-streaming limit γ̂ → 0, which the full kinetic theory results converge to at small
opacities.
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On the other end of the opacity spectrum, the results from both kinetic theory
and scaled viscous hydrodynamics converge to those of scaled ideal hydrodynamics
in the limit η/s → 0. Even though η/s = 0 by definition in ideal hydrodynamics,
we represent the scaled ideal hydro results as a function of 4πη/s in the equivalent
RTA simulation [see discussion around Eq. (6.4)], leading to a power-law dependence
dEtr/dη ∝ (4πη/s)4/9, which is confirmed by the scaled viscous hydrodynamics and
kinetic theory results (this result was derived from early-time Bjorken scaling in [1]).
The curves for εp and ⟨u⊥⟩ϵ converge at large opacities to the ideal hydrodynamics
limit that was obtained with a scaled initial condition. This is not a priori obvious
but rather an achievement of our proposed scheme. Ideal hydrodynamics is the large
opacity limit of kinetic theory only after hydrodynamization. At any finite opacity,
kinetic theory simulations feature a pre-equilibrium period which is absent in ideal
hydro. In this period, the ellipticity ϵ2 decreases in kinetic theory, such that with the
same initial condition, it would result in a smaller elliptic flow εp than in ideal hydro.
The agreement is only reached after scaling the hydro initial condition as discussed in
Section 6.1.

Comparing now to hydrodynamic results, for all three obserables, the large opacity
limits of scaled hydrodynamics and kinetic theory are in excellent agreement. Going
to small opacities, all observables are underestimated in hydro, which will be further
discussed in the following. Agreement holds for 4πη/s ≲ 3. On the other hand,
for naive hydrodynamics, the opacity dependence curves show qualitatively similar
behaviour but are in quantitative disagreement for all opacities.

This is obvious in the case of dEtr/dη, which is significantly overestimated. We
find that that the large opacity power law is not captured. There are different reasons
for this in the two limiting cases of large and small opacity. For small opacities
4πη/s ≳ 10, despite the initialization time being large, it is still smaller than the
equilibration timescale and the simulation will partly undergo a hydrodynamic pre-
equilibrium phase. As we have seen, in this phase dEtr/dη increases in hydrodynamic
simulations before the onset of transverse expansion, while staying constant in kinetic
theory, so it is overestimated in hydro. For the smaller initialization time τ0 = 0.4 fm,
the system is in pre-equilibrium for a longer time compared to τ0 = 1 fm. This is why
results for τ0 = 0.4 fm yield a larger final value of dEtr/dη at small opacities. On the
other hand, for large opacities 4πη/s ≲ 3, the system would have been in equilibrium
for a significant amount of time if it had been initialized at an earlier time. In the
equilibrated phase before transverse expansion, dEtr/dη drops proportionally to τ−1/3.
The larger the initialization time, the more of this period is cut out of the simulation,
resulting in a larger final value. This is why the curve for initialization at τ0 = 1 fm is
above the one for τ0 = 0.4 fm at large opacities, resulting in a crossing of the two at
intermediate opacities 4πη/s ∼ 5. The equilibration timescale becomes smaller and
smaller at larger and larger opacities, meaning that for fixed initialization time more
and more of the τ−1/3-scaling period is cut out. This is why the large opacity power
law is not reproduced in naive hydrodynamics.

These problems are cured in scaled hydrodynamics. It is initialized at very early
times, so no part of the time evolution is lost. The discrepancies due to hydrodynamic
pre-equilibrium behaviour are cured via scaling the initial energy density as discussed
in Sec. 6.1 such that agreement with kinetic theory is reached only after equilibration.
However, for small opacities 4πη/s ≳ 3, the underlying assumption of a timescale
separation of equilibration and transverse expansion no longer holds. In this case,
scaled hydrodynamics underestimates dEtr/dη, as transverse expansion interrupts its
approach to kinetic theory behaviour before agreement is reached.

Of the three presented observables, εp in naive hydrodynamics shows the weakest
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deviations from kinetic theory results. This is in alignment with our expectations,
as we know that hydro has been very successfull in phenomenological descriptions of
anisotropic flow. The reasons might be that εp builds up on timescales that are fully
captured by simulations at initialization times of ∼ 1 fm and depends very little on the
overall energy scale. But certainly, this level of agreement was not to be expected a
priori and should be regarded as a concidence. The influence of the initialization time
is as follows. At small opacities 4πη/s ≳ 10, a part of the early time negative trend in
hydrodynamics is cut out, resulting in larger results for later initialization times. For
large opacities 4πη/s ≲ 1, εp already has positive contributions at early times which
might be cut out, resulting in smaller final values for later initialization times. But
very early initialization times cannot bring hydro into agreement with kinetic theory.
As discussed in section 4.1.1, hydrodynamics initialized at very early times exhibits
a larger decrease of the eccentricity during pre-equilibrium, resulting in lower final
values of εp than in kinetic theory. However, the scaling procedure counteracts this
phenomenon by increasing the eccentricity in the initial state of hydrodynamic sim-
ulations, such that scaled hydrodynamics is in perfect agreement with kinetic theory
at large opacities 4πη/s ≲ 3. For small opacities 4πη/s ≳ 10, on the other hand,
due to the early initialization scaled hydrodynamics features a longer period of the
aforementioned early time negative buildup of εp, resulting in final values which are
lower than in the case of the naive hydro initializations discussed above.

The flow velocity results from naive hydrodynamics again show two effects. One
of them is straightforward: as this observable rises monotonically with time, for larger
initialization times, there is less time for ⟨u⊥⟩ϵ to build up, resulting in an underes-
timate. This effect is cured in scaled hydrodynamics due to the early initialization.
At small opacities 4πη/s ≳ 10, we see an additional decrease of hydrodynamic results
compared to kinetic theory due to its inability to describe the late-time free-streaming
behaviour. This is an effect that both hydro schemes (based on naive and scaled initial
conditions) have in common.

6.5.2 Hybrid simulations

As described in Section 6.4.3, another way to bring hydrodynamic results into agree-
ment with kinetic theory is to use hybrid schemes switching from a kinetic theory
based early time description to hydrodynamics at later times. We tried switching
both at fixed times as well as at the first times equilibration has proceeded to a given
extent, which we quantified by the inverse Reynolds number dropping to a specific
value. We also tested two different model descriptions for early times: full kinetic the-
ory and KøMPøST. As described in the previous Section, the time evolution curves
of all observables instantaneously change behaviour when the models are switched,
such that switching too early will be affected by the inaccurate description of pre-
equilibrium in hydrodynamics. We now want to quantitatively assess the accuracy of
various switching schemes as a function of opacity.

We first discuss results for the opacity dependence in hybrid simulations with
⟨Re−1⟩ϵ-based switching, which are plotted in Fig. 6.10. For early switching times on
the timescale of equilibration, hybrid results may reflect the inaccurate pre-equilibrium
behaviour in hydrodynamics. Of course, in this case, there is no scaling of the initial
condition to counteract this behaviour. However, this also means that these schemes
do not suffer from discrepancies due to an incomplete approach of a scaled initial
condition to kinetic theory behaviour before the onset of transverse expansion, and
therefore tend to be more accurate than scaled hydrodynamics at intermediate opac-
ities, i.e. for 4πη/s ∼ 3. However, results plotted with smaller crosses and dashed
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lines were obtained in simulations with switching times larger than 0.5R, so in this
case it is questionable whether these schemes could be considered hybrid results, as
the crucial parts of the time evolution were actually described in kinetic theory.

Going into more detail, hybrid results typically overestimate dEtr/dη because of
the hydrodynamic pre-equilibrium increase after switching. εp is underestimated,
however, the hydrodynamic negative early time trend is alleviated, such that results
from kinetic theory + viscous hydro are typically larger than scaled hydro results.
Hybrid results show a consistent underestimation of ⟨u⊥⟩ϵ, but on a relative scale this
error is negligible. This could be due to hydrodynamic flow velocities typically being
smaller than those in kinetic theory at early times, causing a dip in ⟨u⊥⟩ϵ relative to
kinetic theory after switching.

Comparing kinetic theory + viscous hydrodynamics in the left column of the figure
to KøMPøST + viscous hydrodynamics in the right column, one obvious difference
is that in the latter, some of the results for smaller opacities are missing, because
there the ⟨Re−1⟩ϵ-based switching times were too late to be reached with KøMPøST
3. Where it does work, it produces almost the same results for dEtr/dη as kinetic
theory. The underestimation of ⟨u⊥⟩ϵ is slightly more severe in KøMPøST. It does
seem to have a systematic component on top of the one related to switching early.
But the total deviation is still negligible. The largest difference is seen in εp, which
is not built up at all in KøMPøST simulations, thus there is a significantly larger
underestimation at smaller opacities, where a larger part of the time evolution is
described in KøMPøST.

Next, we shift our attention to results from hybrid schemes at fixed switching
times τs = 0.4 fm and τs = 1 fm, which are presented in Fig. 6.11. As expected
from the discussion of the time evolution in Sec. 6.4.3, again kinetic theory + viscous
hydrodynamics yields perfectly accurate results at large opacities 4πη/s ≲ 1 and
improves on scaled hydrodynamics at intermediate opacities 4πη/s ∼ 3, but less so
than for dynamically chosen switching times. The upshot is that hybrid schemes with
fixed switching times are applicable for arbitrarily small opacities. However, here the
results for the three tracked observables show similar problems to those obtained in
naive hydrodynamics simulations discussed earlier in this section. Due to incomplete
equilibration at early switching times, dEtr/dη increases after switching. εp suffers
from the early time negative trend in hydrodynamics, but slightly less than scaled
hydrodynamics. ⟨u⊥⟩ϵ is again only slightly underestimated in hybrid schemes when
compared to scaled hydrodynamics due to the different pre-equilibrium. This is an
improvement over naive hydrodynamics, as instead of starting at late times with no
flow velocity, the early time buildup is described in kinetic theory. Both schemes suffer
equally from the inability of hydrodynamics to describe flow velocities in the late time
free-streaming limit.

Also for fixed switching times, KøMPøST + viscous hydrodynamics results for
dEtr/dη and ⟨u⊥⟩ϵ are in good agreement with those obtained in kinetic theory +
viscous hydrodynamics simulations. We again see the effect of the absence of εp-
buildup in KøMPøST. Since we do not increase the duration of time evolution in
KøMPøST, the effect is not larger at small opacities 4πη/s ≳ 10. In fact, here we
see agreement with results from kinetic theory + viscous hydrodynamics, as there is
no significant buildup of εp at early times. However, at large opacities 4πη/s ≲ 5,

3For large evolution times, KøMPøST crashes in the setup stage when computing the Green’s
functions. This is because they are only implemented for a finite number of points in momentum
space and have to be convolved with a Gaussian smearing kernel exp(−σ2|k|/2). But the Green’s
functions scale in |k|(τ − τ0) such that for too large of an evolution time this smearing is no longer
sufficient.
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Figure 6.10: Opacity- (η/s-) dependence of the final (τ = 4R) values of transverse
energy dEtr/dy (top, cf. Eq. 3.43), elliptic flow ϵp (middle, cf. Eq. 3.44) and trans-
verse flow velocity ⟨u⊥⟩ (bottom, cf. Eq. 3.53) in hybrid kinetic theory + viscous
hydro (left) resp. KøMPøST + viscous hydro simulations (right) when switching
at different values of the inverse Reynolds number (c.f. Eq. 3.52)
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�
ϵ
= 0.8,

0.6, 0.4 and 0.2 plotted in different shades of red from light to dark. Results from
simulations with switching times after τ = 0.5R are plotted with smaller points (+)
and dashed lines. The results are compared to kinetic theory (black), scaled hydro
(purple) and the small opacity limits of an opacity-linearized result (blue) in the top
two plots resp. the free-streaming result (blue, dashed) in the bottom plot as well
as the large opacity limit of ideal hydro (grey, dashed) in the bottom two plots as
well as a (η/s)4/9 scaling law (green) in the top plot. The red shaded region shows
the realistic values for QCD according to Bayesian estimates. The bottom part of

the plot shows the ratios of all results to those from kinetic theory.



106 Chapter 6. Opacity dependence of pre-equilibrium and applicability of hydro

this buildup starts earlier, which is why KøMPøST + viscous hydrodynamics results
underestimate the final values in these cases.
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Figure 6.11: Opacity- (η/s-) dependence of the final (τ = 4R) values of transverse
energy dEtr/dη [top, cf. Eq. (3.43)], elliptic flow εp [middle, cf. Eq. (3.44)] and
transverse flow velocity ⟨u⊥⟩ [bottom, cf. Eq. (3.53)] in hybrid kinetic theory +
viscous hydro (solid lines) resp. KøMPøST + viscous hydro simulations (dashed
lines) when switching at fixed times τ = 0.4 fm (light red) and τ = 1 fm (dark
red). The results are compared to kinetic theory (black), scaled hydro (purple) and
the small opacity limits of an opacity-linearized result (blue) in the top two plots
resp. the free-streaming result (blue, dashed) in the bottom plot as well as the large
opacity limit of scaled ideal hydro (grey, dashed), which scales as (η/s)4/9 in the
top plot. The red shaded region shows the realistic values for QCD according to
Bayesian estimates. The bottom part of the plot shows the ratios of all results to

those from kinetic theory.

6.6 Discussion

In this chapter, we examined hydrodynamic and kinetic theory simulations of hadronic
collisions. Within a simplified model setup based on RTA and using a fixed initial
profile that was obtained as an average of events in the 30-40% centrality class of PbPb
collisions, we scanned the dynamical behaviour on the whole range in interaction rates
as parametrized by the opacity γ̂ defined in Eq. (3.13), which for the fixed profile is
inversely proportional to shear viscosity, γ̂ = 11.3/(4πη/s). This study was based
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on results for the transverse energy dEtr/dη, elliptic flow εp, radial flow ⟨u⊥⟩ϵ and
shear stress as measured via the inverse Reynolds number



Re−1

�
ϵ
. At small opacities

4πη/s ≳ 20, kinetic theory agrees with results from a linearization in opacity. Here,
the system is too dilute for hydrodynamics to be applicable, which was confirmed
quantitatively in Section 6.5.1: the time evolution of transverse energy, radial flow
and shear stress is in significant disagreement in hydrodynamic simulations compared
to kinetic theory. For large opacities 4πη/s ∼ 0.1, in the limit of high interaction rates,
kinetic theory is expected to converge to hydrodynamics. Our results confirm that the
two descriptions are in agreement after pre-equilibrium. Going down to intermediate
opacities, we found that for suitable setups of hydrodynamics, results for final state
transverse energy, elliptic flow and radial flow are in good agreement with kinetic
theory up to shear viscosities 4πη/s ≲ 3 for the examined profile, which translates to
opacity values γ̂ ≳ 4.

However, hydrodynamics is not suitable for describing out-of-equilibrium behaviour
in the early pre-equilibrium stage and the late time period where the microscopic de-
scription of kinetic theory approaches a free-streaming behaviour. In both of these
regimes, hydrodynamic results are in quantitative disagreement with kinetic theory,
which can be seen at the level of final state observables, as discussed in Section 4.1.1.
Omitting the pre-equilibrium period or naively employing hydrodynamics to describe
it will yield inaccurate results. On the other hand, at late times where interactions
die out, these observables no longer build up and approach constant values, such that
hydrodynamic descriptions yield similar results to kinetic theory. However, the late
time free-streaming stage does have an effect on radial flow, which is underestimated
in hydrodynamics.

We examined two different modified setups of hydrodynamic simulations that can
alleviate problems with the pre-equilibrium evolution. The first setup follows the idea
of an early initialization of hydrodynamics with a scaled initial condition relative to
kinetic theory to counteract the differences in the pre-equilibrium evolution. These
differences are predicted locally based on insights from Bjorken flow, which is accurate
in systems with a timescale separation of equilibration and the onset of Bjorken flow.
By construction, this setup yields accurate results at large opacities 4πη/s ≲ 3, but
fails at smaller opacities, where equilibration takes longer and is interrupted by trans-
verse expansion. The results obtained in this setup are presented in Sections 6.4.2
and 6.5.1.

The second setup is a hybrid simulation switching from kinetic theory based de-
scriptions at early times to hydrodynamics for later times. In these schemes, as de-
scribed in Section 6.4.3, we saw an immediate change of the time evolution behaviour
at the moment that we switch the dynamical descriptions. Thus, the accuracy of hy-
brid simulations depends on the extent to which the kinetic theory and hydrodynamic
descriptions of the system’s time evolution have come into agreement by the time we
switch. This approach to agreement between the two descriptions is what we call
hydrodynamization. We found that this criterion can in practice be quantified via the
inverse Reynolds number. Fig. 4.1 shows that the system is partly hydrodynamized
when Re−1 = 0.8, significantly hydrodynamized when Re−1 = 0.6 and has reached al-
most perfect agreement of the two descriptions at Re−1 = 0.4. The accuracy of hybrid
simulations when switching at a fixed value of



Re−1

�
ϵ

can be estimated beforehand
and is almost independent of the opacity. As detailed in Section 6.5.2, results from
simulations with late switching times are accurate at high opacities 4πη/s ≲ 1 and
can slightly improve on our first setup at intermediate opacities 4πη/s ∼ 3. At small
opacities 4πη/s ≳ 20,
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�
ϵ

does not drop below 0.8, meaning the system does not
equilibrate enough for hydrodynamics to become applicable at any point during the
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system’s evolution.
For the early time kinetic theory description in hybrid models, we used both full

kinetic theory and the compact KøMPøST code. The latter uses a linearization scheme
in perturbations around local homogeneity to propagate the energy-momentum tensor
according to the Boltzmann equation under the relaxation time approximation (the
original version [141, 145] is based on the QCD effective kinetic theory [142]). We first
tested the performance of KøMPøST as detailed in Section 6.2.1 and found that it
can accurately reproduce full kinetic theory results for transverse energy, radial flow
and isotropic shear stress, but due to the linearization it significantly underestimates
elliptic flow. It is by construction limited to times on the order of 0.5R. In hybrid
simulations with switching times in this regime, transverse energy and radial flow
results reach similar accuracy as when employing full kinetic theory. However, the
underestimation of elliptic flow causes discrepancies when the switching time is non-
negligible compared to the timescale of transverse expansion.
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Chapter 7

Conclusions

We will now conclude with a general summary of the main results presented in this
work and outline possible future research endeavors that might build on it. For a
more detailed discussion of the results of Chapters 5 and 6, we refer to their respective
“Discussion”-Sections.

The main point of this work was to study the cooling due to longitudinal expan-
sion and the dynamics of transverse flow in hadronic collisions, i.e. the buildup of
azimuthal anisotropies in the momentum distribution of produced particles, based
on kinetic theory descriptions and to probe where conventional simulations based on
hydrodynamics might have shortcomings due to the fact that they can not describe
non-equilibrium behaviour.

We started in Chapter 4 with a detailed discussion of the mathematical descrip-
tion of the Bjorken flow attractor. When describing the collision system as conformal,
boost-invariant and homogeneous in the transverse plane in a large variety of dynam-
ical models, the time evolution of different initial conditions quickly collapses onto
a universal attractor curve, which has a different early time behaviour in different
models. We motivated its use for a local description of the early time dynamics in
systems with transverse expansion that can be applied to each point in transverse
space. This collection of local Bjorken flows then allows to approximate the dynam-
ics before transverse expansion at times τ/R ≲ 0.1. This allows to quantify in a
straightforward way how different the early time evolution of the energy density is
in hydrodynamics when compared to kinetic theory. The insights gained from this
scaling scheme were used in the following two chapters for early time comparisons but
also to motivate a modified initial condition for hydrodynamics. For future research
of attractor behaviour in simulations of heavy ion collisions, it would be interesting to
study whether a variation of this type of behaviour exists in systems with transverse
expansion also more globally, beyond an approximation to Bjorken flow dynamics.

In Chapter 5 we studied transverse flow in conformal RTA kinetic theory. We cor-
roborated the result that the opacity γ̂ is the single model parameter that quantifies
the time evolution in this model and examined cooling in terms of the decrease of
transverse energy dE⊥/dη as well as linear and non-linear anisotropic flow responses
as quantified by the flow harmonics vn to spatial anisotropies in the initial state on
the full parametric range in opacity γ̂ and eccentricities ϵn on the basis of a simplified
analytical initial condition. We found that numerical results for cooling and flow at
small opacities are in good agreement with semi-analytical results from a lineariza-
tion in opacity, which descibes the limiting case of very dilute systems where only few
particles undergo scatterings. For large opacities, we detailed how insights from the
Bjorken flow attractor can be used to describe the early time cooling behaviour in
simulations with transverse dynamics. Our numerical results for flow responses show
saturation behaviour at large opacities, indicating convergence to a large-opacity limit.
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As hydrodynamics is defined as an effective description of the dynamics close to equi-
librium and equilibration proceeds faster at larger opacities, kinetic theory is expected
to converge to hydrodynamics in the large opacity limit. However, when we tested
to what extend results for final state elliptic flow within the two descriptions agree
with each other, we found discrepancies even at very large opacities. We were able to
attribute them to a decrease of eccentricities in pre-equilibrium due to inhomogeneous
cooling, which was confirmed also in the Bjorken flow attractor scaling scheme.

While our current study provides a detailed assessment of the development of
transverse flow from very small to very large opacities, some of the shortcomings
should be addressed prior to inferring phenomenological conclusions for proton-proton,
proton-nucleus and nucleus-nucleus collisions. Evidently, it would be important to per-
form event-by-event studies with a more realistic transverse collision geometry, which
would allow to study also the system size dependence of probability distributions
and correlations of observables. This would require additional algorithmic improve-
ments and significantly larger computation time. To reduce the computational cost,
it might be worthwhile to explore the possibility of a simplified event-by-event simula-
tion framework based on opacity expansion, which would allow to perform these types
of statistical studies for the case of small systems. The end goal would be to push
simulation tools for small systems to a state where they could be used for Bayesian
analyses. Beyond such straightforward extensions, it would also be interesting to con-
sider more realistic collision kernels [81] and investigate the effects of a non-conformal
equation of state, which however will require additional theoretical developments.

In Chapter 6 we performed a more thorough investigation of the range of ap-
plicability of hydrodynamics by comparing to conformal RTA kinetic theory on the
basis of several observables, specifically elliptic flow ϵp, transverse energy dEtr/dη,
transverse flow velocity ⟨u⊥⟩ϵ and shear stress as measured by the inverse Reynolds
number



Re−1

�
ϵ
, which quantifies the relative size of non-equilibrium effects in the

system. This time, the study was based on an average initial energy density profile of
Pb-Pb collisions at

√
sNN = 5.02TeV - i.e. at LHC energies - in the 30-40% centrality

class. We were able to confirm more generally that pre-equilibrium dynamics cause
problems in hydrodynamics. Not including it in the simulation has a significant effects
even on final state observables. But hydrodynamic descriptions of pre-equilibrium are
inaccurate and lead to similar effects.

Based on insights from the Bjorken flow attractor, we propose a local scaling
scheme of the initial condition of hydrodynamics according to the differences in pre-
equilibrium behaviour of the two theories. We find that within this scheme, agreement
of the theories can be restored for large opacities. Specifically, the scheme succeeds
in cases where equilibration proceeds to a sufficient degree in order to bring kinetic
theory and hydrodynamics into agreement before the onset of transverse expansion.
In other cases, on top of problems with applying hydrodynamics to a non-equilibrated
system, remnants of the scaling scheme persist throughout the evolution. The results,
together with comparisons to Bjorken flow attractor curves, also allow to identify the
inverse Reynolds number as a criterion for equilibration. This results in an evolution
time and opacity dependent regime of applicability for hydrodynamics.

We also studied hybrid simulation schemes switching from kinetic theory based
descriptions to hydrodynamic ones. By studying the dependence of the results on
the switching time, we confirm that it should be chosen on the basis of the drop in
inverse Reynolds number. Switching too early results in discrepancies due to the inac-
curate description of pre-equilibrium in hydrodynamics. We conclude that in systems
showing no significant decrease of the inverse Reynolds number, hydrodynamics never
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becomes applicable. Hybrid simulations can improve on results from our proposed
scaling scheme for hydrodynamics at intermediate opacities.

For the early-time kinetic theory results, we used an RTA kinetic theory code as
well as the linearized response framework KøMPøST in RTA mode. We confirmed
that KøMPøST can produce results at a similar level of accuracy within its realm
of applicability, i.e. for evolution times τ ≲ 0.5R, except for anisotropic flow, which
does not build up in KøMPøST. This conclusion is corroborated by comparisons of
the time evolution and profiles of the energy-momentum tensor to RTA kinetic theory,
but also by comparing final state results of hybrid schemes.

This work provides the baseline for analyses of hadronic collisions in frameworks
based on the microscopic dynamics of kinetic theory. It is part of a series of recent
efforts [1, 15, 80, 81, 86] to push the practical applicability of these dynamics in the-
oretical simulations. One important goal that has yet to be reached is to improve
the codes that implement them in order to be able to also run event-by-event simu-
lations. At the moment, the tool that is closest to fulfilling this goal is KøMPøST,
which we confirmed to function properly for its intended use, but it is confined to the
pre-equilibrium phase of heavy-ion collisions.

Broadly speaking, our results confirm that in principle hydrodynamics is the proper
tool for describing mid-central collisions, if and only if the pre-equilibrium is described
correctly. Issues with this phase in hydrodynamic descriptions can be alleviated by
changing the interpretation of the initial state in the way discussed in Section 6.3.2.
As alluded to in Section 4.1 as well as in previous works [31], appropriate changes to
the evolution equations might achieve similar improvements. This also includes re-
summed hydrodynamic approaches such as anisotropic hydroynamics (aHydro) [190–
194], which can accurately describe the inhomogeneous longitudinal cooling and it
will be interesting to further investigate this in the future.

Modern Bayesian Inference frameworks typically model pre-equilibrium dynamics
by free-streaming [2, 4]. As we have seen, the dynamics in this phase can have a
noticeable effect on final state observables. We thus advocate to modify these frame-
works to employ a more accurate description of pre-equilibrium. This would increase
the accuracy of extracted properties of the QGP, but also make it feasible to extract
information about model parameters related to this stage - e.g. the equilibration time
- from experimental data.
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Appendix A

Free-streaming the anisotropies

In linear order of the opacity expansion, the dynamics of the anisotropies is naturally
dominated by the free-streaming limit, as will also be more evident from the calcula-
tions in the following sections. It is therefore pivotal to examine how the anisotropic
factors of xn⊥ cos(nϕx⊥n⊥) that are part of the initial condition in Eqs. (5.6,5.7) be-
have under free-streaming according to the propagation as given in Eq. (5.36). The
notation ϕx⊥n⊥ = ϕx − Ψn was introduced in Eq. (5.8). For this purpose, it is con-
venient to rewrite the cos(nϕ) and sin(nϕ) in terms of the Chebyshev polynomials of
the first and second kind [154, Ch. 18]:

cos(nϕ) = Tn(cos(ϕ)), sin(nϕ) = sin(ϕ)Un−1(cos(ϕ)). (A.1)

The explicit form of the Chebyshev polynomials,

Tn(z) =
n

2

⌊n
2 ⌋X

k=0

(−1)k
(n− k − 1)!

(n− 2k)!k!
(2z)n−2k,

Un(z) =

⌊n
2 ⌋X

k=0

(−1)k
�
n− k

k

�
(2z)n−2k, (A.2)

can be used to express cos(nϕ) and sin(nϕ) in terms of powers of cosϕ. Under free-
streaming (5.32), the factor xn⊥ cos(nϕ

(n)
x⊥n⊥) evolves according to

|x⊥ − v⊥∆τ |n cos(nϕx⊥−v⊥∆τ,n⊥) = |x⊥ − v⊥∆τ |nTn

�
(x⊥ − v⊥∆τ) · n⊥

|x⊥ − v⊥∆τ |

�
, (A.3)

where Eq. (A.1) was employed on the right hand side. In the above, the time lapse
t(τ, τ0, y − η) was replaced by ∆τ = τ − τ0 by virtue of Eq. (5.35).

The Chebyshev polynomials obey the identity

zn = |z|nTn

�
a

|z|

�
+ ib|z|n−1Un−1

�
a

|z|

�
, (A.4)

where a and b are real numbers and z = a + ib is a complex number. Denoting
ϕp⊥n⊥ = ϕp −Ψn, we set

a → x⊥ cos(ϕx⊥n⊥)−∆τ cos(ϕp⊥n⊥),

b → x⊥ sin(ϕx⊥n⊥)−∆τ sin(ϕp⊥n⊥),

z → x⊥ eiϕx⊥n⊥ −∆τ eiϕp⊥n⊥ , (A.5)
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such that Re(zn) is just the expression on the left hand side of Eq. (A.3), an expression
with a very simple dependence on ϕx⊥p⊥ = ϕx − ϕp can be derived:

|x⊥ − v⊥∆τ |n cos(nϕx⊥−v⊥∆τ,n⊥)

=

nX

j=0

�
n

j

�
xn−j
T (−∆τ)j [cos(nϕx⊥n⊥) cos(jϕx⊥p⊥)− sin(nϕx⊥n⊥) sin(jϕx⊥p⊥)].

(A.6)
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Appendix B

Solving integrals in Landau
matching

In order to be able to perform the necessary integrals of the kernel according to
Eq. 5.64, we will need specific expressions for ϵ and uµ, meaning that we need to
compute the exact form of T (0)µν and δT (0)µν by solving the integrals given in Sec-
tion 5.2.4.

As we will discuss below, we can break the integration down to solving integrals
of an exponential of cos(ϕ) multiplied with powers of trigonometric functions. These
can be expressed in terms of modified Bessel functions of the first kind.

Z
dϕ ea cos(ϕ) cos(nϕ) = 2πIn(a) , (B.1)

Z
dϕ ea cos(ϕ) cos(nϕ) cosm(ϕ) = 2πI(m)

n (a) , (B.2)
Z

dϕ ea cos(ϕ) sin(nϕ) = 0 , (B.3)
Z

dϕ ea cos(ϕ) sin(nϕ) sin(ϕ) = 2πI ′n(a)− 2πIn+1(a) , (B.4)
Z

dϕ ea cos(ϕ) sin(nϕ) cos(ϕ) sin(ϕ) = 2πI ′′n(a)− 2πI ′n+1(a) . (B.5)

It is straightforward to see that T (0)µν is indeed of this form as

T (0)µν =
τ0
τ

Z
dϕp

2π
vµ⊥v

ν
⊥ ϵ̄(τ0,x⊥ −∆τv⊥), (B.6)

where vµ⊥ = (1, cosϕp, sinϕp, 0) has no longitudinal component under free-streaming
due to the δ(y − η) function in Eq. (5.36). The integral with respect to p⊥ was
performed according to Eq. (5.4). At zeroth order, we took into account only the
isotropic part of the initial energy density profile ϵ, introduced in Eq. (5.6), which is
evaluated at shifted coordinates according to

ϵ̄(τ0,x⊥ −∆τv⊥) =
1

πR2τ0

dE
(0)
⊥

dη
exp

�
−x2⊥ +∆τ2 − 2x⊥∆τ cos(ϕx − ϕp)

R2

�
. (B.7)



116 Appendix B. Solving integrals in Landau matching

Using the integral formulae given in Eq. (B.5), the components of the stress-energy
tensor introduced in Eq. (5.41) can be computed to be

T (0)ττ =
1

τ

1

πR2

dE
(0)
⊥

dη
exp

�
−x2⊥ +∆τ2

R2

�
I0(2b) , (B.8)

T (0)τ⊥ =
1

τ

1

πR2

dE
(0)
⊥

dη
exp

�
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�
I1(2b) , (B.9)
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exp
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T (0)1 =
1

τ

1

πR2

dE
(0)
⊥

dη
exp

�
−x2⊥ +∆τ2

R2

�
[I0(2b)− I ′′0 (2b)] , (B.11)

where we defined b = x⊥∆τ
R2 .

The anisotropic part δT (0)µν ,

δT (0)µν =
τ0
τ

Z
dϕx⊥p⊥

2π
vµ⊥v

ν
⊥ δϵ(τ0,x⊥ −∆τv⊥), (B.12)

exhibits a dependence on the angle ϕx⊥n⊥ due to the form (5.7) of the anisotropic
part of the initial energy profile, which is evaluated at shifted coordinates according
to:

δϵ(τ0,x⊥ −∆τv⊥)

=
1

πR2τ0

dE
(0)
⊥

dη
exp

�
−ᾱ

|x⊥ −∆τv⊥|2
R2

�
δn

� |x⊥ −∆τv⊥|
R

�n

cos(nϕx⊥n⊥) .

(B.13)

Solving the integrals in Eq. (B.12) is a bit more difficult, requiring the computation of
an angular integral of the free-streamed anisotropies. We have already seen in App. A
how we can rewrite them into a term with a straightforward ϕx⊥p⊥-dependence. An
additional ϕx⊥p⊥-dependence comes from the velocity vectors vµ. In the computation
of δϵ, δut and δus they will be contracted with the eigenvectors uµ, tµ and sµ in the
following ways:

uµv
µvνuν = γ2[1− 2β cos(ϕx⊥p⊥) + β2 cos2(ϕx⊥p⊥)] ,

uµv
µvνtν = γ2[β − cos(ϕx⊥p⊥)− β2 cos(ϕx⊥p⊥) + β cos2(ϕx⊥p⊥)] ,

uµv
µvνsν = −γ[sin(ϕx⊥p⊥)− β cos(ϕx⊥p⊥) sin(ϕx⊥p⊥)] . (B.14)

Taking into account all of the ingredients presented above, we indeed find that we can
decompose all terms into integrals of the form in Eq. (B.5). We can plug the results
into Eqs. (5.56-5.58) to obtain explicit expressions for the anisotropic corrections δϵ,
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δut and δus:

δϵ = uµδT
(0)µνuν = δn

1

τ

dE
(0)
⊥

dη

1

2πRn+2
e−ᾱ

x2⊥+∆τ2

R2

Z
dϕx⊥p⊥

2π
e2ᾱb cos(ϕx⊥p⊥ )γ2

× [1− 2β cos(ϕx⊥p⊥) + β2 cos2(ϕx⊥p⊥)]

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j cos(nϕx⊥n⊥ + jϕx⊥p⊥) (B.15)

= cos(nϕx⊥n⊥)δn
1

τ

dE
(0)
⊥

dη

1

πRn+2
e−ᾱ

x2⊥+∆τ2

R2 γ2

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j [Ij(2ᾱb)− 2βI ′j(2ᾱb) + β2I ′′j (2ᾱb)] (B.16)

δut =
uµδT

(0)µνtν
pt − ϵ

= δn
1

τ

dE
(0)
⊥

dη

1

πRn+2
e−ᾱ

x2⊥+∆τ2

R2

Z
dϕx⊥p⊥

2π
e2ᾱb cos(ϕx⊥p⊥ )γ2

× [β − cos(ϕx⊥p⊥)− β2 cos(ϕx⊥p⊥) + β cos2(ϕx⊥p⊥)]

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j cos(nϕx⊥n⊥ + jϕx⊥p⊥) (B.17)

= cos(nϕx⊥n⊥)δn
1

pt − ϵ

1

τ

dE
(0)
⊥

dη

1

πRn+2
e−ᾱ

x2⊥+∆τ2

R2 γ2

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j [βIj(2ᾱb)− (1 + β2)I ′j(2ᾱb) + βI ′′j (2ᾱb)]] (B.18)

δus =
uµδT

(0)µνsν
ps − ϵ

= δn
1

τ

dE
(0)
⊥

dη

1

πRn+2
e−ᾱ

x2⊥+∆τ2

R2

Z
dϕx⊥p⊥

2π
e2ᾱb cos(ϕx⊥p⊥ )γ

× [sin(ϕx⊥p⊥)− β cos(ϕx⊥p⊥) sinϕx⊥p⊥ ]

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j cos(nϕx⊥n⊥ + jϕx⊥p⊥) (B.19)

= − sin(nϕx⊥n⊥)δn
1

ps − ϵ

1

τ

dE
(0)
⊥

dη

1

πRn+2
e−ᾱ

x2⊥+∆τ2

R2 γ

×
nX

j=0

�
n

j

�
xn−j
⊥ (−∆τ)j [I ′j(2ᾱb)− Ij+1(2ᾱb)− βI ′′j (2ᾱb) + βI ′j+1(2ᾱb)]

(B.20)
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Details of linearized calculation

As stated in Section 5.2.5, the linear order corrections to the observables Vmn can be
computed as a six-dimensional integral of the kernel:

V (1)
mn(τ) =

Z
d2p⊥ einϕppm⊥

Z τ

τ0

dτ ′
Z

d2x⊥

Z
dη τ ′

νeff
(2π)3

C[f (0)]

τ ′,x⊥,p⊥, y − η

�
,

(C.1)

C[f (0)] = −pµuµ

�
5
η

s

�−1
T
�
f (0) − feq

�
. (C.2)

We already outlined in that section how this problem can be split into different terms.
The moments Vm0 depend only on the isotropic part, while the moments Vmn with
n ̸= 0 vanish in the isotropic case and have to be computed to linear order in the
anisotropic perturbations. Additionally, the linear order corrections to the moments
split into buildup of equilibrium V

(1,eq)
mn and decay of the initial condition V

(1,0)
mn as

computed from the corresponding parts of the kernel:

Ceq[f
(0)] = pµuµ

�
5
η

s

�−1
T feq , (C.3)

C0[f
(0)] = −pµuµ

�
5
η

s

�−1
T f (0) . (C.4)

This section discusses how four of the integrals can be computed analytically for
each of these terms. Many of the angular integrations will again take the forms of
the integral formulae given in the beginning of Appendix B. We will start with the
moments Vm0 as they are independent of the anisotropic perturbation.

Exact expressions for the local theormodynamic quantities T , uµ can be com-
puted from the components of T µν that are discussed in Appendix B according to the
formulae derived in Section 5.2.4. In terms of b = x⊥ ∆τ

R2 , they read

T = R−1

 
1

π

30

νeffπ2

dE
(0)
⊥

dη
R

!1/4�
R

τ

�1/4

exp

�
−x2⊥ +∆τ2

4R2

��
I0(b)− βI ′0(b)

�1/4
,

(C.5)

uµ = γ(1,βx̂⊥, 0) , γ = (1− β2)−1/2 , β =
I0(b)

I1(b)
− 1

2b
−
s�

I0(b)

I1(b)
− 1

2b

�2
− 1 .

(C.6)

Looking at the expression for T , it is immediately apparent that its dimensionless
constant prefactor together with


5η
s

�−1 constitutes a factor of γ̂ in C[f (0)], as we
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have predicted in Section 5.1.2. We can immediately also compute

pµuµ = γp⊥ [cosh(y − η)− β cos(ϕx⊥p⊥)] . (C.7)

Reminding also of the form of f (0)

f (0)(τ,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τp⊥
F

�
Qs(x⊥ − v⊥∆τ)

p⊥

�
, (C.8)

where Qs is fixed by the isotropic energy density according to (5.4,5.6,5.26) to be of
the form

Qs(x⊥) = Qs,0 exp

�
− x2⊥
3R2

�
, (C.9)

we can compute V
(1,0)
mn by plugging the above expressions into the integral formula

(C.1) for the part of the kernel given in (C.4). Due to the fact that in both cases we
integrate f (0), the integral over p⊥ is analogous to the computation of the zeroth-order
moments V

(0)
m0 , where

V
(0)
m0 =

Z
d2p⊥p

m
⊥

dN (0)

d2p⊥dy
(C.10)

= 2π

Z
d2x⊥

Z
dη

Z ∞

0
dp⊥p

m+1
⊥ δ(y − η)F

�
Qs(x⊥ − v⊥∆τ)

p⊥

�
(C.11)

= 2π

Z
d2x⊥Q

m+2
s (x⊥)

Z ∞

0
dk km+1F

�
1

k

�
(C.12)

= 4π2 3R2

m+ 2
Qm+2

s,0

Z ∞

0
dk km+1F

�
1

k

�
. (C.13)

We can therefore express our result for V
(1,0)
m0 in terms of these zeroth-order mo-

ments and find

V
(1,0)
m0 (τ) = −V

(0)
m0

�
5
η

s

�−1 m+ 2

3R2

Z τ

τ0

dτ ′
Z ∞

0
dx⊥ x⊥T γ exp

�
−(m+ 2)(∆τ ′2 + x2⊥)

3R2

�

×
Z 2π

0

dϕx⊥p⊥

2π
[1− β cos(ϕx⊥p⊥)] exp

�
2(m+ 2)b cos(ϕx⊥p⊥)

3

�
(C.14)

= −V
(0)
m0 γ̂ Pm(τ̃) , (C.15)

Pm(τ̃) =
(m+ 2)

3

Z τ̃

τ̃0

dτ̃ ′
Z ∞

0
dx̃⊥ x̃⊥T̃ γ exp

�
−(m+ 2)

3
(∆τ̃ ′2 + x̃2⊥)

�

×
�
I0

�
2m+ 4

3
b

�
− βI ′0

�
2m+ 4

3
b

��
. (C.16)

where one has to keep in mind that in the integrand b, β, γ and T are to be understood
as functions of τ ′ instead of τ . In the last step, the result was rewritten into the tilded
coordinates introduced in Section 5.1.2 to make the parametric dependences more
apparent.
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For V
(1,eq)
mn given by Eq. (C.1) with the partial kernel (C.3), computing the mo-

ments of feq via the p⊥-integration yields

V
(1,eq)
m0 (τ) =

�
5
η

s

�−1 νeff
(2π)2

Γ(m+ 3) ζ(m+ 3)

Z τ

τ0

dτ ′
Z ∞

0
dx⊥ x⊥τ

′ Tm+4

×
Z 2π

0
dϕx⊥p⊥

Z
dη {γ [cosh(y − η)− β cos(ϕx⊥p⊥)]}−m−2 (C.17)

=
�
5
η

s

�−1 νeff
2π1/2

Γ(m+ 3) ζ(m+ 3)
Γ

m+2
2

�

Γ

m+3
2

�
Z τ

τ0

dτ ′
Z ∞

0
dx⊥ x⊥τ

′

× Tm+4γ−m−2
2F1

�
m+ 2

2
,
m+ 2

2
; 1;β2

�
(C.18)

= γ̂νeffR
−m

 
1

π
ν−1
eff

dE
(0)
⊥

dη
R

!(m+3)/4

Qm(τ̃) , (C.19)

Qm(τ̃) =

�
π2

30

�−(m+3)/4
1

2π1/2
Γ(m+ 3) ζ(m+ 3)

Γ

m+2
2

�

Γ

m+3
2

�
Z τ̃

τ̃0

dτ̃ ′
Z ∞

0
dx̃⊥ x̃⊥τ̃

′

× T̃m+4γ−m−2
2F1

�
m+ 2

2
,
m+ 2

2
; 1;β2

�
. (C.20)

After absorbing one of the T -prefactors into γ̂, the parametric dependence of this
term given by (C.19). As the basic structure of the integrands is the same, moments
with n ̸= 0 will have the same parametric dependences except for the additional
anisotropy parameter δn.

Now to compute the anisotropic corrections δV (1)
mn for n ̸= 0, we first need to derive

the change δC[f (0)] in the kernel

C[f (0)] = −pµuµ

�
5
η

s

�−1
T
�
feq − f (0)

�
(C.21)

due to the anisotropies, so we can plug it into (C.1). C[f (0)] depends on three quan-
tities that receive anisotropic corrections: f (0), T and uµ. Linearization in the cor-
rections will yield three different contributions. Separating the terms proportional
to f (0) from those proportional to feq, we can split the kernel into the following two
parts:

δC0[f
(0)] = −

�
5
η

s

�−1
pµ

�
uµT δf (0) + uµδTf (0) + δuµTf (0)

�
(C.22)

δCeq[f
(0)] =

�
5
η

s

�−1
pµ

�
(uµδT + δuµT ) feq

�
pνu

ν

T

�

+(−uµδT + δuµT )
pρu

ρ

T
f ′
eq

�
pνu

ν

T

��
(C.23)

We can compute the anisotropic contributions to thermodynamic quantities that show
up in the kernel from the results for δϵ, δut and δus given in Eq.s (B.16,B.18,B.20).
The change in temperature δT can be computed by linearizing the equation of state

T =
�
π2

30 νeff

�−1/4
ϵ−1/4 in δϵ, and the contraction δuµp

µ can be expressed in terms of



122 Appendix C. Details of linearized calculation

δut and δus.

δT =
1

4

�
π2

30
νeff

�−1/4

ϵ−3/4δϵ =
1

4

�
π2

30
νeff

�−1

T−3δϵ , (C.24)

pµδuµ = pµ(δuttµ + δussµ) = δutp⊥γ[β cosh(y − η)− cos(ϕx⊥p⊥)]

− δusp⊥ sin(ϕx⊥p⊥) . (C.25)

The only anisotropic quantity that we still need to derive is the form of the per-
turbation δf (0) due to the energy density perturbation δϵ. Given that

f (0)(τ,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τp⊥
F

�
Qs(x⊥ −∆τ)

p⊥

�
, (C.26)

the change in f is due to the change in Qs which is directly related to ϵ. More
specifically,

δf(τ,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τp⊥

δQs(x⊥ −∆τv⊥)
p⊥

F ′
�
Qs(x⊥ −∆τv⊥)

p⊥

�

(C.27)

where

δQs(x⊥) =
1

3
Qs(x⊥)

δϵ(τ0,x⊥)
ϵ(τ0, x⊥)

=
1

3
Qs(x⊥) δn exp

�
−α

x2⊥
R2

��x⊥
R

�n
cos(nϕx⊥n⊥) .

(C.28)

Evaluating δQs at x⊥−∆τv⊥ will thus yield as a factor the free-streamed version
of xn⊥ cos(nϕx⊥n⊥) that was computed in appendix A.

We now want to compute the moments V (1,0)
mn for n ̸= 0 by computing the integrals

in Eq. (C.1) for the part of the kernel perturbation given in Eq. (C.22). As in the
isotropic case, we can simplify the integral expression by identifying V

(0)
m0 . This holds

true also for the term containing δf (0) instead of f (0), since

Z
dp⊥p

m
⊥ Qs(x⊥ − v⊥∆τ)F ′

�
Qs(x⊥ − v⊥∆τ)

p⊥

�

= (m+ 2)

Z
dp⊥p

m+1
⊥ F

�
Qs(x⊥ − v⊥∆τ)

p⊥

�
. (C.29)

The angular integrals are of the same type as the ones in Appendix B, however
each of the three perturbations has a slightly different angular dependence, so we will
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discuss them one by one. The δf -term is proportional to
Z

dϕp⊥n⊥

Z
dϕx⊥p⊥e

inϕp⊥n⊥e2(
m+2

3
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×
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�
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j

�
xn−j
⊥ (−∆τ)j cos(nϕx⊥n⊥ + jϕx⊥p⊥) (C.30)
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×
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(C.31)

= 2π2
nX

j=0

�
n

j

�
xn−j
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Ij

��
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3
+ α
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− βI ′j

��
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3
+ α

�
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��
.

(C.32)

The δT -perturbation contains via δϵ a factor of cos(nϕx⊥n⊥) = cos(nϕp⊥n⊥) cos(nϕx⊥p⊥)−
sin(nϕp⊥n⊥) sin(nϕx⊥p⊥). The term that is odd in ϕx⊥p⊥ will vanish, while the other
integrates to

Z
dϕp⊥n⊥

Z
dϕx⊥p⊥e

inϕp⊥n⊥e2
m+2

3
b cos(ϕx⊥p⊥ )[1− β cos(ϕx⊥p⊥)] cos(nϕx⊥n⊥)

(C.33)

= 2π
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3
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��
(C.34)

= 2π2

�
In
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3
b

�
− βI ′n

�
m+ 2

3
b

��
. (C.35)

Lastly, the δuµ-perturbation is of the form δutγ[β− cos(ϕx⊥p⊥)]− δus sin(ϕx⊥p⊥).
The term containing δut ∝ cos(nϕx⊥n⊥) behaves exactly like before:

Z
dϕp⊥n⊥e

inϕp⊥n⊥

Z
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βIn
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3
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3
b

��
, (C.37)

while the other term contains a factor of − sin(ϕx⊥p⊥) δus which has the total angular
dependence − sin(ϕx⊥p⊥) sin(nϕx⊥n⊥) = − sin(ϕx⊥p⊥)[cos(nϕp⊥n⊥) sin(nϕx⊥p⊥) +
sin(nϕp⊥n⊥) cos(nϕx⊥p⊥)], so in angular integration, the ϕx⊥p⊥-even part becomes
Z

dϕp⊥n⊥e
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3
b

��
. (C.39)

Putting all of this together, we can find the 2d integral expression for δV
(1,0)
mn :
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δV (1,0)
mn = −V

(0)
m0 δn γ̂ Pmn(τ̃) , (C.40)
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(C.41)

Next, we will compute δV
(1,eq)
mn by plugging (C.23) into (C.1). Again, the most

straightforward integration is the one over p⊥, which equates to taking moments of
feq. Terms containing f ′

eq can be cast into the same form as the others by partial
integration, which yields

Z
dp⊥ pm+2

⊥
pµu

µ

T
f ′
eq

�
pνu

ν

T

�
= −(m+ 3)

Z
dp⊥ pm+2

⊥ feq

�
pνu

ν

T

�
. (C.42)

To compute the angular integrals, as in the computation of δV (1,0)
mn we can rewrite

the ϕx⊥n⊥-dependence of δϵ, δut and δus into a dependence on ϕp⊥n⊥ and ϕx⊥p⊥ ,
which makes the ϕp⊥n⊥-integration trivial. However, the next step will be the trickiest
one of this entire section, as the integrals over ϕx⊥p⊥ and η are highly non-trivial.
The integrals that need to be computed for the different anisotropic correction terms
are:

Z
dη

Z
dϕx⊥p⊥

�
pµu

µ

p⊥

�−m−2

δϵ , (C.43)

Z
dη

Z
dϕx⊥p⊥

�
pµu

µ

p⊥

�−m−3

δut [βcosh(y − η)− cos(ϕx⊥p⊥)] , (C.44)

Z
dη

Z
dϕx⊥p⊥

�
pµu

µ

p⊥

�−m−3

δus sin(ϕx⊥p⊥) . (C.45)

Getting rid of all prefactors that do not depend on the integration variables, this
amounts to computing the following integrals:
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Gϵ(n,m,β) =

Z
dη

Z
dϕx⊥p⊥ [cosh(y − η)− β cos(ϕx⊥p⊥)]

−m−2 cos(nϕx⊥p⊥) ,

(C.46)

Gut(n,m,β) =

Z
dη

Z
dϕx⊥p⊥ [cosh(y − η)− β cos(ϕx⊥p⊥)]

−m−3

× [βcosh(y − η)− cos(ϕx⊥p⊥)] cos(nϕx⊥p⊥) , (C.47)

Gus(n,m,β) =

Z
dη

Z
dϕx⊥p⊥ , [cosh(y − η)− β cos(ϕx⊥p⊥)]

−m−3

× sin(ϕx⊥p⊥) sin(nϕx⊥p⊥) . (C.48)

We have defined these integrals as the functions GX(n,m,β) to abbreviate the nota-
tion of our results. To compute them, we rewrite again sin(nϕx⊥p⊥) and cos(nϕx⊥p⊥)
into Chebyshev polynomials as we did in Appendix A. Since the polynomial expres-
sion for sin(nϕx⊥p⊥) also contains a factor of sin(ϕx⊥p⊥) which together with the
in (C.48) already present sine combines to 1 − cos2(ϕx⊥p⊥), now only different pow-
ers of cos(ϕx⊥p⊥) without any sines occur in the integrand, which can be integrated
analytically as follows:

Z
dη

Z
dϕx⊥p⊥ [cosh(y − η)− β cos(ϕx⊥p⊥)]

−m−2 cosl(ϕx⊥p⊥) (C.49)

= 4

Z ∞

1
dx

Z 1

−1
dy

[x− βy)]−m−2yl√
1 + x2

p
1− y2

(C.50)

=
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, (C.51)

Z
dη

Z
dϕx⊥p⊥ [cosh(y − η)− β cos(ϕx⊥p⊥)]

−m−3 cosl(ϕx⊥p⊥) cosh(y − η) (C.52)

= 4

Z ∞

1
dx

Z 1

−1
dy

[x− βy)]−m−3ylx√
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(C.53)

=
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. (C.54)

To simplify these expressions, we can make use of the following property of the Γ-
function:

Γ

n+ 1

2

�

Γ (n+ 1)
=

(2n)!

4n(n!)2
√
π (C.55)
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Then one finds the following expressions for the integrals (C.46)-(C.48).
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Gut(n,m,β) =

Z
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Z
dϕ[cosh(y − η)− β cos(ϕ)]−m−3
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Gus(n,m,β) =
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dη

Z
dϕ[cosh(y − η)− β cos(ϕ)]−m−3
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(C.58)
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The final step to computing the total expression for δV (1,eq)
mn is a bookkeeping task

of combining all the above integration steps, at the end of which one acquires

δV (1,eq)
mn = γ̂δnνeffR

−m

 
1

π
ν−1
eff

dE
(0)
⊥

dη
R

!(m+3)/4

Qmn(τ̃) , (C.59)

Qmn(τ̃) =
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30
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8π2
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− 2βI ′j(2ᾱb) + β2I ′′j (2ᾱb)]Gϵ(n,m,β) + [Γ(m+ 3)− Γ(m+ 4)] τ̃ ′ T̃ 4

×
(
γ2

��
2β +

1

2b

�
I1(2b)− 2I0(2b)

�−1
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Appendix D

Equilibrium moments of the
numerical setup

In this appendix, the equilibrium moments Em
l emerging in the time evolution equa-

tions for the moments Cm
l as derived in Section 5.3.1 are computed. Since taking the

integral
R
dpτ (pτ )3 of the equilibrium distribution will yield the energy density, the

expression simplifies in spherical coordinates.

Em
l =

Z
d2p⊥
(2π)2

Z
dpη
2π

Y m
l (θp,ϕp) p

µuµ feq (D.1)

= τ

Z ∞

0
dpτ (pτ )3

Z 2π

0

dϕp

2π

Z
d cos θp

2
Y m
l (θp,ϕp)

1

2π2
vµuµfeq

�
pµuµ
T

�
(D.2)

= τϵ

Z 2π

0

dϕp

2π

Z
d cos θp

2
Y m
l (θp,ϕp) (v

µuµ)
−3 (D.3)

In this calculation, we have defined vµ = pµ/pτ . To compute the angular integral,
we write

vµuµ = γ (1− β⃗ · v⃗) = γ (1− β cos θup) (D.4)

and express the spherical harmonics in a rotated coordinate system, thus writing

Y m
l (θp,ϕp) =

lX

m′=−l

�
Dl

mm′

�∗
Y m′
l (θup,ϕup) , (D.5)

where the Wigner D-matrix depends on the angles involved in the rotation from
(θup,ϕup) to (θp,ϕp). In these coordinates, the ϕup-integral becomes trivial, thus only
an integral of the Legendre polynomials remains to be computed.

Z 2π

0

dϕup

2π

Z
d cos θup

2
Y m′
l (θup,ϕup) γ

−3 (1− β cos θup)
−3 = δm

′0y0l

Z
dx

Pl(x)

2γ3(1− βx)3

(D.6)

For the case m′ = 0, the Wigner D-matrix simplifies to

�
Dl

m0

�∗
=

r
4π

2l + 1
Y m
l (θrot,ϕrot) . (D.7)
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Since u⃗ lies in the transverse plane, where its orientation is given by ϕu, we can identify
the rotation angles to be θrot =

π
2 and ϕrot = ϕu, which yields

Em
l = τϵY m

l

�π
2
,ϕu

� Z 1

−1
dx

Pl(x)

2γ3(1− βx)3
. (D.8)

Finally, the remaining integral can be solved analytically:

Z 1

−1
dx

Pl(x)

2γ3(1− βx)3
= 2−l−2π1/2 Γ (l + 3)

Γ

l + 3

2

�γ−3βl
2F1

�
l + 4

2
,
l + 3

2
; l +

3

2
;β2

�
.

(D.9)
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Appendix E

Setup of the numerical code
computing linear order results

In this Appendix, we explain the setup of of the numerical code needed for obtaining
the linear order results presented in Chapter 6 according to the expansion scheme
discussed in Sec. 3.2.2.

The code is set up to compute the zeroth and first order contributions to the
energy-momentum tensor, which is given in terms of the phase space density as

Tµν =
νeff
(2π)3

Z
d2p⊥

Z
dy pµpνf . (E.1)

For simplicity, observables that are nonlinear in T µν with contributions from both
zeroth and first order in the opacity expansion were computed only to zeroth order.

The code is set up as follows. For an arbitrary initial energy density distribution
ϵ0(τ0,x⊥), the free-streaming energy momentum tensor is given as

T (0)µν =
τ0
τ

Z
dϕv

2π
vµ⊥v

ν
⊥ ϵ0(τ0,x⊥ −∆τv⊥) . (E.2)

The integral over ϕv is performed numerically, using the same stencils for all entries
to prevent errors later on. Now, to go to first order in the opacity expansion, we first
have to compute the zeroth order results for the restframe energy density ϵ(τ,x⊥)
and the flow velocity uµ(τ,x⊥), as they are required for evaluating the RTA collision
kernel. This is achieved by numerical diagonalization of T (0)µν .

As computed before, the first order correction to the phase space distribution is
given as an integral of the zeroth order collision kernel.

f (1)(τ,x⊥,p⊥, y − η) =

Z τ

τ0

dτ ′
C[f (0)]

pτ

τ ′,x⊥

′,p⊥, y
′ − η

�
(E.3)

The primes on the variables indicate the use of free-streaming coordinates. From this,
the first order correction to the energy-momentum tensor is obtained as

T (1)µν =

Z
d2p⊥

Z
dy pµpν

Z τ

τ0

dτ ′
C[f (0)](τ ′,x⊥′,p⊥, y′ − η)

pτ (p⊥, y′ − η)
. (E.4)

As it turns out, the observables that are to be computed to first order in opacity de-
pend only on transverse integrals of the components of T ij . Thus, we need to perform
a 6D integral, which can be done in part analytically, reducing the complexity of the
numerical integration. For further details of the analytical preparatory groundwork
for the numerical implementation, see Appendix F.
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The observables are now computed from these results in the following way. As a
substitute for dE⊥/dy, we extract

dEtr

dy
= τ

Z

x⊥
T 11 + T 22 (E.5)

= τ

Z

x⊥
T (0)11 + T (0)22 + T (1)11 + T (1)22 . (E.6)

As elliptic flow is given as a quotient of two transverse integrals of components of T µν

where the denominator vanishes at zeroth order, the first order result is given as

ϵp =

R
x⊥

T 11 − T 22 + 2iT 12

R
x⊥

T 11 + T 22
(E.7)

=

R
x⊥

T (1)11 − T (1)22 + 2iT (1)12

R
x⊥

T (0)11 + T (0)22
. (E.8)

Both of these observables depend on the transverse integral of T (0)11 + T (0)22, which
using E.2 can be straightforwardly evaluated to

Z

x⊥
T (0)11 + T (0)22 =

1

τ

dE
(0)
⊥

dη
. (E.9)

In particular, the quantity dEtr/dη, which we introduced as the analogue of dE⊥/dy,
is in fact identical to dE⊥/dy to zeroth order. Furthermore it is constant in time, so
only the first order correction has to be computed. We furthermore compute zeroth
order results for the average transverse flow velocity and the average inverse Reynolds
number as

⟨u⊥⟩ =

R
x⊥

ϵ(0)
r�

u
(0)
1

�2
+
�
u
(0)
2

�2

R
x⊥

ϵ(0)
, (E.10)

⟨Re−1⟩ =
R
x⊥

q
6π(0)µνπ

(0)
µνR

x⊥
ϵ(0)

(E.11)

=

R
x⊥

q
6T (0)µνT

(0)
µν − 24

3


ϵ(0)

�2
R
x⊥

ϵ(0)
. (E.12)
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Appendix F

Analytical and numerical
integration in the computation of
linear order results

As discussed in the previous Appendix, obtaining numerical results for the linear order
term in the energy momentum tensor requires the computation of a 6D integral. In
this Appendix, we explain what part of this integral is performed analytically and
give the specific form of the remaining integral which the code computes numerically.

We start from the expression in Eq. E.4 for the purely spatial components of the
energy momentum tensor. Stating now the free-streaming coordinates in explicit form,
the integral that has to be computed for each component of T (1)ij is

Z

x⊥
T (1)ij = − νeff

(2π)3

Z

x⊥

Z

p⊥

Z
dy pipj

Z τ

τ0

dτ ′
C[f (0)]

pτ

�
τ ′,x⊥

′ = x⊥ − v⊥∆τ

,p⊥, y
′ − η = arcsinh

� τ

τ ′
sinh(y − η)

��
. (F.1)

For more information on where they come from, one may consult our previous
paper [1]. When substituting to these coordinates, the Jacobian for the x⊥-integration
is trivial, but the one for y involves

dy′ =
τ

τ ′
cosh(y − η)

cosh(y′ − η)
dy (F.2)

=
τ

τ ′

q
1 +


τ ′
τ

�2
sinh2(y′ − η)

cosh(y′ − η)
dy . (F.3)

Right away and from this point on, we will drop the primes on all coordinates except
τ ′ for convenience. Also plugging in the specific form of the RTA kernel

C[f ] = −pµuµ
τR

(f − feq) (F.4)

we arrive at

Z

x⊥
T (1)ij = − νeff

(2π)3

Z
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Z
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Z
dy

Z τ

τ0

dτ ′pi
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τ

1q
1 +


τ ′
τ

�2
sinh2(y − η)

vµu
(0)
µ

τR

× (f (0) − feq)(τ
′,x⊥,p⊥, y − η) , (F.5)
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where we defined vµ = pµ/p⊥, such that

vµuµ = γ[cosh(y − η)− v⊥ · β] . (F.6)

The relaxation time is given as

τR = 5
η

s
[T (0)]−1 , (F.7)

where the zeroth order Temperature is computed from the zeroth order restframe
energy density e(0) via the equation of state. For compactness we will stick to denoting
it simply as τR.

It is convenient to consider separately the contributions coming from the decay of
f (0) and from the buildup of feq, which we will call T (1,0)ij and T (1,eq)ij . In the case
of the former, we plug in

f (0)(τ,x⊥,p⊥, y − η) =
(2π)3

νeff

δ(y − η)

τp⊥

dN0

d2x⊥d2p⊥dy
(x⊥ − v⊥∆τ,p⊥) . (F.8)

Due to the Dirac-Delta, the integration over y is trivial for this term, while inte-
grating over p⊥ = |p⊥| will yield

ϵ(τ0,x⊥ − v⊥∆τ) =
2π

τ0

Z
dp⊥ p2⊥

dN0

d2x⊥d2p⊥dy
(x⊥ − v⊥∆τ,p⊥) . (F.9)

The other integrals cannot be computed analytically. We thus arrive at

T (1,0)ij = −
Z τ

τ0

dτ ′
Z

dϕv

2π
vi
⊥v

j
⊥
vµu

(0)
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For the equilibrium buildup contribution, we can use the moment properties of the
equilibrium distribution to perform the integral over p⊥.
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Z ∞

0
dp⊥ p3⊥feq
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We now define for notational convenience the auxiliary quantity F ij
eq as the remaining

2D momentum integral.

F ij
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Z
dy

2

dφv

2π

1q
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�2
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(F.13)

This is a transverse tensor depending only on one transverse vector, specifically is β.
We can thus decompose it as

F ij
eq = Aδij +Bβ−2βiβj , (F.14)

where for the coefficients A and B we can derive expressions via projection. The
integrals over ϕv can then be computed analytically.
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δijF ij
eq = 2A+B =
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This means that A and B are given by the integrals I1 and I2 via

A =
1

2
I1 , B =

3

2
I2 . (F.22)

Since we weren’t able to find analytical solutions to the integrals over y, in the numer-
ical implementation we instead interpolate them from a set of numerically integrated
values. I1 and I2 depend on the two parameters τ ′2/τ2 and β2. When performing
the integration over τ ′ via a Riemann sum, the first of these parameters is constant
in each integration step, so the interpolation has to be set up only in β2 within this
step.

With F ij
eq given in this way, in total the integrals of T (1)ij over transverse space

can be computed as
Z

x⊥
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Z τ

τ0

dτ ′
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�
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(F.23)
Note that the zeroth order results for the flow velocity u

(0)
µ and the restframe

energy density e(0) which also enters τR via the temperature have been computed in
the first step of diagonalizing T (0)µν . Thus, all quantities appearing in this integrand
are known and the 4D integral can be performed numerically.
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Appendix G

Overview of time evolution at
different opacities

In Section 6.4.2 we compared the time evolution of the tracked observables in kinetic
theory and scaled viscous hydro and pointed out some qualitative differences for results
at three different opacities. To get a better overview of the opacity dependence in the
time evolution, we can also compare results coming exclusively from kinetic theory on
a wide range in opacity. This comparison for the time evolution of transverse energy
dEtr/dη, elliptic flow ϵp, transverse flow velocity ⟨u⊥⟩ϵ and inverse Reynolds number

Re−1

�
ϵ

is presented in Fig. G.1 for opacities ranging from 4πη/s = 0.01 to 1000.
For very small opacities 4πη/s ∼ 1000, the system is close to free-streaming and

transverse energy dEtr/dη is almost constant. At larger opacities, due to more work
being performed in the longitudinal expansion, dEtr/dη increases by a larger total
amount. The opacity also sets the timescale for this cooling, as it sets in earlier for
larger opacities.

Elliptic flow ϵp stays close to zero at small opacities 4πη/s ∼ 1000 and rises
monotonically with opacity at each point in time. Qualitatively, the curves look the
same at all opacities, with a buildup period at times 0.1R ≲ τ ≲ 2R and almost
constant behaviour afterwards. The onset of this buildup is slightly earlier at larger
opacities, but this difference is negligible.

As expected, the transverse flow velocity ⟨u⊥⟩ϵ starts with the same early-time lin-
ear behaviour for all opacities. The proportionality constant with elapsed time ∆τ =
τ − τ0 can be computed according to Eq. 4.50 and evaluates to ⟨u⊥⟩ϵ = 0.61∆τ/R.
The larger the opacity, the earlier the system starts to deviate from this behaviour.
For the largest opacities 4πη/s ≲ 0.1, the system is in its local Bjorken flow equilib-
rium state long enough for early time contributions to become negligible, such that
it transitions to the late time pre-flow proportionality law. According to Eq. 4.52, in
this regime, the flow velocity is given by ⟨u⊥⟩ϵ = 0.66∆τ/R. All curves exhibit their
strongest rise on the timescale of transverse expansion, τ ∼ R. The rise is stronger at
smaller opacities and in all cases contributes the most to the buildup, such that the
final (τ = 4R) values of transverse flow velocity are also larger at smaller opacities.

The inverse Reynolds number


Re−1

�
ϵ

stays almost constant at early times for
small opacities 4πη/s ∼ 1000, but then slightly increases due to transverse expansion.
At large enough opacities 4πη/s ≲ 10, interactions equilibrate the system and decrease
its value. This process sets in earlier at larger opacities and brings the value of the
inverse Reynolds number down to almost zero for the largest opacities 4πη/s ≲ 0.05.
In these cases, the value stays close to zero even during transverse expansion. At
slightly smaller opacities 0.05 ≲ 4πη/s ≲ 1, there is a small rise in inverse Reynolds
number due to transverse expansion. However, this sets in later than in the case of the
smallest opacities. The curves for intermediate to small opacities 1 ≲ 4πη/s ≲ 100
exhibit a bumpy behaviour during transverse expansion.
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Figure G.1: Time evolution of transverse energy dEtr

dη (top left, cf. Eq. 3.43),
elliptic flow εp (top right, cf. Eq. 3.44), transverse flow velocity ⟨u⊥⟩ϵ (bottom left,
cf. Eq. 3.53) and inverse Reynolds number ⟨Re−1⟩ϵ (bottom right, cf. Eq. 3.52) in
kinetic theory for a wide range of opacities (η/s) plotted in different colors. The
plot of transverse flow velocity ⟨u⊥⟩ϵ also shows the pre-flow result ⟨u⊥⟩ϵ,early =
0.61∆τ/R according to Eq. 4.50 and the late pre-flow result ⟨u⊥⟩ϵ,late = 0.66∆τ/R

according to Eq. 4.52.
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Appendix H

Time evolution in KøMPøST +
viscous hydro simulations

In Section 6.4.3 we named hybrid simulation frameworks as a solution for alleviat-
ing problems with pre-equilibrium in hydrodynamic simulations and discussed the
time evolution mainly in hybrid kinetic theory + viscous hydro simulations. The
alternative hybrid framework using KøMPøST instead of full kinetic theory for the
pre-equilibrium evolution has some limitations, but when applicable, yields results of
similar accuracy. The time evolution of transverse energy dEtr/dη, elliptic flow ϵp and
transverse flow velocity ⟨u⊥⟩ϵ in KøMPøST + viscous hydro simulations switching
at fixed time τs or fixed value of the inverse Reynolds number



Re−1

�
ϵ

is shown in
Fig. H.1 for three different opacities 4πη/s = 0.5, 3 and 10.

The values of dEtr/dη at the time of switching are reproduced by KøMPøST almost
perfectly. As one would expect, the time evolution afterwards follows a very similar
behaviour to kinetic theory + viscous hydrodynamics, including the inaccuracies of
hydrodynamic pre-equilibrium when switching too early.

As KøMPøST produces almost no elliptic flow, its value at switching time is close
to zero. But the buildup during the hydro part of the simulation proceeds similarly
to other simulation schemes, such that the discrepancy to kinetic theory in the final
state (τ = 4R) is of similar size to the one at switching time. It is therefore larger at
larger switching times.

The values of transverse flow velocity ⟨u⊥⟩ϵ are in KøMPøST slightly underesti-
mated for small switching times and slightly overestimated for large switching times.
After switching, the curves seem to bend towards the hydrodynamic curve. This bend-
ing is mainly due to the division by ∆τ . ⟨u⊥⟩ϵ in the hydro phase of hybrid simulations
builds up similarly than in pure hydrodynamic simulations. The contributions from
later times are much larger than those at early times, such that the discrepancy from
early times becomes negligible. At late times, results from all switchting times un-
derestimate ⟨u⊥⟩ϵ by almost the same amount, similarly to hybrid kinetic theory +
viscous hydro simulations.
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Figure H.1: Time evolution of transverse energy dEtr/dη (top, cf. Eq. 3.43),
elliptic flow εp (middle, cf. Eq. 3.44) and transverse flow velocity ⟨u⊥⟩ϵ (bottom, cf.
Eq. 3.53) in hybrid KøMPøST + viscous hydro simulations at opacities 4πη/s = 0.5
(left), 3 (middle) and 10 (right) when switching at different values of the inverse
Reynolds number (c.f. Eq. 3.52)



Re−1

�
ϵ
= 0.8 (light red), 0.6 (red) and 0.4 (dark

red) or fixed time τ = 0.4 fm (light green) and τ = 1 fm (dark-green). The switching
points are marked with filled symbols. The time axis is scaled logarithmically. The
plots showing elliptic flow ϵp feature an inset plot of the same quantity plotted in
log-log scale. Again, the flow velocity plots also show the pre-flow result ⟨u⊥⟩ϵ =

0.61∆τ/R according to Eq. 4.50.
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6.7 Opacity (γ̂ = 11.3
4πη/s) dependence of the characteristic times where the
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