Correlation functions and non-equilibrium dynamics in one
dimensional quantum systems

PHD THESIS

DAvID HORVATH

SUPERVISOR: DR. GABOR TAKACS
Professor
BME Institute of Physics
Department of Theoretical Physics

Budapest University of Technology and Economics
2019



Contents

Introduction

Thermalization in many-body quantum systems

2.1 Emergence of a statistical description in closed quantum systems . . . . .. ... ... ..
2.2 Thermalization in integrable models . . . . . . . .. .. ... oo oL
2.3 Overlaps, time evolution and representative state approaches in integrable models . . . . .
2.4 Quenches in field theories . . . . . . . ..

Some elements of Integrable Quantum Field Theory

3.1 Asymptotic states, factorized scattering and the Zamolodchikov-Faddeev algebra . . . . .

3.2 Form factors bootstrap . . . . . . . . . L

3.3 IQFT in finite volume, Bethe states and finite volume FF . . . . . . ... ... ... ...

3.4 The sinh- and sine-Gordon models and the Ising field theory . . . . . . . .. .. ... ...
3.4.1 The sinh-Gordon model . . . . . . . . . ... ...
3.4.2 The sine-Gordon model . . . . .. ... L
3.4.3 The Ising field theory . . . . . . . . . .

Integrable quenches
4.1 Integrable boundary field theories . . . . . . . . . . . ...
4.2 Integrable quenches: definition, their structure and examples . . . . . .. .. ... .. ..
4.2.1 Connection between the integrability of the quench and the squeezed-coherent initial
state . ..o L e
4.2.2 Integrable initial states for small quenches . . . . . . . .. ... ... ... .....
4.3 Overlaps in finite volume . . . . . . . . . ..
4.4 SUMMATY . . . . o o e e e

Quenches with one-particle coupling and singular overlaps

5.1 Analogy between integrable quenches and integrable boundaries . . . . . . . . ... .. ..
5.2 Quench in the Ising field theory from the ferromagnetic to the paramagnetic phase

5.3 Phase quenches in the sine-Gordon model . . . . . . . ... ... oL
5.4 SUMMATy . . . . .. e

Quench overlaps in the sinh-Gordon model

6.1 The infinity hierarchy of integral equations for the initial state . . . . ... ... ... ..
6.1.1 Operator continuity condition . . . . . . . . . .. ... L oo
6.1.2 Integral equations for the initial states . . . . . . . . .. ... ...
6.1.3 Freecase . . . . . . .
6.1.4 Uniqueness . . . . . . . . .

6.2 Solution of the hierarchy . . . . . . . . . ..
6.2.1 Argument for the pair structure of the initial state . . . . . . ... ... ... ...

10
12
15

17
17
19
21
22
22
24
27

30
30
32

33
36
36
38

39
40
41
44
46



©

Q @ »

6.2.2
6.2.3
6.2.4
6.2.5

Integral equation with the pair assumption and asymptoticsof K . . . . . . .. ..
Numerical solution of the hierarchy: keeping the vacuum and two-particle terms

Numerical solution of the hierarchy: adding the O(K?) terms . . . . . .. ... ..
Checking the validity of the pair assumption via the three-particle condition . . . .

6.3 Summary . . . ... e

Mass quenches in the sine-Gordon model
7.1 TCSA in the sine-Gordon model . . . . . . . . . . ...
7.2 Overlaps from TCSA . . . . . . . .

7.2.1
7.2.2

The By — By pair amplitude . . . . . . . . . ... ... .
Amplitudes for 4 By particles and factorisation . . . . . . ... ... ... ... ..

7.3 SUMMATY . . . o o v o et e e e

Time evolution of one point functions after a quench

8.1 Linked cluster calculation in finite volume . . . . . . . . . .. .. .. oL
8.2 Refined argument for the singularity of the pair overlap . . . . . . .. ... ... ... ..
8.3 Time dependence . . . . . . . . . . e

8.3.1
8.3.2

Contributions up to 4" order: analytic continuation of the boundary result

Leading order time dependence from Gs . . . . . . . . .. . ... ... ... ...,

8.4 Discussion of the results . . . . . . . . L.

8.4.1
8.4.2
8.4.3

Connection with previous results and discussion of possible resummation of Gyy,11
Multiple species . . . . . . . . . e e
Parametric resonance . . . . . . .. ...

8.5 Summary . . ..o

Conclusions

The singularity of the Ising K function

Phase quenches in the sine—-Gordon model and exponential quenches

Finite volume derivation of the integral equations
C.1 One- and three-particle test states . . . . . . . . . ... ... L
C.2 Comparing to the infinite volume formalism . . . . . . . .. ... . ... ... .......

Tables for the three particle test states

D.1 B=0.1

Some useful relations

E.1 The K function . . . . . . . . . . . e
E.2 Form factor singularities and expansions . . . . . . . . . . . . ... ..
E.3 Some distribution identities . . . . . . .. ...
E.4 Stationary phase approximation . . . . . . .. ... L Lo

The finite volume 1-point function in the presence of boundaries

Evaluating D19

59
63
65
66

68
69
71
71
73
74

75
7
79
80
80
82
84
86
87
88
89

92

105

107

110
110
113

114
114
115
115

117
117
117
118
119

120

122



H Evaluating G5, part I. Notation§, Dgs, D14 and residue terms from Dog
H.1 Evaluation of D05 = C()5 and D14 = 014 — Zlc()g .......................
H.2 Evaluation of Doz = Cg3 — Z1C12 — (Zo — Z3)Co1 « o o v o o v i e

H.2.1 Time dependence from residue term C55514 and

I Evaluating G5, part II. Contour integral terms from Do3
L1 Term OBl and its descendants . . . . . . . .. ...

1.2 Term OB and its descendants . . . . . . . . . ...

I3 The term C™4 .

1.4 Singularities and their cancellation from C3381 and C3BIL ...
[.4.1  4th order singularities from CERBIIL CintBII4 anq their cancellation . . . . . . . .

1.4.2  4th order singularities from Ci3/B14, CintBIla and their cancellation . . . . .. . .

1.4.3  Singularities from CiatBI2a

[.5 Terms with non trivial time dependence . . . . . . . . .. . ... ... .. ... ......

L6 Summary . . . . . ..

J Evaluation of the integral kernel and time dependence
J.1  Time dependence from Ker, and C33B12e o oo
J.2  Time dependence from CitBI20 via Ker: imaginary part . . . ... ... .. ... ....
J.3  Time dependence from C’%gtBI 26 via Ker: real part and logarithmic anomaly . . . . . . . .

J.4 Time dependence from C’;gtB =0
K Numerical checks for the calculations

K.1 Cancellation of mL terms in Dao3 . . . . . . . . . . . o

K.2 Time dependence from C"BI=11

K.3 Comparing the time dependence of Ds3 with the analytic results . . . . . . ... ... ..

123
124
126
127

129
130
133
135
135
136
136
137
138
139

140
142
143
143
144



Chapter 1

Introduction

One of the great intellectual achievements that the end of the 19th and the beginning of the 20th century
witnessed is the theoretical foundation of thermodynamics and the birth of statistical mechanics. By
the contributions of many outstanding physicists, in this era it had become possible to understand the
phenomenological laws of thermodynamics emerging from the Hamiltonian dynamics of classical particles.
Some of the most essential milestones in the history of statistical mechanics were relating micro-states of
the Hamiltonian problem and macro-states of a large system expressed by Boltzmann’s entropy formula
and understanding the observed approach of a macroscopic system to a steady state reconciling it with the
microscopic reversibility of the underlying dynamics. An aspect of similar significance is the applicability
of statistical ensembles. In a generic interacting system with macroscopically many degrees of freedom,
the Hamiltonian dynamics is chaotic, which ensures that the system visits all the available regions in
the phase space in sufficiently large times. The ergodicity of the dynamics, however, allows to compute
time averages in terms of ensemble averages and hence provide a statistical description of the observed
equilibrium. The role of conserved quantities and in particular the energy was immediately understood,
the latter being the only relevant conserved quantity that can be nonzero in an appropriate coordinate
system.

The chaotic dynamics of the Hamiltonian system is therefore a crucial ingredient for the emergence of
a statistical description, but there are numerous important examples in Hamiltonian mechanics where the
dynamics is not chaotic. The most important example is classical integrable models in which, given that
the system has finite 2n degrees of freedom, there are n independent conserved quantities. The conserved
quantities impose strong constraints on the dynamics: it is restricted onto an n dimensional torus i.e.
a tiny subspace in the 2n dimensional phase space and consequently integrable models have a rather
special, unusual dynamics. Moreover, as claimed by the KAM theorem, under small integrability breaking
perturbations there even remain regions in the phase space where the behaviour of the is still not chaotic.
Although this is very remarkable, the fate of these regions, however, is such, that they shrink as the
number of degrees of freedom is increased, and in macroscopic systems the chaotic behaviour dominates.
For this reason in real world classical systems with macroscopic degrees of freedom the molecular chaos
and hence ergodicity is practically always guaranteed.

In the beginning of the 20th century, quantum mechanics was born and it was soon noticed that
elements that are necessary for the statistical mechanics of classical systems to work, such as indistin-
guishability of particles and usage of cells in phase-space to label micro-states, are of quantum mechanical
origin. Apart from these quantum ingredients, however, statistical mechanics is based on classical concepts
and quantum mechanics seems to have a little say in classical statistical mechanics. As a matter of fact,
some of the classical concepts of statistical mechanics such as ensembles have natural quantum mechanical
analogues and using quantum statistical ensembles and the principles of classical statistical mechanics in
quantum systems, indeed, have a wide range of successful applicability.

Despite of its usually excellent performance, the origin of an emergent statistical description in quantum
systems is far less understood than for the classical case. Notions that are essential in classical statistical



mechanics such as ergodicity and chaotic behaviour and the role of integrability and integrability breaking
are highly non-trivial in the quantum context. Whereas in the classical case, chaos and ergodicity is
essentially guaranteed by the non-linearity of the Hamiltonian as a consequence of the interactions, time
evolution in quantum mechanics is governed by the time dependent Schrodinger equation, which is linear in
time and the linearity of quantum systems manifests in the superposition principle of quantum mechanics
as well. Clearly, understanding aspects such as the quantum version of ergodicity and a rigorous foundation
of quantum statistical mechanics are of great importance. As most commonly believed, our universe is
governed by quantum physics and classical physics and hence classical statistical mechanics are emergent
descriptions of the quantum world applicable in some cases. The call for understanding whether the
principles of statistical mechanics can be derived from quantum mechanics is therefore obvious and has
been spurring activity over decades. As a result of these studies, a mechanism analogous to ergodicity in
classical systems was proposed under the name of Eigenstate Thermalization Hypothesis (ETH) [1,2] in
the early 90’ and is currently generally accepted to account for the thermalization and the emergence of
a micro-canonical description in closed quantum systems with generic interactions.

In recent years, nevertheless, experimental techniques have undergone a spectacular evolution and
it has become possible to study interacting quantum systems with many constituents [3—13]. In these
experiments usually realized by trapped cold atoms, the interactions with the environment are so weak,
that these systems can be considered isolated for times scales much longer than the ones characteristic of the
dynamics of the system. Due to the large number of constituent particles and the excellent isolation from
the environment, these experimental realizations have provided a wealth of information and stimulated
activity in the field of out-of-equilibrium dynamics of closed quantum systems.

In most cases the experimental realization is such, that the cold atoms are confined to an elongated
region of space and the dynamics of the atoms is dominated by 1D physics. The reduced dimensionality has
strong effects on the dynamics. On the one hand, in 1D the role of quantum fluctuations is very important,
while on the other hand the interactions are usually non-negligible as two particles with different velocities
would inevitably collide which each other. Such systems are therefore usually strongly correlated and
strongly interacting with pronounced quantum effects, which make them ideal test-grounds for the study
of non-equilibrium phenomena and thermalization in closed quantum systems.

Perhaps the most important aspect of 1D is the existence of quantum integrable models, mostly spin
chains and integrable field theories, many of which can be realized in experiments. Whereas currently there
is no generally accepted definition of quantum integrability (see a summary of definitions and an appealing
proposal in Ref. [14]), the most accepted one emphasizes the existence of infinitely many conserved charges
in these models that are local, i.e. they are a sum or an integral of a local density. Studying and under-
standing thermalization in integrable models hence is motivated by real world systems and experiments
and it has led to a series of unexpected behaviour and interesting surprises. Perhaps the most remarkable
discovery the experiments reported is that these models do not thermalize in the usual sense [3-5, 15|,
and recent theoretical results show this can also occur in systems where integrability is broken, as a result
of non-perturbative dynamical effects such as confinement [16]. It is important to mention that due to
the special constraints on the dynamics, integrable systems admit exact solutions and analytical expres-
sions and for such systems or their perturbed non-integrable counterparts there are often very effective
numerical techniques to deal with, despite being generically strongly interacting theories. Studying the
out-of-equilibrium properties of integrable systems is hence often possible by analytical means besides the
experimental investigations, and analytical calculations give a direct access to studying and understanding
various aspects of thermalization or testing related ideas and hypotheses in closed quantum systems. For
these reasons, the study of non-equilibrium dynamics of integrable models has been attracting considerable
interest not only on the experimental but also on the theoretical side.

Recent investigations of integrable models and their out-of-equilibrium properties such as the lack
of thermalization due to the violation of the ETH have opened up new horizons in the foundation of
quantum statistical mechanics. These investigations have also stimulated the development of efficient
numerical methods such as the time-evolving block decimation [17] or truncated space approaches [18]



which are of more general applicability. Perhaps most importantly, however, a series of interesting ideas
and new concepts such as the generalized Gibbs ensemble have been born, and novel and vital questions
have been proposed to push forward the frontiers of our understanding in quantum statistical mechanics.
In the following some of the most interesting issues are listed and briefly introduced.

Although integrable models violate the ETH and do not thermalize they do equilibrate and to describe
the steady-state the generalized Gibbs ensemble was introduced [19]. This ensemble is analogous to
the standard Gibbs ensemble but it includes not only the Hamiltonian but all the other local conserved
charges, which form an infinite set in integrable model. Whereas the applicability of this ensemble is
generally accepted, the actual set of conserved charges to be included and the their locality properties are
not clear at the moment.

Another important question is related to the transition form integrable to non-integrable quantum
models i.e. the integrability breaking, as according to [16], certain models even with strong integrability
breaking refuse to thermalize. Whereas in the classical case in thermodynamically large systems, chaotic
behaviour dominates even for broken integrability (and hence despite of the KAM theorem), in quantum
system with integrability breaking the remnants of integrability can be more pronounced. This suggests a
possible existence of the quantum version of KAM theorem and current and recents studies may contribute
to the construction of such a theorem. Of course, the actual steady-state in such a situation is of great
interest as well and the approach to the steady-state either described by a generalized Gibbs ensemble or
in a situation with integrability breaking is very little known, with some case-by-case examples.

Integrable models exhibit interesting transport properties. The transfer of many physical quantities is
characterized by ballistic transport, but diffusive and sub-ballistic transport phenomena were also observed
in integrable models [20,21]| and it is not known what class of observables and under what conditions
supports diffusive transport. Transport in integrable systems at the Euler scale can be described by the
Generalized Hydrodynamic approach (GHD) [22,23|, which was recently extended to access shorter time
and length scales [24|. The application of the latter approach, however, was only achieved for the XXZ
spin chain and the classical hard rod gas so far and none of the two approaches was extended to integrable
systems with non-diagonal scattering, such as the sine-Gordon model, whose transport properties are not
known.

Last but not least it is worth mentioning the spread of correlations and entanglement in out-of-
equilibrium situations, which received a lot of attention. In integrable models, where stable quasi-particles
exist, a simple semiclassical picture based on these stable particles offer qualitative and often quantitative
predictions for the spread of correlations and especially for the entanglement [25,26]. In models with
bounded quasi-particle velocity, the effect of a light cone can usually be observed in the spreading of
correlations, but confinement can prevent light-cone-like spreading [16].

In this thesis our aim is to discuss further and review some often exotic aspects of out-of-equilibrium
physics in quantum systems with a focus on integrable models and especially integrable field theories,
and to contribute to better understanding some of the issues discussed above. Before presenting our own
results mainly related to the so-called overlaps and the actual approach to the steady state, it is useful to
introduce a more formal treatment of out-of-equilibrium physics and thermalisation in quantum systems.
This allows us to phrase precisely the open questions motivating our work but also provides some room
to briefly summarise existing knowledge and features of thermalisation in many body quantum systems.
In the next section we discuss the Eigenstate Thermalisation Hypothesis in generic interacting quantum
many-body system highlighting the role of locality in the thermalisation. This is followed by the non-
equilibrium physics of integrable quantum systems, and a discussion of the motivations behind studying
integrable field theories in our work.



Chapter 2

Thermalization in many-body quantum
systems

In this chapter we introduce a paradigmatic setup called quantum quench to study thermalization and
non-equilibrium physics in quantum systems, highlight the role of locality in equilibration and introduce
the Eigenstate Thermalization Hypothesis. Then we discuss the case of integrable models where the
generalized Gibbs ensemble (GGE) can be invoked to describe the steady state. Here we identify the most
important open questions, which are related to the construction of, and the approach to, the steady state
and the role of integrability breaking. We also motivate our preference to study integrable quantum field
theories and address vital questions regarding the extension of the quench paradigm to field theories and
the applicability of a field theoretical description in out-of-equilibrium situations.

2.1 Emergence of a statistical description in closed quantum systems

There are several interesting out of equilibrium scenarios in quantum systems. To name a few, one
can consider Floquet systems where an external driving is applied, or inhomogeneous situations where
two (half-infinite) systems prepared to different initial conditions are joined together in the most studied
situation, but one can also study open quantum systems subject to a Lindbladian time evolution giving rise
to interesting non-equilibrium steady states. However, perhaps the simplest and most important setting is
when a closed quantum system is prepared in an initial state which not the eigenstate of the Hamiltonian
governing the time evolution. Clearly, this setup is just the quantum version of the classical case studied
by Boltzmann, where an isolated system is initialized to a point or a region in the phase space and the
emergence of statistical distribution described by a micro-canonical ensemble is expected under general
conditions. This setup has therefore a particular importance being the simplest one, where a statistical
description in quantum systems emerges.

Clearly this non-equilibrium protocol is not the most general one, since the initial state is a pure
state (corresponding to a single point in the phase space in classical version) but due to the superposition
principle of quantum mechanics, the case of a mixed initial state described by a non-trivial density matrix
(corresponding to a region in the phase space in classical version) can in general be reduced to the case a
pure state. The non-equilibrium protocol we are interested in therefore consists of preparing a closed and
macroscopically large quantum system in a pure state that is not the eigenstate of the Hamiltonian gov-
erning the time evolution after the preparation. This protocol is called a (global) quantum quench [27,28],
if the preparation is realized by abruptly changing some parameters in a typically translational invariant
Hamiltonian and the initial state is the eigenstate, typically the ground state of the pre-quench Hamil-
tonian, whereas time evolution is governed by the post-quench Hamiltonian. This protocol is generally
realized by a fast change in the system parameters. Depending on whether this change can be considered
instantaneous or slow, the non-equilibrium scenario is either a quantum quench or a ramp.



In such a situation a very natural approach is to use the superposition principle of quantum mechanics,
and write the time evolution of an operator as

(Tl O™ |W) = ¢, (n]|Ofm) e Fn=Fm) (2.1.1)

n,m

where |U) is the initial state |n) labels the eigenstates of H with energies F,, and the ¢, are the overlaps
(n|¥). In principle, Eq. (2.1.1) encodes all the information about the steady state and time evolution
and has many interesting implications. First of all, let us assume that the system reaches a steady state,
which is the generally the case, and relegate the discussion under what conditions it eventually happens.
If a steady state is reached, the expectation value of the operator becomes time independent and it must
be equal to its time average:

T

O = lim ;/dt«?(t)}, (2.1.2)
0

which under quite general assumptions is equal to the so-called diagonal ensemble average given by
O =" leal*(n|O[n). (2.1.3)
n
This ensemble corresponds to a density matrix
p=>_leal’ln)(nl, (2.1.4)
n

which must be reconciled in some way with the fact that time evolution is unitary and |¥(t)) = e~ |¥)
remains a pure state at all times. The widely accepted solution is that equilibration only happens for
a certain class of observables, and also involves the thermodynamic limit. The latter is necessary since
in systems with a finite number of degrees of freedom partial revivals occur after a sufficiently long time
(which is the quantum analogue of Poincare recurrence). This time depends on the accuracy (degree)
of the revival and the number of degrees of freedom and is usually astronomically large in systems with
many constituents. Therefore in the rest of this thesis we consider the quantum systems in the thermo-
dynamic limit unless the opposite is indicated explicitly. The class of observables which are relevant for
the equilibration depends heavily on the structure of the Hilbert space and the Hamiltonian governing the
dynamics. In most cases the system is composed of some elementary constituents with their own Hilbert
space; typical examples are provided by bosonic or fermionic gases where each constituent has an Lo
Hilbert space in coordinate representation, or spin chains, where each spin has a local, finite dimensional
Hilbert space. The Hilbert space of the many-body system is then the tensor product of these ’one-body’
or ’local’ Hilbert spaces and due to interactions the Hamiltonian has non-zero matrix elements between
these components. As a consequence when considering few-body or local operators i.e. operators that
has support on only few of the one-body or local Hilbert spaces and performing a trace over the rest
of the Hilbert space, the expectation value is eventually described by a mixed state, as entanglement is
generated between the different parts of the Hilbert space by the dynamics governed by the Hamiltonian.
For operators that are global i.e. have support on the entire Hilbert space of the many-body system, a
relaxation to an expectation value dictated by a mixed state is not expected in general.

Having discussed the class of operators that can equilibrate in closed quantum systems, in the rest
of this thesis we will merely refer to this class as 'local operators’ for brevity. In the classical case, the
ergodicity of the dynamics accounts for the actual reach of the steady state and the emergent micro-
canonical description. In quantum Eq. (2.1.1) shows that in order to reach a steady-state described by
(2.1.3) the spectrum of the system must be sufficiently irregular otherwise revivals can occur even in the
thermodynamic limit. This corresponds with idea that a signature of quantum chaos is that distribution



of the energy level spacing follows Wigner-Dyson statistics [29]. The diagonal ensemble, however, is not
suitable as a thermodynamic description since it contains all the overlap coefficients, which is a huge
amount of microscopic information about the initial state, while a thermodynamic description is expected
to be in terms of macroscopic state variables such as total energy, entropy, pressure etc. This is illustrated
by the example of spin chains, where the entire Hilbert space and the necessary information for the
DE increases exponentially with the size of the system. The observation that generic interacting closed
quantum systems thermalize, in the sense discussed above, means the equilibrium expectation value O

can be computed by appropriate thermodynamical ensembles. In particular, the micro-canonical average
of O is defined as

!/

(O)som = NA;CE S (n]Ofn), (2.1.5)

where the primed summation means that eigenstates in the energy range [E, E 4 ¢] are included, Nyog is
the number of such eigenstates and ¢ is chosen to be small compared to the energy E but large compared
to the average level spacing. Alternatively, one can use the Gibbs ensemble i.e. the canonical average

(OVgp = Z7 M Tr O™ PH (2.1.6)

with Z = Tre PH as well. Whereas the equivalence of the micro-canonical and canonical averages are well
understood in equilibrium statistical physics and depends on negligibility of the fluctuations of the energy
density, to explain the equivalence of time averaging and the ensemble averages, the most widely accepted
scenario is the Eigenstate Thermalization Hypothesis (ETH) originally proposed in [1,2]. The ETH
claims that in matrix elements of local operators with respect to eigenstates of a generic Hamiltonian of a
large system, the off-diagonal elements are suppressed exponentially in the system size, and the diagonal
elements only depend on the energy and are smooth functions of it. This can be formulated as

Oup = O(E)(Saﬁ + e_S(E)/gfo(E,w)Rag , (2.1.7)

where O, denotes (a|O|B), |a) and B) are post-quench eigenstates with energies E, and Eg, E =
(Ea+Eg)/2, w= E,— Eg, S(E) is the thermodynamic entropy, O(E) and fo(F,w) are smooth functions
and R, is a random variable with zero mean and unit variance. The ETH itself is not sufficient to
guarantee the equivalence of O and (O)ycg: it is also necessary that the energy density fluctuations in
the initial state become negligible int he TDL [30]. This is guaranteed if the initial state satisfies the
cluster decomposition property [31]|, which states that for any local observable

|x_131/r|ll>oo<\m0($)o(y)|\ll> = (V[O(z)[W)(¥[O(y)|P) - (2.1.8)

As a consequence of the cluster property, the variance of the average energy density of the initial state is
negligible with respect to the Hamiltonian in the thermodynamic limit, hence

/ !/

O =Y leal*(n|OIn) =Y |enl*(n|Oln) = N;CE S (n|Olny (2.1.9)

since Y |cn|? &~ 1 and O(E) is a smooth function. The behaviour of the off-diagonal elements in Eq.
(2.1.7) is also important. Even if the spectrum is highly irregular, eigenvalues can be close to each other
exponentially in system size, hence the approach to the steady state can be exponentially slow. This is in
marked contrast with experimental and numerical observation reporting usually fast relaxation. The 2nd
term in Eq. (2.1.7) and in particular the exponential suppression accounts for realistic relaxation times
which are much shorter than the astronomically large time scales implied by the energy spacings, and this
formulation of the ETH results in ergodicity in a strong sense.
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The ETH can therefore be regarded as the quantum version of the ergodic hypothesis explaining
thermalization in closed quantum systems and has been tested in various setups |2,32-47| including models
of hard- and soft-core bosons, interacting spin chains, spinless and spinful fermions and the transverse field
Ising model in two dimensions.

For generic interacting many-body quantum systems the ETH holds, but there are interesting examples
where this hypothesis is violated. In finite systems, there may exist rare state that violate (2.1.7) and
which are expected vanish in the TDL. This requirement is usually difficult to check and there are known
cases where such (usually low energy) states persist [48,49]. These states are usually at the edges of the
spectrum and often related to an emergent low-energy integrability [50].

In fact, integrable models provide the most important example when ETH is violated and as a con-
sequence, integrable models do not thermalize in the usual sense. The discussion of integrable models is
carried out in the following section but before that, we briefly discuss the effects of breaking integrability
which holds many surprises as well. As discussed in the Introduction, in the classical case the region
in phase space where the dynamics remains not chaotic shrinks with the number of degrees of freedom
and as a consequence in thermodynamically large systems the chaotic behaviour dominates and remnants
of integrability are absent. In contrast, in quantum systems with broken integrability, the remnants of
integrability are more pronounced. A typical scenario is that, following a quench in such a system, local
operators undergo a fast relaxation to a quasi-stationary state [51], which is called pre-thermalization.
Observables eventually thermalize, but this happens as a slow drift from the pre-thermalization plateaux
and the typical time scale of the transition behaves as 1/A? for small ), if A denotes the coupling constant
of the non-integrable part of the Hamiltonian [52,53]. This plateaux is influenced by the integrable part of
the Hamiltonian which includes integrability breaking terms as well and can be very robust against varying
the magnitude of integrability breaking [52]. Such plateaux was also observed in a strongly non-integrable
model with long range order in the initial state [54].

Whereas currently there is no complete description of this phenomenon, most models exhibiting these
behaviours eventually thermalize. There is however an important case of integrability breaking where this
scenario does not seem to apply. An example is provided by the longitudinal perturbation of the transverse
field quantum Ising model, where the longitudinal field results in the confinement of the domain wall
excitations, which are the quasi-particles in the ordered phase. In this non-integrable model, the confined
meson-like excitations cause an anomalous spreading in the correlations and prevent the system from
thermalizing up to very long times [16]. The field theory version of this model was studied in Ref. [55],
where ETH was found to be violated due to the persistent rare states made up by the mesons. There
are a series of interesting question related to this problem. Whereas the non-integrable continuum model
does not thermalize for various initial states, the observed lack of thermalization in the lattice model
can be actually a very long transient. The role of integrability is also unclear in this situation as similar
rare states were found in the 2D Ising model as well [55]. Confinement has an important role in high
energy physics and could have important implications for heavy ion collisions and the early Universe, if
confinement prevented thermalization.

2.2 Thermalization in integrable models

Integrable models together with the phenomenon of many-body localization (MBL) offer probably the
best known example where ETH is violated, though equilibration usually occurs at least in integrable
models as well. The violation of ETH is not surprising in view of the experimental results reporting the
lack of thermalization in integrable models [3-5, 15|, which, as a matter of fact, was already observed in
the seminal work of Fermi, Pasta, Ulam and Tsingou [56]. The anomalous behaviour of integrable systems
is related to the presence of infinitely many local conserved charges and can be easily understood. In
translational invariant situations. i.e. global quantum quenches, the expectation value of densities of the
charges equals the expectation value of the charge divided by the size of the system. If these charges are
conserved, however, their initial expectation value must equal the equilibrated one. Therefore the steady-
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state must retain much more information about the initial state to correctly describe the expectation
values of the charges as well. Thus models with infinitely many local conserved charges such as integrable
systems generally do not thermalize and do not satisfy the conventional ETH [1,2], in which the diagonal
matrix elements depend only on the energy. For brevity, we refuse to enter the discussion of MBL and
related concepts and thermalization is systems with MBL and recommend the review [57] instead for the
interested reader. It is important to note, that the construction of infinitely many conserved charges is
possible in systems with MBL as well (at least in principle), and the conserved charges are the projectors of
localized eigenstates of the model. MBL can hence be regarded as a localized integrability, which hinders
not only thermalization but equilibration as well.

Although integrable models do not thermalise in the usual sense, they do equilibrate and to explain
the stationary state of integrable quantum systems, the idea of the generalised Gibbs ensemble (GGE) was
proposed [19] using the maximum entropy principle [58] and later experimentally confirmed [6]. The GGE
invokes the inclusion of all local conserved charges and accordingly expectation values of local operators
in the stationary state can be calculated as

(O)gop = 27 Tr Oe™ 2@ (2.2.1)

where Z = Tre~22%i (Q; are the local conserved charges and 3; are Lagrange multiplies often called
generalized chemical potentials or inverse temperatures. The generalized chemical potentials are deter-
mined the expectation values of the corresponding charges in the initial state. It is now a widely accepted
scenario that isolated integrable systems equilibrate in the TDL to the steady state in the same sense
as non-integrable ones do, and the stationary state can be characterized by the GGE. While it is an
unconventional ensemble, the GGE can be argued to provide a statistical description, since in the TDL
the number of local conserved charges scale polynomially with the system size instead of the exponential
scaling which is the case for the diagonal ensemble.

This scaling, or more precisely, the actual set of conserved charges necessary to include in the GGE
turned out to be a rather non-trivial problem [59-66]. Whereas integrable models possess infinitely many
local conserved charges, the inclusion of the local ones proved to be insufficient for the GGE to offer
correct predictions in the XXZ model [59,60] and it is necessary to extend the set of charges with class of
quasi-local ones, which are charges corresponding to densities which, instead of compact supports decrease
sufficiently fast with distance [65,66]. The necessary inclusion of quasi-local charges is much less intuitive
than the role played by the local, or for a more precise terminology, ultra-local charges. In addition the
eventual construction of the GGE may requires a careful limiting procedure [67], nevertheless the statistical
description of the steady state is retained as the number of ultra-local and quasi-local conserved charges
scale still polynomially with the system size [62]. However, it is not clear at present what are the conditions
that identify the full set of quasi-local charges necessary to describe the equilibrium state, and how this
set depends on the specific models under consideration or on the initial state. For this very important
open question, the representative state approaches discussed later and a particle-based perspective [68|
may provide some hints.

In fact, the use of the generalized Gibbs ensemble for the steady-state can be circumvented as the GGE
is not the only statistical ensemble that can describe the steady-state of an integrable system. Similarly
to the case of non-integrable models, one can use a generalized micro-canonical ensemble and declare the
generalized ETH (GETH) to account for the generalized thermalization!, i.e. the approach to a steady
state that can be described by the generalized statistical ensembles. Expectation values in a generalized
micro-canonical ensemble can be defined as

(O)amer = ]\TGLCEZ(nIOIm , (2.2.2)

We stress, it is a generalized thermalization as in the steady state or in the GGE all the conserved charges appear,
whereas the unitary time evolution is governed by only the Hamiltonian.
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where the tilde over the sum means that it runs over eigenstates satisfying the conditions

[(n|Qiln) — (Yo|QilnTo)| < 4 (2.2.3)

for the relevant ultra- and quasi-local charges. In the same spirit, the GETH can be formulated by
postulating that the diagonal matrix elements of local observables are smooth functions not only of the
energy, but of the eigenvalues of the higher conserved charges as well. The GETH, formulated first in
Ref. [69] and verified in Ref. [65] hence ensures that the time averaged expectation values coincide with
those computed using the generalized micro-canonical ensemble if the initial state satisfies the cluster
property (2.1.8). It is perhaps surprising that the equivalence of the GMCE and GGE is not automatic
and the GGE itself is not always well-defined [65]. Whereas this problem was overcome in Ref. [67] by
taking an appropriate truncation of the set of charges and performing a limit on the truncation parameter,
the generalized micro-canonical ensemble often provides a more well-behaved description of the steady
state. This fact is also reflected in that the GGE itself is often understood as a GMCE. In the next section
we briefly discuss some ideas behind the construction of the GMCE or equivalent representative states in
integrable models. A great advantage of the representative state approaches is that in most cases they
can be constructed without knowing the necessary set of charges and their explicit expressions.

2.3 Overlaps, time evolution and representative state approaches in in-
tegrable models

Compared to the ensemble description there are alternative ways of computing the equilibrium expectation
values of observables. The idea of the representative state approaches is that equilibrium expectation values
can be computed by merely a single post-quench eigenstate from Eq. (2.2.2) as a consequence of the GETH
and the actual construction of the ensemble (2.2.2) is unnecessary. In most integrable models there exist
stable quasiparticles, which can be used to obtain all eigenstates of the Hamiltonian. A representative
state is a pure state, which can be characterized in integrable models by continuous densities instead of
giving the possible quantum numbers of the quasiparticles making up a state (such as the set of momenta).
In particular for the root density denoted by p()) the number of quasiparticles in the range [, 9 + AY] is
proportional to Lp(¢)Ad, if L is the system size and ¥ is a spectral parameter, which is usually the function
of the energy or the momentum. When there are additional quantum numbers in the system related to
discrete symmetries or more species of quasiparticles, then more than one densities are to be used, which
are labeled by the discrete quantum numbers. Strictly speaking these densities represent a density matrix
rather than a single state and always possess finite entropy density. However, any microscopic realization
of the occupied quantum numbers corresponds to the same macro-state and the same equilibrium averages,
since the root densities uniquely determine the expectation values of local observables in the TDL [70].

A representative state with density p(¢) offers a natural way to construct the GMCE as well after a
quantum quench by requiring that

(p|Qilp) = (¥o|Q:i[To) (2.3.1)

for all i(i.e. all ultra-local charges) where |p) denotes the representative state or more precisely, one of its
microscopic realizations. Besides free fermion systems, this approach was successfully applied to quenches
in the XXZ spin chain, where it was found that the quasi-local charges and their initial state expectation
values are indeed necessary for the unique determination of |p) [71]| contrary to the free fermion case, where
the expectation values of the ultra-local charges are sufficient. Note that in these constructions there is
no explicit entropy maximalization involved which suggests that the sufficient set of quasi-local charges
uniquely determines the root density without the need for explicit entropy maximalization.

As already discussed, the lack of the knowledge of the necessary class of charges prevents the use of
the charges to determine |p) in most cases. In contrast, the idea of the Quench Action (QA) approach
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relies on the knowledge of the overlaps instead of the charges in a quantum quench. In many cases we
have a better access to the overlaps than to the charges and their action. Starting from the overlaps of
the initial state has the additional advantage of being able to describe the time evolution as well. For
the case of integrable models, this approach leads to a number of exact results, although its drawback is
that the construction of the overlaps is a hard issue that has only been resolved for a restricted set of
initial states in a few interacting models. It is important to mention that recently the Quantum Transfer
Matrix Approach |[72] has been successfully applied for quantum quenches [73-76| and in particular this
approach can provide directly the root densities of the representative state for particular ’few-site’ initial
states. This approach bypasses the usage of overlaps, nevertheless its applicability is restricted to initial
states in lattice systems without a sensible analog in field theories. In integrable field theories, also the set
of charges necessary to describe the equilibrium state is essentially unknown apart from the case of free
field theories and there are also additional complications regarding the locality properties of the charges,
which are necessary for the GGE [77,78|. In this case the approach based on overlaps works much better
especially if a special factorized structure (to be discussed later) is assumed. In fact, the knowledge of the
overlaps [59-61,79-86] made it possible to calculate steady-state expectation values of one-point functions
and correlation functions in several examples [59-61, 85, 86| and in integrable field theories assuming
the factorized structure for the overlaps, steady-state expectation values of one-point functions can be
computed generally [70,87]. The expectation values in IQFTs with factorized overlaps can be written in
terms of an infinite series, but for certain operators simpler expression can be obtained in the sinh-Gordon
model [88] and in its non-relativistic limit, i.e. the Lieb-Liniger model [89]. In addition, the overlaps offer a
relatively direct access to the time evolution after a quench as well via (2.1.1). However, analytical results
have mainly been obtained in systems that can be mapped to free particles [86,87,90-102] and in conformal
field theory [27,28] and only in a few cases in interacting integrable systems |73,74,83,103-106| so far. In
the context of integrable quantum field theory, more general approaches to describe the evolutions were
used in [107-113], which are either perturbative [111,112] or based on form factors of the theory and the
overlaps of the quench [107-110] and there is also a semi-classical treatment [113] whose input is the again
the overlaps. Our aim here is rather to demonstrate the role of overlaps in the study of time-evolution as
well, and we return to a more detailed discussion of time evolution in Chapter 8.

The starting point of the QA approach is to write the time dependent expectation value of a local
operator as

1

(WolO(t)[Wo) = Tl Ty) 3 eseew eiler et (9| O(1)| @) (2.3.2)
D!

where ® and @’ labels the eigenstates of the Hamiltonian with energies we and wgs respectively and e is
the logarithmic overlap

co = — In(®| W) . (2.3.3)

The main idea is to switch from a summation on eigenstates to a functional integral over the root densities
in the TDL yielding

1 752,78;; i(we—wp)t
() = gy [ Pile > [ setasialo@ln) + @ o p . (284

where S[p] is the Yang-Yang entropy, which is equal to the logarithm of the number of micro-states
corresponding to a given macro-state. If O is a local operator, the matrix element (®|O(t)|®’) is non zero
if ® and @' corresponds to the same macro-state in the TDL up to microscopic differences or in other words
a finite number of excitations. Another key assumption is that the functional integral on root densities is
dominated by a single saddle-point root density pg,. This saddle-point density can be determined by an
effective free energy functional
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(Vol) = [ Dlpleecr) 50 (2.3.5)
which ensures the normalization of (O(t)) by the condition
‘”;[)p] ~0. (2.3.6)
where
Flp] = 2Re (e,) — S|p] . (2.3.7)

It is important to mention that in order to shift the saddle point (2.3.5) by the operator insertion (2.3.4),
the operator O needs to have matrix elements exponentially large in the system size. As the matrix
elements of local operators are usually O(1), the insertion of a local operator does not shift the saddle
point of (2.3.5)%. To calculate the saddle-point density ps, by Eq. (2.3.6), the necessary ingredient is the
knowledge of the overlaps, or more precisely, the extensive part of the logarithm of the overlaps. Once the
overlaps are known, the construction of the root density is relatively straightforward. The calculation of
steady-state expectation values of local operators, i.e.

(PsplOlpsp) (2.3.8)

has been carried out in the XXZ [59,60], and in the Lieb-Liniger model for particular quench protocols [85].
As already mentioned these expectation value of local operators in interacting integrable field theories
after particular quenches can be expressed in terms of an infinite series [70,87], with the exception of some
operators in the sinh-Gordon model [88] and the Lieb-Liniger model [89], where they can be calculated by
integral equations.

An advantage of the QA framework is that it shall, in principle, be able to describe the late time
evolution after a quench, which is determined by the excitations atop the representative state |psp). The
the time dependence of a one-point function for late times is given formally as [83,114,115]

1 & it o] G . .
<O(t)> — 5 E /d[h,p]m [6 £ [pSpy{h'L:p’L}]e 3s[psp.{hi:pi}] <psp|0|p8p, {hl)pl}> + mlI‘I‘.] y (239)
m=0

where h and p denotes quasi-particle and hole excitation on top of the reference state, with energy
w[psps {hi,pi}] and a differential overlap coefficient ds|pgp, {hi,p;}]. For the infinite time limit, this ex-
pression is dominated by the minimum number of particles and holes the operator has non-vanishing
matrix elements with.

This interpretation of the late time dependence by (2.3.9) in terms of quasi-particles and quasi-
holes is very suggestive, nevertheless, for concrete predictions matrix elements such as (psp|O|psp) and
(psp|Olpsp, {hi, pi}) are inevitable. Unfortunately, there is currently no general recipe even for the cal-
culation of (psp|O|psp) and the field theory results [70,87] admit only an infinite series representation in
general. Matrix elements of highly excited states such as representative states are an extremely challeng-
ing problem |70, 87,116-120| with some effort being made [119-121] recently, which may spur activity
in this direction. Whereas currently it is not known how to construct matrix elements of highly excited
states practically (with some important exceptions already discussed [88,89] and some cases in the XXZ
chain [119]), the role of the overlaps is of great importance within the QA approach and, as demonstrated
later in this thesis, the direct way to obtain the time evolution via (2.1.1) and hence by the overlaps can
be, though rather technical, but relatively straightforward in many cases. Therefore the main focus of this

2This is not true for the Rényi entropies of the diagonal ensemble.
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thesis is on the determination of overlaps and the time-evolution after quantum quenches. Before present-
ing our own results it is important to make a few comments on the quench paradigm in field theories and
to motivate our preference for continuum models for the rest of the thesis.

2.4 Quenches in field theories

Quantum field theories (QFTS) are known to provide a universal description of quantum systems near
quantum critical points and so offer an ideal starting point to identify and describe universal features of
out-of-equilibrium physics in the vicinity of the critical point. Furthermore, non-equilibrium physics in
quantum field theories is directly relevant to certain experiments as well, e.g. the emergent description
provided by the quantum sine-Gordon model in trapped Bose gases [12,13]. It is also interesting also in
its own right especially in the context of high energy physics and cosmology.

Many 1+1 dimensional quantum field theories are integrable, and a paradigmatic example is given by
the already mentioned sine-Gordon theory. In most explicitly known integrable quantum field theories
(IQFTs), the S-matrices of the model and form factors i.e. matrix elements of (local) operators are known
and in the next chapter we provide the details necessary for the present work. Therefore in these models
it is natural to rely on Eq. (2.1.1) for the study of both the time evolution and the steady-state resulting
after quantum quenches. In addition, there are powerful numerical methods available for 141 dimensional
quantum field theories, which are independent of integrability and so apply to non-integrable models as
well. In particular, truncated Hamiltonian methods can be extended to describe the non-equilibrium
physics as well, giving access to the overlaps and time evolution. As discussed in Section 2.3, steady-state
expectation values can be computed in terms of an infinite series involving form factors and the overlaps;
however there are no analogous and general result for the time dependence. Our aim in this thesis is to
fill in this gap by studying time evolution in IQFTs including the construction of the overlaps, which are
input for both the steady-state and time-dependent quantities.

Out-of-equilibrium physics and the applicability or the emergence of a statistical description in a QFT
is even less trivial than for the case of countably infinite degrees of freedom and additional questions
and unexpected behavoiur may be encountered. We already discussed the case of confinement and the
absence of thermalisation in confining and non-integrable QFTs. Moreover, the question of what class of
operators can relax in a relativistic QFT is more subtle than in the case of spin chains or atomic gases. In
relativistic QFTs, local operators and the locality principle play a central role, the structure of a Hilbert
space in a QFT is essentially different from what we discussed in Section 2.1 due to the lack of elementary
components. It is currently not known which operators in a QFT can equilibrate, but is generally believed
that local operators do relax. Another fundamental question concerns the applicability of the quench
paradigm in a QFT. In most cases QFT provides a universal effective description of a physical system,
which is only valid at long distances and hence involves a certain (short distance or equivalently high-
energy) cut-off. After a quantum quench an infinite amount of energy is injected to the system and it is
a priori not obvious whether it is possible to obtain a universal i.e. cut-off independent description of the
post-quench dynamics. In this work we demonstrate that the quench overlaps generically decrease with
the energy of the eigenstate, and consequently the effects of the cut-off can be neglected if the quench is
not too large.

The structure of the thesis is the following. In Chapter 3 we review the scattering theory of massive
IQFTs and introduce their S-matrices and form factors and their finite volume regularization. Chapter
4 is devoted to the study of integrable quenches, in which the expansion of initial state in the post-
quench basis possesses a factorized structure. Due to their resemblance to the Ghoshal-Zamolodchikov
boundary states [122] corresponding to integrable boundary conditions, we provide a brief introduction to
integrable boundary states followed by a detailed discussion of integrable quenches and the finite volume
regularization of such initial states. In Chapter 5, the regularity properties of the overlaps are analyzed and
it is demonstrated that they possess poles if zero-momentum particles are present in the initial state. For
particular quench protocols, the overlaps are analytically calculated in the sinh-Gordon model in Chapter
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6 and by the truncated conformal space approach in the sine-Gordon theory in Chapter 7. The two results
are compared using a well-known correspondence between the two models by an analytic continuation
of the coupling constant. Finally, in Chapter 8, the time evolution of one-point functions is studied and
calculated up to a certain order in the number of particles in the post-quench expansion of the initial state.
We present our conclusions and outlook in Chapter 9. Tedious calculations or more technical details of
some calculations as well as numerical checks and tables can be found in the appendices after the main
part.



Chapter 3

Some elements of Integrable Quantum
Field Theory

Integrable quantum quantum field theories are most conveniently formulated in terms of their scattering
theory, which we review in this chapter in order to introduce the formalism for use in the rest of thesis. For
the specific examples of the sinh- and sine-Gordon theories, the Lagrangian definitions together with some
relevant S-matrices and form factors can be found in Section 3.4, where the formulation of the sine-Gordon
model as a perturbed conformal field theory is also discussed. We also introduce the important example
of Ising field theory, which describes the continuum limit of the quantum Ising spin chain.

3.1 Asymptotic states, factorized scattering and the Zamolodchikov-
Faddeev algebra

In massive, relativistic quantum field theories one can consider initial and final scattering states corre-
sponding to free particles if they are well-separated from each other. Therefore, the initial and final states
can be described as multi-particle states labeled by the momenta and quantum numbers of the particles.
In the usual terminology, the initial states are made up by incoming, and the final states by outgoing
particles reflected by the in/out subscripts in the notation as

|p1ap27 -Pny {il, i27 (X3} Zn}>7,n

|Q1a q2, ---Qm, {jlajZa -~-ajm}>out.

In view of the asymptotic completeness, both the in and out states form a complete basis, hence the
scattering matrix (S-matrix) connecting the initial and final states written in terms of the in and out
states as

out (final|initial) s, = S¢;

is a unitary operator. The dependence of the matrix elements of S on the momenta and quantum numbers
are constrained by symmetry. Clearly, a scattering process must fulfill the conservation of energy and
momenta and the scattering amplitude can depend only on Lorentz invariant combinations of the four-
momenta of the particles. The general structure of the S-matrix respecting the constraints of a relativistic
quantum field theory was analyzed in the 70’s under the program called analytic S-matrix theory [123].
Instead of going into details, we only discuss the case of 1+ 1D integrable quantum field theories, where the
analytic structure of the S-matrix greatly simplifies. In such theories, due to the presence of the infinitely
many local conserved charges, the following additional restrictions emerge for the scattering:

17
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e the scattering is purely elastic, i.e., the number of incoming and outgoing particles is the same;
e any scattering factorizes to the consecutive scattering of two particles.

Therefore to describe scattering in integrable QFTs, the only necessary object is the two-particle S-matrix
ngl, where Latin indices refer to particle species. We parametrize the particles in terms of the rapidity

variables as

(EayPa) = Mg (cosh ¥, sinh )

and exploit Lorentz invariance which implies that the amplitude Sg‘bl only depends on the difference of the
rapidities. As an important consequence of the factorization property, the two particle S-matrix satisfies
the Yang-Baxter equation [124-126]

512 (1919),88155 (1913) 80263 (1953) = S8 (1)13) 52102 (1919) 525 (9,3, (3.1.1)

aijaz cic3 coas ajas cica ascs

where ¥;; = ¥; —9;. For particles with non-degenerate mass spectrum or more generally, with a difference
in the eigenvalues of some of the conserved charges, the two particle S-matrix simplifies as

Sz?lf@?) = Sab(ﬁ)(sacébd

in which case the scattering is called diagonal and the Yang-Baxter equation is trivially satisfied.

To keep our exposition simple, in the following we restrict ourselves to the case of diagonal scattering.
The analytic properties of the two-particle S matrix involve unitarity and crossing symmetry which have
the form

Sap(0)Sgp(0) = 1

Sap(im — ) = S, ;(9) (3.1.2)

corresponding to the unitarity and crossing symmetry, where b denotes the anti-particle of b. It is gen-
erally true in QFT with time reversal symmetry [127]| that the S-matrix is real analytic in terms of the
Mandelstam variable s = (p, + pb)2 . As a consequence one can write

Sab(V) = Sq (_79*) = Sap(=7), (3.1.3)
and the unitarity condition can also be written as

S (9) Sap(—0) = 1. (3.1.4)

The relations (3.1.2), (3.1.3) and (3.1.4) impose strong restrictions on the functional form of S,; whose
most general expression reads

Sa(@) = ] sal9) (3.1.5)

a€lqp

with

sa() = sinh () + isin (7a)
“ sinh () — i sin (1)

and a finite set of parameters Kyp. The S-matrix (3.1.5) possesses a series of poles and zeros on the
complex plane specified by «. The simple poles are associated with particles ¢ and b forming a bound
state. The S-matrix bootstrap approach consists of finding solutions for the S-matrices in which the pole
structure is consistent with a theory with a set of particles. In many integrable models consistent solutions

(3.1.6)
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for the S-matrices can be obtained by the bootstrap, which results in exact expressions for the scattering
amplitudes within a finite set of particles.

Given the S-matrix, is is convenient to introduce particle creation and annihilation operators satisfying
the Zamolodchikov-Faddeev algebra [128-130]

ZV0)Z1(02) = S —92)Z1(92)Z1 (1)
Z(0)Z(02) = S —12)Z(92)Z(V1),
Z(01)Z1(99) = Sy —091)Z1(02)Z(91) 4 275(1 — 02)1 , (3.1.7)

where the operator ZT(99) creates a particle excitation with rapidity 9. With these operators, asymptotic
states can be obtained by their repeated action on the vacuum |0). In particular, the in- and out-states
can be obtained as

101,02, cos OnYin = ZT(91) ZT(02)...27(9,)]0), 91 > 2> ... >0,
(3.1.8)
0y Onet1, DD owt = ZT(90) ZT(9p_1).. ZT(0)|0), 01 > 09 > ... >V,

where the particular ordering in the rapidities ensures
Sti = out (0], 9591, 02)in = S(9 — 92)2m0 (1 — 97)27w6(I2 — %)

for ¢ > 99 and 19/1 > 19’2

3.2 Form factors bootstrap

For the sake of brevity, in the following we focus on theories without bound states and with a single
particle species only. Form factors are matrix elements of local operators between asymptotic states. In
particular, we define the n-particle elementary form factor of some local operator O as

EO(91,03,..9,) = (0|O(0)]91, 9, ...0,) . (3.2.1)

By means of the elementary form factors, generic matrix elements
EQ (91,0, .0, |91, 92, ..05) = (9], 9%, .0, |O0) |1, 92, ..0n) . (3.2.2)
can be reconstructed by repeated use of the crossing relations [131]

Fg?m( 1o 101, . 0) :Ff_l,mﬂ( L |0 i, e, 0,)

n k—1
+> 2w, — k) [] S — 9) x (3.2.3)
k=1 =1

Fr?—l,m—l( /17 ""l%n—l”lgb 3] ﬁk—la ﬁk-i-l? 7-9”)

The analytic properties of elementary form factors, which are called form factor equations are the conse-
quences of the factorized and elastic scattering of the integrable theory, the locality and unitarity principles
and Lorentz symmetry of relativistic quantum field theory and are summarized as follows [131]:

1. Exchange
FO (91, .., 00, Opg1s . 0n) = S(0% — 041 ) EC (01, ooy Opg1, Oy - 0) (3.2.4)
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2. Cyclic permutation

EO (91 + 2mi, 09, ..0,) = 2™V FO (9, .0, V1) (3.2.5)

3. Kinematical singularity

—iResF, O (0 +im, 0,91, 0a, .. 0) = (1 —eQWHS(ﬁ—m)> FO(91,0,..9,) (3.2.6)

=1

The €2™ factor in (3.2.5) and (3.2.6) is called the semi-local or mutual locality index of the operator
O with respect to the interpolating field ¢, i.e. the field with non-zero matrix element between the
vacuum and a one-particle state as

—izmsinh 9 Z;/Z
(0l610) = e e
The locality index is defined via the condition
Oz, )p(y, t') = €™ ¢(y,t') O, 1) (3.2.7)

for space-like separated space-time points. Local operators correspond to e?™ = 1, while fields with
e?™7 £ 1 are called semi-local.

4. Lorentz symmetry
FOW1 4+ A 9s+ A, .0, + A) = X EO (091,09, ...0,) (3.2.8)

where s is the Lorentz spin of the operator.

5. Cluster property

1

FP (01, 0n) F (B1, - fBm) s (3.2.9)

which is satisfied if the field O corresponds to a relevant scaling field in the ultra-violet (UV) limiting
conformal field theory [132] describing the high-energy behaviour of the IQFT.

The properties Eqgs. (3.2.4)-(3.2.9) allow the exact construction of form factors of various operators in
many integrable models. This is called the form factor bootstrap program [133-136] and involves the
assumption of maximal analyticity, which means that the form factors as functions of complex variables
cannot possess additional poles or branch cuts than those required and dictated by the equations above,
In the bootstrap approach it is customary to consider the following Ansatz for the form factors involving
n particles

Q (xl,...,
EO (91,...,9,) = (0100)|01,...,0,) = Nn min (Vi — 0 3.2.10
G ) = {01 O(0)|%h ) AT Ef ), )

where z; = ¢”i and N,, is a normalisation. The minimal form factors fmin satisfying

fmin(_ﬂ) = S(ﬁ)fmzn('ﬁ) and fmin(iﬂ' - 19) = fmzn('”r + 19)

ensure (3.2.4). The dependence of the rest only on z; guarantees (3.2.5), the product in the denominators
ensures the presence of poles prescribed by (3.2.6), and the dependence of the particular operator is encoded
in Q9, which is a symmetric polynomial of the variables and apart from an overall factor (][] xi)mm(%l*ﬂ
which is present when the locality index gamma is nontrivial. The minimal form factor can be expressed
as
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Smin (9 )—eXp< 4/_0o dt 5(7) exp [MD , (3.2.11)

t sinht i

where B(t) is defined by

S(9) = exp (2 /_OO Y Bt exp [fi]) . (3.2.12)

By means of the form factors, observable operators can be written as an expansion [137] in terms of
the Zamolodchikov-Faddeev operators (3.1.7)

=3 m.n./n

mn—

/Hd"JfO (Orses Dl 0) 20 01) < ZY0,) Z (1) ... Z ()

(3.2.13)
where the functions f can be expressed in terms of the elementary form factors

£ @1, O, i) = F (O + im +40,. .., 91 +im + 30,7, — 0,...,m —i0).  (3.2.14)
It is easy to verify that (3.2.13) reproduces correctly the form factors of the local field O

m+n(19 +im4+10,...,9 +im + 40,1, —i0,...,m —i0) = (I, +10,...,%1 +i0|O|n, —i0,...,m — i0)
£ a1, O, ) (3.2.15)
where the opposite imaginary shifts of left and right rapidities serve to regularize the terms that are

disconnected from the operator O.
From (3.2.4) the functions fgn satisfy the permutation relations

fo a9 = SWi1 — ) fan (o Vi1, ] ),
n(z,n("""'anivni+1°") == S(?]H_l—’I’]i)fgm(...|...,77i+1,77i...). (3216)

3.3 IQFT in finite volume, Bethe states and finite volume FF

It is often useful to restrict IQFTs to a finite segment of space hence in this section we discuss some features
of IQFTs in a finite volume L and introduce our notations used throughout this thesis. For simplicity we
restrict our attention again to the case of a theory with one particle species without a bound state.

In finite volume it is possible to construct eigenstates of the finite volume Hamiltonian analogous
to the scattering states in the infinity volume theory [138,139]. Imposing periodic boundary conditions
(PBC) the excited states of a massive integrable quantum field theory in a large, but finite volume can be
described as scattering states consisting of n particles with rapidities 9,,, where these rapidities are now
given by the solution of the Bethe—Yang equations

Qk_mLs1nh19k+Zd19k—z9)_27rIk, k=1,....n. (3.3.1)
i#k

In contrast to the Bethe Ansatz solution on spin chains [140], this scattering state is just an approximate
solution of the model neglecting finite site effects that decay exponentially in the volume [138].

Using the fact that the effective statistics is fermionic, i.e. S(0) = —1 in all known interacting theories
with one species the two-particle phase shift function §(¥#) is defined as

S(0) = —e™) | §(—9) = —6(9) , (3.3.2)
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and the following prescription is obtained for the quantum numbers of the particles:

1
I € Z for odd n IkEZ—i-E for even n .
The state corresponding to quantum numbers {I,...,I,} is denoted as
... L)L,

and it is independent (up to a possible phase ambiguity) of the ordering of the I. They are normalised
so that their scalar products are

c{L . LY. L )= 5nm5]171{ 0

nstn

with the quantum numbers ordered by convention as I} < --- < I, and I{ < --- < I/ . The total energy
and momentum can be expressed as

n n
E= choshz?i—FO(e_“L) : P = ZmSinhﬁi +O(e M)
i=1 i=1
up to exponential corrections governed by some mass scale y. The systematic treatment of exponential
corrections to excitation energies can be found in [138,141-143].
It is useful to introduce the rapidity space density of n-particle states, which is given by the Jacobian

_ 9Q

09,
In finite volume one can consider finite volume form factors, which are now matrix elements of local
operators with the Bethe states

pn(’ﬁl’ s 71971) = det Jy , Tk (333)

{1 O ... I})L.

When the sets of rapidities in the bra and ket states are disjoint, the finite and infinite volume form factors
can be related [144] as

FE, (9 + im0y, im, 91,01
N T /AT I

For the case of coinciding rapidities this relation must be modified to account for disconnected contributions
[144], but we do not need the corresponding expressions in this work. Note that the equality (3.3.4) is valid
up to a suitably chosen phase factor which can be changed by redefining the phases of the finite volume
eigenstates |{I1,...,I})r. This accounts for the fact that the ordering of the particles is not determined
by first principles and any exchange leads to an S-matrix factor according to (3.2.4). It is clear that all
such ambiguities cancel in expectation values of physical observables and correlation functions; however,
for a practical calculation one must fix the phases of the multi-particle contributions to the matrix elements
consistently.

c{IL- - LHORI . I} = +0(e7HE) (3.3.4)

3.4 The sinh- and sine-Gordon models and the Ising field theory

3.4.1 The sinh-Gordon model
The sinh-Gordon model is defined by the Hamiltonian

2
[p(t, ), 7(t, y)] = i0(x — y)

2
H = /dm [17r2 + %(8x¢)2 + % :coshgo | (3.4.1)
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where myg is the classical particle mass and g is the coupling constant. The model is one of the simplest
examples of an IQFT, which is invariant under the Zs symmetry ¢ — —¢ and its spectrum consists of
multi-particle states of a single massive bosonic particle with exact mass m. The two-particle S-matrix
is [145]

sinh(¢9) — (w —w™')/2  tanh (0 —iTE)

S(9) = — = 3.4.2
(¥9) sinh(Y) + (w —w™)/2  tanh (9 +iZ2)’ ( )

where ¥ = 91 — 9 is the relative rapidity of the particles and we introduced the notation
w= ei%, (3.4.3)

where B is related to the coupling g in (3.4.1) by
292

_ 3.4.4
81 + g2 ( )

For the sinh-Gordon form factors, solutions of the system (3.2.4)-(3.2.9) were first constructed in Ref. [146].
In Ref. [147], form factors of the exponential operators

s 9% (3.4.5)

with locality index v = 0 were obtained, where k € R . The form factors of exponential operators take
the following form [147]

4sin 2B /2 Qr (z
Frf(ﬁla'-wﬁn):(m: w99 . |7917“-719n>:GZhG< 2) Lo ® Hfmm i '))
N Hz<] Ti+ m] i<j
(3.4.6)
where x; = ¢”i. The minimal form factor fmin for the sinh-Gordon model reads
00 : Bt .; B\ .: .
fmm (9, B) = exp 8/ ﬁsmh Tt smh% (i _ 5) smh% sin? [t(m — 19)] ,
o t sinh” ¢ 2m

which is a complex valued meromorphic function without singularities for real rapidities. This function
tends to unity for large rapidities, i.e., 191113151 Jfmin(¥) = 1, so long as the normalisation is chosen to be
—4oco

00 : Bt ; t B\ ; t
N = fin (iT, B) = exp [—4/ gsmhf smh? (1 — 7) sinh 2] . (3.4.8)
o 1 sinh”* ¢

The functions @, appearing in (3.4.6) are entire functions and completely symmetric in the variables
x;; for an operator with a power-like short distance singularity they can only grow exponentially for large
values of the rapidities and are therefore restricted to be polynomials [136]. These functions are called
form factor polynomials; their growth at infinity is related to the ultraviolet scaling dimension of the
operator, and solutions with the lowest possible growth at infinity, called minimal solutions, correspond
to operators with the lowest possible conformal dimensions.

For the exponential operators discussed here, the form factor polynomials can be written as
QZ = det Mij(/{) (3.4.9)

where M is an (n — 1) x (n — 1) matrix with elements

Mij(k) =[5 +i— jlog ;. (3.4.10)
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where 5
_ sinn”P
2
n| = ——:# 3.4.11
[ sin 78 ( )
and Ugn) denotes the ith symmetric polynomial of n variables 1, ..., x, defined by the generating function

n
Hm—i—xz g z"F ( xl,...,xn).
i=1

The exponential operators are spinless (3.2.8), hence the total degree of the polynomials (3.4.9) must
be the same as that of the denominator in (3.4.6); since the total degree of Q} is n(n —1)/2 this is indeed
satisfied. The partial degree of the polynomials is at most n — 1, which ensures that elim Er(01,...,0,)

—00

is bounded by a constant.
Finally, GihG are the exact vacuum expectation values of these operators whose exact expressions were
found in [148]:
GG = (0] : €99 - |0). (3.4.12)

For later use we note that the form factors of the elementary field ¢ in the sinh-Gordon model are

proportional to
dF}
dk |f€ 05

in which the polynomial part reads QY = det M;;(0). These form factors are only non-zero when n is odd
in accordance with the symmetry ¢ — —¢, and satisfy the cluster property as well with the modification
that the r.h.s in (3.2.9) is divided by Ffb instead of (0]|¢|0), which is zero.

3.4.2 The sine-Gordon model

The sine-Gordon theory is defined by the Hamiltonian

H = /dx |:;7T2 + %(8;2@2 - gz ccos B¢ (3.4.13)

[¢(t7 l’), ﬂ-(tv y)] = 25(27 - y)
To describe the interaction strength it is useful to introduce the quantity

ﬂQ
=—. 3.4.14
The fundamental excitations are a doublet of soliton/anti-soliton of mass M, but in the attractive regime
of the model, where £ < 1 the spectrum also contains breathers B, (soliton-anti-soliton bound states)

with masses
ré

My = 2M51n7

with 7 a positive integer less than €~!. The sine-Gordon theory is integrable, and its exact factorised
S matrix is known [126]. The scattering amongst the breathers and between breathers and solitons is
diagonal, whereas for soliton--anti-soliton scattering, the S-matrix has a real matrix structure in space of
the soliton—anti-soliton doublet.

In this work we mainly focus on states made up exclusively by first breather excitations. Under the
analytic continuation to imaginary couplings ¢ — i3, the sinh-Gordon particle corresponds to the first
breather Bj, which can be supported both by perturbation theory and the correspondence between the
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respective S matrix amplitudes. As a result, the S-matrix for B; can be rewritten with that of the
sinh-Gordon model (3.4.2) as

SBB, (9,€) = Ssnc (9, B) |B=—2¢ (3.4.15)

and form factors of local operators containing only the first breather By are also identical to the corres-
ponding sinh-Gordon quantities under the same analytic continuation, which are all known in the model.
In particular for the vertex operators in the sine-Gordon theory

Vo =: 59 . (3.4.16)

its form factors involving first breathers can be obtained from the sinh-Gordon form factors for the expo-
nential fields, i.e.,

a i S IR} n ha f
Fn,Bl (1917 cee 71971) = <0‘ ‘e po : ‘1917 o 7197Z>B1 = GaG[ak (Z)‘(f)) Qn (xlu ce, X H g.fC—FJZ‘)’
1<J ¢ J
(3.4.17)

where
[n]e = [n] |B=—2¢,

Qg (xla “ee axn)g = Qz (xlv' . ~a-73n) |B:—2§ .

(See (3.4.9), (3.4.10) and (3.4.11) for definition). The quantities entering Eq. (3.4.17) are defined as
follows:

. ”5 dt t
AE) =2 cos > 25in == exp ——, (3.4.18)
0 27 sint

and

fe(@) = v(in+9, —v(in+ 0, —§)v(in +9, 1+ ) v(—imr — 9, —1)v(—imr — 9, =&)v(—ir — 9, 1+§), (3.4.19)

with

N 9+ im(2k + o)\ "
v(,0) :H (19+z7r(2k - 0)>

k=1 (3.4.20)
dt o) ity sinh (ot
exp / — (= ,G T — i T+ (N+ 1- Ne_2t) 6_2Nt+t7078m' (JQ ) .
o t 4sinh 5 2mcosh 5 2sinh”t
For the vacuum expectation value G, we have [149]
o?8%
MyAT (525)] ©
w—p3
G3¢ = o X
<87r 62> (3.4.21)
> dt sinh® (-t 232
exp / - 5 (4 ) _ a 5 e—Qt
o ! |2sinh (%t) cosh (( ﬂ—) t) sinht 47



26

Similarly to the sinh-Gordon case, the B; form factors of the field ¢ can be obtained by differentiating
the form factors for the vertex operators with respect to a.

For the sine-Gordon theory another useful approach is provided by considering it as a perturbed
conformal field theory (PCFT) as well, which is a paradigmatic approach to a massive quantum field
theory regarding it as a perturbation of an ultra-violet (UV) conformal field theory (CEFT) [150] with
appropriate relevant operators. In this terminology perturbation is understood as a deformation of the
conformal field theory and does not signify a commitment to smallness of any parameter. In models with
one space dimension, there exist powerful non-perturbative methods which allow to treat these models for
strong couplings as well.

For the sine-Gordon model the corresponding description treats (3.4.13) as a compactified massless
bosonic conformal field theory in finite volume L, perturbed by the operator [dz : cosf¢ :, which is
relevant if 2 < 8r. B2 = 87 is known as the Kosterlitz-Thouless point, above which the perturbation
is irrelevant. The compactification of the bosonic field ¢ means that it takes values on a circle with the
identification ¢ = ¢+m%’r, and space-time has a cylindrical geometry due to periodic boundary conditions
(PBC) o = = + L. Then the perturbed conformal Hamiltonian Hpcpr reads

L1 At . .
HPCFT:/ do 5 (919)” + (9:9)" —2/ da (Vlyl+Vf{l> , (3.4.22)
0 0

where the semicolon denotes normal ordering with respect to the massless scalar field modes. The upper
index “cyl” of the normal ordering indicates that these vertex operators have a canonical CF'T normalisation
specified as

On,—m
OV (wr, 1) Vi (wa, 02)|0) ~ ——=" (3.4.23)
(w1 — wy)

with w = 7 — iz,w = 7 + iz complex coordinates on the resulting Euclidean space-time cylinder. As a
result, the coupling A has a nontrivial dimension related to the scaling exponent A. Integrability allows
to determine the exact relation between the coupling and the mass scale of excitations [151]:

2—2A

ora) (VAL () M win Al

= = , (3.4.24)
(1 —A A 8T
A=80\ or (555)
where M is the mass of the soliton (note that the soliton mass M is not the gap, at least not for all
values of ). Relation (3.4.24) allows to express all physical quantities in units of appropriate powers of
the soliton mass M.
Mapping the cylinder to the complex plane using the exponential mapping

B 2m
2= expw
the exponential operator transforms as [150]
pl - 27 28 cyl _
V(2 2) | 7] T =V (w,w). (3.4.25)

%4 ! is a dimensionless operator and is often more convenient to use than the one defined on the cylinder.
For example, the Hamiltonian (3.4.22) can be expressed as

2

2A 2
Hpcorr = Lo+ Lo — 1) A 2 L[7de [Vpl (€%, e7%) + VL (%, %) (3.4.26)
L 12 L 2 Jo 2m L T 7 -1 ’



27

where the first part of the Hamiltonian (3.4.26) involves the generators Lo and L of the Virasoro algebra
and is just the free massless boson Hamiltonian in finite volume, which can be rewritten in terms of the
usual bosonic operators as

2 1
Hepr = f <7T8 + Za_kak + Za—kak — 12) , (3.4.27)
k>0 k>0

with

[0, m0] =1 lak, a;) = kdg4

3.4.28
ar, ar] = kg1, ( )

where ¢y and 7y are the zero mode of the canonical field and its conjugate momentum. The operators
ay and aj correspond to right and left oscillator modes creating/annihilating particles with momentum
indexed by the quantum numbers k& in units of 27 /L.

The Hilbert space H is composed of Fock modules F,,, built upon Fock vacua

In) = Va(z = 0)[0)
using the oscillator modes, and its basis is given as

2

Ay Qg Opy . Gopy ) : W CZ, 1, L CN ki, pj C TN’ (3.4.29)
which are eigenstates of Hopp with energy
l
o2 [ (nf)? < 1
E=— k; - . 3.4.30
L\ 4n +;Z+;p9 12 ( )

The ground state of the conformal field theory is the Fock vacuum with n =0, i.e. |0).

This formulation of the theory enables the use of the truncated conformal space approach (TCSA),
which is an efficient numerical method [18]. As discussed in Section 7.1 in more details, it is possible
to compute matrix elements of vertex operators and in particular the cosine operator in the conformal
basis. Truncating the basis of the free model, which is discrete due to the finite volume L, the diagonaliz-
ation of the Hamiltonian or calculating expectation values becomes possible via manipulations with finite
dimensional matrices.

3.4.3 The Ising field theory

Before the discussion of the Ising field theory, it is instructive to introduce briefly the lattice model and its
continuum limit resulting in the field theory. The transverse field quantum Ising model (TQIM) is defined
by the Hamiltonian

N
H=-7) (ofof, +hoi) | (3.4.31)
i=1
where of* denotes the Pauli matrices at site 7, J > 0, h is the transverse field and the boundary conditions
are assumed to be periodic. Applying the Jordan-Wigner transformation, the Hamiltonian (3.4.31) can
be mapped to spinless Majorana fermions with dispersion relation [152,153]

en(k) = 2Jv/1+ h? — 2hcos k (3.4.32)
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which has an energy gap A = 2J|1 — h|. The model possesses a quantum critical point at h = 1 separating
the disordered or paramagnetic phase (PM) for A > 1 and the ordered, ferromagnetic phase (FM) for
h < 1. In the disordered phase, the expectation value of the magnetisation operator vanishes, while in the
ferromagnetic phase its value is given by [153]

(07) = (1—h2)"* (3.4.33)
The Hilbert space of the model consists of two sectors with respect to fermion number parity. In the

Neveu—-Schwarz and Ramond sectors states with even and odd number of fermions are present, respectively,
resulting in the following quantisation conditions for the wave numbers

2 1
kn, :NW <n + 2) Neveu-Schwarz

) (3.4.34)
Pn :ﬁﬂn Ramond ,

where n is a positive integer. In particular, the Fock space of the model in the paramagnetic phase can
be written as

2m+1
1, s P2m1) = H af |0)E" piCR,
i=1
. (3.4.35)
k1, oo kion) = [ [ ol IORY ki C NS,
i=1

and the ground state is the Neveu-Schwarz vacuum \O>§J\S/[ . In the ferromagnetic phase, the zero momentum
excitation has negative energy, therefore the Ramond vacuum is redefined as |0)p — a3\0> r after which
i

a particle-hole transformation is implemented by exchanging a, with ag. The Fock space of the model in
the FM regime is therefore

2m
’pla"'7p2m> :HG/LZ’())gM Di CR7

=1

- (3.4.36)
|, oo ko) = [ [ af JORY ki € NS,

=1

where the ground state becomes degenerate in the thermodynamic limit and the finite volume states
corresponding to fixed orientations of the macroscopic magnetisation are %(]0)?‘5/1 + |0y M),

The scaling limit of the TQIM results in the Ising field theory. In the limiting procedure J is sent to
infinity together with h — 1 such that the gap associated with the fermion mass remains finite

M =2J|1—-h]|. (3.4.37)
In addition, the lattice spacing is sent to zero as

c
=, 3.4.38
a= g ( )
where c is the speed of light that can be set to 1 with an appropriate choice of units.. It is easy to see
that the dispersion relation (3.4.32) under scaling limit transforms as



29

ep(ka) = E(p) =/ M? 4+ p?. (3.4.39)

The Hamiltonian (3.4.31) scales to the Hamiltonian of a massive Majorana fermion field theory

1 i - - -
H=c- / da g ((2)0a9) (@) — $(@)0at(2)) — iMb(x)i(x) , (3.4.40)
with )
{w(xat)vw(yat)} - 27T(5($—y). (3441)
The lattice magnetisation operator o is related to the continuum field o with the conformal normalisation
via
o(na) = 5J507, (3.4.42)
with
5 =21 AL, (3.4.43)

where A=1.282427129... is Glaisher’s constant.
Since the Hamiltonian (3.4.40) of the Ising field theory is the Hamiltonian of a free Majorana fermion
field, the two-particle S-matrix describing the scattering of the free fermionic particles is simply

S=-1. (3.4.44)

However, the form factors of local operators are not necessarily trivial due to the Jordan-Wigner trans-
formation connecting the spin and fermion operators. In particular the form factors of the spin field
are

1 9 — 9.
FO(0y,..0,) = 5i 2 H tanh % , (3.4.45)
1<)
and F is only non-zero between Neveu-Schwatz and Ramond states. Of course, F'? satisfies (3.2.4)-(3.2.9)
with § = —1.



Chapter 4

Integrable quenches

The following four chapters of this thesis are devoted to the overlaps after quantum quenches in massive
IQFTs. As discussed in Chapter 2, knowledge of the overlaps allows (at least in principle) the construction
of a representative state for the steady-state and Eq. (2.1.1) allows a direct treatment of the time evolution
as well, since in integrable models both the spectrum and form factors are known. In this chapter the so-
called integrable quenches are discussed, which have a distinctive property that the initial state expanded
in the post-quench basis possesses a particular structure corresponding to a factorized structure of the
overlaps with the post-quench multi-particle basis. Integrable quenches play a central role in the study of
quantum quenches: all exactly solved quenches fall into this category.

Due to the close relation between integrable quenches in massive IQFTs and integrable boundaries,
we first review some basic aspects of integrable boundary field theories in Section 4.1. This is followed by
a discussion of the general definition of integrable quenches and their relation to the squeezed-coherent
structure of the initial state in Section 4.2. The discussion illuminates important properties of integrable
quenches and also help us find conditions when a given quench protocol can be considered or approximated
by an integrable quench. Finally the finite volume approach to integrable quenches is reviewed in Section
4.3.

4.1 Integrable boundary field theories

In Chapter 3 we briefly discussed some important features of integrable field theories. It is possible to
restrict these models to a half infinite segment of space z € (—o0,0] with some prescribed boundary
condition at z = 0 while preserving integrability at the same time. For integrable theories, i.e. models
that are integrable in the bulk, there exist special boundary conditions that preserve the integrability of
the model, i.e. the existence of infinitely many local conserved charges [122]. As an important consequence
one can retain the concept of factorized scattering for massive models. The new ingredient is that when
a particle with rapidity 9 hits the boundary it undergoes a perfect reflection with reflection amplitude
Rp(9). (For one type of particle species, we can neglect additional indices.) This can be written formally
as

[)p = Rp(¥)| —V)B, (4.1.1)

where |[9) = ZT(9)|0) g with |0)5 denoting the vacuum of the boundary theory. The definition of in and
out state is analogous to the bulk case with following ordering convention

Z1(910)Z1(92)...27(9,)0)g, U1 >V > ... > U, >0 (4.1.2)

for in states and
1 Z(=01)ZT(—92)... 2T (=9,)[0)g, Y1 >0 > .. >0, >0 (4.1.3)

30



31

for out states. The expansion of the in states in terms of the out states now involves not only the bulk
two-particle S-matrices but also the reflection amplitudes, e.g.

Z1(91)Z1(92)|0) g = S(01 — 92)R(91)S (V1 + 92) Rp(92) ZT(—01) ZT (—92)[0) 5, (4.1.4)

with 91 > 99 > 0.

Similarly to the S-matrix, the reflection amplitude must fulfill some constraints which can be viewed as
the boundary analogues of the properties of the bulk S-matrix. These include the boundary Yang-Baxter
relation [154], which is automatically satisfied for one species of particles similarly to its bulk counterpart,
the boundary unitarity condition [154]

Rp(9)Rp(-9) =1, (4.1.5)
and the boundary crossing property [122]
Kgp(9¥) = S(29)Kp(—9), (4.1.6)
where
Kp(9) = Ry (Z;T - 19> (4.1.7)

is called the boundary K-function. Given the bulk S-matrix of the theory, it is often possible to find
solutions for Rp satisfying (4.1.5) and (4.1.6). As a result of the boundary bootstrap program [122,155],
i.e. finding and classifying solution for the reflection amplitude, for many theories the integrable boundaries
are explicitly known, and they are often labeled by so-called boundary parameters which arise in addition
to the parameters of the bulk.

Extending the notion of crossing symmetry to the boundary situation results in the concept of the
boundary state, which also plays an important role in the study of quantum quenches. Applying a
Euclidean rotation the z-coordinate in the original theory becomes i7, where 7 is the Euclidean time
variable, and the t-coordinate becomes the space coordinate y of the Euclidean theory. After this procedure
the boundary in the Minkowski picture can be interpreted as an initial (or final) state in the Hilbert space
of the infinite volume Hamiltonian without a boundary, which is called a boundary state. For integrable
boundaries, the corresponding boundary state is called an integrable boundary state and can be written
as [122]

|B) = N exp <; ?;KB(ﬁ)ZT(—ﬁ)ZT(ﬁ)> 0), (4.1.8)

which has a peculiar structure composed of a coherent superposition of pairs of particles with opposite
momenta and where A is a normalisation constant. However these states are not normalisable in a strict
sense since K p does not decrease for large 9. In theories with diagonal scattering, Kp can be expressed
as a product of blocks

sinh (g + iwx)

sinh (g — m;) ’
whose ¥ — 4o0 limit is a pure phase. To provide a concrete example, in the sine-Gordon theory with a
Dirichlet boundary condition ¢ |,—o= 0, the corresponding boundary K-function reads

cosh (Q — @) sinh (g + 7i7r(g+2))

sinh (4 + ) cosh (g — @)

Kp(9) = i tanh(d/2) , (4.1.9)
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where B is related wit the coupling in the sinh-Gordon model in (3.4.4) and boundary state is denoted by
|D). It satisfies

¢(r=0,y)|D) =0, (4.1.10)

i.e. |D) is a state annihilated by the sinh-Gordon field ¢, which is consistent with its identification as the
boundary state corresponding to the Dirichlet boundary condition.

The form of the boundary state (4.1.8) is not the most general one, as it is possible to find integrable
boundary conditions, where the boundary state contains zero momentum particles as well:

|B) = N exp (gBZT(O) + % ;l:iKB(ﬁ)ZT(—ﬂ)ZT(ﬁ)> 0) . (4.1.11)

The one-particle coupling implies a pole for the reflection factor

. 2
t  9p

’[_9 ~N ——

Rp(v) 29 —imw/2’

which then yields a pole at the origin

igh

for the boundary K-function. Whereas it was argued that gg = gp in [122], it was later demonstrated
in [156,157] that the correct relation is gg = gp/2, with a general proof given in [158]. This behaviour
is of course compatible with (4.1.6) as in all interacting integrable models S(0) = —1, which results in a
Kp(9¥) ~ ¥ behaviour when there is no one-particle coupling. As discussed in Section 5 and in Chapter
8, the pole is also present in the two-particle overlaps for quenches with non-zero overlaps for a standing
particle and this structure has notable consequences for the the time evolution of one-point functions
followed by a quench.

4.2 Integrable quenches: definition, their structure and examples

As discussed in the introduction, describing quantitatively a system after a quantum quench is an extremely
difficult problem even for integrable systems. However there exist special quenches or equivalently, special
initial states in integrable models which are possible to treat analytically to a certain extent, and in
many cases exact expressions for the steady state or time-dependent quantities are available. These are
called integrable quenches and in the following we give their most general definition, discuss some of their
properties and establish connection with the integrable boundary states introduced in the previous section.
The definition for integrable quenches we present here can be formulated with the action of parity odd
operators of the local conserved charges on the initial state |2) as [75]

Q°|Q) = 0. (4.2.1)

In massive relativistic IQFT, the action of the conserved charges on the asymptotic state is the sum of
the one-particle contributions

QS[01, ... 0n) =D qs cosh (s9;) [01, ...0) (4.2.2)
=1
for even charges and
Q301 ... 0n) = _ qssinh (st;) [0, ...0n) (4.2.3)

i=1
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for odd charges, where s is the Lorentz-spin and ¢, is the one-particle eigenvalue of the charge and the
charges themselves can be written as

Qs = % qs cosh (s;) Z1(0)Z(9) (4.2.4)
and
dy . t
Q¢ = 5 05 sinh (sv;) Z1(9)Z(9) . (4.2.5)

As an immediate consequence of (4.2.1) and (4.2.3), quenches sharing the structure of the boundary states
(4.1.8) and (4.1.11) are integrable so if the initial state can be cast in the form

Q) = N exp (; Z:zK(ﬁ)ZT(—ﬁ)ZT(ﬁ)) 0) (4.2.6)
Q) = Nexp (ng(O) + % ;liK(@)ZT(—ﬁ)ZT(ﬁ)) |0) (4.2.7)

then the quench is integrable. In this case, the name integrable quench is also motivated by the fact that
the amplitudes of states with larger number of particles factorise into the product of two-particle states,
which is reminiscent of the factorisation of the many-body scattering matrix into two-particle scattering
amplitudes. Similarly to the boundary states, the K-function entering (4.2.6) and (4.2.7) satisfies the
boundary crossing relation (4.1.6) which in the quench context ensures that the initial state is insensitive to
a reordering of the creation operators. However the boundary unitarity condition (4.1.5) is usually violated
and the K functions decrease for large rapidities sufficiently fast so that the state remains normalisable.

It is worth discussing the conditions under which the squeezed coherent form (4.2.6) (or (4.2.7)) follows
from the property of integrability stated in (4.2.1) and to avoid confusions, integrable states with the
exponential structure will be referred to as (integrable) squeezed coherent states in the following. Instead
of giving a rigorous proof, our aim here is to shed more light on the properties of integrable quenches
and on how these properties are related to each other. The core of the argument we present here can be
found in Ref. [159] and an analogous and more complete version of the argument valid for spin chains was
presented in Ref. [75].

4.2.1 Connection between the integrability of the quench and the squeezed-coherent
initial state

The first step in the line of arguments is to show that if the initial state consists of pairs of particles with
opposite momenta then the initial state must be a squeezed coherent state. In order to show this, it is
assumed that the initial state satisfies the cluster property (2.1.8), which is generally true for ground or
thermal states of quantum systems with local interactions. To make some simplifications, consider first
the case of a single massive excitation and the absence of zero-momentum particles in |[¥) that contains
only excitations with zero total momentum and even number of particles. Without loss of generality we
can write such a state in the form of a cumulant expansion

— v T(49. v
W) = exp (T;/Km(ﬁl,m, o Om) z‘|:|1 ACHE-

where the amplitudes Ky, (91, ..., ¥, ) contain a §-factor 276(>; p(6;)) due to the conservation of total mo-
mentum and all odd amplitudes Ky, +1(01, ..., 02,41) are zero. In the context of global quantum quenches
when a finite energy density and therefore infinite energy is injected into the system, the charges Qs which
are spatial integrals of local operators are also extensive thermodynamic quantities.

> 0), (4.2.8)
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We show that the expectation values of the local charges @5 in the above state are extensive quantities
i.e. they increase linearly with the system size L only if the amplitudes K3, do not contain any other é-
function factor except of the one that accounts for the zero total momentum, §(>_, p(6;)). The expectation
values of Q¢ in the state |¥) are

(w]Qs|w) _

W = (V|Q%Y) conn (4.2.9)
and correspond to the sum of all possible ways to contract left and right excitations in the expansion of
(4.2.8) with the charge operator (4.2.4), which has two legs and with each other, in such a way that no

part is disconnected from the rest. Diagrammatically this is represented by fully connected graphs as in

Fig. 4.2.1.
0,
0)y= =@ + + + ...
Ky K

+‘1‘:.+g 4

Figure 4.2.1: Diagrammatic expansion of the expectation value of a local charge in the state |2). The
bra-excitations (red circles) and the ket-excitations (blue circles) must be contracted with each other and
with the charge operator (green square) in all possible fully connected ways. Contractions are denoted
by lines, each of which connects two circles of different colours. The green square can be inserted on any
of these lines. Small circles correspond to pair excitations and have two legs, larger circles correspond to
4-particle excitations and have four legs, and so on (the full equation contains red and blue circles with
any even number of legs).

In order to determine the scaling of thermodynamic quantities with L we should simply count the num-
ber of redundant J-function factors of momentum variables in the expectation values of the corresponding
operator since §(0) can be interpreted as the volume L. As mentioned above, the amplitudes Ky, con-
tain a factor 6(_, p(#;)) due to the translation invariance. Taking into account all of those d-function
factors involved in each connected graph and assuming that the KQ‘I;l do not contain any other J-function
factors, we can easily see that each graph has exactly one left over factor of 6(0), which is nothing but
a factor equal to the system size L. This means that the contribution of such graphs is linear in L i.e.
extensive. If however some Ky, contains two d-function singularities in the momentum variables, then
the corresponding graphs contain one extra §(0) ~ L factor i.e. scale more than linearly with L and are
not extensive. Supposing that the charges Qs are functionally independent and complete, extensivity of
the charges requires that contributions of all graphs are separately extensive, which is only true if there
is no amplitude KQ‘I;L with more than one §-function. The same condition ensures the extensivity of the
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generating function log Z = log(¥|V¥) (analogous to the free energy) from which other thermodynamic
quantities can be derived.

Note that the argument requires the functional completeness of the charges, which may require taking
into consideration quasi-local charges [65]. However, as long as these additional charges are extensive for
large system sizes, such as the case e.g. for the charges used in completing the GGE for the XXZ spin
chain [65], the argument is left unchanged.

Given the completeness of charges, the operator condition (4.2.1) is only satisfied if the state exclusively
consists of pairs of particles with opposite momenta. We have thus shown that if |Q) satisfies the cluster
decomposition principle and the conserved charges form a complete set, then from (4.2.1) it follows that
|©2) can be cast in the form (4.1.8).

The above argument assumed that there is only a single species of particles, but it can be easily
extended to the case of multiple species. If the eigenvalues of the charges are not degenerate with respect
to the particle species, which is the general situation, than the argument remains valid, and (4.2.1) together
with the completeness of the charges and the cluster decomposition principle imply

1 [dd
|2) = N exp <2 2FKA19)Z2(—19)Z§(19)> |0), (4.2.10)
where the subscript aindexes the particle species. In this case it may be necessary to consider further
global charges as exemplified by the soliton excitations in the sine-Gordon model. The solitons and anti-
solitions labeled by s and § have the same eigenvalues g5 but have a different topological charge. In such

a case, however, prescribing that

Qropl2) =0 (4.2.11)
forces the state to be composed of soliton—anti-soliton pairs and hence the initial state to be

) = Newp (5 [ 5o Kasl®)ZI(-0)2}()) 10, (12.12)
where a and b can be either s or § and K, vanishes for a = b.

It is important to note that the case of initial states with zero-momentum particles can also be treated.
When the initial state has contributions of odd-particle number states as well, then the annihilation of
the initial state by the parity odd charges again force |{2) to have either pairs of particles with opposite
momenta or the same pairs with one stationary particle. But then counting the redundant d-functions and
the requirement for extensivity imply that the |©2) must obey (4.2.7). However, there is a subtlety in this
case: as will be discussed in Subsection 5, the presence of zero-momentum particles implies the existence
of a pole in K at the origin, hence besides the d-functions, additional singularities can emerge.

Finally, it is worth mentioning that our statement presented here can be proven referring to the Quench
Action formalism too. The extensivity of the generating function log Z = log(¥|V¥) is only guaranteed if
the overlaps factorize once the their pair structure is assumed. As a consequence, the overlap term and
the entropy contribution in the functional F in Eq. (2.3.7) scale with same power of L and hence result in
sensible Quench Action equations only if the factorized structure holds. This is an important observation
since arguing with the scaling of log Z and eventually the solvability of the quench action is likely to have
a non-field theory specific form valid for lattice systems too, which would be interesting to work out.

In summary Eq. (4.2.1) with the functional completeness of the conserved charges imply that integrable
initial states can be written in the form (4.2.6) or (4.2.7) in massive IQFTs. In massless theories this
statement is not necessarily true and a counter-example is provided the XX spin chain, which corresponds
to a Luttinger-liquid in the continuum limit, i.e. a massless bosonic CFT. In this case (4.2.1) does not
guarantees the pair structure of the excitations and hence the analogous form of (4.2.6) [160].
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4.2.2 Integrable initial states for small quenches

So far we have only defined a class of special quenches and discussed their distinctive properties. However,
a typical realisation of a quantum quench is provided by preparing the initial state in the ground state
of a local Hamiltonian and then letting it evolve with a different post-quench Hamiltonian. The natural
questions are whether we can tell if a given quench protocol corresponds an integrable quench and if we
can determine the overlaps. In the literature, several quench protocols are known to be integrable. In fact,
these are the sole examples of quenches that can be solved exactly, i.e. such that their overlaps are known
and/or the stationary state the system reaches can be constructed. These cases include spin chains and
the Lieb-Liniger model [79-82,85,161, 162| and models that can be mapped to non-interacting theories.
However, in massive IQFTs no exact results have been obtained until now apart from the free theories and
the continuum limit of the transverse field Ising model [107]| (again equivalent to a free theory). In free
systems it is possible to relate the pre- and post-quench model operators via a Bogolyubov transformation
which results in the squeezed-coherent structure of the initial state expanded in the post-quench basis.

We would also like to note that factorization of the overlap is tied very closely to certain algebraic
structures, for example fusion hierarchy and Y -system in the XXZ spin chain [163]. Although in QFT
there is less control over the underlying algabraic structures and the only known initial states satisfying
the Y system are 'few-site’ states [163] and have hence no sensible analogs in QFT, this perspective may
spur activity on the field theory side in the future.

Despite the lack of exact overlaps and the inability of deciding if a given quench protocol gives rise to
an integrable quench in an IQFT, integrable initial states and in particular the squeezed-coherent states
are an ideal starting point for analytic considerations in field theory. For such initial states it is possible
(at least in principle) to construct the GGE expectation values of local operators [70,87,88| and calculate
time dependence for local operators [107-109, 113].

Now we present a simple argument stating that for small enough quenches the squeezed-coherent form
of the initial state is a very good approximation irrespectively of the integrability of the model, hence
in the small-quench limit the approximate integrability of the quench is guaranteed as long as the model
is massive [159]. We assume translation invariance of the initial state, which holds for ground states of
local Hamiltonians. A quench is considered small when the post-quench energy density is small compared
to the natural scale m? where m is the mass gap in the post-quench system. In this case the density of
particles created after a quench is small and the average distance d between particles is much larger than
the correlation length m~!. Since the interactions are suppressed by the distance d as e=™4, the creation
of particles is dominated by pairs separated by a distance larger than the correlation length & = m™1.
One expects that the amplitude for the creation of higher number of particles is well-approximated by the
product of amplitudes corresponding to independent pairs, leading to an initial state (4.2.8) having the
form (4.2.6). If the quench allows production of odd number of particles, then instead the initial state is
expected to have the form (4.2.7).

There exist some exceptions to this scenario, for example a quench in a ¢* coupling when perturbatively
the leading process is the creation of a quartet. A further limitation of the above scenario is that for more
than one species of particles even the smallness of the quench is insufficient to guarantee the integrability
of the quench as demonstrated in [164]. However, for models with one particle species, and in particular
for the sine-Gordon model in its repulsive regime where the spectrum consists of only solitons and anti-
solitons our argument can be safely applied. Moreover, even in the case of more than one particle species,
for states composed exclusively of a single particle species the factorization of overlaps into products of
pair amplitudes is expected to hold.

4.3 Overlaps in finite volume

Here we review the formulation of squeezed coherent states in finite volume, as this is needed to regulate
divergences related to disconnected contributions and is used later in Section 8. This formalism was
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developed in [165] for integrable boundary states. Whereas here we focus only on the case of integrable
initial states, it is easy to write down the finite volume counterpart of any initial state as long as they are
translationally invariant.

The integrable initial state (4.2.7) can be written in finite volume as

12) = N(D) (1002 + SV {O0b, + 37 K@) N2(0, D=1, T}

1>0
+)° %K(ﬂ)]\fg(ﬁ, L){~I1,1,0}); + % > K (91)Kj(92)Na(d1, 02, L){~1,1,—J, J, 0}>L) +.., (4.30)
I I£J

where the rapidities ¥ are the solutions of the appropriate Bethe—Yang equations with a constraint of zero
overall momentum. For the two-particle states the constrained Bethe-Yang equation is

Q2(¥) = mLsinh 9 + §(209) = 2x1 , (4.3.2)

with §(¢) defined in (3.3.2), and the sum in (4.3.1) only runs over I > 0 because the states | — I, 1),
and | — I, 1), are identical. As §(0) is defined as S(9) = e *(?) he allowed values for I are the positive
half-integers. The three-particle sector consists of states with rapidities {—, 0,9} where ¥ is determined
by the corresponding quantisation condition

Q3(9) = mLsinh ¥ + 6(9) + 6(29) = 2w J , (4.3.3)

where J can be an arbitrary positive integer and for the four-particle case the quantisation condition for
the rapidities {—11, 01, —2, 92} is given by the system of equations

Q4’1 = mLsinhY; + 5(191 — 192) + (5(’[91 + ’02) + (5(2191) =2rl,
Q4’2 = mLsinhJ9 + 5(192 — 191) + 5(’[91 + 192) + 5(2192) =2rls ,
with I; and I being half-integers. The normalisation factors Ny(L), Nao(6, L), N3(9, L) and Ny(¥1, 92, L)

in (4.3.1) were calculated in [165] up to finite size effects with exponential decay. For the one and two-
particle states one finds

Ni(L) = VmL + O(e ") | No(9, L) = W + O(e M) | (4.3.4)
2
where _
p2(9) = % = mL cosh ¥ + 2¢(29)

can be interpreted as a constrained density of state. Note that the total two-particle density po satisfies

p2(0, =) = pr(9)p2(V) ,

and so
pld) . 20)

No(9,L) = =1-
2(0. 1) p2(9) mL cosh ¥

+0(1/L?) . (4.3.5)

For the three-particle state the normalisation of the three-particle states is given by

P3 (197 Oa _’19)

Na(d, L) = p3(v) ’

where
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and in the four-particle case the normalisation reads

_ /pa(01,—01,092, —02)

(4.3.6)

Ny(9, 99, L) = ! ,
4(91, 92, 1) pa(V1,92)
with 90
p4(V1,92) = det J with Jip = & , L,k=1,2.
0V},

It is easy to continue the finite volume expansion of the integrable state (4.3.1) to higher orders, and also
to write down the finite volume expression for non-integrable states, where the only constraint on the
contributing states is the vanishing of their total momentum instead of the detailed pair structure.

4.4 Summary

In this chapter we investigated integrable quenches in massive IQFTs, which are a very important starting
point in the study of quantum quenches. These quenches are defined by the condition that the initial state
|©2) is annihilated by all the odd conserved charges i.e. Q?|Q2) = 0. We showed that if the initial state
satisfies the cluster decomposition principle then this operator condition implies that the integrable initial
state in a generic integrable model can be written in a squeezed-coherent form (4.2.6), (4.2.7) resembling
integrable boundary states that are relevant in the context of boundary field theory.

Integrable quenches are important since they include all cases in which it is possible to find exact
analytic results for the steady state expectation values and/or the time evolution of observables. On the
other hand, a given quench protocol is not guaranteed to yield an integrable initial state even if both the
pre- and post-quench Hamiltonians are integrable. However, we argued that in massive IQFTs with one
particle species or in the attractive regime of the sine-Gordon model, for quenches with sufficiently low
energy density the integrable structure of the quench holds to a good accuracy and thus the integrable
quench assumption can apply in various situations. Interestingly, in the small quench limit, the integrable
structure of the initial state is ensured in any massive QFTs with one particle species.

Although we have not discussed the problem of determining the overlaps after a particular quantum
quench, clearly, if the integrable structure of the quench is known, the problem reduces to determining the
pair overlaps only. As demonstrated in Chapters 6 and 7 in many cases, the pair overlaps can be calculated
or at least approximated efficiently, whereas determination of overlaps in general remains a difficult and
unsolved problem.



Chapter 5

(Quenches with one-particle coupling and
singular overlaps

In this chapter we consider quantum quenches with initial states containing odd number of particles. Such
a situation can naturally emerge when the quench breaks particle number parity as discussed in Section 5.3
via a particular example. Focusing on translation invariant initial states, we demonstrate that if there is a
one-particle zero-momentum term in the expansion of the initial state, then the pair amplitude possesses a
first order pole at the origin. The presence of the pole has important consequences for the time evolution
(c.f. Chapter 8) of one- or multipoint functions with Eq. (2.1.1) and failing to realize its presence led to
some incorrect results in previous literature.

For integrable squeezed-coherent states (4.2.7) the coupling of the one-particle term g is related to the
pole strength of the K-function:

2

K(9) ~ —%% . (5.0.1)

This relation is also valid for non-integrable states, as long as the one particle term is present and its
coefficient is g/2 like in the integrable case:

N(0>+g\{0})+1 9 g @) —19,19>+...>, (5.0.2)
2 2/ 2m

since that up to the two-particle term, the expansions of the integrable and non-integrable initial states are

the same due to momentum conservation. Here we demonstrate the validity of our statement regarding the

singularity of overlaps and support our claim by a more rigorous argument using a linked-cluster expansion

for time dependent one-point functions in Chapter 8. For simplicity we focus on models with one particle

species but the argument carries over to systems with several particle species.

First we present the general argument based on an analogy with the one-point functions of bulk operat-
ors in the presence of boundaries discussed in [165]. The core of the argument is based on the cancellation
of divergent terms in the expectation value which is evaluated using finite volume as a regulator. At
first, this analogy only supports our statement for the integrable quench case, but as shown in Section
8.2 it can also be extended to non-integrable with one-particle coupling. We then proceed to a concrete
example of a quench in the Ising field theory crossing the phase boundary, i.e. from the ferromagnetic
to the paramagnetic phase, and also discuss an interesting quench in the sine-Gordon model, for which
the one-particle coupling and the singular part of the K function can be calculated to lowest order in
the quench parameter and the presence of the singularity in K and the relation of its residue to g can
be verified explicitly. As discussed in Section 8.2 many important features of the sine-Gordon calculation
turn out to be general, and so the perturbative argument for the presence of the overlap singularity can
be extended to the non-integrable case as well.

39
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5.1 Analogy between integrable quenches and integrable boundaries

In the following we briefly review the boundary problem discussed in [165]. We consider an integrable
field theory with a single massive particle constrained on a finite line x € [0, R] with integrable boundary
conditions a and (8 at the two ends; for simplicity we focus on the case when the left/right boundary
conditions are identical i.e. « = 8 = B. The vacuum expectation value

(O(x))P (5.1.1)

taken with respect to the ground state of the finite volume Hamiltonian H{% can be rewritten using an
Euclidean rotation
(B] e 0(0) e HR=7) | B)
(Ble~HR|B) ’
where the coordinate = plays the role of the Euclidean time variable, H is the infinite volume Hamiltonian
in the crossed channel and |B) is the boundary state corresponding to the boundary condition B. As
discussed at the end of Section 4.1, in the case when the boundary state contains zero-momentum particles
associated with a non-zero coupling of a single particle state to the boundary in the original channel, the
boundary K-function has a pole in the expansion of |B) (4.1.11):

(O(z))B = (5.1.2)

- 2
Kp(9) ~ —%%B . (5.1.3)

The proper relation (5.1.3) between the residue of K and the boundary one-particle coupling [156—158|
is crucial for the consistency of a number of theoretical constructs, such as the boundary form factor
bootstrap considered in [166].

In particular following [165] consider the one-point function of a bulk operator O by putting the theory
in a finite volume L in the crossed channel (with periodic boundary conditions) and take the limit

B B .. (Brle HrrO(0) e MR~ |By)
(O(x))” = LIET;O<O($)>L = fim (BrleHLR|Bp) ’

(5.1.4)

where Hj, is the finite volume Hamiltonian with periodic boundary conditions and |Br) represents the
boundary state in finite volume. The finite volume is introduced here as a regulator for disconnected
contributions arising from the matrix elements of the operator O which appear once |By) is expanded in
terms of the corresponding finite volume multi-particle eigenstates of H;. The disconnected terms lead
to positive powers of the dimensionless volume variable mL which only cancel if the singularity of Kp is
exactly given by the expression (5.1.3). Therefore the singularity of Kp and the relation of its residue to
the one-particle coupling are consistency criteria for the existence of well-defined one-point functions in
the infinite volume limit.

The time evolution of the expectation value of a local operator O after a quantum quench with initial
state (4.2.7) and post-quench Hamiltonian H is given by the expression

<O(t)> _ <_Q’ eitHO(O) efitH‘_Q>
(£2142) ’

which is just a real time analogue of the boundary expectation value. The only difference is that the K
function appearing in [£2) is not related to any reflection factor; in fact, Ghoshal-Zamolodchikov boundary
states are not normalisable, while for quench initial states the factor N is chosen to ensure (£22) = 1.
However, it is clear from the calculations performed in [165] that the condition for the cancellation of
singularities is unaffected by these details, therefore in order to have a well-defined expectation value
(O(t)) after an integrable quench with one-particle coupling ¢g/2, the K function must have a first order
pole at the origin with a residue equal to —ig?/2.

In the following two subsections we discuss two examples where this relation can be verified explicitly,
while in Chapter 8 we consider the real time evolution and show directly that this condition must indeed
hold for consistency.
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5.2 Quench in the Ising field theory from the ferromagnetic to the para-
magnetic phase

Quenches in the Ising quantum spin chain were discussed in [94-96] and for particular quenches within
the ferromagnetic phase, calculations also in the continuum model [107] were performed and numerically
checked [167]. Although for the FM — PM quench such calculations in the QFT were not carried out,
the scaling limit of the analogous quantities in the lattice model make perfect sense.

Let us recall the relevant features of this model which were already introduced in Section 3.4.3. The
lattice Hamiltonian is

N
H=-7) (ofofy+hof) , (5.2.1)
i=1
where o' denotes the Pauli matrices at site 4, J > 0, h is the transverse field and the boundary conditions
are assumed to be periodic. By applying the Jordan—Wigner transformation, the Hamiltonian (5.2.1) can
be mapped to spinless Majorana fermions with dispersion relation [152,153]

en(k) = 2J/1+ h? — 2hcosk (5.2.2)

and with an energy gap A = 2J|1 — h|. The model possesses a quantum critical point at h = 1 separating
the paramagnetic or disordered phase for h > 1 and the ferromagnetic, ordered phase for h < 1. In the
disordered phase, the expectation value of o, i.e. that of the magnetisation operator vanishes, while in
the ferromagnetic phase its value is non-zero. The Hilbert space of the model consists of two sectors with
respect to fermion number parity. In the Neveu—Schwarz and Ramond sectors states with even and odd

number of fermions are present, respectively, resulting in the quantisation condition for the wave numbers

2 1
kn, :FF (n + 2) Neveu—Schwarz

) (5.2.3)
Pn zﬁwn Ramond

where n is a positive integer.

Performing a quench in the transverse field h, the pre- and post-quench excitations can be related via
a Bogoliubov transformation. As a consequence, if the initial state is the ground state of the pre-quench
Hamiltonian the squeezed-coherent form of the initial state in the post quench basis (4.2.6) (or as will turn
out, eventually (4.2.7)) is guaranteed. Focusing on the quench from the ground state of the FM phase to
the PM phase (hg — h with hg < 1 and h > 1) one can write [94-96]

10, ho) &8 £ 10, ho) ™ 1 : Pt PM
= exp | i K(k)al a;. | 10,h)Ng
(5.2.4)
1 ,
iﬂN exp | i g K(p)aT_paI7 CLEL)’O, hyEM
B pER\{0}
where Nyg and Ng are normalisation constants and
1—cos Ay
Kk))? = —FF""F 5.2.5
KW = e (5.2.5)

with
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ghoh — (h+ hg) cosk + 1
= ()eng (F)

For later use we also quote the late time evolution of the magnetisation operator, which is given by the

expression [95]:

cos A, = (2J)

(5.2.6)

exp t/iks'h(k:) In|cos Ag|| , (5.2.7)
0

[NIE
[NIE

(o7 (1)) = (Crp)? [1 + cos (2en(ko)t + a) + ...]

where ko is a solution of the equation cos Ay = 0, a(h, hy) is an unknown constant and

hy/T— h2

h + hg

1
2

Cip = (5.2.8)

In the scaling limit of the TQIM, J is sent to infinity together with h — 1 such that the gap associated
with the fermion mass remains finite

M =2J]1—h|. (5.2.9)

In addition, the lattice spacing is sent to zero as a = 55, where c is the speed of light that we set to 1. It
is easy to see that the dispersion relation (3.4.32) under scaling limit transforms as

en(ka) = E(p) = vV M? +p? (5.2.10)

and the Hamiltonian (3.4.31) scales to the Hamiltonian of a massive Majorana fermion field theory (3.4.40).

In the following we perform the continuum limit for quantities relevant for the FM — PM quench.
It is important to note, however, that unlike for quenches within the ferromagnetic phase, where explicit
calculations in the field theory framework [107] and numerical studies [167] were carried out, for the
FM — PM quench no results are available. However, the naive scaling limit of the lattice results makes
perfect sense and therefore it is expected to reproduce the quench dynamics in the continuum field theory.
In the scaling limit we can write

M,
h=1+dh, h0=1—ﬁ°5h,

Mo oh
on T M

(5.2.11)
J =

which ensures that the dispersion relation in the post- and pre-quench model is \/M?2 + p? and /Mg + p?
respectively. Upon the substitution k& = pa, the continuum limit of 41 and (5.2.6) are

_ VPP M2+ M —p? + MM,y
VP2 + M2\/p?2 + MZ +p? — MM,

K (p)|? (5.2.12)

and

p* — MMy

cos A(p) = \/p2 n MQ\/pQ 0 )

(5.2.13)

1
Introducing ¢ = 5M, which is just the pre-quench spontaneous magnetisation in the continuum theory
obtained from (3.4.33), the scaling limit of (5.2.7) reads

N

(o ()] = 521% [1 + cos (2\/M2 ¥ MMt + a) + } exp [~ M t(] | (5.2.14)
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where

“Me=1 EMm M+ M2 - Mo M2+MM1n<”M2+MMO+M)
- 2 0 2 2 0 2 _
M— /M2 M2+ MMy — M
(5.2.15)
for M > My and

1 _ M T vVM?+ M Mg+ M
“M ==/ M2 M2 [ tan ' | —— | — = | = VM2 + M Myl ( )
¢ w{ 0 (an (N/Mg—w) 2) M\ VAT aran, - M

(5.2.16)
for M < Mj. Note that ¢ has a finite limit —In2 when My = 0, but its derivative is infinite at the origin
as My — 0, hence ( is not an analytic expression for small values of Mj.

From (5.2.12) it is easily to see that this function has a 1/p? singularity at the origin with the coefficient

4MZM?
(M—l— ]\4'0)2 '

This singularity corresponds to the presence of a zero-momentum particle in the Ramond contribution
4

to the initial state (5.2.4). As p = M sinhd, the coefficient of the singularity of |K(p)|* equals 4-M?

therefore K (¥) can be written in the form (5.0.1) with

(5.2.17)

Now we show that the one-particle coupling expressed with M and My in (5.2.4) equals g. To calculate
the latter, we put the theory into finite volume, where the first terms of the finite volume expansion of
the integrable initial state (4.3.1) reads

Q) = N(L) (|0>L + %\/ML|{0}>L + 3 K@)No (0, L){~1,T}) 1. + ) : (5.2.18)
I

where the I denote quantum numbers labelling the finite volume states and N2 can be found in (4.3.4).
Then from (5.2.4)

N
VMLY = 28NS (5.2.19)
2~ N

must hold. It is convenient to calculate the logarithm of their ratio:

In

Nvs _ T Lt [K (= 1/2)]" (5.2.20)

2 2 2
Ni noie LK (F(n)]
which in Appendix A is shown to be equal to

MM,L

In—M—
UM+ Mo)

when L — o0, so (5.2.19) indeed holds.
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5.3 Phase quenches in the sine—-Gordon model

Consider the sine-Gordon model defined by the action

2
A= /de (;aqu% + 2 cos 5@) , (5.3.1)

in a finite volume L with quasi-periodic boundary conditions
2
O(t,z+ L) =P(t,x) + Fn nez.

The quench protocol consists of abruptly shifting the sine-Gordon field ® — ®+4§/5 at t = 0, i.e. changing
the phase of the cosine potential and regarding the pre-quench vacuum as initial state for the post-quench
evolution. The peculiarity of this protocol is that it is possible to relate the pre- and post-quench ground
states by a unitary transformation.

To obtain the relation between the pre-quench and post-quench ground states, consider the definition
of the sine-Gordon model as the perturbation of the compactified free massless bosonic conformal field
theory (c.f. Section 3.4.2) in finite volume with the Hamiltonian

H(®) = /dw; . (04®)? + (9,D)” : —% /dZU (Vi+Voy) (5.3.2)

. LiaBd |
V, =: % .

where the V, are the vertex operators (normal ordered exponentials of the boson field). Note that the free
bosonic part of (5.3.2) commutes with the zero mode of the conjugate momentum field Iy = 9;®, whereas
due to the canonical commutation relations

[@(z,1), T(y,1)] = id(z —y) ,

one finds that the zero-mode

I, = / dyTi(y,t)

of the canonical momentum field satisfies

exp <igﬂo> L elBP = a(BOH0)  oxp <igﬂo> . (5.3.3)

Hence for the ground state H(®)|0)e = Ey|0)s, we have

exp <i5H0) H(®)|0)p = Fgexp <i5ﬂo> 0)a

b 5 55 (5.3.4)
H(CI) + (5/5) exp (iﬁﬂo) ‘0><1> = Fpexp <iﬁ7ro> ‘0><1> ,
from which 5
exp (iBH()) ’0>cp = |0>¢+% . (5.3.5)

Therefore the initial state in the finite volume theory with PBC reads

)1, = exp <igﬂo) 0L, (5.3.6)
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The overlaps

{x|exp (igﬂo) 0) L (5.3.7)

can be expanded in terms of finite volume form factors using
L L
o= [ 0®(x)de =i / (H, ®(x)|dz
0 0
This allows one to derive a form factor expansion for the overlaps with an arbitrary state |x)

T p (igH()) 0}z, (5.38)

by expanding the exponential into power series,
[o¢]

L<X!Q>L=Z ( > Z Z/(dez> (x| P2 ®(0)e P |ar) [ (Ey — Ea,)x

=0 Q-1

L(Oél\@lpm@(o)e*m“!a2>L(Ea1 = Ea,)--p{on e 0(0)e P10} 1 (Ea, , — Fo),

(5.3.9)

where P is the momentum operator and the «; index [ — 1 complete sets of asymptotic multi-particle
eigenstates. As the initial state is the ground state of a translational invariant Hamiltonian, the overlaps
are non-zero only for states |x) of total spatial momentum zero. Due to the integrals over z;, this also
restricts the intermediate states |a;) 7, to have zero total momentum so we can write

o

L9 =3 (-1 ( ) Z S L@ (O0) ) L (Ey — Eay)x (5.3.10)
=0 op—1
L{on|®(0 )|a2>L(Ea1 = Eay)...1(q-1]|®(0)[0) L(Eo,_, — Eb) , (5.3.11)

where the tildes over the sums mean that only zero momentum states are included.

We now compute the overlap with a stationary first breather to first order in §//5. Matching the finite
volume expression of the initial state (5.3.6) with the general case (5.2.18), and using (4.3.4) and the finite
volume form factors (3.3.4), we obtain

VL g =1{0}19)1

1)
=— m1L5L<{0}@(0)|0>L (5.3.12)
5 Fg
= (2 )m LB
<ﬁ>m1 mlL ’
from which 5
g *
5= _BFBl , (5.3.13)

where Fg, is the infinite volume one-breather form factor of ® ((B.0.6)).
Since the form factors of ® with even number of breathers By vanishes, the lowest non-trivial order
for the pair amplitude K is (§/8)*

Ny (0, L)K (9) =.{I, =1}|2)r

:(é) I; - LI, —1}|®(0)|ar)r(2m1 coshd — Eq, ) p{a1|®(0)|0) 1 Ey, , (5.3.14)

[e5]
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where 9 is related to the quantum number I via the Bethe quantisation condition (4.3.2) Na(?, L) is a finite
volume normalisation factor (4.3.4) 6z, g, and its derivative ¢, g, (9) is defined by Sg, g, (9) = —eB15:1 (),
and 01, ..., 0,, are the particle rapidities in the state |y ), determined by finite volume quantisation relations
(3.3.1). Using the expression for finite volume form factors (3.3.4) it can be written as

FBlBlB BZn(iF+19i7T—19 91, 9 )

() ZZ , 01, .0, )

n=1{8}n 1/ (m1L cosh 19)2 + (m1Lcosh?) vp, B, (9)pn (b1, ...0,) (5.3.15)
<2m1 cosh ¥ — Z m; cosh 91> ngl B, (01, ... (Z m; cosh 0; )
i=1

In Appendix B it is shown that in the limits L — oo and ¥ — 0 only the n = 1 term survives where the
single particle in the intermediate state is also a Bj, from which

S\2Fp,B,B, (im +¥,im —19,0)(2cosh ) — 1)F;
K@)~ (3 L 5.3.16
®) (5) 2 cosh v ( )
Using the form factor kinematical singularity equation (3.2.6) one can extract that for small ¥
. . 4i
FBlBlBl(MT+195 7’7777970) ~ 75FBl ) (5317)
S0
5 1 0
KW)~—=2i(=Fp, | =+0®W)
b (5.3.18)
SL L ow
- 155 + ( ) s

where we used (5.3.13) which establishes the relation (4.1.12) between the one-particle coupling of the first
breather and the singularity of its pair amplitude for this particular quench in the sine-Gordon model.

We remark that it is not known whether this particular quench protocol leads to an integrable initial
state of the generalised squeezed form (4.2.7). Note also that the above argument straightforwardly
generalises to a much larger class of quench protocols, the “exponential quenches” when the initial state is
related to the post-quench ground state via

Q)1 = exp (M / dm\y(m)) 0z, (5.3.19)

where U(z) is a local field which breaks particle number parity.

5.4 Summary

In this chapter we studied (translation invariant) quantum quenches when the expansion of the initial state
in the post-quench basis contains a zero momentum one-particle state contribution. Based on an analogy
with the case of integrable boundary states, we argued that the zero-momentum particle implies a pole
in the pair amplitude. We supported our statement with two concrete examples: a quench in the Ising
field theory crossing the phase boundary which is an integrable quench, and a quench in the sine-Gordon
model consisting of shifting the phase of the sine-Gordon field, which is not known to be integrable but
its treatment yields a perturbative confirmation of our statement. The general argument and also the
perturbative proof may seem too heuristic at this level, we return to discussing these singular overlaps in
Section 8.2.

Quenches with zero momentum particles are especially interesting as oscillations in expectation values
associated with the masses of the particles can be detected in experiments [13], hence suitably small
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quenches can be used to determine the mass spectrum of a model in what is known as quench spectroscopy.
Another peculiarity of these quenches is that they present serious theoretical challenges in the calculation
of expectation values after a quench, which are discussed in Chapter 8.



Chapter 6

Quench overlaps in the sinh-Gordon model

In this chapter we discuss a particular quench protocol for which it is possible to derive integral equations
that determine the quench overlaps uniquely. Even though the solution requires the use of numerical
methods and some other assumptions, the validity of the assumptions can be easily checked, and based on
the integral equations, general features of the overlaps can be studied as well. In particular we show that
the quench overlaps decay exponentially with the rapidity variable, which is necessary for a well-defined
field theory quench as discussed in Section 2.4.

Whereas the particular example we study is a quench from the ground state of the free massive boson
theory with pre-quench mass myg to the interacting sinh-Gordon model with post-quench (renormalized)
mass m and interaction strength g (see the Lagrangian and the definition of the model in Section 3.4),
this method can be extended to the corresponding quench in the sine-Gordon model and affine Toda
field theories as well, at least for the AS\I,)_l models where the form factors of the exponential fields are
known [168]. In this chapter we first discuss this particular quench in the sinh-Gordon model, and find an
operator formulation which allows to derive the integral equations involving form factors of the operator
for the overlaps. Studying the Dirichlet boundary case the and solution of this system in the free case
(mp,g =0) — (m,g =0) offers arguments for the uniqueness and squeezed-coherent form of the initial
state. Finally we discuss the numerical treatment of the problem and show that the numerical solution
can be approximated by a simple analytical Ansatz [169] to a good accuracy.

6.1 The infinity hierarchy of integral equations for the initial state

6.1.1 Operator continuity condition

Considering a quench from a free field theory with a mass mg to sinh-Gordon theory with (renormalized)
mass m and interaction coupling g, the initial state |€2) is the ground state of the pre-quench Hamiltonian
which is defined through the condition that it is annihilated by the pre-quench free annihilation operators

A(p)|Q) =0 (6.1.1)

for all momenta p. The annihilation operators A(p) can be easily expressed in terms of the elementary
field ¢ and the canonical conjugate field 7 in the free theory. A key observation for this particular quench
is that these fields are continuous through the quench:

¢(x,t —07) = ¢p(x,t — 07) and 7(z,t = 07) = n(x,t = 01), (6.1.2)
which is easy to see from the Heisenberg picture according to which

d
20 =iH,0].
20 = ilH,0)

48
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As at t = 0 there is a finite jump in the Hamiltonian, in the time derivative of O there may be utmost a
finite jump too, hence the integrated operator with respect to time is continuous. As a consequence the
annihilation operators A(p) in the free field theory can be given in terms of the interacting fields ¢ and =
by the standard relation

1 .
A(p) = ———= (Eo(p)o(p) +i#(p) ) . (6.1.3)
V2Eo(p) < )
where
60) = [ dwe 7o), (6.1.4)
is the Fourier transform of ¢(z) and
Eo(p) = \/p? +mj. (6.1.5)
Moreover, from the relation 7 = 9;¢ = —i[p, H| where H is the post-quench Hamiltonian, we obtain the
equation
b(p) + 5 ,H}Q:O, 6.1.6
{601+ 50 6.1 1) (6.1.6)

This equation was first derived in [169] and it has the advantage that all matrix elements of the operator
¢ are known in the the post-quench field theory, i.e. the Sinh-Gordon model.
Expanding the initial state on a complete set of states gives

_ j
) = ZH'/H 5 n(B1 -, Ba)lBr, - Bn) (6.1.7)
n=0 ]:1
where |B1, ..., B,) are the multi-particle eigenstates of the post-quench Hamiltonian. Using the commu-

tation rules of the Zamolodchikov-Faddeev algebra (3.1.7), the functions K, (51, ..., (,) can be assumed
to satisfy the symmetry relation

Kn(ﬁlv s )/Bi)/Bi+17 cee 7671) = Kn(/ﬁlv' . "Bl"Fl’ﬂ’L” e 75”) S(/BiJrl - Bl) . (618)

Projecting (6.1.6) to all the linearly independent states of the post-quench Hilbert space, we can write an
infinite hierarchy of integral equations for the functions K,

~ 1 ~
91, ... O {(bp —i—[gbp,H]}Q —0. 6.1.9
( |2 0(p) Eolp) (p) 1€2) (6.1.9)
We propose that this set of equations determines all the functions K, uniquely (up to overall normaliza-

tion).

Note that due to translational invariance of the global quench, the initial state |Q2) is in the subspace
of zero total momentum, i.e all amplitudes K,, contain a delta function 27d (Z?Zl m sinh Bj). Therefore,
nontrivial equations are only obtained for

N
p= —stinhﬁj ) (6.1.10)
j=1

i.e. when the momentum p is opposite to the total momentum of the test state. Also note that the number
N of particles in the test state must be chosen odd, otherwise the equations are trivially satisfied. This can
be seen easily from (6.1.9) since the operator ¢(p) + [&(p), H|/Ey(p) is odd i.e. antisymmetric under the
transformation ¢ — —¢, while the state |Q2) is even since the pre-quench Hamiltonian is symmetric under
the same transformation. This means in particular that it contains only excitations with even number of
particles, i.e. all odd amplitudes K, in (6.1.7) together with the one-particle coupling must vanish.
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6.1.2 Integral equations for the initial states

To derive explicit expressions for equations of the hierarchy (6.1.9) we substitute the expansion (3.2.13)
for the operator ¢(p) + [(Z)(p),H} /Ep(p) and the general expansion (6.1.7) of the state |Q2) into (6.1.9).
Then the equation with an N particle test state is the sum of all possible contractions between the N
particles of the test state with the operator ¢(p) + [g?)(p), H|/Eo(p) and the state |).

From (6.1.4) and using the translation operator e’ (where P is the momentum operator) to shift the
field ¢(z) to the origin, we can easily find that

(01, O @) s -+ 10) :/d:ce—iwl,...,ﬂm|¢<x>|m,...,nn>

=2m6(p+ stinhﬁi - stinhm)(q?h e Ul (0) 1, o 1) (6.1.11)
i=1 j=1

so that the expansion of ¢(p) is

> m.n./H

/Hdm 27r(5 p+stmh19 —stmhnj

m,n=0
X [, ) ZT (1) . 2V () Z () - Z(nn) ; (6.1.12)
with the expansion coefficients f%n(ﬁl, ooy Om|m, .. .my) given by the form factors of the elementary Sinh-
Gordon field ¢ according to (3.2.14).
Substituting
N
(01,...,9n|H = (91,...,9N] <ZE(195)> : (6.1.13)
s=1
and

3

HI = Z;/Hﬁ(ZE@J n(Bis s BBy Ba) (6.1.14)

into (6.1.9) yields

m‘n'E'/H dCZ/‘Hdn]/\HﬁkQ (5 ]9—|‘Z77’L81nhcZ stnqhn]
m,n,f=0

X frnn (o Gl ) <E0<p> —ZE +ZE Br ) KBy, -, Br)
s=1

X (01, INIZNG) - 2 (Gn) Z(m) - Z () B - .,ﬂe> =0. (6.1.15)

Using the Zamolodchikov-Faddeev algebra (3.1.7) the contractions can be performed and that the matrix
element

(D1, INIZN(C) - ZY () Z(m) - - Z(0n)|Bus - - Be) (6.1.16)

is only non-zero when all 7); are contracted with some of the 3 and all (; are contracted with some of the
¥, while the remaining (i are contracted with the remaining 5. This means in particular that m and n
are constrained to vary between the values 0 < m < N, 0 < n < £ and must also satisfy N —m+n—£ = 0.
These conditions restrict the sums in the above equation. Moreover, according to earlier comments, m +n
must be an odd positive integer, £ must be even and N odd. There are ¢!/(¢ —n)! ways to contract n; and
Bk, N!/(N —m)! ways to contract ¢; and s and (¢ —n)! ways to contract the remaining 5; and 94, which
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are all equivalent up to S-matrix factors due to permutations of the rapidities. Note that S-matrix factors
due to permutations of integrated rapidities can always be absorbed by re-ordering the rapidities to some
fixed order using (3.2.16) and (6.1.8) and by renaming them since they are dummy integration variables.
However there still remain S-matrix factors corresponding to the permutations of the test particle rapidities
¥ that are necessary in order to perform the contractions with the ;. There are ( ) distinct choices that
give terms multiplied by different S-matrix products. Overall the number of combinations of contractions
that give identical contributions is

(0 f!m (NN!m) (=nl/ <Z> - o

After performing all contractions (6.1.15) becomes

ZZ /I_IdBk2 5 Z m sinh ¥ _stmh/Bk

ZOnO s=f—n+1

N
X f?ﬁb,n(’ﬁNa cee 7§€fn+1‘ﬁn7 cee 761) (EO(p) — Z E(ﬁs) + ZE(ﬁ]d)
s=f—n+1 k=1
X Ko(B1y -+ BnyQo—ny- .., 91) + perms =0, (m=N+n-1¥), (6.1.18)

where “perms” denotes the other choices of splitting the test particle rapidities s into those contracted
with (; and those contracted with 8. As the amplitudes K, contain a factor 27¢ (Zj 1 msinh BJ) ex-
pressing the translational invariance of |Q2), the d-function in the above equation can be replaced by
§(p+ Zi\f: . msinh ;) which can be factored out of the integral and sum. This overall factor means that
the only nontrivial equations are those for which p is opposite to the total momentum of the test state
(6.1.10) as was already noted. Provided that this condition is fulfilled, the final form of the N test particle
equation is

Sy 2 /Hdﬁ’“

£=0 n= 0
N n
X fo n(ON, - Vens1|Bns -, B1) (EO(P) - > E@W)+ ZEW)
s=0—n+1 k=1
X K¢(B1,y- -y By Oo—ny- .., 01) + perms =0, (m=N+n-1{), (6.1.19)

In particular, for a single test particle, there are only two possible values of m are either 0 or 1 and so
n =/ — 1 or n = £ respectively. Therefore the N = 1 equation is

f?ow\) (Eolp <e>> = E(ﬁ))
dﬁk !

1
o o1(Be=1s- - B1) (Eo( (19))+ZE(ﬁk)> Ko(B,- -y Be-1,9)
k=1

even

14
w/dﬁf £2,01Be, - B1) (Eo(p(ﬁ))—E(ﬁ)—i-;E(ﬁk)) K€(51,-~~75£)] =0.  (6120)

with p(¢) = msinh 9 and therefore Ey(p(¥)) = \/m2 sinh? ¢ +m3. For N = 1 and [ = 4, the corresponding
equations were derived in [169].
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The above equations can be represented diagrammatically as in Figure 6.1.1. The terms

N n
Conn(IN, - Vgt Brs - 1) = fo (I, Vg By - Br) <E0(P)— > E(ﬂs)+ZE(5k>>
s=0—n+1 k=1

(6.1.21)
in the expansion of the operator gZ;(p) + [(;Aﬁ(p),H ] /Eo(p) are represented as square boxes with m legs
on the left and n legs on the right, which should be contracted with the N rapidities of the test state,
represented as external legs on the left side of the graph, and with the ¢ rapidities of K, represented as
legs emerging from the rectangular box on the right, respectively. The remaining rapidities of Ky should
be contracted with the remaining rapidities of the test state. The sum is over all possible orders n, ¢ and
all possible combinations of contractions. Note that in principle the ordering of rapidities in such graphs
matters and that exchange of two consecutive rapidities results in multiplication with the corresponding
S-matrix factor.

Figure 6.1.1: Diagrammatic representation of the hierarchy of integral equations (6.1.19). The external
lines on the left correspond to the N rapidities of the test state (¥1,...,9,|. The green square represents
the (m,n)-order term in the expansion of the operator qg(p) + [qg(p), H] /Eo(p), while the blue rectangle
on the right represents the ¢-order term in the expansion of the initial state |2). The sum is over ¢ and

n < £, while m is fixed to N +n — £. The arrows show the ordering of contracted rapidities in equation
(6.1.19).

G K, Gy, K,

GI,()
—D> + E +

{

Figure 6.1.2: Diagrammatic representation of one test particle equation (6.1.20).

The above derivation was based directly on the infinite volume formulation of Integrable Field Theories
through the use of the Zamolodchikov-Faddeev operators and the related operator and state expansions.
In order to verify the validity of the equations from the finite volume formulation of integrable models, we
present an alternative derivation of the above equations (up to a certain order) based on the Bethe-Yang
equations in Appendix C.

Given the integral equations (6.1.19) and assuming uniqueness of the solution (for which we shortly
argue) it is possible to determine all the overlaps in principle. Of course this is still a rather difficult
problem. In fact without any further assumptions, all the overlaps K»,, in (6.1.7) are independent functions,
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therefore finding a solution for all of them generally requires considering (6.1.19) with all possible test
states. However, in the limits of ¢ — 0 and of large initial mass mgy — oo the solution of these equations
is known. Sending the pre-quench mass to infinity, (6.1.6) transforms into

$(p)|©2) =0, (6.1.22)

which is identical to the condition that defines the Dirichlet boundary state for the sinh-Gordon model
in (4.1.9) for which the K-function Kp (4.1.9) is known, and the squeezed state structure is guaranteed
as well. Dropping all the factors in the round brackets in the above equations, the overlaps composed of
the products of Kp must solve the equations, which was checked numerically as discussed in Section 6.2.
However, as shown in Section 4.1, Kp(}) does not decay for large momenta and the initial state is not
normalizable. This is easily understood: initial state excitations are cut-off at large momenta by the mass
scale mg which in this case is taken to be infinite. However, for finite mg this problem no longer persists
as demonstrated in Section 6.2. The other limiting case g = 0 corresponding to a mass quench in the free
boson theory is discussed below.

6.1.3 Free case

To argue for the statement that the hierarchy uniquely determines the initial state up to normalization,
consider first the case when the interaction is zero, corresponding to the free bosonic theory with the
Hamiltonian

1
H=3 /[Trz + (Vo) + me®| da (6.1.23)
where the canonical momentum is m = 9;¢. Defining annihilation operators as follows
1 A "
Alp) = —F—= (E(p)cb(p) + m(p)) , (6.1.24)

V2E(p)

where E(p) = /m? + p?, the canonical commutation relations are
[A(p), AT (p)] = 2m6(p — p') - (6.1.25)

For the free case, parametrization of the modes using the momentum instead of the rapidity variable is
preferred.

Consider a global quantum quench when at time ¢ = 0 the mass parameter is abruptly changed in the
theory mg — m. Taking the spatial Fourier transform of the fields ¢ and 7 at time ¢ = 0 and defining the
creation and annihilation operators, the following equations must hold:

_ flp)) = f(_
T (Ao(p) + Al( p)) - V2E(p) (A(p) + Al( p)> | 6.026)
_72 2E(p) (Ao(p) - AE(—p)) = _7@ 2E(p) (A(p) - AT(—p))

where Eg(p) = m2 + p?, E(p) = m? + p? and Ap(p) and A(p) are the pre- and post-quench mode
operators. This is the Bogoliubov transformation, which allows one to express |[2) using Ay(p)|€2) = 0.
We now demonstrate that the usual squeezed expression for the initial state can also be obtained from the
integral equation hierarchy.

Using (6.1.24), the operator form of the hierarchy can be written as

L (- V2E(p) ot B
( 2E(p)(A(p)+A( p)) + 2Eo(y) (A(p) — AT( p))> Q) =0. (6.1.27)
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The fact that A(p) and AT(—p) occur together means that the equations only link components which differ
by pairs of particles of opposite momenta. The lowest component is the post-quench vacuum, so |2) can
be expressed in terms of states composed entirely of pairs of particles with opposite momenta

[ee} n 400 n )
Q=N (—i) /_ (H ;liZAT(ki)AT(—kio K37 (ky .. . kn)|0) . (6.1.28)
n=0 © \i=1

Due to Bose symmetry, the functions K{;ee can be taken to be invariant under permutations of their
arguments and under k; — —k;.

G Gy,
1,0 g
- + Sl =9
K,
Gy,
10
—»
. I + . = 0
: KZn : K2n+2
Gy Gy,
—» + x 7 =0
: K,,
K,

Figure 6.1.3: Diagrammatic expansion of the integral equations for a free theory. The first line represents
the one-particle equation, while the second line shows the general multi-particle equation. As can be easily
seen in the third line, a factorized solution Koy, 1o ~ Ks, X K automatically satisfies the multi-particle
equation which then reduces to the one-particle equation for the function K. The latter is therefore equal
to the pair amplitude K = K5. This explains the exponential form of the solution (6.1.35).

In order to find Koy, Eq. (6.1.27) can be further specified by applying a given test state on the left side
of Eq. (6.1.27), which gives the individual equations of the hierarchy. To find K9, we apply a one-particle
test state (p1| = (0]A(p1) to Eq. (6.1.27) and substitute the expansion of (6.1.28) to obtain

EE fo_
<E(p) Eo(p)> (01 A(p) AT(=p)I0) (6.1.29)

_1 L L o % T T(_ free _
2 <E(p) + Eo(p)> /_Oo 5 (01 A1) A(p) AT (k) AT (k) 0) K37 (k) = 0,

where the matrix elements can be evaluated using the canonical commutation relations (or, equivalently,
Wick’s theorem) which leads to

1 — 1 — 1 1 free _
(E(p) Eo(p)) (E(p) - Eo(p)> K ) =0, (6.1.30)
from which
Kiree ) — Eo®) ~ E@) -
2 T Ep) + Ep) 1

follows.
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To determine the functional form of K7 2 (k) for a general n, test states with higher number of particles
are applied on the left side of (6.1.27); only test states with odd numbers of particles give a nonzero result.
Let there be 2n—1 particles in the test state; then only two terms from (6.1.28) give a nonzero contribution
leading to

free 1 1 ) free ( 1 1 >:| —
ALy, kD) [+ ) = I (et o) e — —0.  (6.1.32
free b (55 ) ~ S b (565~ (0432
Therefore f
Kyt (ki kpon) 0 Eo(p) + E(p)
Due to the symmetry properties of Kfree and using (6.1.31)
free(k i ﬁ free (6 1 34)
1y - o .
that is
oo dk free T T
|2) = N exp —5 27TK (k)AT(K)AT(=Ek)| |0) (6.1.35)
where B (k) — E(k
Kfree(k) — K{T‘fe(k) — 0< ) — ( ) (6136)

Eo(k) + E(k)

This is exactly the squeezed state form that can also be obtained via a direct application of the Bogoliubov
transformation (6.1.26) to the condition Ag(p)|§2) = 0.

6.1.4 Uniqueness

As shown above the hierarchy (6.1.9) has a unique solution (up to normalization) for a mass quench in
a free field theory, which coincides with the well-known squeezed state resulting from the Bogoliubov
transformation. We now argue that for the interacting case (Sinh-Gordon theory) we expect the same
uniqueness property.

The interacting systems is much more involved than the free one since each of the equations (6.1.15)
involve all of the K excitation amplitudes and therefore it does not have the chain-like organization of
the equations of the free case, where only two terms were present for each equation, which allowed the
calculation of each amplitude of arbitrary order one-by-one from its predecessors. However, since the
zero-coupling limit gives back the free equation, and at least for a small enough value of the coupling the
dynamics and form factors of Sinh-Gordon theory are known to be well-described by perturbation theory,
the introduction of a small coupling does not spoil the uniqueness of the solution. We only expect the
solution to be slightly deformed from the free solution, but to preserve most of its properties. Therefore
if a given Ansatz can give a solution, or at least a very good approximation of a solution, we can argue it
is close to the unique solution of the hierarchy.

We note that a remnant of the chain structure is still present in the interacting case. Denoting the
number of particles in the bra state by ny and in the ket state by ng, for a free field theory the only
nonzero matrix elements are the ones with ny —ng = +1. From perturbation theory, it is clear that these
terms dominate for weak coupling. However, in a two-dimensional field theory this argument goes even
further: as a simple consideration of available phase space shows, the Feynman graphs corresponding to
form factors with larger differences in the number of incoming and outgoing particles are suppressed. The
reason for this is that the difference in number of particles can be interpreted as particle creation by the
operator inserted; however, in two space time dimensions the available phase space eventually decreases
with increasing particle multiplicity [170], therefore processes involving a change in particle number are
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suppressed; the larger the change, the stronger the suppression. As a result, we expect that the terms are
hierarchically organized by the value of An = ny —ng, the ones with An = +1 being the largest, followed
by the terms with An = 43 and so on!. This fact is important for our ability to treat the infinitely many
integral equations, each composed of an infinite number of terms, making up the hierarchy, as it implies
that they can be well-approximated by equations that are truncated to a finite number of terms, and more
terms can be gradually included to improve the approximation.

6.2 Solution of the hierarchy

In this section we present a solution of the integral equations (6.1.19) for the sinh-Gordon quench problem.
The solution of the hierarchy is very involved but using appropriate assumption supported with plausible
physical considerations the structure of the equations simplifies and they can be solved numerically by
a natural truncation of the hierarchy. The main assumption is that initial state of the quench, i.e. the
ground state of the free boson theory can be cast in a squeezed-coherent form (4.2.6) (due to Zg symmetry
(4.2.7) is excluded) when expanded in terms of the sinh-Gordon creation operators. This means that the
only unknown function is the pair overlap Ko = K and

n
Kon (01, B1,92, B2, -0, Bn) = [ [ 270 (0 + Bi) K (9) (6.2.1)

i=1
K can be determined from the hierarchy when acting with only one test-state to right of (6.1.6). In
particular, for a one-particle test state, (6.1.20) determines K and the numerical solution of the equation
can be obtained by iteration. We also provide a simple analytical Ansatz that is an excellent approximation
of the numerical solution in the parameter range of the quench studied and show the solution is consistent

with the assumption on squeezed-coherent form of the initial state.

6.2.1 Argument for the pair structure of the initial state

As ground states of local Hamiltonians satisfy the cluster decomposition principle, the existence of pair
structure together with Zy symmetry implies the squeezed-coherent form (4.2.6) (c.f. Section 4.2). Here
we present two arguments to support the pair structure or equivalently the integrable squeezed-coherent
form of the initial state.

The first argument is based on boundary renormalization group theory. In conformal field theories
there exists special boundary conditions compatible with conformal symmetry. Such boundary conditions
can be formulated as boundary states, which, similarly to the Dirichlet state, are not normalizable. To
regularize such states the authors of [27,28| used the concept of “extrapolation length” and replaced the
original boundary state |B)orr by e ™HCF7|B)opr. The parameter 7y expresses the difference of the
actual boundary state from the idealized state, which can interpreted using RG concepts. Although
massive IQFTs are off-critical theories, for quenches with finite mg a similar idea might apply and the
initial state can be written as e~™|D). In fact, the generalization e~ 2s@™|D) is also sensible and it
is eventually justified from the point of view of the previous boundary formulation: RG theory teaches
us that, in estimating the difference of the actual boundary state from the idealized Dirichlet state |D),
any boundary irrelevant operator could be inserted as a boundary perturbation [171]. In an IQFT such
boundary irrelevant operators include (but are not limited to) all conserved charges of the bulk theory.
Indeed adding such perturbations does not change the system’s behaviour drastically [172|. This means
that, in the same way that the extrapolation length 7y is introduced essentially as a perturbative parameter
associated to the Hamiltonian, one could in principle introduce a different parameter 75 for each conserved
charge Qs = [digqs(9)Z1(9)Z(9), which is equivalent to writing Kp(d) — Kp(9)e 270 in the
Dirichlet state resulting |Q2) satisfying (4.2.6).

!Note that An must always be odd, as even form factors of the elementary field ¢ vanish.
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This argument is very heuristic and is therefore not fully satisfactory. There is, however, a stronger
argument for the pair structure which can be formulated considering how switching on the integrable
interaction dresses the initial state. As a starting point, any quench in the free case g = 0 corresponds to
an initial state consisting of pairs.

Now a quench to an interacting point g # 0 can be considered perturbatively and the issue now is
how the state is dressed by turning on an integrable interaction. Note that such a dressing must map
the non-interacting vacuum state |0) free to the interacting vacuum state |0)s,¢ and the free one-particle
states to the asymptotic one-particle states of the interacting theory, which is rather nontrivial. However,
there is at least one case in which we know the result of such a dressing: integrable boundary states.
Considering only the parity invariant case, let us start from the free field theory with Robin boundary
condition

1 2 m2 9
L= 5 (ad)) - 7¢ am(ls‘x:O = _)\Qb‘x:O (6.2.2)
for which the boundary state has the form
1 [T dv ; ;
|R) = N exp 3 %KRQ?)A (9)AT(—2v)| |0) (6.2.3)
with . IRy
im cosh? — A/m
where b9 i)/
sinh ¢ —i\/m
Bel0) = Gino v irnym (6:2.5)

is the Robin reflection factor. When switching to Sinh-Gordon theory (with an integrable boundary
condition), this gets dressed up into [173]

|S) = Nexp B /m gKg(z?)AT(ﬁ)AT(—ﬁ) 10)snc (6.2.6)

with
cosh? — cosmE /2
cosh ¥ + cosmE /2

where E parametrizes the boundary interaction, and can be considered as a dressed version of A.

We see that in the above case turning on an integrable interaction dresses the state so that the pair
structure is preserved. It is plausible that a perturbative proof can be given, similar in spirit to the
mechanism of how particle number changing amplitudes cancel at each order of perturbation theory in the
Sinh-Gordon model [174]. We expect the pair structure of the dressed state to be the consequence of the
pair structure of the starting state and the integrability of the dressing interaction, and to hold in general.
In any case, by analogy we expect the initial state to have this pair structure for any quench from some
mass and zero interaction to any other mass and any interaction.

Building upon the idea of integrable dressing, we can even write down an Ansatz for the solution of
the sinh-Gordon quench problem considered in this chapter. As a first step, let us consider the initial
state on the basis of our heuristic argument for the pair structure. We attributed the preservation of the
pair structure to the fact that when switching on the coupling, the state gets dressed by an integrable
interaction. In the free case, the state can be expanded as

Ks(v) =

Kp(9) (6.2.7)

1 [T dk free
) = N 110) free — 5 S KRk, =)o+ ... ¢, (6.2.8)
2 ) _o 2m
where index 0 of the two-particle state refers to g = 0. In the interacting case the initial state takes the
form
1 [T df
1) =N <[0)sha + = — KW, =09 +... 5. (6.2.9)
2 ) _ & 27
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Note that the interaction gives a non-trivial renormalization of the vacuum state and also of the particles.
Motivated by the dressing argument let us look for the pair amplitude K in the form

K() = K/m¢(k)D(k) , (6.2.10)

where k is expressed as 2 msinh4) and the dressing factor D(k) only depends on the parameters of the
post-quench Hamiltonian, i.e. it is independent of the pre-quench mass mgy. Now consider the limit for the
pre-quench mass mg — o0o. In this case the free amplitude tends to 1, while the amplitude K is expected to
become identical to (4.1.9) for the integrable Dirichlet boundary state, which means that D(k) = Kp(?).
This leads to the proposal of the following solution

K(0) = K’ (k)Kp(V) , (6.2.11)
which gives
+oo do ; ;
9) =Nexp | / LR Z0)Z(0)| 0 (6.2.12)
for the initial state, where
K@) = 2@ =EW) . (6.2.13)

Eo(p) + E(9)

p=msinhd , E()=mcoshd , Ey(p)=/p?>+mi.

We remark that the relative sign between (6.2.8) and (6.2.9) corresponds to the property that Kp becomes
—1 in the free field limit B — 0.

Note that the above Ansatz, which was first proposed first in Ref. [169] on a slightly different basis,
has no freely adjustable parameters.
6.2.2 Integral equation with the pair assumption and asymptotics of K
Following the arguments of the previous section we assume that the initial state has the form

0 = Now (3 [ 5 KOZ-0Z'0)) 0)e

n= j=1 —o0

which results in the integral equation with one text-particle (6.1.20) taking the form

ffown (Eo(p(6)) — Ew))

dﬁ’“ (6.2.15)

(-1

X [f§2€—1(| =, Be—1, —Be-1,- .-, B1, = 1) (Eo(p(ﬂ)) + E(9) +22E(5k)> K(B1)...K(Be—1)K (V)

14
+ ;K/Cff L2018t —Bes - ., Br, —B1) (Eo(p(z?)) — E(0) + QZE(ﬁk)) K(B)... K(@)] ~0,

k=1
(6.2.16)

2The transition from integration over k to integration over 6 involves a Jacobi determinant factor, but it is eventually
included in the way Kp(?) is given in Eq. (4.1.9).
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with expansion coeflicients fﬁl,n(ﬁl, ooy Om|m, .. mn) given by the form factors of the elementary Sinh-
Gordon field ¢ according to (3.2.14). As we show to obtain a numerical solution for the function K one
needs to consider analytic continuation of the equations (6.2.16) to complex rapidities. These can be
derived by deforming the integration contours and taking into account the residues of kinematical poles
given by (3.2.6) or alternatively by the finite volume formalism briefly reviewed in Appendix C, where we
also give the explicit form of the equations used in the numerical computations.

Before presenting the numerical solution of (6.2.16) it is important to mention the leading order
behaviour of the solution for large rapidities. Unlike the Dirichlet case, where limy|_,q |Kp| = 1, for
finite pre-quench mass mg # m, the K-function behaves as e~ 2l | which is easy to see from (6.2.16).
From the technical point of view, this fact is the consequence of the squeezed coherent structure of the
initial state and the exponential decay of the sinh-Gordon form factors for large rapidities. It is also
apparent, however, that the leading asymptotics of the K-function for the interacting quench is dictated
by the factor

Ey(p(?)) — E(V)

Eo(p(9)) + E()
which is exactly the K-function of in the free massive theory. This is not surprising as for large rapidities,
i.e. large energies, the effects of relevant interaction become small: the form factors of the elementary field
vanish exponentially, and the scattering of particles becomes energy independent.

Discussing this finding a little further leads to a simple generalization that can be potentially valid to
any quench, and we come back to this point in the following chapter at the end of Section 7.2. The decay
of the K-function is eventually related to the question if a quantum quench is well-defined in a field theory.
As mentioned in Section 2.4, field theories considered as an effective low-energy description of a given
physical system possess a high energy cut-off. A quantum quench injects extensive amount of energy and
if excitations near or above the cut-off are prominent in the initial state, cut-off effects prevent us to arrive
at a universal description. Unlike for Dirichlet-like initial states, where K remains finite at arbitrary large
rapidities, the observed e 2/l behaviour of the K-function means that the overlaps of pairs with large
energy are suppressed and states with all particles having O(1) rapidity give the dominant contribution to
the initial state. One can analyze this further by considering the root density of the representative state
that corresponds to the initial state [88]. The asymptotics of the K-function determines the large rapidity
behaviour of p to be of the form e =3I, This means that although infinite energy is injected to the infinite
volume system, high energy particles are suppressed as e 319 in the representative state and the effects of
the UV cut-off can be safely neglected as long as the quench energy density is not too large.

(6.2.17)

6.2.3 Numerical solution of the hierarchy: keeping the vacuum and two-particle
terms

Keeping the first few terms in the expansion (6.2.14) and applying a one-particle test state (|, the integral
equation (C.1.4) can be written for the Dirichlet case my = oo, when the operator equation (6.1.6) simplifies
to ¢(p)|D) = 0 [169]. For the iteration procedure we need to generalize (C.1.4) to complex test rapidities.
As long as Im¥ < ¢, (C.1.4) turns out to be valid, but for Im¥ > e, (C.1.5) has to be used. This can be
derived from (C.1.4) by analytical continuation using the analytical properties of the form factors. In the
case of finite mass quenches (C.1.2) holds for Im¥ < € and (C.1.3) for Imd > € [169]. The structure of the
integral equation is shown in Fig 6.2.1.
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Figure 6.2.1: Diagrammatic expansion of the one test particle equation. The dashed frame encloses those
diagrams in which the bra and ket states differ by only one particle. These three terms are the ones kept

in the truncated equation of Section 6.2.3.

Numerical calculations immediately show that the vacuum and two-particle terms (those that are
zeroth and first order in K) in Egs. (C.1.2)-(C.1.5) are much larger than the rest, which is expected from
the considerations of Subsection 6.1.4 as they correspond to An = +1. As a consequence, it makes sense
to construct an iterative method based on the truncated version of (C.1.2)-(C.1.5) that includes only the

first three terms, while the rest are omitted:
0 ~F? + LFPKp0)(1 + S(—29))
~4 21 D

1 +oo+ie d’l9,
+ / D po +im, — ) Kp(9) (ifIm 9 < <),
2 —o0o+1€e 27

0 ~F? + F{Kp(¥)
1 +oo+ie Ao’
+1 / B R0+ im,—9 ) Kp(9) (fIm 9> <) |
2 —ootie 2m
for the Dirichlet, and

0 zFf’gzg%; J_r ggg; + %Ff’K(q?)(l + S(—29))
(LI 0 Bl — 10 + 2500

2 ) cotie 2m Eo(p(9)) + E(9)

o B0) B
O~ By + Bw) TR
L [ A0 Bl B0+ 25(0)

T3 ) i 20 Eo(p) 1 EW)

for the finite mass quench.

FL(9 4 im, =0, 9K (') (if Im ¥ < &),

F2(9 4 im, =0, 9K (') (if Im 9 > ¢)

(6.2.18)

(6.2.19)

(6.2.20)

(6.2.21)
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Discussing first the Dirichlet problem, our aim is to numerically calculate the Kp(¢}) function for
real test rapidities, however, the equations contain this function for complex rapidities ¥ + ic as well.
Consequently, to obtain a closed iterative scheme, we also have to plug in complex test rapidities with
imaginary part larger than the shift of the contour to the equations, that is, in each iteration we have
to calculate two iterative functions. Instead of calculating the iterative functions at real and shifted
rapidities, for practical reasons, both of them are calculated at shifted rapidities 0 < &1 < g9 . At first,
K (9 +ig1) 1 denoted by K(z?)gfﬂ) is calculated based on (6.2.18) as the integration contour is shifted

with €2, and then K (ﬁ)éﬁ*l) is calculated based on (6.2.19) as the integration contour is now shifted with
1. The equations of this iterative scheme derived from (6.2.18) and (6.2.19) read

1-1 1
K(9)k+D) — 22 5 L ) L . "
()& 2y 14+ S5(=2(9 + iey)) + ( 71) (14 S(=2(9 +ic1))) K(9)g,
1 +o00 d19/ . . . )
to | 2 O e, 0 e, +152)Kw’)£’§)> + K@),

(6.2.22)

1-1
K (9)%H) = N <1 + (1= y2) K ()&

+ = /+oo D 56 4 i+ e9),— —ien, 0 + i) K@) | + 2K (0)®
27 )y 2w ’ | o) TR
In the equations above, 71 and 9 are damping parameters, which were set to one to make the scheme
do its best. In addition to this, averaging with the previous iterative function is also performed in the
scheme.
Once a satisfactory level of convergence is reached, the solution along the real axis can be obtained by
the following equation

K@) = — " 2 [T o i — e, + i) KD 6.2.23
()—m Ff’/oo%‘g( v, €2, ie2) K(0)e, | - (6.2.23)
The above iteration scheme will be denoted by S2D. The iterations under this scheme rapidly converge,
as can be seen also in Fig.6.2.2. Besides the convergence of the functions with shifted rapidities in their
arguments, the real rapidity solutions obtained with (6.2.23) converge as well. The iterative solution is
always very close to the expected exact result (4.1.9) over all the fundamental range 0 < B < 1 of the
coupling strength. The small deviation between the numerical and the exact solution can be attributed
to the truncation of the infinite integral equation to the vacuum and two-particle terms.

1.2 - 12

1.0 7 _Rek(®) ) 10 _ReK(0+i€)
0.8 / 0.8

06l AN 0.6

0.4 0.4

0.2 ImK(6) 0.2 ImK(6 +ie)

6 6
1 2 3 4 1 2 3 4

Figure 6.2.2:  6th (continuous red) and Tth (blue dashed) iterative functions for the Dirichlet problem
together with the Dirichlet solution Kp(¥) (black dashed line) for real and shifted rapidities. €1 = 0.05,& =
g9 =0.1,B =0.6. The input of the first iteration was the Dirichlet solution (4.1.9) itself.
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For the finite mass problem using Eq. (6.2.16) involving the pair assumption as a starting point,
(6.2.22) is modified as

e [ aa - 1 < Eo(p(9 + ie1)) — E(V + ie1)
€1 2y 14 8(=2(9 +ier)) Eo(p(¥ +ie1)) + E(9 + ie1)

+ (1 =) (14 S(=2(0 +ie1))) K (9)®)

€1

N 1 +oo ¥’ Eo(p(9 +ie1)) — BE(Y +ie1) + 2B (9 + ie2)
F¢ oo 2w Eo(p(¥ +ie1)) + E(V + ie1)

FY(0 +i(m+ e1), —9 —iea, 9 +ie2) K (' ><k>) + K(ﬂ)éﬁ ,

(6.2.24)
1-1 (. Eo(p(¥ +iea)) — E(Y + iea)
Kﬁ(k“):(l 0 1 — ~o) K (9) D
( )52 2 7o Eo(p(19+i52))—l—E(19+i82) +( 72) ( )52
1 /+°° d¥' Eo(p(¥ +ig2)) — E(0 +iea) + 2E(9 + igy)
2F¢ o 2T Eo(p(V +ie2)) + E(V + ig2)
1
FS(9 4 i(m + e9), =9 —ier, O +ie) K (V' )<k>> + 2K(19)( )
yielding scheme S2F. The solution along the real axis is obtained by
—1 Eo(p(v)) — E()
K() = 2 +
9= 5t CRum T E0) 625
1 [T 40 By(¥) — EW) + 2E(9 +ica) 4 : PV ) o
— — F2(9 =0 —igg, 0 K@W)® | .
—i—Fl o Fol0) + E(0) 5 (U4 im igg, V' +igg) K(V')¢]

For the finite mass quench problem fast convergence is witnessed again, furthermore, the iterative solution
appears to be close to the proposed Ansatz (6.2.13) (Fig. 6.2.3). Just like in the Dirichlet case, these
observations hold for a large regime of the coupling strength B and the quench parameter mg. Note that
the deviation between the iterative solution and the Ansatz (6.2.13) is of the same magnitude as in the
Dirichlet case, therefore it can safely be attributed to the truncation of the form factor series, which will
be further confirmed after taking into account the four-particle contribution in Subsection 6.2.4.
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Figure 6.2.3: 6th (continuous red) and 7Tth (blue dashed) iterations for the finite mass quench problem
together with the proposed solution (6.2.13) (black dashed line) for real and shifted rapidities. €1 = 0.05,¢ =
€9 =0.1,B =0.6,m = 1,mg = 10. The input of the first iteration was (6.2.13) itself.

6.2.4 Numerical solution of the hierarchy: adding the O(K?) terms

To construct an iteration scheme including the four-particle contributions of (C.1.2)-(C.1.5), we can simply
add them (6.2.18)-(6.2.21). For a closed iteration, however, we now need also an iterative function that is
defined for real rapidities. Although it is possible to construct a scheme working with only two iterative
functions, the one presented below uses three of them: for K (6)*+Y and K (9)(k+1) the integration contour
is shifted with €9, and for K (9)(k+1) the contour is shifted with ;. Unlike in the equation for K (9)(k+1),
where the denominator is 1 4+ S(—2(6 + ic1)), in the equation for K(#)**1) the denominator is 1 +

ﬁ joooo g—fr/ (S(—20)+ SO —6¢)S(O+¢)) F:,fb(—e, —0',0" K (0")*%) instead. The equations for this scheme

S4D read
Kw) = 12t L (2 (1= y1) (14 S(—20 + ie1))) K(9)®
T2 1+ S(—2(0 +ie1)) m ! &1
1 [t dy N N
+ ﬁ 5 F3 (O +i(m+e1), = —ieg, ¥ +iea) K (V)L
1 [ dy

T ord ) 2 (5 (—2(9 + ie1)) K () %) + S(9 +ier — ') S(I + ier + 19’)K(19)§]f)>

FY (=0 — iy, =9, 0" ) K (0') )

(6.2.26)

todl [TeodYly o VI
4F¢/ / F5 (9 +i(m +e1), =0 — i, V] + icg, —0h — icg, ¥ + ica)

K(ﬂ&)g’;)ng)é’;)) F AR
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1-1
K@)§5 =5 — 1+ 1 - K@D
27
+ L o dﬁ,F (194‘@(71'-}-82) ﬁ — 161 19/+i€1)K(19/)(k)
2F1¢ —00 2w 3 ’ 1
1 +oo Ay’
+— | 5 (SW+iea—0)S +ie2 + K ()
217 /_oo o (S0 +iz2 = 0)5(0 + s + 0K @)D .
Fy(—9 — e, 0", 0") K (')
+oo 9! 400
8F¢/ v, d192F¢ (0 +i(m + e2), =0 —ier, V) +ier, —0y —iey, V) +ieq)
INCAKEN (19’2)5,-’?) o E@ED,
2 oF? oo 21
-1
(=0, =0, 0K (ﬁ’)(k)] (2 + S(=20)K (6)™)
N dﬁ,F(bw“” — —ieg, ¥ +ie2) K(9)L5) (6.2.28)
F¢ 2 ) &

+00 7,9/ +o0
<z>/ dv; / Cw?ﬂ) (0 + im, =0, — ieg, O + ieg, — 0y — ica, ¥y + i€2)
4F
KOWEOE ) + 3K

We omit the equations of the iteration scheme for the finite mass case, as the corresponding finite mass
scheme S4F is easily obtained from S4D by plugging the extra gg;g type factors. Similarly to schemes
S2D and S2F, the parameters v and o were set 1, and the averaging with the previous iterative functions
is present in each iterative step.

This scheme was chosen from other possibilities by observing that it always performed better than all
other schemes we tried. Unlike S2D and S2F and just like other schemes including the four-particle terms,
S4D and S4F iterations are unstable. To overcome this issue we stopped the iteration when the difference
between two consecutive iterative functions was the smallest. The functional difference was measured by
the integral

/ dG‘Re[K(ﬂ)(k“) — K()®| |

as the difference between the imaginary parts tends to be much smaller and slowly varying.
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Figure 6.2.4: Left: 7th (blue dashed) iterative functions obtained by S2D and the optimal iterative function
(red continuous) obtained by S4D for the Dirichlet problem together with the Dirichlet solution Kp(9) (black
dashed line) for real rapidities.c; = 0.05,¢ = €9 = 0.1, B = 0.6. The input of the first S2D iteration was
the Dirichlet solution itself, whereas the S4D input was the 7th S2D iterative function. Right: 7th (blue
dashed) iterative functions obtained by S2F and the optimal iterative function (red continuous) obtained
by S4F for the finite mass quench problem together with the proposed solution (6.2.13) (black dashed line)
for real rapidities. €1 = 0.05,e = e9 = 0.1, B =0.6,m = 1,mg = 10. The input of the first S2F iteration
was (6.2.13) itself, wheres the S4F input was the 7th S2F iterative function.

As demonstrated in Fig. 6.2.4 the solutions of S4D and S4F schemes are indeed remarkably close to
the exact Dirichlet solution and the Ansatz, respectively. In fact, the solution curves now lie on top of
the exact Dirichlet amplitude and the Ansatz, respectively. This pattern again holds for all values of the
coupling strength B and a large range of the quench parameter my.

6.2.5 Checking the validity of the pair assumption via the three-particle condition

Here we provide a numerical verification of the pair structure and hence exponential form (4.2.6), (6.2.14)
of the initial state by considering higher members of the hierarchy. This rapidly becomes impractical due to
the computational cost of the integrals involving very high particle form factors. In addition, constructing
the form of the equation with the integration contours arranged conveniently for numerical evaluation is

also quite tedious.
For this reason, we restrict ourselves here to the case of three-particle test states. The three-particle

condition is a sum
0:T0+T2—|-T4+T6+... (6229)

with T}, denoting the n-particle contribution from initial state(4.2.6), (6.2.14). Since the iterative solution
of the one-particle condition is very well described by the Ansatz (6.2.13), the latter can be used to perform
the evaluations. We have computed the first three terms explicitly with the result given in (C.1.7). For
the contribution Ty, deriving the integral form proved to be so tedious that we decided to estimate its
contribution directly evaluating the corresponding term in the finite volume form (C.1.1) for a large value
of the volume (mL = 250).

To verify that (6.2.29) holds, we computed the sum for several values of the Sinh-Gordon coupling in
the fundamental range 0 < B < 1, for different values of the test rapidities at each point, and for several
different quenches, parametrized by the mass ratio mg/m.

To make certain that the integral form (C.1.7) of the condition was derived correctly, we supplemented
the calculation of Ty and T4 by a direct evaluation of the finite volume sum for mL = 250. The finite
volume form was always found to agree with the integral form within the numerical precision of the former.
Note that for practical evaluation the finite volume sum must be truncated to states below some upper
energy cutoff. For To and Ty it was possible to keep this truncation high enough to achieve better than 3
digits accuracy; however, for Ty this was not always the case, as we discuss below.
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A sample of the resulting data is presented in Appendix D. As a benchmark, we always quote the
Dirichlet case mg/m = oo, which can be obtained by omitting the energy factors in square brackets
from each term. For the Dirichlet case, the equation must hold exactly when terms 7,, are included for
all n, since then (4.2.6), (6.2.14) correspond to a boundary state known exactly from reflection factor
bootstrap [122,155]. We can see that the terms 75 and 74 (corresponding to An = =+1) are always
dominant, and typically cancel each other within a few percent. To go further, it is necessary to include Tj
and Tg, corresponding to An = 4+2. In most cases, this improves the cancellation to better than a percent.
There are two exceptions to this, however. First, when the sum Ty+ 15+ Ty is relatively small, to verify the
improvement T would need to be evaluated to a very high precision which is not possible using the finite
volume summation. Second, when some of the test rapidities are relatively large, the cut-off necessary to
evaluate the finite volume sum for Ty prevents the evaluation of all the dominant contributions, as these
come from regions which cannot be explored within reasonable computer time. However, in all these cases
we also see the same deviations for the mgy/m = oo case, for which we known the full equation should hold
exactly. Taken altogether, these facts show that the deviations can be explained by the approximations
made during numerical evaluation. On the other hand, we have data for a much larger number of couplings
and rapidities than shown in Appendix D, and all of them fall in the same pattern.

Summing up, the numerical evaluation of the three-particle member of the hierarchy strongly confirms
the exponential form of the initial state.

6.3 Summary

Here we briefly summarize the most important points and results presented in this chapter. We studied
a particular class of quenches within the Sinh-Gordon model, starting from the ground state of mass myq
with zero coupling, to a post-quench system with a mass m and a nonzero value of g. For this quench
the initial state can be specified via an operator condition allowing the derivation of an infinite hierarchy
of integral equations involving form factors of the model and the unknown overlap functions Ks,. Each
integral equation can be written as a form factor expansion, consisting of an infinite number of terms.
We presented the general derivation of the hierarchy and a number of arguments concerning the nature
of its solutions. Some of these arguments are likely valid for more general models (such as sine-Gordon

or AS\I,)_I affine Toda theories) and initial states, described by similar integral hierarchies. The results we
expect to be generally valid are the following:

1. For a free field, the unique solution of the hierarchy is the usual squeezed state obtained from
the Bogoliubov transformation, and perturbation theory considerations imply the existence and
uniqueness of its solution for the interacting case.

2. The terms in the hierarchy are ordered in magnitude by the difference between the bra and ket
state particle numbers An; the larger An, the smaller is the corresponding term, with the An = +1
terms dominating for odd operators (such as the elementary field ¢ considered in this paper). This
means that each equation in the hierarchy can be well approximated by a finite truncation, and that
higher equations corresponding to test states with more particles probe overlap amplitudes with
states containing more particles.

3. The iterative solution method that was developed on the basis of the aforementioned truncatability
property.

We presented a numerical solution for this hierarchy based on the pair assumption for the initial state
and argued for its validity based on “integrable dressing” and on analogies with boundary conformal field
theories. Due to the heuristic nature of the pairing arguments our considerations were supplemented by
numerical checks. We found that the iterative solution of the numerical methods confirms to high precision
that the proposed factorized Ansatz (6.2.13) indeed solves the one-particle test state condition, which is
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the lowest member of the hierarchy. Second, an independent test of the squeezed state form, which includes
the pair structure and the exponentiation, was provided by checking the next member of the hierarchy,
i.e. the three-particle condition. Note that since the Ansatz contains no free parameters, there is no way
to adjust it: it either fails or passes. In the end, the Ansatz passed all the tests we could pose; while
these are limited by computing power, they still impose very stringent constraints. This shows that the
Ansatz is at least a very good approximation to the solution of the quench problem, at least in the range
of parameters studied in our investigations. Based on the analytical Ansatz, steady state expectation
values were obtained in Ref. [88]. Using the pair assumption, we also showed from the integral equations
that the K-function behaves asymptotically as e=2Yl for quenches with a finite difference in the pre- and
post-quench masses, and thus demonstrated that the given quantum quench is well-defined in the field
theory sense as well.



Chapter 7

Mass quenches in the sine-Gordon model

In the previous chapter it was demonstrated how the overlaps for a specific quench protocol can be
calculated. For the computation a crucial ingredient was the operator formulation of the quench problem
and the existence of the hierarchy of infinite integral equations as a consequence. For a general quench,
however, such integral equations cannot be written down, and the determination of the overlaps remains
an unsolved problem. For the numerical determination of the overlaps, truncated spectrum approaches
(TSA) offer a notable choice [55,164,175]. In addition, TSA methods have a direct access to the time
evolution of various quantities including one-point functions [55,164,167,176,177] and even multi-point
correlation functions [176] after quantum quenches. These methods hence offer an insight not only into
the quench overlaps but also into the time evolution in relativistic QFTs for short time scales and can be
applied in non-integrable models as well.

The central idea of TSA methods is to consider the QFT in a finite volume L resulting in a discrete
spectrum and to introduce an energy cut-off, i.e. only finite number of states are kept from the entire
Hilbert space. Our main focus in this chapter is on the determination of overlaps for a mass quench in the
sine-Gordon model via the truncated conformal space approach (TCSA), and for the particular case of
TCSA, the starting point is to regard the QFT as a perturbation of its UV limiting conformal field theory.
If the matrix elements of the perturbing operator are known in the conformal basis, the Hamiltonian of
the deformed CFT is easily represented as a finite dimensional matrix in the above scheme.

TSA methods are mainly used to study ground state and low energy properties of interacting QFTs and
it is not obvious whether they can correctly describe the physics in non-equilibrium situations, when the
initial state is a highly excited state in the post-quench basis. This potential problem is of similar nature
as the question of the applicability of the quench paradigm in field theories. Whereas in effective theories
the UV cut-off is generally large, the available energy cut-offs in TSA methods are usually much more
restricted. Indeed, a necessary criterion for the applicability of TSA is that the overlaps decay sufficiently
fast with energy, and consequently large energy modes have overlaps negligible with the initial state. The
magnitude of the quench for which TSA is expected to describe correctly the out-of-equilibrium physics
is the small and moderate size quenches, when the injected energy is well-below the energy cut-off. It
is very fortunate that, as demonstrated in the previous chapter and further discussed in Section 7.2, the
overlaps after a quench usually decay with the energy, and therefore large energy modes have overlaps
often negligible with the initial state. This finding confirms again the applicability of the quantum quench
protocol in field theories and enables the use of T'SA for suitably small quenches.

In this chapter we first discuss how TCSA is implemented for the sine-Gordon model and then turn to
the discussion of the two-particle for the first breather after a mass quench [175]. We show that continuing
analytically the Ansatz for the sinh-Gordon problem (6.2.13) as B = —2¢ (cf. (3.4.4) and (3.4.14)) the
result agrees with the numerical values of the pair overlaps, although in the quench in the sinh-Gordon
model the interaction was changed as well. Furthermore, by calculating the overlaps for 4-breather states,
we demonstrate that the integrable squeezed-coherent state assumption is consistent with the TCSA data.

68
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7.1 TCSA in the sine-Gordon model

The truncated conformal space approach (TCSA) is an efficient numerical method to study perturbed
conformal field theories. The main idea is to consider the theory of interest in a finite volume L resulting
in a discrete spectrum of the unperturbed CFT, which can be truncated to a finite subspace by introducing
an upper energy cut-off parameter ec, [18]. For many perturbations of CFTs it is possible to calculate exact
matrix elements of the perturbing field and various operators in the truncated Hilbert space. Therefore,
computing the spectrum of the perturbed theory and other physical quantities reduces to manipulations
with finite dimensional matrices.

For the sine-Gordon TCSA [178] the starting point is the Hamiltonian (3.4.26) of a compactified free
massless boson in finite volume L, perturbed by a relevant cosine operator with the Hilbert space in
finite volume spanned by the basis (3.4.29). Using the simplest truncation scheme described above, the
truncated space is given by

l
_ _ (nf3)? - 1
Hrcsa(Ecut) = Span § a_k, ... G_j, G—p, ... G_p,|N) yy + Z;kl + Z;pj BET) < €ecut (7.1.1)
= Jj=
which is the scheme commonly employed in the literature.
Matrix elements of the vertex operators V,,, can easily be computed in the conformal basis using the
mode expansion of the canonical field ¢ on the cylinder:

o(x,t) = o + 4%77075 +1 kz#()]i [ak exp (12;]4:(:6 - t)) + ag exp <12£Tk:(x + t))] . (7.1.2)

It is straightforward to show that the matrix elements of the vertex operators

<n/|ak"1 ak;/ apll apgl Vima_p, ... Ak, G—p; ... Gy, |n> (7.1.3)
are independent on the Fock module index of the states apart from a selection rule 4, ,,. Therefore,

using the Fock decomposition of the free boson Hilbert space
H=P 7.

the Hamiltonian of sine-Gordon model has a simple modular structure which can be represented as a
tridiagonal block matrix, where the entries correspond to operators acting either within each block (the
conformal part Hy) or between neighboring Fock modules (the blocks V1, from the vertex operators Vi):

v, HMY v
Hryesa = v H"Y v, : (7.1.4)
v =Y v

This matrix is finite dimensional when restricted to the space (7.1.1), and its numerical diagonalization
yields an approximation of the energy levels and corresponding eigenstates of the model.

In the particular quench protocol of changing the mass scale in the system, the initial state corresponds
to the ground state of the same Hamiltonian (3.4.22) with A replaced by A¢ corresponding to My. The
overlaps are therefore easily calculated by the scalar product of ground state of the pre-quench Hamiltonian
with A\g and the eigenstates of the post-quench Hamiltonian with coupling A. When considering the post-
quench evolution in dimensionless volume [ = M L, implementing the quench can also be regarded as using
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the ground state computed in the rescaled volume lp = Myl/M [167]. This fact imposes a restriction on
the magnitude of the quench available by TCSA since on the one hand it must be ensured that neither
the pre-quench nor the post-quench volumes are too small, in order to avoid large finite size effects (c.f.
Section 3.3). On the other hand the volumes cannot be too large, where a very high ey is required for a
given accuracy.

In a suitable volume window and for small and moderate size quenches, where the excitations are
dominated by few-particle states, the finite volume corrections become exponentially suppressed. Never-
theless TCSA inevitably involves an energy cut-off e.,t to truncate the Hilbert space to a finite dimensional
one. Therefore all quantities computed from TCSA show explicit dependence on the cut-off, which can
be (at least partially) eliminated using renormalisation group methods [179-181]. RG methods introduce
running couplings in the Hamiltonian and additional perturbing operators determined by the operator
product expansion of the perturbing field with itself. In particular, in the sine-Gordon model we consider
an effective Hamiltonian in the form

1 A A
Hepp= /de  (0:0)” + (9:0)” : +hl + 5 /dw (Vi + Vo) + ;/dx (Va+ Via)

where we included counter terms generated at leading order according to the fusion rules V,Vj ~ V4.
Introducing the dimensionless couplings

_ )\aL272ha a262
Y= = —— 7.1.5
(2m)1—2ha 81 ( )
the running couplings \; are determined by the RG equations [182]:
- - n2habc
A —Ae(n—1 A — (14+0(1 7.1.6
) = Reln=1) = g 3 Aol (1-+ 01/ (716)

where C¢; is the operator product coefficient, hqpe = ha + hy — he and do(1) is the vacuum scaling function
(cf. [182]). The parameter n denotes the highest descendant level retained after truncation. In the free
boson CFT the descendant level is given by

T l
n:Zk‘i:ij, (717)
i=1 j=1

and the Hilbert space can be restricted to its zero-momentum subspace as a consequence of the homogeneity
of the quench.

The couplings must be followed using (7.1.6) down from n = oo to the appropriate value of 7.y
corresponding to the given cut-off e.,; and at the lowest order it is only necessary to run the couplings Ag
and Ao, from their starting values \g = 0 and Ay = 0 at n = co. The effective Hamiltonian can now be
written as

v, v HMY v v,
Hi = Vo v HY v, V.,
Vs v HMY vy v,

were we used a modified version of the running coupling prescription in [182] making the eventual value
of ney: dependent on the block one considers. Namely, when computing the coefficient of the block V5
between F, and F,42, the intermediate states in the OPE V1 Vj ~ V5 are from F,; which determines the
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level n¢,: appropriate for the given block, and similarly for V_o between F, and F,_9 neyt is fixed from
Fu—1. For the identity term between F, and F, there are two possible intermediate modules F,+1, so the
identity coupling must be split into two pieces Mg+, each of them running down to the appropriate gy
determined by the highest level in Fg11.

The block-dependent running coupling corresponds to including a non-local counter term. The ap-
pearance of such counter terms was first observed in [183]; they account for 1/n corrections in the running
coupling. In the sine-Gordon there is a large 1/n effect resulting from the fact that the cut-off level is
heavily module dependent, ranging from e.,; in Fock module Fy to 0 for the Fock modules with the
largest indices Fig,,,,. The consistency of this scheme was verified by numerically checking the cut-off
dependence of the 15 lowest-lying levels in the TCSA spectrum, which proved to be negligible with this
method.

7.2 Overlaps from TCSA

7.2.1 The By — B; pair amplitude

For the mass quench considered here the initial state is translation and parity invariant. Under parity all
the odd breather transform as P|J)p,, ., = (=1)| — ¥)B,,,,, therefore the lowest excited states including
only first breathers with a non-zero overlap consist of two first breathers. Here we present numerical
results for the B; — Bj pair amplitudes and compare them with the infinite volume prediction offered by
the analytic continuation of the sinh-Gordon Ansatz (6.2.13), which can be written as

Kp(v) (7.2.1)

where ¢ is given by (3.4.14).

For the numerical overlaps one first has to identify states corresponding to By — Bj pairs in the
numerical spectrum of the post-quench Hamiltonian. Solving the constrained Bethe-Yang system (4.3.2)
one obtains the possible rapidities from which the energy levels can be computed. However, apart from the
lowest lying levels, the identification is not feasible by merely comparing the TCSA and the Bethe-Yang
energies due the density of the TCSA spectrum. This issue can be overcome by supplementing the energy
selection procedure with a comparison of the finite volume form factors of the fields V; and V5 obtained
using the formalism developed in [144], to the TCSA matrix elements (for an exposition of how this works
in sine-Gordon theory cf. [184]). As the form factors depend sensitively on the particle content of the
state, the identification can unambiguously be performed.
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Figure 7.2.1: The pair amplitude for some mass quenches in sine-Gordon theory. The sine-Gordon coupling
B is parametrised as = v/4mw/R. The blue (continuous) curves correspond to the sine-Gordon Ansatz
(7.2.1), and the red (dashed) ones to the free theory solutions.

Having identified the proper states in the set of numerical eigenstates the numerical overlaps can be
obtained from their scalar product with the initial state, divided by the vacuum overlap to eliminate
the normalisation factor N in (4.2.6). As the TCSA matrix elements of the perturbing operator are real
numbers, all the numerically computed eigenvectors are also real, corresponding to a specific convention for
the phases of the post-quench eigenstates. Therefore the phase of the overlap function K () is absent from
the data, so after normalising the TCSA overlap values with the inverse of Ny (4.3.4)' we compare their
modulus to the value obtained from (7.2.1). Note that using (4.3.4) for the pair overlap is independent of
whether the quench in the first breather sector is integrable or not. This comparison is shown in Fig. 7.2.1
for a few quenches; the data strongly confirm that the prediction (7.2.1) and it is also clear that both the
free particle and the Dirichlet parts of the analytic formula (7.2.1) are important.

In some cases, deviations in the low energy range can be seen, which can be attributed to two sources.
First, the initial state is different from the free massive vacuum for which (7.2.1) (or more precisely, its
sinh-Gordon counterpart (6.2.13)) was obtained. However, the difference is the presence of a relevant
perturbation in the pre-quench Hamiltonian, which is a relevant operator and so its effect decreases with
energy. Second, when modelling the finite size effects in Section 3.3 we used a formalism that neglects
exponential corrections in the volume, which affect the lower lying states more. Unfortunately, it is

!Unfortunately a slight mistake was made in the work Ref. [175], on which this Section is based, namely the TCSA
overlaps were multiplied incorrectly by N2 instead of its inverse. This has no essential effect on the quality of the match
between the TCSA data and the analytic predictions for the overlaps. However, the plots presented in Fig. 7.2.1 are not
identical with that of Ref. [175] and were created using the correct procession of the TCSA data.
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Rapidities 97, 935 BY energy | TCSA energy | Normalized overlap | Factorized prediction
{0.671828, 1.44047} 1.13089 1.13133 0.0255928 0.0244265
{0.651971, 1.72849} 1.34668 1.34742 0.0168602 0.0162507
{1.19428, 1.70726} 1.51794 1.51918 0.0108541 0.0108043
{0.642841, 1.95028} 1.56712 1.56853 0.0117727 0.0113951
{0.637471, 2.1315} 1.73764 1.79245 0.0083998 0.0083603

(a) R=2.3, M/My = 0.5, MoL = 55, €cus = 24

Rapidities 97, 9% BY energy | TCSA energy | Normalized overlap | Factorized prediction

{0.549607, 1.22608} 1.33758 1.33916 0.0296001 0.0278547
{0.524061, 1.51576} 1.56955 1.57217 0.0139780 0.0195048
{1.03577, 1.48932} 1.74274 1.74686 0.0142756 0.0149960
{0.512645, 1.73741} 1.80847 1.81308 0.0137404 0.0141252
{1.00938, 1.72497} 1.98019 1.98813 0.0130837 0.0108970

(b) R =2.0, M/My = 0.5, MoL = 50, ecur = 24

Rapidities 97, U5 BY energy | TCSA energy | Normalized overlap | Factorized prediction

{0.618879, 1.36023} 1.60354 1.60489 0.00454695 0.00344512
{0.599521, 1.64559} 1.89691 1.89943 0.00292898 0.00219769
{1.12225, 1.62472} 2.12314 2.12725 0.00176750 0.00132404
{0.590723, 1.866} 2.19785 2.20287 0.00203194 0.00150384
{1.10091, 1.85633} 2.42300 2.43139 0.00128401 0.00091002

(c) R=2.3, M/My = 0.75, MoL = 40, ecyr = 22

Table 7.2.1: Overlaps for 4-B; paired states |—97, 97, —035,93). The sine-Gordon coupling 3 is parametrised
as B = v4r/R. To eliminate differences in phase conventions of energy eigenstates the modulus of the
overlaps is reported.

not easy to separate these effects, and so we cannot say anything more definite about the low-energy
behaviour. However, the analytically continued solution (7.2.1) definitely provides a good description of
the amplitudes in the mid-to-high energy range.

7.2.2 Amplitudes for 4 B; particles and factorisation

Here we aim to check if the squeezed-coherent form of the initial state (4.2.6) is a valid assumption in the
sector of the first breathers. Once the amplitude K (¥) is pinned down, all higher overlaps are determined
by the exponential form, which entails the factorisation property claiming that states which do not have
an exclusive pair structure in terms of particles have zero overlap, and for paired states the overlap is just
equal to the product of individual pair state overlaps.

Another prediction from factorisation is that the overlaps for paired 4-Bp states is the product of
pair overlaps. This is also consistent with the TCSA data as shown in Table 7.2.1. For the quenches in
sub-tables (a) and (b), the overlaps are large enough so that one can observe a quantitative agreement
between the predictions of (7.2.1) and the TCSA results. For the example in sub-table (c), the overlap is
too small to be measured and the agreement is only qualitative.

The question is whether this constitutes a non-trivial test of overlap factorisation. As discussed in
Section (4.2), when the quench is small factorisation is expected to be valid to a very good approximation.
A small quench means that the average energy density & after the quench satisfies

£ = 7 (W) H(0)) — (0]H]0)) < m]
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where m; is the mass of the lightest particle. In such a case the density of even the lightest pairs is so
small that the average distance d between pairs is much larger than the correlation length ml_l. Since the
interactions are suppressed by the distance as e ™%, the multi-pair amplitudes are expected to factorise
irrespective of integrability when the quench is small.

We evaluated £ for all the quenches for which we could produce reliable TCSA data and found that d
was at least an order of magnitude larger than ml_l, therefore all observed deviations from factorisation
are expected to be TCSA related (either truncation errors or unmodeled finite size effects). Indeed, when
testing the overlaps for non-paired 4-B; states, they proved to be an order of magnitude smaller than the
overlaps for paired states, and were of the same order as the deviations between the prediction (7.2.1) and
the measured two-particle overlap, which is consistent with factorisation.

7.3 Summary

In this chapter we studied mass quenches in the sine-Gordon model by the truncated conformal space
approach (TCSA). We extracted the finite volume pair overlaps for the first breathers and calculated
the corresponding infinite volume predictions for the pair overlaps. It was demonstrated offered (infinite
volume) pair overlaps from TCSA match to a good accuracy with the analytic continuation of the sinh-
Gordon pair overlap (6.2.13). Although the two quench protocols slightly differ (in the sine-Gordon
model only the mass is changes, whereas in the sinh-Gordon, the coupling constant is also altered), this
difference is expected to affect only the low-energy behaviour of the overlaps. The observed match between
the numerical and analytical overlaps therefore further supports the validity of the Ansatz for the sinh-
Gordon model, since TCSA by construction is devoid of the assumptions made in the previous chapter.
We also studied the overlaps for states composed of 4 first breathers, and showed that the TCSA data is
consistent with the factorisation of the overlaps, expected to occur for the given quenches within the first
breathers.

TCSA also gives access to amplitudes for higher breathers and soliton—anti-soliton pairs. Here and in
the work [175] we refrained from reporting the corresponding numerical data, since at present we have
no theoretical description for them. Since the appearance of [175], another work was published applying
TCSA to extract the overlaps. In Ref. [164] mass quenches in the Eg longitudinal field Ising field theory
were studied, where it was possible to study the large energy asymptotics of the overlaps for the lightest
particle and, which found to be e £ rather than e 2/?l. Together with the results presented here and
in the previous chapter, this contributed to better although still partial understanding the asymptotic
behaviour, which is worth discussing here and can be summarised as follows [164]. The high-energy
behaviour of the overlaps is strongly influenced by the UV conformal field theory or more precisely by
presence of interaction between the particles represented in the UV theory of the post-quench model.
Concerning the sinh- or sine-Gordon models and Fg model, the UV limiting theory is a free theory in
all these cases, i.e. the free boson and the free fermion CFT. Nevertheless for the Fg model the basis of
particles Aj ..., Ag is essentially different from the free fermions, and these particles do not become free
in the ultraviolet limit, unlike the elementary particle in the sinh-Gordon model and the first breathers
in the sine-Gordon theory. This is not a contradiction as there is no unique notion of a particle basis in
the limiting conformal field theory, and considering the massless limit from different massive directions
produces different results. Therefore the presence of interaction between the particles represented in the
UV theory seems to be essential for high energy behaviour of the overlaps.

Finally, it is also important to mention that the asymptotics of the overlaps always decays with energy.
This behaviour enables not only the use of TCSA in these particular situations but also guarantees that the
quantum quench protocol in field provides cut-off independent physics at least for moderate size quenches.



Chapter 8

Time evolution of one point functions after
a quench

The previous chapters were devoted to the overlaps after quantum quenches, and we presented important
examples when the overlaps can be computed. Although the overlaps themselves are interesting quanti-
ties, as discussed in the introductory chapters, the knowledge of the overlaps is crucial to come up with
predictions for the steady-state and also for the quench dynamics at least with the currently available
techniques in IQFTs.

Whereas important features of the steady state, such as the emergence of the GGE [6,19], are believed to
be understood in integrable systems, and in integrable quenches it is also possible to give a representation
of the steady state, the theoretical description of the out-of-equilibrium time evolution is much more
difficult and less understood than the characterisation of the steady state. Describing the actual time
evolution and possibly identifying universal features of the non-equilibrium dynamics are also of great
interest but analytical results have mainly been restricted to systems that can be mapped to free particles
[86, 87,90-102], to conformal field theory [27,28| and to a few cases in interacting integrable systems
[73,74,83,103-106].

Our aim in this chapter is to study the time evolution of one-point functions after homogeneous
quenches in massive IQFTs using analytical tools. As discussed in Section 2.3, one advantage of the
Quench Action approach is that it describes the late time evolution in a uniform fashion, but the necessary
ingredients, i.e. form factors of local operators with respect to the quasi-particle and hole excitations over
the steady state are not known. Many of the earlier results and our findings follow therefore the way
provided by Eq. (2.1.1). ie. the decomposition of the initial state with respect to the post-quench
eigenstates, which is a very natural approach in IQFTs due to the available exact form factors.

In massive integrable quantum field theories, for suitably small quenches, the semi-classical approach
[113,185-187] and approaches based on form factor expansions [107-109,111,112| can lead to analytical
predictions for the time evolution of certain observables. The perturbative approach in [111,112] can
be applied to any quench in which the pre-quench Hamiltonian is integrable, however, analytical results
have only been obtained by perturbation theory up to first order in the quench amplitude, which is often
too restrictive [164]. The method developed in [107-109, 113] can be applied whenever the post-quench
Hamiltonian is integrable but it requires that the quench is integrable according to the discussion in Section
4 and the post-quench particle density is suitably small.

Particular examples include mass quenches within the paramagnetic phase of the Ising field theory [107],
where due to the existence of a Bogoliubov transformation the structure (4.2.6) is guaranteed and the K-
function is explicitly known, and the repulsive regime of the sine-Gordon model [108,113], where (4.2.6)
is an assumption, but is known to hold is the small quench limit (c.f. Section 4.2). In Ref. [107] the time
evolution of the magnetisation operator in the Ising field theory was shown to decay exponentially in the
leading order and in the long time limit with a time constant
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Tlsing =

oM [
-1 / A9 | K 15ing(9) sinh 9 . (8.0.1)
™ Jo

For the sine-Gordon model, similar results were reported in [108,113] for vertex operators V, with half-
integer a resulting in a time constant

Tl = M, sin? <m> / dy |ng(19)\2sinh79 , (8.0.2)
m B /) Jo

where a = af. Interestingly, the “simple” semi-classical treatment [113| gives the same predictions as
a linked cluster calculation involving form factor expressions and the resummation of secular terms.i.e.
terms that grow polynomially with time and are the consequence of the kinematic pole axiom (3.2.6). This
method was first used in [107] and then in [108] for the sine-Gordon model.

Based on (8.0.1) and (8.0.2) one may assume that the one-point functions after a quench exhibit an
exponential relaxation, at least for integrable quenches. Unfortunately, both cases discussed seem to be too
special, as the magnetisation operator has vanishing expectation value and non-vanishing form factors with
odd number of fermions only, and the vertex operators V, with half-integer a have non-local properties with
respect to the solitonic excitations (3.2.5)-(3.2.7), which is extensively used in the computation in [108].
At the moment the relaxation of local operators to their steady state expectation value is not known in
general, but in many cases a power-law relaxation is expected instead of an exponential one [87,108-112],
which is consistent with the predictions of the Quench Action approach as well [83].

For an initial state (4.2.7), time evolution of the vertex operator ¢¢/2 in the attractive regime of
the sine-Gordon model was studied in [109]. In the homogeneous (translationally invariant) quenches
considered here, the presence of zero-momentum solitons or anti-solitons is excluded if the initial state is
annihilated by the topological charge which is a typical situation including quenches from the ground state
of the model with a different coupling. For stationary breathers B,, however, the one-particle couplings
gB, can appear in (4.2.7). The conclusion of [109] was that besides the relaxation associated with the
solitons (8.0.2), one-particle oscillations with a time dependence of the form e~ are present due to the
zero-momentum breathers and m corresponds to the breather mass. These oscillations show an exponential
decay with several different relaxation rates. In particular, with only one breather species in the model
the contribution of the first breather to the relaxation rate of one-particle oscillations is

-1 m
TB1 =

By / 4 (1= Sy, () | K, 5, (9)]? sinh g . (8.0.3)
0

™

As discussed in Section 5, the existence of a one-particle coupling implies a first order pole in the
corresponding K function at the origin and as an immediate consequence, the integral in (8.0.3) becomes
divergent since Sp,p,(0) = —1 . Since this contribution was omitted in [109], the results derived there
are eventually incomplete and ill-defined. Even though much of the derivation in [109] remains valid, the
singular expressions clearly need to be corrected, which was performed in [110].

In this chapter we implement the same linked-cluster calculation for the one-point functions [107-109],
but using finite volume to regularise the singular expression originating from the either the form factors
or the K-function. Unfortunately, the proper treatment of the problem. i.e. the calculation of one-point
functions after integrable quenches with one-particle coupling (4.2.7) is extremely technical and long, and
unlike in [107-109|, the calculation of high order terms and hence the resummation of secular contributions
has not yet been performed. Focusing primarily on the one-particle oscillations in the expectation value
relevant to certain experiments [13] and on the non-oscillatory part of the expectation value related to
the diagonal elements in the expectation value, we present results for the time dependence including
terms up to five particles. Therefore we concentrate on the case (4.2.7) and hence the presence of zero-
momentum terms in the initial state, but the calculation includes the regular case as well, for which it
agrees with [107,108].



7

The structure of this chapter is the following. In Section 8.1 we perform a linked cluster expansion
for the time-dependent one-point function, using a finite volume regularisation which was first introduced
in [144]. This allows us to refine the argument of Chapter 5 for the existence of the singularity in Section
8.2, and also the explicit construction of the contributions for (O(t)) up to four particle terms, from which
the terms corresponding to one-particle oscillations are extracted. We then consider the five-particle terms,
but only present the leading order secular contributions in Section 8.3. Our formulas describing the time
evolution are collected and interpreted in Section 8.4, where we address the question of resummation in the
linked cluster expansion and attempt to guess its effect on the eventual time evolution. We also generalise
our results to cases involving more than one particle species. Finally we discuss a class of secular terms
linked to a mechanism analogous to parametric resonance, and summarise our results in Section 8.5. Due
to the large amount of tedious calculations involved, most of their details are relegated to appendices.
The technical details of the linked cluster expansion and the calculation of the time evolution can be
found in Appendices E, F, H, I and J. To confirm the validity of our calculations they were numerically
cross-checked at several points; details of these checks are presented in Appendix K. The results presented
in this chapter were published in [110].

8.1 Linked cluster calculation in finite volume

To describe the time evolution of expectation values of local operator, we follow the approach developed
in [107-109] and apply a linked cluster expansion, combined with the finite volume regularisation scheme
used in [165,188|. The latter is based on the finite volume form factor technique developed in [144]; the
ingredients necessary for our calculations are described in Sections 3.3 and 4.3.1.

For a quench starting from an initial state written in terms of post-quench multi-particle states as in
(4.2.7), a natural approach to compute the one-point function of a local operator O is to decompose it
into contributions from states with different number of particles, which results in an expansion in terms
of form factors of the local operator. However, form factors possess pole singularities due to the presence
of disconnected contributions (cf. (3.2.6)), and for quenches with one-particle coupling the K-functions
are also singular. As a result, the contributions are ill-defined and need to be regularised, which can be
achieved by putting the theory in finite volume, where due to the quantisation of the particle momenta
neither the kinematic singularities of the form factors nor the singularities of the pair amplitude contribute
directly. The finite volume L can be considered as a physical regulator since for any finite L the theory
is sensible and the infinite volume results can be obtained in the limit L — co. The expectation value is
then written as

<_Q‘ eitH(')(O) efitH‘_Q>

o) =G o
L0 HO0) i), -
_L—>oo L<Q‘.Q>L ’

which is first evaluated for finite L where one can verify the cancellation of singular terms explicitly and
then take the limit L — oo.

To perform the calculation, one needs an expression for the initial state in finite volume (4.3), which
was derived in [165]:

122 = N (1) + ZVmI{O0}) 2 + Y K@) NoW, L)1, I})s
1

+y gK(ﬁ)Ng(ﬁ, D{~1,1,0});, + % 3" K1) K (92)Na(91, 9o, L){~1, 1,7, J})L) .., (8.12)
I I+£J
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where I, J are Bethe quantum numbers and we used the notations introduced in Section 4.3. To simplify
expressions, we use the following shorthand notation:

12)L=G(L) Y |2,
n=0

where [2)© = 0);, ,[2)® = 2N (L)[{0}) . etc. denote the contributions with a fixed number of
particles.

To ensure the convergence of the expansion for high energies one can introduce a further regulator
parameter R and consider

(02| e(—%ﬂt)HO(O) 6(—§—it)H‘Q>

(£2]e~H|12) ’
where R > 0. When later the sums on quantum numbers are recast in terms of contour integrals, R
ensures that the integrals themselves are convergent and therefore allows appropriate manipulations of the
contours. At the end of the calculation the parameter R is sent to zero.

Following the procedure introduced in [189], one can separate contributions indexed by particle number
as follows

(O(t, R)) =

(8.1.3)

Ckl _ (k)(Q’e(—§+zt)HO(0) e(—g—it)H’Q>(l) ’

and for a proper normalisation of the state one must also divide by the “partition function”
Z=3Zn=3 (@l ).
n n

In particular for Z, the first few terms are

2
Zo=1, 7, = meLe’mR , (8.1.4)
and
Zy = K*(9)K(0)Ny(9, L)% mHcosh? (8.1.5)
I

Let us turn to the issue of the expansion parameter. Whereas in our calculations R is eventually sent to
zero at the end, for (O(t, R)) is expected to be well-defined for any finite R. Therefore let us first treat R
as a large positive quantity, and introduce the parameters z = e~ mMBR/24it) and z = e~™(B/2=1)  Then the
order of Cy; is zF2! , and that of Z,, is (zz)™. The inverse of the partition function, thus can be expanded

in powers of zZ as
-1 —~
Z = E I
n

where the first few terms read

Zo=1, Zy=-27,, Zy=2%—7y.
Putting these ingredients together, in a finite volume L we obtain
1 .
(Ot R))r = > Cu=> Du, (8.1.6)
where analogously to to [165] and [189], Dy, is introduced as

Dy =Y Crji-iZ;, (8.1.7)
J
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with the first few terms having the form

Dy = Cy — Z1Coy-1 1=1,2,...,
Dy = Cop — Z1Cy 1 + (Z3 — Z9)Coy o 1=2,3,....

Since the Dy are of order zFz!, they must separately be well-defined as L — co:
Dy, = lim Dy, (8.1.8)
L—oco
and so the infinite volume limit can be written as

(O, R) =) Dy
k,l
For convenience and later use, we also introduce the quantities

n
Gn=> Dn_iy, (8.1.9)
=0

whose infinite volume limit is denoted by G,,.
The expressions individual Cy; contain finite volume form factors, which in general are given by [144]

F9 (191+i7T,...,19k+i7T,19/,...,19,)
L{In - IO, iy = e o
N IR

where it is understood that the rapidities {¥1,...,9x} and {¢,..., 9]} are solutions to the corresponding
Bethe-Yang equations with quantum numbers {I,,},{J,}. Formula (8.1.10) is valid whenever there are
no coinciding rapidities; otherwise a more complicated formula taking into account disconnected contri-
butions is necessary. In this paper we are interested in contributions to one-particle oscillations, for which
coinciding rapidities cannot occur, and so the numbers of particles in the two multi-particle states differ
by an odd number which excludes the two possible cases with disconnected terms (cf. [144]).

Note that the equality (8.1.10) is valid up to a suitably chosen phase factor which can be changed
by redefining the phases of the finite volume eigenstates |{I1,...,I,})r. This includes also the fact that
the ordering of the particles is not determined by first principles and any exchange leads to an S-matrix
factor according to (3.2.4). It is clear that all such ambiguities cancel in the expectation value (8.1.3);
however, for a practical calculation one must fix the phases of the multi-particle contributions to the matrix
elements consistently. Here we make use of the consistent prescription introduced in [165]: any time the
amplitudes K (9;) and K*(¥;) appear with some ¥;, the explicit order of the rapidities substituted into
the relevant form factor is given by (—;,v;) and (9; 4 im, —9; + im), respectively. Exchanging any two
pairs of rapidities does not make any difference, therefore the phase of the form factors is completely fixed
by the above rule. Note that the presence of zero-momentum particles does not produce any additional
ambiguities.

+O(e by | (8.1.10)

8.2 Refined argument for the singularity of the pair overlap

Here we revisit the singularity of the two-particle overlap in the presence of a one-particle coupling discussed
in Section 5. Our previous argument was based on an analogy with a boundary problem [165] which we
can now put on a more firmer footing. Recall that the boundary problem consisted of the calculation of
a one-point function within integrable boundary states, where the ordering of the terms was performed
according to powers of e=™R=%) and e~ The resulting expression for Dj; is the same as (8.1.7) but
with the expansion parameters continued analytically to z = e ™/2+i) and z = ¢~™(R/2=) Ip the
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boundary problem, the existence of the infinite volume limit (8.1.8) and eventually (O(x))? requires the
presence of the singularity
;2
Kp(¥) ~ —==2
B(Y) ~ =575,
therefore L
g
K() ~ —==
W) ~ =57

must hold for the quench problem as well. The easiest way to see that is to consider the one-particle
contribution —Z7 which behaves as mL. To make C19 — Z1Cy; finite in the infinite volume limit, C7o must
have a similar volume-dependence, which is ensured by the singularity of K involved in Cys.

At the end of the calculations the regulator R is sent to zero. The contribution G,, (8.1.9) is of order
2] = (e7™/2)" and (just as in [165]) it turns out that the coefficient of the largest power of the m.L term
is always of order g". Focusing on the behaviour of the singular term, the small parameter of the linked-
cluster calculation can be identified with g. As the singularity of the K is of order g2 one can formally
treat K as a term of order g2. This method of counting the orders results in the same classification of
contributions Dy (8.1.9) that is obtained by considering z and Z as the expansion parameters.

This counting of orders works most obviously in the case of a perturbative quench corresponding to
changing the Hamiltonian as

SH = )\/dx\IJ(x) :

where W is a purely odd operator (i.e. whose form factors with an even number of particles in the
pre-quench system is zero). Using perturbation theory to compute the overlaps following [111,112] the
one-particle coupling is of order A, while the pair amplitude K is of order A\2.

When the perturbing operator has even matrix elements as well, the pair amplitude can also have a A
order term. Although this term is not singular due to the regular behaviour of F(im + 1, im — ) at ¢ = 0,
at order \? a singular term is present similarly to the one found in Section 5.3 for the phase quenches in the
sine-Gordon model. Therefore the zero-rapidity pole singularity of K is generic. It is important that the
above arguments do not rely on the integrability of the quench, and only use the translational invariance
of the initial state. Hence even in the non-integrable case the presence of the one-particle coupling implies
a pole in the pair amplitude with the proper residue.

8.3 Time dependence

The calculation of even the leading order time dependence is extremely technical and long, therefore the
detailed computations are relegated to Appendices E-K. Here we merely quote the most important results.
We concentrate on the case with a one-particle contribution and therefore a singular K function in the
integrable initial state (4.2.7), but the results corresponding to the case of (4.2.6), i.e. the lack of standing
particles is easily recovered from the results below.

8.3.1 Contributions up to 4" order: analytic continuation of the boundary result

In this section we construct all the terms up to fourth order using continuing the FEuclidean quantities
computed in [165]. The contributions Dy; for the Euclidean one-point function

e—Hz efH(fo)
©ow)” = g By = D (83,0

with k + 1 < 4 are listed in Appendix F.



81

For the analytic continuation, we apply the R — 0 and © — —it substitutions together with Kp — K
and gg — g which give

Go: (0|0)0)
Gp: gReFPe Mt

2 © Jp )
Goi TSm0 + Re [ TR (-0, 9)emeon,

> ; 8.3.2
Gs: g%e / ;l—ﬁK(z?)Fz?(—ﬁ,ﬁ, 0)e~mi(Zeosh 1) (8.3.20)
™

g < dv Oy —imt(2 cosh¥—1 2 cosh O _—im
+ Qme/_oo o {K(ﬁ)Fg (i, —09, 9)e "4 ) —2g g e ¢

+2g°p(0)ReF e

G4: §R€/ @%K(ﬁl)K(Q%)FE(_ﬁl’ﬁl’_192’ﬁQ)efimt(Qcoshﬂ1+2coshﬁ2)
4 oo 2T 2T

g9 > dy 0 mi12 cosh

+ 4§Re/ K@) FO(=0 + i, 0 + i, im, 0)e 2
oo 2T

1 /OO ddy dVs

77K(291)K(192)Ff(27[‘ - 191’i71’ + ’191, —’192,ﬁg)eimﬁ(COShﬂl_COShﬁ?) (8321?))
4 )_o 2w 2m

< dy g* cosh ¥
FO',O/ = K192}
N R e

g4

where F2(,95 = F{(ir,0) and
o) = _ialogrg(ﬁ) .

Note that these integrals remain well-defined even when there is a pole in the amplitude K () at ¥ = 0
because the form factors possess a zero ; = 0 as a consequence of the exchange axiom (3.2.4) and the
general property S(0) = —1. Concerning the large rapidity behaviour, normalizability of the initial state
requires that K tends to zero fast enough for large ¥ ensuring the existence of the integrals.

We now turn to analysing the time dependence originating from (8.3.2). Due to the oscillatory integ-
rands it is convenient to apply the stationary phase approximation (SPA) briefly discussed in Appendix
E.4. Both SPA and direct analysis leads to the following type of terms expected from (8.3.2):

(8.3.2¢)

e inmtge (8.3.3)

where « is either integer or half integer and n is an integer. For terms Dy; the lower bound of the oscillation
frequency is always nm = (k — )m.

As our main objective is to study the time dependence of one-particle oscillations, we concentrate here
on terms with n = 1 but we will also briefly comment on the time dependence of the non-oscillatory part
of (O). The non-oscillatory parts include the static contributions

Go: (0]0]0),
g2
G2 : ZFQO(ZT(-v O) )
% dy 4 cosh 9 (8.3.4)
. O 2 9
Ga: Fr (W’ 0) /OO 2T {|K(19)’ 4 sinh? 19}

gt
+§F2(9(i777 0)¢(0),
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whereas for the only time dependent integral,

i / LD ke (1) K (92) F (i — D + 1, —, D) mi2lcoshdr—cosh ) (8:3.5)

0 2m 2T

4

the SPA (E.4.1) can be applied, yielding

C
1 3.
T < mt, (8.3.6)
where
C= lim lim K(01)K(92)FY (im — Oyim + 9y, —0a, 02) (8.3.7)

’192 —0 191 —0
which is finite. Notice, that if there are no zero-momentum particles in the initial state, i.e. no pole in K,
then the 1/t is modified to 1/t3.
For terms with one-particle oscillation, one finds
G1: gRe Floe_imt,
Gs: 2¢°p(0)Re FPe™mt

g < dd O, —imt(2 cosh¥—1 2 cosh v O _—imt
+5 e /0027r {K(z?)Fg (imr, =0, 9)e "™ ) —2g e .

(8.3.8)

For the last term, SPA cannot be applied directly, therefore we shift the contour off the real axis where
(as shown in [165]) the contribution from the term

cosh ¥
sinh? ¥

vanishes and reintroduce the regulator R. We rewrite the resulting expression using (E.3.4) after which
the SPA (E.4.1) can be applied, and finally perform the R — 0 limit. The result is

SFO (p2(0) —2/3 — t imt —V2— V2i
g FY (£%(0) — 2/ )%ee_zmte_m/ugs Q%eﬂoe—zth, mt > 1. (8.3.9)
2v/dmmt m 2

For a more detailed derivation, the interested reader is referred to in Appendix G. While the first term
has the standard ~ 1/+/f time dependence, the second one behaves as ~ /¢ for large time. We return to
this peculiar finding in Sec. 8.4.3.

8.3.2 Leading order time dependence from Gj

The contributions involving five particles are Dgs, D14, Dog and their complex conjugates Dsg,D41, D32 .
Based on (8.1.7), the expressions to evaluate are

D05 = lim 005
L—oo
Dy = lim Ciy — Z1Cos (8.3.10)
L—oo
D23 = lim 023 - Z1012 - (ZQ - Z12)C()1 .
L—oo
The calculation of these expressions is very tedious; even in Appendices H, I and J where the details of the
calculations are presented, we focused only on leading secular contributions to the one-particle oscillations,

i.e. terms of the form e "t® with the highest power o. As one-particle oscillations originate exclusively
from Dy, with |k — | = 1, we can focus on Dsg and its conjugate Dso.
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The leading order secular terms originate from two sources: a residue contribution from encircling the
poles of the form factors F5(im + 01, im — 91, —02,92,0) when ¥; =~ 92 and a contribution from these poles
when a contour integral is performed with an integration contour just above the real axis.

Concerning the first term, the explicit expression reads

» ° dv
D%es(t) = gFloe_th (imt)/ —|K(9)[*SmS(¥) sinh ¥ , (8.3.11)
2 oo 2T
whose derivation can be found in Appendix H. Unlike time dependent terms discussed so far, deriving
(8.3.11) involves no SPA and so it is also valid for small times. Note that the coefficient of the oscillatory
factor e~ is purely imaginary and linear in time.

For the other term denoted by D%I nt(t), the explicit formula reads

—im . > dy /
D%Im(t) :gFloe t (—imt) / §|K(19)\2 tanh(¥1) (Kerq(9,t))

—00

—l—%FlOe_imt (—imt) / ;l—ﬂ|K(z9)\2Ker(19, t)
™

—0o0

I —imt [ 1 d 2 (8.3.12)
+9Re /_OO O e L K@) Re Ker(9,1,0)x

FE0)  K'(9) FE(—9) K'(=9)
v (o w0y - e~ w7

+0(Wt)

where
: sinh 91
) ‘ > d h(U1]92,{0})r ( sinhds — cosh 05—07

Ker® (i1, 1) :Il%linm 62th(ﬁl)/ T; { sinl(1192 — — lﬂ ) (8.3.13)

and

; & d792 [h(ﬂlwg, {0}) — h(’l91’191, {0})] sinh 191

K =™ — 3.14
6’/"(191, t) € (191) /—oo 27 Sinh(’ﬁz — 191) COSh(’ﬁQ — ’ﬁl) (8 3 )

with
Q9) = (1 — S(=9)) (1 - 8(9)) , (8.3.15)
h(ﬁ1|192, {O})R _ eimt(2c05h19172coshﬁgfl)eme/Q(Zcosh191+2cosh192+1) 7 (8316)
h(91 [0, {0}) = h(91 [0, {0}) ro - (8.3.17)

Their derivation can be found in Appendices I and J. It is shown in Appendix J that in the large time
limit mt > 1 the integral kernels behave as

1 e21’mt(cosh ﬁ—l)e—iﬂ/4

Armt cosh ¥

Kergy, (0,t) =™ Q(0) , l<mt, (8.3.18)

and
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2(cosh ¥ — 1)
Kersge(0,t) = “osh D Q(9)

y {; (FS (\/4mt(cos71;(19) - 1)) R (\/4mt(cosi(19) — 1)))
(8.3.19)
B %z (FC <\/4mt(cosi(19) — 1)) Py <\/4mt(cos7li(19) — 1)))

1 cosh ¥Vsinh? 9
+i| - — , lg<mt,
2 2./2(cosh(9) — 1)

where Fg and F are the Fresnel sine and cosine functions, respectively. This leads to the final result

, 4 1 t .
Dos(t) = gFloe_””tmt @ <—°g;m)> v+ m) + O(e™ M) (8.3.20)
with
4
3
71 :]C + gzi 9
i e g (8.3.21)
Yo z% + /_OO S K () PSm S(9) sinh
where
K = lim

cosh v

(FC (\/4mt(cos7l;(19) — 1)) +Fe <\/4mt(c0si(19) - 1)) _ 1) 4 V/sinh? 19] (8.3.22)
+ .

1 /oo @Q(ﬁ)‘K(ﬁ)F [ 2(cosh ¥ — 1)><

8.4 Discussion of the results

Before discussing the time evolution of the one-point function, we collect the leading order time-dependent
contributions for the non-oscillatory and one-particle-oscillatory part of (O) from each term Dy we con-
sidered in the previous section. In the long-time limit 1 < mt, these are

Go: (0[0]0),
r
Gy : ZF?(MT,O),
, < dy g* cosh ¥ gt , (8.4.1)
. RO WK @) - L0 9 po
Gi: Fimo) [~ S {ik@)P - S50 4 LR (im0)e00)
C
+

16mmt ’
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and

Gi: gReFPe Mt
Gs: 2¢°0(0)Re FPe™ ™

+g%4/ M Floe—imti_*[ V2
T 2
+0(1/V1)

, 471 t
Gs: gRe FOe ™imt <~Z <—Og§rm >> +m +m>

+O(WV1)

where C is given in (8.3.7) and 71 2 in (8.3.21).

In the non-oscillatory terms given by Gg, G2 and G4 up to the four-particle contribution there is no
secular term which grows with ¢. The only explicitly time dependent term behaves as 1/t or 1/t> depending
on if the squeezed-coherent initial state contains one-particle states or not. Without the knowledge of the
terms Gg and Gy, it is difficult to reach a final conclusion about the time evolution, but the result is
consistent with a power-law relaxation. Even if the finite volume regularised linked cluster calculation
only yields an asymptotic series of the eventual time evolution, our results predict a 1/t behaviour in the
time window 1 < mt < ¢, or a 1/t3 time dependence if 1 < mt < K2, K denoting the typical
magnitude of the K-function.

In the preceding subsections we studied terms with one-particle oscillations and found that the long
time asymptotics of the leading order contributions to oscillations contain, besides the original oscillation
e~ from G4, two new types of terms: one with time dependence v/te™™ from G3 and terms of time
dependence te =™ and tlnte”"™ from Gs.

Since these are secular terms growing for large ¢, it is necessary to sum up higher order contributions
coming from Go,+1. Computing terms G7 and higher is extremely tedious and has not yet been performed,
therefore we can only present a limited discussion of their resummation based on insights gained from earlier
works [107-109].

One could also try to get some hints by analysing the FM — PM quench in the Ising model considered
in Subsection 5.2; however, we show that this is unfortunately not possible. In Section 5.2 it was shown
that in the continuum limit the time evolution of the magnetisation is

(0%(x,1)) = & <1>411 (Mof [cos (\/Mt + o/) v ] et (8.4.3)

2 M

(8.4.2)

where the relaxation time is given by
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(8.4.5)

for M < My. At first sight, since the K function is known for this particular quench, the expansion of
(8.4.3) can be matched with the form factor expansion evaluated in our work. However, note that (8.4.3)



86

and (8.4.4) are non-analytic functions of the pre-quench mass My around the origin, and therefore are also
non-analytic in g around g = 0 due to the relation (5.2.17). This is not surprising since a quench across
a quantum critical point is expected to be a large quench with potentially non-analytic behaviour, and
therefore the form factor expansion is not expected to be valid at all. This situation is in marked contrast
with the phase quenches in the sine-Gordon model considered in Subsection 5.3 where the shift §/5 can
play the role of a small parameter.

8.4.1 Connection with previous results and discussion of possible resummation of
C7Y4n+l

Considering first the contributions G451 one-particle oscillations originate from the terms Day, 2,41. In
[109] these terms served as the sole source of secular terms which were shown to sum up to an exponential
function to order t2, i.e. the result including the two leading order corrections had the form

, t 1t
%e%Floe_””t <1——|——|—...>

which is the expansion of
Re %Fl(’)efimteft/f ,

where

74=f”/mmﬂ1mmanngm. (8.4.6)
T Jo

The real part of the above integral is the relaxation time, while the imaginary part is a frequency shift. It is
easy to see that sending g — 0 in our expressions (8.3.20), which is equivalent to removing the singularity
of K, reproduces the result for 7 above as the integrand is non-singular and

. . 1
lim Fo(z) = wlirglo Fs = 7 (8.4.7)

T—00

The relaxation time (8.4.6) originates from the kinematic singularities (i.e. disconnected pieces) of the
form factors. In our calculation we have a singularity from K which results in some new contributions
according to (8.3.20). Assuming an exponentiation similar to that observed in [107-109], the leading order
time dependence from Ggp41 is

o (mt)" 41og(mt
D2n,2n+1(t):gF1O€ imt (1) <_g gST )

o . +m+ m) T (8.4.8)

which can be resummed into

4

Therefore, besides the frequency shift, the relaxation for late time is naively expected to be super-

exponential with a dependence of the form e~*"*, This means that 7—! in (8.4.6) is to be replaced with

m (%M -7 — i’m) in the exponential function. However, this cannot be concluded safely without

; 11 ¢
gFloe_’mt exp [mt <_gog(m) +y1+ i’72>:| : (8.4.9)
™

computing at least Dy5(t) and checking whether one obtains the correct combinatorial coefficients for the
terms involving higher powers of —%Mmt, which is the condition for exponentialisation. Based on
analogy with [109], one can argue that terms containing 7 2 exponentialise and their resummation leads
to a relaxation rate and a frequency shift; however, the fate of the logarithmic term cannot be decided
without examining higher order contributions, whose straightforward evaluation is extremely complicated.
Assuming that the relaxation is of the usual exponentially decaying form (i.e. the logarithmic part does
not exponentialise) also means that it is not clear at the moment what part of the real terms (involving

~1) exponentialises and determines the relaxation rate.
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8.4.2 Multiple species

It is easy to generalise our results to the case of multiple species following the reasoning in [109] which
studied relaxation in the attractive regime of the sine-Gordon model for operators semi-local to soliton
excitations (and consequently local with respect to the soliton—anti-soliton bound states, i.e. the breathers
B,, ). In the following we write down the result for semi-local operators

wmp:owm+zjw@mo Pt+4
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} (8.4.10)
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where j, k,[,0 index breather excitations, and *ygg are obtained by substituting S in (8.3.21) with the

B,, — By, scattering amplitude S,,, and g with the B, one-particle coupling g,. The expressions for %llk)

and ’yé”k) are obtained from (8.3.21), by replacing g with g; and also

Q) = (1= 5@)) (1 = S(=9)) = (1 = Sy(9)Su(=9)) (L = Su(9)Si (1)) (8.4.13)
in (8.3.13) and (8.3.14); in addition, in the residue term DE¥* (8.3.11) it is necessary to replace

Sm S(9) — ~

57 (Su(9)Si(=0) = Su(~9) S (9)) - (8.4.14)
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Since solitons can have no one-particle coupling in the quench due to topological charge conservation, the
amplitude Kz is regular at the origin.

Note that the (8.4.11) are identical to the results in [109]. It is easy to understand this from the fact
the expressions given in [109] for Tﬁgl with j # k and for T];C% with j # [,k # [, are regular even if the K;
are singular. The only terms to be revised are 7']-;-1 and Tl;ll where the naive application of (8.4.11) results
in divergent contributions and must be modified using our calculations performed above.

Results for theories with multiple species with fully diagonal scattering can be obtained by omitting
the solitonic contributions from the above results and replacing the breathers with the actual particle
spectrum.

8.4.3 Parametric resonance
Finally, we turn to contribution (8.3.9) from G3
[mt V2 —\/2i
g " Re 1710(3_“”\[2\[2 mt>1. (8.4.15)
™

The origin of this term is the integral
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which is derived from a finite volume contribution of the form

> {OHOK—I, I}) LNo(9, LYK (9)e 2 eosh =1 (8.4.17)
>0

where ¥ is determined by the quantisation rule
mLsinh 9 + §(29) = 21 .

Let us recall the phenomenon of parametric resonance, for which the simplest example is the Mathieu
equation describing a system with only one degree of freedom,
2
ZT;C + [wg — 2qcoswyt] z = 0. (8.4.18)
This equation has a region of instability in which the solution of the equation oscillates with an exponen-
tially growing amplitude. This region is when the ratio w,/wy is sufficiently close to 2, where the width of
the region of proportional to q.

It is clear that the term (8.4.17) couples the one-particle mode with the two-particle modes and satisfies
the condition for resonance on the threshold; however, the interplay between the integration over rapidity
and the singularity of the form factor F¥ (im, —9, 1) results in a growth of /¢ instead of being exponential.
This cannot be the final story: since a quench pumps a finite energy density in the system, the oscillations
cannot grow without bound and therefore higher terms Gy,+1 must modify this behaviour to keep the
amplitude bounded. Since at present we do not have control over these higher order terms, we cannot
predict the eventual fate of this class of contributions.

A heuristic analogy can be drawn by noting that in the Mathieu equation the driving oscillator is
external, while in the quench the two-particle modes are also dynamical and the total energy stored in the
system is conserved. A closer analogy for this dynamics is provided by the following system of differential
equations describing two non-linearly coupled modes

d’x d?y q
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2r n — x(t)
— 0

Figure 8.4.1: An example of a parametric resonance in a closed system with two modes. The frequencies
are chosen w; = 1 and wy = 2, corresponding to parametric resonance, while the mode coupling is ¢ = 0.5.
Initial conditions for the particular motion shown are z(0) = 0.1, y(0) = 1 and 4(0) = ¢(0) = 0.

The mode z is parity odd and is the analogue of the one-particle mode, while the mode y is parity even
and is the analogue of the two-particle mode. Depending on the choice of the parameters, this system has
solutions in which the energy stored in the modes shows an oscillatory behaviour in time. With the choice
wg = 2w; the condition of parametric resonance is satisfied, but in contrast to the Mathieu equation, the
system has a total energy

H= % (i + wiz?) + % (9% + wiy?) + %me
which is conserved since the driving and driven modes now form a closed system. An example of a
resonance solution is shown in Fig. 8.4.1; notice the long plateau in the amplitude of the driving mode
y showing the non-linearity of this system. This is in contrast to linearly coupled oscillators where the
energy transfer would itself have a harmonic dependence on time.

It is an interesting question whether in the full quench situation such a non-trivial behaviour can be
observed in the time evolution for some choice of the parameters. Since the v/t term is of order g? and
the next secular contribution is of order g%, it is quite possible that for small enough quenches there is
some intermediate time window in which the parametric resonance dominates. To study this requires the
detailed analysis and resummation of higher order terms which is left for further investigation.

8.5 Summary

In this chapter we studied the time evolution of one-point functions of local operators in massive IQFTs
after integrable quenches. We first reviewed the already existing results and then moved onto the explicit
computation of the time evolution of one-point functions focusing on mainly the one-particle oscillations
with time dependence e~ in integrable initial states with one-particle coupling. Part of our motivation
was to correct previous results which ignored the singularity in the K-function and hence gave divergent
expressions for various quantities. We used a modification of the linked cluster expansion introduced
in [107-109], where instead of rapidity space point splitting, we applied a finite volume regulator first
proposed in [144]. The advantage of this regulator is that it uses a physical parameter, i.e. the system size
L, and since the thermodynamic limit must be well-defined, the computed one-point function must have
a finite limit as L — oo. The cancellation of terms containing positive powers of the volume (resulting
from kinematical singularities) provides an important consistency check for the computation.

We found a 1/t type time dependence for the non-oscillatory part which modifies to 1/t in the absence
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of the one particle coupling. The 1/t contribution was found also in Ref. [83], but it varies depending
on the properties of form factors between highly excited states, which is quite non-trivial. When the one-
particle coupling is non-zero in the initial state, oscillatory terms with the angular frequency related to
the particle mass are also present and two important secular contributions were found to the one-particle
oscillations. The first one takes the following form at leading order

_974 log(mt)

Re gFCe™ M mt ( 1

+m + i’yz> . (8.5.1)
The terms 7, and 2 are directly analogous to the contributions found in [109], with two essential differ-
ences. First, the integrals expressing the coefficients 1 2 are now entirely well-defined. If there was no pole
in K(9) (which we argued to be impossible for g # 0), these terms would reduce to the expressions given
in [109]. The second difference is the presence of the logarithmic time-dependence for g # 0. In analogy
to [109] it is expected that either higher order terms Ga,+1 get resummed to an exponential function

. _ 4
e T with 771 — m %Lgsrmt)

-7 — i'yg>, or alternatively, only terms containing -2 are resummed
into a relaxation rate and a frequency shift of the one-particle oscillations. We stress that the fate of the
logarithmic term is unclear at present, which also implies that the part of v; entering the resummation is
not defined until this issue is dealt with, which requires further investigation.

Our results can be easily extended to local operators in theories with more than one species with
diagonal scattering, and also to operators semi-local with respect to solitons in the sine-Gordon model.

The other class of secular contributions to one-particle oscillations is a novel one having the form

; t—vV2—+v2i
Re gFLe M g2, | m\fzﬂ , (8.5.2)
T

and its leading order is ¢g. The origin of this secular term is a physical effect analogous to parametric
resonance, and is caused by the effective coupling between one- and two-particle modes. This coupling is
established by the corresponding form factor of the operator and the K function resulting in a singularity
at the threshold of the two-particle continuum. At this point the ratio between the frequencies is exactly
two satisfying the condition of parametric resonance. Note that the singularity of the K function is an
essential ingredient as it is the origin of enhancement in the effective coupling between the modes.

Unfortunately, it is rather difficult to calculate the next secular contribution from G7 and even having
an expression for the next term, it is not guaranteed that they can be resummed in an effective manner
to extract the long time behaviour. Therefore it is presently unclear how this phenomenon influences the
fate of the one-particle oscillations. However, it is clear that despite the initial growth indicated by the
presence of v/t , the amplitude must eventually saturate as only finite energy density is injected in the
system during the quench.

As seen from this chapter, the analytical description of time evolution followed by a quench is a very
challenging problem, with lots of open questions remaining. Even if our analysis and partial understanding
is valid only for integrable squeezed-coherent states, it is worth mentioning that for quenches that are not
exactly integrable, the deviations from the integrable structure, say for the case of the four-particle overlap

(¥ —93)8(02 — V) K (V1)K (V2)| — V1,01, —02,02) — 5(Zp(19i))K(191, Vo, U3,04)|01,02,U304) (8.5.3)

is expected to only result in perturbative corrections to the integrable case in various physical quantities.
To develop a formalism implementing this idea, after understanding the time evolution in pure integrable
quenches of course, is an interesting open direction for future works.

It must be emphasised again, that TSA methods [167] and in particular TCSA [55, 164, 177| are
able able to follow the time evolution of various quantities (one-point functions, Loschmidt echo) and
even correlation functions [176], and therefore these methods play an important role in the study and
understanding of time evolution.



91

Finally, we wish to comment on the relevance of the phase quenches in the sine-Gordon model intro-
duced in Subsection 5.3. Being both experimentally realisable and analytically tractable, the sine-Gordon
theory has attracted a lot of attention. The sine-Gordon model emerges as an effective description in cold
atom experiments involving tunnel coupled quasi-one-dimensional condensates, where the sine-Gordon
field corresponds to the relative phase of the condensate [12,13]. Therefore, phase quenches can be an
ideal protocol to compare experimental and theoretical results. This is especially true for moderate sized
quenches, where the small post-quench density of excitations makes the form factor series valid and it is
possible to extract analytic results about the time evolution.



Chapter 9

Conclusions

In recent decades the spectacular advances in cold atom experiments and the studies of the non-equilibrium
properties of isolated quantum many-body systems have stimulated considerable activity in the under-
standing of quantum statistical mechanics. For its rigorous foundation particularly important questions
arise in the context of quantum integrable models. Via studying quantum quenches in integrable quantum
field theories (IQFTS), this thesis focused on the relaxation towards the equilibrium i.e. the time evolution
of local observables after a quench, general properties and the determination of the quench overlaps and
eventually the applicability of the quench paradigm in field theories.

In Chapter 4 integrable quenches in massive IQFTs were investigated, which are defined by the con-
dition, that the initial state |€2) is annihilated by all the odd conserved charges. i.e. Q9|Q2) = 0. It was
shown that if the initial state satisfies the cluster decomposition principle then integrable initial state in
a generic massive integrable model can be written in a squeezed-coherent form (4.2.6), (4.2.7) resembling
integrable boundary states in the context of boundary field theory.

Integrable quenches are important since they include all cases in which it was possible to find exact
analytic results for the steady state expectation values and/or the time evolution of observables. Although
a given quench protocol is not guaranteed to yield an integrable initial state, we showed that in massive
IQFTs with one particle species and for quenches with sufficiently low energy density, the integrable
structure of the quench holds to a good accuracy and thus the integrable quench assumption can apply
in various situations. In the small quench limit the integrable structure of the initial state is ensured also
in the repulsive regime of the sine-Gordon model, whose spectrum consists of solitons and anti-solitons
and somewhat surprisingly also in any massive but non-integrable QFTs with one particle species. The
connection between small integrable quenches and the consequences of the extensivity of local charges on
the initial state were established in Ref. [159].

In Chapter 5 we studied translationally invariant quenches for which the expansion of the initial state
in the post-quench basis contains a zero momentum one-particle state contribution. Based on an analogy
with the case of integrable boundary states, it was argued that the zero-momentum particle implies a pole
in the pair amplitude. Our statement was supported with two concrete examples: a quench in the Ising
field theory crossing the phase boundary, i.e. a quench from the ferromagnetic to the paramagnetic phase,
which in an integrable quench, and the interesting quench in the sine-Gordon model consisting of shifting
the phase of the sine-Gordon field. The latter quench is not known to be integrable but a perturbative
treatment yields a confirmation of our statement not relying on the integrability of the quench. The general
and the perturbative argument for the pole in the pair amplitude was further supported by considering a
linked-cluster expansion of time-dependent one-point functions after a quench in Section 8.2. This chapter
relies on the publication Ref. [110].

Chapter 6 was devoted to the determination of overlaps and the study of a particular class of quenches
within the Sinh-Gordon model, starting from the ground state of mass mg with zero coupling, to a post-
quench system with a mass m and a nonzero value of g. For this quench the initial state can be specified
via an operator condition allowing the derivation of an infinite hierarchy of integral equations involving

92
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form factors of the model and the unknown overlap functions. Each integral equation can be written as
a form factor expansion, consisting of an infinite number of terms. Besides the general derivation of the
hierarchy and a number of arguments concerning the nature of its solutions were presented. Some of these
findings are likely to be valid for more general models (such as sine-Gordon or Ag\lfll affine Toda theories)
and initial states, described by similar integral hierarchies. These are the existence and uniqueness of its
solution for the interacting cases, the truncatability of the hierarchy and the applicability of an iterative
solution method exploiting the truncation.

We also presented the numerical solution of the hierarchy, which is based on the pair assumption for the
initial state. The validity of this assumption was supported by an argument based on ’integrable dressing’,
on analogies with boundary conformal field theories and due to the heuristic nature of these arguments
our considerations were supplemented by numerical checks. We found that the iterative solution of the
numerical methods confirms to high precision that a proposed factorized Ansatz (6.2.13) indeed solves the
one-particle test state condition, which is the lowest member of the hierarchy. Second, an independent
test of the squeezed state form, which includes the pair structure and the exponentiation, was provided
by checking the next member of the hierarchy, i.e. the three-particle condition. The derivation the three-
particle equation was carried out in two different ways: using the expansion of operators in terms of
the Zamolodchikov-Faddeev creation and annihilation operators [137] and the finite volume regularization
method too to check the validity of the former approach. Using the pair assumption for the overlaps, it
was also shown by means of the integral equations that the asymptotics of the K-function behaves as e 27l
for quenches with a finite difference in the pre- and post-quench masses, and thus provided an example in
an interacting theory, where it can be demonstrated that the given quantum quench is well-defined in the
field theory sense as well. The results presented in this chapter were published in Ref. [159].

In Chapter 7 mass quenches in the sine-Gordon model were studied by the truncated conformal space
approach (TCSA). With TCSA the pair overlaps for the first breather were extracted and it was demon-
strated that the infinite volume predictions for the pair overlaps extracted from the finite volume ones
obtained by TCSA match to a accurate with the analytic continuation of the sinh-Gordon pair overlap
(6.2.13). The e 2191 asymptotics of the pair overlaps enables the usage of TCSA and the good accuracy
match of the pair overlaps supports the validity of the factorised Ansatz in the sinh-Gordon quench. We
also showed that the TCSA data are consistent with the factorisation of the four-particle overlaps. These
results were published in Ref. [175].

In Chapter 8 the time evolution of one-point functions of local operators was investigated in massive
IQFTs after integrable quenches. An explicit computation of the time evolution of one-point functions
was presented based on Eq. (2.1.1) focusing on mainly the one-particle oscillations with time dependence
e~ in integrable initial states with one-particle coupling. Part of our motivation was to correct previous
results which ignored the singularity in the pair amplitude and hence give divergent expressions for various
quantities. For the calculation a linked cluster expansion was applied using finite volume as a regulator
and the expansion was terminated after terms containing five particles.

For the non-oscillatory part of the one-point function a 1/t type time dependence was found which
modifies to 1/t3 in the absence of the one-particle coupling. When the one-particle coupling is non-zero in
the initial state, oscillatory terms with the angular frequency related to the particle mass are also present
and two important secular contributions were found. For the first one, the one-particle oscillation gF 10 e~imt
(g being the one-particle coupling in the initial state) is multiplied a term linear in time (y; + i7y2) mt where
Y1,y2 are of O (94) and by —g4log4(7mt)mt at leading order in time. The calculation of higher order and

7y
hence the resummation of secular contributions has not been achieved, but it is expected that either higher

4
order terms G441 get resummed to an exponential function e T with 771 - m (%M e i'yg>,

or alternatively, only terms containing v; 2 are resummed into a relaxation rate and a frequency shift of
the one-particle oscillations. These results are easy to extend to local operators in theories with more
than one species with diagonal scattering, and also to operators semi-local with respect to solitons in the
sine-Gordon model.
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The other class of secular contributions to one-particle oscillations is a novel one, where gFlo e~imt

is multiplied by —92\/% (1 +14), and hence its leading order is g®. The origin of this secular term is a
physical effect analogous to parametric resonance, and is caused by the effective coupling between one- and
two-particle modes. At the threshold of the two-particle continuum, the ratio between the frequencies is
exactly two satisfying the condition of parametric resonance and singularity of the K function at the origin
of enhances the effective coupling between the modes. The calculation of the next secular contribution
from G7 has not been performed and, therefore, it is presently unclear how this phenomenon influences
the fate of the one-particle oscillations.

Although expressions for higher order terms are important and their calculation together with the
question of resummation are relegated to future works, it is worth noting that these results describe the
leading order time dependence in the time window 1 < mt < g~*, or 1 < mt < K~2, K denoting the
typical magnitude of the K-function with the absence of one-particle terms in the integrable initial state.
These results were published in Ref. [110].

Now we turn to the significance of the results summarized above, and also give an outlook. Considering
first quenches with zero momentum particles it is worth mentioning that these quenches are especially
interesting as oscillations in expectation values associated with the masses of the particles can be detected
in experiments [13]|. Suitably small quenches can, therefore, be used to determine the mass spectrum of a
model, which is the idea of quench spectroscopy. As seen in this thesis, time evolution after such quenches
present serious theoretical challenges and the calculation of higher order contribution for the time evolution
or the resummation of secular terms are difficult problems which remain for further studies. As discussed
in Chapter 2, the question of time evolution can be addressed in the Quench Action approach and the
missing pieces of information are the form factors of operators between highly excited states and the set
of quasi-particles above the representative state. Whereas these issues present a serious obstacle at the
moment, our results for the time evolution provide an important benchmark for future advances.

The relevance of the phase quenches in the sine-Gordon model introduced in Subsection 5.3. The
sine-Gordon model emerges as an effective description in cold atom experiments involving tunnel coupled
quasi-one-dimensional condensates, where the sine-Gordon field corresponds to the relative phase of the
condensate [12,13]. Therefore phase quenches including zero-momentum particles in the initial state can
be an ideal protocol to compare experimental and theoretical results. This is especially true for moderate
sized quenches, where the small post-quench density of excitations makes the form factor series valid and
the analytic results about the post-quench time evolution presented in Chapter 8 are expected to give
sufficiently accurate results. Note that in the sine-Gordon phase quenches the overlaps can be determined
by a perturbative form factor series as well as TCSA, which makes them more amenable to a theoretical
treatment compared to other quench protocols.

The determination of overlaps was accomplished in Chapters 6 and 7 for particular cases, and these
results have already been used to compute steady state expectation values in the sinh-Gordon model in
Ref. [88]|. Although overlaps are very important quantities, their general calculation remains a difficult
problem. Nevertheless our results of Chapters 6 and 7 and studies in free theories and in the Eg model [164]
offered an increasing body of evidence that confirm that the overlaps generally decay at high energies, and
in particular the role of the UV limiting CFT in the asymptotic behaviour was pointed out in Ref. [175].
The high-energy suppression of the overlaps implies that the quantum quench paradigm is well-defined in
QFTs for moderate-size quenches, which means that the QFT framework can offer a cut-off independent,
universal description of the quench and can eventually be applied in describing universal features of out-
of-equilibrium physics in quantum systems near quantum critical points.

This conclusion has another noteworthy implication, namely the applicability of TCSA for small
quenches in QFTs. Whereas the analytical calculation of the overlaps is an extremely complicated task,
with TCSA it is relatively easy to extract the overlaps numerically. In fact, although the numerical results
were not reported due to the lack of theoretical description, it is also possible to extract amplitudes for
higher breathers and soliton—anti-soliton pairs in the sine-Gordon model. TCSA was successfully applied
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to determine overlaps in the Eg model as well [164]. However, the usefulness of TCSA is not restricted to
the overlaps and it was demonstrated that TCSA [55,164,177] and other truncated spectrum methods [167]
can follow the time evolution of various quantities (one-point functions, Loschmidt echo) and even correl-
ation functions [176]. TCSA can be applied to study integrability breaking situations as well [55]. The
very effective and non-perturbative truncated spectrum methods in out-of-equilibrium situation in QFTs
initiated in [167,175] already have a diverse range of applications and these methods are expected to
have a further important role in the study and understanding the out-of-equilibrium physics in quantum
systems.
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Appendix A

The singularity of the Ising K function

To complete the proof for the pole strength of the K-function for the FM — PM quench in the Ising
model (c.f. Section 5.2), our aim is to show that NN—J\f =V ML\/M 57 holds where M and My are
the post- and pre-quench masses and Ni and Nyg are the normalisation constants of the Ramond and

Neveu-Schwartz components of the initial state.
It is convenient to calculate the logarithm of the ratio, which we write as

7r 2
mN%S_m]IiLHK(fn—1m»\

Ni oo 1K (@)
—=A+ B,
1+~
(n—3)?
A= I (A01)
nCN+ ¢ o

1+ 5
B=In T
n§+1+u<<% )P
$

o T o1y
L eea-me:

nCN+

and z is introduced as

AM2MZLA
(M + Mo)?(2m)?

When ML — 0, the expression denoted by B in (A.0.1) is zero, which can be easily seen by considering
the Euler-Maclaurin formula: for the two terms in B the difference between the lower endpoints for the
integration and for the boundary terms consisting of the functions and their derivatives goes as 1/L and
the expressions in the logarithms are smooth, well-behaved functions. The term A in (A.0.1) can explicitly
be computed, therefore when L — oo,

xr =
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1 1
=— [_21nr(1—¢fx)+21nr<2—¢?x> (A.0.2)
—2InT (V=z + 1)+21nr(¢fx+;>]
+Inm,

and consequently, leading order behaviour of In 1\17\7]2\%5 —In L from (A.0.2) is In(my/x). Then, one finds that

R

Nxg Mo
NS MLy 0 A0.
Ng Mo+ M’ (A.03)

from which g = 2 M(])\{SM follows (c.f. Section 5.2).




Appendix B

Phase quenches in the sine—Gordon model
and exponential quenches

In this appendix we discuss some details conserning the phase quench in the sine-Gordon model that were
not dealt with in the main part of the thesis. We recall that the phase quenches in the sine-Gordon model
consist of abruptly shifting the sine-Gordon field ¢ — ¢ + 0/, i.e. changing the phase in the model and
regarding the pre-quench vacuum as the initial state for the post-quench evolution and it is possible to
relate the pre- and post-quench vacua by a similarity transformation

|Q) = exp <igﬂo> (O (B.0.1)

where L indicates that the theory is considered in finite volume and PBC are assumed. It is possible to
write down a form factor expansion for the overlaps in finite volume,

L{x|exp (igﬂo> 0)z (B.0.2)

yielding

(_1)1Ll 5 ! ~ - _
7 (6>;...ZL(><I¢(0)!@1>L(EX Ea, )% (B.0.3)

-1

r{a1|®(0)|a2) L(Eay — Eay)---{u-1|®(0)|0)L(Ea,_, — Eo) ,

where the tildes over the sums signal that only zero momentum states are included due to translation
invariance and accordingly, overlaps with zero momentum states are non-vanishing only.

As was shown for a state containing only zero-momentum first breather and to first order in ¢ in the
main part (see Section 5.3), the correspondoing overlap in finite volume is

VLS =1 ({0}[0)s o
=(=D)L(3) ({0} () |0) 1 B

with

*

£{{0}2(0)|0) = ==,

%ﬁj
'~

which gives
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5
ALY (B.0.5)

2 p
where F' denotes the form factor of the field @ in the sine-Gordon theory which has only has non-vanishing
matrix elements with states composed first breathers when their total number is odd. In particular [149],

Fp, = Fjp, = A(©)é (B.0.6)

- Bsinwé’

with

__~Z
§_B2—87T’

<o € | w€ dt ot
)\(ﬁ)—Qcos? 231n2exp< /0 27Tsint>’

and we remark that the form factors of the sine-Gordon field ¢ can be obtained from that of the vertex
operators : €*? : by differentiating with respect to . For the pair overlap the lowest non-trivial order is
62 and one obtains

(B.0.7)

No(9, L)K (9) =1.(I, —1|9);,

2 ~
= <6> ﬁ L<I, —I\®(0)|a1>L(2m1 cosh ) — Eal)L<a1’q)(0)|0>LEa1

B) 24
_(5 Lo ) Fpy.Byar.a, (im+ 0, im —0,61,..0,) . (B03Y)
B

23 {0} \/(mlL cosh®)? 4 (m1L cosh¥) ¢g, 5, () pn(01, ...0,)

<2m1 cosh ¥ — Z m; cosh 97;) Fj, . oa,(01,..0,) (Z m, cosh 91‘) ,
i=1

=1

where the particles Aj are either breathers or solitons and their is an implicit summation over all possible
choice of their species.

Now we are interested in the singular behaviour of K which can only originate from those of the form
factors. The infinite volume limit itself is finite, since the numerator contains an explicit L?, and in the
n-particle term the denomination contributes 1/L and also 1/L™ from the density factor, while rewriting
the discrete summation in terms of integrals results in a state density factor of behaviour L"!, so the
leading term is independent of L.

First let us focus on terms where all particles A; ... A, are first breathers. We now proceed to analyse
the singularity of these terms by setting ¢ to a value € and to consider the limit of small e. The form
factor has a kinematical singularity when some subset of m particles among the A; ... A, has similarly
small rapidities, which we take to be a multiple of e. The dependence of the most singular term can be
obtained from the kinematical residue equation (3.2.6) but also taking into account that the form factor
having a first order zero when two rapidities coincide due to (3.2.4) and S(0) = —1. There are three cases:

e m < n— 1: The behaviour of F(ir + 19, ir — 3,01, ...0,,) is el m=1)m/2=2m yhere the 1 comes from
the coincidence of i — ¥ and im+ 9 , the m(m —1)/2 comes from the coincidence of the m rapidities
in the set 61, ...0,, and the —2m are from the kinematical singularities “activated” in the limit. For
F*(#,...6,,) one obtains a factor e(™~1™/2 therefore the overall behaviour is e!T(m=1m=2m whijch

is only singular for m =1 or 2.
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e m =n — 1. one must be aware that the condition of zero total momentum, that sending m =n —1
rapidities to zero results in all the n of them going to zero, leading to the behaviour e!*+(—bn—2n
which is singular for n = 2.

1+(n—1)n—2n

e m = n: same behaviour € as for the case m =n — 1, resultinginn =1 or n = 2.

Note that whenever there is a singularity it is always of order one. For the case when all the A; ... A,, are
first breathers, n must also be odd for the form factor not to vanish due to parity invariance. The n =1
contribution is

<5>2L2F313131 (i + ¥, im — ¥,0)(2my cosh ¥ — ml)Fl*ml (B.0.9)
B/ 2 \/(mlL cosh9)? 4 (m1 L cosh9) @p, g, (9)mi L
Using the form factor equations
. . 4
FBlBlBl(Zﬂ+19,Z7T—Q9,0) ~ —5F31 , (B.O.l())
this contribution alone gives the expected pole contribution
§\?2i|Fg|* 1
K@) =— <> ”231’79 +O(°)
B (B.0.11)
_ !
297

Now we demonstrate that contributions with n > 3 are regular at the origin ¢ = 0. Observe that in finite
volume the rapidity ¢ in finite volume is eventually quantised according to

mLsinh 9 + §(29) = 271

with some half-integer quantum number I, so it is always displaced by an amount of order 1/L from the
origin. Fixing I results in the parameter e being essentially 1/L, therefore the singularity 1/e manifests
itself as a divergence of (B.0.8) proportional to L when L goes to infinity with I fixed. A simple power
counting then gives that the contribution is

L2 r r+2—n
Tl XxLxL =1L ,
where L" is the state density factor resulting for the r particle rapidities among the 61, ...0,, whose sum-
mation is left free once fixing the positions of those needed for the singularity and also taking into account
the zero-momentum constraint. Clearly one obtains r < n — 2 resulting in a cancellation of any divergence
for L — oo.

To finish this discussion, let us consider the case when the set of particles A; ... A, contains other
species (higher breathers or solitons) as well. Let us suppose that the total number of first breathers
among A ... A, is k with k¥ < n. The counting of the degree of singularity only involves first breathers,
so we obtain that the only possible cases are again k = 1 or 2. However, in the denominator of (B.0.8)
now one has a density p, with a behaviour L™ with n > k, which leads to a regular limit for L — oo.



Appendix C

Finite volume derivation of the integral
equations

Here we briefly summarize the finite volume regularization for the hierarchy and show that after an
appropriate redefinition of integration contours the resulting equations are equivalent to those obtained
from the form factor representation (3.2.13) of the field.

C.1 One- and three-particle test states

In Section 3.3, we discussed how to construct scattering states in finite volume based on the Bethe-
Yang equations (3.3.1) and how form factors between these finite volume states can be computed (3.3.4)
and in Section 4.3, the finite volume regularized version of the squeezed-coherent initial state 4.3.1 was
presented. With these ingredients, the finite volume counterpart of the integral equation hierarchy can be
straightforwardly written as

o
1
> o DD N9, 0 LK () K (9) (01, 0|O(p)| — 91,05, =05, 9%)L =0, (C.11)
k=0 I, I
for an n-particle test state, where 91, ...,1,, must also be a state satisfying the quantization relations with

some arbitrarily chosen quantum numbers.

In the Supplementary Material of the work [169] it was shown an explicit example of this sort of
calculation for the one-particle test state; therefore here we refrain from going into more details and refer
to instead the original paper.

For one-particle test states, the resulting equation up to (and including) four-particle terms from the
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initial state can be written as

0 =[Eo(p) ~ EOEY + 5 [Bo(p) + B@)FYK@)(1+5(~20))

1L /+oo+i€ aﬂ[Eo(p) — E(W) + 2B FL + im, —9,0) K (9)

2 —oo+1ie 2m
1 +°: dy’
T / 5 [Eo(p) + B(W) + 2B()(S(~20)K (9) + S(9 = 9')S(0 + 0') K (9))
—o 2T (C.1.2)

X FP (=0, =0, 9" K ()

1 +oo+iad979/ +oo+i5d19/
s/ L 2By (p) — E(9) + 2B(9}) + 2E(9})
8 —oo+1ie 2 —oo+1e 2

X FE(9 4 i, —0, 0y, —0%, ) K (07) K (6)
+ ...,

valid as long as Im ¥ < €, where p = msinh 4, Ey(p) = v/m3 + p?, and E(J) = mcosh 9.
For Im 9 > ¢, the equation is changed by kinematic poles of the form factors Frf and F, 5¢ crossing the
contours of integrations; the appropriate analytic continuation of the equation reads

0 =[Eo(p) — E(W)FY + [Eo(p) + E(W)|F{ K (9)

1 +oo+ie dy ’ 1) . ! q/ /
+3 5 [Eo(p) = E(W) + 2B F5' (9 + im, —0' ) K ()
—o00+1€

1 [0 g9 / / / , o /
+2/Oo 5 [Eo(p) + E(0) + 2B()]S(9 =) S0 + ) K(0)F (=9, =", 9)K(@)  (C.13)

1 +oo+iz—:d19/ +oo+iz—:d19/
vg [ SR [ SR ENe) - EO) + 2B()) + 2B(09))

8 —o0-+ie —oo+ie
X (0 + im, =0, 07, =), 05) K () K () + ..
In the limit mo — oo, the energy terms E(19) can be dropped and the equation divided through by Ey(p),
leading to the simplified form
0=F% + RO K p(9)(1+ S(—20))
1 971 D
1 /-i-oo—l-ie dy

- TR 4 im, = VK p (9

1 [T @y . , . o / (C.1.4)
" 4/ 5 (S(=20)Kp(9) + S(9 = 9')S(9 +9) Kp(9) F§ (=0, =0, 9') K p(¢)
—00
1/+°°+i€ ao, /+oo+ia sy .
T3 F 19—‘_7’77,_ ,7 ,7_ ,,19, KD 0’[9, KD 19/ =+ ...
8 ) sotic 2T J_ootic 27 5 ( L7l 2,U3) (6001) (95)
for Im ¥ < ¢, and
0=F + F{ Kp(d)
1 +o0o+i€ Ay
5 7F¢ 19 ] _19, 19’ K ,19/
+2/—Oo+ia 2m 5 (0 +im, ;) Kp(¥)
(C.1.5)

1 +oo /
+ 5 / 6217195(19 — 9SS+ ﬁ/)KD(ﬂ)F;)(—ﬂ, —9 9K p ()
7T

—00
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for Im 9 > . These express the condition
é(z)|D) =0 (C.1.6)

satisfied by the Dirichlet state.
For three-particle test states, the result was calculated in [159] and reads

with T}, denoting the n-particle contribution from the state |§2):

To :[Eo(p)—E(ﬁl)—E(ﬁg) —E(ﬁg)] F(193+i77,192+i7r,191+iﬂ) , (018)

7 - /:O ii’ [1Bo(p) — B(91) — E(92) — E(95) + 2B( + )]
X F(93 +im, 09 + im, V1 +im, = —ie, ¥ +ie) K (¥ + ic)
+ 3 [Eo(p) + B(0r) — E(82) ~ B[S0 — 02)S(Ds — 01) + S(~200) F(Ds + i, b + i, ~0) K (1)
+ 3 [Eo(p) — B(0h) + E(9a) — B[S — d2) + S(92 — h)S(~202) F(Ds + i, by + i, ~0)K (o)

+ %[EO(P) — E(01) — E(¥2) + E(U3)][1 + S(¥3 — ¥2)S (93 — ¥1)S(=203)|F'(I2 + im, 1 +im, —I3) K (J3)
(C.1.9)

Ty =— /+Oo dv; /m dvy {[Eg(p) — E(91) — E(¥2) — E(¥3) + 2E(V) + ie) + 2E(9 + ic)]

oo 2T J_o 2w
X F(93 + im, 09 + im, 01 + im, =] —ie, 0] + ie, =y —ie, 05 + ie) K(9] + ie) K (95 + ic)

+o0 /
/ 99 B (p) + E(@y) — E(a) — E(9s) + 2B( + ie)|F(Js + i, 0 + im, ~1, — — ie, & + ic)

0o 2m

(193 — 191)8(’192 - 191)5(191 — ¥ — 18)8(191 +9 4+ i&) + S(*Q’ﬂl)]K(ﬁ, + Z€)K(191)

+o0 /
/ 99 o (p) — E(@y) + E(a) — B(9s) + 2B( + ie)|F(Js + i, 0y + im, — o, — — ie, d + ie)

oo 2m

(193 — 192)5(192 — — 26)5(192 + + i&) + 5(192 — 191)5(—2192)]K(19, + Z€)K(’L92)

“+o00 /
/ 9 B (p) — E(91) — E(92) + E(03) + 2E(0 + ie)|F (0 + i, 0y + i, — g, — — ie, o' + ic)

e
(93 — ' —ie)S (V3 + V' +ic) + S(93 — 91)S(V3 — V2)S(—2093)| K (¢ + ie) K (93)
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+ Z[EO( p) + E(V1) — E(V2) + E(U3)]F (V2 + im, =01, =U3)[S(J2 — ¥1) S (5 + 1) K (91) K (V3)
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+ %[Eo( ) — E(V1) + E(¥2) + E(93)|F (91 + im, =2, —03)[S (92 + U¥3) K (J2) K (V3)
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1
1
x [$
1
T
x [$
1
1
[

ot

(C.1.10)
and p = msinh ¢1 +m sinh Y2 + m sinh 93, valid as long as Im 1; < €. For other complex values of the test
rapidities it can be continued analytically similarly to the one-particle equation; the condition satisfied by
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the Dirichlet function Kp can be obtained by dropping the terms containing combinations of Fy and E
in the square brackets.

C.2 Comparing to the infinite volume formalism

The equation hierarchy can be obtained directly from substituting the infinite volume matrix element
(3.2.14) into (6.1.15). Considering the case of a one-particle test state, from (6.2.16) one obtains

0 =[Eo(p) — E(W)|F} + [Eo(p) + E()|F} K (9)

;/ ) ;lf [Eo(p) — E(W) + 2B(9)|F{ (9 + im +i0, 9’ — i0,9' — i0) K (/)
;/-l—oo 62119/ [Eo(p) + E(9) + 2E(19/)]F§)(—19’ — 40,9 — 0, 9 — ’L'O)K(?S")K(ﬂ) (C.2.1)

—i—ood,é)/ +Ood’l9/
/ — E() +2E(0)) + 2E(95)]

x Fgw + im + 40, =9 — 00,9} — i0, =9 — i0, 9% — i0) K (9} K (95) +

In the finite volume formula it is necessary to take the form (C.1.3) valid for Im# > € to have the same
ordering of the imaginary parts between the unprimed and primed rapidity variables as in (C.2.1) above.
Shifting back the contours to the real axis, and absorbing S-matrix factors by reordering the rapidity
variables in the corresponding form factor gives

0 =[Eo(p) — EW)F{ + [Eo(p) + ()| F{ K (V)
+ % / o gi/[Eo(p) — E(9) 4+ 2E(0)FL(0 + im + ie, =0, 9") K ()
41 / o d—ﬂ/[Eo( )+ E(9) + 2E(0)| K (0)FY (=, 9, —9) K ()

2
1 +°°d19/ +°°d19’
g — E(¥) +2E(9)) + 2E(9,)]

XF;)(Q‘FMT"‘Z&y_ 1> 17_ /2719/2)K(19/1)K(19/2)+

Due to the +i0 shifts in the unprimed rapidities, the —i0 shifts in (C.2.1) can be eliminated, making the
two equations identical.

Similar identity can be demonstrated for the three-test particle condition; as it contains no essential
novelty compared to the one-particle case, for the sake of brevity we omit the details here.



Appendix D

Tables for the three particle test states

The tables in this Section contain a sample of numerical data obtained from numerical evaluation of the
three-particle condition (C.1.7). The first three terms Ty, T5 and Ty were evaluated using the integral
formulae. The first line labeled “sum” gives the sum of these three terms, and verifies how precisely the
condition is satisfied in this truncation. For the evaluation of Tg it proved practical to use the finite volume
sum form (3.3.4). The second line labeled “sum” gives the value of the three-particle condition once the
computed result for T is included as well.

D.1 B=0.1
{61, 02,05} = {0.0607,0.1277,0.2606 } {61, 02,05} = {—0.0866,0.0495,0.1621}
mo 00 10 2 00 10 2
To -0.0138-0.0067 i -0.0963-0.0464 i 0.0137 +0.0066 i -0.0175-0.0175 i -0.1222-0.1222 i 0.0178 +0.0178 i
Ts -1.8826-0.908 i -13.8152-6.6628 i -0.6397-0.3085 i 26.5853 +26.5881 1 | 195.393 +195.413 1 | 8.7483 +8.7492 i
Ty 1.9096 +0.9209 i 13.9958 +6.7499 i 0.6241 +0.301 i -26.9231-26.9261 i -197.666-197.688 i -8.7886-8.7895 i
sum | 0.0131 4-0.0063 i 0.0843 +0.0406 i -0.0019-0.0009 i -0.3553-0.3556 i -2.3951-2.3972 i -0.0225-0.0226 i
Ts -0.0122-0.0059 i -0.0826-0.0398 i -0.0015-0.0007 i 0.3523 +0.3524 i 2.4211 +2.4213 i 0.0492 +0.0492 i
sum | 0.0009 4-0.0004 i 0.0017 +0.0008 i -0.0034-0.0016 i -0.0029-0.0032 1 0.026 +0.0241 i 0.0267 +0.0266 i
{01,02,05} = {—0.078,0.4879,0.2606 } {61,02,03} = {0.7633,0.8322,0.9462}
mo 00 10 2 00 10 2
To 0.0415 -0.0275 i 0.2859 -0.1889 i -0.0446+0.0295 i -0.013-0.0046 i -0.0813-0.0289 i 0.0086 +0.0031 i
Ts -21.9148+4-14.4858 i | -159.244+105.261 1 | -6.77344-4.4773 i -0.0402-0.0143 i -0.2756-0.0978 i -0.0201-0.0071 i
Ty 22.1749 -14.6577 i 160.966 -106.399 i 6.7582 -4.4672 i 0.0424 +0.0151 1 | 0.2876 +0.1021 i | 0.0109 40.0039 i
sum 0.3016 -0.1994 i 2.0086 -1.3278 i -0.0598+0.0395 i -0.0108-0.0038 i -0.0692-0.0246 i -0.0006-0.0002 i
Ts -0.3085-+0.2039 i -2.0947+1.3846 i -0.0402-+0.0265 i 0.0112 +0.004 i 0.0695 +0.0247 i | 0.0009 4-0.0003 i
sum -0.0068+0.0045 i -0.0861+0.0568 i -0.14-0.0661 i 0.0003 +0.0001 i | 0.0003 +0.00011 | 0.0003 +4-0.0001 i
{01,62,05} = {—0.9706,1.5852, —2.13} {01,02,05} = {0.5267,1.5444,2.1303}
mo 00 10 2 00 10 2
To 0.0095 +0.00091 | 0.0199 4-0.0018 i -0.0451-0.0041 i 0.0411 -0.0194 i 0.177 -0.0838 i -0.0263-+0.0124 i
T -0.6149-0.0565 i -2.6313-0.2417 i 0.0003 0.0509 -0.0241 i 0.2783 -0.1317 i 0.0221 -0.0104 i
Ty 0.6181 +0.0568 i 2.687 +0.2469 i 0.0311 +0.0029 i | -0.05424-0.02571 | -0.2771+0.13111 | -0.0052+0.0024 i
sum | 0.0127 40.0012 i 0.0757 +0.007 i -0.0137-0.0013 i 0.0377 -0.0179 i 0.1783 -0.0844 i -0.0094+0.0044 i
Ts 0.0044 +0.0004 i | 0.0191 40.0018 i 0.0001 0.0016 -0.0007 i 0.008 -0.0038 i 0.0001
sum | 0.0171 40.0016 1 | 0.0948 +0.0087 i -0.0136-0.0012 i 0.0393 -0.0186 i 0.1862 -0.0881 i -0.0093-+0.0044 i
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D.2 B=0.5
{61,02,05} = {0.0534,0.1261,0.2692} {61,02,0s} = {—0.0958,0.05,0.1708}

mo 00 10 2 00 10 2

To -0.005+4-0.0072 i -0.0346-+0.0504 i 0.0049 -0.0072 i -0.012+0.0132 i -0.0836-+0.0919 i 0.0122 -0.0134 i
Ty -0.5063-+0.73821 | -3.7154+45.41741 | -0.1732+0.2526 i 10.3305 -11.353 i 75.9036 -83.4169 i 3.3881 -3.7235 i
Ty 0.5317 -0.7753 i 3.8838 -5.6629 i 0.1681 -0.2452 i -10.7851+4-11.8527 i | -78.8828+86.6909 i | -3.4052+4-3.7423 i
sum 0.0205 -0.0299 i 0.1338 -0.1951 i -0.0001+0.0002 i -0.4666-+0.5128 i -3.0628-+3.366 1 -0.005+0.0055 i
Ts -0.0201+0.0293 i -0.134+0.1954 i -0.0023+0.0033 i 0.4811 -0.5287 i 3.2224 -3.5414 i 0.0552 -0.0606 i
sum 0.0004 -0.0006 i -0.0002+0.0003 i | -0.00244-0.0035 i 0.0145 -0.0159 i 0.1596 -0.1754 i 0.0502 -0.0552 i

{01,02,05} = {—0.0775, —0.4968,0.1173} {01,02,05} = {0.7577,0.8313,0.9519}

mo 00 10 2 00 10 2

To 0.0579 -0.1144 i 0.398 -0.7868 i -0.0625+0.1236 i -0.0035+0.0059 i | -0.02214-0.0366 i 0.0023 -0.0039 i
Ts -16.5658+4-32.7473 i | -120.284+237.778 1 | -5.0646+10.0117 i | -0.0086+0.0143 i | -0.0597-+0.0991 i | -0.0047+0.0078 i
Ty 17.2361 -34.0724 i 124.58 -246.27 i 5.1212 -10.1237 i 0.0104 -0.0173 i 0.0712 -0.118 i 0.0026 -0.0043 i
sum 0.7282 -1.4395 i 4.6937 -9.2786 i -0.0059-+0.0116 i -0.0017+0.0028 i | -0.0106+4-0.0176 i 0.0002 -0.0003 i
Ts -0.7247+1.4325 i -4.775849.4408 i -0.0747+0.1476 i 0.0017 -0.0028 i 0.01 -0.0166 i 0.0001 -0.0002 i
sum 0.0035 -0.007 i -0.0821+0.1622 i -0.0806-+0.1593 i -0.0001+0.0001 i -0.0006+0.001 i 0.0003 -0.0005 i

{61, 02,05} = {—0.9692,1.5855, —2.1307} {01,02,05} = {0.5223,1.5347,2.1319}

mo 00 10 2 00 10 2

To 0.1249 +0.0499 i 0.2626 +0.105 i -0.5949-0.238 i -0.0439-0.4658 i -0.1891-2.0068 i 0.0282 +0.2994 i

Ts -6.3313-2.5327 i -26.9395-10.7763 i | 0.0664 +0.0266 i -0.0486-0.5161 i -0.2742-2.9104 i -0.0215-0.2286 i

Ty 6.4396 +2.576 1 27.724 +11.0901 1 | 0.3068 +0.1227 1 | 0.0606 +0.6434 i | 0.3182 +3.3773 i 0.0054 +0.057 i
sum | 0.2331 40.0932 i 1.0471 40.4189 i -0.2216-0.0887 i -0.0319-0.3384 i -0.1451-1.54 i 0.012 40.1278 i

Ts 0.0389 +0.0156 i 0.1561 +0.0624 i 0.0004 +0.0002 i | 0.0003 +0.00291 | 0.0019 +0.0203 i | 0.0001 +0.0005 i
sum 0.272 40.1088 i 1.2032 4-0.4813 i -0.2212-0.0885 i -0.0316-0.3355 1 -0.1432-1.5197 i 0.0121 +0.1283 i

D.3 B=0.9
{01,062,05} = {0.0526,0.1259,0.2702} {01,02,05} = {—0.097,0.05,0.1719}

mo 00 10 2 o0 10 2

To -0.0039-+0.0084 i | -0.02754-0.0586 i 0.0039 -0.0084 i -0.0098+0.0164 i -0.0686-+0.1144 i 0.01 -0.0167 i

T -0.3545+0.7563 1 | -2.6022+5.55121 | -0.12184-0.2598 i 7.2362 -12.0605 i 53.1652 -88.6102 i 2.3711 -3.9519 i
Ty 0.3772 -0.8046 i 2.7507 -5.868 1 0.1176 -0.2509 i -7.6368-+12.72821 | -55.7598+92.9346 1 | -2.3777+3.963 i
sum 0.0187 -0.0399 i 0.121 -0.2582 i -0.0002+0.0005 i -0.4105+0.6841 i -2.6632-+4.4387 i 0.0034 -0.0057 i
Ts -0.0179+0.0381 i | -0.11824-0.2523 1 | -0.0019+0.0041 i 0.4182 -0.697 i 2.7766 -4.6278 i 0.045 -0.0751 i
sum 0.0009 -0.0018 i 0.0028 -0.006 i -0.0021+0.0046 i 0.0077 -0.0128 i 0.1134 -0.189 i 0.0484 -0.0807 i

{61,02,05} = {—0.0771,—-0.4988,0.1191} {61,02,05} = {0.7571,0.8312,0.9526}

mo 00 10 2 00 10 2

To 0.0582 -0.1498 i 0.4 -1.0295 i -0.0629-+0.1619 i -0.0027+0.0066 i | -0.01714-0.0412 i 0.0018 -0.0044 i
T -13.81114-35.5416 i | -100.262+258.014 i | -4.20684-10.8259 i -0.006+-0.0145 i -0.042+4-0.1009 i -0.0034+0.0083 i
Ty 14.5091 -37.3378 i 104.671 -269.361 i 4.2464 -10.9278 i 0.0077 -0.0186 i 0.0527 -0.1268 i 0.0019 -0.0045 i
sum 0.7562 -1.9459 i 4.8094 -12.3765 i -0.0233+0.06 i -0.001+4-0.0025 i -0.0064+0.0153 i 0.0003 -0.0006 i
Ts -0.7363+1.8948 i -4.804+-12.3627 i -0.0705+0.1815 i 0.0008 -0.0019 i 0.0048 -0.0116 i 0.0001 -0.0001 i
sum 0.0198 -0.0511 i 0.0054 -0.0138 i -0.0938-+0.2414 i -0.0002+0.0006 i | -0.00154-0.0037 i 0.0003 -0.0007 i
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{61,0,,05} = {—0.9687,1.5857, —2.131}

{61,602,05} = {0.5205,1.5437,2.1324}

[e.9]

10

2

[e.9]

10

2

To

0.2713 +0.1465 i

0.5702 +0.3079 i

-1.2928-0.6982 i

-0.4238-0.7565 i

-1.8254-3.2585 i

0.2728 +0.487 i

T

-12.4191-6.7073 i

-52.7054-28.465 i

0.1829 +0.0988 i

-0.4415-0.7882 i

-2.5287-4.5139 i

-0.1971-0.3518 i

Ty

12.6765 +6.8463 i

54.3523 +29.3545 i

0.5922 +0.3198 i

0.5858 +1.0456 i

3.0962 +5.5269 i

0.0496 +0.0885 i

sum

0.5287 +0.2855 i

2.2171 +1.1974 i

-0.5177-0.2796 i

-0.2796-0.4991 i

-1.2579-2.2455 i

0.1253 +0.2237 i

Ts

-0.013-0.007 i

-0.0768-0.0415 i

-0.0012-0.0007 i

0.0174 +0.0311 i

0.0901 +0.1609 i

0.0009 +0.0015 i

sum

0.5157 +0.2785 i

2.1403 +1.1559 i

-0.5189-0.2802 i

-0.2621-0.4679 i

-1.1678-2.0846 i

0.1262 +0.2252 i




Appendix E

Some useful relations

Here we collect some useful formulae regarding the K function and form factors, identities from the theory
of distributions and relations for the stationary phase approximation (SPA) that are useful in the text.

E.1 The K function

The K function possesses a singularity at the origin, if the one particle coupling to the boundary denoted
by g is non-zero. In this case, the singular term in K is

2

K() x —i%%. (E.1.1)

Due to the relation K(—v) = S(—29)K (¥) the constant term in the expansion of K is also expressible
with g. Writing K as

2
1
K(ﬁ):—i%ngKngKlﬁJr..., (E.1.2)
and expanding
1
S(¥) = —1 — ip(0)9 + 5go2(0)192 +..., (E.1.3)
one obtains
2
Ko = “"((;)g : (E.1.4)
hence ) )
1 0
K@) =— g”#P(Q)g T N (E.1.5)

Also note that due to real analyticity K(—9) = K*(¢), all even/odd coefficients in the expansion of K
around ¢ = 0 are purely real/imaginary, respectively.

E.2 Form factor singularities and expansions

Consider form factors for a single species, such as the the multi-B; form factors of the sine-Gordon model.
Using the form factor equations (3.2.4) and (3.2.6) one can derive the universal expression

Fs(im, —e,e) = ?Fl —4iFy ) +0(e) , (E.2.1)

where
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f{’,lfnggi =ip(0) (E.2.2)

i.e. the first derivative of the S-matrix at the origin. Another form factor we need is F5(im, —¢,e, =9, 9),
where 9 is non-zero. Using (3.2.10), one can explicitly compute

4i
Fy(im, —¢,e,—0,09) = ipg( 9,9,0) + 4F3(—9,9,0)0(0) + O(e) (E.2.3)
which is universal as well.
For F5(im 419 +¢,im — 9 —e, —19,9,0) the most singular term is O(¢~2), however, we also need the !
terms. Denoting the coefficient of the sub-leading singularity by Fg(¢), it can be shown based on (3.2.10)
that

Fy(im + 0,im — 0,9 — .9 +£,0) = (1 - S()) (1 - S(—)) Fy

5
+ 1Fg(ﬁ‘) + regular ,
) < (E.2.4)
Fs(im +9,im — 9,9 —e, =0 +¢€,0) :5—25(20) (1-S))(1—S(-v)) F
+ éS(219)F§(—19) + regular ,
where
FE(9) ~ 8% L 950, (E.2.5)

E.3 Some distribution identities
Suppose that f(z) is a well behaved function with vanishing at infinity. Then it is well-known that

/_OO d:px_‘}:g::_ie = P/_OO dxxffxﬂzo —an f(xo) , (E.3.1)

where P [ denotes the principal value. This identity has the following counterpart for second order
singularity

/_OO der————— (@ 20 + P P/ m —amf(xo) . (E.3.2)
One can also write
= f(z) N f(=) :
/_Oo dxsinh (x —x0 +i€) P/_OO dxsinh (x —x0) inf(wo) (E-3.3)
and
o0 cosh (x — xg +i€) o0 f(x) o
/_OO dmf(m)sinhQ (@ —z0tic) P /_OO dmisinh @ = 20) imf(xo) . (E.3.4)

hold as well. A useful way of evaluating the principal value integral is

*  f@) = f(zo)/9(x — x0)
P/ o pra— / dz , (E.3.5)

s T — g

where g(z) is an appropriate mask function that is even, grows at the infinity and satisfies g(0) = 1, a
convenient choice being g(x) = cosh x.
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E.4 Stationary phase approximation

Consider the following integral with oscillatory argument:

1 itg()
o dxf(x)e ,

in which g(z) has one global extremum at zg, and f(z) is regular and decays fast enough for large |z|.
The asymptotic behaviour of this integral for large ¢ can then be evaluated as

(0 eita(xo) gim/4sign(g” (z0))

—3/2
TTREn] + Oy . (E.4.1)

1 o .
/ duf(z)e®) =
2m J_o



Appendix F

The finite volume 1-point function in the
presence of boundaries

The expectation value of a local operator in a finite volume with boundaries

e—Hz e—H(R—x)
o) = L 2 =3 Du (F0.1)

was calculated in [165] up to contributions Dy; with k + 1 < 4. We quote here the result:

dy

Doy = 5 KB(QQ)Fg)(_ﬁ,Q?)e—choshﬁ x ’
D3y = - / CwKB(ﬁ) 9B O(—z?,z?,())e_mmcos}‘ﬁﬂ) T
D40 — /MMKB 191)KB(192)F4 ( ,1917,[91, _,192’192)6—2m(cosh191+cosh192) T ’
(F.0.2)

Do = 7F(’)e—m('R x) ’
Do = dﬁK 9 FO —9.9 —2mcosh? (R—x)

02 = 2 (V) Fy (=0, 9)e )
D — dﬁK 9 9,9,0 —m(2coshd+1) (R—x)

03 = 2 B( ) FP(- Je :

dﬂ dv —2m/(cos cos —x

Do [ 550 Bwl)Ksz)Ff(—ﬁl,m,—ﬁz,qme amcosh 9y oosh ) (R=s)
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and

97 R

Dy = ZBFg?se—m ,
2 7O

Doy = 9 [do FP (=09 +im, 9 + im, 0) K p(1))e~2meoshve—m(R-a) _ —293F1 gOShﬁe_m(R‘”))

4 2m sinh“ 4

0
+ efm(erR)g%FlO 9051 ) 7
O

9B d O/ —2m cosh¥(R—z)—mz 29%F1 coshd —m(27€—m)>

Dy =98 [ Y EO(ix, —9, 0) K (0 _ 2971 oSV
Ty ) oon < 5 (i JKp()e snhZd
: 0
+ e—m(2R—x)g%Fl(9 El ) ’

93 dv o - 2m cosh ¥

D3 = gBe_mR 2—KB(6‘)F4 (=9 4 im, ¥ + im,im, 0)e” MO T
s

9i do o . 2mcoshd (R—

Dy = gBe_mR Q—KB(ﬁ)F4 (=0 +im, 9 +im, im,0)e” =" 2
T

1 dﬁl dﬂ? O . . —2m cosh Y1 x—2m cosh 92 (R—x)

D22 = Z ?gKB(ﬁl)KB (192)F4 (_191 + 17T, 191 + T, —192, 192)6 (F03)
dv _ 4 coshd _ a5 _
‘*’FQ(?S/%(KB(_Q?)KB(Q”B 2mcoshdR __ iBSinhQ,ﬁ e 2mR> +F2(?S§B€ 2mR<p(O) ’
where F2(,95 = F{(in,0) and
_.0log S(¥)

(V) = —i 59



Appendix G

Evaluating D19

In order to analyse the time dependence of the term

g?R di 9 O/ 9 —imt(2coshd—1) 2 cosh ¢ e~ imt
2 € / 27 { (W) Fy" (i, =0, D)e smh219 1 ’ (G.0.1)

we reintroduce the regulator R enabling us to shift the contour off the real axis where (as shown in [165]),
the contribution from the term

cosh ¥
sinh? ¢
vanishes, i.e., we end up with
g oco+ig d9 )
5%6 / 27 {K(ﬁ)Fg(Zﬂ', —9, 19)672mt(2(:osh1971)6717’LR/2(2 coshﬂJrl)} ) (GOZ)
—oo+ie 2T

Using now (E.3.4), we find

g co+ie do (sinh2 19K(19)F§9(27T, _19’ 29)e—imt(2 cosh ﬁ—l)e—mR/2(2 cosh19+l)/ cosh 19)/
D12(R) =2 Re or sinh ¥
—00-+1e

% qy (sinh? 9K (9)FE (ir, —09,0)/ cosh ) e~ imt(2coshd=1) (95t ginh of
+g§R > dY (Sinh2 ﬂK(ﬁ)FSO (iTI‘, _197 ﬁ)e—imt(Z coshﬂ—l)/ cosh 19)/ e—imt(?coshﬂ—l)
2 /oo 2 sinh 9 :

where we placed the integration contour back to the real axis as the integrands are now free of poles for
real rapidities and also got rid off the regulator by setting its value to zero. Performing the SPA (E.4.1)
results in

3FO (¢%(0) —2/3 , , [mt =2 — /20
it (CP 0 -2/ )%e e "imte=im/4 4 g3 M e ngeﬂmti\[ V2i , mt> 1. (G.0.4)
2v/4mmt T 2

While the first term has the standard ~ 1/ V't time dependence, the second one behaves as ~ v/ for large
time. This peculiar finding is discussed in Section 8.4.3.
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Appendix H

Evaluating G5, part 1. Notations, D5, D4
and residue terms from Dog

In this and the following appendix we describe how to compute the five-particle contribution GG5. According
to the discussion in Section 8.3 it can be obtained as (the real part of) the infinite volume limit of

Dos + D14+ Da3 (H.0.1)
Dys = Cis

Dyy = Ciy — Z1Cos ,

Das = Ca3 — Z1C12 — (Z2 — Z31)Cln -

The calculation of Dys and D14 is easy; we show explicitly the cancellation of terms with positive powers
of mL and extract the time dependence based on stationary phase approximation (SPA). It turns out that
this time-dependence is only of sub-leading order.

The calculation of Dag is, however, so long and tedious that we only extract terms accounting for
the leading time-dependence and then carefully argue why other terms produce only sub-leading effects.
In particular, in this Appendix we only focus on residue terms and leave contributions resulting from a
contour integration for Appendix I. Finally, we provide numerical evidence for the existence of the infinite
volume limit demonstrating the cancellation of terms behaving as mL and (mL)2 in Appendix K.

We use the following notation to abbreviate formulas involving form form factors: whenever a vertical
line is seen in the argument of the form factors, rapidities in the argument refer to rapidity pairs, and a
single rapidity is indicated by putting it into brackets {}. Rapidities to the right of the line are understood
to be shifted by iw. For example,

F5(01]92,{0}) = F5(im 4 V1, im — U1, —02,02,0) ,

and

F5(]91,02,{0}) = F5(="1, 01, —2,72,0) .

In a similar spirit, we introduce

h(ﬁ1’192 {0}>R _ eimt(2c08h19172coshﬁgfl)eme/Q(Zcosh191+2cosh192+1)
, =

)
and

h(ﬁl Vo {O}DR _ eimt(2coshﬂ1+2coshﬁ2+1)eme/2(2coshﬂ1+2coshﬁ2+1) (HOQ)
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and

h(01]02,{0}) = h(91]02,{0}) r=0 - (H.0.3)

H.1 Evaluation of D05 = COE) and [)14 = 014 — 21003

Let us start with

~ 1
D05 :i Z %K(ﬁl)K(ﬁg)]\%(ﬁl, 192, L)L<O‘O(0)’{I, —I, J, —J, 0}>L><
I#£J (H.1.1)
efimt(2 cosh ¥1+2 cosh 192+1)6me/2(2 cosh ¥1+2 cosh¥2+1)

which is free of divergences, therefore its infinite volume and R — 0 limit is simply

g / dﬁl/ 0V (01K () F5(0, —, 0, 1, e i Ceoshors2eoshosit) (5 9)

Concerning the long time asymptotics of this term, the stationary points are ¢; = 92 = 0 where the
product of the form factor and the K factors can be expanded in non-negative powers 9795'. Applying
doy [ dia gngme —itm(14203+293)

a Gaussian approximation [ G yields time dependence of the form ¢t~1=m="
which we neglect.

Turning now to

Cily == Zg (V1)K (92) N1 Ny (01,92, L), {({0}HOO){—1,I,J,—J})Lx
I;éJ (H.1.3)

e—imt(Q cosh ¥1+2cosh¥a—1) e—Rm/2(2 cosh ¥1+2 cosh¥2+1)
)

the corresponding form factor Fj(im, —1, 91, —2,92) has a 9¥? behaviour around the origin when 9, =
¥9 = 19, therefore it remains regular even when multiplied with the two K functions. However when only
one of the rapidities is close to zero then it has a first order pole F5 o %, hence taking into account the
singularity of the appropriate K function leads to a second order pole. Following the formalism introduced

in [188], one can write the sum using contour integrals
dv
S CERONE @) L
Cy (e@QM + 1) <e1Q4v2 + 1) (H.1.4)

()T ()2

e—zmt(2 cosh 91 +2 cosh 192—1)€—Rm/2(2 cosh¥1+2 cosh¥2+1)
s

F5('L.7T, _1917 791) _1927 792)

where the two-dimensional product contour C; x Cj encircles the solution of the Bethe-Yang equation
determining 9; and 92 with quantum numbers I and J . To open the contours it is necessary to subtract
the residue terms when 97 = 0 or ¥9 = 0. Hence

co+ie co+ie F
Ciy = 9 dvy dﬁ? K(91)K (92) —— 5<{0}‘7917f92)
(eiQ4,1 + 1) (eiQ4,2 4 1)

—cotie 2T J_oortie 2
(_> Zygc d;jrl () 55 (121;2[((191)}((192) (6Z_Q4f5j_{§);‘1(9;;2,3+ 1) h({0}|¥1,92)R (H.1.5)

<_> Zygc 6121;2 <>§£ d;jrl K (00)K () — F5({0}|191?}92) B0} |01, 02

(elQ4,1 + 1) <61Q4,2 + 1)

h({0}[91,92) R

.&\Q

%\Q
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where we used that on the contours with imaginary parts —ie ¢'Quk —5 00 in the infinite volume limit. Now
we split C14 according to the lines in (H.1.5) as C14 = O3 4 C7$1 + C¢52. Clearly, CT$51 = C1¢52 =: CT§*
and the infinite volume limit of C%}? is regular:

oco+-ig d9 oco+ie d
=2 o o K0 K (92) F5({0} |91, 92) h({0} 01, V)

hm C’mt
27T —oo+ie 27T

—oo+-1ig
since ¢Q4¢ — ( in the infinite volume limit on the contours with imaginary parts +ie. The residue
contribution is

i o, [ 49 F5({0}91, 92)
2075° = 9 <—> #Zoyg ad 51500 27; K(92) <eiQ4J5—i— 1) <;Qf’2 N 1) h({0}[0,Y2)r  (11.1.6)

For 92 = 0 based on (E.2.3)

2

—ig?
Fs ({091, 99) K (02) = 4iF3(—01, 9, 0) <1912 - w(O)) < > 7992 + 92@(0)> + regular

2 (H.1.7)

29
in the contour integral around the 2 = 0 point the 1/93 term acts as a differentiation on the other regular
¥ dependent factor, leading to

) + regular ,

d19
Cii =4 [ (0 90 K B0} 01,0 (L + 20(0) + 20(0)) + O (L) . (HLS)
Turning to —Z1003 we have
2
71 = meLe_mR

and
Con =55 [ S2F0,~01, 9K ()0} 91, )

Therefore the O(L) term in (H.1.8) is cancelled, resulting in

D1y = lim Cyy — Z1Co3
L—oo

g oco+ie diﬁl oco+ie d’l92

=5 - e gK(m) (92) F5({0}[91, 02)h({0}|91,V2) r (H.1.9)
+%6 @F3<’{0} 91) K (91)h({0}[91,0) & (260(0) + 2(1)) -

Pulling the contours back to the real axis by sending € to zero, one can then send R to zero as well with
the final result

D14 _9 d191 / d192 { )K(ﬁg)Fg,(’L'?T, _1917 191’ _192’ 192)€—itm(2 cosh ¥1+2 cosh¥a—1)
_ 292F3(0 192’ 192) COS};?; K(ﬁ2)e—itm(2605h192+1)
o | (H.1.10)
2P R0, 0. 01) S K (e
sinh” ¥

d19 ;
2 [T S0~ K1) D (26(0) + 20(01))
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Addressing the time dependence of this term, note that the structure of D14 is reminiscent of D15 discussed
in Section 8.4.3 resulting in a v/t type behaviour again due to a mechanism analogous to parametric
resonance. The difference from the case of D5 is that the oscillations are of the form cos 3mt instead of
cosmt. Since our primary focus is on one-particle oscillations, we do not discuss this term further here.

H.2 Evaluation of D23 = 023 — 21012 — (ZQ — Z%)C()l

Consider

Ca3 = % >N NaNs K (—01)K (92) ({1, ~T}O(0)|{J, —J,0}) X
I1>0J>0
eimt(Q cosh 191 —2 cosh ﬁg—l)e—Rm/Z(Q cosh¥1+2 cosh ¥2+1)

g F5(i7T+1917i7T—191,—192,192,0)
== K(—9)K (0 X
2 ngz% (Zo0) K (%) p2(V1)p3(V2)

eimt(?cosh191—2cosh192—1)6—Rm/2(2cosh191+2005h192+1) + O(e_“L) ’

(H.2.1)

where I and J are the quantum numbers specifying ¢; and 95, i.e.
Q2(th) = 271, Q3(02) = 2mJ
where Q2 and Q3 are defined in (4.3.2) and (4.3.3), respectively. The density factors are given by

Q2 (V1) Q3(V2) _

pa(th) = 09, 995

p3(V1) =
Note that I takes half-integer, while J takes integer values, according to the discussion in Appendix 4.3.1.
The expression

F5(i7T + Y1, i — V¥, —V9, V9, O)K*(’ﬂl)K(’ﬂg)

is singular when 197 = )5 or when 1 = 0 and 15 is finite, and these singularities are of second order. One
can first write the sum over J as a contour integral:

i ) EF5 (]9, {0})
on=4(3) >3 P, GEhnI 0N K oK) BT 22

where C; surrounds the positions 5 corresponding to J. Opening the contour leads to

_g 1 2 co+ie % F5(191|192>{0})
O =75 <2> g/_ooﬂs o (112 AN R K00 RUR) s Wi 1)

g 1 oo € d192 F5( ’1927{0})
+ 5 <2> I OO } 2—h(191]’l92, {0H)r K(—V)K (192)/)2(191) (6ZQ3 (¥2) _ 1)
1 = . o0 (H.2.3)
9 ) 5(V1|V2,
D) <2> 17&0 7h(191|192’ 0D R ﬁl)K(%)m(ﬁl) (eiQB(ﬁg) -1)
o . Fy(ilts, {0)
-7 (2> 2—2h(191|1927 {0Hr K (- ﬂl)K(ﬁ2)ﬁQ(§?) (;Qi(ﬁz) -1) ’

1;&0
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where in the first two terms we perform the mL — oo only for the rapidities )2, from which only the
integration along the contour above the real axis survives. We thus have

2 oco-+ie
n-3(3) 2/ 0y 00,0} K () R ) 212 )

170/ ~oortic 72(01)
2 402 Fs (01|95, {0})
2 ( > §)¢ 7]1 Wl 0D r ﬁl)K(%)m(%) (eiQ3(192) - 1) (H.2.4)

dJs F5 (919, {0})
( > %55 —h (01]92,{0})r K (— 191)K(192)ﬁ2(191) (@) — 1) °

This contour manipulation was checked numerically using known form factor solutions and comparing
(H.2.2) and (H.2.4) for finite R. The terms in the three lines in eqn. (H.2.4) are written in short as

023 — Cznt + CreslA + CreslB '

H.2.1 Time dependence from residue term Ci$*'4 and Cp5¥18

Consider the residue terms

res . dv E (19 ‘6‘ ’{0})
-3 () S, S oo D

70
__9(2 = S()) (1 = S(=01)) h(91|91,{0})r
53 ) F§ pa(01)
(—2imt — Rm) sinh 94 K'(%)
e A e Ty (H2.5)
K (91)S(01)i (mL cosh iy + 2¢(201) + (V1)) }
(5(191) —1)°

9 (L ﬂl)Fa(ﬂl) (V1]91,{0})r

101 F; S0 — 1) pal) /

and

CpestB g<1> Zyﬁ d—%h (91]92, {0}) r K(—191) K (d92)— F5(191]'1?2,{O})

2] & pa(Vh) (e'@stP2) —1)
__.9(1 5(201) (1 = S(Wh)) (1 = S(=91)) h(01|01,{0})r
-2 <2> Flg;) p2(V1)
(—1) (—2imt — Rm) sinh v, K'(—=%)
{ (=91) (5(=01) - 1) NI Y (H.2.6)
K(—91)S(—v1)i (mLcosh ¥y + 2p(291) + ¢(¥)) }
(S(=1) - 1)?

2

g <1)2F12K(—791) (=01) F5 (—=191)S(201)h(V1]91,{0}) R

" ot (500~ D) pa(01) ’
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where (E.2.4) was made use of. Note, that both the second and first order singularities are to be taken
into account. Adding C5$' and C355°15, one has

g (1\? —2iSm S(91)) (—2imt — Rm) sinh 9
o35t = i () Y K0! ( 1”;2( ) LI, 01, 10}
1#£0

- <> Ry (O Fimbeosh s + (301 + 501 I O
. ig (;)2 " % K(91)K'(~91) (1 — 5(191)2);219-[;(191)1(,(191) (1= SV p o104, (0D s
4 6) R (R )
(H.2.7)
or after some manipulations
48 @2 F % S| K W) (mL cosh vy + 2§2<<2£1)> + (W) h(W[91, {0})r .
/ H.2.8
o <1>2 . ;; Sm S(h) (K (0)]%) + 2;((;19)1>|K<191)2Re<1 = SO o161 (01
5 (3) 2 o (o 2+ o o)

The four terms of C§§51 have singularities at ¥; = 0. However, these singularities can only produce
terms with positive powers in mL but no non-trivial time dependence since h(91]91,{0})r contains no v,
dependent function multiplied by ¢. We therefore have a single secular term, namely

C;gs/sec :%Fle_imt (th) / £|K(19)]2%m5(19) sinh ﬁe—Rm/2(4cosh19+1)
oo AT (H.2.9)

4 %Fle—imt (Rm/2) / ;lﬁl ( )‘2 mS(’ﬁ) sinh 19€—Rm/2(4cosh19-|-l) ’
oo 2T

and taking the limit R — 0 results in

Oyl ™ =2 Pre™"™ (im) / 90k (9) P S(9) sinh i (H.2.10)



Appendix I

Evaluating G5, part 1I. Contour integral
terms from Dos

In this appendix we evaluate the contour integral from (H.2.3) which reads

znt g 1 ? ootie dv F: ("9 |79 ’{O})

Let us start with a summary of our method first. Manipulating (I.0.1) leads to various terms of which only
(I.1.7) and (1.5.4) give rise to interesting time dependence. The origin of these terms was made clear at the
beginning of this Appendix, but their actual evaluation needs further non trivial integral manipulations
discussed in Appendix J. The largest part of this Appendix is dedicated to showing that apart from (1.1.7)
and (1.5.4) no other term yields any interesting time dependence.

Starting from (I.0.1) we can subtract and add back the singularities of the five particle form factors.
Using (E.2.4), this leads to

2 co+ie _
cint — 2<1> / + M{h(ﬂ1|§2,{0})RK( ¥1) K (V2) F5(01]92, {0})

2 T40 —oo+ie 27 02 (’191)
QW F <Cosh(192 V1) N S(291) cosh (s +191)>  FE() 5(2791)F§(191)}}
1)1 slnh2(02 - 191) sinh? (92 + 01) sinh(dy — ) sinh(d9 4+ 1)
+g <1>2 /OO+ZE % { (ﬁl‘ﬁg,{O})RK(—ﬁl)K(’ﬂQ) y
2\2 10 Y —oo-tie 27 p2(V1)
QW) F < c‘osh2(192 — 1) 5(21?1) (2:osh(192 + 191)> }
sinh®(d2 — 1) sinh? (95 + 1)

g (1)’ ot ddy [ h(01]0, {0})r K (—01) K (¥2) F5(dh) S(201)F5 (—h)
T2 <2> #Zo/ooJris 2 { p2(V1) <Sinh(192191) " Sinh(dy + v1) >}

1ntA + ClntBI CzntBII
(1.0.2)

where Q) = (1 — S(¥)) (1 — S(—9)).

To make the rather technical evaluation more transparent, we introduce an additional simplification
which does not affect the end result. Apart from (I.1.7) and (I.5.4), many other terms also possess
singularities that in principle could lead to non-trivial time-dependence, but cancel each other in the end.
These singularities emerge from the region where 11 is around zero. But at zero rapidity S(0) = —1, and
all other quantities behave similar to the Ising model which has a constant S = —1 everywhere, resulting

129
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in K(9) being an odd function of . A good example is the sub-leading singularity of the form factor
F£(01) defined in (E.2.4), which for small 97 behaves as

8F
v
whereas its Ising counterpart is exactly

8Fy

F5(0h) = sinh 07

(1.0.3)

Therefore to keep the reasoning as simple as possible, from now on we perform our calculations for the
Ising scattering matrix S = —1 and show the cancellation of certain singularities. It turns out that in the
only nontrivial time dependent terms (I.5.1) and (I.5.4) the original S matrix can be easily restored.

I.1 Term Ci'5" and its descendants

CintBI yeads

/OOHS ‘%2 h(91|02,{0}) r K (—01) K (J2) %

2

imtBr 9 (1

Cog ™ =5 (2> > |
I£0 —00+1€

(1.1.1)

AF cosh(¥92—91)  cosh(d2491)
sinh?2 (1927’(91) sinh?2 (192+191)

p2(V1)

To proceed we focus on the integral with respect to 15 and separate the singularities in

cosh(¥y — 1)
K(Yy)———=
( 2)sinh2(192 — 1)

to prepare for application of the identities of distribution theory. Using the shorthand s(d2) = K (J2) and

cosh(ve — ¥1)
Vo) = —5—
(22) sinh? (99 — 1)

where s(¥2) is singular in 0 and ¢(2) at J2 = 1 one can write the singular terms as

s(02)c(V2) = ((s(V2) — 5(91)) + 5(01)) ((¢(I2) — ¢(0)) + ¢(0))
(s(92) = s(91)) (¢(V2) — ¢(0)) + s(V1)c(V2) + ¢(0)s(V2) — ¢(0)s(dh)

from which for fixed, non zero v1, the first term (s(d2) — s(91)) (¢(¥2) — ¢(0)) is singular only in J3 = J;
and this singularity is milder than 1/22, the second term s(11)c(1J2) is singular only in 99 = ¥y which is of
type 1/z%, whereas the third term c(0)s(1J2) is singular at the origin with 1/2 behaviour and the last term
c¢(0)s(¥1) is regular. The terms corresponding to this separation are denoted by CiatBIL CintBIZ CintBI3
and CintBI4,

Considering the first term and using (E.3.3), we have

(1.1.2)
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intBI1 _Y potie d192 (01192, {0}) r K(—V1) (K(J2) — K(Vh))
Ces < ) Z/ { p2(91) i

" < cosh(dg — 1) cosh ¥ ) }

1#£0 co+ie

sinh2(192 — 1) sinh? ¥,
1\? ootiE gy [ h(91]92,{0}) g K(—91) (K (¥9) — K(—01))
<> 17&0/ 2r { p2(01) A

2
" ( cosh(dp + 1)  coshd ) }
sinh2(192 + %) sinh? ¥4

g
2

—oo+ie

1.1.3)
T g ARy (
= — 155 () Zh ﬁl’ﬁlv{o})RK< 191 K ’191 (791)
1#£0
g dﬁg 4F1 ( 191) _
2 < > Z/ o p2 sinh(ds — v1) h(V1]92,{0}) r (K (J2) — K(¥1)) x
cosh(¥dg — 1)  coshty > . h(91|01, {0} r K |9,
— h(¥y — ) —
<sinh2(192—291) snn? g, ) St =) cosh(Vz — 01)
4+ — =91,
which equals
2
g (1 < diy 4F;  K(—9))
A it i) K - K
2(3) > A B L 0roa, 0D (K (92~ K (01) »
<cosh('l92 —¥1)  coshiy > sinh (9 — 01) — h(91|01, {0} g K|, (I1.1.4)
sinh?(d — 91)  sinh® 9, 2 cosh(¥3 — 91) :

+ P +— - .

One can split it further as

C'mtBIl CmtBIla CmtBIlb

. ddy . K(—91) h(91]92,{0})r
mtBIla 2 1
—4F
Ch3 ( ) ;}/ p2(¥1) sinhds — Y

g A3 , o K1) h(9h]92,{0})r
+2< ) Z/ 1) sinhdy + 01 (L.1.5)

1#0
cosh(¥y + 1)  coshiy ) ) K'(—t%) ]

K(92) — K(—9 - h(¥9y —) — ——————

- [( %2) (=91)) <sinh2(192 +191)  sinh®9; sinh(d = 1) cosh(da + 1)

ity 9 (1) diy o K(=01) [R(01]92, {0} r — h(1|01, {0}) r] K' (V1)
a4 () 2 [

27 p2(V1) cosh(tg — 1) sinh(dy — )

—4F

1>2 Z/ disy ., K(V1) [R(91]92,{0})r — h(V1|01, {0})r] K'(—1h)
2 or ! pa(01) cosh(dz + 01) sinh(Js + 91) ,
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The second term CE3B12 reads as follows:

2 oo-+ie 2
intB12 _ 9 (1 dvy | K (Y1)] cosh (g — 1)
023 B 2 <2> ; /;oo—f—za 27T h(ﬁl ’19 {0}) 2(191) 4F1 sinh2(292 — 291)

2 oco+ie 2
g (1 / d192 | K (091)] ( cosh(dg + 1) )
+=\| = E 91|99, {0 4F
2 <2) 140 —oo-+tie 27T ( ’ { }) 02(191) ! Sinh2(192 + 191)

1 2 co+tie 2 h _ h
= (> S o, opa K0 < (03 = 91) | cos 2<ﬁ2+ﬂ1>>
25/ ootic 27 p2(%1) sinh”(¥2 —91)  sinh®(Jy + 91)

__ﬂg< ) > (1101, {0})r K(W1)P T4 F) (—2imt — Rm) (sinh 9y + sinh(—1))
= p2(01)

| iy [K@W0)? 4R
—2imt —
+ (—2im Rm) = ( > Z/ o p2(¥1) sinh(¥g — ) -

10

' h(91|91, {0})r sinhd;
(9]0 sinh J —

X [ (91|92, {0}) g sinh ¥ cosh (2 — ¥1)

dvy |K(91)[? ALy
+ (—2imt — Rm) = ( > ;/ o p2(91) smh(192+191)x
h(91191, {0} sinh(—01)
cosh (V2 + v1) ’

X |:h(’l91|’l92, {0})R sinh 192 —
(L1.6)
where (E.3.4) was used. Thus,

| diy |[K(91)]*  4F
intBI2 — 2 1 1
cin =(—2imt — Rm) = < ) gs%/ 21 (V1) sinh(dy — ) )

h(ﬁ1|191, {O})R sinh 191
cosh(ve — 1)

dyy [K(W)]? 4R
2 —
+ (=2imt — Rm) = < ) Z/ 21 p2(¥1) sinh(Jg + Y1) -

(191 |191, {O})R Sinh(—ﬁl)]
cosh(¥g + 91)

X |:h(191‘192, {0})R Sinh’ﬁz —
(L1.7)

X |:h(191‘192, {0})R Sinhﬁg —
Turning to the third contribution and using (E.3.4), we have
cosh 19

oco—+ie d,ﬂ 4Flsin 2
CintBI3 _ < > Z/ Jh (91|92, {0}) r K (— 191)1((?92)ﬁhﬁ1
T£0 Y —ootie )

2 0o+1€ 4F} coshvy (1'1'8)
g 1> / dds L §inhZ v,
9 (1 C02 b (01]9a, {O}) j K (—01) K () —Sm 01
2(2 ; S h, (0D K () K()—
=0.

The 4th term reads

CintBI4 _ _ < ) Z/ dda h(91]92, {0})r | K (01) ] o, coshv (119)

= p2(V1) sinh? 9,
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1.2 Term C’mtBH and its descendants

Consider now

F5 (01) F5(=0h)

. cotie 9 sinh(d2—0 sinh(J2+0
O3Bl = < ) >/ 2{ (9], {0}) K (—01 ) K (9) L2200 suh0t )]} (12.1)

140 oco+tie P2 (191 )

Similarly to C&3*B! | we first separate the singularities using the shorthand s(92) = K (¢J2) and

1
D)= ——
2) = S, =)

where s(12) is singular at Y9 = 0 and ¢(2) at Y2 = ¥, to write

§(02)c(02) = ((s5(V2) — 5(01)) + 5(0h)) ((¢(I2) = ¢(0)) + ¢(0))
(s(92) = s(91)) (c(V2) = ¢(0)) + s(V1)c(V2) + ¢(0)s(V2) — ¢(0)s(Vh)

from which for fixed, non zero ¥1, the first term (s(¥2) — s(1)) (c(J2) — ¢(0)) is regular in 2, the second
term s(¥1)c(d2) is singular only in 99 = ¢; which is of type 1/x, whereas the third term ¢(0)s(v2) is
singular at the origin with 1/ behaviour and the last term ¢(0)s(¢;) is regular. The terms corresponding
to this separation are denoted by CEntBIIL CintBII2 CittBIIS anq CintBI4 from which we have the first
term

(1.2.2)

CintBITT _ 2( > Z/ A2 h(01]02, {0})r K(=0h) (K (V2) — K (V1))

s p2(v1)

1 1 -
(sinhﬁg — % + sinh 191> F5 ()

dd2 h(91|02,{0})r K (=01) (K(¥2) — K(=V1))
( > Z/ p2(v1) .

(1.2.3)

1 1
_ FE(—
(sinh U9 + 191  sinh 191> 5(=1h)

which is regular, and the second term
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cintBrrz _9 (1 2 /°°+iech’bh(191|z92,{0})RK( V1)K (V1)  F5()
23 2\2) ) ooric 27 P2 (1) sinh (99 — 91)

_9( )2 /ooﬂacwbh(ﬁlwm{o})RK( )E(=91)  F5(=91)
2 %0 —ootie 2T ﬁz(ﬁl) sinh (192+191)

i m g (LY e M 0D R K@D oo T
_ <2> ; o (8/ sinh gy + 8/ sinh(—vy)) F

2 2
9 (1 [K(01)F 8F; (1.2.4)
3 (2) ;} 2(91) sinhd; |

< 49y [ h(91]92, {0})r — h(91]01, {0}) R/ cosh(ds — 01)
X/_OO27T2< 1|U2 R Sinh}ﬁ;_ ﬁl)R 2 1)

46 5500w

120
« / Li% (h(ﬁﬂ??g, {0})R — h(191|191, {0})3/ COSh(’l92 + 191))
oo 2T sinh(dg + ) ’

where we used (1.0.3) and (E.3.3). This can be further simplified to

CzntBIIQ CzntBIIZa CzntBIIZb

. iy | K (91)]?
intBII2a __ 2 1
Ci _< ) Z/ 21 p2(v1)

h 791‘192, {0} (1 - 1/COSh(Q92
sinh (g — 1)

_ 191))) 8F1 / sinh ¥4

I#£0 <
2 2
9 1 d292 |K ’191 h 191‘192, {0} (1 — 1/COSh(192 + 191)) . B
+2 (2> ;)/ 27’[‘ p2 191 Slnh(ﬂg +191) 8F1/Slnh( 191) ’
2 2
Bz _ 9 (1 ds |[K (1) [ h(1]92,{0})r — h($1 |91, {0 R .
_g(1 F,/sinh
Ca23 2 (2> %/ o p2(V1) sinh(dJ9 — 1) cosh ¥y — ¥ 8F/sinh vy
2 2
g (1 dda |[K(01)|° (h(91|02,{0})r — h(V1]91,{0})R .
+2 ( ) §/ 2 p2(91) sinh(¥2 + 1) cosh(¥2 + ¥1) 8F3/sinh(—v1) .
(1.2.5)
Now consider
CintBIIS _ 9 <1> /OOJ”E dde h(01]92,{0})r K(—01)K (¥2) F5 (V1)
2\2) =/ ootic p2(V1) sinh(—1)
g <1> /‘W @03 W01 92, {0} K (—0) K (92) FE(—1) (1.2.6)
2\ 2 25/ oot p2(Y1) sinh ¥4
=0.

Finally,
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CintBII4 _ g( ) Z/ dis h (01]02,{0}) g | K (1) Fg(ﬁg

20 p2(01) sinh(—v,)
g (1 dda (0192, {0}) r | K (91)]* FE(—01)
2 (2) ;/ p2(1) sinh (1.2.7)
g (1 diz h(91]09, {0})r |K(01)* 16F
2( > g;)/ p2(1) sinh? 94

1.3 The term C™A

As a function of 5 this term has no singularity at the origin so we can pull the contour back to the real
axis at once:

2\2 —o0+ie 27 P2 (191)

4R, <cosh(192 —v1)  cosh(d2 + V1) ) _ F5(h) Fg (=) } }

sinh?(d5 — 1)  sinh®(dy + 1)/  sinh(da — 1)  sinh(Jg + ;)

2 co-+ie —
cinta _9 (1) Z/ + M{h(ﬂ1|ﬁ2,{0})RK( 91) K (92) [F5(01192,{0})
I#£0

(1.3.1)

p2(V1)

» (cosh(ﬂg — cosh (2 + 1) ) (W) FE(—v1) } }
! sinh2(192 — 1) Slnh2(192 + 1) sinh(do — 1) = sinh(dy + ) ’

g( ) Z/ 612192 {h V1[92, {0}) r K(—01) K (V2) [F5(191!’l92,{0})
)

thus a stationary phase evaluation using (E.4.1) yields a 1/v/¢ behaviour multiplied by the function value
in ¥9 = 0. This expression as a function of ¥; has singularities of 4th and 2nd order, but the 4th order
ones just cancel due to

Fy K (95) sinh 9 h(9y — ¥ h(9s + ¥ h?9 +1
lim K(—gp)d lim LK (02) sinh v (C.OS (0 = 0) _ coshids + 1)> = lim g2 L
¥91—0 920 sinh ¥y sinh®(¥9 — ¥1)  sinh*(¥y + 1) ¥91—0 sinh* ¥4
. K(ﬁg) sinh 192 Fg(ﬁl) Fe(ﬁl) . 4 cosh 191
lim K(—11) 1 — =1 —2g72 F
1911210 ( 1) 1921%0 sinh 192 ( Sinh(ﬁg — 191) Slnh(ﬂg + 191) 1911%0 g sinh4 191 !

as FE () o 8F o around the origin. Hence in 11 no 4th order singularity is present and when the sum over
Iis converted to an integral the remaining 2nd order singularity can only produce terms of the type mL
but no higher power of L. These are expected to be cancelled by terms from Z;D1s.

OzntBI CmtBII

I.4 Singularities and their cancellation from and

There are some terms that have an integral regular at ©¥2 = 0 hence the SPA (E.4.1) can be directly applied
yielding a 1/4/t factor. But the resulting ¥; dependent prefactor has a dangerous 1/} singularity which
must cancel for the volume dependence to be regular when combined with Z7 D1s.



1.4.1 4th order singularities from C3/B11 ] CintBII4 and their cancellation

Now we turn to ngth 1 and Cé’gtBIM

intBII 1\ > ddg h(V1]92, {0}) g K (—h) (K (¥2) — K (V1)) F5 (V1)
() g et x

(
p2(V1)

1 1
8 <sinh(192 — 1) * sinh 191>

d¥g h(V1|02,{0})r K(—V1) (K(¥2) — K(=h a1
()2/ [V2, {0D) R K(=01) (K(92) — K(=91)) F5(=01)

o p2(1)

1 1
X (sinh("&g + 1) B sinh191> ’

cintBII4 _Y Z/ dda (01|92, {0}) r | K (91)[? FE (Y1) — F5(—0h)
23 = p2(V1) sinh ¥ ’

from which we have after the 5 integration applying the SPA, (E.4.1)

- /2 K(—d1) — K(h)
CItBIL o 9N 910,40 19/ hi, | 8F 1 Varmi
23 8%;) (R10A0DR | Gpzg, cosht | 8P —— g, /A

~ —%01“%(191\0, {0V g (g*/4)16F, /VAxmt ,

Fi(—
CzntB][4 g Zh 191|0 {O})RK( 191) (191) (191) h195( ﬂl)/m
17&0 P2 sinh ¥

~ J974(g* /) 16FL (9]0, {0}) g /VAmmit
hence the 4th order singularity vanishes.

1.4.2 4th order singularities from CiB11 CintBIlle and their cancellation

We begin by Ci3814 and its integration with respect to 92 using the SPA, (E.4.1):

p2(V1) sinh? ¥,

from which, neglecting the sum, the following behaviour is obtained for ¥; ~ 0

CzntB[4 —92< 19 4h 191‘0 {0})Rg

3 /VAarmt

Fy
p2(V1)

whereas for C&tBI1a which reads

136

(1.4.1)

(1.4.2)

(1.4.3)

(1.4.4)



137

i [ dv K( ) ) (191|192 {0})R
ntBIla 2 : 2 1 )
023 ( > T£0 / ]2(191) Si[lll’t92 - 7.91

(3 > s ﬁli ol e
|t - w00

cosh(va + 1) B cosh ¥4
sinh?(¥y + 1)  sinh? 9,

: K'(—)
> sinh(d2 + V1) — m] ,

(L4.5)
we have after integration on 9, applying the SPA, (E.4.1)
K(—9) , cosh? ¥ + 1 K'(9)
intBlla ~Z _in2 _
Cas 8 {4F 2(01) A0 10} <( "9 /2) (=1) sinh?® (—¥1)  sinh; cosh
K(9 ) 9 cosh? 91 + 1 K'(—=11)
4F' — 2) (-1 — 4
g p2(%1) A1, {0} ( i/ )( ) sinh?® 9, sinh 11 cosh Y1 /m
K(-1v) . 9 <cosh2191+1 -1 )
4F h(1¥1)0,4{0 — 2
2 {an EC hwnlo. o)) (-ig?/2) (g )+ o)
K(v ) 9 ( cosh? 9 + 1 1 > }
+4F 9110, {0 - 2) [ — + 4mmt
15 p2(%1) h(01]0, {01z ( i’/ ) sinh?® 9, sinh® 19, cosh ¥4 [V 4mm
1
~2L 9T ) ———h(11]0, {0}) g g*/VATmt
8 p2(V1)

that cancels the 4th order singularity from C33¢5874,

1.4.3 Singularities from CitBI/12

We start with C&atBI12¢ and show that after the 2 integration with SPA (E.4.1), no 4th order singularity
remains. CEtBI12¢ veads

CintBII20 _ | < > Z/ ddy |K (91)[? <h(191|192,{0})R(1—1/cosh(192

— 1)) .
Fy/sinhd
21 pa(Vh) sinh (Vs — 01) > 8F/sinh

M\Q

d192 K (91)> [ h(91|92,{0})r (1 — 1/ cosh(¥2 + 1)) .
< > ;/ o p2(V1) < sinh(Jg + 1) >8F1/smh(—191)

(L4.7)

and is regular in ¥5 = 0. Hence performing the SPA (E.4.1) for 381122 it is seen that the 97 dependence
is 1/9%.
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I[.5 Terms with non trivial time dependence

As seen in (I.4), a large number of terms originating from (I1.0.1) involving integration with respect to ¥o
can be evaluated directly using the SPA (E.4.1). Once the SPA is performed, these terms have singularities
in 1, which are of either 4th or second order, and those of 4th order behaviour cancel each other, whereas
the second order singularities cannot produce time dependence stronger than O(t").

For some terms, however, the 9, integration cannot be easily performed. The first example is provided
by (I.1.7) which we write again as

| diy |[K(91)]*?  4F
intBI2 — 2 1 1
cin =(—2imt — Rm) = < ) ;}/ 21 po(¥1) sinh(dy — ) .

X |:h(191‘192, {0})R Sinh’l92 —

h(91]91,{0}) R sinh v,
cosh(dy — 1)

dﬂQ ’K ’191 ‘2 4F1
2 —
+ (=2imt — Rm) = ( ) Z/ 21 po(¥1) sinh(Ys + 1) )

(191 |191, {O})R sinh(—ﬁl)]
cosh(2 + 1) ’

(L5.1)

X |:h(791‘192, {0})R Sinhﬁz —

and split into CiatBI2a 4 CintBI2b 4

: sinh ¥
CintBI%0 _ (_gimt — Rm) ¥ 1 22/ diy | K (91)[* 4F1h(91]92,{0})r <smh192 — 7cosh(ﬁzjﬁl)>
B o m 2 27‘(’ p2 ?91 Slnh(’l92 — 191)
140
2 2 4F h(01]92, {0}) g (sinhdy — —SBL=01__
1 (—2zmt _ Rm g ]. Z/ d’l92 |K 191 ‘ 1 11v2, 2 cosh(¥2+191)
2 = 21 po(Vy) sinh(d2 + 1) ’
: , 1\? A9y | K (1) AF| sinh 9,
CImBIZ _ (_9imi — Rm) Y ( 2 / -2
z (=2im m) 2\2 ;) o p2(¥1) sinh(¥y — 9¥) cosh(¥ — ¥4) %
h(01|92,{0})r — (91|01, {0})r]
2 2
g 1 d192 |K 191 ‘ 4F1 81nh(—191)
2imt — Rm) =
+(=2im m) 2 ( ) Z/ o p2(¥1) sinh(Y¥g + 971) cosh(V2 + V1) x

1#£0

x [h(01]02,{0})r — h(V1|91,{0})R]
(1.5.2)

C’ég’tBI 1 and C’%gtBI 2b provide the second example, which is written again for better transparency as
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2 Oo diy . K(=91) [M(V1]02,{0}) g — h(V1]91,{0})r] K' (V1)

intBry _9 (1
=2 (= S24F
Cas 2\ 2 I7é0 wor ! p2(V) cosh(t9 — 1) sinh(d — 1)
L9 (1 QZ / diy o K (1) [h(01]9, {0})r — h(d1]01, {0})r] K'(~01)
2\ 2 550 o p2(V1) cosh(dy + ¥1) sinh(d9 + ¥1) ’

(15.3)

22/ d9y |K(91)[? <h(191|192,{0})R—h(ﬁ1|1917{0})R

Fy/sinh ¢
o p2(V1) sinh(9 — 1) cosh(dy — 1) ) 8F1/sinh ¥,

2 2
g (1 > diy [K(Vh)[* (h(V1]92,{0})r — h(91]91,{0})r .
J (= F h(—
+2 2 1750 27T 02 (191) sinh(192 + 191) COSh(ﬂQ + 191) 8 l/Sln ( ﬁl) ’
which we add and denote by C’mtB I=II" " Therefore,

int BI—I1 _ ~intBI1b int BI12b
Css =C53 + C33

- K(=9y) 01192 0D)m = (0191, (0] (5550 + K'(91)
( > Z/ ,02 191) cosh(y — 9;) sinh (95 — ;)

NJ\Q

( ) s/ @m, (9y) (01192, 01 — k1191, (O ) (S + K/ (-0)

= (91) cosh(¥2 + v1) sinh (2 + 1)

(L.5.4)
Both C{atP12% and CitBI=1T defined in (I.5.4) involve the same integral kernel
/oo dda h(V1]02,{0})r — h(V1|01, {0})r (15.5)
0o 2T COSh(’lQQ — 291) Sinh(’l92 — 191) e

which is a function of ¢, and is evaluated in the next Appendix.

[.6 Summary

We have shown that from C&3t, i.e. the contour integral, apart from C83*82 defined in (1.1.7), (1.5.1) and
C’égtB I=IT defined in (I.5.4), only terms with dependence mL contribute to one-particle oscillations. The
VtmL term resulting from (I.1.7) (cf. eqn. (J.1.3)) is expected to be cancelled by the denominator of
(8.1.1) through Z; D15, and the only surviving time dependence comes from C’mtBI 2 and C’;gtB =T which
are analysed in the next section.



Appendix J

Evaluation of the integral kernel and time
dependence

In this section we evaluate

' : d¥y | K (01)]> Q1) F1h(01|02, {0}k
intBI2a _ (94 / “ev2 >
C23 (=2im Z o p2(V) sinh(dy — 1)
I£0
. sinh ¥,
X <smh ¥y — cosh(ds — 07) ?91))
. d¥y | K (01)]* Q(91) Fih(91]92, {0})r
—2
+( umt = < ) Z/ 271’ p2 ’ﬁl Slnh(ﬂg—l—ﬂl)
sinh —1%;
hey — — 0 U1
X <sm Vo cosh (s +191)> (J.0.1)
i . dv ’K 191 ’2 Q(ﬂl)Fl sinhﬁl
intBI2b _ (o / “wv2
Ca3 (=2imt - Z o p2(¥1) sinh(d¥e — 1) cosh(de — U1) x
[h(91[92,{0})r — h(V1|91,{0})R]
. d192 ’K 291 |2 Q(’lgl)Fl sinh(—ﬂl)
(= 2imt - < > Z/ o p2(¥1) sinh(¥y + 91) cosh(Pg + 9q)
X [R(91]92,{0}) r — h(V1]91,{0})R] ,
and
CintBI-1T _Y Z/ diy K(— 791)FE(791)+Q(191)F1K/(791))><
23 = o pa( 791 cosh(¥a — 1) sinh (2 — 1)
< [h(91|99, {0V g — B9 |91, {0
[h(91]92,{0}) r — h(V1]V1,{0})R (1.02)

]
g( ) Z/ diy K (v (K(*ﬁl)Fg‘f(*ﬁl)+Q(191)F1K’(7191))X

70 271' ,02 COSh(’l92 + ’191) Sinh(ﬁg + 191)

x [h(01]92,{0})r — h(91]91,{0})R]

Here we restored the S matrix dependence and (91) = (1 — S(¥1)) (1 — S(—v1)) compared to (I1.1.7).
For the integration over ¥, the SPA (E.4.1) cannot be directly applied to the second term in (J.0.1) and
to (J.0.2).

140
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CégtB 2a C’%gtB 2 and Cé’;tB I=IT are even functions of s, therefore we can define the following integral
kernels

% gy [RO1192.{0)) e (sinh vy — el

Ker® — ith e (J03)
r (ﬁl’t’ R) € (ﬂl) /—oo 2 Sinh(ﬂg — 191)
and
; & d792 [h(191’192,{0})3 — h(ﬁllﬁl,{O})R] Sinhﬁl
K — zth Ve 0.
er(vi.t, ) =e (W) /_OO 2w sinh(d2 — 1) cosh(¥ — 1) ’ (J.04)

which are even functions of J;. Then Ker, appears in CintBI2a iy (J.0.1), while Ker in C32t5120 in (J.0.1)
and in CotBI=11 " (3.0.2). For Ker,, the long time limit can be calculated by applying the SPA (E.4.1)
resulting in

1 h(01,0,{0})ge /4
V2m2mt cosh ¥

9(191) eQimt(cosh 1—1) p—im/4

Ker,.(91,t, R) =e"™Q(¥)
(J.0.5)
e77nR(cosh 91+3/2) .

amt 2 cosh 191

As for Ker the SPA, (E.4.1) cannot be directly applied, we proceed as follows: we first differentiate the
integrand with respect to ¢ and apply the SPA which becomes now possible:

Q(”(? )i /OO @eimt [h(ﬁl‘ﬁg, {0})R - h(ﬁly’ﬁl, {O})R] sinhﬁl

Vat | o or sinh (v — V1) cosh(Js — v1)

_w )/OO L%eimth(ﬁl, Y2,{0}) g 2im (cosh ¥o — cosh 1) sinh ¥,

o Coo 2m sinh(d9 — 1) cosh(dy — 1)
62z‘mt(cosh191—1)e—i7r/4

v/ mmt cosh ¥

Now integrating with respected to ¢t one ends up with the Fresnel sine and cosine functions, denoted here
by Fs and F¢ respectively:

(J.0.6)

=Q(vh) 2im (cosh ¥y — 1) o—mR(cosh91+3/2)

Veoshdy —1) _ pios
Kergae(91,t, R) :le)coshlﬁl)e R(cosh 91+3/2)

" {\f (FS <\/4mt(cos}71r(191) - 1)) R <\/4mt(cos}71r(191) - 1)))
(J.0.7)
—?i (FC <\/4mt(cosl7lr(791) - 1)) | Fe (\/4mt(cosl7lr(191) - 1)))

+Zf(2913 R)} ’

where f is an integration constant that is independent of time, but is a function of ¥; and R. We do not
determine the precise form of f(¥1, R), only quote its R = 0 limit:
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cosh cosh 9

WEShT =T (m m) (109

which is determined by noticing that the ¢ — oo limit for Ker(d;,t, R) is proportional to |sinh#;|. Note

that y/cosh¥1—1) f(191, )

osho ~ 92 around the origin, i.e. its second derivative is continuous at the origin.
Hence integrating it with |K|? gives a finite and well-defined result. In (J.0.2), however, Ker(d;,t, R)
is integrated with a 1/sinh®(;) type of function due to K (d1)Fg (1) + FiQ(¥1)K’(91), where the non-
analytic behaviour of f(91) must be carefully handled. The origin of the non-analytic term can be
summarised as follows: using the SPA, (E.4.1), a term proportional to 1/v/t is obtained, but in the
asymptotic expansion of the oscillatory integral, terms proportional to t=1/2+7 are also present. For any
finite ¢, these lead to analytic behaviour as expected from (J.0.4), but in the ¢ — oo limit keeping only
the leading terms, non-analyticity can emerge.

J.1 Time dependence from Ker, and Ci3tP12e,

Substituting Ker?,

% qc Into (J.0.1), the discrete sum to evaluate reads

g Zimts - | K (1) | Kerstac(ﬁl,t,R)
=Fie — Rm/2) E J.1.1

that has a 1/9% singularity at the origin which we treat with a contour integral representation:

g —imt, - ’K 191 ‘QKerstac(ﬂlﬂth)
=Fle — Rm/2)
2 (i /2) % p2(V1)
K ’K
— gF1€ zmt( imit — Rm/2 Z% dﬁl‘ 191 ’ erstac(ﬁht?R)
eiQ2(91) 4 1
170 (7.1.2)
. co-tie dv
:gFle_mt(imtRm/Q)/ . 2W1|K(191)]2K6rsmc(191,t, R)
oOT1E
9 imt, ., d9y |K (91)]*Kerd, (91,1, R)
+12F16 (—imt Rm/2)§£ o GiQ201) 4 1

As Ker®(9,t, R) is even in 91, its derivative vanishes at the origin, and so only the derivative of €iQ2(91) 41
gives a pole contribution resulting in

dﬁl ‘K(ﬁl) ’2K€T'Smc(191, t, R)
271 £iQ2 +1
94K6rgtac(07 tv 0)
16

igFle_imt(—imt — Rm/2) §£

- (J.1.3)

:%Fle*imt(—imt — Rm/2)

xvVitmL ,

and hence expected to be cancelled by the appropriate counter-term from Z; D1s. The contour integral in
the L — oo limit reduces to the upper contour and can be rewritten using (E.3.4) as
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g . oco-+ie d191
7F1€_th(_imt - Rm/2) / ‘ (191)| Kerstac(ﬁlv t, R)
2 oco+ie 27
co+ie . 2
9 —imts - d191 o sinh*9q cosh ¥4
==F —imt — Rm/2 K —K %,t, R
e imt— ) [ G (1K) P Kert (01, B)) SR (0
9 —imt, - ° dihy 5 sinh?9; S|
==F —imt — Rm/2 — [ |K()|" ———K 91,t, R
9 t1e (=im m/ )/oo 2m <’ (@)l cosh Tstac(V1,t ) sinh 9y ’

which is integrable since Ker%,.(¥1,t, R) is an even and regular function with respect to 9 . Then the

derivative of |K () 2% gives a v/t contribution which we are not interested in at the moment. The
contribution linear in ¢ comes from

Lprem e imt) [ SR tanh (i) (Kerf (91,,0))
Q%) (—imt) e im/4g2imit(cosh(d1)~1) (2imt — sech())

2v/mmt
2imt(cosh ﬂlfl)efiﬂ'/4

| i
:gﬂe”m/‘ UL K (1) tamh? (1)

(—imt) e

g —imt diy 2
fF K h
e /—oo 27 [ (91)[" tanh(81) Tmt cosh 91

gF e—zmtg ( 2zmt)
4 /rmtdmtr

gF —zmtg (th + 2(1 - (0)))
4 ™ '

(V) (J.1.5)

(2imt — 14 ©*(0))

CmtBIZb

J.2 Time dependence from via Ker: imaginary part

As Ker ~ 92 around the origin, one can naively try to evaluate the integral

’ dv
gFle_””t/ 1| K(91)|*Sm (—imt — Rm/2)Kergac(V1,t, R) , (J.2.1)

2 oo 2m
However, as time ¢ grows, due to the asymptotics of the Fresnel function (Fgs — % and Fo — %), the
interval in which Ker, ~ 93 holds shrinks as [—%, %], outside of which Kery, =~ 0 since Sm Kery, includes

the difference of Fo and Fg. On the other hand, at the endpoints of the intervals the integrand behaves
as t/91 — t\/t, so one expects that the integral is linear in ¢ and its coefficient is determined by the small
¥ behaviour of the K function. One can check this assumption numerically and conclude that in the long
time limit

< 9
gFlezmti/ dQ ! | K (91)*°Sm (—imt — Rm/2) K ersiac(91,t, R)
o (1.2.2)
9 —imtd 1.
=§F1€ ——imt

4 2

J.3 Time dependence from CB? via Ker: real part and logarithmic
anomaly

Similarly to the imaginary part, e Ker ~ 93 around the origin, hence one can once again try to evaluate
the integral directly
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g preint / dj% K(01)[2Re (—imt — Rm/2) Kerane(d1,1, R) | (7.3.1)
oo 2T

Again, as the time ¢ grows, Ker ~ 97 holds in the interval [— \[ \[] while at the endpoints of the intervals
the integrand behaves as /91 — t\/t, so one expects a term linearly dependent on ¢ whose coefficient is
given by the small ¥ behaviour of the K function. However, outside this interval the overall behaviour of
the integrand is now of the type 1/19; accounting for a logarithmic dependence and a ¢Int type behaviour
with a coefficient related to the the small ¥ behaviour of the K again. Differentiating Kergs,. with respect
to t and neglecting (—imt — Rm/2) in (J.3.1), the SPA (E.4.1) can be directly applied resulting in a 1/t
term whose coefficient can be identified with that of the logarithmic term. Explicit calculation shows that

_ 4 1
9 omimt g (9 <_g<mt>) +,<> , (13.2)
2 4 T

where

= lim
t—o00

1 [ 2(cosh ¥ — 1)
{ 2/ 19)|2 [ cosh v %
(F ( 4mt cosh(?) — 1)) LRy (\/4mt(cosl;(19) — 1)) _ 1) 4 Vsinh? 19] (J.3.3)

g* (log(mt)
o o))

J.4 Time dependence from Cj;'5/~1

To calculate the time-dependence from CiatB/=11

approximation (J.0.7) of (J.0.4) in the sum

we cannot use Kergge directly, i.e. the long-time

FE(0) | K'(0h)  F5(=91)  K'(=91)
Femmt 3 K ()] Ker(91,t, R) Fiow) + K@) — Fow) — K-) (J.4.1)
120 p2 (191) 4 sinh 191
FE (191)+ 1K (91) F§(701)7F1 K'(=9)
The reason is that the singularity of | K (19;)|? —® b Smhi;(lﬁ) EC9) s of order four, whereas for

any finite t, Kergyq. (and also Ker) behave as 92 around the origin and the resulting 2nd order singularity
is sensitive to the non-analyticity of f in the long-time approximation of Kergy.(91,t, R) in (J.0.7).

With Ker(d,t, R), which is an analytic function for any finite ¢ without such a singular behaviour,
one can formally express the time dependence using the contour manipulations and eventually (E.3.4),
yielding

K’ £ ’ !/
9 g it [ A0 (’K( ) Ker(v,t,0) (F 9((19)) + K(l(;i)) - f«“igz_(g)) - [12((:1199))) tanhﬁ)
2 1e /OO 27 4sinh ¢ (J.4.2)
fimtg4 ’I?’LLKG’I"(Q?,t, 0)”
Z 8 ooy

—+ gFle

where Ker(9,t,0)" is the second derivative with respect to ¥ and ... refers (mL)? terms with no time
dependence. Ker(¥,t,0)" can be approximated using the SPA, (E.4.1) giving § (—1 — 4) v/mt, hence the
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pole term yields an allowed mL+/mt factor. The way to actually evaluate C’;gtB I=I1' is done by performing

numerically the integration in (J.0.4) and its derivative needed for (J.4.2) or to calculate only (J.0.4) and
perform the sum in (J.4.1).

After performing the numerical integral, we evaluated the sum for the Ising case and came to the
conclusion that the leading order time dependence has the form

gFle*imt (Yymt + Yo logmt) , (J.4.3)

for large mt. It turns out, however, that for the linear term one can even keep the real part from Kerg,. in
(J.0.7) which has a milder behaviour than f in (J.0.8) and the contour integral manipulations can formally
be performed. The end of the analysis by generalising the Ising result is

FE(@) | K'(9) Fi(—9)  K'(—0 !
S— /oo do (’K(Q?)P%@ Kersmc(f},t,R) e (Flsﬁ(ﬂ) -+ K(1(91)) — Fiﬂ(ﬁ) _ K((—ﬁ))) tanh19>
mt =

— 4.4
oo 2m 4 sinh v (J.44)
Note, that for the Ising model %’6((1;9)) + F [[ggi)) — F?:((;;g ) " I;(’((_—g)) is a real function, whereas for an

arbitrary interacting IQFT it has an imaginary part as well.
As argued at the beginning of Appendix (I), the singular structure at the origin of %((1;9)) + F [Ig(l(;i)) -

F?E)((;f ) _ I3 II((I((__g)) is the same for the Ising an for any interacting theory, and since the source of time

dependence is attributed to the singularity, we can keep the real, i.e. singular part in (J.4.4). As a
consequence, it is possible to extract the linear time dependence from (J.4.4), and one is allowed to use
again the Ising model, where

FE(9) K'(9)  Fi(—9) K'(-9)  4F cosh ¥
_ —F = — — 2F — . (J.4.5)

Q) K (Y1) Q(9) K(—v9)  sinhv, sinh ¥4
For T it is useful to differentiate (J.4.4) with respect to t because for the resulting function the SPA
(E.4.1) can be applied yielding a constant and a 1/t type term. Elementary calculation shows that the

former term is

+

_9'1
4 r
The details of the numerical study can be found in the next Appendix.

T, (J.4.6)



Appendix K

Numerical checks for the calculations

Our quite lengthy and tedious analytic calculations were extensively cross-checked using numerics out
of which we discuss and present here three important parts: the cancellation of mL terms in Dag, the
time dependence from the term C"B/=!1 (1.5.4), and match between the time dependence of Doz and
our analytic predictions (8.3.20). Beyond these, we also numerically verified other parts of the calcula-
tions, such as: numerically monitoring the validity of our manipulations performed in Appendix H (using
sine-Gordon first breather form factors) and in Appendix J. From Appendix I, the calculations in (I1.2)
and (I.3) were also cross-checked, whereas the validity of the rest of the Appendix (i.e. cancellation of
the 4th order singularities) is verified by the match between the predicted time evolution of Dy3 and our
analytical considerations, discussed below.

K.1 Cancellation of mlL terms in ng

During the evaluation of Dy3 in Appendix H and I we ignored discussing and showing the cancellation
of O(mL) type terms. Here we verify their cancellation by considering the numerical values for Dyg for
various time instants and mL system sizes. For simplicity, we use the Ising case S = —1 for our checks
with analytic expression for the form factors from [?] and with a singular K function
—ig2
Kfsmg(ﬁ) - m .

Note that the only way to obtain a quench with a zero momentum particle in the Ising model is when
quenching from the ferromagnetic to the paramagnetic phase [94-96|. For such a quench calculations based
on a form factor expansion presupposing a small post-quench density are not expected to give accurate
results. Nevertheless, the cancellation of volume dependent terms is related to the order-by-order structure
of the expansion independent of the eventual behaviour of the expansion itself. We evaluated

(K.1.1)

Da3 = Ca3 — Z1C12 — (Z2 — Z7)Cor (K.1.2)

numerically for time instants mt = 0, 2.5, 5, 10, 20 and volume sizes mL = 30, 40, 50, 60 performing discrete

summation on the quantised rapidities. To make the summation finite we introduced a rapidity cut-off

imt Da3

Y. = 4.834 for the particles involved. In Fig. (K.1.1) we show the numerical values for e o7

with g = 1.
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Figure K.1.1: Real and imaginary parts of eimtD—? for time instants mt = 0,2.5,5, 10 and 20 for a quench
in the Ising model. Results for system sizes mL = 30,40,50 and 60 are shown with blue, purple, orange
and red symbols, but with a single exception these cannot really be distinguished due to their almost
perfect overlap.

The source of the only observable deviation (for the case mL = 30 and m¢ = 20 ) is numerical
inaccuracy resulting from the oscillatory nature of the terms of the sum. In Fig. (K.1.2) we plot the
difference between the numerical values obtained for various system sizes at fixed times.

2 eimt DZ3 2 eimt D
|A Re =2 1A Im Z=—2
g
0.100} 0.100} .
0.001} 0.001}
10_5’ 10—5,
107} : : 1077 ¢ . . .
108 F 109 ¢
10-1"t 10-11+
0 5 10 15 20 mt 5 10 15 20 Mt
(a) |ARe eimt%| (b) |ASmM ei’"t%|

Figure K.1.2: Modulus of differences between real and imaginary parts of eimt% for different system
sizes at time instants mt = 0,2.5,5,10 and 20 for a quench in the Ising model. The purple, orange, and
red dots correspond to the difference of the value obtained for 30 — 40, 40 — 50 and 50 — 60 in units of mL.

These results demonstrate that terms growing with mL indeed cancel.

K.2 Time dependence from C"BI-11

In this subsection we present numerical results to confirm that the time dependence of

) | K'(9) | FE(—91) | K'(=9)
Fremt 3 [K(01)2Ker(9y,t, R) T} + K90 — Fow) — K95

p2(v1) 4 sinh 94

(K.2.1)
I#0
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in the term C"BI=I1 defined in (1.5.4), (J.0.2) is of the form

gFle—imt (Timt +iTs logmt) | (K.2.2)

and that

FE(® K'(9)  Fi(=9 (=0 !
. /oo a9 (1K) PRe Keraac (9,1, R) Re (7 + 100 — Fooms) — 2op ) tanhv)
1mt =

2 4 sinh (K.2:3)
For the numerical analysis we used the Ising model to demonstrate these statements with
K(0) = —i A (K.2.4)
2sinh v
where F£(9) = %, yielding
%Fle—imt T |K (91)]? (% — cosh @1)2Ker(ﬂ1, t,R) (K.25)
%0 p2(1¥1)2 sinh” ¢
and
Tyt — /‘: % (JK(¥)|? (2 — cosh 191)2/S§Ic1)}slh7919 Re Kersac(V, t, R))/ (K.2.6)

Figure K.2.1 shows the numerical results for (K.2.5) for system sizes mL = 50,60 and for various time
instants. The kernel Ker was determined by numerical integration and we subtracted the mL residue
term

i g mLKer(9,t,0)"

4 8 ’
from (J.4.2) to check the resulted mL independence.

gFle (K.2.7)

R 2 gimt GintBI-II Ker"ng“ | 2 gimt CintBI-II Ker"ng“
e m
Fig 32 Fig 32
. 0.30f .
3.0} ) o, e
0.25¢ >
2.5¢ > e
5ol X 020}
15E R 0.15*‘
1.0f R 0.10¢
05 w © 0.05F
) 10 20 30 40 mt 10 20 30 40 mt
(&) Re eimt Cl;;tlijglj mL Ker;’g4 (b) Im eimt CITI‘:‘TZ;;II mL Ke'r;/g4
thcintBI II

Figure K.2.1: Real and imaginary parts of e o/ mLE e§2g calculated with a discrete sum for
time instants mt = 0.1,1,2.5,5,7.5, 10, 15, 20, 25, 30 35 and 40 for a quench in the Ising model. The orange
and red symbols correspond to system sizes mL = 50 and 60. g = 1.

Figure K.2.2 shows the real and imaginary factor multiplying the term § Fy et in CMBI=IT calculated
by a discrete summation (K.2.5) and by the integration (K.2.6). For the imaginary parts, we also keep
the Fg 4+ Fg part from Kergqe (J.0.7) but drop the Vsinh? 4 type function, f.
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Figure K.2.2: Real and imaginary parts of e/™*< LK er ‘" calculated by a discrete sum and a

Fig/2
continuous integral using Kerg . for time instants mt = 0.1, 1, 2. 5 5,7.5,10, 15, 20, 25, 30, 35 and 40 for a

quench in the Ising model. The red dots correspond to system sizes mL = 60 and the blue dots to the
analytic results. g = 1.

We can conclude that for the real part multiplying 4 Fre™ mt ysing the real part of Kergyq. in (K.2.6)
gives a correct result. For the imaginary part, however, the imaginary part without the singular f from
Kergqe alone is not able to reproduce the result of the discrete summation. On the other hand, the
time dependence of the imaginary coeflicient is only logarithmic, and therefore the calculation of this
sub-leading time dependence is not addressed in this work. We also checked if the linear time dependence
can be described by

g'1
Z;mt ,

as predicted in Appendix J and if the logarithmic time dependence for the imaginary part is a correct
assumption. In Fig. K.2.3 we therefore fit the functions a +bmt and a+b In mt to the real and imaginary
parts of '
ezmt CzntBIfII . Ker”g4
Fig/2 32
calculated by the discrete summation with mL = 60 omitting the first 3 data points corresponding to the
shortest times mt = 0.01, 1, 2.5.
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Figure K.2.3: Real and imaginary parts of e/ Clzﬂl 5— — mL K6§2 9 calculated by a discrete sum using

Kergiqe for various time instants for a quench in the Ising model. The red dots correspond to system sizes
mL = 60 and the blue line to the fitted curves of type a + bmt and a + b In m¢t.
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From the linear regression, the coefficient of the linearly time-dependent term is 0.0799167 which is to
be compared with ﬁ = 0.0795775 as g = 1. The agreement is excellent, and although the error of the
fitted parameter is 7 x 107°, the match is convincing.

K.3 Comparing the time dependence of Dy; with the analytic results

In this subsection we study the time dependence of

imt D23
9/2
for the Ising model with K = —iﬁ for mL = 70. We compute this quantity using discrete finite

volume summation for various time instants, and fit its real and imaginary parts with the appropriate
function dependences a + bv/mt + cmt + dmtInmt and a + b+/mt + ¢mt dictated by our analysis done
in Appendix J, omitting the first 7 data points corresponding to short times.

imt 2 e‘mtD
Re 2¢ D23 Im £- =2
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_27
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Figure K.3.1: Real and imaginary parts of eimt% for time instants mt¢ = 0,1, 2..., 35 for a quench in the
Ising model. The red dots correspond to system sizes mL = 70 and the blue curve to to the fitted curves
of type a + bvmt + cmt +dmilnmt and a + bvmt +cmt. g = 1.

Concerning the real parts, the values obtained from the fit are d = —0.0825821 and ¢ = 0.149943,
which must be compared with —ﬁ = —0.0795775 and K + % = 0.131292 resulting from (8.3.20) and
(8.3.21) with g = 1 and S = —1. The accuracy of the fit itself is around 1072 — 1074, The difference
between the fitted parameters and the analytic predictions is now a bit larger compared to the previous
subsection. However, neglecting more data points for short times the fitted values move towards the
analytic predictions. We note however, that omitting too many points leads to a deterioration of the fit
quality, as for an accurate determination of a logarithmic term data points over several orders of magnitude
should be used, which is not possible to extract due to the inaccuracy of the discrete sum for large times.
As an additional test we also tried the fitting function a + bv/mt 4+ ¢mt and noted that the fit residuals
were two orders of magnitude larger than for the case including the term mt In mt, which is a confirmation
of the presence of the term mtInmt in the time dependence.

For the imaginary part the parameter ¢ was found to be ¢ = 0.114809 which must be compared with
£ =0.125 for g = 1 according to (8.3.20) and (8.3.21). The total estimated error of the fitted value is of
the order 1073. In principle we should have either included Inmt in the fitting function or subtracted the
contribution of 3m eimt% —mLE egg“# discussed in the previous subsection from the data points,
but since this correction is rather small it was simply discarded.




