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Abstract: It is widely known that the nucleon scalar charge is proportional to the pion–nucleon

sigma term as one of the important low-energy observables of QCD. Especially interesting to us is

the physics of the nucleon scalar charge densities. This comes from the fact that the corresponding

operator has the same quantum number as the physical vacuum. It indicates unusual behavior

of the nucleon scalar density as a function of the distance r from the nucleon center. Namely, it

would not be reduced down to zero at the spatial infinity but rather approach some nonzero constant

corresponding to the vacuum quark condensate. Naturally, this unique nature of the nucleon scalar

density in the position space also affects the corresponding density in the momentum space, i.e., the

corresponding parton distribution function (PDF) as a function of the Bjorken variable x. This PDF is

known as the chiral-odd twist-3 PDF e(x). We argue that e(x) is likely to have a delta-function-type

singularity at x = 0 and that the appearance of this singularity can be interpreted as a signal of the

nontrivial vacuum structure of QCD.

Keywords: nucleon scalar charge density; nontrivial vacuum structure of QCD; chiral-odd twist-3

PDF e(x); existence of delta-function singularity at x = 0; pion–nucleon sigma-term sum rule

1. Introduction

It is well known that the nucleon scalar charge is related to the pion–nucleon sigma
term, which is one of the important low-energy observables [1,2]. However, since the
standard model of elementary particles is a V-A (vector and axial-vector) theory, there
is no external electro-weak current, which directly couples to the nucleon scalar charge
as well as to the tensor charge [3,4]. In recent years, these quantities have attraced wide
interest in the search of physics beyond the standard model, which also allows S–T (scalar
and tensor) couplings [5,6]. In the present paper, we demonstrate that far more interesting
than the nucleon scalar charge itself is its densities in the coordinate space as well as in the
momentum space. Why are they interesting? The ultimate reason can be traced back to the
fact that the corresponding operator has the same quantum number as the physical vacuum
of QCD. As is widely known, as a consequence of spontaneous chiral-symmetry breaking
(χSB), the QCD vacuum is believed to be characterized by nonzero quark condensate, i.e.,
nonzero scalar quark density. This implies that the nucleon scalar density as a function
of the distance r from the nucleon center is expected to show the following abnormal
behavior. Namely, as the distance r increases, the nucleon scalar density does not attenuate
to zero, but it would rather approach nonzero values corresponding to the vacuum quark
condensate. A natural question is whether this unique nature of the nucleon scalar charge
density would show up somewhere in physical observables. The purpose of the present
concise review is to show that we can answer the above question affirmatively.

2. Physics Behind the Nucleon Scalar Charge

There already exist several lattice QCD calculations of the pion–nucleon sigma term
ΣπN or the nucleon scalar charge σ̄ [7–9]. They are related as ΣπN = mud σ̄, where mud is
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the average mass of the up and down quarks. To obtain a rough idea about the magnitude
of σ̄ or ΣπN , here, we quote the results of the recent lattice QCD simulation by Alexandrou
et al. [9]. (Note that the scalar coupling gS in their notation is identified with the nucleon
scalar charge σ̄ in our notation.) Their prediction for σ̄ is given as a sum of four terms:

σ̄ = σ̄(u + d(conn)) + σ̄(u + d(disc)) + σ̄(s) + σ̄(c), (1)

with

σ̄(u + d (conn)) = 20.4(1.6), σ̄(u + d (disc)) = 3.04(59), (2)

σ̄(s) = 1.00(13), σ̄(c) = 0.175(36). (3)

Here, σ̄(u + d (conn)) and σ̄(u + d (disc)), respectively, stand for the contribution of
the connected and disconnected diagrams coming from the up and down quarks, while
σ̄(s) and σ̄(c) represent the contributions from the strange and charm quarks. One sees
that the contribution of the connected diagrams dominates over that of the disconnected
diagrams. However, it should be kept in mind that the separation into the connected
and disconnected pieces in the lattice QCD simulation does not necessarily correspond to
directly observable separation. The final prediction for the pion–nucleon sigma term is also
given as [9]

ΣπN = mud σ̄ ≃ 41.6 (3.8)MeV, (4)

although the value of mud is not explicitly written in their paper. Anyhow, this value seems
roughly consistent with the empirical one obtained from the analysis of the low-energy
pion–nucleon scattering data [10–12].

To understand the fundamental importance of the pion–nucleon sigma term, it would
be useful to briefly recall the physics behind the nucleon scalar charge. First, let us remem-
ber the theoretical prediction of the MIT bag model as a prototype low-energy effective
theory of the nucleon [13]. Its prediction is given as follows:

σ̄ = ⟨N |
∫

ψ̄(r)ψ(r) d3r |N⟩ = Nc

∫ ∞

0

{

f (r)2 − g(r)2
}

r2 dr. (5)

Here, Nc = 3 is the number of colors, while f (r) and g(r) are the upper and lower
components of the radial wave function in the MIT bag model. Since the radial wave
functions are normalized as

∫ ∞

0

{

f (r)2 + g(r)2
}

r2 dr = 1, (6)

and since the upper component f (r) dominates over the lower component g(r), we are
inevitably led to an inequality,

∫ ∞

0

{

f (r)2 − g(r)2
}

r2 dr < 1. (7)

This in turn leads to the remarkable inequality

σ̄ < Nc = 3. (8)

For reasonable choice of the quark mass mud, this gives a too small ΣπN , which is
largely incompatible with the existing empirical information for the pion–nucleon sigma
term [10–12]. We must therefore conclude that the naive quark model with only three
valence quark degrees of freedom sizably underestimates the magnitude of ΣπN .

A fatal shortcoming of the naive three-quark models in the scalar channel is also
clear from its prediction for the nucleon scalar charge density in the coordinate space. A
typical prediction of the naive three-quark models of the nucleon for the scalar density is



Symmetry 2024, 16, 1481 3 of 19

illustrated in Figure 1. (The scalar quark density ρS(r) shown in Figure 1 is normalized as
4π

∫ ∞

0 ρS(r) r2 dr = σ̄, with σ̄ being the nucleon scalar charge. Since the unit of r is given

by fm (fermi or femtometre), the unit of ρS(r) here is fm−3.) As one sees, the scalar density
takes a maximum value at the center of the nucleon, and it smoothly attenuates to zero as
the distance r from the nucleon center becomes large and approaches infinity. One should
recognize that this contradicts our expectation that, at least in the region far apart from
the nucleon center, the scalar quark density must coincide with the nonzero value of the
vacuum quark condensate as long as we believe the scenario that the spontaneous breaking
on the chiral symmetry generates nonzero vacuum quark condensate [14]. As we shall
see in the next section, the chiral quark soliton model (CQSM) is a very unique effective
model of the nucleon, which can simultaneously reproduce the nontrivial vacuum quark
condensate and the local structure of the nucleon scalar charge density.

0.0 0.5 1.0 1.5 2.0
r [fm]

0

1

2

3

4

5

6 nucleon scalar quark density in naive 3-quark model

Figure 1. Typical prediction of the naive three-quark model for the nucleon scalar charge density

ρS(r) in the coordinate space.

3. Brief Introduction to the Chiral Quark Soliton Model

The chiral quark soliton model (CQSM) is a low-energy effective model of baryons
first introduced by Diakonov et al. based on the instanton-liquid picture of the QCD
vacuum [15]. The effective Lagrangian of the CQSM is given by

LCQSM = ψ̄(x)
(

i γµ ∂µ − M e i γ5 τ·π(x)/ fπ

)

ψ(x), (9)

where ψ(x) and π(x) represent the effective quark and pion fields, while M stands for
the effective quark mass (or the constituent quark mass) of the order of 400 MeV. Note
that there is no kinetic term for the pion in this lagrangian, which implies that the pion
field in this model is not an independent field but rather a dependent field of quarks (or
the quark–anti-quark composite). The effective pion action Se f f [π] obtained from this
lagrangian can be defined by formally carrying out the path integration over the quark
field,

Z =
∫

Dπ

∫

DψDψ† e i
∫

d4x LCQSM =
∫

Dπ e i Se f f [π]. (10)

It is known that if we use the derivative-expansion-type approximation in the three-
flavor case, we obtain an effective meson action of the following structure,

Se f f [π] = Skyrmion action with Wess-Zumino term

+ destabilizing 4-th derivative term

+ · · · . (11)
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Unfortunately, different from the original Skyrmion action, the existence of the desta-
bilizing 4th derivative term does not allow for the existence of a stable soliton-like solution.
The basic idea of the CQSM is to construct a stable soliton-like localized solution without
relying upon derivative-expansion-type approximation. Basically, it is a relativistic mean-
field theory for quark fields. We start with the assumption that the pion field, which plays
the role of the mean field for quarks, takes the hedgehog form as follows similar to the
famous Skyrme model,

π(r) = r̂ F(r), (12)

where the function F(r) is supposed to satisfy the following boundary condition,

F(0) − F(∞) = n π (13)

with n (= 1) being the so-called winding number of the effective pion field. Under the
presence of this mean field, the quark field obeys the following Dirac equation,

H |m⟩ = Em |m⟩, (14)

with

H =
α · ∇

i
+ M β (cos F(r) + i γ5 sin F(r)). (15)

A characteristic feature of this Dirac equation with the topologically twisted hedgehog
mean field is that one deep single-quark bound state appears from the positive energy
continuum of the above Dirac Hamiltonian. (See Figure 2 for illustration.) We call this
particular single-quark level the valence quark orbital.

Figure 2. Characteristic behavior of the single-quark energy levels under the mean field of hedgehog

shape.

An object having baryon number one with respect to the physical vacuum is obtained
by putting Nc (= 3) quarks into this valence orbital as well as all the negative energy
(Dirac-sea) orbitals. This baryon number one object with respect to the physical vacuum is
sometimes called the quark hedgehog denoted as |QH⟩. Accordingly, the total energy of
this quark hedgehog is given as a sum of the valence quark contribution and the vacuum
polarization contribution as

Estatic = Nc E0 + Ev.p., (16)

where E0 is the single-particle energy of the valence quark level, while the vacuum polar-
ization contribution represents the Casimir energy resulting from the polarization (defor-
mation) of the Dirac-sea quark orbitals and given by
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Ev.p. = Nc



 ∑
m (Em<0)

Em − ∑
k (ϵk<0)

ϵk



. (17)

That is, the Casimir energy is given as a sum of all the energies of quarks in the
negative-energy Dirac-sea orbitals. Here in Equation (17), the 2nd term represents the
subtraction of the Dirac-sea energy of the physical vacuum. (The physical vacuum of the
model is obtained by letting F(r) → 0.) The most probable pion field configuration is then
determined on the basis of the stationary requirement for the total energy Estatic[F(r)],

δ

δF(r)
Estatic[F(r)] = 0. (18)

This requirement combined with the above Dirac equation is reduced to a self-
consistent Hartree problem which can be solved by the numerical method of Kahana
and Ripka [16]. (See [17] for more detail about the actual calculation method.) After self-
consistency is fulfilled, the hedgehog pion field, which was originally introduced as an
external mean field for quarks, becomes an implicit functional of the quark fields.

Actually, the vacuum polarization energy given by Equation (17) contains ultraviolet
(logarithmic) divergence. Often, this ultraviolet divergence is removed with the use of the
Pauli–Villars regularization, which means the following replacement of the effective action

Se f f [π] → SM
e f f [π] −

(

M

MPV

)2

SMPV
e f f [π], (19)

where MPV is a Pauli–Villars cutoff mass. However, since the vacuum quark condensate
contains quadratic divergence, the single subtraction is not enough and we need double-term
Pauli–Villars subtraction as used in [18],

Se f f [π] → SM
e f f [π] −

2

∑
i=1

ci S
Λi
e f f [π], (20)

The four subtraction parameters c1, c2, Λ1, and Λ2 are determined so as to remove the
quadratic and logarithmic divergence of the effective action and to reproduce the empirical
value of vacuum condensate and the correct pion kinetic energy term in the effective
pion action [18]. Once these parameters are fixed, the model is known to reproduce low-
energy observables of the nucleon as well as the various quark distributions of the nucleon
remarkably well [19–25].

To convince the reliability of the CQSM, we show below its characteristic predictions
related to the most important parton distribution functions at the twist-2 level. Probably, one
of the remarkable predictions of the CQSM is that it reproduces the observed small quark
spin contribution to the total nucleon spin fairly well. We show in Figure 3 the prediction
of the CQSM for the longitudinal quark spin ∆Σ and the longitudinal gluon spin ∆g in the
nucleon as compared with the empirical information. Here, the scale dependencies of ∆Σ

and ∆g are taken into account by using the evolution (DGLAP) equation at the next-leading
order (NLO) under the assumption that ∆g = 0 at the initial energy scale Q2

ini = 0.30 GeV2,
which we identify as the energy scale of our effective quark model. One sees that the CQSM
predicts fairly small quark spin contents in the nucleon, and it is qualitatively consistent
with the empirical information. We emphasize that the small prediction of the CQSM
for ∆Σ is deeply connected with its nucleon picture as a rotating hedgehog object. The
time-dependent rotation of the hedgehog mean field necessarily enhances the contribution
of the quark orbital angular momentum, which in turn reduces the contribution of the
intrinsic quark spin.
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Figure 3. The CQSM prediction of quark spin ∆Σ [26] as compared with the old experimental data

from the SMC group [27] and the newer data from the COMPASS [28,29] and HERMES groups [30].

Next, Figure 4 shows the predictions of the CQSM for the longitudinally polarized
structure functions of the proton, the neutron and the deuteron as compared with the
corresponding experimental data by the SMC group [27], the Compass group [28,29], and
the HERMES group [30]. We can say that the agreement with the empirical information
is encouraging especially in view of the fact that the predictions of the CQSM are almost
parameter free.

Still, another prominent feature of the CQSM is that it can give reliable predictions
about the sea-quark distributions or the anti-quark distributions in the nucleon. This
greatly owes to its field theoretical nature, which takes account of the deformation (or
the vacuum polarization) of the Dirac sea under the presence of the hedgehog mean field
in a nonperturbative manner. It is empirically known that the distribution functions of
the anti-quarks in the proton is not flavor symmetric; i.e., the distribution of the d̄-quark
dominates over that of the ū-quark inside the proton. It is widely known that this flavor
asymmetry of anti-quark distribution can be explained by the effects of a pion cloud at
least qualitatively. The CQSM can explain this feature more qualitatively again without
introducing additional free parameters. Figure 5 shows the predictions of the CQSM
for the d̄(x) − ū(x) distribution as well as the ratio d̄(x) / ū(x) in comparison with the
corresponding experimental data from the Hermes and FNAL-E866/NuSea group as well
as the old data from NA51. We can say that the CQSM reproduces the characteristic features
of the empirical observations fairly well at least qualitatively.

Very interestingly, the CQSM predicts the flavor asymmetry also for the longitudi-
nally polarized sea-quark (anti-quark) distributions. It turns out that the model predicts
that ∆ū(x) dominates over ∆d̄(x). The flavor asymmetry of the longitudinally polarized
anti-quark distributions is not yet firmly established with the same accuracy as the flavor
asymmetry of the unpolarized anti-quark distributions. Here, in Figure 6, we make a pre-
liminary comparison of the predictions of the CQSM with the empirical DSSV fit [31]. One
sees that the qualitative agreement between the theory and the empirical fit is encouraging.
Although we cannot show more examples because of the limitation of space, we can say
with confidence that the QCSM provides us with a reliable basis to investigate the internal
substructure of the nucleon.
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Figure 4. The CQSM predictions for the longitudinally polarized structure functions for the proton,

the neutron and the deuteron [26] as compared with the old experimental data from the SMC

group [27] and the newer data (red in color) from the COMPASS group [28,29]. For reference, the

prediction of the flavor SU(3) version of the CQSM is also shown.

Figure 5. The predictions of the CQSM for the d̄(x)− ū(x) distribution and the d̄(x) / ū(x) [24] in

comparison with the corresponding experimental data from the Hermes [32] and FNAL-E866/NuSea

groups [33] as well as the old data from NA51 [34].
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Figure 6. The CQSM predictions for the flavor asymmetry of the longitudinally polarized anti-quark

distribution x (∆ū(x)− ∆d̄(x)) [24] in comparison with the empirical DSSV fit [31]. For reference, the

prediction of the flavor SU(3) version of the CQSM is also shown.

4. Nucleon Scalar Charge Density Predicted by the Chiral Quark Soliton Model

Figure 7 shows the prediction of the CQSM for the nucleon scalar density in the
coordinate space [18,35]. (Note that the nucleon scalar charge density in Figure 7 is normal-
ized as 4π

∫ ∞

0 [ρS(r)− ρS(r = ∞)] r2 dr = σ̄, with σ̄ being the nucleon scalar charge.) As
one sees, the contribution of the three valence quarks smoothly attenuates to zero as the
distance from the nucleon center becomes large, as is the case with the prediction of the
naive three-quark model. Remarkably, however, the contribution of the negative energy
Dirac-sea quarks does not attenuate to zero, but it approaches a negative nonzero value,
which is nothing but the value of the vacuum quark condensate in the QCD vacuum. (We
recall that the effective action of the CQSM was constructed so as to reproduce the vacuum
quark condensate of the QCD vacuum.) This confirms that the CQSM can explain the
vacuum quark condensate and the nontrivial local structure of the nucleon scalar charge
density at the same time [18,35]. A question is whether this highly nontrivial behavior of
the nucleon scalar density, i.e.,

σ̄(r) ≡ ⟨N |ψ̄(r)ψ(r)⟩r
r→∞→ nonzero constant, (21)

appears in some observables?
Note that the Fourier transform of a constant gives a Dirac’s delta function. This

implies that the nonzero vacuum condensate contained in the nucleon scalar charge density
in coordinate space may appear as a delta-function singularity in the scalar charge density
(form factor) in momentum space. Unfortunately, the Fourier transform of the local scalar
charge density of the nucleon would not correspond to any direct observables. As we shall
see below, the relevant quantity here is the nucleon scalar charge density as a function
of the momentum variable x of Bjorken or Feynman. It is the chiral-odd twist-3 quark
distribution function customarily denoted as e(x).
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Figure 7. Prediction of the CQSM for the nucleon scalar charge density in the coordinate system. The

dashed and dash–dotted curves, respectively, stand for the contribution of the three quarks in the

valence level and that of the negative energy Dirac-sea quarks.

5. Twist-3 PDF e(x) as a Nucleon Scalar Density in a Momentum Space

As shown in Table 1, up to the twist-4 order, there are nine independent quark distribu-
tion functions (see [36], for example). Hereafter, we call them parton distribution functions
or simply PDFs.

Table 1. Nine independent quark distribution functions with twists 2, 3, and 4.

Twist-2 Twist-3 Twist-4

f1(x) = q(x) e(x) f4(x)

g1(x) = ∆q(x) h2(x) g3(x)

h1(x) = ∆Tq(x) gT(x) h3(x)

For example, f1(x) or q(x) is the familiar unpolarized PDF of the nucleon, g1(x) or
∆q(x) is the longitudinally polarized PDF, and h1(x) or ∆Tq(x) is the so-called transversity
distribution of the nucleon. Of our particular interest here is e(x), which is classified
into a chiral-odd twist-3 PDF. Why is it interesting? The reason is two-fold. First, the 1st
moment of e(x) (i.e., its integral over the Bjorken or Feynman variable x) gives the nucleon
scalar charge, which is proportional to the pion–nucleon sigma term. Second, the possible
existence of Dirac’s delta-function-type singularity in e(x) was already suggested by Koike
and Burkardt within the framework of perturbative QCD [37] (see also [38]). Unfortunately,
the physical origin of this delta-function singularity is not fully understood within the
framework of perturbative QCD. However, as we have already suggested, the highly
nontrivial structure of the nucleon scalar density predicted by the CQSM might generate
a delta-function singularity in the scalar charge density in some momentum space. The
correctness of this expectation was shown independently in the paper by Schweitzer [39]
and that by ourselves [40]. In these papers, it was shown that the nonperturbative origin
of the delta-function singularity in e(x) can be traced back to the infinite-range quark–
quark correlation of scalar type in the nucleon and that the existence of this infinite-range
correlation is inseparably connected with the nontrivial vacuum structure of QCD, i.e., the
spontaneous χSB, and the resulting nonzero vacuum quark condensate. One might wonder
why the vacuum property comes into a hadron observable. As already pointed out, it is
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related to the previously mentioned extraordinary nature of scalar quark density of the
nucleon, which lives in the nontrivial QCD vacuum.

Incidentally, a recent paper [41] by Ma and Zhang attracted renewed interest in the
existence or non-existence of the delta-function-type singularity in the twist-3 PDF e(x).
According to them, within the framework of perturbative QCD, the delta-function-type
singularities certainly exist, but they cancel out among themselves. Soon after, however,
their conclusion was criticized in the papers by Bhattacharya et al. [42] and also by Hatta
and Zhao [43]. They argued that the treatment by Ma and Zhang is not justified, because it
neglects the light-front (LF) zero mode within the framework of the LF quantization, which
is vital for describing the nonperturbative vacuum of QCD. In any case, it is clear that the
perturbative QCD may be able to predict the existence of the delta-function singularity
in e(x), but it has no ability to predict the proportionality constant of this delta-function
term. We absolutely need some nonperturbative framework like lattice QCD or some
skillfully crafted effective theory of the nucleon which takes account of the nontrivial
vacuum structure of our real world.

At this point, it is useful to recall the theoretical definition of the chiral-odd twist-3
PDF e(x) given as

e(x) = MN

∫ ∞

−∞

dz0

2 π
e− i x MN z0 E(z0), (22)

with
E(z0) = ⟨N | ψ̄

(

− z

2

)

ψ
( z

2

)

|N⟩
∣

∣

∣

z3=−z0, z⊥=0
. (23)

That is, the PDF e(x) is given as a Fourier transform of the correlation function E(z0)
of the nucleon, which measures the light-cone (LC) quark–quark correlation of scalar type
in the physical nucleon. (See Figure 8 for the meaning of the coordinate z.)

z3

z0

z3 = − z0

z

2

−

z

2

Figure 8. Schematic figure showing the two points separated on the light cone.

The existence of the delta-function singularity in e(x) implies the following behavior
of the correlation function E(z0):

E(z0)
z0→∞−→ nonzero constant, (24)

i.e., the existence of an infinite-range LC quark–quark correlation of scalar type. We have
already shown that well outside the nucleon, its (local) scalar charge density approaches a
nonzero value of vacuum quark condensate. However, what we want to really know here
is the asymptotic behavior of the non-local quark–quark correlation with LC separation, i.e.,
the nonlocal quark–quark correlation specified by Equation (23). Because of the limitation
of the CQSM, which utilizes a discretized basis for solving the Hartree problem [16,17], this
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E(z0) turns out to be a rapidly fluctuating function of z0. It is therefore convenient to treat
the corresponding smeared function defined as

Ẽγ(z0) =
1

γ
√

π

∫

e− (z0−z)2 / γ2
E(z) dz, (25)

with a suitable choice of the smearing parameter γ, which we choose here as γ = 0.05.
For the sake of comparison, we also consider the corresponding correlator of the familiar
unpolarized PDF,

F(z0) = ⟨N| ψ̄
(

− z

2

)

γ+ ψ
( z

2

)

|N⟩ |z3=−z0, z⊥=0, (26)

or its smearing version

F̃γ(z0) =
1

γ
√

π

∫

e− (z0−z)2 / γ2
F(z) dz. (27)

The upper panel in Figure 9 shows the smeared distribution F̃γ(z0) corresponding to
the correlator of the unpolarized PDF f (x), while the lower panel represents that corre-
sponding to the smeared distribution Ẽγ(z0) corresponding to the correlator of the twist-3
PDF e(x). The dashed curves in both figures show the contribution of the three quarks
in the valence level, while the solid curves represent the contributions of the quarks in
the deformed negative energy Dirac-sea orbits in the mean field. For both distributions,
the contributions of the valence quarks denoted by the solid curves are seen to smoothly
attenuate as the parameter z0 as a measure of the light-cone distance becomes larger. In
sharp contrast, there is a remarkable difference between the contributions of the Dirac-sea
quarks to the correlator F̃γ(z0) of the unpolarized PDF f (x) and to the correlator Ẽγ(z0) of
e(x). In spite of the artificial fluctuation behavior arising from the approximate treatment
by using the discretized basis, one can clearly see that the Dirac sea contribution to F̃γ(z0)
approaches zero as z0 is increased. On the other hand, as seen from the lower panel, the
contribution of the Dirac-sea quarks to Ẽγ(z0) approaches some nonzero constant as z0

approaches infinity.
To summarize, the preliminary analysis in the CQSM confirms the highly nontrivial

behavior of the two types of collation functions as follows,

F(z0)
z0→∞−→ 0, (28)

E(z0)
z0→∞−→ nonzero constant, (29)

which makes us convinced that the PDF e(x) has a delta-function singularity at x = 0,
whereas the PDF f (x) does not.

An interesting question is whether a more realistic lattice QCD simulation gives a
similar prediction or not. Unfortunately, the lattice QCD cannot directly handle the light-
cone correlators and consequently the standard or usual PDFs. However, instead of usual
PDFs, one may consider the quasi-PDFs, which are given as Fourier transforms of the
space-like correlators. As follows is very brief reminder of the concept of quasi-PDF, which
was first introduced in the paper by Ji [44] (see also [45]). Some important properties of the
quasi-PDFs are as follows :

• They are defined as Fourier transforms of nucleon matrix element of Lorentz-frame-
dependent equal-time correlators in the large nucleon momentum limit.

• They are believed to have the same infrared behaviors as the usual PDFs.
• They are not Lorentz-boost invariant but can be related to the usual PDFs through the

matching procedure in the large momentum limit.
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• Most importantly, the quasi-PDFs are tractable within the framework of the lattice
QCD, since they are related to the space-like correlators instead of the light-cone
correlators.

Figure 9. The upper panel here shows the behavior of the smeared distribution F̃γ(z0) corresponding

to the light-cone correlator of the unpolarized PDF f (x), while the lower panel represents the behavior

of the light-cone correlator Ẽγ(z0) corresponding to the twist-3 PDF e(x).

To be more explicit, we already mentioned that the twist-3 PDF e(x) is obtained as a
Fourier transformation of the light-cone correlator E(z0) as

e(x) = MN

∫ ∞

−∞

dz0

2 π
e− i x MN z0 E(z0), (30)

with
E(z0) = ⟨N | ψ̄

(

− z

2

)

ψ
( z

2

)

|N⟩
∣

∣

∣

z3=−z0, z⊥=0
. (31)

The corresponding quasi-PDF eqs(x) is defined as a Fourier transform of the space-like
correlator Eqs(z3) as

eqs(x) = MN

∫ ∞

−∞

dz3

2 π
e− i x MN z3 E(z3), (32)

with
Eqs(z3) = ⟨N | ψ̄

(

− z3

2

)

ψ
( z3

2

)

|N⟩
∣

∣

∣

z0=0, z⊥=0
. (33)



Symmetry 2024, 16, 1481 13 of 19

Since the infrared behaviors of the usual PDF and the quasi-PDF are thought to be the
same, we would expect the following behavior for Eqs(z3):

Eqs(z3)
z3→∞−→ nonzero constant. (34)

An interesting challenge is whether the lattice QCD is able to evaluate this correlator
and whether it confirms the above conjecture or not.

6. Direct Calculation of e(x) Within the Chiral Quark Soliton Model

Within the framework of the CQSM, we can evaluate the PDF e(x) itself [46]. In fact, it
is a little easier to directly evaluate e(x) than to first evaluate the corresponding LC correla-
tor E(z0). Naturally, the delta-function-type singularity cannot be handled numerically, so
it is convenient to first consider the smeared distribution eγ(x) corresponding to e(x):

eγ(x) ≡ 1

γ
√

π

∫ +∞

−∞
e− (x−x′)2 / γ2

e(x′) dx′. (35)

Note that a delta-function piece, which we expect is contained in e(x), would appear
as a Gaussian function in the smeared distribution eγ(x) with the width γ.

eγ(x) = c
1

γ
√

π
e− x2 / γ2 ⇐⇒ e(x) = c δ(x). (36)

A sample result for eγ(x) ≡ e
(T=0)
γ (x) corresponding to the choice of the parameter

γ = 0.06 is shown in Figure 6. (Here, the superscript (T = 0) means the isoscalar combina-
tion for quark flavors, i.e., e(T=0)(x) ≡ eu(x) + ed(x). We have attached this superscript,
since, in the following, we also consider the isovector combination for quark flavors, i.e., the
PDF e(T=1)(x) ≡ eu(x)− ed(x).) In Figure 10, the solid curve represents the contribution
of three quarks in the valence level, whereas the dashed curve represents the contribution
of the Dirac-sea quarks. One clearly sees a peak around x = 0, the widths of which is the
order of γ coming from the Dirac sea contribution, although it deviates from the expected
Gaussian shape. (The reason for the deviation from the expected Gaussian form might need
some explanation. We said that the vacuum polarization contribution (or the Dirac-sea
contribution) to the PDF e(x) is obtained by summing over the contributions of all the
negative-energy Dirac-sea orbitals in the hedgehog mean field. This way of evaluating the
vacuum polarization contributions is called the calculation based on the “occupied form”.
Alternatively, the vacuum polarization contribution can be calculated by summing over the
contributions of all the positive-energy Dirac-continuum (although actually discretized)
orbitals. This way of evaluating the vacuum polarization contributions is called the cal-
culation based on the “unoccupied form”. Formally, it was proved that these two ways
of calculation should give the same answer, which was in fact verified to be true in the
calculations of usual low-energy observables. Unfortunately, there is some difficulty in the
calculation of x-dependent PDF e(x). To calculate the vacuum polarization contribution
to e(x) in the positive x region, we have used the “occupied form”, while to calculate that
of e(x) in the negative energy region, we have used the “unoccupied form”. The reason
is because it is an effective way to obtain e(x) in each region with better numerical preci-
sion. Unfortunately, due to the likely existence of the delta-function singularity in e(x) at
x = 0 as well as the truncation of the discretized Kahana–Ripka basis, this fails to precisely
reproduce the expected Gaussian form in the smeared distribution. This is not a serious
problem, however, because our demonstration here is to qualitatively convince that the
δ(x)-like singularity in e(x) is most likely to exist. (For more, see the following discussion.)
Furthermore, we confirmed that as the smearing parameter is made smaller and smaller, the
width of the Gaussian-like peak gradually decreases, and the peak eventually disappears
when γ becomes smaller than some critical value. This is only natural, since the delta
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function cannot be reproduced exactly with the superposition of the truncated discretized
basis functions.

−1.0 −0.5 0.0 0.5 1.0
x

0

10

20

30

40

smeared distribution function eγ(x)
 

valence
Dirac sea

Figure 10. Prediction of the CQSM for the smeared distribution function eγ(x) ≡ e
(T=0)
γ (x) with a

trial choice of the smearing parameter γ = 0.06.

Because of the extraordinary behavior explained above, the numerical calculation
of e(x) needs fairly sophisticated treatment, as explained in [46]. A concise summary of
this procedure follows. We start with evaluating the smeared distribution function eγ(x)
by using a moderate value of the smearing parameter γ, which reproduces the Gaussian-
like peak around x = 0. Next, we continue the calculation by gradually decreasing the
magnitude of the smearing parameter γ. We then confirm that, as γ is decreased, the
width of the Gaussian-like peak gradually decreases, and, at the same time, the fluctuating
behavior of the Dirac-sea contribution gradually increases. As the value of γ is further
decreased to reach some critical value, we see that the Gaussian-like peak disappears. Since
the remaining Dirac-sea contribution shows a fluctuating behavior with the choice of small
value of γ, we fit it by an appropriately smooth function, and then we identify it as the
regular contribution from the Dirac seas, since its singular contribution corresponding to
the delta function at x = 0 has already escaped from the numerical simulation.

Figure 11 shows the final numerical prediction of the CQSM for the chiral-odd twist-3
PDF e(T=0)(x) with the isoscalar combination, i.e., u + d. The final prediction for e(T=0)(x)
is given as a sum of the contribution from the three valence quarks and that from the
Dirac-sea quarks as

e(T=0)(x) = e
(T=0)
valence(x) + e

(T=0)
sea (x). (37)

The contribution of the Dirac-sea quarks is further divided into the singular contribu-
tion, which is proportional to the Dirac delta function δ(x) as

e
(T=0)
sea,singular(x) = C δ(x), (38)

and the regular contribution as

e
(T=0)
sea (x) = e

(T=0)
sea,singular(x) + e

(T=0)
sea,regular(x). (39)

The regular contribution can be obtained in the numerical procedure as explained
above. However, the singular contribution cannot be obtained by the above-explained
method, because the delta-function piece escapes from the above numerical procedure. The
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question is therefore how to extract the proportionality constant C above the delta-function
term. Here, we make use of the fact that the 1st moment of e(T=0)(x) gives the nucleon
scalar charge σ̄. Different from the PDF e(T=0)(x), the scalar charge σ̄ can be evaluated very
precisely within the framework of the CQSM. As a general rule in the CQSM, the nucleon
scalar charge is also given as the sum of the valence quark contribution and the Dirac-sea
contribution as

σ̄ = σ̄valence + σ̄sea ≃ 1.7 + 10.0 ≃ 11.8. (40)

Here, we recall the fact that the Dirac-sea contribution to σ̄ is related to the 1st moment

of the Dirac-sea contribution e
(T=0)
sea (x) as

σ̄sea =
∫ 1

− 1

{

e
(T=0)
sea,singular(x) + e

(T=0)
sea,regular(x)

}

dx. (41)

Since the regular part of e(T=0)(x), i.e., e
(T=0)
sea,regular(x) was already obtained by the

numerical procedure explained above, its integral can be numerically evaluated without
any problem, and the answer is given by

∫ 1

− 1
e
(T=0)
sea,regular(x) dx ≃ 0.18. (42)

Next, after subtracting this regular contribution from the net Dirac-sea contribution to
σ̄, we find that

∫ 1

− 1
e
(T=0)
sea,singular(x) dx ≃ 9.92, (43)

which allows us to determine the proportionality constant C as

C ≃ 9.92. (44)

−1.0 −0.5 0.0 0.5 1.0
−1.0

0.0

1.0

2.0

3.0

4.0

valence

Dirac−sea

total

Figure 11. Final prediction of the CQSM for the isoscalar combination of the twist-3 PDF e(x). The

dash–dotted and dashed curves here represent the contribution of the three valence quarks and that

of the deformed Dirac-sea quarks, while their sum is represented by the solid curves.

Incidentally, with the use of the reasonable value of the average up and down quark
mass given by mq ≃ (4 ∼ 7)MeV, the prediction of the CQSM for the pion–nucleon sigma
term is given by

ΣπN = mq σ̄ ≃ (47 ∼ 83)MeV, (45)
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which seems to favor fairly large values for the pion–nucleon sigma term, which is con-
sistent with the low-energy phenomenology [10–12]. In any case, it is interesting to see
that in the CQSM, the dominant contribution to nucleon scalar charge comes from the
contribution of the Dirac-sea quarks, especially from the singular delta-function term in the
corresponding PDF e(x).

We can also calculate the isovector combination of e(x), i.e., e(T=1)(x) ≡ eu(x)− ed(x).
Its calculation is much easier than that of the isoscalar piece, because it does not contain a
delta-function-like singular piece, which is consistent with that fact that in the QCD vacuum,
there is no quark condensate with the isovector combination. We show in Figure 12 the
prediction of the CQSM for the isovector combination of the twist-3 PDF e(x). Here, the
contribution of the valence quarks and that of the Dirac-sea quarks are, respectively, shown
by the dash–dotted and dashed curves, while the total contribution is shown by the solid
curves.

−1.0 −0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

valence

Dirac−sea

total

Figure 12. Final prediction of the CQSM for the isovector combination of the twist-3 PDF e(x). The

dash–dotted and dashed curves here, respectively, stand for the contribution of the three valence

quarks and that of the deformed Dirac-sea quarks, while their sum is represented by the solid curves.

Combining the isoscalar and isovector parts of e(x), we can make a flavor decomposi-
tion and obtain any of the following:

eu(x), ed(x), eū(x), ed̄(x) (x > 0) (46)

Here, we have made use of the fact that for the PDF e(x), the calculated distribution
function of the quark in the negative x region can be interpreted as the distribution of the
corresponding anti-quarks according to the rule eq(−x) = eq̄(x) with 0 < x < 1.

Figure 13 shows the preliminary comparison of the prediction of the CQSM for the

twist-3 PDF e(x) with the flavor combination eu(x) + 1
4 ed̄(x) with the empirical extraction

of the corresponding PDF at Q2 ≃ 5 GeV from the CLAS semi-inclusive scattering data.
Although the comparison is very preliminary, the agreement between the theoretical
prediction and the empirical data is encouraging. We emphasize the fact that the theoretical
curve here contains only the sum of the three valence quarks contribution and the regular
part of the Dirac-sea contribution, and these contributions are far much smaller than the
singular part of the Dirac-sea contribution, which is concentrated at x = 0 as a Dirac
delta function. This observation together with rough agreement between the theory and
the empirical data already appear to support the likely existence of the delta-function
singularity in e(x) with sizable strength. Naturally, to collect more confirmative evidence,
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more precise extraction of the PDF e(x) from the analysis of the relevant semi-inclusive
processes is mandatory especially down to the small x region as much as possible. (For a
more recent experimental status, see [47,48], for example). If this becomes in fact possible,
we may be able to confirm the existence of the delta function in e(x) as a signal of the
nontrivial vacuum structure of QCD even though somewhat indirectly.

10
✁1

10
0

0.0

1.0

2.0

3.0

4.0
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6.0

Figure 13. Preliminary comparison of the CQSM for the twist-3 PDF e(x) of the flavor combination

eu(x) + 1
4 ed̄(x) corresponding to the energy scale Q2 ≃ 5 GeV with the empirical data extracted from

the CLAS measurement by Efremov, Goeke and Schweitzer [49].

7. Summary

The CQSM predicts fairly unusual behavior of the nucleon scalar charge densities as
follows:

• ⟨N | ψ̄ ψ | N⟩r
r→∞−→ nonezero constant;

• existence of δ(x)-type singularity in the chiral-odd twist-3 PDF e(x).

These predictions of the chiral quark soliton model (CQSM) for the chiral-odd
twist-3 PDF e(x) come from its unique feature such that it can simultaneously describe the
nontrivial vacuum quark condensate and the local structure of the nucleon scalar charge
distribution. An interesting question is whether the lattice QCD simulation would confirm
these unique predictions of the CQSM in the scalar channel, which has the same quantum
number as the physical vacuum. As is well known, although the light-cone PDFs cannot be
handled by the lattice QCD framework, the corresponding quasi-PDFs would in principle
be tractable. Due to the nontrivial behavior of the QCD vacuum characterized by the
nonzero quark condensate, such a simulation in the scalar channel would not be very easy,
but it must be a great challenge to the framework of lattice QCD.

From the experimental side, the precise extraction of the PDF e(x) is not an easy task.
This is because its chiral-odd nature forbids its measurement through the well-understood
inclusive deep-inelastic scatterings (DIS). To extract it, one must use more complicated
semi-inclusive DIS processes. Moreover, the delta-function singularity at x = 0 cannot
be directly accessed through the framework of the high-energy deep-inelastic scattering
measurement. The best one can do is to extract e(x) down to the smallest possible value of
x = xmin and evaluate its integral over x between xmin and 1. If the coefficient of the delta-
function term is as large as that predicted by the CQSM, this integral would significantly
underestimate the value of the nucleon scalar charge as expected from the pion–nucleon
sigma term sum rule. It appears to us that several preliminary analyses already indicate
the validity of this anticipation.
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