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Higher-point Correlators and the Conformal Bootstrap

by João Vilas Boas

This thesis is devoted to the generalization of analytic conformal bootstrap methods to

higher-point correlation functions in conformal field theories (CFTs).

We begin by reviewing the conformal bootstrap methodology and terminology start-

ing from the basics. We proceed by revisiting the analytic lightcone bootstrap and the

conformal Regge theory of four-point correlation functions as well as known results for

correlators of half-BPS operators in N = 4 SYM at strong t’hooft coupling. We further

motivate the new and powerful ingredient that higher-point correlation functions can be

in the conformal bootstrap program and review some of the recent results.

Following [1], we generalize the analytic lightcone booststrap to five and six-point cor-

relators. We rederive the lightcone conformal blocks in the snowflake channel using the

lightcone limit of the operator product expansion (OPE). We then solve the crossing equa-

tion by reproducing leading-twist contributions in the direct channel with large spin con-

tributions of double twist operators. In this way, we also fix the asymptotic large-spin

behaviour of anomalous dimensions and OPE coefficients involving two and three spinning

operators. We verify our results by comparing them with six-point correlators of mean-field

theory and with the disconnected part of a five-point correlator in ϕ3 theory.

We move on to generalize conformal Regge theory to five-point functions as in [2].

After reviewing some features of Regge theory for flat-space multi-point amplitudes and

discussing how to find Lorentzian correlators from Euclidean ones, we propose the kine-

matics of Regge limit of five-point functions with two Reggeon exchanges. We analyze

the analytic structure of conformal blocks both in position and Mellin space in the Regge

limit and proceed to develop the conformal Regge theory of five-point correlators. As a
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byproduct of our studies, we also introduce a new basis of three-point correlation functions

for operators with spin and the associated Euclidean conformal blocks. Furthermore, we

also write down an all-order expression for conformal blocks of scalar exchanges starting

from the lightcone.

As in [3], we explore an algorithmic approach to compute five-point functions of half-

BPS superprimaries inN = 4 SYM at strong t’hooft coupling which are dual to the graviton

and Kaluza-Klein modes in IIB supergravity in AdS5 × S5. The method is entirely done

in Mellin space where the analytic structure of holographic correlators is simpler and uses

only factorization and a superconformal twist. Using this method, we obtain in a closed

form all five-point functions with two half-BPS operators with scaling dimension ∆ = p

and three other with ∆ = 2, extending earlier results where all operators had ∆ = 2. As a

byproduct of our analysis, we also obtain explicit results for spinning four-point functions

of higher Kaluza-Klein modes.

The appendices contain several technical results and explicit computations as well as

some parallel discussions to the ones in the main text.

Keywords: conformal field theory, higher-point functions, conformal bootstrap, Lorentzian

CFTs, conformal Regge theory, AdS/CFT correspondence.
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Higher-point Functions and the Conformal Bootstrap

por João Vilas Boas

Esta tese é dedicada à generalização de métodos anaĺıticos de bootstrap para funções

de correlação com mais de quatro pontos em teorias de campo conformes.

Começamos por rever a metodologia e terminologia do bootstrap conforme desde os

básicos. Prosseguimos com uma revisão sobre o bootstrap anaĺıtico de lightcone, sobre a

teoria de Regge conforme para funções de correlação de quatro pontos, bem como sobre

resultados conhecidos para funções correlação de operadores half-BPS em N = 4 SYM no

regime de forte acoplamento de t’hooft. Damos ainda a motivação para o novo e poderoso

ingrediente que as funções de correlação de mais pontos podem ser no programa de bootstrap

conforme e revemos alguns dos resultados recentes.

Seguindo [1], generalizamos o bootstrap anaĺıtco de lightcone para funções de correlação

de cinco e seis pontos. Rederivamos os blocos conformes no limite de lightcone no canal

snowflake usando o mesmo limite da operator product expansion (OPE). De seguida, re-

solvemos as equações de bootstrap reproduzindo as contribuições dominantes em twist no

canal direto com contribuições de spin grande de operadores do tipo double twist. Desta

forma, fixamos também o comportamento assintótico a grande spin das dimensões anó-

malas e dos coeficientes de OPE envolvendo dois e três operadores com spin. Verificamos

os nossos resultados comparando-os com funções correlação de seis pontos em teoria de

campo médio e com a parte desconexa de uma função de cinco pontos na teoria ϕ3.

Prosseguimos com a generalização da teoria de Regge conforme para funções de cinco

pontos como em [2]. Depois de rever algumas propriedades da teoria de Regge para am-

plitudes multi-ponto em espaço plano e de discutir como encontrar funções de correlação

Lorentzianas a partir de correladores Euclidianos, propomos uma nova cinemática para o li-

mite de Regge de funções de cinco pontos envolvendo duas trocas de Reggeons. Analisamos

mailto:up201403623@fc.up.pt


a estrutura anaĺıtica dos blocos conformes, tanto em espaço de posições como em espaço

de Mellin no limite de Regge e desenvolvemos a teoria de Regge conforme para funções de

correlação de cinco pontos. Como bónus dos nossos estudos, introduzimos também uma

nova base de funções de correlação de três pontos para operadores com spin e os blocos

conformes Euclidianos associados. Além disso, escrevemos também uma expressão a partir

lightcone, válida a todas as ordens, para blocos conformes associados a trocas de escalares.

Como em [3], exploramos uma abordagem algoŕıtmica para calcular funções de cinco

pontos de operadores half-BPS superprimários em N = 4 SYM no regime de forte acopla-

mento de t’hooft. Estes são duais ao gravitão e a outros modos Kaluza Klein da teoria de

supergravidade IIB em AdS5×S5. O método é inteiramente feito em espaço de Mellin, onde

a estrutura anaĺıtica das funções de correlação holográficas é mais simples, e usa apenas

factorização e um twist superconforme. Usando este método, obtemos a forma expĺıcita de

todas as funções de cinco pontos com dois operadores half-BPS com dimensão ∆ = p e três

outros com ∆ = 2, estendendo resultados anteriores em que todos os operadores tinham

∆ = 2. Como consequência da nossa análise, obtemos também resultados expĺıcitos para

funções de quatro pontos envolvendo spin para modos mais altos de Kaluza Klein.

Os apêndices contêm vários resultados técnicos e cálculos expĺıcitos, bem como algumas

discussões paralelas às do texto principal.

Palavras-chave: teoria de campos conformes, funções de correlação de mais pontos, Boots-

trap conforme, CFTs Lorentzianas, teoria de Regge conforme, correspondência AdS/CFT.
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Chapter 1

Introduction

There is a natural human tendency to wonder and to desire to understand the fundamental

elements and guiding principles of things. In the search for this ultimate arche, there is the

need to uncover Nature’s general language. Quantum Field Theory (QFT) seems to be our

best candidate for such a general framework. Indeed, QFT describes systems with infinitely

many degrees of freedom in very distinct contexts. Its far reaching applicability ranging

from condensed matter to high-energy collider physics, and from statistical field theory

to effective theories of gravity is furthermore supported by overwhelming experimental

evidence highlighting its success.

Amongst QFTs there is the special class of conformal field theories (CFTs). These

theories are invariant under conformal symmetry and are therefore more constrained than

generic QFTs. Moreover, from a renormalization group (RG) theory perspective, one can

think of a generic QFT of an interacting system as being defined by the RG flow that is

generated by a relevant deformation of a solvable theory in the ultraviolet (UV). Often

the UV theory is taken to be free, which is conformally invariant. The QFT can then

flow to either a nonperturbative infrared (IR) fixed point or to a gapped phase, where

the interesting observables are correlation functions and the S-matrix, respectively. The

former fixed points are scale-invariant theories which when unitary (reflection positive in

Euclidean space) and local are expected to be enhanced to CFTs, at least in two and four

(with extra technical assumptions) spacetime dimensions [4–6].1

At long distances, many QFTs are strongly coupled. Despite the impressive develop-

ment of perturbative methods to evaluate complicated Feynman diagrams, these necessarily

1There are known examples of scale-invariant theories which are not conformal. See for instance the
examples of the theory of elasticity in [7] and of dipolar ferromagnets in [8] where a shift symmetry is shown
to be responsible for the breakdown of the enhancement. These known examples are non-unitary.

1
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fail to capture the full nonperturbative character of these physical systems. The Bootstrap

approach, which we advocate throughout this thesis, offers a new set of methods that allows

us to study QFTs nonperturbatively. The philosophy goes back to finding the fundamen-

tal principles and consistency conditions that we expect to be universal and impose them

at the level of the observables we are interested in. Amongst the typical constraints we

impose is unitarity, the invariance under the permutation of operators and the existence

of a stress tensor. Additionally, we may want to add further constraints in particular

models. The philosophy is simple to explain, rigorous and can thus be applied in various

contexts, such as the conformal bootstrap (see [7, 9–14]), S-matrix bootstrap (e.g., [15–18])

and more recently in quantum mechanics (e. g., [19–24]). The simplicity of these ideas

contrasts with the remarkable success of its outcome. The striking example of the power

of this technology is the conformal bootstrap determination of the critical exponents of

the three-dimensional Ising model at the critical point which is the most precise ever [25].

These exponents describe the behaviour of physical systems close to criticality, i.e. close to

continuous phase transitions. Furthermore, they do not depend on the microscopic details

of systems far from criticality and are the same for systems within a given universality

class. This means that knowing their exact form doesn’t just teach us about the critical

behaviour of a single model, but about a whole class of them.

The AdS/CFT correspondence [26–28] is another major motivation to study CFTs.

The correspondence conjectures a duality between a theory in AdS spacetime and a CFT

living at its boundary. In this sense, it provides a way to further understand quantum

gravity in the bulk of AdS by exploring the more powerful toolkit at our disposal on

the CFT side. In its strong/weak form, the duality is particularly useful for practical

computations and for applications (see for instance [29]) as it offers the chance to look at

the strongly-coupled behaviour of a system by solving the dual weakly-coupled theory. We

will revisit this duality as part of this thesis by considering the most studied example of

the correspondence: the duality between type IIB superstring theory in AdS5 × S5 and

N = 4 SYM.

The overarching goal of this thesis is the extension of conformal bootstrap analytic

results to correlation functions with more than four local operators. In doing so, we

will consider both Euclidean and intrinsically Lorentzian configurations. It is therefore

of primordial importance to define and review some of more standard conformal bootstrap

terminology and results before we proceed to motivate and attack the set of problems we



1. Introduction 3

find in the next chapters.

1.1 CFT basics

A conformal field theory is a quantum field theory whose correlations functions are covariant

under conformal transformations. These are local rescalings of spacetime that preserve

angles. We further require the existence of a conserved stress tensor, even in theories

where there is no Lagrangian formulation available. This is a natural requirement for any

local quantum field theory. Given its existence, we can define the charges

Qϵ(Σ) ≡ −
∫
Σ
dnµϵνT

µν(x) (1.1)

where Σ is any co-dimension 1 surface surrounding the insertion of the stress tensor and

nµ is a normal vector to this surface. For these charges to be conserved, the vector fields

ϵµ should obey the killing equations

∂µ(ϵνT
µν) = 0 =⇒ ∂µϵν + ∂νϵµ = 0 , (1.2)

which in flat space has solutions

pµ = ∂µ , mµν = xµ∂ν − xν∂µ . (1.3)

These are the vector fields associated with translations and rotations, respectively.

In a CFT, besides conserved, the stress tensor is also traceless 2 which allows us to

relax the killing equation to its conformal version

∂µϵν + ∂νϵµ = c(x)δµν , (1.4)

with some scalar function c(x). The conformal killing equations have two further solutions

in flat space, namely

d = xµ∂µ , kµ = 2xµ(x
ν∂ν)− x2∂µ , (1.5)

which are associated with dilations (commonly referred to as dilatations) and special con-

formal transformations. 3 These vector fields define the conserved charges of a CFT

2This is a structural property of locally invariant conformal theories that can be tested [30].
3For completeness we should add that in curved even-dimensional spacetimes, the tracelessness of the

stress tensor can be broken by a Weyl anomaly. This fact will not be important for the rest of the text of
the thesis.
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through (1.1), where we gave a sloppy definition of the surface Σ. This is justified since con-

servation of these charges is equivalent to the statement that these are topological surface

operators [31].

The algebra of the quantum charges is given by

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2Mµν ,

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν ,Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν (1.6)

where we use the more common notation Pµ = Qpµ , Mµν = Qmµν , D = Qd and Kµ = Qkµ

and all other commutators vanish. Note that this algebra is basically inherited from the

algebra of the vector fields for a spacetime dimension d ≥ 3 in which we focus on in this

thesis. 4 Moreover, the algebra presented here is the algebra of SO(d+1, 1) which coincides

with the Lorentz algebra in Rd+1,1. 5 A particularly interesting feature of this algebra is

found in the first line of equation (1.6). It shows that Pµ and Kµ act as raising and lowering

operators for the eigenvalues of the dilation operator. It is then natural to consider local

operators with fixed scaling dimension ∆ at the origin such that

[D,O(0)] = ∆O(0) , [Mµ,ν ,Oa(0)] = (ρµν)
a
bOb(0) , (1.7)

where we also included the natural transformations of local operators in irreducible repre-

sentations of the SO(d) rotation group. Here ρµν are rotation matrices and a denotes the

representation indices of the operator. In this thesis we will only deal with spin-J symmetric

and traceless representations of SO(d), but see [33, 34] for more general representations.

It follows from the conformal algebra that PµO(0) is an operator of scaling dimension

∆ + 1 whereas KµO(0) has ∆ − 1. 6 Therefore, by acting successively with Kµ on an

operator we can have arbitrarily low scaling dimensions. However, due to unitarity or

cluster decomposition of correlation functions that we will discuss below, we require the

scaling dimensions to be positive. This then imposes that there should be some local

operator such that

[Kµ,O(0)] = 0 . (1.8)

4For d = 2, the algebra of quantum charges has a central extension compared to the one from the vector
fields.

5This is the motivation for the ”embedding space formalism” [32] where the action of the conformal
group is linearized in a d+2-dimensional space and then properly projected to Rd.

6The notation PµO(0) is shorthand for [Pµ,O(0)] and similarly for Kµ. From a path integral interpre-
tation, the commutator can be seen as surrounding O(0) with a topological surface operator.
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These are the so-called primary operators. On the other hand, by acting with the raising

operator Pµ we can build an entire family of operators with increasing scaling dimensions

out of a single primary. These are the descendants of the primary operator. One can show

that all local operators of a CFT are linear combinations of primaries and descendants [9].

This nontrivial fact has important consequences in the conformal block decomposition of

correlation functions we will encounter later and allows us to focus on correlation functions

of primary operators.

Using the conformal Ward identities in a theory with a conformal invariant vacuum,

one can show that scalar one, two and three-point functions of primary operators reduce

to

⟨O(x)⟩ = δO,1 , ⟨O1(x1)O2(x2)⟩ =
δ12

x2∆O
12

, (1.9)

⟨O1(x1)O2(x2)O3(x3)⟩ =
c123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

, (1.10)

where we use the notation xij = |xi − xj |. The generalization for operators with spin was

studied in [32, 35] and will be useful in the next chapters where the explicit expressions

will be shown. We see that one-point functions are identically zero except if the operator is

the identity itself. On the other hand, two-point functions are power laws and depend only

on a single parameter, the scaling dimension of the primary operator we consider, since

they can only be nonzero if operators O1 and O2 are in fact the same. Here we chose the

convention where the numerator of the two-point function is just a Kronecker delta, but

other normalizations are also possible. 7 Finally, three-point functions are also completely

fixed by conformal symmetry up to overall constants c123, the operator product expansion

(OPE) coefficients or structure constants. These together with the spectrum of the theory,

i.e. the scaling dimensions and SO(d) representations of the available primary operators,

are collectively known as CFT data and contain all the dynamics of a CFT. This statement

stems from the OPE that we now discuss.

The OPE is better explained using the operator-state correspondence: in a CFT, every

state corresponds to an operator and vice-versa. To make this correspondence more easily

understandable we need to introduce the important notion of radial quantization.

To work out the quantization of a theory in QFT, we need to choose a direction in which

we foliate spacetime. In standard QFT, the chosen direction is typically time and in every

7Even though here we are only dealing with scalars, a good example of a case where the normalization
constant should not be set to 1 is the canonical normalization of correlation functions of two stress tensors
where the constant of normalization is fixed from Ward identities and has physical meaning.
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|Ψ⟩
D

|Ψ′⟩

Figure 1.1: Radial quantization: Hilbert spaces of states live on Sd−1 spheres and are
connected by evolving them with the dilation operator.

time slice there is a corresponding Hilbert space of states. In this case, one could go from

one Hilbert space to the next by evolving a state with the Hamiltonian. In a scale-invariant

theory, there is another possible foliation of spacetime, where we consider Hilbert spaces

to live on spheres Sd−1 around the origin. This is the so-called radial quantization. In this

quantization the natural ”Hamiltonian” to evolve between Hilbert spaces is the dilation

operator - see figure 1.1.

From a path-integral perspective, a local operator insertion naturally defines a state

in a sphere that surrounds it. One simply integrates the path-integral over the interior of

the sphere containing the operator insertion. Note that this state does not need to be an

eigenstate of the dilation operator, but can nonetheless be decomposed into sums of such

states.

The fact that a state living on a co-dimension 1 surface can also be interpreted by a

0-dimensional local operator seems harder to believe. It is here that scale invariance comes

to play and saves the day. Since any state can be decomposed into eigenstates of the

dilation operator, it is possible to use it to pull each of these eigenstates into a very small

sphere around the origin and recognise the corresponding local operator. In this way, any

state can be interpreted as a sum of local operators, i. e. of primaries and descendants.

The reader may want to see [9, 36] for a more careful proof of the correspondence. We are

then entitled to write

O(0) ↔ O(0)|0⟩ ≡ |O⟩ . (1.11)

Moreover, our primary operators correspond to primary states such that

D|O⟩ = ∆|O⟩ , Kµ|O⟩ = 0 , Mµν |O⟩ = ρµν |O⟩ , (1.12)

and descendant states can be built by acting with momentum generators Pµ1 . . . Pµn |O⟩.
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The OPE existence follows then naturally from the operator-state correspondence. Con-

sider the insertion of two operators and the state generated at some ball that surrounds

these

|ψ1,2⟩ ≡ O1(x1)O2(0)|0⟩ . (1.13)

This state can be decomposed into eigenstates of the dilation operator

|ψ1,2⟩ =
∑
k

C12k(x1, ∂x1)Ok(0)|0⟩ , (1.14)

where the sum is over the primaries and the dependence on descendants is restored by the

action of the derivatives in C12k(x1, ∂x1) on those. Using the state-operator correspondence

above we can promote this equation to an operator level,

O1(x1)O2(x2) =
∑
k

c12k

(x212)
∆1+∆2−τk

2

Fk(x12, Dz, ∂x1)Ok(x2, z) , (1.15)

where we allowed the second operator to have arbitrary position now. Here we extracted

c12k which are the OPE coefficients that we first met in the three-point function (1.10) and

therefore its name. In the context of this thesis we will always apply the OPE to scalar

operators and thus the only allowed exchanges in the OPE are symmetric and traceless rep-

resentations of spin J . In the equation above we are implicitly restricting our attention to

that case. Moreover, to suppress the index dependence, we introduce the null polarization

vectors z such that

O(x, z) ≡ Oµ1...µn(x)zµ1 . . . zµn . (1.16)

One can recover the index dependence by acting with the Todorov operator [32]

Dzµ =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z (1.17)

that appears in Fk(x12, Dz, ∂x1). The exact form of the OPE can then be fixed from

consistency between two-point functions and three-point functions.

The OPE is one of the most important features of a CFT as we will appreciate below.

In a CFT, it has a finite radius of convergence contrarily to a generic QFT. In fact, as long

as we can draw a ball separating the two operators from other operators in the theory, the

OPE converges [37]. We can then use it inside a n-point correlation function to reduce it

to a n− 1-point function at the cost of knowing all the possibly infinite primary operators

that can be exchanged in the OPE. Successive use of the OPE allows us then to reduce

any n-point function to a two or three-point function, whose form is completely fixed by
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conformal symmetry. This is the reason why it is valid to say that CFT data completely

determines a CFT.

In this context, there are two important questions that we can raise: What type of

constraints can we impose on CFT data? What is the relevance of higher-point correlation

functions?

To answer the first question, we start by focusing on the case of unitary CFTs. This

will be the case of interest for the rest of the thesis. Unitarity requires the norms of states

to always be non-negative. This imposes nontrivial constraints at the level of the allowed

CFT data. Concretely, the scaling dimensions of operators must obey

∆ ≥ d− 2

2
(scalars) , ∆ ≥ J + d− 2 (spinning) . (1.18)

The clear exception is the identity operator with ∆ = 0. These bounds are saturated

whenever there are null states in the conformal multiplet of a given operator. This is the

case for free theories or conserved currents.

Furthermore, unitarity also imposes constraints at the level of the OPE coefficients.

Whenever the operators involved are real (Hermitian in Lorentzian signature), the OPE

coefficients are also real c∗12k = c12k.

These are the common constraints we can impose to any unitary CFT, but there is a

vast space to improve on these. Here lies the connection with the second question that we

now investigate.

Let us start by considering four-point functions. These are by default the observables

in bootstrap studies. For this reason, from now on, when we refer to higher-point functions

we mean correlation functions with five or more primary operators. Scalar four-point

correlators can be written as

〈
ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)

〉
=

(
x2
14

x2
24

)∆21
2
(
x2
14

x2
13

)∆34
2

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

g(u, v) (1.19)

where ∆ij = ∆i −∆j . The stripped-off factor in front of g(u, v) takes care of the scaling

of the correlation function in each operator. Hence g(u, v) is just an arbitrary function of

two conformally-invariant cross ratios u and v

u = zz =
x212x

2
34

x213x
2
24

v = (1− z)(1− z) =
x214x

2
23

x213x
2
24

. (1.20)

We also introduced here the very common set of cross ratios z and z. These have a very



1. Introduction 9

nice geometric interpretation. Indeed, one can use conformal transformations to take a

generic four-point correlator into the configuration where x1 = 0, x3 = (1, 0, . . . , 0) and x4

is sent to infinity. The point x2 lies then in a plane that contains all other operators. Its

position in the plane is then controlled by two real numbers. In Euclidean space, we can

parameterize this point with a complex variable z = x+ iy and z = z∗. As we Wick rotate

to a Lorentzian signature, z and z become two real and independent variables.

The function g(u, v) is dynamical but most of its form can be fixed from OPE machinery.

If we take the OPE between operators 1-2 and 3-4 as an example, it admits the writing

g(u, v) =
∑
k

c12kc34k g
∆12,∆34

∆,J (u, v) (1.21)

where the sum is over exchanged primaries. The two OPEs reduce the four-point function

to sums over two-point functions of exchanged operators. As these vanish for non-identical

operators, we are left with a single sum. The kinematic functions g∆12,∆34

∆,J (u, v) are known

as conformal blocks and, by construction, their form is fixed by the OPE. While this formal

definition is important, in practice, their form is more easily obtained by other methods.

Conformal blocks satisfy quadratic and quartic Casimir equations [38–40]. In d = 2

and d = 4, equipped with the appropriate boundary condition resulting from the OPE,

the solution is known in closed form [38, 39]. Moreover, in [39] the authors found a

recursion relation relating conformal blocks in d dimensions to other in d+ 2 dimensions.

For odd spacetime dimensions no closed form is known in general. There are however other

methods to compute these objects. One exploits the analytic properties of these blocks in

∆ and derives recursion relations for them [41]. Another makes use of the so-called radial

coordinates and computes the conformal block in a series expansion in the cross-ratios

with coefficients that are rational functions of ∆ [42, 43]. These methods can be combined

together and applied to evaluate these conformal blocks with extreme accuracy as required

for numerical studies.

Through the use of OPE, we were able to separate the dynamics of a CFT, contained

in its CFT data, from the kinematics. In doing so, we have opted for some choice of pairs

of operators in which we do the OPE, but there are other equivalent choices. Suppose,

for simplicity, that all operators within our correlation function are equal. In our OPE

expansion, we chose to pair up the operators in a 12-34 channel, which we call the direct

channel. On the other hand, we could have instead performed the OPE in the pairs 14-23,
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the cross channel. The equivalence of the two OPE expansions can then be written as

g(u, v) =

(
u

v

)∆ϕ

g(v, u) . (1.22)

This equation (and the equivalent for higher-point functions) is the crux of the conformal

bootstrap program. While simple at first sight, it is in fact extremely difficult to satisfy

from a conformal block decomposition point of view. This happens because conformal

blocks are not crossing-symmetric objects. Indeed, considering the direct-channel in the

limit where x2 → x1 with all operators in a line (i.e., z → 0 and z = z), the conformal

block has power-law dependence in z and its leading contributions are given by operator

exchanges of small scaling dimension, such as the identity itself. On the cross channel, on

the other hand, the same limit leads to logarithmic behaviour in z. In fact, it can be proved

that it is an infinite number of heavy operators in the cross channel that reproduces the

exchange of the identity in the direct channel [37]. This is suggestive of the complicated

and nontrivial constraints that this equation poses on CFT data and justifies the bootstrap

program as a powerful tool.

In the region of mutual convergence of the conformal block decomposition, which turns

out to be z ∈ C\((−∞, 0) ∪ (1,+∞)), the conformal bootstrap program aims to solve the

crossing equation both from a rigorous numerical and analytical approaches. In this thesis,

we focus on analytic methods. In this context, it is worth mentioning that different limits

of the crossing equations allow us to focus on different OPE exchanges. In fact, if instead

of considering the limit x2 → x1 (which we call Euclidean OPE limit) we consider the limit

where one of the operators approaches the lightcone of the other, i.e. x212 → 0 (which we

call lightcone OPE limit), it follows from the form of the OPE that the leading conformal

block contributions are those with lowest twist (scaling dimension minus the spin of the

exchanged operator) rather than those with small scaling dimensions. Considering the

lightcone limit on both sides of the crossing equation will teach us about the large spin

behaviour of double twist operators that are found to be universal in every unitary CFT [44,

45]. This result will be briefly reviewed below under the name of lightcone bootstrap.

Before moving on, let us now motivate the general goal of this thesis: the extension

of analytic bootstrap methods to correlation functions of more than four local primary

operators.
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1.2 Higher-point functions

For a long time, higher-point functions were overlooked in the conformal bootstrap pro-

gram. Indeed, they admit a conformal block decomposition, but the associated conformal

blocks are more complicated and functions of more cross ratios than the four-point ana-

logues. 8 Moreover, it is known that all CFT data can be probed already from four-point

functions alone as long as all of them are considered. This provides reasonable motivation

for the scarcity of studies on higher-point functions. Nevertheless, here also lies a major

motivation for the increasing interest in these observables: not all four-point functions are

accessible to us!

In the review we did of four-point functions, we restricted our attention to scalar corre-

lators. The generalization to other representations can be done in principle at the cost of in-

troducing some differential operators. As pointed out in [46], there is a set of ”spinning-up”

differential operators that when acting on a three-point function of the type scalar-scalar-

spin produce a three-point function of three generic spin operators with shifted scaling

dimensions. More recently, in [47], the authors introduced a more general class of differ-

ential operators known as weight-shifting operators. These results provide a strategy to

compute general conformal blocks (with arbitrary internal and external representations)

by differentiating scalar conformal blocks. The method is constructive but limited by the

amount of derivatives we can take efficiently. For example, the method is not practical to

access large spin operators. On the other hand, these operators appear naturally in the

OPE of two scalar operators for instance.

Note that inside a scalar higher-point function, by use of the OPE, there are infinitely

many four-point functions and, more importantly, infinitely more CFT data, including OPE

coefficients between spinning operators. Indeed, if one is able to overcome the mathematical

difficulty of dealing with the more involved structure of higher-point functions, then one is

entitled to find many more OPE coefficients at a single time.

Other motivation has a more exploratory character: it is unclear what new dualities,

relations or structures in the correlators might only become apparent at higher-points. In

chapter 3, we will have contact with a label for different tensor structures appearing in

three-point functions involving operators with spin and propose some analyticity of the

OPE coefficients in it. The question about whether this analyticity exists or not appears

8For sufficiently large spacetime dimensions, the conformal blocks of a n-point correlator are functions
of n(n− 3)/2 cross ratios.
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Figure 1.2: The two different OPE topologies in a six-point function.

quite naturally as we start considering higher-point functions. In chapter 4, we will consider

correlation functions of single-trace protected operators in N = 4 SYM at strong t’hooft

coupling. In [48], it was found a hidden ten-dimensional conformal symmetry that can

be used to relate correlation functions of these type of operators with different scaling

dimensions. It is not clear if this symmetry survives in higher-point functions or not. If

it does, it may shed light on underlying structures of these correlators that have not been

appreciated so far.

In the context of the AdS/CFT correspondence, higher-point functions are also impor-

tant for the so-called AdS unitarity methods [49, 50]. These relate the double discontinuity

of one-loop diagrams in AdS to the square of tree-level data. The generalization for higher

loops also requires the knowledge of higher-point functions.

These ideas provide a broad motivation to explore this largely uncharted territory.

While the number of results available is scarce, there are valuable contributions that deserve

to be mentioned. In this regard, it is important to distinguish two different topologies under

OPE. The snowflake topology is the result of considering the OPE between pairs of external

operators - see figure 1.2a for an example in a six-point function. On the other hand, one

can instead consider the OPE of consecutive operators, both external and internal - see

figure 1.2b. Note that the two topologies probe different OPE coefficients generically. In

the case of the scalar six-point function we considered in figure 1.2, the snowflake channel

probes OPE coefficients involving two scalars and a symmetric and traceless spin J operator

as well as the coupling between three spinning operators. The comb channel configuration,

on the other hand, might also depend on the OPE coefficient between an internal spin-J

operator, an external scalar and a possible internal operator with mixed symmetry.

In [51], in d = 1, 2 dimensions, a closed-form expression for the n-point conformal
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block in the comb-channel was found using shadow formalism. 9 In more general space-

time dimensions, it was also derived the five-point comb-channel conformal block with

both internal and external scalar operators. This result was then generalized for any n-

point correlation function in the comb-channel in [53, 54]. In this regard, [54] derived a

dimensional reduction formula that relates these blocks in d dimensions to blocks in d− 2

dimensions. Similar studies for scalar six and seven-point functions with scalar exchanges

in the (extended) snowflake channel were done in [55, 56].

While interesting and nontrivial, the results above have limited applicability. More

generally, five-point conformal blocks for non-scalar OPE exchanges can be computed by

considering the quadratic Casimir equations and by solving them in a series expansion [57–

59]. 10 This method was fundamental for the first numerical studies of five-point correlation

functions in the bootstrap program [58, 59]. In the same spirit as discussed for four-point

functions before, [62] derived recursion relations for conformal blocks with just external

scalars or with one spin 1 or 2 operator using weight-shifting operators. This relation allows

us to relate arbitrary conformal blocks to blocks for scalar exchanges. The method is useful

for relatively simple representations of the conformal group, but becomes very inefficient

as one wants to use it for more nontrivial cases, such as the exchange of operators of large

spin.

The conformal blocks are fundamental building blocks but their efficient computation

for higher-point functions is still in its infancy. As pointed out in [63], the OPE simplifies

in lightcone limit. In [64], this fact was used to derive integral representations for five and

six-point conformal blocks. This is reviewed in chapter 2, where the explicit expressions

are shown and used to set up a lightcone bootstrap program for five and six-point scalar

correlators. 11

As we conclude this section, even though we are not focusing on numerical bootstrap

methods in this thesis, we add a few remarks on notable numerical studies in higher-point

functions. An important fact of the four-point numerical conformal bootstrap of unitary

CFTs is the positivity of the product of OPE coefficients appearing in the crossing symmet-

ric equation (1.22). For higher-point functions, this notion of positivity is not guaranteed

generically. Therefore the uplift of numerical methods from four-point correlators to these

observables is not straightforward. As mentioned above, in [58, 59] the authors overcame

9See also [52].
10Besides the quadratic Casimir operator, multipoint conformal blocks are also eigenfunctions of a com-

plete set of commuting differential operators. These were discussed in [60, 61].
11This work was subsequently reproduced and extended in [65, 66].
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this obstacle in five-point functions by reviving a numerical method that aims to solve a

truncated crossing equation [67]. 12 This method however lacks the rigor of the positive

semidefinite program that is used in four-point functions. Recently in [68], this program

was reformulated in order to allow the numerical study of six-point functions in a comb-

channel conformal block decomposition and in a line configuration in d = 1 dimensions.

These results open up the ground for better and more rigorous numerical studies of mul-

tipoint correlators in the near future.

1.3 Lightcone bootstrap

In chapter 2, we will generalize the basic ideas of the lightcone bootstrap to five and six-

point functions in a snowflake configuration. It is thus of primary importance to review

and explain some basic facts of this program.

While numerical methods have attained fantastic results, a better understanding of the

analytic properties of the crossing equation is a must. This is an extremely complicated

problem in general but much more treatable in specific kinematics. As discussed before,

in the lightcone limit, i.e. when an operator approaches the lightcone of another such that

x2ij → 0, the OPE simplifies and takes the form [63]

ϕ1(x1)ϕ2(x2) =
∑
k

c12k

∫ 1

0
[dt]

Ok,J(x1 + tx21, x12)

(x212)
2∆ϕ−τk

2

+ . . . (1.23)

where . . . represent subleading contributions and we restrict ourselves to identical scalars

of scaling dimension ∆ϕ exchanging a symmetric and traceless operator of spin J and twist

τk. Here the form of the measure [dt] is not important but will be made explicit in chapter 2

equation (2.7). It follows from this OPE limit (or, equivalently, from solving the quadratic

Casimir equations in the lightcone limit) that the conformal block in the small u limit can

be written as

gk,J(u, v) = uτk/2(1− v)J 2F1

(
τk
2

+ J,
τk
2

+ J, τk + 2J, 1− v

)
≡ uτk/2fτk,J(v) , (1.24)

where we note that CFT data is organized by the twist of the exchanged operator in the

OPE.

12This method was introduced as a possible avenue to constrain CFT data of non-unitary theories.
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Considering a correlation of four identical scalar operators, we can write the crossing

equation (1.22) in the small u limit as1 +
∑
τ,J

Pτ,J u
τ/2fτ,J(v)

 =

(
u

v

)∆ϕ∑
τ,J

Pτ,J gτk,J(v, u) , (1.25)

where Pτ,J is the product of OPE coefficients and we isolate the contribution of the identity

operator in the direct channel.

In the small u limit, the leading contribution in the direct channel is given by the

identity exchange. There are no other operators of zero twist to contribute. For unitary

CFTs in d > 2, this follows from unitarity bounds. More generically, this separation is

valid whenever there is a twist gap between the identity and the next operator. In this

limit, the crossing equation reduces to

1 ≈
(
u

v

)∆ϕ∑
τ,J

Pτ,J gτk,J(v, u) . (1.26)

As it was shown in [44, 45] 13, reproducing the identity exchange by the cross channel

cannot be done by a finite number of OPE exchanges. In fact, the small u limit of the

conformal block in the cross channel has at most a logarithmic behaviour in u. This is

insufficient to cancel the explicit u∆ϕ in the prefactor. Indeed, the identity exchange is

reproduced by large spin contributions of a family of operators known as double-twist

operators. At large spin, their schematic form and twist are given by

[ϕϕ]n,J ∼ ϕ(∂2)n∂µ1 ...∂µJϕ τ = 2∆ϕ + 2n+ γ(n, J) , (1.27)

where n is a non-negative integer and γ(n, J) are the anomalous dimensions that will be

suppressed by spin as we will now see.

In the small u limit and at large spin, the cross-channel conformal block goes as [44]

gτ,J(v, u) ≈ vτ/2k2J(1− z)F (d)(τ, v) (1.28)

kβ(x) ≡ xβ/2 2F1(β/2, β/2, β, x) , (1.29)

where F (d)(τ, v) is positive, analytic near v = 0 and begins with a constant. 14 Note that

for small v this is equivalent to using a lightcone block in the cross channel. In other words,

13Recently the results we review next were established more rigorously in [69].
14This behaviour is easy to check in d = 2, 4 where the full conformal blocks are known in closed form.

For general d, one can check this solution in the Casimir equation [44].
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we are making the operator at position 2 approach both the lightcones of operator 1 and

operator 3. This is known as the double lightcone limit.

Using equations (1.26) and (1.28) with both u and v small, we see that in order to

cancel the v−∆ϕ , one requires the exchange in the cross channel of operators whose twist

approaches 2∆ϕ at large spin. As discussed above, the cancellation of the power in u is

done by the collective contribution of these operators. The sum over spin is dominated

by the region where J2u is fixed. In this region, the hypergeometric function is well

approximated by a Bessel function. Moreover, we are entitled to replace the sum over spin

by an integral. 15 Provided the product of OPE coefficients at large spin has an asymptotic

average behaviour dictated by mean field theory OPE coefficients, this integral reproduces

the exchange of the identity! There is one extra comment that must be done. We proposed

the existence of double-twist operators that have an extra n dependence in their twist.

This has not been explained here. In fact, their existence in the OPE of the two identical

scalars follows from the corrections in v in the cross-channel block. These corrections come

from F (d)(τ, v) and produce higher powers of v that have to be compensated by including

these operators of twist 2∆ϕ + 2n. These corrections were studied in the context of the

lightcone bootstrap in [70, 71]. In the rest of this brief review we will stick to the leading

family with n = 0.

Note that these results impose already nontrivial constraints on CFT data. The exis-

tence of an operator with twist 2∆ϕ at arbitrarily high spin together with Natchmann’s

theorem [72, 73]16 imposes the bound τJ ≤ 2∆ϕ on the minimum twist per spin J .

So far, we reproduced the identity exchange in the direct channel from the cross-channel

side. Naturally, we could have included subleading terms in u in the former channel. We

assume that there is a single operator of nonzero minimal twist that is responsible for the

first subleading contribution. 17 For a unitary CFT, Natchmann’s theorem guarantees that

this operator is necessarily either a scalar with scaling dimension less than d − 2 or the

stress tensor itself. 18 Recall that no spin 1 operator can be exchanged in the OPE of two

identical scalars.

15In doing so, one should divide the integral over spin by a factor of 2 as only even spin operators can
appear in the OPE of two identical scalars.

16Natchmann’s theorem states that the minimum twist allowed for each spin J exchange in the OPE is
a non-decreasing function of the spin.

17A finite amount of operators with the same first nonzero minimal twist can also be studied with the
same method.

18Higher spin conserved currents would also have twist d − 2. However, if they exist, then they would
couple as if formed from free fields [74].
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As long as the minimal twist τmin
2 −∆ϕ < 0, subleading contributions grow as u → 0

and large spin contributions in the cross channel should reproduce the power-divergent

behaviour in u. Including a subleading term in the direct channel, the crossing symmetric

equation is given by

1 + Pτmin,Jmin
uτmin/2fτmin,Jmin

(v) ≈
∑
τ,J

Pτ,J v
τ/2−∆ϕu∆ϕfτ,J(u) . (1.30)

In the direct channel, the small v expansion produces log v terms. From the cross-channel

side, this can be reproduced by considering an anomalous dimension correction in the

twist of the exchanged operators. To correctly reproduce the power uτmin/2, the anomalous

dimensions should be of the form 19

γ(0, J) =
γ0
Jτmin

. (1.31)

On top of this, the equivalence between the two channels further imposes a correction to

the mean-field theory OPE coefficients at large spin of the form

δP2∆ϕ,J =
c0

Jτmin
. (1.32)

The coefficients γ0 and c0 were found explicitly in [44] and their generalization to any n

in [70, 71].

In the computations presented above we have only kept the leading behaviour at large

spin. By keeping subleading terms in spin in the expansion of the cross-channel confor-

mal block, we can unveil the subleading corrections in both anomalous dimensions and

corrections to OPE coefficients. This is the subject of the large spin expansion studied

in [75–77].

By analysing the crossing-symmetric equation in the double lightcone limit, we are able

to gain enough analytic control over it to actually bootstrap the CFT data of families of

double-twist operators in a series expansion in inverse powers of spin. Quite surprisingly,

in [78], building on these methods, it was shown that, in the case of the 3d Ising model,

large spin expansion has an extremely good agreement with numerical data even at low

spins. This happens because double-twist operators actually sit in Regge trajectories that

are analytic in spin. Moreover, their OPE coefficients, that we found at large spin, are

not just mere density distributions but actually correspond to a unique operator at each

spin. All these results are made transparent with the Lorentzian inversion formula [79]

19In fact, the behaviour is similar for generic n.
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which supersedes these lightcone bootstrap methods as a computational tool by replacing

the asymptotic 1/J expansion by convergent sums up to spin 2.

1.4 Regge Theory

We ended the previous section by invoking the powerful result of [79] that proved analyticity

of CFT data in spin. This analyticity is a natural requirement of Regge theory.

In chapter 3, we will explore the generalization of conformal Regge theory to higher-

point functions and for this reason we find it useful to devote the next pages to review

some basic facts about Regge theory. For a more complete review see, for instance, [80].

In flat space, Regge theory came about as a theoretical explanation of experimental

observations. When plotting the squared masses and angular momenta of several mesons,

they seemed to organize themselves into almost straight families. These are the famous

Regge trajectories in the Chew-Frautschi plots. It was quite natural to wonder about the

existence of some analyticity in spin connecting these particles. Another experimental

observation is related to scattering at high centre-of-mass energy at a fixed impact param-

eter, known as the Regge limit. In terms of the usual Mandelstam invariants, s, t and u,

it corresponds to large s, fixed t. The existence of a strong forward peak (t < 0 and small

compared to s) in 2 → 2 scattering processes obeys a general rule: there is a correlation

between its existence and the possibility of exchanges of resonances and particles in the t

channel. However, the observed scaling of the cross sections in the centre-of-mass energy,

at large values of s, cannot be explained by a finite number of resonances in the t channel

and a whole family of them has to be considered. This is also naturally imposed by Regge

theory.

To understand these ideas, let us start by writing down a partial-wave decomposition

in the t channel of a 2 → 2 amplitude of identical spinless particles of mass m,

A(s, t) =
∞∑
J

(2J + 1)aJ(t)PJ(z) , (1.33)

where z = cos θt = 1+2s/(t− 4m2), PJ(z) is a Legendre polynomial of first kind of degree

J , θt denotes the t-channel scattering angle, J is the angular momentum of the exchanged

particles and aJ(t) are the partial-wave coefficients.

Clearly, this sum only converges in the t-channel physical region t > 4m2 and s < 0

and therefore cannot be applied to Regge limit. Note that for large s, and consequently
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JC ′

C

Figure 1.3: Contour integrals for the Sommerfeld-Watson transform for the four particle
scattering in the J-complex plane. As one deforms the contour from C to C ′ one has
to consider the contribution from dynamical singularities which here we assume to be a

Regge pole.

large z, the Legendre polynomial goes as

PJ(z) ∼ zJ . (1.34)

Hence, we need to find a proper analytic continuation of this partial-wave decomposition

in the region where it converges, before analytically continuing it to the Regge limit region,

inside the s-channel physical region. This can be done by replacing the sum over spin by

an integral by performing a Sommerfeld-Watson transform,

A(s, t) =

∫
C

dJ

2πi

π

sinπJ
(2J + 1) a(J, t)PJ(−z) , (1.35)

where C is the blue contour depicted in figure 1.3. We also use the fact PJ(z) = (−1)JPJ(−z).
It is simple to check that by capturing the residues at the poles inside the contour one re-

covers the partial-wave series.

While performing the analytic continuation in spin, we assumed that the partial-wave

coefficients aJ(t) have a good and unique analytic continuation in angular momentum,

a(J, t), that matches their values at integers. This is however not true. In fact, the problem

can be understood from the Froissart-Gribov formula for the partial-wave coefficients

aJ(t) =
1

2πi

∫ ∞

z0

dz
(
DiscsA(s(t, z), t) + (−1)JDiscuA(u(t,−z), t)

)
QJ(z) , (1.36)

whereQJ is a Legendre polynomial of the second kind and Discs(u) denotes the discontinuity

of the amplitude along the normal branch-cuts corresponding to s-channel (u-channel)
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physical regions starting at z0.
20 Most importantly for our discussion here, the term

(−1)J does not have a good analytic continuation in J . We are thus led to consider the

contributions of odd and even J separately. 21 We can then write

A±(s, t) =

∫
C

dJ

2πi

π

sinπJ
(2J + 1) a±(J, t)

(
PJ(−z)± PJ(z)

)
, (1.37)

where the + (−) sign has contributions from even (odd) angular momentum contribu-

tions. 22

The prescription above has a well-defined analytic continuation. This follows from

Carlson’s theorem 23 that guarantees its uniqueness given the good asymptotic behaviour

of the integrand in the t-channel physical region at large J . Moreover, this further allows

us to deform the contour C to C ′ in figure 1.3 by dropping the arcs at infinity.

As we now analytically continue the amplitude from the t-channel physical region to

the Regge limit, it is possible that singularities (which are functions of t) cross our contour

of integration. In this review and in the rest of the thesis, we will restrict ourselves to

the first singularity that crosses the contour and assume that it is a pole. This is the

so-called leading Regge pole due to the large s behaviour of the Legendre polynomial in

equation (1.34). This pole is necessarily contained in the a±(J, t)

a±(J, t) ≃ β(t)

J − α(t)
, (1.38)

where we only show the near-pole behaviour. Taking the Regge limit and picking up the

residue at the leading pole we find the leading behaviour

A±(s, t) ∼ (2α(t) + 1)β(t)

(
(−s)α(t) ± sα(t)

)
sin
(
πα(t)

) , (1.39)

where we absorbed nonsingular factors into β(t). In this expression we neglect sublead-

ing contributions from the background integral and from other singularities. In fact, one

could have continued pushing the contour all the way to left and capturing the subleading

contributions. As one moves the contour past Re(J) < −1/2, the asymptotic behaviour at

20In 2 → 2 scattering of the lightest spinless particles of a theory, one does not expect any other anomalous
branch-cut singularities.

21For identical spinless particles, only even contributions matter. We decided to keep the two cases for
completeness of the discussion.

22Another possible decomposition of the amplitude that has good analytic continuation will be discussed
in chapter 3 and related to this one.

23Carlson theorem says that, if a function f(z) is regular and diverges no faster than ek|z| for large z with
Re(z) ≥ 0, where k < π, and f(z) = 0 for z = 0, 1, 2, 3, . . . , then f(z) = 0 everywhere.
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large s of the Legendre polynomials changes. In [81], Mandelstam explained how to cor-

rectly capture pole contributions past this point and ensure that the remaining background

integral is indeed subleading.

The presented Regge theory explained not only the experimental observation of families

of operators that seem to be analytic in angular momentum, the so-called Regge trajecto-

ries, but also used them to derive the observed behaviour of cross sections at large s.

In the context of AdS/CFT correspondence it is natural to wonder about the CFT

description of a high-energy scattering in AdS. Thanks to the works of [82–85], it was

understood the corresponding kinematics of Regge limit in the CFT side. Later, in [86],

Regge theory was established in CFTs.

As we will see below, the Regge limit in CFTs corresponds to an intrinsically Lorentzian

configuration that probes causal relations between operators. Adding causality as a new

constraint in bootstrap is a major advantage of considering Lorentzian kinematics of CFTs.

There are several examples of CFT results that follow from causality (in some cases ex-

ploring Regge limit) 24: the proof of the ANEC [89], conformal collider bounds proof [90,

91], finding Einstein gravity from large N CFTs and putting bounds on Weyl anomaly

coefficients [92–96].

To consider Regge kinematics, we need to understand how to Wick rotate correlation

functions from Euclidean to Lorentzian space. This was carefully studied in [97, 98]. In

chapter 3, we will review some of their results. For the moment, let us just briefly give the

prescription to find a given Lorentzian correlator, also called Wightman function, from an

Euclidean correlator,

⟨O(t1, x1) . . .O(tn, xn)⟩ ≡ lim
ϵi→0

ϵ1>···>ϵn

⟨O(ϵ1 + it1, x1) . . .O(ϵn + itn, xn)⟩E , (1.40)

where the superscript E corresponds to Euclidean space. Wightman functions are cor-

relation functions of local operators that commute at spacelike separation and have an

associated ordering. For four-point correlators and with the appropriate ordering of ϵ’s

above, the limit defines a convergent Lorentzian correlator (at least in distributional sense)

obeying Wightman axioms [97].

In a CFT, the Regge limit corresponds to the kinematics of figure 1.4 where all operators

lie in a single plane. Moreover, operator 1 is in the past of 4 and operator 2 in the future

of 3.

24See also [87, 88]
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Figure 1.4: Regge limit kinematics.

For simplicity, let us consider that all operators are identical scalars as above. We

also consider a Wightman correlator with an ordering compatible with the time ordering

of figure 1.4, i.e. ⟨ϕ4ϕ1ϕ2ϕ3⟩. This correlation function admits a conformal block decom-

position in terms of the two cross ratios z and z presented in (1.20) which are real and

independent in Lorentzian kinematics. Starting from a configuration where all points are

spacelike separated from each other (which is basically equivalent to an Euclidean config-

uration) and boosting the operators to the configuration of figure 1.4, we can check the

effect of the ϵ-prescription of (1.40) at the level of the cross-ratios. It is easy to show that

z goes through a branch-cut of the conformal block in the interval (1,+∞), before both

z, z → 0 with fixed z/z. Note that this behaviour in the cross ratios mimics the Euclidean

OPE limit in the 12-34 channel, but with the important difference that for Regge limit this

happens after a branch-cut has been crossed. This crossing is a clear indication that the

OPE decomposition in this channel does not converge. However, similarly to the story we

presented for flat space, Regge theory provides a way to resum OPE contributions in such

a way as to show the dominant contribution of a Regge pole/Reggeon exchange which is

an example of a light-ray operator [99].

As z crosses the branch-cut, the conformal block develops a discontinuity that is

proportional to a block where the roles of scaling dimensions and spin are permuted as

(∆, J) → (1− J, 1−∆). In the limit where both z, z → 0, this block goes as

g1−J,1−∆(z, z) ∼ (zz)
1−J
2 (1.41)

and dominates the Regge limit. Moreover, the sum over spins for this block seems clearly

divergent. However, it can be shown that the correlator is actually bounded in the Regge
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limit. This can be proved by invoking a different OPE channel where no branch-cuts are

crossed. Alternatively, one can use a Cauchy-Schwarz-inequality type of argument, based

on a positive-definite Rindler inner product (note that the kinematics of figure 1.4 is Rindler

symmetric), to bound the Regge correlator by the Euclidean one [100]. This boundedness

suggests that OPE coefficients of large and low spins should talk and balance each other

in order to produce a bounded behaviour of the correlator. In fact, this is indeed what

follows from the Lorentzian inversion formula [79, 101].

Let us now briefly see how Regge theory can be formulated for a correlation in a CFT.

Similarly to flat space, the connected part of a four-point correlator of identical scalars

admits a conformal partial wave expansion. Stripping off a prefactor, we can write

g(u, v) =
∑
J

∫ ∞

−∞
dν bJ (ν)Fν,J(u, v) , (1.42)

where we use a principal series representation where the scaling dimension associated to

the partial wave is given by ∆ = d/2+iν. The function Fν,J(u, v) is the so-called conformal

partial wave and it is related with the conformal blocks

Fν,J(u, v) = κν,J gh+iν,l(u, v) + κ−ν,J gh−iν,J(u, v) , κν,J =
iν

2πKh+iν,J
, (1.43)

where h = d/2 and the second conformal block is known as the shadow of the first. The

exact form of the coefficients K∆,J is not important for the discussion we do here - see [86].

In order to recover the conformal block decomposition for the exchange of an operator of

scaling dimension ∆ and spin J from (1.42), using the fact that gh+iν,J decays exponentially

in Im(ν) → −∞, one deforms the contour in ν into the lower half plane and picks the

necessary poles. It is then clear that the partial amplitude bJ (ν) must have poles of the

form

bJ (ν) ≈
r(∆, J)

ν2 + (∆− h)2
, r(∆, l) = f12kf34kK∆,J . (1.44)

This reminds us of the discussion we had for flat-space provided that bJ (ν) can be analyt-

ically continued in spin.

To further explore the similarities with the presentation of Regge theory in flat space,

we will switch from this position-space presentation to a Mellin space one. This is also the

language used in [86] and the space where we will make most of the discussion in chapter 3.
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The connected part of a four-point scalar correlator of identical scalars can be written

in Mellin space

⟨ϕ(x1) . . . ϕ(x4)⟩c =
∫

[dδ]M(δij)
∏

1≤i<j≤4

Γ(δij)x
−2δij
ij , (1.45)

whereM(δij) is called Mellin amplitude and the δij are jointly called Mellin variables. The

integral runs parallel to the imaginary axis.

Conformal invariance imposes constraints in the Mellin variables

4∑
j=1

δij = 0 , δii = −∆i , (1.46)

in such a way that we are left with only two independent Mellin variables. For later

similarity with the flat-space result, we define two independent Mellin variables s and t as

s = −2δ13 , t = 2∆ϕ − 2∆12 . (1.47)

As in position space, we can also write down a conformal partial wave decomposition

in Mellin space,

M(s, t) =
∑
J

∫ +∞

−∞
dνbJ(ν)Mν,J(s, t) , (1.48)

where the partial waves Mν,J(s, t) are obtained by a Mellin transform of the position space

partial wave Fν,J(u, v). Moreover, Mν,J(s, t) =M−ν,J(s, t) can be written as

Mν,J(s, t) = ων,J(t)Pν,J(s, t) , (1.49)

where Pν,J(s, t) are the Mack polynomials of degree J in both s and t. The function ων,J(t)

is just an overall normalization that can be extracted from the Mack polynomials such that

at large s they behave as Pν,J(s, t) ∼ sJ and its explicit form can be found in [86].

In fact, as shown in [86], the Regge kinematics of figure 1.4 is dominated in Mellin

space by the region of large s and fixed t. This resemblance with flat-space Regge limit

explains the suggestive relabelling of the Mellin variables.

Just as in flat space, we can replace the sum over spin by an integral by doing an

equivalent Sommerfeld-Watson transform. In doing so, we have to assume that bJ(ν) has

a good analytic continuation in spin. As in flat space, however, one expects that this is not

in general the case and even and odd spins have to be considered separately. This was later

proved with the Lorentzian inversion formula [79]. In fact, for identical scalars only even
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spin contributions can appear in the OPE and therefore we do not have to consider two

separate cases. The general expectation for the need of two distinct cases in this Mellin

space formulation comes from a property of Mack polynomials

Pν,J(z, t) = P

(
(z − 1)t

2
, t

)
, Pν,J(−z, t) = (−1)JPν,J(z, t) (1.50)

where z = 1 + 2s/t and J is integer. Note that this is the same property of Legendre

polynomials that is ultimately related to a bad analytic continuation in spin and that

forced us to consider even and odd spins separately.

After performing the Sommerfeld-Watson transform and picking up the contribution

from the leading Regge pole, we are left with

M(s, t) ≈
∫ +∞

−∞
dν

π

2 sin
(
πj(ν)

) j′(ν)r(j(ν))
2ν

ων,j(ν)(t)
(
Pν,j(ν)(−z, t) + Pν,j(ν)(z, t)

)
≈
∫ +∞

−∞
dν

π

2 sin
(
πj(ν)

) j′(ν)r(j(ν))
2ν

ων,j(ν)(t)
(
sj(ν) + (−s)j(ν)

)
(1.51)

where in the second line we took the large s limit. Here we also used the fact that after

analytic continuations the pole in ν of b+J (ν) becomes a pole in J ,

b+J (ν) ≈
r(∆(J), J)

ν2 + (∆− h)2
≈ − j′(ν)r(j(ν))

2ν(J − j(ν))
, (1.52)

where j(ν) is the inverse function of ∆(J) defined by

ν2 + (∆(j(ν))− h)2 = 0. (1.53)

We reviewed Regge theory in the context of CFTs and in flat space. One of the great

successes of conformal Regge theory is the, now proved, analyticity in spin of CFT data. In

chapter 3, by exploring the generalization of conformal Regge theory to five-point functions,

we will propose the existence of analyticity in a label for different tensor structures of three-

point functions involving two spinning operators.

1.5 N = 4 SYM and type IIB SUGRA

One of the most celebrated and studied examples of the AdS/CFT duality involves N =

4 SYM. This theory is a maximally supersymmetric gauge theory in 4 dimensions with

SU(N) gauge group that is conformal for all values of the coupling gYM. Its field content

is given by the gauge bosons Aµ, six real massless scalars ΦI with I = 1, . . . , 6, four chiral

fermions Ψa
α and four anti-chiral fermions Ψα̇ a with a = 1, . . . , 4. All the fields transform
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in the adjoint representation of SU(N). Moreover, in planar limit, i.e in the large N

limit, this theory enjoys integrability properties that make it more tractable and, possibly,

completely solvable [102, 103].

N = 4 is conjectured to be dual to IIB superstring theory in AdS5 × S5 with radius of

curvature R and N units of field strength F5 flux through S5 [26]. Under the conjecture

the couplings can be related in both sides of the duality,

g2YM = 2πgs , 2λ ≡ 2g2YMN = R4/α′2 , (1.54)

where gs is the string coupling constant and
√
α′ is the string length. We have also intro-

duced the t’hooft coupling λ.

This duality comes as an example of the holographic principle, and if proven, shows

that the two theories are actually dynamically equivalent. In other words, information of

five-dimensional IIB string theory obtained from Kaluza-Klein reduction on S5 should have

a description from the four-dimensional CFT at the boundary of AdS.

In this thesis, we consider the strong coupling limit of N = 4 SYM, i.e. both N and

λ large. In this limit, the theory is dual to classical type-IIB supergravity and all massive

string excitations decouple leaving behind only supergravity states: single-particle and

two-body bound states. From the CFT theory, this is the same as to say that we should

only consider dual operators that are protected in this limit, i.e. operators which have a

scaling dimension that is fixed and does not grow with λ.

The single-particle states of the graviton and the Kaluza-Klein multiplets are dual to

protected half-BPS operators. Supersymmetry allows us to organize the operators into

superconformal multiplets where the bottom components, the superprimaries, generate

their superdescendants by action of supercharges, see for instance [104]. We can thus

consider correlation functions of the half-BPS superprimaries,

Op(x, t) = Tr
(
Φ{I1 . . .ΦIp}

)
tI1 . . . tIp , Ik = 1, . . . , 6 , p = 2, 3, . . . , (1.55)

that transform as a rank-p symmetric and traceless representation (denoted by the curly

bracket) of the SU(4) ≃ SO(6) R-symmetry group. Here ΦI are elementary scalar fields

and tI are null polarization vectors that are introduced for a convenient index-free notation.

These operators belong to short multiplets, obeying a shortening condition that fixes their

scaling dimensions to be integer and ∆ = p.
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On the other hand, two-particle bound states are dual to double-trace operators. While

belonging to long multiplets, in the strict large N , their scaling dimension is fixed and

protected. These operators are then degenerate and of the form

Opq = Op∂
J□

1
2
(τ−p−q)Oq , (1.56)

with twist τ and spin J . Considering 1/N2 corrections, double-trace operators acquire

anomalous dimensions which have the form found in [105].

As mentioned above, we are focusing our attention on correlation functions of half-BPS

superprimaries. As in the usual conformal bootstrap scenario, the study of holographic

correlators is far more developed for four-point functions than for higher-point analogues,

where there is still no systematic study of the superconformal ward identities implications

available.

Four-point correlators, for generic values of the coupling, encode a large amount of

non-protected data, while two- and three-point functions of half-BPS operators obey non-

renormalization theorems that allows one to compute them from free field theory [106–

114]. 25 This makes clear the relevance of four-point correlators to access the data of

the theory. The AdS/CFT dictionary defines a diagrammatic strategy to compute these

correlation functions. To leading order in N , one has to consider all possible Witten dia-

grams at tree level with external legs given by bulk-to-boundary propagators and internal

legs by bulk-to-bulk propagators. The vertices can be read off from the effective action

of supergravity. This is not trivial whatsoever. In fact, the quartic scalar vertices were

obtained in [120] in a herculean feat since they take 15 pages to be written. Luckily, in

AdS5 ×S5, there is still some simplification in place as noted in [121]: the complicated ex-

change Witten diagrams can be written as finite sums over contact diagrams, the so-called

D-functions. Despite this simplification, the computation by traditional methods is ex-

tremely cumbersome and therefore only produced very few explicit results. Examples are:

the computation of correlators of four identical half-BPS operators with scaling dimension

with p = 2 [122], p = 3 [123] and p = 4 [124]; the next-to-next-to-extremal correlators with

two equal weights, i.e. the cases p1 = n+ k, p2 = n− k, p3 = p4 = k + 2 [125–127].

The key simplification that the exchange Witten diagrams can be written as finite

sums over D-functions led the authors of [128] to change gears and propose a bootstrap

25Extremal and next-to-extremal four-point functions of half-BPS operators also obey non-
renormalization theorems [115–119]. Extremality of these correlators is defined as 2E =

∑3
i=1 pi − p4

where we assume p4 is the largest scaling dimension. Extremal and next-to-extremal cases correspond to
E = 0 and E = 1.
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philosophy instead. They proposed to write the answer as sums over D-functions with

undetermined coefficients. After removing some redundancy and linear dependence of the

D-functions, by reducing all of them to a seed function with known differential relations, one

can use superconformal ward identities to fix the undetermined coefficients. This bootstrap

eschews the complicated effective action of supergravity and is therefore more amenable

to compute correlators with generic weights p. In the same paper, it was also proposed an

ansatz for the generic ⟨Op1Op2Op3Op4⟩ in Mellin space. This ansatz was later rederived

from a conjectured ten-dimensional conformal symmetry of these operators at tree-level

in [48] which allowed to compute ⟨Op1Op2Op3Op4⟩ from differentiating the simpler and

known ⟨O2O2O2O2⟩.
In this thesis, we propose to further extend the bootstrap approach to compute five-

point correlators of these operators and we formulate it entirely in Mellin space. This will

be the subject of chapter 4 where we fix the form of the correlator ⟨OpOpO2O2O2⟩.
Recently, these ideas have received an increasing interest and various results deserve

mentioning. In [57], the form of ⟨O2O2O2O2O2⟩ was found using a bootstrap method that

largely motivated our framework. Similar ideas were also applied to study the tree-level

five-point correlator of the lowest Kaluza-Klein mode of SYM theory on AdS5×S3 dual to

the correlator of the flavour current multiplet in the dual N = 2 superconformal field the-

ory [129]. In [130], it was found the extension of the previous result to six-point functions,

using Mellin factorization, a key element of our chapter 4, and flat space constraints.

1.6 Structure of the thesis

Having reviewed some essential facts about CFTs, Regge theory and the strong coupling

limit of the N = 4 SYM and IIB supergravity in AdS5 ×S5, we are now in place to attack

some of the open problems we address in the following chapters.

In chapter 2, we extend the analytic lightcone bootstrap to the study of five- and six-

point scalar correlation functions. As mentioned before, we restrict our attention to the

snowflake topology of these correlators, which corresponds to only performing OPEs be-

tween the external operators. After explaining the derivation of the higher-point conformal

blocks in the lightcone limit, using the lightcone OPE limit, we proceed as in the four-point

bootstrap we reviewed above: we isolate the direct-channel singularities associated with

the leading twist operator exchanges and reproduce them with the large spin behaviour of
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double-twist-like operators in the cross channel. This allows us to probe and fix the large-

spin form of anomalous dimensions and OPE coefficients involving two spinning operators

and one external scalar in the five-point case, and between three spinning operators in the

six-point case. Our results are then checked by explicit results for the six-point mean-field

theory correlator and for the disconnected parts of a five-point correlator in ϕ3 theory in

d = 6 − ϵ. We give some extra technical details in Appendix 2.5. This includes some

explicit results on higher-point blocks, an analysis of higher-point D-functions using stan-

dard techniques from AdS perturbation theory as well as some results on the conformal

harmonic analysis of higher-point functions.

In chapter 3, we extend conformal Regge theory to the case of a five-point correlator of

identical scalars. We start by reviewing some flat-space literature on higher-point ampli-

tudes in the context of Regge theory. This literature, while containing important results,

is largely unfamiliar to most community and was abandoned in face of the scarcity of

known results about analytic properties of multi-point amplitudes. Nonetheless, it pointed

out several subtleties and resolutions that guided us in our study in the context of CFTs.

We proceed by studying several limits of OPE at the level of five-point functions, namely

Euclidean, lightcone and Regge limits. We comment on the differences and organization

of the leading operators in each case. In the Euclidean limit, we found a new basis of

three-point functions with spinning operators that factorizes the conformal block in each

of the five cross ratios. In the section dedicated to the lightcone limit, besides revisiting the

derivation of the lightcone blocks, we write down an expression valid up to all subleading

corrections, whenever the exchanged operators are scalars. We also propose for the first

time the appropriate kinematics for a five-point correlation function in the Regge limit,

which in terms of the cross ratios behaves similarly to the Euclidean limit but only after

branch cuts have been crossed. Moreover, we show that in Mellin space this kinematics can

be phrased in terms of Mellin variables in a way that resembles the flat-space multi-Regge

limit. After reviewing how to define Wightman functions from Euclidean correlators, we

use a conformal partial-wave writing of the correlator and describe the associated Regge

theory in Mellin space. To do so we propose a well-defined analytic continuation not only

in spin but also in the label of different three-point structures, which forces us to consider

the contribution of (at least) 8 different signatures. While the spin of Regge trajectories are

associated with poles in the partial-wave coefficients, we conjecture that there is no pole
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associated with this new label and write the Sommerfeld-Watson accordingly. Some tech-

nical discussions and computations are in Appendix 3.5. In particular, we derive recursion

relations obeyed by lightcone blocks and compute explicitly the scalar Mellin partial wave.

We also use this appendix to study the Regge limit in position space for the special case

where the lightcone blocks can be integrated explicitly. Finally, we suggest the kinematics

for a single Reggeon exchange within a five-point function as well as for triple Reggeon

exchanges in a snowflake six-point function.

In the penultimate chapter 4, we present a bootstrap algorithm to find the five-point

correlator of half-BPS superprimaries ⟨OpOpO2O2O2⟩. After reviewing superconformal

kinematics, we discuss two choices of polarization vectors (from index-free notation) that

impose nontrivial constraints from superconformal symmetry on correlators. We proceed

to discuss Mellin amplitudes and their factorization properties. This is a key element to fix

the singular part of our ansatz for these correlation functions, while regular terms are fixed

by the constraints we just mentioned. The factorization of the Mellin result into three-

and four-point functions glued together requires the knowledge of four-point correlators

involving spin 1 and spin 2 operators. These can be found in analytic superspace and

explicit expressions are given in Appendix 4.5, where an example of a factorization is also

shown in detail.

Lastly, we conclude with a brief summary of the main results of this thesis and discuss

possible open directions for the near and far future.



Chapter 2

Lightcone Bootstrap at higher points

2.1 Introduction

Analytic bootstrap methods have given a structural understanding of CFTs by leveraging

the analytic structure of four-point functions [44, 45, 70, 71, 75–78, 93, 94, 96, 131]. Typ-

ically such studies consider the four-point function of scalar operators. This fact limits

the data that can be accessed to scalar/scalar/symmetric traceless (of spin J) OPE coef-

ficients. However, it is important to consider OPE coefficients between multiple spinning

operators, of which an important example is the OPE coefficient of three stress tensors [90,

132]. A possibility would be to extend the analytic bootstrap to the four-point function

of operators with spin, but this approach is technically challenging and works mostly in a

case by case basis. An alternative is to consider higher-point functions of scalar operators,

which through the OPE contains information about operators of arbitrary spin [64, 133]. In

this case the technical challenge lies upon our knowledge of higher-point conformal blocks,

which is still incomplete [51, 57–59, 62, 133].

For the scalar four-point function, the lightcone bootstrap predicts the universal be-

haviour of scalar/scalar/spin J OPE coefficients at large spin, which are of mean field type

[44, 45]. Subsequent corrections, that include scaling dimensions and OPE coefficients, are

determined by the leading twist operators in the theory [44, 45]. This large spin expansion

is actually convergent up to a low spin value determined by the Regge behaviour of the

four-point function [79, 101]. A remarkable check of the accuracy of this method was done

in the 3D Ising model where the numerical bootstrap provided the data for comparison

[78, 134] (see also [135] for the O(2) model). Motivated by this success, our goal is to

31
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extend the lightcone bootstrap to the case of higher-point functions and therefore access

OPE data involving spinning operators.

More concretely, we bootstrap five- and six-point functions. In the five-point case there

is an unique OPE topology which involves the exchange of two operators of spin J1 and

J2 and therefore includes the scalar/spin J1/spin J2 OPE coefficient, see (2.42) and (2.48).

In the six-point case we consider the snowflake OPE channel which involves the exchange

of three operators of spin J1, J2 and J3 and therefore includes the spin J1/spin J2/spin J3

OPE coefficient, see (2.62), (2.70) and (2.75). This bootstrap analysis is done in section

2.3, which follows section 2.2 where we review the kinematics and derive the lightcone

conformal blocks for five- and six-point functions. Our results are tested in section 2.4

for the case of generalized free theory and of theories with a cubic coupling, whose block

decomposition we determine explicitly. We conclude with a discussion of open problems in

section 2.5.

Additional technical details are given in the appendices: appendix 2.A gives more

details on higher-point blocks, including some comments about the Euclidean expansion

and the Mellin representation; appendix 2.B discusses higher-point D-functions based on

AdS techniques; appendix 2.C presents new results on conformal harmonic analysis relevant

for higher-point functions and can be read mostly independently from the main text.

2.2 Kinematics and conformal blocks

It is a well known property that n-point correlation functions in a conformal field theory

depend nontrivially on n(n− 3)/2 conformal invariant variables for high enough spacetime

dimension1. The choice of conformal invariant cross-ratios usually depends on the problem

one is analysing. In a four-point function, that depends on two cross-ratios (say u and v),

there are several choices of cross-ratios used throughout the literature, for example

u = zz =
x212x

2
34

x213x
2
24

, v = (1− z)(1− z) =
x214x

2
23

x213x
2
24

, (2.1)

or

s = |z| , ξ = cos θ =
z + z

2|z| . (2.2)

1There are relations between conformal invariant cross-ratios for low dimensions (d ≤ n − 2) such that
the number of independent variables is instead nd− (d+ 1)(d+ 2)/2.
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This chapter is focused on the analytic bootstrap of five- and six-point correlation

functions, and therefore we will need to use appropriate sets of cross-ratios. For the five-

point function it will be convenient to work with the five variables u1, . . . , u5 given by

u1 =
x212x

2
35

x213x
2
25

, ui+1 = ui
∣∣
xj→xj+1

, (2.3)

where in this definition the subscript in xj is taken modulo 5 (for example x6 ≡ x1). For

the six-point function we introduce the nine cross-rations u1, . . . u6 and U1, . . . , U3 defined

by

u1 =
x212x

2
35

x213x
2
25

, ui+1 = ui
∣∣
xj→xj+1

, U1 =
x213x

2
46

x214x
2
36

, Ui+1 = Ui

∣∣
xj→xj+1

, (2.4)

where the subscript in xj is now taken modulo 6.

We will be interested in the Lorentzian lightcone expansion of correlation functions.

The difference between the Lorentzian and Euclidean expansions can be easily understood

from the OPE of two operators. In the Euclidean case the operators are taken to be

coincident (xij → 0) while in the Lorentzian case the operators approach the lightcone of

each other (x2ij → 0). As is well known, the Euclidean limit is dominated by the operators

with lowest scaling dimension, in contrast with the Lorentzian case that is dominated by

the operator with lowest twist τ = ∆ − J . This is evident from the leading term of the

formula for the OPE

ϕ(x1)ϕ(x2) ≈
∑
k

C12k
(x12 · Dz)

JOk,J(x1, z)

(x212)
2∆ϕ−τk

2

+ . . . Euclidean (2.5)

ϕ(x1)ϕ(x2) ≈
∑
k

C12k

∫ 1

0
[dt]

Ok,J(x1 + tx21, x12)

(x212)
2∆ϕ−τk

2

+ . . . Lorentzian (2.6)

where the . . . represent subleading terms in each expansion, z is a null polarization vector,

[dt] =
Γ(∆k + J)

Γ2(∆k+J
2 )

(t(1− t))
∆k+J

2
−1dt , (2.7)

and Dz is the so-called Todorov operator [136]

Dz =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z . (2.8)

The formulae above are key in obtaining the conformal block expansion around both limits.

For example, in the four-point function case it is trivial to obtain the lightcone block from
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(2.6), with the result

⟨ϕ(x1) . . . ϕ(x4)⟩ ≈
∑
k

C12k

(x212)
2∆ϕ−τk

2

∫
[dt] ⟨Ok(x1 + tx21, x12)ϕ(x3)ϕ(x4)⟩ (2.9)

=
∑
k

C2
12k

(x212x
2
34)

2∆ϕ−τk
2

∫
[dt] (x213x

2
24 − x214x

2
23)

J

(x223t+ (1− t)x213)
∆k+J

2 (x224t+ (1− t)x214)
∆k+J

2

,

where we have changed variables t → t/(t+ 1) and t → tx224/x
2
14. The lightcone block for

the exchange of an operator Ok is defined by this leading term in the expansion

⟨ϕ(x1) . . . ϕ(x4)⟩ ≈
1

(x212x
2
34)

∆ϕ

∑
k

C2
12k

(
Gk(u, v) + . . .

)
, (2.10)

where

Gk(u, v) = uτk/2(1− v)Jk 2F1

(
∆k + Jk

2
,
∆k + Jk

2
,∆k + Jk, 1− v

)
≡ uτk/2gk(v) . (2.11)

We defined the function gk(v) for later convenience. Note that the expansion (2.10) is

merely schematic, since subleading terms in the lightcone limit of a lower twist block can

dominate with respect to the lightcone limit of a higher twist block.

2.2.1 Lightcone conformal blocks

Let us start with the lightcone expansion of the five-point conformal block. Applying twice

the OPE limit (2.6) we obtain

⟨ϕ(x1) . . . ϕ(x5)⟩ ≈
∑
ki

 2∏
i=1

Cϕϕki

∫
[dti]

 ⟨Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)ϕ(x5)⟩
(x212)

2∆ϕ−τk1
2 (x234)

2∆ϕ−τk2
2

.

(2.12)

The limits x212 → 0 and x234 → 0 correspond to u1 → 0 and u3 → 0, respectively. The three-

point function in the integrand involves the external scalar and two symmetric traceless

operators with arbitrary spin as depicted in the top-left part of figure 2.1. Our convention

for three-point functions of symmetric and traceless operators is [32]

⟨Ok1(x1, z1) . . .Ok3(x3, z3)⟩ =
∑
ℓi

Cℓ1ℓ2ℓ3
J1J2J3

V J1−ℓ2−ℓ3
1,23 V J2−ℓ1−ℓ3

2,31 V J3−ℓ1−ℓ2
3,12 Hℓ3

12H
ℓ2
13H

ℓ1
23

(x212)
h1+h2−h3

2 (x213)
h1+h3−h2

2 (x223)
h2+h3−h1

2

,

(2.13)
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J1 J2 J1 J2

J3

J1 J2

1

2

3

4

5

1

2

3

4

5 6

1

2

5

6

3 4

CJ1J2O

CJ1J2J3

Figure 2.1: Schematic representation of the OPE channels for five- and six- point func-
tions. In the top left we have the snowflake decomposition of the five-point function, where
we emphasize the OPE coefficient involving two spinning operators. In the top right we
have the snowflake decomposition of the six-point function, emphasizing the OPE coeffi-
cient of three spinning operators. In the bottom, we depict the comb-channel expansion,

which may involve mixed-symmetry tensors and which we will not analyze in detail.

where we used a null polarization vector zi to encode the indices of the operators, hi =

∆i + Ji and V and H are defined as

Vi,jk =
(zi · xij)x2ik − (zi · xik)x2ij

x2jk
, Hij = (zi · xij)(zj · xij)−

x2ij(zi · zj)
2

. (2.14)

The sum in ℓi ∈ {0, . . . ,min(Jk)} counts the possible tensor structures. In the five-point

case we have a three-point function of a scalar with two operators of spin J1 and J2,

therefore the different structures are labelled by ℓ3 ≡ ℓ and ℓ1 and ℓ2 vanish. After

doing simple and straightforward manipulations we arrive at the explicit expression for the

lightcone block defined by

⟨ϕ(x1) . . . ϕ(x5)⟩ ≈
1

(x212x
2
34)

∆ϕ

(
x213

x215x
2
35

)∆ϕ
2 ∑

k1,k2,ℓ

Pk1k2ℓ Gk1k2ℓ(ui) , (2.15)



36 Higher-point Correlators and the Conformal Bootstrap

where

Gk1k2ℓ(ui) = u
τ1
2
1 u

τ2
2
3 (1− u2)

ℓu
∆ϕ
2

5

∫
[dt1][dt2] (2.16)(

1− t1(1− u2)u4 − u2u4
)J2−ℓ(

1− t2(1− u2)u5 − u2u5
)J1−ℓ(

1− (1− u4)t2
)h2−τ1−2ℓ+∆ϕ

2
(
1− (1− u5)t1

)h1−τ2−2ℓ+∆ϕ
2

(
1− (1− t1)(1− t2)(1− u2)

)h1+h2−∆ϕ
2

.

The expansion (2.15) includes a product of three OPE coefficients that we denote by

Pk1k2ℓ = Cϕϕk1Cϕϕk2C
(ℓ)
ϕk1k2

. (2.17)

Formula (2.16) is valid as long as one of the exchanged operators is not the identity. In

such a case the OPE instead simplifies to

ϕ(x1)ϕ(x2) ≈
CϕϕI

(x212)
∆ϕ

I , (2.18)

which forces the other exchanged operator to be the same as the external one. When the

exchanged operator in the (12) OPE is the identity we have (in this case there is a single

ℓ = 0 structure)

GI ϕ(ui) =

(
u3u5
u4

)∆ϕ
2

, (2.19)

on the other hand, when the identity is flowing in the (34) OPE, we have

Gϕ I(ui) = u
∆ϕ
2

1 . (2.20)

For the lightcone expansion of the six-point conformal block we need to apply the OPE

limit (2.6) three times. We will choose the snowflake channel as illustrated in the top-right

of figure 2.1. In this choice the exchanged operators are always symmetric traceless tensors

of spin Ji. This gives

⟨ϕ(x1) . . . ϕ(x6)⟩ ≈
1

(x212x
2
34x

2
56)

∆ϕ

∑
ki,ℓi

PkiℓiGkiℓi(ui, Ui) = (2.21)

∑
ki

 3∏
i=1

Cϕϕki

∫
[dti]

 ⟨Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)Ok3(x5 + t3x65, x56)⟩
(x212)

2∆ϕ−τ1
2 (x234)

2∆ϕ−τ2
2 (x256)

2∆ϕ−τ3
2

.
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Using the three-point function conventions (2.14) and defining T =
∑

i τi, L =
∑

i ℓi and

H =
∑

i hi we obtain

Gkiℓi(ui, Ui) ≡ u
τ1
2
1 u

τ2
2
3 u

τ3
2
5 gkiℓi(u2, u4, u6, Ui) (2.22)

=

3∏
i=1

u
τi
2
2i−1

∫
[dti]

uℓi2i χ
ℓ1−i

i (1− χi)
ℓ2−i−τ2−i+T /2(1− u2i)

Ji+1+ℓi+1−LAJi+ℓi−L
i

Bℓi−∆i−L+H/2
i

,

where we use the notation ℓi ≡ ℓi+3 and2

Ai =
1

(1− u2(i−1))

[
(1− ti−1)(1− χ1−i)

(
− 1 + u2(i−1) − (1− ti+1)u2(i−1)χ2−i + χ3−i

)
+ ti−1u2(i+1)(1− χ3−i)

(
− 1 + u2(i−1) − (1− ti+1)u2(i−1)χ2−i

)]
, (2.23)

Bi = 1− χ2−i − t1+i(1− u2i − χ2−i + (1− ti−1)u2iχ1−i) ,

with χi defined as χi =
Ui−u2(2−i)

Ui
. A nice property of the χ variables is that the conformal

block factorizes in products of three 2F1 in the limit χi → 0. Another nice property is that

ℓ1−i determines the leading power of χi, as can easily be seen in (2.22).

When one of the exchanged operators is the identity, the remaining two are equal to

each other, which leads to the simplified expression

GkkI(ui, Ui) =

(
u1u3
U2

) τk
2

gk(u2/U1) , (2.24)

where gk(v) contains is the four-point block as defined in (2.11).

2.3 Snowflake bootstrap

Let us start by recalling the basic features of the lightcone bootstrap for four-point corre-

lators [44, 45]. A four-point function of local operators ϕ can be decomposed in the (12)

or (23) OPE channels

1

(x212x
2
34)

∆ϕ

∑
Ok

C2
ϕϕkGk(u, v) =

1

(x223x
2
14)

∆ϕ

∑
k

C2
ϕϕkGk(v, u) , (2.25)

where Gk(u, v) is the full conformal block in the (12) channel. This bootstrap equation

has been used to extract properties of conformal field theories following both analytic and

numerical approaches.

2The reader may have realized that due to the cyclic defining property of the cross-ratios we can for
example refer to the even cross-ratios u2, u4, u6 in the product as u2(i−1).
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Low twist operators dominate in the lightcone x212 → 0 limit of the left hand side of the

bootstrap equation. Unitary CFTs obey the following bounds for the twist of operators

τ = 0 identity , τ ≡ ∆− J ≥


(d− 2)/2 scalar

d− 2 spin ,

(2.26)

and so the leading term on the left hand side of the bootstrap equation is given by

1

(x212x
2
34)

∆ϕ

∑
k

C2
ϕϕkGk(u, v) =

1

(x212x
2
34)

∆ϕ

[
1 + C2

ϕϕk∗u
τk∗
2 gk∗(v) + . . .

]
, (2.27)

where we have used that the conformal block behaves as Gk(u, v) → Gk(u, v) = u
τ
2 gk(v)

in the u → 0 limit. The assumption is that above the identity there is a unique operator

Ok∗ with leading twist. Next we take the limit of x223 → 0, which moves the point x2 to

the corner of the square made by the lightcones of points 1 and 3, which can be taken

respectively at 0 and 1 in the complex z-plane, as shown in figure 2.2. It is possible to take

this second limit, which corresponds to v small, and use the right hand side of (2.25).

0 1

z

u→0

v→0

Figure 2.2: Schematic representation of the relevant lightcone limit in the z-plane. The
point x2 first approaches the lightcone of the operator at the origin, as u → 0. Subse-
quently, it approaches the lightcone of the operator at x3 = (1, 0), which corresponds to

taking v → 0.

Each term in the u → 0 limit will diverge at most logarithmically, which apparently

contradicts the power law divergence of the left hand side of the equation. The emergence

of the power law singularity was addressed in [44, 45] and it boils down to the contribution

of double-twist operators [ϕϕ]0,J ∼ ϕ□0∂Jϕ whose twist approaches 2∆ϕ at large spin. The

stronger divergence is recovered by performing the infinite sum over spin of these double-

twist families. In particular, this fixes the density of OPE coefficients for this family of
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operators at large spin to be3

C2
ϕϕ[ϕϕ]0,J

∼ 8
√
π

Γ(∆ϕ)222∆ϕ+J
J2∆ϕ−3/2 , (2.28)

which is the behaviour of OPE coefficients in Mean Field Theory.

Additionally, the leading twist operator above the identity in the direct channel leads

to 1/J suppressed corrections to the OPE coefficients along with anomalous dimension

type corrections, which means the twist of these families behaves as

τ[ϕϕ]0,J = 2∆ϕ +
k

Jτ∗
. (2.29)

At this level the large spin expansion is merely asymptotic, and the OPE coefficients and

anomalous dimensions cannot be assigned to a single operator of a given spin. However, the

large spin expansion actually converges at least down to spin 2, and the OPE coefficients

are really associated to a unique operator at each spin, which follows from the fact that

the double-twist operators really sit in Regge trajectories that are analytic in spin. All

these remarkable facts were established through the Lorentzian inversion formula [79]. This

formula systematizes the large spin perturbation theory/lightcone-bootstrap and essentially

supersedes it as a computational tool [137–139]. In this work, however, we are interested

in higher-point functions which are much richer, and for which a Lorentzian inversion

formula is presently unavailable. Therefore we must resort to the more pedestrian large spin

perturbation theory. It would of course be interesting to develop higher-point Lorentzian

inversion formulae and reproduce and extend the results we will derive below.

2.3.1 Five-point function

Let us consider the more complicated case of the five-point function. We now have an

exchange of two operators, and their contribution is captured by the block expansion in a

given channel. We consider the (12)(34) and (23)(45) channels for the five-point function

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ(x5)⟩,

(x213)
∆ϕ
2

(x212x
2
34)

∆ϕ(x215x
2
35)

∆ϕ
2

∑
k1,k2,ℓ

Pk1k2ℓG
12,34
k1k2ℓ

(ui) =
(x224)

∆ϕ
2

(x223x
2
45)

∆ϕ(x212x
2
14)

∆ϕ
2

∑
n1,n2,ℓ

Pn1n2ℓG
23,45
n1n2ℓ

(ui) .

(2.30)

The limit x212, x
2
34 → 0 is dominated by low twist operators in the (12)(34) channel. The

natural candidate to lead this expansion is the identity operator, however it is not possible

3This differs from some conventions in the literature by a factor of 2J due to our conformal block
normalization.
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to have two identities being exchanged at the same time, since that would imply a nonzero

three-point functions between two identities and the scalar operator ϕ(x5). It is however

possible to have one identity being exchanged in one OPE and another operator in the other

OPE. In this case the conformal blocks simplify considerably and the exchanged operator

must be the external one. The block simplifies to a product of a two- and three-point

function, check (2.19) and (2.20). Thus, we conclude that the first terms in the lightcone

limit in the channel (12)(34) are given by

CϕϕϕGI ϕ(ui) + CϕϕϕGϕ I(ui) = Cϕϕϕ

(u3u5
u4

)∆ϕ
2

+ u
∆ϕ
2

1

 . (2.31)

There is possibly another leading term from two exchanges of the leading twist operator

Ok∗ . This term has a lightcone limit in the channel (12)(34) given by

Cϕϕk∗Cϕϕk∗Ck∗k∗ϕGk∗k∗ℓ(ui) . (2.32)

The term that dominates is determined by the rate at which u1 and u3 go to zero and

by the twist of ϕ and Ok∗ . Below we shall address both possibilities. We may then take

the other limits x223, x
2
45, x

2
15 → 0, corresponding to u2, u4, u5 → 0, which as we shall see,

are suitable for the expansion in the (23)(45) channel. The decomposition in this channel

takes the form (
u1u

2
3u5

u22u
2
4

)∆ϕ/2 ∑
n1,n2,ℓ

Pn1n2ℓ G23,45
n1n2ℓ

(ui) , (2.33)

where we collected here the prefactors on both sides of (2.30). The powers of u2, u4 in the

denominator of (2.33) impose constraints on the operators that need to be present in the

conformal block decomposition of the channel (23)(45).

2.3.1.1 Identity in the (12) OPE

Let us understand this in more detail. First consider the term

CϕϕϕGI ϕ(ui) = Cϕϕϕ

(
u3u5
u4

)∆ϕ
2

, (2.34)

where the identity is exchanged in the (12) OPE. The cross-ratios u2 and u4, when taken

to be small, control the twist of the exchanged operators in the cross channel. We can use

this to infer what class of operators are contributing in the cross channel where the blocks
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behave as

G23,45
n1n2ℓ

(ui) = u
τn1/2
2 u

τn2/2
4 gn1n2ℓ(u1, u3, u5) . (2.35)

Combining these behaviours with the prefactor in (2.33) we can conclude that the opera-

tors n1 have a twist that approaches 2∆ϕ, and therefore correspond to the usual leading

double- twist operators. Moreover, in this case the operator n2 must have twist ∆ϕ. This

corresponds to the exchange of the external operator itself. Therefore the cross-channel

OPE data is given by

P[ϕϕ]0,J ,ϕ = Cϕϕ[ϕϕ]0,JCϕϕϕCϕϕ[ϕϕ]0,J , (2.36)

from which we can see that the single-trace OPE coefficient cancels on both sides of the

crossing equation, and we are left with data that is known from the four-point bootstrap,

namely scalar/scalar/double-twist OPE coefficients.

Actually this case reduces to the crossing of the four-point function of ϕ and its descen-

dants. Firstly, in the direct channel, since the five-point function factorizes into a product

of 2 and 3-pt functions, we can use the (45) OPE into the exchanged scalar operator ϕ,

which acts on the MFT 4-pt function of ϕ at points 1235. Secondly, in the cross channel the

(45) OPE reduces the five-point block into an action on the four-point block with external

ϕ at points 1523 and double-twist exchange. This shows the problem reduces to that of

the four-point function.

Nevertheless it is instructive to check this result explicitly using the lightcone blocks in

(2.16) to describe the cross-channel contributions. In this case J2 = ℓ = 0 and ∆2 = ∆ϕ.

Additionally for large spin J1 the dimension of the exchanged operator approaches the

double-twist value ∆1 = 2∆ϕ + J1. This significantly simplifies the expression (2.16) for

the blocks. In practice, it is useful to expand the integrand using the binomial theorem and

performing the ti integrals, which leads to a representation in terms of an infinite sum of

hypergeometric functions. In fact, the sum is dominated by the region u1 ∼ J−2
1 , similarly

to the four-point case. This allows one to simplify the hypergeometric functions into Bessel

functions, so the large spin limit of the lightcone block reads

G23,45
[ϕϕ]0,J1ϕ

(ui) ≈
∞∑
n=0

J
n+ 1

2
1 Γ

(
∆ϕ+1

2

)
Γ
(
2n+∆ϕ

2

)
u

∆ϕ+n
2

1 u
∆ϕ

2 (1− u3)
nu

∆ϕ
2

4 Kn

(
2J1

√
u1
)

21−3∆ϕ−J1πΓ(n+ 1)Γ
(
n+∆ϕ

) .

(2.37)

Imposing the well-known large spin asymptotics of the scalar/scalar/double-twist OPE

coefficients (2.28), one can do the sum over J1 by approximating it as an integral. This
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reproduces the correct power of u1 at fixed n. The correct power of u3 is then recovered

by doing the infinite sum over n.

We remark that one can then consider the related contribution where we swap the ex-

changed operators in the cross channel, meaning we have On1 = ϕ and On2 = [ϕϕ]0,J2 . This

obviously corresponds to a factorized correlator in a different channel which is subleading

in the lightcone limit here considered.

2.3.1.2 Identity in the (34) OPE

On the other hand, when we exchange the identity in the (34) OPE, the direct-channel

contribution is

Cϕϕϕ u
∆ϕ
2

1 . (2.38)

Thus, since the leading powers of u2 and u4 in the cross-channel expression (2.33) are the

same, the operators that are exchanged in the cross channel will both have the double-twist

value 2∆ϕ. This allows us to probe the double-twist/double-twist/scalar OPE coefficient

on the cross channel

P[ϕϕ]0,J1 [ϕϕ]0,J2ℓ
= Cϕϕ[ϕϕ]0,J1

Cϕϕ[ϕϕ]0,J2
C

(ℓ)
ϕ[ϕϕ]0,J1 [ϕϕ]0,J2

. (2.39)

It is important to notice that the double-twist/double-twist/scalar OPE coefficient depends

on the additional quantum number ℓ, which encodes the tensor structure associated to spin-

spin-scalar three-point functions.

Since the scalar/scalar/double-twist coefficients are fixed from the four-point analysis,

matching to the direct channel we immediately discover the remarkable non-perturbative

relation

C
(ℓ)
ϕ[ϕϕ]0,J1 [ϕϕ]0,J2

∝ Cϕϕϕ , (2.40)

which would be expected in a perturbative theory. With a more careful analysis, we will

now fix the large spin asymptotics of this OPE coefficient, along with its ℓ dependence.

We need to reproduce the power law behaviour in the variables u1, u3 and u5, which

will emerge from the infinite sum over J1, J2 and ℓ in the cross channel. More specifically,

we consider the limit J1, J2 → ∞ with u1J
2
1 and u5J

2
2 fixed. It is possible to approximate

the lightcone block in this regime by approximating the integrand in (2.16), so that one
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finds integral representations of two Bessel functions,4

G23,45
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ

(ui) ≈
24∆ϕ+J1+J2

π
J
1/2
1 J

1/2
2 u

∆ϕ

2 u
∆ϕ

4 (1− u3)
ℓ

u
1
4
(3∆ϕ+2ℓ)

1 u
1
4
(∆ϕ+2ℓ)

5 K
ℓ+

∆ϕ
2

(
2J1u

1/2
1

)
K

ℓ+
∆ϕ
2

(
2J2u

1/2
5

)
. (2.41)

It is not hard to see that for consistency with the u3 → 0 limit the power law behavior in

u1, u5 has to be reproduced term by term in the sum over ℓ. This leads to the ansatz

P[ϕϕ]0,J1 [ϕϕ]0,J2ℓ
≈ Cϕϕϕ bℓ 2

−J1−J2J
ℓ+3(∆ϕ−1)/2
1 J

ℓ+3(∆ϕ−1)/2
2 , (2.42)

which, upon performing the integrals over J1 and J2, reproduces the power law behavior

in u1 and u5. Since ℓ ∈ {0, . . . ,min(J1, J2)}, this leaves us with an infinite sum over ℓ to

perform, which will recover the power law behavior in u3. In particular, we need to zoom

in on the ℓ→ ∞ region, with u3 approaching zero such that u3ℓ is kept fixed. In this limit,

we can use the approximation (1− u3)
ℓ ≈ e−u3ℓ. Then, we can take the asymptotic large

ℓ behaviour of the coefficient bℓ to be 5

bℓ ≈
∆ϕΓ

(
1+∆ϕ

2

)
23∆ϕ−3

√
π Γ(∆ϕ)2Γ

(
1 +

∆ϕ

2

) ℓ−2ℓe2ℓℓ−∆ϕ . (2.43)

We can then approximate the sum over ℓ by an integral, which gives the correct power law

behaviour in u3 and finally reproduces the identity contribution in the direct channel.

Both leading terms with an identity exchange are understood as a five-point function

which factorizes into a product of a two- and three-point functions. A simple example of

CFTs expected to present this behaviour are holographic theories with cubic couplings.

We can draw bulk Witten diagrams and look at their unitarity cuts to infer the exchanged

operators in the corresponding channel. This is presented in figure 2.3. Clearly, this picture

is consistent with the results obtained from the lightcone limit analysis.

4This procedure deserves a word of caution. Strictly speaking we should first take the limit of u1, u3 → 0,
keeping large spin contributions, and only then take u2, u4 → 0. In practice, since we use the lightcone block
expansion (2.16) in the cross channel, we are swapping the order of limits. This is justified a posteriori since
the asymptotics of OPE coefficients at large spin that we obtain match the examples studied in section 2.4.

5The same result could be obtained by explicitly performing the sum over ℓ assuming bℓ ∝ 1

ℓ!Γ(ℓ+∆ϕ)
.

However, this cannot be used to determine the form of the coefficients at finite ℓ since the leading singularity
in u3 → 0 only determines the asymptotic behaviour at ℓ → ∞. Remarkably this turns out to be the exact
form of the coefficients in the disconnected correlator in section 2.4.2.1. A similar situation also occurs for
the six-point case.
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1
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Figure 2.3: Witten diagrams corresponding to the leading order five-point function in
a large N theory. The black and red dashed lines correspond to the unitarity cuts in the
direct and crossed OPE channels, allowing us to infer what the exchanged operators are.

2.3.1.3 Two non-trivial exchanges

The case of two non-trivial exchanges is more subtle. When the exchanged operators are

identical to the external ones, the lightcone limit of the block in the channel (12)(34) is

given by

C3
ϕϕϕ(u1u3u5)

∆ϕ
2
Γ(∆ϕ)

2

Γ(
∆ϕ

2 )4

(
ζ2 + lnu4 lnu5 + 2S∆ϕ−2

2

(lnu4 + lnu5) + 4S2
∆ϕ−2

2

− S
(2)
∆ϕ−2

2

+ . . .

)
,

(2.44)

where S
(n)
α denotes the degree-n harmonic number and the dots represent subleading terms

in u2, u4 and u5. The powers of u2 and u4 indicate that the exchanged operators in the

cross channel should once again be of double-twist type. However, since the powers of u5

are the same for both block expansions in the small u5 limit, one cannot employ the usual

argument which ensures that operators with large spin J2 dominate the cross channel.

This means that the information in this OPE is not universal. The leading power of u is

a constant, which can be achieved block by block in the cross channel, and therefore the

usual argument for the necessity of large spin double-twist operators is not valid.

One can instead study the case where the two exchanged scalar operators Ok∗ are

different from the external one, but identical among themselves.

G12,34
k∗k∗

(ui) ≈ a∆∗∆ϕ
(u1u3u5)

∆∗/2u
∆∗−∆ϕ

2
4 , (2.45)

with

a∆∗∆ϕ
=
π4∆

∗−1Γ
(
∆∗+1

2

)
2 csc2

(
π(

∆∗−∆ϕ

2 )
)

Γ
(∆∗−∆ϕ

2 + 1
)2

Γ
(∆ϕ

2

)2 . (2.46)

When ∆∗ < ∆ϕ this is the leading term. On the other hand, for ∆∗ ≥ ∆ϕ the leading
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powers are instead integers and lead to the same limitation discussed above. Nevertheless,

the term (2.45) is still present and can also be bootstrapped.

Notably, the power of u4 will change the nature of the exchanged operators in the (45)

OPE. In particular, we now have that the operator must have dimension asymptoting to

∆∗+∆ϕ+J2. Thus we prove the existence of the double-twist operators [ϕO∗]0,J2 built out

of the external ϕ and the internal O∗. We see an asymmetry between the exchanges in the

cross channel, since the operators in the (23) channel are still the double-twist composites

[ϕϕ]0,J1 . This is similar to the case of identity exchange in the (12) channel which also

leads to an asymmetry in the cross-channel exchanges. In particular, swapping the cross-

channel exchanges in the (23) and (45) OPEs leads to a subleading contribution in the

direct channel.

The calculation in the cross channel is similar to that of the previous subsection. Both

families of double-twist operators must be in the large spin regime, which gives the following

approximation for the cross-channel conformal block

G23,45
[ϕϕ]0,J1 [ϕO∗]0,J2ℓ

(ui) ≈
23∆ϕ+∆∗+J1+J2

π
J
1/2
1 J

1/2
2 u

∆ϕ

2 u
(∆ϕ+∆∗)/2
4 (1− u3)

ℓ

u
1
4
(2∆ϕ+∆∗+2ℓ)

1 u
1
4
(∆ϕ+2ℓ)

5 Kℓ+∆∗
2

(
2J1u

1/2
1

)
K

ℓ+
∆ϕ
2

(
2J2u

1/2
5

)
. (2.47)

Once again the sum over large spins J1 and J2 must be done for fixed ℓ and we then sum

over ℓ. The correct asymptotics for the OPE coefficients in this case is given by

P[ϕϕ]0,J1 [ϕO∗]0,J2ℓ
≈ q∆∗∆ϕ

2−J1−J2J
4∆ϕ−3+2ℓ−∆∗

2
1 J

3∆ϕ−3+2ℓ−2∆∗
2

2 ℓ−2ℓe2ℓℓ−∆ϕ , (2.48)

where

q∆∗∆ϕ
= PO∗O∗a∆∗,∆ϕ

25−3∆ϕ−∆∗

Γ(
∆ϕ−∆∗

2 )Γ(∆ϕ − ∆∗
2 )2

. (2.49)

The factor of PO∗O∗ = C2
ϕϕO∗

CϕO∗O∗ is needed to match the direct channel.

2.3.1.4 Stress-tensor exchange

In a general CFT, the leading twist operators are usually scalars of scaling dimension less

than d−2 or the stress tensor which has dimension d and spin 2, and therefore twist d−2.

A spin 1 conserved current also has twist d − 2 but, since we are studying the OPE of

identical scalars, only even spin operators can be exchanged. Thus, we are only left to

consider the case of the stress tensor6.

6Higher spin conserved currents also have twist d−2 but they only exist in free theories and we therefore
ignore them.
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In this case, the direct-channel contribution has three terms associated to the tensor

structures with ℓ = 0, 1, 2. In the cyclic lightcone limit, it turns out that the powerlaw

behavior in u4 → 0 is suppressed by ℓ and therefore the tensor structure with ℓ = 0

dominates. The block behaves very similarly to the scalar case, with the role of ∆∗ being

played by the twist of the stress tensor d− 2, up to some extra prefactors. Concretely, the

direct-channel block contains the following term in the lightcone expansion

GTT ℓ=0 ≈ aT,∆ϕ
(u1u3u5)

(d−2)/2u
d−2−∆ϕ

2
4 , (2.50)

with

aT,∆ϕ
=
π4d−1Γ

(
d+3
2

)2
sec2

(
π
∆ϕ+3−d

2

)
Γ2
(
∆ϕ+4

2

)
Γ2
(
d−∆ϕ

2

) . (2.51)

In the block expansion this term will come multiplied by the product of OPE coefficients

PTT ℓ=0. Once again there are terms where the powers of u4 and u5 are constant and

cannot be reproduced by large spin double twist families in the cross channel. The term in

(2.50) is the leading one for d− 2−∆ϕ < 0, but it remains in the expansion otherwise, so

it can be bootstrapped. The physics in the cross channel is very similar to the scalar case

as well. The small u2 and u4 behavior is matched by operators of the form [ϕϕ]0,J1 in the

(23) OPE and [ϕT ]0,J2 in the (45) OPE, with twists asymptoting to 2∆ϕ and d− 2 + ∆ϕ

at large J1 and J2, respectively. The large spin limit is needed to obtain the right power

law behavior in u1 and u5, and finally the large ℓ limit reproduces the small u3 behavior.

The cross-channel blocks and OPE coefficients are the same as in the scalar case with the

replacement ∆∗ → d− 2, up to the different prefactor which is fixed by the direct-channel

block. More concretely, the cross-channel block in the large spin limit becomes

G23,45
[ϕϕ]0,J1 [ϕT ]0,J2ℓ

≈ 23∆ϕ+d−2+J1+J2

π
J
1/2
1 J

1/2
2 u

∆ϕ

2 u
(∆ϕ+d−2)/2
4 (1− u3)

ℓ

u
1
4
(2∆ϕ+d−2+2ℓ)

1 u
1
4
(∆ϕ+2ℓ)

5 Kℓ+ d−2
2

(
2J1u

1/2
1

)
K

ℓ+
∆ϕ
2

(
2J2u

1/2
5

)
, (2.52)

and the OPE coefficients

P[ϕϕ]0,J1 [ϕT ]0,J2ℓ
≈ qT∆ϕ

2−J1−J2J
1
2
(−1+2ℓ−d+4∆ϕ)

1 J
1
2
(1+2ℓ−2d+3∆ϕ)

2 ℓ−2ℓe2ℓℓ−∆ϕ , (2.53)

where

qT∆ϕ
= PTTℓ=0 aT∆ϕ

27−3∆ϕ−d

Γ
(
∆ϕ−d+2

2

)
Γ
(
∆ϕ − d−2

2

)2 . (2.54)



2. Lightcone Bootstrap at higher points 47

2.3.2 Six-point function – snowflake

The six-point function is a richer object as it admits two very different OPE decomposi-

tions that are usually denoted by snowflake and comb. One distinction between them is

that in the snowflake decomposition we do three OPEs in nonconsecutive pairs of points

and therefore all OPEs involve two external scalars. Therefore there will be an OPE coef-

ficient between three symmetric traceless operators of arbitrary spin, as can be seen in the

top-right of figure 2.1. On the other hand, in the comb channel the OPE involves consecu-

tive pairs of operators. Thus, after performing the OPE between two external scalars, the

resulting symmetric traceless operator will be fused with another external scalar and can

produce a mixed symmetry tensor operator, which in the mean field theory limit should

correspond to a triple-twist operator. The bottom part of figure 2.1 illustrates this struc-

ture. In this chapter we use the lightcone OPE between scalars (2.6) and therefore limit

our analysis to the snowflake channel, whose bootstrap equation we depict in figure 2.4.

=
1

2
3

4

56

1

6 5

4

32

Figure 2.4: A schematic form of the six-point snowflake bootstrap equation. The left
hand side represents the (12)(34)(56) direct-channel expansion while the right hand side

represents the (23)(45)(61) cross channel.

We start by considering the block expansion in the direct (12)(34)(56) channel

⟨ϕ(x1) . . . ϕ(x6)⟩ =
1

(x212x
2
34x

2
56)

∆ϕ

∑
ki,ℓi

PkiℓiG
12,34,56
kiℓi

(ui, Ui) . (2.55)

and take the lightcone limits x212 → 0, x234 → 0, x256 → 0, which correspond to u1 → 0,

u3 → 0, u5 → 0. The leading contributions in this limit come from the exchange of three

identities, one identity and two leading twists or three leading twists. For now we take the
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leading twist to be a scalar, so that

⟨O(x1) . . .O(x6)⟩ ≈
1

(x212x
2
34x

2
56)

∆ϕ

[
PIIIGIII(ui, Ui) +

(
PIk∗k∗GIk∗k∗(ui, Ui) + perm

)
+ Pk∗k∗k∗Gk∗k∗k∗(ui, Ui)

]
=

=
1

(x212x
2
34x

2
56)

∆ϕ

[
1 +

(
C2
ϕϕk∗

(u1u3
U2

) τk∗
2
gk∗(u2/U1) + perm

)
(2.56)

+ C3
ϕϕk∗Ck∗k∗k∗(u1u3u5)

τk∗
2 gk∗k∗k∗(u2i, Ui)

]
,

where ∆∗ is the dimension of the leading twist operator Ok∗ and the functions gk∗ and

gk∗k∗k∗ are defined from the four- and six-point lightcone blocks in (2.11) and (2.22), re-

spectively. Then we take the three distances x223, x
2
45 and x216 to zero, or in cross-ratios

u2i → 0, which will be appropriate to study the OPE decomposition in the cross channel

(23)(45)(16) in the lightcone limit. The four-point conformal block gk∗ simplifies consider-

ably in this limit

gk∗(ui/Uj) ≈ −Γ(∆∗ + J∗)

Γ2(∆∗+J∗
2 )

(
S∆∗+J∗−2

2
+ ln

(
ui/Uj

))
+ . . . , (2.57)

where the . . . represent subleading terms in ui/Uj . However, after taking u2i → 0 the

function gk∗k∗k∗(u2i, Ui) of the six-point conformal lightcone block is still a nontrivial func-

tion of the cross-ratios Ui, so we take one further limit x224, x
2
26, x

2
46 → 0, or equivalently

Ui → 0, which we refer to as the origin limit [133]. Let us remark that we do this just to

make the problem technically simpler. With this extra limit one gets

gk∗k∗k∗(u2i, Ui) ≈ −Γ3(∆∗)

Γ6(∆∗
2 )

[∏
i lnUi

3
+ 2S∆∗−2

2
lnU1 lnU2 +

(
4S2

∆∗−2
2

− S
(2)
∆∗−2

2

+ ζ2

)
lnU1

+
2

3
S∆∗−2

2

(
4S2

∆∗−2
2

− 3S
(2)
∆∗−2

2

+ 3ζ2

)
+ . . .

]
+ perm , (2.58)

where the . . . represent subleading terms. We give the derivation os this result in appendix

2.A. Notice that up to this order the correlator is polynomial of degree three in the loga-

rithm of the cross-ratios, which contrasts with the behavior in a planar gauge theory[64].

2.3.2.1 Exchange of three identities

Given the crossing equation

∑
ki,ℓi

PkiℓiG
12,34,56
kiℓi

(ui, Ui) =
3∏

i=1

(
u2i−1

u2i

)∆ϕ ∑
ki,ℓi

PkiℓiG
23,45,16
kiℓi

(ui, Ui) , (2.59)
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the limit taken above should be compatible with the cross-channel decompositions in the

channel (23)(45)(16). As we just described, the left hand side of this equation starts with

a one and then has subleading corrections in the cross-ratios uodd → 0, while on the right

hand side there is an aparent power law divergence in ueven in the prefactor. This implies

that the cross-channel decomposition involves operators with dimension approximately

equal to 2∆ϕ + J that cancel the prefactor u
∆ϕ

2i in the denominator. Each individual

conformal block in the (23)(45)(16) channel is regular in the cross-ratios uodd as they

approach zero, which is not enough to cancel the prefactor u
∆ϕ

2i−1 and recover the identity

contribution of the direct channel.7 The solution is similar to that of the four- and five-

point correlators in the sense that the identity is recovered from the infinite sum of double-

twist operators with large spin. This can also be intuitively understood by looking at the

”unitarity cuts” of a disconnected Witten diagram as in figure 2.5.

1 2

3

45

6

Figure 2.5: Witten diagrams corresponding to the leading order six-point function in
a large N theory. The black and red dashed lines correspond to the unitarity cuts in
the direct and crossed OPE channels, allowing us to read-off the exchanged identity and

double-twist operators, respectively.

We will now choose the kinematics where both uodd and Ui are sent to zero with the

same rate J−2, with ℓi fixed. This is not the choice we did in the direct channel above, but

we will recover its kinematics by sending uodd/Ui → 0 afterwards. The conformal block

simplifies considerably in this limit and is given by a product of three Bessel functions

G23,45,16
kiℓi

≈
3∏

i=1

2Ji+τiJ
1
2
i

π
1
2

u
τi
2
2i χ

ℓi
i K 2ℓi−1−2ℓi+1+τi+1−τi−1

2

(
2Ji
√
U2i−1

)
U

2ℓi−1+2ℓi+1+τi−1−τi+1
2

2i−1 ,

(2.60)

7This behavior is similar to that of scalar exchange in the direct channel (2.58) and is given in appendix
2.A for general spin.
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where we can see that the parameter ℓi controls the cross-ratio χi = 1− u2i+3/U2i−1. The

direct-channel limit that we took above can be recovered in the cross channel by studying

the limit where χi approaches 1, which in turn is controlled by the large ℓi region.
8 We

can now use (2.60) in the crossing equation (2.59) to reproduce the identity exchange of

the direct channel

1 ≈ 1

8

 3∏
n=1

(
u2n−1

u2n

)∆ϕ
∫
dJndℓn

PkiℓiG23,45,16
kiℓi

(ui, Ui) , (2.61)

where we transformed the sums in ki, ℓi in the crossing equation to integrals in Jn, ℓn

(including a factor of 1/2 because we are only summing over even spins). We can assume

that the product of OPE coefficients Pkiℓi has the large Ji power law behavior

Pkiℓi ≈ C
3∏

n=1

2−JnJan
n fn(ℓn) . (2.62)

Integrating over Ji we obtain

1 ≈
3∏

i=1

∏
ϵ=±

∫
dℓif(ℓi)

22∆ϕu
∆ϕ

2i−1χ
ℓi
i

π
1
2

Γ

(
3 + 2ai + 2ϵ(ℓi+1 − ℓi−1)

4

)
U

2(ℓi−1+ℓi+1)−2ai−3

4
2i−1 ,

(2.63)

where we used that τi = 2∆ϕ to leading order in large Ji. Then we consider the limit where

uodd/Ui → 0. Remember that we need a power law divergence in uodd to kill the prefactor

in (2.61) and, as expected, this is generated by the tail of the sum in ℓi. In this regime

we can replace χℓi
i by exp(−ℓiu2i−3/U2i−3), where we are keeping fixed the argument of

the exponential in the limit. The powers of Ui cannot depend on ℓi otherwise this would

give rise to a non-trivial in behavior Ui, which is not consistent with the left-hand side of

(2.61), so we conclude that

ai = r +

∑
j

ℓj

− ℓi , (2.64)

with r a constant that does not depend on ℓi. We can, at this point, take the large ℓi

behavior of the Γ functions in (2.63). The ℓi behavior of the expression suggests that for

8We stress that we made the choice of considering the limit Ui → 0 to simplify the expression for the
block. Alternatively, one could mimic the approach of [133] and keep these cross-ratios finite. We emphasize
however that our choice of taking the origin limit respects an order: Ui → 0 only after ui → 0. The latter
limit is dominated by large Ji and large ℓi, whereas the subsequent Ui → 0 imposes Ji ≫ ℓi ≫ 1.
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large ℓi the function f(ℓi) has the following form

fi(ℓi) ≈ e2ℓiℓg−2ℓi
i , (2.65)

with g and c constants. Putting everything together and after doing the ℓi integration we

obtain

1 ≈ C 26∆ϕΓ2

(
3

2
+ g + r

) 3∏
i=1

u
∆ϕ− 3

2
−g−r

2i−1 U
3
4
+g+ r

2
i , (2.66)

which fixes both r, g and c to be

r =
4∆ϕ − 3

2
, g = −∆ϕ , C =

1

26∆ϕΓ3
(
∆ϕ

) . (2.67)

This fixes the asymptotic form of Pkiℓi proposed in (2.62).

2.3.2.2 Exchange of one identity and two leading twist operators

So far we have only reproduced the contribution of the identity in the direct-channel OPE

decomposition (2.56). As we have seen subleading contributions depend non trivially on

the cross-ratios, even in the limit where all ui approach zero, cf. (2.57) and (2.58). One key

difference is that we will have to generate logs of the cross-ratios from the cross-channel

OPE decomposition. Some of these logs are generated by allowing a correction to the

dimension of the double-twist operators of the form

τi = 2∆ϕ +
k

Ja
i

. (2.68)

The conformal block, in the large spin limit, depends on the twist of the exchanged operator

in an explicit way as can be seen in (2.60). It is easy to perturb the previous computation,

done to reproduce the contribution of the identity with the cross-channel double-twist

exchange, and include the correction to the dimension of these operators. First we expand

(2.60) at large Ji and keep the first subleading term in the series. Then, performing the

integrals in Ji and ℓi we obtain the following correction to the contribution of the leading

twist operators exchange

k
Γ2
(
2∆ϕ−τ∗

2

)
Γ2(∆ϕ)

∑
j

[
ln

u2ju2j+3U
1
2
2j+1

(u2j−1u2j+1U3
2j−1)

1
2

− (S∆ϕ
− S∆ 2ϕ−a

2

)

](
u2j−1u2j+1

U2j+1

)a
2

. (2.69)

This term has the correct power law behavior coming from the direct-channel contribution

of the identity and two leading twist operators, cf. (2.56) or (2.24). This fixes a = τ∗, in
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agreement with the four-point function calculation. Moreover, it contains some of the logs

coming from the four-point block function gk∗ , but it also has some unexpected log terms.

It is precisely these terms that will allow us to fix the correction to the OPE coefficient

between three double-twist operators

Pkiℓi = PMFT
kiℓi

1 +
∑
j

∑
k

(
cj,k ln Jk + bj,k ln ℓk

)
+ vj

Jτ∗
j

+ . . .

 , (2.70)

where ci,j , bi,j and vi are coefficients that we will fix. Upon inserting this in the cross-

channel conformal block decomposition, and integrating over Ji and ℓi, we obtain

∑
j

[
ln

∏
i

u
−bj,i+1−

cj,i+cj,i−1
2

2i−1 U
bj,i+1+

cj,i−1
2

2i−1

− 2vj
k

−
(
S∆ϕ

− S∆ 2ϕ−τ∗
2

)](
u2j−1u2j+1

Ũj+1

) τ∗
2

.

(2.71)

The correct log behavior imposes that

bi,i = 0, bi,i+1 = bi,i+2 =
k

2
, ci,i = 0, ci,i+1 = ci,i+2 = −k

2
, v1 = kS τ+2J

2

k = −
C2
ϕϕτ∗Γ

2(∆ϕ)Γ(2J + τ∗)
22J∗−1Γ2(

2∆ϕ−τ∗
2 )Γ2(2J+τ∗

2 )
. (2.72)

Thus, we see that we can reproduce exchanges in the direct channel that include at least

one identity by taking into account the contribution of large spin double-twist operators

in the cross channel. Moreover this procedure fixes the dimension and OPE coefficients

of these operators at large spin. The formula for the OPE coefficients is one of the main

results of this chapter.

2.3.2.3 Exchange of three leading twist operators

Before analysing the contribution of the exchange of three leading twist operators in the

direct channel, let us see what is the effect of dressing the large spin double-twist contribu-

tion in the cross channel by a term of the form
∏3

i=1 J
qi
i ℓ

ri
i . This can be used, for example,

to check what is the cross-ratio dependence of the corrections to the double-twist exchange

in the cross channel at large spin

3∏
i=1

(
u2i−1

u2i

)∆ϕ
∫
dJidℓiP

tree
Ji,ℓi

[ 3∏
j=1

J
qj
j ℓ

rj
i

]
G23,45,16

kiℓi
(ui, Ui) ∝

3∏
j=1

U
qj−1+2rj+1

2
2j−1

u
qj+qj−1

2
+rj+1

2j−1

. (2.73)
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It follows that multiple corrections to the dimension of operators exchanged in the OPEs

(23)(45) and (23)(45)(16), where ri = 0 and two or three nonvanishing exponents qi equal

−τ∗, have, respectively, terms of the form(
u1u5
U2U3

) τ∗
2

uτ∗3

[
lnu2 lnu4 + . . .

]
,

(u1u3u5)
τ∗

(U1U2U3)
τ∗
2

[
lnu2 lnu4 lnu6 + . . .

]
, (2.74)

where the . . . stand for the contribution of log terms in other cross-ratios that are not

important for the present discussion. One important feature of these two results is that

at least one power of uodd is given by τ∗. This can be thought as coming from the direct-

channel contribution of a family of operators whose twist asymptotes to 2τ∗. Another

curious feature is that there is necessarily a dependence on lnueven that cannot be generated

by the contribution of a single conformal block, as we can see from (2.58). This suggests

that this term comes from the contribution in the direct channel of an infinite family of

operators with twist 2τ∗. This behavior was already observed in [78] for the case of the

four-point function from the existence of log2 v terms.

Now we are ready to reproduce the last term in (2.56) from the cross-channel decompo-

sition. Since the direct-channel contribution (2.58) does not have any lnueven we conclude

from the analysis of the previous paragraph that this term does not come from the correc-

tion of the dimension of double-twist operators. Therefore it must come solely from the

correction to the OPE coefficient, which we propose to have the form

PJi,ℓi = P tree
Ji,ℓi

1 +
∑
j

∑
k

(
cj,k ln Jk + bj,k ln ℓk

)
+ vj

Jτ∗
j

+
p(ln Jj , ln ℓj)∏

j J
τ∗
j ℓ

− τ∗
2

j

+ . . .

 . (2.75)

where the ci,j , bi,j and vi were already fixed in the previous section and p(ln Jj , ln ℓj) is a

polynomial function of the third degree9

p(ln Jj , ln ℓj) = c1 − c2 ln
J2
3

ℓ1ℓ2
ln

J2
2

ℓ1ℓ3
ln

J2
1

ℓ2ℓ3
+ c3 ln

J1J2J3
ℓ1ℓ2ℓ3

+ 2c4

[
ln J1 ln

(
J2J3
ℓ1

)2 1

ℓ2ℓ3

+ ln J2 ln
J2
3

ℓ22ℓ1ℓ3
− ln J3 ln ℓ

2
3ℓ2ℓ1 +

3(ln ℓ1 ln ℓ2ℓ3 + ln ℓ2 ln ℓ3)

2
+

ln2 ℓ1 + ln2 ℓ2 + ln2 ℓ3
2

]
.

(2.76)

9This ansatz is justified because the scalar conformal block is a polynomial of degree 3 in log of cross-
ratios
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This polynomial generates the terms

(
∏

i ui)
τ∗
2 Γ3

(
2∆ϕ−τ∗

2

)
Γ3(∆ϕ)

[
8c1 + c2 lnU1 lnU2 lnU3 − 4c3 lnU1U2U3 + 2c4

∑
i<j

lnUi lnUj

]
,

(2.77)

upon integration in Ji and ℓi. A simple comparison with (2.58) fixes the values of ci to be

c2 = Pk∗k∗k∗

Γ(∆∗)Γ
3(∆ϕ)

Γ2(∆∗
2 )Γ3

(
2∆ϕ−∆∗

2

) , c3 =
1

4

(
S
(2)
∆∗−2

2

− 4S2
∆∗−2

2

− ζ2

)
c2 ,

c1 =
1

4
S∆∗−2

2

(
4S2

∆∗−2
2

− 3S
(2)
∆∗−2

2

+ 3ζ2

)
c2 , c4 = S∆∗−2

2
c2 . (2.78)

for a scalar leading twist operator and

c1 = Γ3(∆ϕ)
P000 B(0)

000 + 3P001 B(0)
001 + 3P002B

(0)
002

Γ3(
2∆ϕ−τ∗

2 )
, c2 = Γ3(∆ϕ)

P000 B(3)
000

Γ3(
2∆ϕ−τ∗

2 )
,

c3 = 2Γ3(∆ϕ)
P000 B(1)

000 + P001 B(1)
001 + P002B

(1)
002

Γ3(
2∆ϕ−τ∗

2 )
, c4 = Γ3(∆ϕ)

P000 B(2)
000

Γ3(
2∆ϕ−τ∗

2 )
(2.79)

for the exchange a stress tensor, where we used the block for stress-tensor exchange derived

in appendix 2.A.2 and wrote Pℓ1ℓ2ℓ3 ≡ PTTTℓ1ℓ2ℓ3 . We emphasize the absence of the OPE

coefficients associated with the structures where two or three of the ℓi’s are equal to 1. This

happens since such structures are subleading in the Ui → 0 limit. The constants B(m)
ℓ1ℓ2ℓ3

are

the coefficients multiplying the degree-m polynomial of lnUi in the block associated to the

tensor structure labeled by ℓ1, ℓ2 and ℓ3. These coefficients can be read off from equation

(2.114) in appendix 2.A.2. We remark that, as is well known, the OPE coefficients of the

stress tensor are not all independent and in fact satisfy

P011 = −2
8(P000 + P001) + d(d+ 2)P002

(d+ 4)(d− 2)
, (2.80)

P111 =
32(2 + d)P000 + 8d(6 + d)P001 − 4d(d2 − 20)P002

(d− 2)2(d+ 2)(d+ 4)
,

since its correlation functions satisfy conservation equations [32]. This means that the

different OPE coefficients associated to the ℓi tensor structures are related to a set of three

independent numbers.

We end this section with a speculative holographic interpretation of our bootstrap

results which can be skipped by the more orthodox readers. In a four-point function,

radial quantization allows us to visualize a weak gravitational process in AdS where two

particles with large relative angular momentum come from the infinite past, interact, and
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continue towards the infinite future. This picture can be generalized for the six-point

function in the comb channel, which instead corresponds to a three-body gravitational

interaction. However, in the snowflake OPE that we analyzed, one cannot assign a single

time coordinate which leads to the cylinder picture. Instead, this channel corresponds to a

gravitational process where the asymptotic states are defined with respect to distinct time

coordinates10, where the underlying geometry is instead a ”pair of pants”. The physical

process is more easily understood by inspecting figure 2.6.

Figure 2.6: Schematic representation of the gravitational processes dual to the six-point
comb channel on the left and to the six-point snowflake channel on the right. In the comb
case, three particles come from the infinite past, interact weakly and continue towards
future infinity. In the snowflake case, the blue and red particles come from the past
infinity of two different time coordinates, say t1 and t2, respectively. The blue one travels
to future infinity along t1 and the red one along t2. A third, green particle comes from
past infinity in the t1 direction and moves towards past infinity in t2. The process can

also be interpreted in other similar ways by permuting the role of the OPEs.

2.4 Examples

Consistency conditions of the bootstrap equations for higher-point functions impose con-

straints on the behaviour of three point functions of spinning operators as we have seen in

the previous sections. The goal of this section is to extract OPE coefficients of spinning

operators by performing an explicit conformal block decomposition of the generalized free

field theory correlator, as well as theories with cubic couplings, and confirm some of our

previous results.

10We thank Pedro Vieira for discussions on this point.
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2.4.1 Generalized free theory

The six-point function of operators ϕ in a generalized free field theory is given by

⟨
6∏

i=1

ϕ(xi)⟩MFT =
∑
perm

⟨ϕ(x1)ϕ(x2)⟩⟨ϕ(x3)ϕ(x4)⟩⟨ϕ(x5)ϕ(x6)⟩ =
∑
perm

1

(x212x
2
34x

2
56)

∆ϕ
,

(2.81)

where we should sum over all permutations of operator positions. We can extract a pref-

actor (x212x
2
34x

2
56)

∆ϕ to write everything just in terms of cross-ratios,

(x212x
2
34x

2
56)

∆ϕ⟨
6∏

i=1

ϕ(xi)⟩MFT = 1 + (u1u3u5)
∆ϕ

1 + (u2u4u6)
−∆ϕ +

3∑
i=1

U
−∆ϕ

i


+

3∑
i=1

[(
u2i+1u2i+3

U2i−1

)∆ϕ

+

(
u2i−1u2i+1u2i+3

u2i+2U2i−1

)∆ϕ

+

(
u2i+1u2i+3U2i+1

u2i+2U2i−1

)∆ϕ
]
. (2.82)

The prefactor we have extracted is appropriate to analyze the OPE limit in the channel

(12)(34)(56). The first term in (2.82) corresponds to the exchange of three identity op-

erators and the others can contain one identity and two double-twist operators, or three

double-twist operators. A systematic analysis of the operators that are exchanged in the

OPE in these three channels can be done using the six-point conformal blocks [64] or the

Casimir differential operator together with the boundary condition of the block in the

lightcone limit [133]. We obtained for the OPE of three leading double-twist operators,

which can not be extracted from the four-point function of ϕ, the result

PJiℓi =
3∏

i=1

(
Ji + ℓi −

∑
j ℓj + 1

)
(
∑

j ℓj)−ℓi
(∆ϕ)Ji

2

(∆ϕ)Ji

2ℓi−1Ji! ℓi! (∆ϕ)ℓi

(
Ji+2∆ϕ−1

2

)
Ji
2

. (2.83)

By taking first the large Ji and then the large ℓi limit we recover the asymptotic behavior

(2.62) derived from the lightcone bootstrap in the previous section.

Note that for a free theory with ∆ϕ = (d − 2)/2 this is the full set of OPE data that

can be extracted from this correlator. In a generalized free theory there are subleading

double-twist operators ϕ□n∂Jϕ whose OPE coefficients could be extracted.

2.4.2 ϕ3 theory in d = 6− ϵ

We now consider turning on a cubic coupling which will allow us to further test our predic-

tions involving, for example, the five-point function which vanishes for mean field theory.
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The five-point function in ϕ3 theory is given by11

⟨
5∏

i=1

ϕ(xi)⟩ =
∑
perm

⟨ϕ(x1)ϕ(x2)⟩⟨ϕ(x3)ϕ(x4)ϕ(x5)⟩+ ⟨
5∏

i=1

ϕ(xi)⟩
∣∣∣
conn

. (2.84)

This correlation function only has odd powers of ϵ as can be seen by drawing a few Feynman

diagrams or from the strucutre of perturbation theory around the Z2 symmetric free theory.

The leading term is a factorized correlator given by a product of a two-point function and

a three-point function. The two-point function starts at the free theory order, but the

three-point functions starts at order ϵ, with a tree level contact diagram. The connected

contribution starts at order ϵ3 and coexists with corrections to the factorized correlator.

To leading order in the ϵ expansion the connected contribution is given by

⟨ϕ(x1) . . . ϕ(x5)⟩
∣∣∣
conn

=
∑
perm

(
C

(1)
ϕϕϕ

)3
x212x

2
34

∫
d6x0

x210x
2
20x

2
30x

2
40(x

2
50)

2
. (2.85)

This six-dimensional integral is proportional to a D-function D11112 which we analyze in

Appendix 2.B.

2.4.2.1 Disconnected contribution to the five-point function

Let us write the block decomposition as

⟨ϕ(x1) . . . ϕ(x5)⟩(1) =
x213

x412x
4
34x

2
15x

2
35

∑
k1,k2,ℓ

P
(1)
k1k2ℓ

G
(12)(34)
k1k2ℓ

(ui) , (2.86)

where the superscript (1) indicates the order in the ϵ expansion. We used that ∆ϕ = 2+O(ϵ)

and that Pk1k2ℓ starts at order ϵ. Our goal is to derive the spectrum and OPE coefficients of

the operators exchanged in the (12)(34) channel for the leading disconnected contribution

that is given by

⟨
5∏

i=1

ϕ(xi)⟩(1) =
C

(1)
ϕϕϕ x

2
13

x412x
4
34x

2
15x

2
35

u∆ϕ
2

1 +

(
u3u5
u4

)∆ϕ
2

+

(
u1u3
u2u24u5

)∆ϕ
2 [(

u1u
2
4

)∆ϕ
2 +

(
u3u

2
5

)∆ϕ
2 +

(
u2u

2
4u

2
5

)∆ϕ
2

(
u

∆ϕ
2

1 + u
∆ϕ
2

3

)]
+

(
u21u

2
3

u22u4

)∆ϕ
2
[
1 + (u2u4u5)

∆ϕ
2 + u

∆ϕ

2

(
u

∆ϕ
2

4 + u
∆ϕ
2

5

)] .

(2.87)

11This result can be obtained easily with the method of skeleton expansions as presented in [140]. It
would be interesting to do conformal block decomposition for five- and six-point correlators in ϕ3 and see
how the respective spinning OPE coefficients compare with the ones in N = 4 SYM [133].
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To obtain the block decomposition we use two independent methods which serves as a

cross-check of the calculation. Firstly we consider the Euclidean expansion of the five-

point block discussed in Appendix E of [57], and match it to the small u1 and u3 expansion

of the correlator. Using this we can obtain as many OPE coefficients as we desire. We can

then conjecture a general form for arbitrary J1, J2 and ℓ, which we subsequently test by

comparing to the explicit higher order results. Alternatively, we can use a generalization of

the technique of [141] to higher-point correlators [133]. We act with the Casimir differential

operators on the correlator in terms of its small u1, u3 expansion. Since the conformal blocks

are eigenfunctions of the Casimir operator, we can fix the OPE coefficients order by order

in u1, u3 by acting recursively with the differential operators. Again, we can do this to

arbitrarily high order, guess the general form of the coefficients and check it to even higher

order.

We find that depending on which pair of operators form the two-point function we have

different sets of operators being exchanged. When the two-point function is between points

x1 and x2, we have the identity in the (12) OPE and ϕ in the (34) OPE. The product of

OPE coefficients is simply given by P
(1)
Iϕ = C

(1)
ϕϕϕ. Similarly, when the two-point function is

between points x3 and x4, we have P
(1)
ϕI = C

(1)
ϕϕϕ. When the two-point function is between

points x1 and x5, or between x2 and x5, the result is less trivial since it leads to an expansion

with an infinite number of operators. Adding up these two contributions, we find in the

(12) OPE the double-twist operators [ϕϕ]0,J , with dimension 4+J and (even) spin J , along

with the operator ϕ in the (34) OPE. In this case we obtain P
(1)
[ϕϕ]0,Jϕ

= C
(1)
ϕϕϕC

2
ϕϕ[ϕϕ]0,J

,

where

C2
ϕϕ[ϕϕ]0,J

=
2J+1Γ(J + 2)2Γ(J + 3)

Γ(J + 1)Γ(2J + 3)
, (2.88)

which is the usual formula for the OPE coefficients of two scalar operators and a leading

double-twist operator, which holds in MFT with ∆ϕ = 2. We may also consider the

factorised correlator with generic ∆ϕ.
12 In this case we have several infinite towers of

subleading twist operators with dimension 2∆ϕ + 2n + J and spin J . We checked that

the OPE coefficients are again given by the four-point MFT result. This can be easily

understood by using the convergent OPE in the (34) channel, as discussed in section

2.3.1.1. A similar story holds when the two-point function is between points x3 and x5, or

between x4 and x5,

12For example studying ϕ3 theory in AdS with a massive scalar such that m2 = ∆ϕ(∆ϕ − d).
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Finally we can have a two-point function between x1 and x3, x1 and x4, x2 and x3, and

x2 and x4, which are the most non-trivial and interesting cases. Together they admit an

expansion in terms of blocks where the exchanged operators are [ϕϕ]0,J1 in the (12) OPE

and [ϕϕ]0,J2 in the (34) OPE. Thus we access OPE coefficients with one scalar and two

spinning operators, which have the extra quantum number ℓ. It is not hard to propose

the formula for the OPE coefficients in the case ℓ = 0, where the dependence in J1 and

J2 turns out to factorize due to the nature of the tensor structure of ℓ = 0. We find, for

generic ∆ϕ,

P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ=0 = π26−4∆ϕ

2∏
i=1

2−JiΓ
(
Ji +

∆ϕ

2

)
Γ
(
Ji + 2∆ϕ − 1

)
Γ (Ji + 1)Γ

(
∆ϕ

2

)
Γ
(
∆ϕ

)
Γ
(
Ji +∆ϕ − 1

2

) , (2.89)

which for the ∆ϕ = 2 case drastically simplifies to

P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ=0 =

π2−J1−J2−2Γ
(
J1 + 3

)
Γ
(
J2 + 3

)
Γ
(
J1 +

3
2

)
Γ
(
J2 +

3
2

) . (2.90)

For higher ℓ we find that the J1 and J2 dependence no longer factorizes. Instead, for ∆ϕ = 2

we find that the ratio P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ

/P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ=0 is given by a symmetric polynomial

in J1 and J2, with maximum degree 2ℓ in both variables combined and maximum degree

ℓ in each variable separately. For example, the first few polynomials are given by

Pℓ=1

Pℓ=0
=

1

2

(
3 + (J1 + J2) + J1J2

)
,

Pℓ=2

Pℓ=0
=

1

12

(
J2
2J

2
1 + J2J

2
1 + J2

2J1 + 7J2J1 + 6(J1 + J2) + 18
)
, (2.91)

Pℓ=3

Pℓ=0
=

1

144

(
J3
2J

3
1 − (J2J

3
1 + J3

2J1) + 12J2
2J

2
1

+ 12(J2J
2
1 + J2

2J1) + 85J2J1 + 72(J1 + J2) + 216
)
,

where here we used the shorthand notation Pℓ=i ≡ P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ=i. We can easily write

down these polynomials to a very high order.13 Unfortunately we did not find a closed

form at arbitrary ℓ. Nevertheless, we could perform the simpler task of finding the large

J1, J2 at fixed ℓ behavior, which in fact we were able to do for generic ∆ϕ. We found that

P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ

P
(1)
[ϕϕ]0,J1 [ϕϕ]0,J2ℓ=0

≈ (J1J2)
ℓ

Γ(ℓ+ 1)(∆ϕ)ℓ
, (2.92)

13We can also write down a few of them for general ∆ϕ. In this case there is also a simple additional
denominator.
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Combining this result with the large spin behavior of the ℓ = 0 OPE coefficient, and then

taking the large ℓ limit, we find a perfect match with formula (2.42) obtained using the

lightcone bootstrap!

2.4.2.2 Comments on the six-point function

The six-point function of a scalar ϕ in the ϵ expansion is given by

⟨
6∏

i=1

ϕ(xi)⟩ =
∑
perm

⟨ϕ(x1)ϕ(x2)⟩⟨ϕ(x3)ϕ(x4)⟩⟨ϕ(x5)ϕ(x6)⟩+
∑
perm

⟨ϕ(x1)ϕ(x2)⟩⟨
6∏

i=3

ϕ(xi)⟩
∣∣
conn

+
∑
perm

⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩⟨ϕ(x4)ϕ(x5)ϕ(x6)⟩+ ⟨
6∏

i=1

ϕ(xi)⟩
∣∣
conn

. (2.93)

The leading term is given by the mean field theory discussed above (with ∆ϕ = 2 +O(ϵ))

and is of order ϵ0. The partialy factorized terms (two-point function times four-point

function and three-point function times another three-point function) begin at order ϵ2.

These have subsequent corrections of order ϵ4, which is the order at which the connected

contributions begin. At leading order the latter is given by

⟨
6∏

i=1

ϕ(xi)⟩
∣∣
conn

= C4
ϕϕϕ

(∫
d6x0

x212x
2
34x

2
56

∏6
i=1 x

2
i0

+

∫
d6x7d

6x8
x212x

2
17x

2
27(x

2
37)

2x247x
2
48(x

2
58)

2(x268)
2x278

)
+perm,

where the first integral is the same as the six-point D-function D111111, which we analyze in

Appendix 2.B. It would be nice to systematically study all these corrections and to match

the asymptotics of the OPE coefficients with the lightcone bootstrap results presented in

section (2.3.2).

2.5 Discussion

We have shown how to use the lightcone bootstrap for five- and six-point functions to

determine the large spin behaviour of some new OPE coefficients. For the five-point func-

tion, in the case of a direct-channel identity exchange we determined the large J1, J2 and

ℓ behaviour of the OPE coefficient C
(ℓ)
ϕ[ϕϕ]0,J1 [ϕϕ]0,J2

in the cross channel. For the case of a

leading twist exchange in the direct channel, including the possibility of the stress tensor

exchange, we determined the asymptotic behaviour of C
(ℓ)
ϕ[ϕϕ]0,J1 [ϕO∗]0,J2

. For the six-point

function, in the case of a direct-channel identity exchange, we determined the large Ji and

ℓi behaviour of C
(ℓi)
[ϕϕ]0,J1 [ϕϕ]0,J2 [ϕϕ]0,J3

. Subleading corrections to this OPE coefficient due
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to the direct-channel leading twist exchange were also bootstrapped. An interesting inter-

pretation of these results emerges in connection to the origin limit Ui → 0. In this limit

we observed that the correlation function diverges at most as logU3
i in contrast with the

planar gauge theory case where the divergences can be an arbitrary power of logUi [64,

133]. The difference between these results follows from the existence or not of a twist gap

in a CFT correlator.

Our knowledge of higher-point conformal blocks is still in its infancy. In particular, our

work was limited to the leading order expansion of the blocks in the lightcone limit. In

our notation this corresponds to the leading term in the limit uodd → 0 that defines the

lightcone blocks. It would be very interesting to study subleading corrections to the blocks

in this limit, which would allow us to bootstrap OPE coefficients with subleading double-

twist operators of the form [ϕϕ]n,J and [ϕO∗]n,J . Additionally, to simplify our analysis,

we often took the origin limit Ui → 0. It would also be interesting to compute subleading

terms in this expansion, which can be done using only the available lightcone blocks.

In this chapter, we only considered the lightcone blocks in the snowflake channel. For

the six-point function, the comb-channel block would lead to a different expansion involving

the exchange of mixed symmetry operators, which should be of triple-twist type. Such

operators are expected to be degenerate at large spin, but this degeneracy should be lifted

at finite spin. It is a very interesting question whether the bootstrap would be able to

address this question in the large spin expansion. First results in this direction were

obtained in [66]. This could be a sign of analyticity in spin for each triple-twist family.

Analyticity is also an open question regarding the new OPE coefficients whose large spin

behaviour we determined here. In this case, since there is a unique operator at each spin and

analyticity has been proven in the simpler case of the OPE coefficient Cϕϕ[ϕϕ]0,J , we could

also expect analyticity to hold. However, the situation here is more subtle because in this

case we also have the label ℓi that parametrizes tensor structures and is basis dependent.

This is an interesting question since in the case of C
(ℓi)
[ϕϕ]0,J1 [ϕϕ]0,J2 [ϕϕ]0,J3

it would connect to

the OPE coefficients of the low spin contributions of this family of operators. In particular,

for an appropriate choice of the external scalar operators, this will connect to the OPE

coefficient between three energy-momentum tensors C
(ℓi)
TTT . In this case one would hope to

derive reliable predictions by including the contributions from the first terms in the large

J expansion.

Analyticity in spin is also important for Regge theory of higher-point functions which
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we will discuss in the next chapter. This is clear since Conformal Regge Theory relies

on the analytic continuation in spin [86]. In the four-point case the Lorentzian inversion

formula established such analyticity [79]. Thus, deriving a Lorentzian inversion formula

for higher-point functions would shed light in this problem and, most likely, sistematize

the calculations reported in this chapter.

A more ambitious problem is to set up the Euclidean numerical bootstrap for higher-

point functions, with obvious gains in the available CFT data. As it is well known, positivity

is a key ingredient in the numerical bootstrap of four-point functions. In the case of the six-

point function it is possible to choose reflection positive kinematics, however such positivity

is not guaranteed term by term in the block expansion. The situation looks even worse

in the case of the five-point function, since this correlator can not be seen as a positive

norm of a state. One possibility would be to consider a positive semi-definite matrix whose

matrix elements would involve the four-, five- and six-point functions. We hope to return

to these questions in the future.



Appendices for chapter 2

2.A Higher-point Conformal Blocks

2.A.1 Mellin amplitudes

The Mellin amplitude of a connected n-point function of scalar conformal correlators can

be defined as [142, 143]

〈
O1 (x1) ...On (xn)

〉
=

∫
[dγ]M

(
γij
) ∏
1≤i<j≤n

Γ
(
γij
) (
x2ij

)−γij
, (2.94)

where [dγ] denotes an integration with the constraints

n∑
i=1

γij = 0 , γij = γji , γii = −∆i . (2.95)

It is a well known fact by now that the OPE implies that the Mellin amplitude is a

meromorphic function of the Mellin variables γij . For each exchange of a primary operator

with dimension ∆ and spin J there is an infinite set of poles in the Melllin amplitude,

M ≈ Qm

γLR − (∆− J + 2m)
, m = 0, 1, 2, . . . , (2.96)

where

γLR = −

 k∑
i=1

pi

2

=
k∑

a=1

n∑
i=k+1

γai , (2.97)

with the pi defined such that pi ·pj = γij . The residue Qm is related to lower point functions

and conformal blocks [144]. The label m is associated to the contribution of higher twist

descendant operators.

In particular, the equivalence between (2.94) and conformal block decompositions (2.15)

and (2.21) imposes that the Mellin amplitude for the five and six-point correlator needs to
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have the following poles

M5 ≈
∑

l C12J1C34J2C
(l)
5J1J2

Fl(γ)(
γ12 − J1−∆J1

+2∆ϕ

2

)(
γ34 − J2−∆J2

+2∆ϕ

2

) , (2.98)

M6 ≈
∑

li
C12J1C34J2C56J3C

(li)
J1J2J3

Fl1l2l3(γ)(
γ12 − J1−∆J1

+2∆ϕ

2

)(
γ34 − J2−∆J2

+2∆ϕ

2

)(
γ56 − J3−∆J3

+2∆ϕ

2

) , (2.99)

where the functions Fl and Fl1l2l3 are computed by Mellin transforming the lightcone blocks

used in this chapter and CXY Z are OPE coefficients. In the following we will determine

the form of Fl and Fl1l2l3 for some specific cases14.

Let us start with the five-point lightcone conformal block (2.16) with identical scalar

operators Oi = ϕ, and write the numerator using the binomial formula

∑
i1,i2,j1,j2

(
J1 − l

i1

)(
i1
j1

)(
J2 − l

i2

)(
i2
j2

)∫
[dt1][dt2]t

i2−j2
1 (1− t1)

j2ti1−j1
2 (1− t2)

j1(
1− (1− t2)u4

)∆2−∆1+J1+J2−2l+∆ϕ
2

(2.100)

× u
∆1−J1

2
1 u

∆2−J2
2

3 (1− u2)
luj1+j2

2 ui15 u
i2
4(

1− (1− t1)(1− t2)(1− u2)
)∆1+∆2+J1+J2−∆ϕ

2
(
1− (1− t1)u5

)∆1−∆2+J1+J2−2l+∆ϕ
2

.

Next we introduce three Mellin variables s1, s2, s3 with respect to the cross-ratios u2, u4

and u5,∑
i1,i2,j1,j2

(
J1 − l

i1

)(
i1
j1

)(
J2 − l

i2

)(
i2
j2

)
u

∆1−J1
2

1 u
∆2−J2

2
3 (1− u2)

l

∫
ds1ds2ds3Γ(s1)Γ(s2)Γ(s3)

u−s1+j1+j2
2 u−s2+i2

4 u
−s3+i1+

∆ϕ
2

5

(
∆1 + J1 +∆2 + J2 −∆ϕ

2

)
−s1(

∆2 −∆1 − 2l + J1 + J2 +∆ϕ

2

)
−s2

(
∆1 −∆2 − 2l + J1 + J2 +∆ϕ

2

)
−s3

Bs1,s2,s3 ,

(2.101)

with the function Bs1,s2,s3 given by

Bs1,s2,s3 =

∫
[dt1][dt2](1− t1)

i2−j2−s3t
∆2−∆1−J1−J2+2(s3−s1)+2l−∆ϕ+2j2

2
1 ti1−j1−s2

2

(1− t2)
∆1−∆2−J1−J2+2l+2(s2−s1)+2j1−∆ϕ

2
(
1− t1(1− t2)

) 2s1−J1−J2−∆1−∆2+∆ϕ
2 . (2.102)

For J1 = J2 = 0 the function Bs1,s2,s3 can be integrated to

Bs1,s2,s3 =
Γ(∆1)Γ(∆2)Γ

(∆1−∆ϕ+2(s2−s1)
2

)
Γ
(∆2−∆ϕ+2(s3−s1)

2

)
Γ
(2(s1−s2−s3)+∆ϕ

2

)
Γ2
(
∆1
2

)
Γ2
(
∆2
2

)
Γ
(∆1+∆2−2s1−∆ϕ

2

) . (2.103)

14It would be interesting to repeat the analysis of appendix A.1 of [86] for higher-point functions.
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One of the advantages of this Mellin representation for the conformal block is that it makes

it easier to study certain limits. For example, to get the leading term in the u2, u4, u5 → 0

limit we just have to close each contour s1, s2, s3 to the left picking all the poles along the

way. Notice that Bs1,s2,s3 for generic spin can be written as a 3F2 hypergeometric series

Bs1,s2,s3 =
Γ
(
J1+∆1+1

2

)
Γ
(
J2+∆2+1

2

)
Γ
(
i2 − j2 +

J1
2 − s3 +

∆1
2

)
Γ
(
i1 − j1 +

J2
2 − s2 +

∆2
2

)
22−∆1−∆2−J1−J2π Γ

(
J1
2 + ∆1

2

)
Γ
(
J2
2 + ∆2

2

)
Γ
(
ℓ+ j1 − J1

2 − s1 + s2 +
∆1
2 − ∆ϕ

2

)
Γ
(
ℓ+ j2 − J2

2 − s1 + s3 +
∆2
2 − ∆ϕ

2

)
Γ
(
ℓ+ i1 − J1

2 + J2
2 − s1 +

∆1+∆2−∆ϕ

2

)
Γ
(
ℓ+ i2 +

J1
2 − J2

2 − s1 +
∆1+∆2−∆ϕ

2

) (2.104)

3F2

 −∆ϕ

2 + τ1
2 + j1 − s1 + s2 + ℓ , −∆ϕ

2 + τ2
2 + j2 − s1 + s3 + ℓ , −∆ϕ

2 + h1
2 + h2

2 − s1

−∆ϕ

2 + ∆1
2 + ∆2

2 + i2 +
J1
2 − J2

2 − s1 + ℓ , −∆ϕ

2 + ∆1
2 + ∆2

2 + i1 − J1
2 + J2

2 − s1 + ℓ
; 1

 .

To find Fl one needs to relate the Mellin transform we have computed to the Mellin

amplitude definition in (2.94). We use the conditions (2.95) to write the Mellin amplitude

in terms of five independent Mellin variables, namely:γ12, γ34, γ13, γ15, γ35. After computing

the integral in γ12 and γ34, we can relate the two sets of Mellin variables, si’s and γij , by

demanding the exponents of the cross-ratios to be the same on both expressions. To do so,

we first expand (1− u2)
l =

∑
k

(
l
k

)
(−u2)k. We find then the relation

s1 =
2j1 + 2j2 + 2k − J2 +∆J2 − 2γ13 − 2γ35

2
, s3 = γ15 + i1 ,

s2 =
2i2 + J1 − J2 −∆J1 +∆J2 +∆ϕ − 2γ35

2
. (2.105)

This relation depends on indices that are summed over. Thus, performing the change of

variables in (2.101) leads us to finite sums of contour integrals. We would like to swap the

order of sums and integrals to be able to write Fl from those finite sums. This can be done

if we are allowed to move, without crossing any poles, all the contours to the same region.

Assuming this can be done 15, to find Fl is just simple algebra. For specific values of spin

and scaling dimension of the exchanged operators, it is easy to see that Fl defined in this

way is, as expected, a polynomial in the Mellin variables γ13, γ15, γ35 whose degree depends

on J1, J2, l.

It is possible to repeat the same analysis for the six-point conformal block in the light-

cone. Since the method is essentially the same we will just quote here the Mellin transform

15To be rigorous one needs to study in detail the very complicated pole structure of the integrand. This is
particularly challenging due to the possible presence of fake poles. As discussed in [145], gamma functions
that depend on more than a single Mellin variable can naively suggest the presence of families of poles that
differ depending on the order of integration of the Mellin variables. These poles are fake.
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of the block for the exchange of scalar operators

3∏
i=1

u
∆i
2
2i−1Γ(∆i)

Γ(
∑

j ∆j−2∆i

2 )Γ2(∆i
2 )

∫ 6∏
i=1

dsiΓ(si)

3∏
i=1

U2−i

u2iU−i

si

U
−s3+i

i Γ

(
∆i − 2(si + si)

2

)
(2.106)

Γ

(
∆21 − 2(s3 + s6 − s2)

2

)
Γ

(
∆13 − 2(s2 + s4 − s1)

2

)
Γ

(
∆32 − 2(s1 + s5 − s3)

2

)
,

where s1 = s5 + s6, s2 = s4 + s5, s3 = s4 + s6 and ∆ij = ∆i −∆j . To relate this to F000 we

repeat the analysis above. We write the usual Mellin amplitude definition (2.94) in terms

of 9 independent Mellin variables γij . After integrating in γ12, γ34 and γ56, it is easy to

relate the remaining γij to si’s by imposing the same power behaviour of the cross-ratios

on both Mellin representations. We find:

s1 = γ23 , s2 = γ45 , s3 = γ16 , s4 = γ46 , s5 = γ24 , s6 = γ26 . (2.107)

A simple computation shows that F000 is independent of γij as one would expect for

scalar exchanges.

2.A.2 Explicit computation of six-point blocks

In the following we compute the leading lightcone limit contribution for the exchange

of three minimal-twist operators in the snowflake channel of the six-point function. For

simplicity, let us first consider that the corresponding operators are scalars. It will be useful

to recall the definition of the block gk∗k∗k∗ (u2i, Ui) given in (2.22). This is a complicated

three-dimensional integral even in the simpler scalar case. One can show, however, that

no divergences appear from the limit u2i → 0 16, since the Ui’s act as regulators of those

possible divergences. This substantially simplifies our analysis. The situation for the

spinning operators is technically more involved but it is still free of divergences in the limit

of u2i → 0.

As an example, consider the exchange of three leading-twist scalar operators with di-

mension 2 in terms of the cross-ratios yu, yv, yw
17 defined as

U1 =
yu (1− yv) (1− yw)

(1− yuyv) (1− yuyw)
, U2 =

yv (1− yu) (1− yw)

(1− yvyu) (1− yvyw)
, U3 =

yw (1− yu) (1− yv)

(1− ywyu) (1− ywyv)
.

(2.108)

16This can be checked for example with the HyperInt package [146]. We find only logarithmic divergences
in Ui whenever Ui → 0.

17The appearance of these cross-ratios is not surprising given the duality between null polygon Wilson
loops and correlation functions, see [133] for recent development in this topic. In fact these cross-ratios
have appeared before in the study of WL/scattering amplitudes in N = 4 SYM [147].
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In these cross-ratios, the block becomes

g222 (0, Ui) =
3∏

i=0

∫ ∞

0

dti (yiyi+1 − 1)2

yi(yi+1 − 1)(yi−1 − 1) + ti(1 + ti+1)(yiyi+1 − 1)(yiyi−1 − 1)
,

(2.109)

where we have changed variables ti → ti/(ti + 1) and identified y1 = yv, y2 = yu and

y3 = yw. The subscripts should be understood mod 3. These cross-ratios appear to be

a more natural choice to compute these integrals, as the integrand factorizes into simpler

pieces. The integration can be done exactly and written in terms of hyperlogarithmic

functions as

g222 (0, Ui) =
(1− yuyw) (1− yvyw) (1− yuyv)

(1− yw) (1− yu) (1− yv) (yuyvyw − 1)

(
H0(yu)

(
H0,1(yw) + H0,1(yv)−H0,y−1

w
(yv)

)
−H0(yv)

(
H0,y−1

w
(yu) + H0,(yvyw)−1(yu)−H0,1(yw)−H0,y−1

v
(yu)−H0,1(yu)

)
+ 2H0,(yvyw)−1,y−1

v
(yu)

+H0(yw)
(
H0,y−1

w
(yv) + H0,1(yv) + H0,y−1

w
(yu)−H0,y−1

v
(yu) + H0,1(yu) −H0,(yvyw)−1(yu)

)
+ 2H1(yv)

(
H0,y−1

w
(yu)−H0,(yvyw)−1(yu)

)
− 2H0,y−1

w ,y−1
w
(yv) + H0,y−1

v ,0(yu)−H0,(yvyw)−1,0(yu)

+ H0,y−1
w ,0(yv) + 2

(
H0,1,1(yu) + H0,1,1(yv) + H0,1,1(yw)

)
− 2H0,(yvyw)−1,1(yu)− 2H0,y−1

v ,y−1
v
(yu)

−
(
H0,1,0(yu) + H0,1,0(yv) + H0,1,0(yw)

)
+ 2Hy−1

w
(yv)

(
H0,(yvyw)−1(yu)−H0,1(yu)

)
+2H1(yw)

(
H0,y−1

v
(yu)−H0,(yvyw)−1(yu)

)
+ 2H0,(yvyw)−1,y−1

w
(yu)− 2H0,y−1

w ,y−1
w
(yu)

+ H0(yu)H0(yv)H0(yw) + H0,y−1
w ,0(yu) + ζ2(H0(yw) + H0(yu) + H0(yv))

)
. (2.110)

The hyperlogarithm functions H are defined recursively via the integral [146]

Hω1,ω2,...,ωn(z) =

∫ z

0

dt

t− ω1
Hω2,...,ωn(z), H0,0,...,0(z) =

lnn z

n!
, H(z) = 1. (2.111)

One can then check that in the limit where all yi → 0 (which corresponds to Ui → 0), the

integral (2.109) is given by

lim
yi→0

(2.109) ≈ − ln(yu) ln(yv) ln(yw)− ζ2 ln(yw)− ζ2 ln(yu)− ζ2 ln(yv) , (2.112)

which is consistent with the behaviour in (2.58). In fact, one can repeat this computation

for several even integer values of the dimension of the exchanged scalar operators. In this

class of examples, the integral can be performed with the HyperInt package. We use several

parameterizations of the block and guess its general form in the kinematic limit we consider

in this chapter, namely u2i−1 → 0, followed by u2i → 0 and in last place Ui → 0. This

is (2.58). We will later confirm these results by using a Mellin representation which we will
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define below.

For a stress tensor exchange, the form of the integrand is more complicated. Even for

specific values of the ℓi’s and of the space-time dimension d, we find that these computations

extend in time and therefore this procedure becomes less useful. It is however worth stating

that if we restrict ourselves to the case where yu = yv = yw these computations can be

performed very quickly in HyperInt. We use these results as a sanity check for the Mellin

method we now present.

In the kinematics relevant for the bootstrap calculation of section 2.3 we need to take

u2i → 0, in which case we can derive a simplified Mellin representation. For that we

consider the lightcone block (2.22), set u2i → 0 in the integrand18 and then we Mellin

transform with respect to the cross-ratios Ui. After some massaging we obtain

gℓ1ℓ2ℓ3k∗k∗k∗ =

3∏
i

∫
[dsi] Γ(si)

Γ(2J + τ)

2JΓ
(
2J+τ

2

)2 ∑
ni,mi

(−1)miU
mi+ni−si+ℓ2−i

i

(
J−ℓ2−i−ℓ3−i

ni

)(
J−ni+1−ℓ1−i−ℓ2−i

mi

)
Γ (si − ni − ℓ2−i + ℓ1−i)(

2J − si − ℓ1−i − ℓ3−i +
τ
2

)
si

(
J +mi+1 + ni − si − si+1 +

τ
2

)
si−ni−ℓ2−i+ℓ1−i

, (2.113)

in the case where all the operators have the same twist and spin. The sums over ni and mi

were introduced to reduce the binomials that appeared in the numerator into monomials

of Ui.

We would like to make an expansion in the limit Ui → 0. In Mellin language this is

simply done by closing the si contours to the left and picking the corresponding poles. At

leading order only some poles contribute. We will call these the leading poles. The leading

poles will only come from the gamma functions explicitly written above and which only

depend on one of the Mellin variables.

We observe that the position of the leading poles does not depend on the value of mi.

Therefore in the limit Ui → 0, the leading contributions have to come from the terms with

mi = 0. For fixed values of spin, twist and ℓi, we perform the sum over ni and pick the

residues of leading poles. These leading contributions are located at values of si such that

the exponent of the corresponding Ui becomes 0, which leads to the expected logarithmic

behaviour when there is a double pole19. If we use this mechanism in the case of scalar

18This does not lead to any divergences as discussed above.
19Other poles of the family will always contribute at subleading orders. In fact, if we have si smaller than

the required value, there will be a non-vanishing power Ui which leads to a subleading contribution. On
the other hand, if si is instead larger, there is no corresponding pole and the residue is 0. In other words,
leading poles are the rightmost poles of the family prescribed by the explicit gamma functions we wrote
above.
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minimal-twist exchange, we immediately reproduce the result of (2.58)! Moreover, we can

also check that this procedure for the leading poles nicely matches the results of direct

integration using HyperInt in the limit yu = yv = yw.

For a stress tensor exchange, we have three possible values of ℓi’s, namely 0,1 and 2. If

two or three ℓi’s take value 1, those contributions will be subleading by powers of Ui. We

thus list the results for the remaining cases

g000TTT = − Γ(τ + 4)3

64Γ
(
τ+4
2

)6
 3∏

i

lnUi

3
+

(
4
(
S τ

2
+1

)2
− S

(2)
τ
2
+1 +

8
(
τ(τ + 6) + 2

)
τ(τ + 2)(τ + 4)(τ + 6)

+ ζ2

)
lnU1

+ 2S τ
2
+1 lnU1 lnU2 −

S τ
2
+1

3

(
8
(
S τ

2
+1

)2
− 6S

(2)
τ
2
+1

)
−
S τ

2
+1

(
8(τ(τ + 6) + 2) + ζ2

)
2τ(τ + 2)(τ + 4)(τ + 6)

+ perm

]
,

g100TTT = − Γ(τ + 4)3
(
τ(τ + 6) + 4

)
16Γ

(
τ+4
2

)6
τ(τ + 2)(τ + 4)(τ + 6)

[
2S τ

2
+1 + lnU2

]
(2.114)

g200TTT = − Γ(τ + 4)3

4Γ
(
τ+4
2

)6
τ(τ + 2)(τ + 4)(τ + 6)

[
2S τ

2
+1 + lnU2

]
,

where τ = d− 2 is the twist of the stress-tensor. Notice the result diverges for τ = 0. This

is not a problem since we are considering the case where there is a twist gap which happens

for d > 2. For other non-vanishing ℓi, the result is obtained by permuting the cross-ratios.

2.A.3 Euclidean expansion of six-point conformal blocks

The results of the main part of the chapter were derived using the leading term of the con-

formal blocks expanded around the lightcone. We will shift gears in this section and analyze

the conformal blocks expanded around the Euclidean OPE limit in a similar approach to

the one done for four- and five-point function conformal blocks [39, 42, 57].

The two key ingredients in the derivation of the blocks are that they satisfy the Casimir

differential equation [
1

2

(
L
(i1)
AB + L

(i2)
AB

)2
− C∆,J

]
f∆,J(xi) = 0 , (2.115)

with

C∆,J = ∆(∆− d) + J(J + d− 2) , (2.116)
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where LAB are the generators of the conformal group and their boundary condition coming

from the OPE

O(xi1)O(xi2) =
∑
k

Ci1i2k

xµ1
i1i2

. . . xµJ
i1i2

(x2i1i2)
∆i1

+∆i2
−∆k+Jk
2

Ok,µ1...µJ
(xi2). (2.117)

In the Euclidean OPE limit there are three cross-ratios that approach zero

s21 = u1 , s22 = u3 , s23 = u5 , (2.118)

and six others that remain fixed

ξ1 =
U1 − u2U2

s1U1
, ξ2 =

U3 − u4U1

s2U3
, ξ3 =

U2 − u6U3

s3U2
,

ξ4 =
(u2 − U1)U2

s1s2U1
, ξ5 =

(u6 − U2)U3

s1s3U2
, ξ6 =

(u4 − U3)U1

s2s3U3
, (2.119)

in a six-point correlation function and are analogous to the four-point cross-ratios written

in equation (2.2). The cross-ratios that remain fixed can be interpreted as measuring the

angles that the points 2, 4, 6 approach 1, 3, 5. It follows from the OPE (2.117) that the

conformal block should behave as

G∆i,Ji(si, ξi) =
3∏

j=1

s
∆j

j gJi(ξi) , si → 0 , (2.120)

where gJi(ξi)
20 is a polynomial function of the cross-ratios ξi that satisfies three differential

equations coming from the Casimir of the channel (12) in the limit si → 0,[
(4− ξ21)∂

2
ξ1 + (4− ξ24)∂

2
ξ4 + (4− ξ25)∂

2
ξ5 − 2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4

− 2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4 − 2(2ξ3 + ξ1ξ5)∂ξ1∂ξ5 + (1− d)(ξ1∂ξ1 + ξ4∂ξ4 + ξ5∂ξ5) (2.121)

+ 2(2ξ2ξ3 − ξ4ξ5 − 2ξ6)∂ξ4∂ξ5 + J1(J1 + d− 2)

]
gJi(ξi) = 0 ,

with similar equations for the channels (34) and (56). These three differential equations,

together with the boundary condition for λ→ 0,

gJi(ξi) → ξJ1−ℓ2−ℓ3
1 ξJ2−ℓ1−ℓ3

2 ξJ3−ℓ1−ℓ2
3 ξℓ34 ξ

ℓ2
5 ξ

ℓ1
6 , ξ1,2,3 →

ξ1,2,3
λ

, ξ4,5,6 →
ξ4,5,6
λ2

,

(2.122)

20This is the analogue of the Gengebauer polynomial that appears in the leading term of the OPE of a
four-point function conformal block. Let us also remark that this function appears in the definition of the
conformal block using the shadow formalism.
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fix completely the form of the function. It is possible (and easy) to get subleading cor-

rections of gJi(ξi) for any value of Ji and ℓi from the differential equations. By analyzing

these corrections we were able to check that the function gJi(ξi) satisfies relations of the

type

ξk gJi,ℓi(ξi) =

1∑
il=−1

c
(k)
i1...i6

gJ1+i1,J2+i2,...,ℓ3+i4,...ℓ1+i6(ξi) , (2.123)

that can be used to define it recursively. One example of these relations is21

c
(1)
−100000 =

4(J1 − ℓ2 − ℓ3)(J1 + ℓ2 + ℓ3)

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
100000 = 1 , (2.124)

c
(1)
−100−100 = − 2ℓ3(d+ 2(ℓ2 + ℓ3 − 2))

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
−1000−10 = − 2ℓ2(d+ 2(ℓ2 + ℓ3 − 2))

(2J1 + d− 4)(2J1 + d− 2)
,

c
(1)
−100−1−10 = − 4ℓ2ℓ3

(2J1 + d− 4)(2J1 + d− 2)
, c

(1)
−100−1−11 =

4ℓ2ℓ3
(2J1 + d− 4)(2J1 + d− 2)

.

Let us remark that there are similar relations for the Gegenbauer polynomial and for the

five-point analogue[57].

It is an interesting open problem to obtain a representation of the conformal block as

a series expansion in si, as was done for four and five points[42, 57]22.

2.B D-functions

In this appendix we analyze five- and six-point D-functions using standard technology from

perturbation theory in AdS [49, 148].

2.B.1 Five Points

We start from a five-point contact Witten diagram with a non-derivative interaction

W ctc
∆1,...,∆5

(x1, . . . , x5) =

∫
AdSd+1

dd+1yK∆1(x1, y) . . .K∆5(x5, y) = D∆1,...,∆5 , (2.125)

where the bulk-boundary propagator is defined as

K∆(xi, y) =

(
z

(x⃗i − y⃗)2 + z2

)∆

. (2.126)

21The other relations as well as the definition of gJi,ℓi(ξi) in terms of a recurrence relation is provided in
a auxiliary file.

22It would also be interesting to see how the recent and new approaches to the conformal blocks[60–62]
can help in this problem.
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We can expand this in five-point conformal blocks without knowing their explicit form,

using Harmonic analysis and the conformal partial waves. We will do this in the (12)(34)

channel, but other channels can be obtained with the same method. Start by introducing

auxiliary 1 =
∫
AdS dy

′δ(y′−y) and attach the bulk to boundary propagators to the auxiliary

points in the desired (12)(34) structure, i.e.

W ctc =

∫
dydy′dy′′K∆1(x1, y

′)K∆2(x2, y
′)K∆3(x3, y

′′)K∆4(x4, y
′′)K∆5(x5, y)δ(y

′−y)δ(y′′−y) .
(2.127)

Next, we use the spectral representation of the AdS delta function and the split represen-

tation of the harmonic function to obtain

δ(y1 − y2) =

∫
dx′
∫ +i∞

−i∞

dc

2πi
ρδ(c)Kh+c(x

′, y1)Kh−c(x
′, y2) , (2.128)

where c is the imaginary spectral parameter, h = d/2 and the spectral function for the

Dirac delta is

ρδ(c) =
Γ
(
d
2 + c

)
Γ
(
d
2 − c

)
2πdΓ(−c)Γ(c) . (2.129)

Now, all three bulk integrals can be performed, since they are of the AdS three-point

function type∫
dyK∆1(x1, y)K∆2(x2, y)K∆3(x3, y) = a∆1,∆2,∆3⟨O1(x1)O2(x2)O3(x3)⟩ , (2.130)

where

⟨O1(x1)O2(x2)O3(x3)⟩ =
1

x
∆12,3

12 x
∆23,1

23 x
∆13,2

13

(2.131)

is the kinematical three-point function without OPE coefficient, and

a∆1,∆2,∆3 =
π

d
2Γ
(
∆1+∆2−∆3

2

)
Γ
(
∆1+∆3−∆2

2

)
Γ
(
∆2+∆3−∆1

2

)
2Γ (∆1) Γ (∆2) Γ (∆3)

Γ

(
∆1 +∆2 +∆3 − d

2

)
.

(2.132)

We are then left with two spectral integrals and two boundary integrals

W ctc =

∫
[dc′][dc′′]dx′dx′′ρδ(c

′)ρδ(c
′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 (2.133)

⟨O1(x1)O2(x2)Oh+c′(x
′)⟩⟨Oh−c′(x

′)O5(x5)Oh−c′′(x
′′)⟩⟨Oh+c′′(x

′′)O3(x3)O4(x4)⟩ ,

where [dc] = dc/2πi. The position space integrals precisely coincide with the definition of

the five-point conformal partial wave for the exchange of two scalar operators of dimension
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h+ c′ and h+ c′′

Ψ∆1...∆5
h+c′,h+c′′(xi) =

∫
dxdx′⟨O1O2Oh+c′(x

′)⟩⟨Oh−c′(x
′)O5Oh−c′′(x

′′)⟩⟨Oh+c′′(x
′′)O3O4⟩ .

(2.134)

Thus, we find the partial have expansion for the five-point contact Witten diagram

W ctc =

∫
[dc′][dc′′]ρ̃5(c

′, c′′)Ψ∆1...∆5
h+c′,h+c′′(xi) , (2.135)

with

ρ̃5(c
′, c′′) = ρδ(c

′)ρδ(c
′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 . (2.136)

To obtain the conformal block expansion we deform the contours towards the real axis

and pick up the physical poles. To do this we need the relation between the conformal

partial waves and the conformal blocks. Since they solve the same Casimir equations,

the conformal partial waves must be a linear combination of the blocks for the exchanged

operators and their shadows. We provide a detailed analysis of this relation in Appendix

2.C. The coefficients can be obtained in the OPE limits and are given in terms of shadow

factors K (h− c appears since it is the shadow of h+ c)

Ψ∆1...∆5
h+c′,h+c′′(xi) = K∆5,h−c′′

h−c′ K∆5,h+c′

h−c′′ G∆1,...,∆5

h+c′,h+c′′(xi) + 3 shadow terms (2.137)

With

K∆1,∆2

∆,J =

(
−1

2

)J π
d
2Γ
(
∆− d

2

)
Γ(∆ + J − 1) Γ

(
∆̃+∆1−∆2+J

2

)
Γ
(
∆̃+∆2−∆1+J

2

)
Γ(∆− 1) Γ(d−∆+ J) Γ

(
∆+∆1−∆2+J

2

)
Γ
(
∆+∆2−∆1+J

2

) , (2.138)

which are related to the shadow factors S we will compute below byK∆1,∆2

∆,J = (−1
2)

JS∆1,∆2

∆,J .

We will carefully describe these factors in Appendix 2.C. Note that since we only exchange

scalar operators we always have J = 0 so we suppress that label. We now have the block

expansion in contour integral form

W ctc =

∫
[dc′][dc′′]ρ5(c

′, c′′)G∆1...∆5
h+c′,h+c′′(xi) , (2.139)

where

ρ5(c
′, c′′) = 4K∆5,h−c′′

h−c′ K∆5,h+c′

h−c′′ ρ̃5(c
′, c′′) (2.140)

and the factor of 4 comes from the shadow combinations. The function ρ5 contains three

families of poles corresponding to the exchanged operators. Introducing the notation ∆′ =
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h+ c′, we have

Family 1: ∆′ = ∆1 +∆2 + 2n1 , ∆′′ = ∆3 +∆4 + 2m1 , (2.141)

Family 2: ∆′ = ∆1 +∆2 + 2n2 , ∆′′ = ∆1 +∆2 +∆5 + 2n2 + 2m2 , (2.142)

Family 3: ∆′ = ∆3 +∆4 +∆5 + 2n3 + 2m3 , ∆′′ = ∆3 +∆4 + 2m3 . (2.143)

Thus we can write the block expansion as

W ctc =
∞∑

n1,m1=0

P[12]n1 [34]m1
G∆1...∆5

[12]n1 ,[34]m1
+

∞∑
n2,m2=0

P[12]n2 [125]n2+m2
G∆1...∆5

[12]n2 ,[125]n2+m2

+

∞∑
n3,m3=0

P[345]n3+m3 [34]m3
G∆1...∆5

[345]n3+m3 ,[34]m3
, (2.144)

where [ij]n denotes the scalar double-twist [OiOj ]n with n laplacians, and similarly for the

triple-twists [ijk]n+m. The Pab are related to the OPE coefficients through (2.17) with

ℓ = 0. Finally, we specify how to obtain the Pab from the residues of ρ5

P[12]n1 [34]m1
= Res∆′′=∆3+∆4+2m1Res∆′=∆1+∆2+2n1ρ5(∆

′,∆′′) ,

P[12]n2 [125]n2+m2
= Res∆′′=∆1+∆2+∆5+2n2+2m2Res∆′=∆1+∆2+2n2ρ5(∆

′,∆′′) ,

P[345]n3+m3 [34]m3
= Res∆′′=∆3+∆4+2m3Res∆′=∆′′+∆5+2n3ρ5(∆

′,∆′′) . (2.145)

Some comments on this block expansion are in order:

• We have exchange of both double-twist and triple-twist operators. Unlike the double-

twist operators, of which there is only one of a given dimension, triple-twist operators

are degenerate at leading order in 1/N . Since we have operators of dimension ∆1 +

∆2 +∆5 +2(n+m), and we sum over both n and m this means that there are p+1

triple-twist operators of dimension ∆1 +∆2 +∆5 + 2p.

• Large N counting determines that a connected five-point function has a leading

behaviour ∼ 1/N3. (One can have factorized three-point × two-point functions at

order 1/N but let’s ignore those). We can check this large N behaviour in the OPE

coefficients. For family 1 we have

P[12]n1 [34]m1
= C12[12]n1

C[12]n15[34]m1
C[34]m134

(2.146)
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where the first and last OPE coefficient are the MFT ones, so we are accessing the

1/N3 information in C[12]n15[34]m1
. For the second family we have

P[12]n2 [125]n2+m2
= C12[12]n2

C[12]n25[125]n2+m2
C[125]n2+m234

, (2.147)

where now the first two OPE coefficients are MFT (although the second one is single-

twist/double-twist/triple-twist), and the 1/N3 data we are probing is C[125]n2+m234
.The

third family is similar to the second one.

• For generic dimensions we have an expansion in terms of blocks, however when the ex-

changed operators in different families have dimensions that differ by an even integer,

we find that the OPE coefficients naively diverge. This happens when

∆1 +∆2 +∆5 −∆3 −∆4 = 2p or ∆1 +∆2 −∆5 −∆3 −∆4 = 2q (2.148)

for some p, q ∈ Z. By carefully regulating the external dimensions and taking the

limit, one finds that the divergences in OPE coefficients cancel, and we get instead

derivatives of the blocks with respect to the exchanged dimension. This is the tell-

tale sign of anomalous dimensions for the exchanged operators. We will see this

explicitly in the D11112 example that we will analyze below. Equivalently, we can

take the integer separated dimensions at the level of the spectral function, which

will then have double poles. Picking their residues also leads to the derivatives of the

blocks. In particular, recall that the D functions which admit a closed form expression

are the ones where the total dimension is an even integer. This means that either

∆1+∆2+∆5 and ∆3+∆4 are both odd or both even. In any case, their difference is

an even number, and will therefore satisfy the above condition. Therefore, we learn

that explicitly computable D-functions must always contain derivatives of blocks.

2.B.1.1 The case of D11112

The simplest computable (in terms of ladder integrals) five-point D-function is D11112. As

argued above, this D-function contains blocks and derivatives of blocks corresponding to

anomalous dimensions in its expansion. Following the limiting procedure described in the

previous section, the coefficients in the expansion can be read off. We can organize the

sum into two integers corresponding to the two exchanged operators. It is actually more

convenient to pick the two integers to parametrize the dimension of one of the operators and

the difference between the two. We separate the cases with same dimension and positive
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difference, since they are qualitatively different. Therefore we write

W ctc =
∞∑

n1=0

Γ2n1+1Γ
2
n1+1 Γ

2
− d

2
+n1+2

Γ− d
2
+2n1+3

(
1− 3δ0,n1

4

)
2π−d/2 Γ2

2n1+2 Γ
2
− d

2
+2n1+2

G2+2n1,2+2n1 (2.149)

+
∞∑

n1=0,δ=1

 πd/2δ Γn1+1Γδ+n1+1Γδ+2n1+1Γ− d
2
+n1+2Γ− d

2
+δ+n1+2

Γ−1

− d
2
+δ+2n1+3

Γ2n1+2Γ− d
2
+2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d

2

∂∆1G2+2(n1+δ),2+2n1

+

[δ(S− d
2
+δ+n1+1 + S− d

2
+δ+2n1+2 − 2

(
S− d

2
+2δ+2n1+1 + S2δ+2n1+1

)
+ Sδ+n1 + Sδ+2n1

)
+ 1

2π−d/2Γ2n1+2Γ− d
2
+2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d

2

Γn1+1Γ− d
2
+n1+2Γδ+n1+1Γδ+2n1+1Γ− d

2
+δ+n1+2Γ− d

2
+δ+2n1+3G2+2(n1+δ),2+2n1

]
+ (∆1 ↔ ∆2)

)
,

where we introduced the shorthand notation Γa ≡ Γ(a). Specializing for concreteness to

the case d = 4 and explicitly writing the block expansion for the first few operators, we

have

8W ctc = 4π2G2,2 −
10

9
π2G2,4 −

134

675
π2G2,6 −

10

9
π2G4,2 +

4

9
π2G4,4 −

16

225
π2G4,6 −

134

675
π2G6,2

− 16

225
π2G6,4 +

4

225
π2G6,6 +

4

3
π2G2,4

(0,1) +
8

45
π2G2,6

(0,1) +
2

15
π2G4,6

(0,1)

+
4

3
π2G4,2

(1,0) +
8

45
π2G6,2

(1,0) +
2

15
π2G6,4

(1,0) + higher dimension operators ,

(2.150)

which has the expected left-right symmetry. On the other hand, D11112 admits an explicit

position space expression in terms of a linear combination of products of rational functions

of the five cross-ratios and one-loop ladder functions Φ(z, z) with the arguments being all

possible five-point cross-ratios. In practice, we have to invert to the variables u, v and use

Φ(u, v) =
2Li2(1− v) + log(u) log(v)

1− v
+ (2.151)

u(2(v + 1)Li2(1− v) + log(u)(−2v + v log(v) + log(v) + 2) + 2(v + v log(v)− 1))

(1− v)3
+O(u2) .

Using the radial expansion for the five-point blocks described in [57]

G∆′,∆′′ =
∑
n′,n′′

an′,n′′s∆
′+n′

1 s∆
′′+n′′

2 Hn′,n′′(χ1, χ2, χ3) , (2.152)

Where an′,n′′ are kinematically fixed coefficients, s1, s2 are radial variables which are small

in the double (12)(34) OPE limit andH is a polynomial in the χ1, χ2, χ3 angular variables,
23

23We have 2χ1 = ξ1,2χ2 = ξ3 and −2χ3 = ξ1 in terms of the ξi variables introduced in [57].



2. Lightcone Bootstrap at higher points 77

which are fixed in this limit. As an example we have:

G2,2 = s22s
2
1+s

2
2s

3
1χ1−s32s21χ2+

1

3
s22s

4
1

(
4χ2

1 − 1
)
+
1

2
s32s

3
1(χ3−2χ1χ2)+

1

3
s42s

2
1

(
4χ2

2 − 1
)
+O(s7) .

(2.153)

Using the explicit blocks and the expression in terms of ladder functions, we can form an

expansion in the small s1, s2 limit, and we precisely reproduce the block expansion derived

through harmonic analysis in the previous section.

2.B.2 Six Points

It is not hard to generalize the previous analysis to the six-point D-function. We will

consider the expansion in terms of the snowflake partial wave

Ψsf
A,B,C =

∫
dx7,8,9⟨O1O2OA(x7)⟩⟨O3O4OB(x8)⟩⟨O5O6OC(x9)⟩⟨Õ†

A(x7)Õ
†
B(x8)Õ

†
C(x9)⟩ ,
(2.154)

A similar analysis to the five-point case leads to the spectral function

ρ̃6(c1, c2, c3) = ρδ(c1)ρδ(c2)ρδ(c3)a∆1,∆2,h+c1a∆3,∆4,h+c2a∆5,∆6,h+c3ah−c1,h−c2,h−c3 .

(2.155)

Using the OPE limits discussed in Appendix 2.C, we can then determine the proportionality

factor between the partial wave and the block

Ψh+c1,h+c2,h+c3(xi) = Kh−c2,h−c3
h−c1

Kh+c1,h−c3
h−c2

Kh+c1,h+c2
h−c3

Gh+c1,h+c2,h+c3(xi)+7 shadow terms

(2.156)

Such that we can represent the six-point function by

W ctc =

∫
[dc1,2,3]ρ6(c1,2,3)Gh+c1,h+c2,h+c3(xi) , (2.157)

with

ρ6(c1,2,3) = 8Kh−c2,h−c3
h−c1

Kh+c1,h−c3
h−c2

Kh+c1,h+c2
h−c3

ρ̃6(c1,2,3) . (2.158)
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This spectral function leads to the following families of exchanged operators

1: ∆A = ∆1 +∆2 + 2n1 , ∆B = ∆3 +∆4 + 2n2 , ∆C = ∆5 +∆6 + 2n3 , (2.159)

2: ∆A = ∆3 +∆4 +∆5 +∆6 + 2mt , ∆B = ∆3 +∆4 + 2m2 , ∆C = ∆5 +∆6 + 2m3 ,

3: ∆A = ∆1 +∆2 + 2p1 , ∆B = ∆1 +∆2 +∆5 +∆6 + 2pt , ∆C = ∆5 +∆6 + 2p3 ,

4: ∆A = ∆1 +∆2 + 2q1 , ∆B = ∆3 +∆4 + 2q2 , ∆C = ∆1 +∆2 +∆3 +∆4 + 2qt ,

wheremt = m1+m2+m3 and similarly for the other indices. Note that we identify double-

and quadruple-twist operator families in the spectrum.

2.B.2.1 The case of D111111

Once again we consider integer valued D-functions, the simplest of which has all dimensions

equal to 1. They are particularly useful in the study of ϕ3 theory in 6− ϵ dimensions. On

the lightcone (12)(34)(56), the D-function D111111 has been computed in [149]. The fact

that all dimensions are identical and furthermore integer, leads to the usual degeneracies,

and pole collisions, which are responsible for generating derivatives of blocks, and therefore

tree level anomalous dimensions.

Note that for poles to collide, we must have that some double-twist operators in family

1 have the same dimension as a quadruple trace operator in families 2,3 or 4. Therefore, the

sum of operators naturally organizes in terms of a triangle function. If the three dimensions

satisfy the triangle inequality, then there are no pole collisions, and the contributions can

only come from family 1. If the triangle inequality is violated by some exchanged operator

(and of course this can only happen to one operator at a time), then we must consider the

poles in family 1 along with the family who has that operator as a quadruple trace (e.g. if
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∆A ≥ ∆B +∆C then we take family 2). We write

W ctc =
∞∑

n1,n2,n3=0

πd/2

2
Γ3− d

2
+n1+n2+n3

3∏
i=1

Γni+1Γ2− d
2
+n1

Γ1−ni+nj+nk

Γ2+2niΓ2− d
2
+2ni

G2+2n1,2+2n2,2+2n3+

+

 ∞∑
n1,n2,δ

Γn1+1Γn2+1Γ− d
2
+n1+2Γ− d

2
+n2+2Γδ+2n1+1Γδ+2n2+1

Γ2n1+2Γ2n2+2Γ− d
2
+2n1+2Γ− d

2
+2n2+2

×
πd/2Γ− d

2
+nt+2Γnt+1Γ− d

2
+δ+2n1+2n2+3

ΓδΓ2(nt+1)Γ− d
2
+2nt+2

∂∆3G2+2n1,2+2n2,2+2nt+

∞∑
n1,n2,δ

−ψ− d
2
−δ+2nt+3 − ψ− d

2
+nt+2 + 2ψ− d

2
+2nt+2 + ψδ − ψδ+2n1+1 + 2ψ2nt − ψδ+2n2+1 − ψnt+1

Γ−1
n2+1Γ

−1

− d
2
+n1+2

Γ−1

− d
2
+n2+2

Γ−1
δ+2n1+1ΓδΓ2n1+2Γ2n2+2Γ− d

2
+2n1+2Γ− d

2
+2n2+2Γ2(nt+1)

×
−πd/2Γn1+1Γnt+1Γ− d

2
−δ+2nt+3

2Γ− d
2
+2nt+2Γ

−1
δ+2n2+1Γ

−1

− d
2
+nt+2

G2+2n1,2+2n2,2+2nt + (∆3 ↔ ∆1) + (∆3 ↔ ∆2)

 ,

(2.160)

where nt = n1 + n2 + δ and ψa = Sa − a−1 − γE .

2.C Higher-point correlators and Harmonic Analysis

Harmonic analysis of the conformal group leads to the Euclidean inversion formula, which

extracts the CFT data from the full correlator. This tool is available even for higher-point

functions, but is generically not a useful apparatus for computations. A notable exception

is the case of MFT correlators where the inversion can be performed rather explicitly in

the case of four-pt functions [150]. In this appendix we derive some of the results needed

to generalize this procedure to higher-point functions.

2.C.1 MFT six-point function from Harmonic Analysis

We will study the six-point function of identical real scalar operators ϕ of dimension ∆ϕ

presented previously in (2.81). Before moving on, it is important to point out that depend-

ing on the OPE channel (snowflake vs comb), we can have different amounts of identity

operator exchanges which must be accounted separately in the conformal partial wave ex-

pansion, since they are non-normalizable with respect to the Euclidean inversion formula.

To analyze this we recall the definition of the six-point partial waves. The snowflake partial
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wave is

Ψsf,1...6,abcd
A,B,C =

∫
7,8,9

⟨O1O2OA(x7)⟩a⟨O3O4OB(x8)⟩b⟨O5O6OC(x9)⟩c⟨Õ†
A(x7)Õ

†
B(x8)Õ

†
C(x9)⟩d ,
(2.161)

where we introduced the notation
∫
i,j,... =

∫
dxidxj . . . to make the equations more com-

pact, a, b, c, d are tensor structure labels and the daggers denote the dual representation,

meaning the indices of the A,B,C exchanged operators are contracted. We can now iden-

tify the problematic identity exchanges. The 12 − 34 − 56 contraction corresponds to the

exchange of three identity operators, which is non-normalizable but can trivially be writ-

ten as the conventional prefactor times 1. We can also have the exchange of one identity

operator and two non-trivial double-twists. This will be the case, for example in the Wick

contraction 12− 35− 46. Pulling out the prefactor, we will be able to expand this in a fac-

torized form, as a two-point function times a four-point function, and of course the block

expansion of the four-pt function will be the non-trivial, but well-known MFT one. In

total, we have one wick contraction with three identities and six with one identity. Below,

we will therefore focus on the eight remaining non-trivial ones. On the other hand, we

have the comb-channel partial wave:

Ψc,1...6,abcd
A,B,C =

∫
7,8,9

⟨O1O2OA(x7)⟩a⟨Õ†
A(x7)O3OB(x8)⟩b⟨Õ†

B(x8)O4OC(x9)⟩c⟨Õ†
C(x9)O5O6⟩d .

(2.162)

We can now have two identity exchanges (which is again a factor of 1 with the conventional

prefactor choice), or one identity exchange (four choices). We must account for 15−34−26

and 16− 34− 25 Wick contractions which exchanged an identity in the snowflake channel,

but do not do so in the comb channel. The remaining eight non-trivial contractions are

the same as before.

To obtain the OPE coefficients, we will be using the euclidean inversion formula, which

amounts to integrating the euclidean correlator multiplied by an appropriate conformal

partial wave. This works because of the orthogonality property of partial waves. The

appropriate inner product is given by(
⟨O1 · · ·On⟩ , ⟨Õ†

1 · · · Õ†
n⟩
)
=

∫
ddx1 · · · ddxn

vol SO(d+ 1, 1)
⟨O1 · · ·On⟩ ⟨Õ†

1 · · · Õ†
n⟩ . (2.163)
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2.C.1.1 Snowflake channel

For the snowflake partial waves we find the orthogonality property(
Ψsf,1...6,abcd

ABC ,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (2.164)(

⟨12A⟩a, ⟨1̃†2̃†Ã†⟩e
)(

⟨34B⟩b, ⟨3̃†4̃†B̃†⟩f
)(

⟨56C⟩c, ⟨5̃†6̃†C̃†⟩g
)(

⟨Ã†B̃†C̃†⟩d, ⟨ABC⟩h
)
,

where δX,X′ = 2πδ(νX − νX′)δJX ,JX′ and we adopted the shorthand notation X ≡ OX .

The snowflake partial wave expansion is given by

⟨O1 . . .O6⟩ =
∑

JA,JB ,JC

∫
dνAdνBdνCI

sf
abcd(νA, JA, νB, JB, νC , JC)Ψ

sf,1...6
A,B,C(xi) , (2.165)

and we invert this with the orthogonality relation

Iefgh ≡
(
⟨O1 . . .O6⟩,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

Isfabcd(νA, JA, νB, JB, νC , JC)

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
×(

⟨12A⟩a, ⟨1̃†2̃†Ã†⟩e
)(

⟨34B⟩b, ⟨3̃†4̃†B̃†⟩f
)(

⟨56C⟩c, ⟨5̃†6̃†C̃†⟩g
)(

⟨Ã†B̃†C̃†⟩d, ⟨ABC⟩h
)

(2.166)

Taking identical real scalars Oi = O = O†, this reduces the calculation of the spectral

function to the calculation of the integral on the left hand side of the above equation,

which is given by

Ia =

∫
dx1,...,9
Vol

⟨Õ(x1)Õ(x2)Õ†
A(x7)⟩⟨Õ(x3)Õ(x4)Õ†

B(x8)⟩⟨Õ(x5)Õ(x6)Õ†
C(x9)⟩×

⟨OA(x7)OB(x8)OC(x9)⟩a⟨O(x1) . . .O(x6)⟩MFT . (2.167)

As discussed above, the MFT correlator consists of fifteen triplets of Wick contractions.

Clearly, when either of the pairs are 12, 34 or 56, we can integrate one of the vari-

ables, and this will shadow transform one of the three-point functions. However, we

will then have a three-point function with two coincident points, integrated over this

point, which is badly divergent. This is the reason why such contributions are non-

normalizable and need to be accounted for separately. Therefore, we henceforth focus

on a representative contribution, and the remaining ones can be obtained in an identical

manner (in fact some of them give a manifestly equal result). Let us take for concreteness
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⟨O(x1)O(x3)⟩⟨O(x2)O(x5)⟩⟨O(x4)O(x6)⟩ ⊂ ⟨O(x1) . . .O(x6)⟩MFT Performing the integra-

tion over x3,5,6 applies shadow transforms on the 3-pt functions:

Ia =

∫
dx1,2,4,7,8,9

Vol
⟨Õ(x1)Õ(x2)Õ†

A(x7)⟩⟨S[Õ](x1)Õ(x4)Õ†
B(x8)⟩⟨S[Õ](x2)S[Õ](x4)Õ†

C(x9)⟩×

× ⟨OA(x7)OB(x8)OC(x9)⟩a , (2.168)

with the shadow transform for the scalar defined as

⟨S[O](x) . . . ⟩ =
∫
dy⟨Õ(x)Õ(y)⟩⟨O(y) . . . ⟩ . (2.169)

We also define the shadow factor for the three-point functions, which is the fundamental

building block for the following calculations

⟨S[O]OIOJ⟩a = S([O]OIOJ)
a
b⟨ÕOIOJ⟩b . (2.170)

We can now write the spectral function as

Ia =

∫
dx1,2,4,7,8,9

Vol
⟨Õ(x1)Õ(x2)Õ†

A(x7)⟩⟨O(x1)Õ(x4)Õ†
B(x8)⟩⟨O(x2)O(x4)Õ†

C(x9)⟩×

S([Õ]ÕÕ†
C)S(O[Õ]Õ†

C)S([Õ]ÕÕ†
B)⟨OA(x7)OB(x8)OC(x9)⟩a .

(2.171)

Let us make a few comments. First note that there is some freedom in choosing what

operators we actually shadow transform, and in the case where we transform two in the

same three-point function, we can also choose the order. This leads to apparently different

expressions, which presumably give the same result in the end. We should also point out

that independently of these choices, the shadow factors only include one spinning operator

and are therefore known in closed form for any J and d. Additionally, it is clear that each

three-point function has exactly one point in common with the other ones, and therefore

the position space integrals remain non-trivial.

To address this, we note that an integral of two three-point functions integrated by a

common point is just a four-point partial wave, which admits well-known crossing relations,

whose kernel are the 6j symbols of the conformal group. There is now some freedom

in choosing over what integration point to perform crossing. Crossing over the scalar

corresponds to a 6j symbol with three spinning operators. Crossing over a spinning one
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will lead to a similar result. Let us first define the 6j symbol24 through the crossing relation

Ψ3214,ab
∆′,J ′ (x3, x2, x1, x4) =

∑
J

∫
[d∆]

 [∆1, J1] [∆2, J2]
[
∆′, J ′]

[∆3, J3] [∆4, J4] [∆, J ]


abcd

Ψ1234,cd
∆,J (x1, x2, x3, x4) .

(2.172)

Let us cross through the scalar at x4 using∫
dx4⟨Õ†

C(x9)O(x2)O(x4)⟩⟨Õ(x4)O(x1)Õ†
B(x8)⟩ =

∑
J ′

∫
[d∆′] (2.173)

 ∆ ∆ ∆

[∆̃C , JC ] [∆̃B, JB] [∆′, J ′]


b ∫

dx4⟨O(x1)O(x2)O′(x4)⟩⟨Õ′†(x4)Õ†
C(x9)Õ

†
B(x8)⟩b .

With this, we can easily perform the x1, x2 integrals using the bubble integral formula∫
dx1,2⟨Õ(x1)Õ(x2)Õ†

A(x7)⟩⟨O(x1)O(x2)O′(x4)⟩ =
δA,O′

µ(∆A, JA)
δ(x74)

(
⟨ÕÕÕ†

A⟩, ⟨OOOA⟩
)
.

(2.174)

The delta function between operators OA and O′ removes the auxiliary spectral integral,

and the position space delta function gives a final pairing between A,B,C three-point

functions. Collecting everything, we obtain

Ia = S([Õ]ÕÕ†
C)S(O[Õ]Õ†

C)S([Õ]ÕÕ†
B)

 ∆ ∆ ∆

[∆̃C , JC ] [∆̃B, JB] [∆A, JA]


b

×

(
⟨ÕÕÕ†

A⟩, ⟨OOOA⟩
)

µ(∆A, JA)

(
⟨Õ†

AÕ
†
BÕ

†
C⟩b, ⟨OAOBOC⟩a

)
. (2.175)

Note that we have a 6j symbol with three spinning operators. When one or two of these

operators are scalars, this should be related to well-known 6j symbols through the tetra-

hedral S4 symmetry. Otherwise, this is a non-trivial object to be obtained either through

weight-shifting operators, or more directly from the Euclidean inversion formula applied

to the cross-channel partial wave with the appropriate tensor structures.

24Our convention for the 6j symbol differs from others in the literature by a normalization factor.
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2.C.1.2 Comb channel

In the comb channel we have slight modifications to the orthogonality properties. The

orthogonality relation now reads(
Ψc,1...6,abcd

ABC ,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (2.176)(

⟨12A⟩a, ⟨1̃†2̃†Ã†⟩e
)(

⟨Ã†3B⟩b, ⟨A3̃†B̃†⟩f
)(

⟨B̃†4C⟩c, ⟨B4̃†C̃†⟩g
)(

⟨C̃†56⟩d, ⟨C5̃†6̃†⟩h
)
,

from which the spectral function now follows from the Euclidean inversion integral

Iefgh ≡
(
⟨O1 . . .O6⟩,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
=

Icabcd(νA, JA, νB, JB, νC , JC)

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC)
× (2.177)(

⟨12A⟩a, ⟨1̃†2̃†Ã†⟩e
)(

⟨Ã†3B⟩b, ⟨A3̃†B̃†⟩f
)(

⟨B̃†4C⟩c, ⟨B4̃†C̃†⟩g
)(

⟨C̃†56⟩d, ⟨C5̃†6̃†⟩h
)
,

Once again, we specialize to the case of identical external scalars O, such that the spectral

function can be obtained from the integral

Iab =

∫
dx1,...,9
Vol

⟨Õ(x1)Õ(x2)Õ†
A(x7)⟩⟨OA(x7)Õ(x3)Õ†

B(x8)⟩a⟨OB(x8)Õ(x4)Õ†
C(x9)⟩b×

⟨OC(x9)Õ(x5)Õ(x6)⟩⟨O(x1) . . .O(x6)⟩MFT . (2.178)

34 Identity

As discussed above, in the Comb channel there are two qualitatively different types of terms

without an identity exchange. The non-trivial contractions in the snowflake channel are

also non-trivial in the comb channel. However, the ⟨O(x3)O(x4)⟩ Wick contraction, which

is an identity exchange in the snowflake OPE, now becomes a non-trivial contribution. Let

us take the 15− 34− 26 contraction. This gives a contribution

Iab ⊃
∫
dx1,2,3,7,8,9

Vol
⟨Õ(x1)Õ(x2)Õ†

A(x7)⟩⟨OA(x7)Õ(x3)Õ†
B(x8)⟩a⟨OB(x8)S[Õ](x3)Õ†

C(x9)⟩b×

⟨OC(x9)S[Õ](x1)S[Õ](x2)⟩ . (2.179)

Note that there is again a lot of freedom in what operator to take the shadow transform,

and in the subsequent steps. However, it is unavoidable to obtain a shadow transform on

a three-point function with two spinning operators, which gives a complicated (matrix)
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shadow factor

Iab ⊃
∫
dx1,2,3,7,8,9

Vol
⟨Õ(x1)Õ(x2)Õ†

A(x7)⟩⟨OA(x7)Õ(x3)Õ†
B(x8)⟩a⟨OB(x8)O(x3)Õ†

C(x9)⟩c×

S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)
b
c⟨OC(x9)O(x1)O(x2)⟩ . (2.180)

We can now apply the bubble integral formula for the x1,2 integrals. This imposes a delta

function between operators A and C, and also on their positions, x7 − x9. In the end, we

obtain

Iab ⊃ δA,C

µ(∆A, JA)
S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)

b
c

(
⟨ÕÕÕA⟩, ⟨OAOO⟩

)
×(

⟨OAÕÕB⟩a, ⟨OBOÕA⟩c
)
. (2.181)

We again emphasize that this depends on a non-trivial shadow factor.

Non-trivial contractions: one point in common

Now, we have to consider again the eight non-trivial Wick contractions, which contain

no identity operators in any channel. There are two further classes of Wick contractions,

ones which will induce two common points between two pairs of three-point functions,

and ones where all three-point functions will have one point in common with each other.

A representative example of the second type is the Wick contraction 14 − 25 − 36. Its

contribution to the spectral function is given by

Iab ⊃
∫
dx1,...,9
Vol

⟨Õ(x1)Õ(x2)Õ†
A(x7)⟩⟨OA(x7)Õ(x3)Õ†

B(x8)⟩a⟨OB(x8)Õ(x4)Õ†
C(x9)⟩b×

⟨OC(x9)Õ(x5)Õ(x6)⟩⟨O(x1)O(x4)⟩⟨O(x2)O(x5)⟩⟨O(x3)O(x6)⟩ . (2.182)

As usual we have some freedom in what operators to shadow transform. In this case, this

is particularly relevant, since out of the three shadow factors, we can have either zero, one

or two ”difficult” shadow factors, depending on what operators we transform. Sticking to

the easiest possibility, we inevitably get only one common point per three-point function,

which means that once again we need to use crossing relations or 6j symbols to proceed

with the position space integrals. It is convenient to cross through OA(x7) and then do
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the x2,3 integrals using the bubble formula. In the end we get

Iab ⊃

 ∆ [∆̃B, JB] [∆A, JA]

∆̃ ∆̃ [∆C , JC ]


ac

S([Õ]ÕÕA)S(OC [Õ]Õ)S(OCO[Õ])× (2.183)

(
⟨ÕÕÕ†

C⟩, ⟨OOOC⟩
)

µ(∆C , JC)

(
⟨OÕ†

BOC⟩c, ⟨ÕOBÕ†
C⟩b
)

There is just one more class of Wick contractions to analyze.

Non-trivial contractions: two points in common

We can also have two-point functions connecting the adjacent three-point functions of the

partial wave. A representative example for this case is the Wick contraction 16− 23− 45.

The contribution to the spectral function is given by

Iab ⊃
∫
dx1,...,9
Vol

⟨Õ(x1)Õ(x2)Õ†
A(x7)⟩⟨OA(x7)Õ(x3)Õ†

B(x8)⟩a⟨OB(x8)Õ(x4)Õ†
C(x9)⟩b×

⟨OC(x9)Õ(x5)Õ(x6)⟩⟨O(x1)O(x6)⟩⟨O(x2)O(x3)⟩⟨O(x4)O(x5)⟩ . (2.184)

Once again, we have the freedom to perform the shadow transforms, and we can get either

zero, one or two hard factors. Let us get all simple factors by making the choice

Iab ⊃
∫
dx1,...,9
Vol

⟨Õ(x1)O(x3)Õ†
A(x7)⟩⟨OA(x7)Õ(x3)Õ†

B(x8)⟩a⟨OB(x8)Õ(x4)Õ†
C(x9)⟩b×

S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)⟨OC(x9)O(x4)O(x1)⟩ . (2.185)

There are now two possible approaches. We can try to do, for example the x3, x7 integrals,

which would involve a bubble integral with a spinning operator integrated over∫
3,7

⟨Õ(x1)O(x3)Õ†
A(x7)⟩⟨OA(x7)Õ(x3)Õ†

B(x8)⟩a =
δÕB ,Oδ(x1 − x8)

µ(∆, 0)

(
⟨ÕOÕA⟩, ⟨OÕOA⟩

)
.

(2.186)

This would mean that the operator exchanged at OB(x8) would need to be the same as

the external operator. It is not hard to argue that this is possible in MFT. We are then

able to do the final three-point pairing and obtain

I ⊃ S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)

(
⟨ÕOÕA⟩, ⟨OÕOA⟩

)
µ(∆, 0)

(
⟨ÕÕÕC⟩, ⟨OOOC⟩

)
.

(2.187)

Note that the tensor structure indices went away, since OB became a scalar operator, and

therefore all tensor structures became unique.
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2.C.2 Partial wave decompositon and conformal blocks

In the previous section we formally derived the partial wave decomposition of MFT six-

point functions. However, to obtain the actual CFT data, we need to write down the

conformal block decomposition and read-off the OPE coefficients. In this subsection, we

establish a relation between the partial wave decomposition and the conformal block ex-

pansion. We quickly review the case of the four-point function which can be expanded in

partial waves as

⟨O1O2O3O4⟩ =
∑
ρ

∫ d
2
+i∞

d
2

d∆

2πi
Iab(∆, ρ)Ψ

Oi(ab)
O (xi) + discrete . (2.188)

Here discrete is associated with possible additional isolated contributions, notably includ-

ing the identity. The partial wave is defined in terms of a conformally-invariant integral

involving two three-point structures

Ψ
Oi(ab)
O (xi) =

∫
ddx⟨O1O2O(x)⟩(a)⟨O3O4Õ†(x)⟩(b) . (2.189)

In order to relate the partial wave decomposition to conformal blocks we follow the

strategy of [150]. The partial wave in (2.189) is a solution of the Casimir equation and

therefore one can establish its relation to conformal blocks by uniquely estimating its form

in the OPE limit x1 → x2. Obviously the Euclidean OPE limit cannot be taken simply

inside the integral as the integrand probes regions where the OPE in the pair (12) is no

longer valid. However, understanding the leading behaviour outside this region is enough

to match those contributions to a given conformal block. For concreteness, consider the

replacement

⟨O1O2O(x)⟩(a) → C
(a)
12O⟨O†(x2)O(x)⟩ , (2.190)

where C
(a)
12O encodes leading terms in the OPE O1×O2. With this replacement the integral

in (2.189) becomes a shadow transform of Õ†,

Ψ
Oi(ab)
O ∼ C

(a)
12O⟨O3O4S[Õ†]⟩(b) = S(O3O4[Õ†])bcC

(a)
12O⟨O3O4O†⟩(c) . (2.191)

On the other hand, the conformal block G
(ab)
O is a solution of the Casimir equation, which

in the OPE limit of O1 ×O2 behaves as

G
(ab)
O ∼ C

(a)
12O⟨O3O4O†⟩(b) , (x1 → x2) . (2.192)
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It is thus clear that the partial wave must contain a term

Ψ
Oi(ab)
O ⊃ S(O3O4[Õ†])bcG

(ac)
O . (2.193)

Similarly, if one performs an OPE on O3 ×O4 instead, it is straightforward to show that

the partial wave contains a term

Ψ
Oi(ab)
O ⊃ S(O1O2[O])acG

(cb)

Õ
. (2.194)

Putting everything together we conclude that

Ψ
Oi(ab)
O = S(O3O4[Õ†])bcG

(ac)
O + S(O1O2[O])acG

(cb)

Õ
, (2.195)

which reflects the fact that the Casimir equation is invariant under ∆ → d−∆. Inserting

this relation on (2.188), extending the integration region along the entire imaginary axis

and using shadow symmetry, allows us to write

⟨O1 . . .O4⟩ =
∑
ρ

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
Cac(∆, ρ)G

(ac)
O , (2.196)

where Cac(∆, ρ) ≡ Iab(∆, ρ)S(O3O4[Õ†)bc. As usual we can then deform the contour in-

tegration away from the principal series and pick up poles of Cac(∆, ρ) on the real line,

which have residues that encode CFT data. For a particular exchanged operator O∗, we

have

C12∗C34∗ = −Res∆=∆∗C(∆, ρ∗) . (2.197)

This formalism can straightforwardly be adapted to the case of higher-point functions.

For five-point functions, the discussion has already been presented in [49], but we also

review it here. We consider the partial wave

Ψ
Oi(abc)
A,B (xi) =

∫
ddxAd

dxB⟨O1O2OA⟩(a)⟨Õ†
AO5Õ†

B⟩(b)⟨OBO3O4⟩(c) (2.198)

where OA,B are exchanged operators. A five-point function can be decomposed in terms

of this partial wave

⟨O1 . . .O5⟩ =
∑
ρA,ρB

∫ d
2
+i∞

d
2

d∆A

2πi

∫ d
2
+i∞

d
2

d∆B

2πi
Iabc(∆A, ρA; ∆B, ρB)Ψ

Oi(abc)
A,B (xi) . (2.199)

To expand this partial wave in terms of conformal blocks we again consider OPE limits.

In particular, we take x1 → x2 and x3 → x4 at the level of the integrand and we observe
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that the partial wave must contain the term

Ψ
Oi(abc)
A,B (xi) ⊃ C

(a)
12AC

(c)
34B⟨S[Õ

†
A]O5S[Õ†

B]⟩(b) = (S5B̃
Ã

)bd(S
A5
B̃

)de C
(a)
12AC

(c)
34B⟨O

†
AO5O†

B⟩(e)︸ ︷︷ ︸
∝G

(aec)
AB

,

(2.200)

where we have used the shorthand notation SBC
A = S([OA]OBOc) and recognized the

leading behaviour of the conformal block G
(aec)
AB in the OPE limits x1 → x2 and x3 → x4.

As above, we notice that the partial wave Ψ
Oi(abc)
A,B (xi) is a solution of the Casimir equations,

one for each OPE exchange, and therefore it enjoys the invariance ∆ ↔ d − ∆. We can

then propose the decomposition

ΨOi
A,B(xi) = R1GAB(xi) +R2GÃB

(xi) +R3GAB̃
(xi) +R4GÃB̃

(xi) , (2.201)

where, as we have seen, R1
a
b = (S5B̃

Ã
)ac (S

A5
B̃

)cb. In order to find the remaining Ri’s we explore

the symmetry of the partial wave:

Ψ
Oi(abc)
A,B (xi) =

∫
ddxAd

dxB⟨O1O2OA⟩(a)⟨Õ†
AO5Õ†

B⟩(b)⟨OBO3O4⟩(c)

=

∫
ddxAd

dx′Ad
dxB((S

5B̃
A )−1)bd⟨O1O2OA⟩(a)⟨Õ†

AÕA′⟩⟨O†
A′O5Õ†

B⟩(d)⟨OBO3O4⟩(c)

=

∫
ddxAd

dxB(S
12
A )ad((S

5B̃
A )−1)be⟨O1O2ÕA⟩(d)⟨O†

AO5Õ†
B⟩(e)⟨OBO3O4⟩(c)

= (S12
A )ad((S

5B̃
A )−1)beΨ

Oi(dec)

Ã,B
(xi) .

(2.202)

Performing an OPE expansion on the Ψ
Oi(abc)

Ã,B
(xi), we observe

Ψ
Oi(abc)

Ã,B
(xi) ⊃ (S5B̃

A )bd(S
Ã5
B̃

)deG
(aec)

ÃB
(xi) , (2.203)

from which follows that

R2
ab
de = (S12

A )ad(S
Ã5
B̃

)be . (2.204)

Similarly, one can show that

R3 = S5B̃
Ã
S34
B , R4 = S12

A S
34
B . (2.205)

Just as we have shown in the 4-point case, one can use the shadow symmetry of Iabc to

extend the region of integration such that

⟨O1 . . .O5⟩ =
∑
ρA,ρB

∫ d
2
+i∞

d
2
−i∞

d∆A

2πi

∫ d
2
+i∞

d
2
−i∞

d∆B

2πi
Iabc(∆A, ρA; ∆B, ρB)(S

5B̃
Ã

)bd(S
A5
B̃

)deG
aec
AB .

(2.206)
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The exact same techniques can be applied to six-point functions. Here, we focus on

the snowflake decomposition which admits the partial wave expansion (2.165), where the

snowflake partial wave is defined in (2.161). In a completely analogous procedure as dis-

cussed above, we can relate this partial wave to conformal blocks. In particular, from the

shadow invariance of the Casimir equations it is natural to expand the partial wave as

ΨOi
A,B,C(xi) = R1GABC +R2GÃBC

+R3GAB̃C
+R4GABC̃

+R5GÃB̃C
+R6GAB̃C̃

+R7GÃBC̃
+R8GÃB̃C̃

, (2.207)

where

R1 = SB̃C̃
Ã

SAC̃
B̃
SAB
C̃

, R2 = S12
A S

ÃC̃
B̃
SÃB
C̃

, R3 = S34
B S

B̃C̃
Ã

SAB̃
C̃

, R4 = S56
C S

B̃C̃
Ã

SAC̃
B̃

,

R5 = S12
A S

34
B S

ÃB̃
C̃

, R6 = S34
B S

56
C S

B̃C̃
Ã

, R7 = S12
A S

56
C S

ÃC̃
B̃

, R8 = S12
A S

34
B S

56
C .

(2.208)

The computation of these coefficients exactly mimics the computations in (2.202) and

below. One can now insert (2.207) on the partial wave expansion and extend the region of

integration to the whole imaginary axis, keeping only one term which reads

⟨O1 . . .O6⟩ =
∑

ρA,ρB ,ρC

∫ d
2
+i∞

d
2
−i∞

d∆A

2πi

d∆B

2πi

d∆C

2πi
Iabcd(∆A, ρA; ∆B, ρB; ∆C , ρC)×

SB̃C̃
Ã

d

e
SAC̃
B̃

e

f
SAB
C̃

f

g
G

(abcg)
ABC . (2.209)

2.C.3 Direct computation of spinning shadow coefficients

In the previous subsections, we have repeatedly come across shadow coefficients involving

multiple spinning operators but the computation of these shadow coefficients is an impor-

tant question on its own. In this subsection, we will derive some of them using the shadow

formalism. In [150] some of these coefficients were computed using weight-shifting opera-

tors from which recursion relations were derived [47]. Here, we extend these results and

compute directly the explicit integration involved in the definition of these coefficients. We

can write the shadow transform of an operator in a three-point structure as

⟨O1O2S[O3]⟩(a) =
∫
ddx0⟨Õ3Õ†

0⟩⟨O1O2O0⟩(a) , (2.210)

where we have an implicit contraction of indices. Here we only consider symmetric and

traceless representations of the conformal group and so the two- and three-point structures

can be written in terms of the two fundamental building blocks [32] that appeared in (2.14).
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In particular we choose the normalization of the two-point structure to take the form

⟨O(x1, z1)O(x2, z2)⟩ =
HJ

12

x∆+J
12

. (2.211)

On the other hand, the three-point structure is given by (2.13) once we omit the OPE

coefficients. As in the main text, we use here the index-free notation of [32, 46]. In

particular, in what follows we will use the formula

(a · Dz)
J(b · z)J =

(J !)2

2J
(a2b2)

J
2Ch−1

J

(
a · b

(a2b2)
1
2

)
, (2.212)

where Ch−1
J is a Gegenbauer polynomial and h = d/2.

Before moving on to more complicated examples, let us, as a warm-up, compute the

shadow integral for three scalar operators. In this case, we can use the well-known star-

triangle formula [151]∫
ddx0

1

(x210)
a(x220)

b(x230)
c
=
πhΓ(h− a)Γ(h− b)Γ(h− c)

Γ(a)Γ(b)Γ(c)︸ ︷︷ ︸
≡G(a, b, c)

1

(x212)
h−c(x213)

h−b(x223)
h−a

,

(2.213)

with a+ b+ c = 2h to get

⟨ϕ∆1ϕ∆2S[ϕ∆3 ]⟩ =
∫
ddx0

1

x
2(d−∆3)
30

1

(x212)
∆1+∆2−∆3

2 (x210)
∆1−∆2+∆3

2 (x220)
−∆1+∆2+∆3

2

=
πhΓ(∆3 − h)Γ( ∆̃3+∆1−∆2

2 )Γ( ∆̃3+∆2−∆1
2 )

Γ(2h−∆3)Γ(
∆3+∆1−∆2

2 )Γ(∆3+∆2−∆1
2 )

⟨ϕ∆1ϕ∆2ϕ∆̃3
⟩ ,

(2.214)

from which we can easily read the shadow coefficient S(ϕ∆1ϕ∆2 [ϕ∆3 ]).

In [150] the authors computed the shadow coefficients for the case where two of the

operators were scalars and one of them had spin J . Here we compute the coefficients

corresponding to two spinning operators and a scalar and we shall recover their results as

a restriction. Let us take the operators at x1 and x3 to be spinning operators whereas the

operator at x2 is a scalar. In this case the three-point structure simplifies and we are left

just with the label ℓ2 = ℓ. We first do a shadow transform of the operator at x3

⟨O∆1,J1ϕ∆2S[O∆3,J3 ]⟩(ℓ) =

=

∫
ddx0⟨Õ∆3,J3(x3, z3)Õ†

∆3 µ1...µJ3
(x0)⟩⟨O∆1,J1(x1, z1)ϕ∆2(x2)O

µ1...µJ3
∆3

(x0)⟩(ℓ) ,
(2.215)

where the indices to be contracted are explicitly shown. In light of the results of [32],

this contraction can be simply done in terms of encoding polynomials that depend on
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the buildings blocks Hij and Vi,jk. By doing so, one immediately recognizes that the

term associated with the two-point function is already of the desired form (a · Dz0)
J3 with

aµ = (x03·z3)xµ03− 1
2x

2
03z

µ
3 .

25 The terms in the three-point structure require some additional

care. It is easy to see however that the z0-dependent terms can be completed to a binomial

of degree J3 of form (b · z0)J3 , as appears in (2.212). After using this equation, one then

needs to expand back the binomial and collect only the term we have started with. The

computation is straightforward and leads to the following expression for our integral∫
ddx0

(x212)
− 1

2
(∆1+J1+∆2−∆3+J3−2ℓ)

2J3(x201)
1
2
(∆1+J1−∆2+∆3−J3)(x202)

1
2
(−∆1−J1+∆2+∆3−J3+2ℓ)(x203)

∆̃3+J3
×

× V J1−ℓ
1,20

(
V3,01 + V3,20

)J3−ℓ (
V3,01(x01 · z1)−H0,3,1

)ℓ
, (2.216)

where for compactness we defined Hi,j,k = (xij · zj)(xkj · zk)− 1
2(zj · zk)x2ij .

After performing the expansion of the integrand, one observes that all the terms to be

integrated take the simple form

(x01 · z1)α(x03 · z3)β
(x201)

a(x202)
b(x203)

c
. (2.217)

The terms in the numerator can be found from taking derivatives of the denominator as

(zj · ∂xj )
α(x2ij)

−a = 2α
Γ(a+ α)

Γ(a)

(xij · zj)α
(x2ij)

a+α
. (2.218)

It is then easy to integrate the terms in (2.217) by swapping the order of integration and

differentiation∫
ddx0

(x01 · z1)α(x03 · z3)β
(x201)

a(x202)
b(x203)

c
=
Γ(a− α)

2αΓ(a)

Γ(c− β)

2βΓ(c)
G(a− α, b, c− β)×

×
(
z1 · ∂x1

)α (
z3 · ∂x3

)β
(x212)

c−h−β(x213)
b−h(x223)

a−h−α ,

(2.219)

where a+ b+ c = 2h+ α+ β and G(a, b, c) was defined in (2.213).

We can use a conformal transformation to fix the position of the scalar operator x2 at

infinity. For a scalar, this can be safely done without loss of information. Indeed, there is

only one nonzero ℓi which controls both z1 and z3 and there is no z2-dependence. If one

does so, the integrand simplifies and the x2i2 drop out. The action of the derivatives can

25Notice that a2 = 0. We may then just keep the term k = 0 in the series definition of the Gegenbauer

polynomial, Cλ
J (z) =

∑⌊ J
2 ⌋

k=0

(−1)k(λ)J−k(2z)
J−2k

k!(J − k)!
.
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then be given in terms of known functions,

(
z1 · ∂x1

)α (
z3 · ∂x3

)β
(x213)

b−h =2α2β
Γ(h+ α+ β − b)

Γ(h− b)
(x31 · z1)α(x13 · z3)β(x213)b−h−α−β×

× 2F1

(
− α,−β, b+ 1− h− α− β;

z1 · z3 x213
2x13 · z3x13 · z1

)
.

(2.220)

Putting everything together, we find

⟨O∆1,J1ϕ∆2S[O∆3,J3 ]⟩(ℓ) =

=

J3−ℓ∑
p=0

ℓ∑
q=0

ℓ−q∑
s=0

p∑
t=0

q∑
r=0

∞∑
w=0

s+w∑
m=0

(
J3 − ℓ

p

)(
ℓ

q

)(
ℓ− q

s

)(
p

t

)(
q

r

)(
s+ w

m

)
×

(−1)J3+r+s+t+2w−m 2−J3

πhΓ
(
J1+J3+2r−2s+2t+∆1−∆2+∆̃3

2

)
Γ

(
J1−J3+2p−2t−∆1+∆2+∆̃3

2

)
Γ
(
J1+J3−2p−2q+2r−2s+2t+∆1−∆2+∆3

2

)
Γ
(
J1−J3+2p−2t−∆1+∆2+∆3

2

)×
Γ (∆3 − h)

Γ (1 + w) Γ
(
p+ q + ∆̃3

) (−p− q)w (−J1 + q − r + s)w(
2−J1−J3−2r+2s−2t−∆1+∆2−∆̃3

2

)
w

Hm
13V

J1−m
1,23 V J3−m

3,12

(x213)
∆1+J1−∆2+∆̃3+J3

2︸ ︷︷ ︸
⟨O∆1,J1ϕ∆2O∆̃3,J3

⟩(m)

,

(2.221)

from which we can easily read the shadow coefficients associated with each possible three-

point structure. One can check that this expression reproduces the results of [150] as a

special case.26 It is worth stating that all the sums here have indeed a finite number of

terms. This can be seen from the expression above by noticing that for sufficiently large w

the Pochhammer symbols in the numerator will vanish.

One could have wanted to do instead the shadow transform of the scalar operator. That

case is simpler as there is no need to deal with the contractions of indices as we did in the

beginning of this subsection. Keeping x2 at infinity, we have the following integral to do∫
ddx0

(x213)
−∆1−J1+∆2−∆3−J3

2

(x201)
∆1+J1+∆2−∆3−J3

2 (x203)
−∆1−J1+∆2+∆3+J3

2

V J1−ℓ
1,03 V J3−ℓ

3,10 Hℓ
13 , (2.222)

26Strictly speaking there is a 2−J3 difference which follows from a different normalization of the two-point
function.
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which can be integrated in the exact same way as before. This is a straightforward com-

putation and we find

⟨O∆1,J1S[ϕ∆2 ]O∆3,J3⟩(ℓ) =

J1−ℓ∑
p=0

J3−ℓ∑
q=0

ℓ∑
r=0

∞∑
s=0

ℓ+s−r∑
m=0

(
J1 − ℓ

p

)(
J3 − ℓ

q

)(
ℓ

r

)(
ℓ+ s− r

m

)
(−1)J1+J3−p+q−r+2s+ℓ−m×

πhΓ (J1 + J3 − p− q − 2ℓ+∆2 − h) Γ
(
−J1+J3+∆1+∆̃2−∆3

2

)
Γ
(
J1−J3−∆1+∆̃2+∆3

2

)
Γ (1 + s) Γ

(
∆̃2

)
Γ
(
J1+J3−2p−2ℓ+∆1+∆2−∆3

2

)
Γ
(
J1+J3−2q−2ℓ−∆1+∆2+∆3

2

) ×

(−J1 + p+ ℓ)s(−J3 + q + ℓ)s
(1 + h+ p+ q + 2ℓ− J1 − J3 −∆2)s

Hm
13V

J1−m
1,23 V J3−m

3,12

(x213)
∆1+J1−∆̃2+∆3+J3

2︸ ︷︷ ︸
⟨O∆1,J1ϕ∆̃2

O∆3,J3⟩(m)

. (2.223)

The shadow coefficients computed in this way also reproduce the known results of [150] in

the appropriate restriction.

Lastly, let us comment on the more generic situation where all operators have spin,

which is, of course, more complicated. Note that we were only able to write the action of

the derivatives in such a compact form because we fixed x2 to infinity. In the more general

case, we are no longer able to naively set x2 to infinity since we would lose control of ℓ1 and

ℓ3. On the other hand, we can still successfully integrate the shadow transform in a case-

by-case basis, but this becomes cumbersome for large values of spin. For completeness, let

us write down the integral that remains after having dealt with the contraction of indices∫
ddx0

(−1)ℓ1+ℓ2(x212)
−∆1−J1−∆2−J2+∆3−J3+2ℓ2

2

2J3(x201)
∆1+J1−∆2−J2+∆3+J3

2 (x202)
−∆1−J1+∆2+J2+∆3−J3+2ℓ2

2 (x203)
∆̃3+J3−ℓ2(x213)

ℓ2(x223)
J3−ℓ1

×

×Hℓ3
12V

J1−ℓ2−ℓ3
1,20 V J2−ℓ1−ℓ3

2,01

(
V3,02

(
V2,01x

2
01 − x12 · z2x202

)
+H0,3,2x

2
12

)ℓ1×
×
(
V1,03

(
V3,02x

2
02x

2
13 + V3,21x

2
03x

2
12 − x13 · z3x203x223

)
+H0,1,3x

2
13x

2
23

)ℓ2×
×
(
V3,21x

2
03x

2
12 + V3,02

(
x202x

2
13 − x201x

2
23

))J3−ℓ1−ℓ2
, (2.224)
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where we assume that the shadow transform is done in the operator at x3. One can easily

see that all the terms can be integrated in the same way as before∫
ddx0

(x01 · z1)α(x02 · z2)β(x03 · z3)γ
(x201)

a(x202)
b(x203)

c
=

Γ(a− α)

2αΓ(a)

Γ(b− β)

2βΓ(b)

Γ(c− γ)

2γΓ(c)
G(a− α, b− β, c− γ)

×
(
z1 · ∂x1

)α (
z2 · ∂x2

)β (
z3 · ∂x3

)γ
(x212)

c−h−γ(x213)
b−h−β(x223)

a−h−α , (2.225)

where a+ b+ c = 2h+ α+ β + γ.

This is all we need to successfully compute any shadow coefficient of a three-point

function of three operators in spin Ji representation, but we did not manage to find a

simple and compact formula for the action of derivatives in the above expression. While

one can use this formalism to compute the shadow coefficients of three spinning operators,

in practice the procedure becomes too computationally expensive at large spin. It would

be interesting to investigate if the weight-shifting formalism of [150] offers a more efficient

alternative.





Chapter 3

Conformal Multi-Regge Theory

3.1 Introduction

The vast majority of results of conformal bootstrap rely on the study of correlation func-

tions of four primary operators. While the full set of these contain all the dynamical data

of a theory, it is true that as the spin of these operators is increased the task of finding

these data becomes more and more challenging. This is the reasoning why most confor-

mal bootstrap works focus on correlation functions of scalar operators. In recent years,

on the other hand, it has become more and more appreciated the fact that consistency

conditions at the level of scalar higher-point functions can be the appropriate setting to

deal with this problem. Indeed, higher-point correlators give us access to more data than

their lower-point counterparts and in particular can probe many spinning data. Due to

the central role of conformal blocks in the conformal bootstrap, these have been considered

for higher-point functions in [51, 57–62, 152, 153]. Although their structure is generically

intricate, it simplifies drastically in the lightcone limit where bootstrap studies have been

performed in [1, 64–66]. Higher-point correlation functions have also been considered in

multiple contexts, for instance in holographic theories [3, 57, 129, 130] and more recently

in numerical bootstrap [58, 59, 68].

An important tool in the analytical conformal bootstrap is the Regge limit [83, 84, 86].

The Regge limit of four-point correlation functions in CFTs is the conformal analogue of

the limit of high centre-of-mass energy at fixed impact parameter of scattering amplitudes

in quantum field theory. Through AdS/CFT, it is thus relevant to study high-energy

scattering in the bulk. In terms of cross ratios, Regge limit resembles the behavior of

Euclidean OPE. However, in Regge limit this happens after a branch-cut of the conformal

97
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block decomposition is crossed. Conformal Regge theory provides a resummation of the

OPE in terms of families of operators called Regge trajectories [86]. In doing so, one needed

to assume a well-defined analytic continuation of OPE data to complex spin, which was later

established by the inversion formula [79]. This also puts the analytical conformal bootstrap

using the lightcone limit on a firm footing, by showing that the large spin expansion is not

asymptotic, but convergent. Regge limit has also been studied in the context of holography

[83, 84, 154]. Recently, these ideas have been tested on several physical models, with great

success [78, 155]. Regge limit and Regge behavior of correlation functions have also played

an important role in imposing causality constraints [92–94, 96, 156, 157].

This success in CFTs and the natural interest for multi-particle high-energy scattering

calls for a deeper analysis of Regge limit. In this chapter we start the discussion of the

generalization of the Regge limit to higher-point functions, mostly focusing on the case of

five-point functions. In the process we will also briefly review flat-space literature about

Regge theory for higher-point amplitudes that has not been object of attention for a long

time.

The outline of the chapter is as follows. In section 3.2, we review the literature on the

multi-Regge limit for S-matrix. In section 3.3, we discuss the setup of five-point correlation

functions in conformal field theories. We review the Euclidean OPE limit and the lightcone

limit and contrast it with our proposal for Regge limit. In section 3.4, we discuss analytic

properties of the correlator as it is continued to Regge limit. Here we also consider the

corresponding Mellin amplitude and Mellin partial wave and show that they produce the

expected Regge behavior in position space. In subsection 3.4.4, we consider the analytic

continuation of the Mellin amplitude in three quantum numbers by means of Sommerfled-

Watson transforms and resum the contribution of two leading Regge trajectories. Finally,

we conclude with some open directions in section 3.5.

3.2 Scattering in flat-space and Regge theory

In this section, we review Regge theory for scattering amplitudes in flat space. We begin by

reviewing the key ingredients in the case of 2 → 2 scattering process in four-dimensional

Lorentzian spacetime. Then, we review the generalization to the case of higher-point

scattering amplitudes. It will serve as the main inspiration for the conformal Regge theory

that we will consider later.
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Let us restrict to the more familiar case of 2 → 2 scattering, where we define the

Mandelstam invariants as

s = −(k1 + k3)
2 , t = −(k1 + k2)

2 , u = −(k1 + k4)
2, (3.1)

with ki the external incoming momenta. The Regge limit corresponds to the high-energy

limit of an amplitude, where s → ∞ with fixed t. Regge theory, on the other hand,

comes in play to address the experimental observation that s-channel processes exhibit a

small t peak whenever there are exchanges of particles or resonances in the t-channel. One

would like to understand this behavior by considering a partial wave decomposition of the

amplitude. Consider the scattering amplitude of four spinless particles with equal mass m

in the t-channel decomposition

A(s, t) =

∞∑
J=0

(2J + 1)aJ(t)PJ(z) , (3.2)

where z = cos θ = 1 + 2s/(t − 4m2) and PJ(z) is a Legendre polynomial of first kind of

degree J . θ denotes the t-channel scattering angle and J is the angular momentum of the

exchanged particles. This series converges in the t-channel physical region, namely the

region t > 4m2 and s < 0, and therefore is not reliable to study the large s limit. Note

that the large s limit of a spin J partial wave behaves as sJ . The infinite sum over J gets

more and more contributions from the higher J partial waves, in this limit. Regge theory

provides a rewriting of (3.2) in a form that can be analytically continued to this large s

region. This is done by complexifying angular momentum, extending Regge’s idea [158],

and allows to resum the contribution of a family of particles that correctly predict the

observed large s behavior.

Naturally, one would like to extend Regge theory to multi-particle exchange ampli-

tudes. The analytic structure of these amplitudes is less well understood than the four-

point analogue. The increasing number of Mandelstam invariants turns this into a more

technically-challenging goal, but there have been important contributions in the 70’s that

we now briefly review for the case of five-point amplitudes (see [159–169] for more details).

As represented in figure 3.1 (left), one can define ten two-body Mandelstam invariants

for a five-point function, in an analogous way to the 2 → 2 scattering definition (3.1), i.e.

sij = −(ki + kj)
2 , (3.3)

where ki are again external incoming momenta. Similarly, we define tij- and uij-type
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Figure 3.1: The ten two-body Mandelstam invariants of a five-point scattering amplitude
(left) and our choice of five independent ones (right).

invariants. Since not all the invariants are independent, we shall choose the following five

as independent, s13, s25, s45, t12, t34, as shown in figure 3.1 (right). We will be focusing on

the double Regge limit where s25, s45 → ∞, and necessarily s13 → ∞, while t12 and t34 are

held fixed. It is also possible to define a single Regge limit by considering either s25 → ∞
with s13/s25 also fixed, or s45 → ∞ with s13/s45 fixed.1

Let us consider the partial-wave decomposition of an amplitudeA = A(s25, s45, η; t12, t34)

of five identical massive particles in the t12, t34 channels,

A =
∞∑

m=−∞

∞∑
J1,2=|m|

2∏
i=1

(2Ji + 1)aJ1,J2,m(t12, t34)z
mdJ10m(cos θ1)d

J2
m0(cos θ2) , (3.4)

where η ≡ s13/(s25s45) and z ≡ eiθToller , as defined below. Here m denotes the allowed

helicities of exchanged particles. We also use Wigner-d functions which can be written in

terms of Jacobi polynomials Pα,β
J as

dJm′m(cos θ) =

(
(J +m)! (J −m)!

(J +m′)! (J −m′)!

) 1
2
(
sin

θ

2

)m−m′ (
cos

θ

2

)m+m′

Pm−m′,m+m′

J−m (cos θ) ,

(3.5)

with

Pα,β
J (z) =

J∑
n=0

(−1)n

n!

J !

(J − n)!

Γ(n+ α+ 1)Γ(J − n+ β + 1)

Γ(J + α+ β + 2)
zn+α (1− z)J−n+β . (3.6)

The scattering angles θ1, θ2 and θToller have a clear physical meaning - see e.g. [164]. Con-

sider the scattering process shown in the figure 3.1 with the exchanged momenta q21 = t12

1Another interesting limit to consider is the helicity-pole limit where s25 → ∞ with s13/s25 → ∞ while
t12, t34 and s45 are fixed (or the one where the roles of s25 and s45 are swapped). This limit is experimentally
accessible in inclusive cross-sections [170]. It is also possible to consider the limit s13 → ∞ with all the
other Mandelstam invariants kept fixed.
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z

y

x

p⃗5
p⃗2

p⃗3

θToller

θ2

Figure 3.2: Scattering process shown in the resting frame of exchanged momentum
q2. This defines the angles θ2 and θToller. θ1 is defined analogously in the rest frame of

exchanged momentum q1.

and q22 = t34. Firstly, we lump together particles 3, 4 and treat them as a single particle of

momentum q2. The angle θ1 is defined as the scattering angle of the process 12 → 5(34)

which happens in a single plane in the center of mass frame. Secondly, we consider the rest

frame of the exchanged momentum q2. We denote the three momentum of particle-i by p⃗i.

As depicted in figure 3.2, we can choose a coordinate system where p⃗5 is aligned with the

z-axis and p⃗2 lies somewhere in xz-plane. We define θ2 as the zenith-angle of p⃗3, whereas

θToller is the azimuth angle. Alternatively, the Toller angle can be thought of as the angle

between the two scattering planes corresponding to the q1 and q2 rest frames, respectively.

The scattering angles are related to the Mandelstam invariants in a nontrivial way -

see e.g. [162, 165],

s25 = 2m2 +
1

2

(
t34 −m2 − t12

)
+

1

2

(
(t12 − 4m2)λ(t12, t34,m

2)

t12

)1/2

cos θ1 ,

s45 = 2m2 +
1

2

(
t12 −m2 − t34

)
+

1

2

(
(t34 − 4m2)λ(t12, t34,m

2)

t34

)1/2

cos θ2 ,

s13 = 2m2 +
1

4

(
m2 − t12 − t34

)
+

1

4

(
(t12 − 4m2)λ(t12, t34,m

2)

t12

)1/2

cos θ1 (3.7)

+
1

4

(
(t34 − 4m2)λ(t12, t34,m

2)

t34

)1/2

cos θ2 +
1

4

(
(t12 − 4m2)(t34 − 4m2)

t12t34

)1/2

×
(
m2 − t12 − t34

)
cos θ1 cos θ2 −

1

2

(
(t12 − 4m2)(t34 − 4m2)

)1/2
sin θ1 sin θ2 cos θToller ,
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u = 4m2 s = 4m2

s

u0 s0

Figure 3.3: Singularities of A(s, t) in the s complex-plane at fixed t.

where we use λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca. Note that here m corresponds to

the mass of the exchanged particles and should not be confused with helicity. We believe

the context makes clear which one we refer to. We emphasize that only s13 depends on

θToller. Moreover, in the double Regge limit,

η ∼ 2(t12t34)
1/2 cos θToller +m2 − t12 − t34

λ(t12, t34,m2)
, (3.8)

independently of θ1 and θ2. This map suffers from some kinematical singularities in terms

of the variables t12, t34. These will be extracted from the possible types of singularities

that we study below and we focus only on dynamical singularities.

To explore the double Regge region from the partial wave decomposition (3.4), we need

a well-defined analytic continuation of the amplitude. In contrast to the 2 → 2 scattering,

for multiparticle scattering besides considering complex angular momentum, one also needs

to account for helicity dependence. As stressed in [159–162], the analytic continuation of

the amplitude to complex helicity values is also required. The proper procedure for analytic

continuation and its uniqueness deserve some comments. Let us first review some concepts

in the four-point case that will straightforwardly generalize to the five-point case we wish

to analyze in more detail.

We assume that a 2 → 2 scattering amplitude has only singularities with dynamical

origin. Namely, we only consider poles associated with bound states and branch-cuts

starting at physical thresholds for particle production. 2

In figure 3.3 we depict these singularities at fixed t in the complex s plane. We assume

the following dispersion relation at fixed t

A(s, t) =
1

2πi

(∫ +∞

0
ds′

Discs(s
′, t, u′)

s′ − s
+

∫ +∞

0
du′

Discu(s
′, t, u′)

u′ − u

)
= AR(s, t) +AL(u, t) .

(3.9)

2In particular we ignore the possible existence of anomalous thresholds. However, as long as these lie on
the real axis and the analytic structure resembles figure 3.3 with a different branch point for some fixed t,
the discussion that follows remains valid.
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Here, we have extended the notion of discontinuities Discs and Discu to include the contri-

butions of bound-state poles.3 We have also defined AR and AL with respect to each of the

terms. As it is clear from the definition, each of the terms has only cut contributions along

one of the directions in the s complex plane. This fact is crucial in performing the analytic

continuation of the amplitude with good large J behavior which happens to be unique as

guaranteed by Carlson’s theorem. It is also useful to define the signatured amplitude 4

Aδ(s, t) =
1

2

(
AR(s, t) + δ AL(s, t)

)
, (3.10)

where δ = ±1. Note that we replace u by s in AL ensuring that there are only cuts in

a single direction. The full amplitude can be easily reconstructed from the signatured

amplitudes as

A(s, t) =
∑
δ=±1

(
Aδ(s, t) + δ Aδ(u, t)

)
. (3.11)

In what follows, we assume that the signatured amplitudes have the same analytic structure

as the full amplitude. This assumption greatly simplifies the discussion of dynamical singu-

larities of partial-wave amplitudes. We are entitled to consider the partial wave expansion

of the signatured amplitude

Aδ(s, t) =
∞∑
J=0

(2J + 1)aδJ(t)PJ(z) . (3.12)

Using the orthogonality of Legendre polynomials PJ and (3.10), we can write

aδJ(t) =
1

4πi

∫ +∞

z0

dz′
(
DiscsAR(s

′, t) + δDiscsAL(s
′, t)
)
QJ(z

′) , (3.13)

where z0 is the branch point of the discontinuity and QJ is the Legendre polynomial of the

second kind given by

QJ(z) =

∫ 1

−1
dζ

PJ(ζ)

z − ζ
. (3.14)

3We assumed that no subtractions were needed in order to neglect contributions from arcs at infinity
from the Cauchy integral that gives rise to the dispersion relation. If this is not the case, one should proceed
considering instead a subtracted amplitude.

4The reader might be familiar with an equivalent decomposition of the full amplitude in terms of even
and odd angular momentum contributions. These are composed of signatured amplitudes. Indeed we have
Aeven = A+(s, t) +A+(−s, t) and Aodd = A−(s, t)−A−(−s, t), where we use u ∼ −s in Regge limit.
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JC ′

C

Figure 3.4: Contour integrals for the Sommerfeld-Watson transform for the four particle
scattering in the J-complex plane. As one deforms the contour from C to C ′ one has
to consider the contribution from dynamical singularities which here we assume to be a

Regge pole.

Using the symmetry PJ(z) = (−1)JPJ(−z), we perform a Sommerfeld-Watson trans-

form of (3.12)

Aδ(s, t) =

∫
C

dJ

2πi

π

sinπJ
(2J + 1)aδ(J, t)PJ(−z) , (3.15)

where C is the closed contour depicted in figure 3.4. Due to the good large J behavior of

the partial-wave PJ , one can continuously deform the contour from C to C ′, as shown in

the same figure. We should account for all the possible singularities that may be encoun-

tered during this deformation. In this chapter, we always assume that these are pole-type

singularities 5

aδ(J, t) ≃ β(t)

J − α(t)
, (3.16)

where α(t) is a Regge trajectory and β(t) is regular in t. Regularity follows from the

assumption that Aδ(s, t) has the same analytic structure of the full amplitude A(s, t).

We also use the fact that Steinmann relations [171] impose the latter to have no double

discontinuity in s and t. At large s, we keep the rightmost pole as it gives the leading

contribution and write

Aδ(s, t) ∼ 1

2πi
(−s)α(t)Γ

(
− α(t)

)
β(t) , (3.17)

where we absorbed nonsingular factors into the definition of β(t).

5Other type of singularities like Regge cuts and nonsense-wrong-signature-fixed poles also exist. More-
over, singularities can also appear in a multiplicative manner but we neglect this scenario here for simplicity.
The interested reader can find a discussion on those in [165] and references thereafter.
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z

1 a>a<

Figure 3.5: Contour deformation in z = eiθToller for doing the Froissart-Gribov continu-
ation. The orthogonality relation holds on the black contours. We show the two different

branch cuts corresponding to a≷ discussed in (3.22).

For the five-particle case we consider a similar analytic structure of the amplitude in the

s25, s45 and s13 complex planes as in the four-particle case. 6 We would like to decompose

the full amplitude in terms of signatured amplitudes with only right-hand or left-hand cuts

for each s-type invariant. We immediately see that we have to consider 23 = 8 possible

signatures. Indeed, one writes

A(sij , tij) =
∑

δij=±1

{(
Aδ25δ45δ13(s25, s45, η, t12, t34) + δ25A

δ25δ45δ13(−s25, s45, η, t12, t34)+

(3.18)

δ45A
δ25δ45δ13(s25,−s45, η, t12, t34) + δ25δ45A

δ25δ45δ13(−s25,−s45, η, t12, t34)
)
+ δ13(η → −η)

}
,

where we make a slight abuse of notation by writing uij ∼ −sij as dictated by the double-

Regge limit we are exploring. Indeed, note that each of the signatured amplitudes Aδ25δ45δ13

is a function with only right-hand cuts in each of the invariants s25, s45 and s13. While

δ25, δ45 are the already familiar signatures associated with angular momenta in the t12 and

t34 channels, δ13 is a new signature related to the helicity at the central vertex.

6Generically one expects anomalous thresholds to exist in multipoint amplitudes. Here, however, we
consider the simpler case where they don’t appear. The same is done in the literature we are briefly
reviewing (see for instance, [159–162] and section 1.4 of [164] where there is brief discussion about anomalous
thresholds) and the counting of necessary signatured amplitudes follows from this assumption. It would be
interesting to understand how this counting is (or not) affected by the existence of anomalous thresholds
and how the partial-wave coefficients can be written as analytic functions of spin and helicity in that case.
Moreover, it would be relevant to understand if the existence of anomalous thresholds indeed alters the
asymptotic behaviour of the amplitude in the multi-Regge limit we describe here. Note, however, that
similarly to the four-point case we commented in footnote 2, if the anomalous thresholds lie on the real line
and the analytic structure still resembles that of figure 3.3, we do expect the counting and the discussion
of signatured amplitudes we review here to remain valid.
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Following [159], we first analyze the analytic continuation of helicity m to complex

values. Inspired by the form of the partial-wave decomposition (3.4), one expects the

following dispersion relation to hold in the z-complex plane,

A(sij , η, tij) =
1

2πi

(∫ −1−ϵ

−∞
+

∫ 1−ϵ

−1+ϵ
+

∫ +∞

1+ϵ

)
DisczA(sij , η

′, tij)

z′ − z
dz′ . (3.19)

To have a well-defined analytic continuation, we need to consider amplitudes with cuts

either only on the right or only on the left half plane in the respective Mandelstam variable.

Thus, we consider signatured amplitudes as introduced in (3.18). We can write

Aδ13(z) =
+∞∑

m=−∞
aδ13m zm , (3.20)

where we suppress the dependence on labels or parameters that are irrelevant for this

discussion. Using the fact that signatured amplitudes are functions with only right-hand

cuts, 7 we have

aδ13m =

(
1

2πi

)2
(∫ 1−ϵ

0
+

∫ +∞

1+ϵ

)∫
|z|=1

DisczA
δ13(z′)

z′ − z
z−m−1dz′dz . (3.21)

For z′ > 1 and m < 0 the z-integral gives 0, while for m ≥ 0, it gives z′−m−1. On the other

hand, if 0 < z′ < 1 and m ≥ 0, the residues at the two poles cancel and the integral yields

0, whereas for m < 0 we find −z′−m−1. We can then define, as shown in figure 3.5,

aδ13> (m) =
1

2πi

∫ ∞

1+ϵ
(z′)−m−1DisczA

δ13(z′)dz′ , (3.22)

aδ13< (m) =
1

2πi

∫ 1−ϵ

0
(z′)−m−1DisczA

δ13(z′)dz′ , (3.23)

where it is clear that aδ13> has a good asymptotic behavior in the right half-plane in the

complex m variable, whereas aδ13< does so on the left-half plane. We can thus perform a

Sommerfeld-Watson transform in m and write

Aδ13(z) =

∞∑
m=0

aδ13> (m)zm −
−1∑

m=−∞
aδ13< (m)zm

=
1

2πi

∫
CR

dm
πaδ13> (m)(−z)m

sinπm
− 1

2πi

∫
CL

dm
πaδ13< (m)(−z)m

sinπm

=
1

2πi

∫
C
dm

π
(
aδ13> (m) + aδ13< (m)

)
sinπm

(−z)m , (3.24)

7Note that taking z → −z is related with η → −η as one can see from (3.8).
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m

C = −1
2 + iR

CRCL

Figure 3.6: Contour integrals for the Sommerfeld-Watson transform in the m-complex
plane.

m m+1 m+2 m+3

Ji m

Poles of Γ(−m)

Poles of

Γ(−Ji+m)

Figure 3.7: Contour of integration in Ji and m-complex planes when the respective
variable is integrated first. Here, we only account for dynamical singularities given by
Regge poles and ignore the existence of Regge cuts and fixed poles. Note that there are

no dynamical singularities in the m-complex plane.

where the contours CR, CL and C are shown in figure 3.6. Recovering the previously

suppressed dependence and parameters, we have

aδ13≷ (m) =
∞∑

J1,J2=m

 2∏
i=1

(2Ji + 1)

 aδ25δ45δ13≷,J1,J2,m
(t12, t34)d

J1
0m(cos θ1)d

J2
m0(cos θ2) , (3.25)

which only makes sense if we also analytically continue in the two angular momenta,

aδ13≷ (m) =

 2∏
i=1

∫
Ci

dJi
2πi

π(2Ji + 1)

sinπ(Ji −m)

 aδ25δ45δ13≷ (J1, J2,m, t12, t34)d
J1
0m(−z1)dJ2m0(−z2) ,

(3.26)

with contours Ci as shown in figure 3.7 (left) and where zi = cos θi. This is a reasonable
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but non-trivial claim. In fact, [160, 161] was only able to check a well-defined analytic

continuation for a single angular momentum and helicity, but not the three simultaneously.

To the best of our knowledge, there is no derivation of the latter. In the following, we

assume that this defines a satisfactory analytic continuation of the signatured amplitude

in terms of the scattering angles and of t12 and t34. However, we would like to rewrite it in

terms of the Mandelstam invariants alone. This can be done by using the map (3.7). To

find the dependence on s25 and s45, we mimic the analysis of the four-particle case. On

the other hand, the η dependence requires one more comment. We assume that Aδ13 is

an even function of the Toller angle and, in particular, a function of cos θToller (and thus

invariant under z → 1/z)8. This requirement follows from the realization that η is an even

function of θToller and therefore only even functions of θToller can be rewritten in terms of

η. This ends up imposing aδ13> (m) = −aδ13< (−m) and justifies dropping the subscripts when

we write

Aδ13(η) =
1

2πi

∫
C
dm

πaδ13(m)

sinπm
(−η)m . (3.27)

Note that, as we write z in terms of η, we redefine what we mean by aδ13 . 9 We can

summarize the discussion on analytic continuations of five-particle amplitudes by writing

Aδ25δ45δ13(s25, s45, η, t12, t34) =

(
1

2πi

)3 ∫
C
dm

 2∏
i=1

∫
Ci

dJi(2Ji + 1)


π3dJ10m(− cos θ1)d

J2
m0(− cos θ2)(−η)m

sinπm sinπ(J1 −m) sinπ(J2 −m)
aδ25δ45δ13(J1, J2,m, t12, t34)

=

(
1

2πi

)3 ∫
C
dmΓ(−m)

 2∏
i=1

∫
Ci

dJi(2Ji + 1)Γ(−Ji +m)

 (3.28)

(−s25)J1−m(−s45)J2−m(−s13)maδ25δ45δ13(J1, J2,m, t12, t34) ,

where we used η = s13/(s25s45) and in the second equality aδ25δ45δ13(J1, J2,m, t12, t34) was

redefined.

Under the assumption that the analytic continuation of the signatured amplitude has

a good asymptotic behavior in J1, J2 and m such that we can ignore arcs at infinity, we

focus on possible singularities that one might encounter as we move the contours to the

left. In figure 3.7, we draw both m and Ji complex planes when the respective variable is

8See [165] for whenever this is not the case.
9In particular, as commented before, there are kinematical singularities in the map that we shall ignore

when we discuss dynamical singularities in aδ13(m).
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integrated first. In particular, we show the possible singularities. As before, we restrict our

analysis to Regge-pole-type of singularities and we refer interested readers to [164, 165] for

more details on other type of singularities. One expects the singularities in m to the left

of contour and that determine the asymptotic behavior of the amplitude to be completely

determined by the dynamical singularities in angular momenta. The reason for that is

bi-folded. First, note that the amplitude has the asymptotic behavior

(−s25)J1−m(−s45)J2−m(−s13)m . (3.29)

Generically, this expression has a nonzero double discontinuity in the partially-overlapping

channel invariants, namely s25 and s45. However, this is forbidden by Steinmann rela-

tions [171]. Therefore, it must be that either J1 −m or J2 −m is a non-negative integer

after the capture of poles. It then follows that, in this limit, helicity singularities are fully

determined by angular momentum ones as

m = α−N , (3.30)

where α is the location of a dynamical singularity in J1 or J2 and N is a non-negative

integer. In the above argument, we naturally assume that the asymptotic behavior is

attained within a physical region for the amplitude. It is conceivable, however, that such

asymptotics do not correspond to a physical behavior and thus the argument would require

an extension of validity of Steinmann relations for those configurations. The second reason

concerns the special nature of the helicity quantum number. The physical interpretation

of dynamical singularities are associated with the existence of particles. As helicity is not

a good Lorentz invariant and does not classify particles, as mass and spin do, we do not

expect dynamical singularities in m [164, 166]. Besides, these assumptions seem to work

well with specific models [164, 172] as we will see below.

We now focus on our particular case of interest, the contribution of two Regge poles

α1(t) and α2(t) in the double Regge limit with

aδ25δ45δ13(J1, J2,m, t12, t34) ≈
β(m, t12, t34)(

J1 − α1(t12)
)(
J2 − α2(t34)

) . (3.31)

In the Regge limit we move the C1 and C2 contours to the left in (3.28) and capture the

poles in complex angular momentum. The leading contributions come from the rightmost
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poles. We find

Aδ25δ45δ13(s25, s45, η, t12, t34) ∼
1

2πi

∫
C
dm(2α1 + 1)(2α2 + 1)Γ(−m)Γ(−α1 +m)Γ(−α2 +m)

× (−s25)α1−m(−s45)α2−m(−s13)mβ(m, t12, t34)

∼ (−s25)α1(−s45)α2

(−η)α1
∑
i

Γ(−α1 + i)Γ(α1 − α2 − i)β(α1 − i, t12, t34)
η−i

i!
(3.32)

+(−η)α2
∑
i

Γ(−α2 + i)Γ(α2 − α1 − i)β(α2 − i, t12, t34)
η−i

i!

 .

From the first to second line we closed the C contour to the left, capturing all the αi-

dependent poles, and absorbed overall constants into β. In particular, if we consider the

limit η = s13/(s25s45) → ∞, we can just keep the leading contribution

Aδ25δ45δ13(s25, s45, η, t12, t34) ∼ (−s13)α1(−s45)α2−α1Γ(−α1)Γ(α1 − α2)β(α1, t12, t34)

+ (−s13)α2(−s25)α1−α2Γ(−α2)Γ(α2 − α1)β(α2, t12, t34) ,

(3.33)

which clearly does not have double discontinuities in s25 and s45, as follows from our

construction. Note that the apparent singularities in α1 = α2 are just spurious, as they

cancel each other.

There are many subtleties and unproven statements in deriving the Regge theory re-

sult (3.32), but the final form seems very reasonable in physical terms. We can analyze

these claims in specific models. We consider a dual resonance model of a five-particle

amplitude in the so-called Bardakci-Ruegg representation [173]

B5 =

∫
dx1
x1

dx2
x2

x
−α(t12)
1 (1− x1)

−1−α(s25) x
−α(t34)
2 (1− x2)

−1−α(s45)

× (1− x1x2)
−α(s13)+α(s25)+α(s45) , (3.34)

where the integral ranges from 0 to 1 in x1 and x2. We defined α(x) = α0 + x with α0

the intercept of the Regge trajectory. As stated above, a single Regge limit happens when

s25 (or s45), s13 → ∞ with their ratio fixed. In this limit, it can be shown [164] that the

region x1 ≈ 0 dominates in the integral (3.34). For the values 0 < s25/s13 < 1, it can be
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shown that

B5 = (−s13)α(t12)
∞∑
n=0

pn

(
−s25
s13

)n

+ (−s13)α(t34) (−s25)α(t12)−α(t34)
∞∑
n=0

qn

(
−s25
s13

)n

,

(3.35)

where

pn(t12, t34, s45) =
Γ
(
n− α(t12)

)
Γ(−n+ t12 − t34) Γ

(
n− α(s45)

)
Γ
(
t12 − t34 − α(s45)

)
n!

, (3.36)

qn(t12, t34, s45) =
Γ
(
n− α(t34)

)
Γ(−n+ t34 − t12) Γ

(
n+ t12 − t34 − α(s45)

)
Γ
(
t12 − t34 − α(s45)

)
n!

. (3.37)

Note that there are no simultaneous singularities in the overlapping Mandelstam invariants.

This follows from the explicit expressions of pn and qn. The first term has power-law

behavior in s13 and poles in s45, while having no singularities in s25. The second term, on

the other hand, has power-law behavior in both s25 and s13 times a function without any

singularities in s45. This is an instance of the Steinmann relations, which hold for the full

amplitude. The double Regge limit corresponds to taking a further limit s45 → ∞ with

the ratio η = s13/ (s25s45) fixed. It leads to [164]

B5 = (−s25)α(t12) (−s45)α(t34)
∫ i∞

−i∞

dm

2πi
Γ
(
m− α(t12)

)
Γ
(
m− α(t34)

)
Γ(−m) (−η)m ,

(3.38)

which is of the same form as (3.32).

With the knowledge of the multi-Regge limit in S matrix theory, we are now in a

position to study the multi-Regge limit in conformal field theories.

3.3 Kinematics of five-point conformal correlators

Correlation functions of local primary operators in any conformal field theory can be written

in terms of a simple prefactor, that absorbs the weight of external operators, and a non-

trivial function that depends on conformal invariant variables, usually called cross ratios,

that contains all the dynamics of the correlator. In this chapter, we will be mostly focused
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Figure 3.8: We show our proposal for the Regge limit of the five-point correlator.

in correlators involving five operators. These depend on five different cross ratios through10

⟨O(x1)O(x2)O(x3)O(x4)O(x5)⟩ =

(
x2
23

x2
13

)∆12
2
(
x2
14

x2
13

)∆34
2

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

(
x213

x215x
2
35

)∆5
2

G(u1 . . . u5) ,

(3.39)

where x2ij = (xi−xj)2, we used the shorthand notation ∆ij ≡ ∆i−∆j and the cross ratios

are defined as

u1 =
x212x

2
35

x213x
2
25

, ui+1 = ui|xi→xi+1 . (3.40)

It is worth emphasizing that this is just a particular choice of cross ratios which is obviously

not unique. For instance, ũ3 ≡ u3u2 would be as valid a choice as u3. The choice (3.40) has

the nice feature that the cross ratios can be defined by transforming the xi cyclically, i.e.

xi → xi+1. This is particularly interesting when studying observables that are cyclically

symmetric [1, 64, 133].

In general, G(ui) is an intricate function of the cross ratios with a complex analytic

structure. One interesting question is, what are the allowed singularities of a correlation

function of five local operators and what is their physical meaning? This is a hard ques-

tion that we will not try to answer here in full generality (see [174] for progress in this

direction). Instead, we shall focus on a particular singularity that is associated with the

limit described in figure 3.8 and that is similar to the Regge limit of scattering amplitudes

10This is the same number as independent Mandelstam invariants in flat space scattering amplitudes as
reviewed in the previous section. The connection between correlation functions in conformal field theories
and scattering amplitudes is more clear in Mellin space, as we shall see in the next section.
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Figure 3.9: Position of points on the Euclidean cylinder. Two points 1 and 3, are at
τ = −∞ and τ = ∞.

reviewed in the previous section. There are two other more common (and simpler) singu-

larities, the Euclidean and lightcone OPE limits which will be relevant for the Regge limit

analysis. Indeed, it is possible to extract some information about these singularities from

the conformal block decomposition of five points

G(ui) =
∑
k1k2,ℓ

P ℓ
k1k2G

ℓ
k1k2(u1, . . . u5) , (3.41)

whereGℓ
k1k2

(u1, . . . u5) are conformal blocks in the channel (12) and (34), P ℓ
k1k2

are products

of three-point coefficients (to be described in more detail in the following subsection) and

the sum is over all primary operators.

In the following subsections, we will review and explore the Euclidean and lightcone

singularities and introduce the Regge limit for five-point correlation functions.

3.3.1 Euclidean limit

The simplest limit in a CFT is when two operators are brought close to each other. In this

setup, the operator product expansion (OPE) is convergent and can be used safely. The

OPE is perhaps one of the most important properties of a CFT. This feature tells that

the product of two operators at distinct points can be replaced by a linear combination of

operators

O(x1)O(x2) ≈
∑
k

C12k

(x212)
∆1+∆2−(∆k−Jk)

2

Fk

(
x12, Dz, ∂x1

)
Ok(x1, z) , (3.42)

where the sum runs over all primary operators, C12k are the OPE coefficients and Fk

is a differential operator that takes into account the contribution of descendants. The

auxiliary null variable z is used to encode the open indices of a symmetric and traceless
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spin J operator as

O(x, z) ≡ zµ1 . . . zµJOµ1...µJ (x) , (3.43)

while

Dzµ =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z (3.44)

is used to recover the information about the indices. The exact form of Fk can be deter-

mined from consistency of two- and three-point correlation functions of local operators. It

follows from a simple computation that, at the leading order and in the limit x2 → x1, the

function Fk is given by

Fk(x12, Dz, ∂x1) =
(x12 ·Dz)

Jk

Jk!
(
d
2 − 1

)
Jk

+ . . . , (3.45)

where . . . represent subleading terms. One feature of this simple result is that it is evident

that the limit is dominated by operators with lowest dimension ∆k. In particular, this

determines the dominant contribution of a five-point conformal block in the limits x2 → x1

and x4 → x3∑
ℓ

P ℓ
k1k2G

ℓ
k1k2(u1, . . . u5) ≈

C12k1
C34k2

(x12·Dz)J1 (x34·Dz′ )
J2

(x2
12)

J1−∆k1
2 (x2

34)
J2−∆k2

2

⟨Ok1(x1, z)Ok2(x3, z
′)O(x5)⟩ .

(3.46)

Note that the double limit in the pair of points (12) and (34) was taken to reduce the

correlator to a three-point function which is fixed by symmetry as

⟨Ok1(x1, z1)Ok2(x2, z2)O(x3)⟩ =
min(J1,J2)∑

ℓ=0

Cℓ
123V

J1−ℓ
123 V J2−ℓ

213 Hℓ
12

(x212)
h1+h2−h3

2 (x213)
h1+h3−h2

2 (x223)
h2+h3−h1

2

,

(3.47)

where hi ≡ ∆i + Ji and

H12 = (z1 · x12)(z2 · x12)−
x212(z1 · z2)

2
, V123 =

(z1 · x12)x213 − (z1 · x13)x212
x223

. (3.48)

It follows from (3.46) that the constants P ℓ
k1k2

are given by

P ℓ
k1k2 = C12k1C34k2C

ℓ
k1k25 . (3.49)

Conformal blocks are complicated functions which are not known in closed form for

general dimensions. However, it is possible to compute them as an expansion around some
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limits. One method to obtain them takes advantage of the fact that they are eigenfunctions

of the conformal Casimir differential equation(
D12 − c∆k1

,J1

)
Gℓ

k1k2 = 0 , (3.50)

with

c∆,J = ∆(∆− d) + J(d+ J − 2) , D12 = 2u21∂
2
u1

+ . . . , (3.51)

where . . . represent other subleading terms. We omitted an analogous equation in the (34)

channel that can be obtained using symmetry.

The cross ratios (3.40) are not appropriate for all situations. For instance, in the limit

considered above where x2 → x1 and x4 → x3, one has

u1, u3 → 0 , ui → 1 (i = 2, 4, 5) , (3.52)

which is insensitive to the angle at which the operators approach each other. For this limit,

it is preferable to use instead another set of cross ratios11[57]

ξ1 =
1− u5
2
√
u1

, ξ2 =
1− u4
2
√
u3

, ξ3 =
u2 − 1

2
√
u1

√
u3
, (3.53)

which remain finite. These are related to the angles just mentioned above. The leading

behavior, in the Euclidean OPE limit, of the five-point conformal block can be written in

terms of these new cross ratios as

Gℓ
k1k2 = u

∆k1
2

1 u
∆k2
2

3 Hℓ(ξi) , (3.54)

with

Hℓ(ξi) =
2∏

i=1

1

Ji!
(
d
2 − 1

)
Ji

(x12 ·Dz)
J1(x34 ·Dz′)

J2

(x212)
Jk1
2 (x234)

Jk2
2

V J1−ℓ
135 V J2−ℓ

315 Hℓ
13

(x213)
J1+J3

2 (x215)
J1−J2

2 (x235)
J2−J1

2

.

(3.55)

A brute force implementation of the action of the operators Dz and Dz′ on the previous

expression for the function Hℓ will lead to a rather complicated sum [57] that we do not

show since it will not be important in the discussion. A simple analysis reveals that the

leading term of Hℓ in the limit ξ1,2 → λξ1,2, ξ3 → ξ3λ
2 for large λ, which corresponds to

11We have decided to use slightly different angles as compared with [57] to make it appear more symmetric
in the variables ui.
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considering lightcone limits12 x212, x
2
34 → 0, is of the form

Hℓ ≈ ξJ1−ℓ
1 ξJ2−ℓ

2 ξℓ3 + . . . , (3.56)

where the . . . represent subleading terms. Alternatively we can use the Casimir differential

equation, in the Euclidean limit, to obtain subleading terms in (3.56)

[
(1− ξ21)∂

2
ξ1 + (1− ξ23)∂

2
ξ3 − (d− 1)(ξ1∂ξ1 + ξ3∂ξ3)− 2(ξ1ξ3 + ξ2)∂ξ1∂ξ3 + CJ1

]
Hℓ = 0 ,

(3.57)[
(1− ξ22)∂

2
ξ2 + (1− ξ23)∂

2
ξ3 − (d− 1)(ξ2∂ξ2 + ξ3∂ξ3)− 2(ξ2ξ3 + ξ1)∂ξ2∂ξ3 + CJ2

]
Hℓ = 0 ,

with CJ = J(J + 2h− 2). It is essential in extracting the dots in (3.56) from the Casimir

equation to assume that Hℓ is polynomial in the variables ξi. However, this follows from

the definition (3.55).

It turns out that, after changing the cross ratio ξ3 to ζ defined by13

ξ3 = −ξ1ξ2 + ζ
√

(1− ξ21)(1− ξ22) , (3.58)

the Casimir differential equation becomes much simpler[
J1 (d+ J1 − 2) +

(d− 2)ζ∂ζ + (ζ2 − 1)∂2ζ
ξ21 − 1

+ (1− d)ξ1∂ξ1 + (1− ξ21)∂
2
ξ1

]
H ,= 0 (3.59)

with an analogous equation for J2. This form of the differential equation allows to look for

solutions with a factorized form

H̃ = f1(ξ1)f2(ξ2)g(ζ) , (3.60)

where we have used tilde to emphasize that the solution is factorized and possibly different

from (3.55). The function g(ζ) satisfies a differential equation that can be read from (3.59)

[
(ζ2 − 1)∂2ζ + (d− 2)ζ∂ζ + ℓ′(ℓ′ + d− 3)

]
gℓ′ = 0 , (3.61)

where the separation constant ℓ′(ℓ′ + d − 3) was chosen for convenience. One solution to

this differential equation that is polynomial in ζ is given by

gℓ′ = 2F1

(
−ℓ′, ℓ′ + d− 3,

d− 2

2
,
1− ζ

2

)
=

ℓ′!Γ(2h− 3)

Γ(2h+ ℓ′ − 3)
C

d−3
2

ℓ′ (ζ) . (3.62)

12In this limit we can discard the second term in the differential operator Dz which in turn makes its
action easier to implement. This just corresponds to throwing away the contribution of terms associated
with traces.

13These cross ratios were introduced in the context of conformal field theories in [152].



3. Conformal Multi-Regge Theory 117

This is clearly a polynomial of degree ℓ′. It is also simple to check that

f1(ξ1) = (1− ξ21)
ℓ′
2 C

d−2
2

+ℓ′

J1−ℓ′ (ξ1) , (3.63)

is a solution to the differential equation arising from (3.59). The solution f2 can be obtained

analogously. It can also be checked that this new solution H̃ℓ′ is consistent with the non-

factorized Hℓ in (3.55). Let us see how in more detail.

Both Hℓ and H̃ℓ′ satisfy the same differential equation, however they are not the same

function. Nevertheless it is possible to express Hℓ in terms of H̃ and vice-versa, that is

H̃ℓ′ =
ℓ′∑

ℓ=0

Cℓℓ′Hℓ , (3.64)

The coefficients Cℓℓ′ can be thought as a change of basis of three-point functions. To

determine them it is useful to take the limit ξ1,2 → λξ1,2 and ξ3 = ξ3λ
2, with λ large. In

this limit the functions Hℓ and H̃ℓ behave as

Hℓ ≈ ξJ1−ℓ
1 ξJ2−ℓ

2 ξℓ3 + . . . , H̃ℓ′ ≈ c̃ ξJ11 ξ
J2
2 gℓ′(ζ) + . . . , (3.65)

c̃ =
Γ(h+ J1 − 1)Γ(h+ J2 − 1)2J1+J2−2ℓ′

Γ(h+ ℓ′ − 1)2Γ(J1 − ℓ′ + 1)Γ(J2 − ℓ′ + 1)
, (3.66)

where ζ → (ξ1ξ2 + ξ3)/(ξ1ξ2) and the . . . represent subleading terms. Using the previous

equation and (3.64) we can find the coefficients. Let us start by Cℓℓ′ ,

ξJ11 ξ
J2
2

ℓ′∑
ℓ=0

Cℓℓ′

(
ξ3
ξ1ξ2

)ℓ

= ξJ11 ξ
J2
2 gℓ′(ζ) = ξJ11 ξ

J2
2

ℓ′∑
k=0

(
−ℓ′
)
k

(
ℓ′ + d− 3

)
k

k!
(
d−2
2

)
k

(
1− ζ

2

)k

,

(3.67)

where ξ3/(ξ1ξ2) = ζ − 1. The coefficients Cℓℓ′ can be obtained straightaway leading to

Cℓℓ′ = c̃(−1)ℓ
(
−ℓ′
)
ℓ

(
ℓ′ + d− 3

)
ℓ

ℓ!
(
d−2
2

)
ℓ
2ℓ

. (3.68)

To find the inverse relation we make use of the identity

ℓ∑
ℓ′=0

(c)ℓ
(
ℓ
ℓ′

)
(b+ 2ℓ′)(−1)ℓ

′

(b+ 1 + ℓ′)ℓ(b+ ℓ′)
2F1

(
−ℓ′, b+ ℓ′, c,

x

2

)
=

(
x

2

)ℓ

, (3.69)
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for any variable x and constants b and c. Using this equation the inverse matrix C̃ℓ′ℓ follows

immediately

C̃ℓ′ℓ =
1

c̃

(−1)ℓ
′
(d+ 2ℓ′ − 3)

(
ℓ
ℓ′

) (
d−2
2

)
ℓ

(d+ ℓ′ − 3)(d+ ℓ′ − 2)ℓ
. (3.70)

This concludes the change of basis from (3.47) to the one that leads to (3.60), which we

call factorized basis. In this basis, the three-point function can be written as 14

⟨Ok1(x1, z1) . . .O(x3)⟩ =
V J1
123V

J2
213

∑min(J1,J2)
ℓ=0 C̃ℓ 2F1

(
−ℓ, ℓ+ d− 3, d−2

2 , H12
2V123V213

)
(x212)

h1+h2−h3
2 (x213)

h1+h3−h2
2 (x223)

h2+h3−h1
2

,

(3.71)

where C̃ℓ are the OPE coefficients in the new basis. Let us remark that this is still polyno-

mial in the structures V and H, as it should. The factorized basis for the leading behavior

of the block in the Euclidean OPE limit is a new result. It would be interesting to construct

conformal blocks in a radial expansion[42, 57, 59] using this new basis.

3.3.2 Lightcone limit

The distance between two operators, in Lorentzian kinematics, can be small when one of

them approaches the lightcone of the other. This is in contrast with what has been analyzed

in the previous subsection where the operators were actually close in the Euclidean sense.

The OPE and more generally correlation functions are naturally organized, in this limit,

in terms of distances between the almost null related operators. For example, the leading

term in Fk of (3.42), in the limit x212 → 0, is given by

Fk = (x12 · ∂z1)Jk
∫ 1

0
[dt] etx12·∂x1 , (3.72)

where

[dt] ≡ Γ(∆k + Jk)

Γ2(∆k+Jk
2 )

(
t(1− t)

)∆k+Jk
2

−1
dt (3.73)

14Note that, for integer ℓ, the hypergeometric reduces to a polynomial,

2F1

(
−ℓ, ℓ+ d− 3,

d− 2

2
,

H12

2V123V213

)
=

ℓ∑
ℓ′=0

(−ℓ)ℓ′ (ℓ+ d− 3)ℓ′

ℓ′!
(

d−2
2

)
ℓ′
2ℓ′

(
H12

2V123V213

)ℓ′

=

ℓ∑
ℓ′=0

Cℓ′ℓ

(
H12

2V123V213

)ℓ′

.
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for spin Jk operators. For exchanged scalar operators, it is also easy to write down the

formula for Fk, including all subleading corrections,

Fk =
∞∑
n=0

(−x212)n
(
∆−a
2

)
n

(
∆+a
2

)
n

22n(∆)2n(
2∆−d

2 )n n!
1F1

(
2n+∆+ a

2
, 2n+∆, x21 · ∂x1

)
(∂2x1

)n , (3.74)

with a = ∆12 and 1F1(a, b, x) =
∫ 1
0 dt

ta−1(1−t)b−a−1Γ(b)
Γ(a)Γ(b−a) etx. In turn, these two formulae can

be used to derive the five-point conformal blocks in the lightcone limit by just applying

the OPE formula to a five-point correlator. For the leading term of spinning lightcone

conformal blocks we have

Gℓ
k1k2,J1,J2 = u

∆J1
−J1

2
1 u

∆J2
−J2

2
3 (1− u2)

ℓu
∆ϕ
2

5

∫ 1

0
[dt1][dt2] I (3.75)

with

I =

(
1−t1(1−u2)u4−u2u4

)J2−ℓ(
1−t2(1−u2)u5−u2u5

)J1−ℓ(
1−(1−u4)t2

)h2−τ1−2ℓ+∆ϕ
2

(
1−(1−u5)t1

)h1−τ2−2ℓ+∆ϕ
2

(
1−(1−t1)(1−t2)(1−u2)

)h1+h2−∆ϕ
2

. (3.76)

For the scalar blocks in the lightcone we can write

G0
k1k200 =

∞∑
n1,n2=0

u
∆k1

+2n1

2
1 u

∆k2
+2n2

2
3 u

∆21
2

2 u
2n1+∆34−∆5+∆k1

2
4 u

2n2+∆21+∆k2
2

5

∫ 1

0
dt1dt2 Ĩn1,n2 ,

(3.77)

where the formula for Ĩn1,n2 is shown in appendix 3.A. The cross ratios ui are appropriate

to describe the lightcone limit x212, x
2
34 → 0, as only two of them go to zero while the others

remain fixed.

One feature that is evident from the formulae above is that this limit is dominated by

operators that have lowest twist, defined by ∆ − J . Hints of this property are already

present in (3.42) and (3.45).

Another interesting attribute of the lightcone block is that it allows to probe Lorentzian

regimes, this in sharp contrast with the Euclidean expansion (3.60) that is only valid when

the point x2 is in the vicinity of x1. In particular, the integral formulation of both (3.72)

and (3.74) is specially suitable to study monodromies of the block.

3.3.3 Regge limit

The limits described in the previous section shared a common feature as they could be

taken in a kinematics where all points are still spacelike separated from each other. This

is a significant restriction on the positions of operators and the physics that one is probing
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with a given correlation function. The goal of this subsection is to introduce and describe

another limit, the Regge limit, as depicted in figure 3.8. The main novelty is that some

points are timelike related, while others are still spacelike separated, more concretely the

pairs of points (1, 4), (2, 3), (3, 5), (2, 5) are timelike, while the other pairs remain spacelike.

The configuration represented in figure 3.8 can be parametrized by the following variables

x1 = −r (sinh δ1, cosh δ1, 0d−2) , x2 = r (sinh δ2, cosh δ2, 0d−2) , (3.78)

x3 = (− sinh δ2, cosh δ2, 0d−2) , x4 = (sinh δ1,− cosh δ1, 0d−2) , x5 = (0, h1, h2, 0d−3) .

where δi are being taken to infinity and r and hi can assume generic values. Here we also

use a d-dimensional vector of zeros denoted by 0d. This configuration can also be written

in terms of the cross ratios ui as

u1 =
4r2
(
x25 + 1− 2h1 cosh δ2

)(
1 + r2 + 2r cosh δ

) (
x25 + r2 − 2h1r cosh δ1

) , u2 =

(
1 + r2 − 2r cosh δ

1 + r2 + 2r cosh δ

)2

,

u3 =
4
(
x25 + r2 − 2h1r cosh δ1

)(
1 + r2 + 2r cosh δ

) (
x25 + 1− 2h1 cosh δ2

) , (3.79)

u4 =
1√
u2

x25 + 1 + 2h1 cosh δ2
x25 + 1− 2h1 cosh δ2

, u5 =
1√
u2

x25 + r2 + 2h1r cosh δ1
x25 + r2 − 2h1r cosh δ1

,

where δ = δ1 + δ2 and x25 = h21 + h22. It is simple to see that both u1 and u3 approach zero

as the δi are sent to infinity and that the remaining ui go to 1 (note that u2 approaches

1 faster then the other two cross ratios). This limit, in terms of cross ratios, is the same

as the Euclidean OPE limit discussed in section 3.3.1. The main distinction between these

two limits resides in the different causal ordering of the operators. The similarity to the

Euclidean OPE limit should come as no surprise to the reader that is familiar with Regge

limit for four points. In reality there is a simple reason for this to be the case as one can

also interpret this configuration as an OPE limit between 1+ and 2, as well as 3 and 4−,

where 1+ and 4− are defined respectively as the image of the points 1 and 4 on the next

and previous Poincaré patch on the Lorentzian cylinder. This is shown in figure 3.8.

The fifth point is kind of a spectator in this limit. Nonetheless, it is important as it

allows to introduce other parameters to differentiate the gaps δ1 and δ2. This is essentially

the same as we already see in the Regge limit of five-point scattering amplitudes.

Note that in this section we made a choice of analytic continuation but there are

other possible ways to attain Regge kinematics. Indeed, with some care, one can even

move the fifth point in other directions and even boost it and find similar OPE behavior

after lightcones are crossed. The latter can be used as a guiding principle when we look
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for Regge kinematics. In Appendix 3.D, we present some additional kinematics and path

continuations that might be useful in understanding single-Reggeon exchanges or the Regge

limit six-point functions in CFTs .

As mentioned before, the different causal relations between the points have important

consequences. The analysis of the correlator in this setting is more elaborate and for this

reason we devote the next section to it.

3.3.4 Conformal partial waves

The conformal block decomposition (3.41) is not the most appropriate option to analyze the

Regge limit of correlation functions. A better alternative is to do the so-called conformal

partial wave decomposition

G(ui) =
∞∑

Ji=0

min(J1,J2)∑
ℓ=0

∫ ∞

−∞

dν1
2πi

dν2
2πi

bℓJ1J2(ν1, ν2)Fν1,ν2,J1,J2,ℓ(ui) , (3.80)

where the conformal partial wave coefficient bℓJ1J2(ν1, ν2) contains all the dynamical infor-

mation of the correlation function, i.e. dimensions and OPE coefficients. The function

Fν1,ν2,J1,J2,ℓ(ui) is the conformal partial wave defined by the integral

Fν1,ν2,J1,J2,ℓ(ui) =
(x2

12x
2
34)

∆ϕ (x2
15x

2
35)

∆ϕ
2

(x2
13)

∆ϕ
2

∫
ddx6 d

dx7 ⟨O d
2
−iν1

(x6, Dz1)O d
2
−iν2

(x7, Dz2)O(x5)⟩(ℓ)

× ⟨O(x1)O(x2)O d
2
+iν1

(x6, z1)⟩⟨O(x3)O(x4)O d
2
+iν2

(x7, z2)⟩ , (3.81)

where the ⟨⟩(ℓ) should be understood as the term proportional to Cℓ
123 in (3.47) (in other

words, it is just the space dependence of the three-point function) and Dz is the differential

operator defined in (3.44). It is simple to see that both integrals in x6 and x7 are conformal

and that Fνi,Ji,ℓ should satisfy the conformal Casimir equation in the channels (12) and

(34) with eigenvalue C d
2
+iν1,J

and C d
2
+iν2,J2

, respectively. In particular, this implies that

the conformal partial wave can be written as a linear combination of conformal blocks

which solve the same equation

Fν1,ν2,Ji,ℓ =
∑
ℓ̃

∑
α1,α2=±

Aℓℓ̃
α1,α2

Gℓ̃
d
2
+iα1ν1,

d
2
+iα2ν2,Ji

(ui) , (3.82)

where we used the symmetry of the eigenvalue C d
2
+iνi,Ji

= C d
2
−iνi,Ji

. The sum over ℓ̃

appears because the Casimir equation is not able to fix it, and so in principle we can have

a sum over this number. The coefficients Aℓℓ̃ were determined in [1] and are expressed in
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terms of several sums. It would be interesting to see if the coefficients in the new basis

introduced in 3.3.1 are simpler and, more importantly for this work, analytic in spin. The

conformal partial waves have the advantage that are Euclidean single valued15. Recall that

the correlator also enjoys this property in contrast with a single conformal block.

3.4 Regge theory

3.4.1 Wick rotation or how to go Lorentzian

The Regge limit of a correlation function is an intrinsically Lorentzian limit that explores

a specific causal configuration of the operators. On the other hand, CFTs have been better

understood in Euclidean space. It is thus important to understand how to analytically

continue from Euclidean to Lorentzian space and what can we say about convergence and

other properties of the Lorentzian correlator from CFT axioms. These questions have only

very recently been discussed in firmer grounds in [97, 176], extending the works of Lüscher

and Mack [177, 178]. However, there the analysis focuses only on correlation functions of

n ≤ 4 points and no systematic study for higher-point functions exists to date. 16

We want to consider Lorentzian invariant correlation functions of local operators that

commute at spacelike separated points,

W (x1, x2, . . . , xn) = ⟨O(x1)O(x2) . . .O(xn)⟩ . (3.83)

These are called Wightman functions (or distributions). In particular, note that up to

spacelike separated points, different orders of local operators give rise to different Wightman

functions. We stress that these are not the standard time-ordered correlation functions

one encounters in QFT textbooks. In fact, one can decompose time-ordered correlation

15Conformal partial waves are single valued for integer J . It should be possible to add a term to them
to make them single valued for positive real J as was done in [175] for four points. We hope to return to
this point in the future.

16This seems to be technically challenging (see discussion of Appendix B of [97]) but we hope that our
results may also increase the motivation of community to tackle these questions on higher-point functions.
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functions in terms of Wightman functions17

⟨Ω|T{O(x1)O(x2) . . .O(xn)}|Ω⟩ = (3.84)

= ⟨Ω|O(t1,x1)O(t2,x2) . . .O(tn,xn)|Ω⟩θ(t1 > t2 > · · · > tn) + permutations

= W(x1, x2, . . . , xn)θ(t1 > t2 > · · · > tn) + permutations .

One Wightman axiom states that Wightman functions are indeed tempered distributions

even at coincident points. This means that when integrated against test functions belonging

to Schwartz class f(xi) ∈ S, the following integral is finite∫
ddx1 . . . d

dx1W(x1, . . . , xn)f(x1) . . . f(xn) <∞ . (3.85)

Our goal is to reach a Wightman correlation function with a given order starting from

a translational- and rotational-invariant Euclidean one. The basic idea is that there should

be some holomorphic function G(x1, . . . , xn) that reduces to a Lorentzian correlator in a

given limit and to a Euclidean one in another. Let us then consider a real-analytic (away

from coincident points) Euclidean correlator, with operators at xi = (τi, xi),

⟨O(τ1, x1)O(τ2, x2) . . .O(τn, xn)⟩E , (3.86)

where Euclidean times τi are ordered τ1 > τ2 > · · · > τn. Recall that this ordering

is necessary. If we assume the existence of a Hilbert space and a Hamiltonian that is

bounded from below, we get that our Euclidean correlator can be rewritten as

⟨Ω|O(0, x1)e
−H(τ1−τ2)O(0, x2)e

−H(τ2−τ3) . . .O(τn, xn)|Ω⟩E , (3.87)

where we use the Heisenberg representation of the field operators O. To avoid high-

energy states being exponentially enhanced, we immediately recognize that the Euclidean

correlator needs to be “time-ordered”.

To move towards a Lorentzian configuration, we want to consider an analytic con-

tinuation of the Euclidean correlator. This is achieved by taking τi → ϵi + iti. Heuris-

tically, adding the imaginary parts does not harm the convergence, as long as we keep

ϵ1 > · · · > ϵn. This analytic continuation defines our function G(x1, . . . , xn) that is holo-

morphic in τi = ϵi + iti and real-analytic in xi. We can then find a Lorentzian correlator

17We assume the existence of a Hilbert space with a unique vacuum Ω under the unitary action of the
Poincaré group. We can however talk about Wightman distributions without making any such assumption
since Wightman’s reconstrution theorem guarantees that we would find a Hilbert space once we assumed
spectral and positivity properties of the distributions - see [97, 179].
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by sending ϵi → 0 while keeping the order of limits,

⟨Ω|O(t1, x1) . . .O(tn, xn)|Ω⟩ ≡ lim
ϵi→0

ϵ1>···>ϵn

⟨Ω|O(ϵ1 + it1, x1) . . .O(ϵn + itn, xn)|Ω⟩E . (3.88)

This formally defines our Wightman function W(x1, . . . , xn). Note that to achieve different

orderings we should start from an Euclidean correlator in a different ordering. Holomor-

phicity may however be lost as we take ϵi → 0. We expect nonetheless the correlator to

converge at least in a distributional sense. For CFTWightman functions, the authors in [97]

found power law bounds and used Vladimirov’s theorem to assure that indeed this limit

converges at least in the distributional sense (even at coincident points) for n ≤ 4-point

functions in Minkowski space.18

We want to consider the Regge limit of CFT five-point functions of identical scalars.

In this context, we are interested in correlation functions where the operator ordering is

consistent with time ordering. Using the causal relations of figure 3.8, we take

⟨ϕ(x4)ϕ(x1)ϕ(x2)ϕ(x5)ϕ(x3)⟩ , (3.89)

where permutations between spacelike separated operators are equivalent. As we approach

the Regge kinematics, starting from a configuration where all operators are spacelike sepa-

rated (essentially equivalent to a Euclidean configuration), we find branch-cut singularities

whenever an operator crosses the lightcone of another. The way we deal with branch-cuts

depends on the iϵ prescription we adopted to reach this ordering of the Wightman function.

In particular, as we move from fully spacelike separated points to the Regge kinematics

we have {x214, x223, x225, x235} → {|x214|, |x223|, |x225|, |x235|} × exp(πi) which implies that the

cross-ratios u2, u4 and u5 go around 0 with the first going anticlockwise and the last two

in clockwise direction. At the branch-cuts, OPEs ϕ1 × ϕ2 and ϕ3 × ϕ4, in which we block

decompose our correlation function, are no longer convergent. We should then worry about

boundedness in Regge limit. For a four-point function in the Regge limit and with oper-

ator ordering consistent with time ordering one can prove its boundedness. The general

proof uses Rindler positivity [79, 180–182] and bounds the latter Wightman function with

another correlator of different ordering where the OPE does converge. This proof does

not work however with five-point functions. Nonetheless, we expect to be possible to find

these type of bounds between different ordered Wightman functions or different channel

18All the remaining Wightman axioms were also proved from standard axioms of translational- and
rotational- invariant Euclidean correlators.
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decompositions but we will not make these considerations any more precise here. Confor-

mal Regge theory, on the other hand, provides a method to resum divergent OPEs and

exhibit the dominant Reggeon-exchange contributions. This resumation invokes an ana-

lytic continuation of OPE data in spin for which, in the case of four-point functions, the

justification follows from the Lorentzian inversion formula [79, 101]. For higher-point func-

tions, there are additional representation labels associated with the possible three-point

structures between spinning operators.

In what follows we focus on double Reggeon-exchanges but similar analysis can be

performed at the level of the single Reggeon exchanges, that we briefly discuss in Ap-

pendix 3.D. The proper iϵ prescription for these cases follows straightforwardly from the

corresponding kinematics since we want to consider the operator orderings consistent with

time ordering.

3.4.2 Mellin amplitudes

The similarities of Mellin and flat space scattering amplitudes make the former a suitable

tool to build intuition. The goal of this section is to analyze the Regge limit for Mellin

amplitudes [86]. We shall see that the Regge limit for five operators, as defined in the

previous section, is dominated by the same kinematics of flat space scattering amplitudes

reviewed in section 3.2. In the following, we will review the definition of Mellin amplitudes,

some of its properties and then analyze the Regge limit in this language. The definition of

a Mellin amplitude, M(δij), is given by19

⟨O(x1) . . .O(xn)⟩ =
∫
[dδij ]M(δij)

∏
1≤i<j≤n

Γ(δij)

(x2ij)
δij
, (3.90)

where we decided to extract a standard prefactor containing Γ functions and the integration

variables δij run parallel to the imaginary axis. Since the Mellin variables are restricted

by the condition
∑

j δij = 0, with δii = −∆i, we shall use the following set of independent

Mellin variables

t12 = 2∆ϕ − 2δ12 , t34 = 2∆ϕ − 2δ34 , (3.91)

s13 = ∆ϕ + 2δ13 , s25 = −2δ25 , s45 = −2δ45 ,

19Here we are assuming that there exists a Mellin amplitude. This might only be true if one performs
some subtractions of the correlator, such as the contribution of the identity.
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which is the same number as conformal cross ratios - see figure 3.10. One advantage of

Mellin amplitudes is that it is easy to analytically continue from the Euclidean configuration

to Lorentzian, as the space-time dependence is simple [142]. For example, the configuration

of figure 3.8 can be obtained just by adding a phase to the integrand [86]

G⟲(ui) =

∫
[dtijdsij ]u

s45
2

4 u
t12
2

1 u
t34
2

3 u
s13+s45−t12

2
2 u

t34−s25−t12
2

5 M(sij , tij) e
−iπ

2(s13+s25+s45)+∆ϕ
2

Γ

(
−s25

2

)
Γ

(
−s45

2

)
Γ

(
s13 + s25 + s45

2

)
Γ

(
s13 −∆ϕ

2

)
(3.92)

Γ

(
t12 − s13 − s45

2

)
Γ

(
t34 − s13 − s25

2

)
Γ

(
2∆ϕ − t12

2

)
Γ

(
2∆ϕ − t34

2

)
Γ

(
∆ϕ + s25 + t12 − t34

2

)
Γ

(
∆ϕ + s45 − t12 + t34

2

)
where G⟲ is the correlator analytically continued to the Regge kinematics. This particular

phase seems to make the integrand divergent for large imaginary values of sij . However,

the Γ functions in the definition of the Mellin amplitude cancel this apparent divergence.

To see this in more detail we just have to use the identity

Γ

(
a+ i

xi
2

)
Γ

(
b− i

xi
2

)
≈ 2πei

π
2
(a−b)

(
xi
2

)a+b−1

e−
π
2
xi , (3.93)

in a regime where s13 goes faster to infinity than s45 and s25. In the Regge limit, as defined

in section 3.3.3, we have that the cross ratios u2 → 1+σ1σ2ξ3, u4 → 1−σ2ξ2, u5 → 1−σ1ξ1,
with u1 = σ21, u3 = σ22 going to zero while ξi are left fixed. This simplifies the dependence

of the Mellin amplitude on the cross ratios

u
s45
2

4 u
t12
2

1 u
t34
2

3 u
s13+s45−t12

2
2 u

t34−s25−t12
2

5 → u
t12
2

1 u
t34
2

3 e
i(y25σ1ξ1+y45σ2 cosh ξ2−y13σ1σ2ξ3)

2 , (3.94)

where we made the change sij = iyij . Note that the exponent is not small provided σi and

yij scale appropriately. By putting every piece together we obtain that in the Regge limit

G⟲(ui) = π4
∫
[dtij ] Γ

(
2∆ϕ − t12

2

)
Γ

(
2∆ϕ − t34

2

)
σt121 σt342

2
t12+t34+∆ϕ−16

2 e
iπ(∆ϕ+3t12−t34)

4

(3.95)∫
[dyij ] y

t12+t34−4−∆ϕ
2

13 y
t12+∆ϕ−t34−2

2
25 y

t34+∆ϕ−t12−2

2
45 e

i(y25σ1ξ1+y45σ2 cosh ξ2−y13σ1σ2ξ3)
2 M(tij , yij) ,

where we have defined u1 = σ21, u3 = σ22 and we should take the leading behavior in

M(tij , yij) when yij → ∞ with y13/y25y25 fixed. Thus, in the remaining part of the section

we shall analyze the Mellin amplitude in this limit. Let us just remark that the region

of integration that dominates in the Regge limit is the same as for flat space scattering

amplitudes.
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2

1

4

3

5

t12 t34

s13

s25 s45

Figure 3.10: Regge kinematics for scattering amplitudes can be defined as s13, s
2
25, s

2
45 →

1
x2 , x → 0 while keeping t12 and t34 fixed. As can be seen in Mellin space the dominant

contribution to the kinematics described in figure 3.8 is the same.

One of the reasons to use Mellin amplitudes is their simple analytic structure. They

are meromorphic functions of the Mellin variables δij with just simple poles. This property

follows, in a loose sense, from the structure of the OPE [144]. The exchange of primary

operator with dimension ∆ and spin J (and its conformal family) implies that the Mellin

amplitude has a infinite set of poles whose residues are given by a dynamical part (related

to OPE data) and a kinematical one, i.e. determined by symmetry20

M(δij) ≈ M∆ ≡ Rm(δij)

δLR − (∆− J + 2m)
, m = 0, 1, . . . , (3.96)

where

δLR =
k∑

a=1

n∑
i=k+1

δai , (3.97)

m labels subleading twists and Rm is related with lower-point Mellin amplitudes whose

precise form has been studied in [144]. This property is analogous to the factorization in

flat space scattering amplitudes.

The residue itself, depending on the number of points, can have poles. To see this,

take as an example the Mellin amplitude of a five-point correlator and look, without loss

of generality, to poles in δ12 (this corresponds to setting k = 2 and n = 5 in (3.97)). The

residue Rm(δij), as mentioned before, depends on a kinematical part and on the four-point

Mellin amplitude MO345, where O is the operator being exchanged. A four-point Mellin

amplitude can also have poles for the very same argument.

20This formula should be valid for any CFT. The fact that we decided to extract Γ functions in the
definition of Mellin amplitudes does not imply that we are assuming the existence of double trace like
operators. If they do not exist in the spectrum then the Mellin amplitude should have zeros that cancel
the poles of these Γ functions.
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In this language, the exchange of operators of dimension ∆1 and ∆2 in the channels

(12) and (34) is respectively encoded by the presence of poles in the Mellin amplitude

M5(sij , tij) at t12 = (∆1 − J1 + 2m1) and t34 = (∆2 − J2 + 2m2),

M5(sij , tij) ≈
∑
mi

Qm1,m2(s25, s45, s13)(
t12 − (τ1 + 2m1)

)(
t34 − (τ2 + 2m2)

) + . . . , (3.98)

where the . . . represent regular terms (or poles at other locations). Notice that the poles

with m1 = m2 = 0 are associated with the position space lightcone blocks 3.75 and mi > 0

correspond to corrections around the lightcone. The residue for these sequential poles is

related to three-point functions involving the operators that are exchanged.

Now it remains to analyze the large sij limit of the Mellin amplitude M(tij , sij). As for

the four-point case, the Casimir differential equations can be translated into Mellin space,

where it transforms to a recurrence relation that we defer to (3.130) in appendix 3.A. For

the mi = 0 sector, the difference equation simplifies considerably. Moreover, for each pair

of spins (J1, J2), there are 1+min(J1, J2) polynomial solutions which can be labeled by an

integer ℓ and have the leading large sij behavior

Qm1,m2(s25, s45, s13) = cℓ,m1,m2s
J1−ℓ
25 sJ2−ℓ

45 sℓ13 + . . . , (3.99)

where . . . represent lower degree terms in the Regge limit. Note that the ℓ denotes a differ-

ent basis of tensor structure compared to the position space. We have Mellin transformed

the lightcone blocks (3.75) and verified the behavior (3.99) in terms of scaling.

The recurrence relation (3.130) can be used to derive relations between cℓ,m1,m2 with

different values of mi

2m1cℓ,m1,m2

(
d− 2(J1 +m1 + τ1)

)
− cℓ,m1−1,m2

(
∆ϕ + 2J2 − 2m12 − τ12 − 2ℓ

)
×
(
2m1 + τ1 − 2∆ϕ

)
+ cℓ,m1−1,m2−1

(
2m1 + τ1 − 2∆ϕ

) (
2m2 + τ2 − 2∆ϕ

)
= 0 , (3.100)

for the (12) channel where mij = mi−mj . This particular limit is important in the Regge

kinematics. It gives two recurrence relations for the coefficients cℓ,m1,m2 that allow to fix

them all in terms of the seed cℓ,0,0. As mentioned before, the label mi in the poles are

related to corrections around the lightcone blocks. Fortunately, we have worked out all

these corrections for scalar operators in position space in (3.128) and it is a simple exercise

to translate the result into Mellin space, written in (3.129). In particular, this solution is

consistent with (3.100).
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It is possible to construct another solution to the scalar Casimir equation, written

in Mellin space, by studying conformal partial waves (or alternatively, exchanged Witten

diagrams using the split representation [183]). The idea behind this approach is simple,

however the computation involves several steps and for this reason is given in the appendix

3.B. The five-point scalar partial wave can be defined by

Mν1,ν2,0,0,0(δij) =

π2h

∏2
i=1 Γ

(
∆2i−1+∆2i−t2i−1 2i

2

)∏
σ=± Γ

(
h+σ(∆2i−1−∆2i)+iνi

2

)

−1

Γ(∆5)Γ
(

∆5−iν1+iν2
2

)
Γ
(

t12−t34+∆5
2

)
Γ
(

2h−∆5−iν1−iν2
2

)
Γ
(

h−t12+∆5−iν2
2

) (3.101)[(∏
σ=± Γ

(
h−t12+σ∆5−iν2

2

)
Γ
(
∆5+σiν1+iν2

2

))
Γ
(
h−t34+iν2

2

)
Γ
(
t12−t34+∆5

2

)
3F2

(
t12−t34+∆5

2
,
∆5−iν1+iν2

2
,
∆5+iν1+iν2

2

∆5 ,
2−h+t12+∆5+iν2

2

; 1

)
+ Γ(∆5) Γ

(
t12−h+∆5+iν2

2

)
(∏

σ=±
∏2

i=1 Γ
(
h−t2i−1 2i+σiνi

2

))
3F2

(
h−t12−iν1

2
,
h−t12+iν1

2
,
h−t34−iν2

2
2+h−t12−∆5−iν2

2
,
h−t12+∆5−iν2

2

; 1

)]
,

where we use the notation δij = (∆i +∆j − tij)/2. Obviously, the Mellin amplitude of the

scalar conformal partial wave only depends on the variables t12 and t34 and it is symmetric

under ν → −ν. More importantly, it gives a solution valid at finite tij and reduces to the

solution (3.129) when tij are at the poles. This leads us to study the casimir equation away

from the poles. For this purpose let us write the Mellin amplitude as

MJ1,J2(sij , tij) = sJ1−ℓ
25 sJ2−ℓ

45 sℓ13 f(t12, t34) , (3.102)

and plug it in the the recurrence relation (3.130). In turn, this leads difference equation

for t12 and t34 that reads

f00 (t12 − τ1) (d− t12 − τ1 − 2J1) + f−20

(
2∆ϕ − t12

) (
t34 − t12 +∆ϕ + 2J2 − 2ℓ

)
+ f−2−2

(
2∆ϕ − t12

) (
2∆ϕ − t34

)
= 0 , (3.103)

where the subindices denote fa1a2 ≡ f(t12 + a1, t34 + a2). This difference equation can be

further simplified by redefining f(t12, t34)

f̃00 (τ1 − t12) (d− 2J1 − τ1 − t12) + 2f̃−20

(
t12 − t34 −∆ϕ − 2J2 + 2ℓ

)
− 4f̃−2−2 = 0

(3.104)

where f̃ is given by

f(t12, t34) =
f̃(t12, t34)

Γ(
2∆ϕ−t12

2 )Γ(
2∆ϕ−t34

2 )
. (3.105)
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Note that this prefactor is precisely the same as the one that comes from the Gamma

functions in the definition of Mellin amplitudes (3.90). It is now simple to see that the

equation for J1 = J2 and generic ℓ can be obtained from the scalar difference equation by

doing the following shifts

∆ϕ → ∆ϕ + 2(J1 − ℓ), d→ d− 2J1. (3.106)

This suggests that the Mellin partial wave for equal spin J1 = J2 and generic ℓ can be

obtained from (3.101) by doing these replacements. One way to check this statement is to

build solutions with the recursion relations in spin derived in [62] (we have rederived parts

of these relations in the appendix 3.A using lightcone blocks) and verify that it agrees with

the solution that we proposed above.

These solutions for Mellin amplitudes can then be inserted in (3.95) to obtain the

conformal block in the Regge limit, that is

G⟲
J1,J2,ℓ,ν1,ν2

(σi, ρi) = σ1−J1
1 σ1−J2

2 Hν1ν2(ξ1, ξ2, ξ3) , (3.107)

with

Hν1ν2(ξ1, ξ2, ξ3) =

∫
dt12dt34 Γ

(
2∆ϕ − t12

2

)
Γ

(
2∆ϕ − t34

2

)
Γ

(
2ℓ−∆ϕ + t12 + t34 − 2

2

)
Γ

(
2J1 − 2ℓ+∆ϕ + t12 − t34

2

)
Γ

(
2J2 − 2ℓ+∆ϕ − t12 + t34

2

)
Mν1,ν2(t12, t34)

ξ
t34−t12−∆ϕ−2J1+2ℓ

2
1 ξ

t12−t34−∆ϕ−2J2+2ℓ

2
2 ξ

2−t12−t34+∆ϕ−2ℓ

2
3 , (3.108)

where Mν1,ν2(t12, t34) is the conformal partial wave in Mellin space in the Regge limit.

This expression highlights two properties of the Regge limit, firstly the limit is dominated

by operators of high spin and, secondly, it depends on three fixed cross ratios that can be

thought of as angles, which is similar to what happens in the Euclidean OPE limit as we

mentioned before. In fact Hν1ν2 solves the Casimir differential equation in the Euclidean

region (3.57) but with a different eigenvalue C. Let us point out that the integral (3.108)

can be done by picking up poles.

It follows from what was said above that Hν1ν2(ξ1, ξ2, ξ3) must have the same form as

(3.60), as it solves the same conformal Casimir equation.
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3.4.3 Comment on position space

The analysis of the Regge limit in Mellin space of the previous section exposed the sim-

ilarities to flat space scattering amplitudes but it does not emphasize enough the role of

analytic continuation in the cross ratios in changing the behavior of the conformal block.

This aspect is clearer in position space, in particular, in the lightcone expressions intro-

duced in subsection 3.3.2. The kinematics of the Regge limit (where some pair of points

are timelike while others are spacelike) can be reached from the Euclidean configuration

after doing analytic continuations in u2, u4 and u5 around 0 as explained in section 3.4.1.

The analysis is simpler for the discontinuities around u4, u5 = 0 in the lightcone blocks

(3.75) and contains most of the physics we want to highlight in this subsection. These

discontinuities come from the first two terms in the denominator of (3.75), provided that

u2 > 0. The origin of branch point at, say u5 = 0, comes from the region t1 ≈ 1/(1− u5)

where the denominator (1− (1− u5)t1) changes sign. To deal with this it is convenient to

divide the integration region in two parts,∫ 1

0
dt1 I →

∫ 1
1−u5

0
dt1 I + (−1)(h1−τ2−2ℓ+∆ϕ)

∫ 1

1
1−u5

dt1 I , (3.109)

where the phase comes from the change of sign in the factor (1 − (1 − u5)t1). The first

term drops out when taking the discontinuity and so we obtain

Discu5=0

∫ 1

0
dt1 I =

(
1− (−1)(h1−τ2−2ℓ+∆ϕ)

) u5
u5 − 1

∫ 1

0
dτ1 I , (3.110)

where we have changed variables to t1 = (u5τ1−1)/(u5−1) in order to have the integration

running from 0 to 1 again. It is possible to repeat the same steps to take the discontinuity

of u4.

Recall that the cross ratios u4, u5 and u2 approach 1 with (1−u2)
(1−u4)(1−u5)

= 1+ζ
2 fixed in

the Regge limit. The discontinuity in u4 and u5 of the lightcone block after the Regge limit

is given by

lim
u4,u5→1
ζ fixed

Discu5,u4=0G =
u

1−J1
2

1 u
1−J2

2
3 (1 + ζ)ℓ

ξ∆2−1
2 ξ∆1−1

1 2ℓ

∞∑
m=0

(∆ϕ−τ1−τ2−2J1−2J2
2

m

)(
−1+ζ

2

)m
F1F2

Γ
(
2J1+∆ϕ−2ℓ+τ12

2

)
Γ
(
2J2+∆ϕ−2ℓ+τ21

2

) ,
(3.111)



132 Higher-point Correlators and the Conformal Bootstrap

where we have used τij = τi − τj , the cross ratios (3.53) and

Fi =
πΓ2( τi+2Ji

2 ) Γ(τi + 2Ji) Γ(τi + 2Ji +m− 1)

2Ji−
1
2Γ
(
τ1+τ2+2Ji+2m+2ℓ−∆ϕ

2

) 2F1

(
ℓ− Ji, τi+1 + 2Ji+1 +m− 1

2Ji+1+2m+2ℓ+τ1+τ2−∆ϕ

2

;
ζ + 1

2

)
.

The discontinuities in u4 and u5 are enough to reveal that the discontinuities of conformal

block behave with σ1−J1
1 σ1−J2

2 in the Regge limit, which compares with σ∆1
1 σ∆2

2 of the

Euclidean block21. It can also be shown from the previous formula that three sequential

discontinuities, Discu2,u4,u5 , evaluate to zero. Recall that four-point conformal blocks have

vanishing double discontinuity. We believe that conformal blocks have this property away

from the lightcone limit.

3.4.4 Conformal Regge theory for five points

Let us consider the representation of the five-point correlation function in terms of con-

formal partial waves, and its implications for the Regge limit. This basis is complete and

orthogonal. Since we have more control over the analytic properties of the partial waves

in Mellin space, we consider the expansion

M(sij , tij) =
∞∑

J1,J2=0

min(J1,J2)∑
ℓ=0

∫
dν1
2πi

dν2
2πi

bJ1,J2,ℓ(ν1, ν2)MJ1,J2,ℓ(sij , tij) . (3.112)

We suppress the dependence of the Mellin partial wave MJ1,J2,ℓ on the scaling dimensions,

as the nontrivial analytic continuation occurs in other quantum numbers. We have intro-

duced poles in the variables ν1 and ν2 with residues corresponding to the OPE coefficients,

using

bJ1,J2,ℓ (ν1, ν2) ≈
P ℓ
ν1,ν2,J1,J2(

ν21 + (∆1 − h)2
)(
ν22 + (∆2 − h)2

) , (3.113)

where ∆i = ∆i(Ji) is the dimension of the i-th exchanged operator of spin Ji. We remark

that the product of the OPE coefficients P ℓ
ν1,ν2,J1,J2

in (3.113) is a linear combination of

those in (3.49) that appear in the conformal block expansion.

21We also need to consider the monodromy of the lightcone block around the branch point at u2 = 0. It
is possible to do a Mellin transform of the lightcone block and apply the method of the previous subsection
to derive all discontinuities. In the appendix, we provide several checks that the discontinuity of the block
in u2 has the same behavior.
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J1, J2

ℓ ℓ+ 1 ℓ+ 2 ℓ+ 3

ji(νi)

Figure 3.11: Integration contour in spins J1, J2. The blue contour can be deformed to
the red contour. We assume the leading Regge pole in the Ji-plane is located at ji(ν) and
we don’t draw any further dynamical singularities that might exist to the left. Red contour
is understood to be deformed to the right of the other infinite series of poles depending

on ℓ lying on the left in the Ji-plane.

We would like to provide a Sommerfeld-Watson representation of (3.112). First, we

swap the range of summations as

M(sij , tij) =
∞∑
ℓ=0

∞∑
J1,J2=ℓ

∫
dν1
2πi

dν2
2πi

bJ1,J2,ℓ(ν1, ν2)MJ1,J2,ℓ(sij , tij) . (3.114)

Next, we analytically continue in the spin quantum numbers. However, the bJ1,J2,ℓ are not

expected to have a unique analytic continuation in the quantum numbers. For that reason

we need to consider their signatured counterparts.

Let us remind the reader the analogous construction [86] for the four-point correlator

A(u, v) in terms of the cross ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (3.115)

After expanding in Euclidean partial waves, we can write the correlation function as

A(u, v) =
∞∑
J=0

∫
d
2
+iR

d∆

2πi
c∆,J F∆,J(u, v) , (3.116)

where c∆,J denotes the OPE function and F∆,J is the Euclidean partial wave. It can be

transformed to Mellin space as

M(s, t) =
∞∑
J=0

∫
d
2
+iR

d∆

2πi
c∆,J M∆,J(s, t) . (3.117)
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Again, the OPE function c∆,J is not uniquely defined in the complex J plane. Thus, we

define the signatured OPE function cθ∆,J by

Mθ(s, t) =
∞∑
J=0

∫
d
2
+iR

d∆

2πi
cθ∆,J Mθ

∆,J(s, t) , (3.118)

where the signatured Mellin partial waves are given by

Mθ
∆,J(s, t) =

1

2

[
M∆,J(s, t) + θM∆,J(−s, t)

]
, (3.119)

with θ = ±. The signatured Mellin amplitude allows for a unique analytic continuation of

the signatured OPE function cθ∆,J [79]. The problem of the non-signatured OPE function

can be traced back the factor of (−1)J that appears in the transformation s→ −s, which
follows from the large s behavior M∆,J(s, t) ≈ sJ .

A similar construction can be done for five-point functions. We split the full correla-

tor into eight parts depending on the signature denoted by θ = (θ1, θ2, θ12) where each

component can be ±. We define the signatured amplitudes as

Mθ(s25, s45, s13) =
1

8

[
M(s25, s45, s13) + θ1M(−s25, s45, s13) + θ2M(s25,−s45, s13)

+ θ1θ2M(−s25,−s45, s13) + θ12M(−s25,−s45,−s13) + θ1θ12M(s25,−s45,−s13)

+ θ12θ2M(−s25, s45,−s13) + θ1θ12θ2M(s25, s45,−s13)
]
. (3.120)

This equation is suitable only for sij ≫ 1. We also suppress the dependence on tij for

brevity. We justify it by using the properties of the Mellin partial wave (3.102) which, in

terms of J ′
i = Ji − ℓ, behaves in the Regge limit as

MJ ′
1,J

′
2,ℓ
(sij , tij) = s

J ′
1

25s
J ′
2

45 s
ℓ
13 f(t12, t34) . (3.121)

By analogy with the four-point case, we expect that OPE functions associated with the

expansion of the signatured amplitudes in (3.120) have a unique analytic continuation in

all quantum numbers J ′
1, J

′
2, ℓ. It would be interesting to put this on a firm footing by

deriving dispersion relations along the lines of [79]. The full Mellin amplitude can then be

written in terms of the signatured Mellin amplitude as

M(s25, s45, s13) =
∑

θ∈{−1,1}3
Mθ(s25, s45, s13) . (3.122)
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In terms of the signatured analogue of partial waves defined through (3.120), we write

Mθ(sij , tij) =
∞∑
ℓ=0

∞∑
J ′
1,J

′
2=0

∫
dν1
2πi

dν2
2πi

bθJ ′
1,J

′
2,ℓ
(ν1, ν2)Mθ

J ′
1,J

′
2,ℓ
(sij , tij) . (3.123)

Next we perform a Sommerfeld-Watson transform on the ℓ contour

Mθ(sij , tij) =

∫
C

dℓ

2πi

1

sin(πℓ)

∞∑
J ′
1,J

′
2=0

∫
dν1
2πi

dν2
2πi

bθJ ′
1,J

′
2,ℓ
(ν1, ν2)Mθ

J ′
1,J

′
2,ℓ
(sij , tij) . (3.124)

where C is the contour that encircles the poles at non-negative integers in ℓ complex plane

counterclockwise.

Next we analytically continue in J ′
1 and J ′

2 by means of two Sommerfeld-Watson trans-

forms. The analytic structure in these variables is analogous to the case of four-point

correlation functions. Figure 3.11 shows the analytic structure of the integrand. In partic-

ular, there is a leading Regge pole in the Ji plane at Ji = ji(νi) given by[
∆i

(
ji(νi)

)
− h
]2

+ ν2i = 0 . (3.125)

Picking the poles in the complex spin planes at J ′
1 = j1(ν1) − ℓ and J ′

2 = j2(ν2) − ℓ, we

obtain the following expression for the signatured correlators

Mθ =

∫
dν1
2πi

dν2
2πi

s
j1(ν1)
25 s

j2(ν2)
45

∫
C

dℓ

2πi

bθj1(ν1),j2(ν2),ℓ(ν1, ν2) f
θ
ν1,ν2,ℓ

(tij) η
ℓ

sin(πℓ) sin
(
π(j1(ν1)− ℓ)

)
sin
(
π(j2(ν2)− ℓ)

) ,
(3.126)

where fθν1,ν2,ℓ is defined as the signatured analogue of f in (3.105).

The integral over ℓ remains to be performed as we did not consider any particular limit

in η. One should however comment on the anticipated singularities in this complex plane.

Indeed, we expect no dynamical poles in ℓ, i.e. bθj1(ν1),j2(ν2),ℓ(ν1, ν2) should not have poles

in ℓ and therefore all the singularities to be considered are determined by the explicit sine

functions in the integrand. This assumption is inspired by an analogous procedure for the

five-particle S-matrix. Indeed, the quantum number ℓ here labels a choice of tensor basis for

three-point functions but it also seems to control the scaling and the asymptotic behaviour

of the amplitude in multi-Regge limit. It seems unreasonable that the asymptotic scaling

can be basis dependent and therefore we expect the singularities in ℓ to be fully determined

by the singularities in spin. This is just like the discussion for the helicity quantum number

in flat space following [166].
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In the Regge limit the full correlator takes the form

M =

∫
dν1
2πi

dν2
2πi

s
j1(ν1)
25 s

j2(ν2)
45

∫
C

dℓ

2πi
ηℓgν1,ν2,ℓ(tij) , (3.127)

where the function gν1,ν2,ℓ(tij) is defined from replacing (3.126) in (3.122). This allows us

to represent the Reggeized Mellin amplitude in terms of the operator content of the leading

Regge trajectories and their couplings to the external states.

3.5 Discussion

In this chapter, we discussed and analyzed the generalization of Regge limit to five-point

correlation functions in conformal field theories. The kinematics of this limit is similar to

the one of the four-point case [86] with one crucial difference, the insertion of one extra

point. In particular, the fifth point is essential to have different rapidities between the first

set of four operators. The location of the fifth point is also important for the interpretation

of the five-point Regge limit as an OPE limit in the second sheet. In particular, the

dimension and spin of the exchanged operators in this second sheet OPE are transformed

from the usual (∆, J) to (1 − J, 1 − ∆), which can be interpreted in terms of light-ray

operators [99].

Our proposal for the five-point Regge limit is also confirmed by the exploration of this

kinematics in Mellin space. More concretely, we verified that the Regge limit is dominated

by a region in Mellin space characterized by some large Mellin variables in close analogy to

the Regge limit of scattering amplitudes in flat space. This similarity leads us to focus more

on Mellin amplitudes to study the Regge limit. In particular, we analyzed the generalization

of Mack polynomials for Mellin amplitudes and discussed some of its properties. We derived

the conformal partial waves in Mellin space in the Regge limit for when the two exchanged

operators have the same spin and studied, in position space, the behaviour of the conformal

block in this limit, using recent results on lightcone blocks for higher-point functions.

Equipped with a new formula for the conformal partial waves in the Regge limit in

Mellin space, we extended conformal Regge theory to five-point correlation functions by

borrowing methods used in flat-space multi-point amplitudes. Our final result for the five-

point correlator in the Regge limit corresponds to the exchange of two Reggeon operators.

In the process, we discussed a novel basis of three-point functions of operators with

spin (J1, J2, 0), respectively. In this basis and in the Euclidean OPE limit the five-point

conformal block factorizes into products of Gegenbauer polynomials. These expressions
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appear to be a natural generalization of the Wigner d-functions used in the partial-wave

decomposition of five-particle amplitudes. This suggests that the typical basis used in

the literature for three-point functions of operators with spin (J1, J2, J3) might not be the

most natural one for the study of Euclidean conformal blocks. Given the importance of

conformal blocks in bootstrap, it would be interesting to study the properties of this basis

in more detail. The case of (J1, J2, J3) three-point function is accessible in the Euclidean

OPE limit of six-point function in the snowflake channel.

While the study of the analytic structure of higher-point functions is still in its infancy,

we expect that it admits some sort of simplification in the multi-Regge limit. It would

be interesting and relevant, nonetheless, to investigate if possible ”anomalous” branch-cuts

can affect the Regge limit both in flat space and in CFTs.

A more ambitious goal would be the derivation of a Lorentzian inversion formula for

higher-point functions. This would clarify many of the questions we raised here, namely

if there is or not some sort of analyticity in the label of tensor structures of three-point

functions with spin. We expect that an important ingredient towards that goal is the

multivariable generalization of the Cauchy formula, called the Bargman-Weil formula.

It would be interesting to generalize the Regge limit considered in this chapter to higher-

point functions. The generalization of the partial-wave expansion in S-matrix literature is

done in [163] for four dimensional quantum field theories. An analogous generalization of

the partial-wave expansion is expected to be within reach for three-dimensional CFTs for

n-point functions, where we would benefit from the fact that there are no representations

of the rotation subgroup of the conformal group in three dimensions with more than one

row in the Young tableaux. However, for higher dimensions, there will be proliferation of

indices labelling the internal vertices and no such simplification can be considered.

Finally, in flat-space literature, a crucial ingredient for the absence of singularities in

ℓ was the use of Steinmann relations. It would be interesting to explore the analogue of

Steinmann relations in CFTs, with or without large central charge limit.





Appendices for chapter 3

3.A Lightcone blocks

The scalar five-point conformal blocks, mentioned in the main text, can be expressed in

terms of an expansion around the lightcone (3.77) by acting with (3.74) on a three-point

function. In (3.77) we have written it in terms of a function Ĩn1,n2 given by

Ĩn1,n2 =

(
a−∆5

2

)
n1

(
2n1−∆5+a

2

)
n2

(
a+4−∆5−d

2

)
n1

(
2n1−∆5+a+4−d

2

)
n2(

t21u1u4−t1(t2(1−u5)+t2u4(u2u5−1)+u1u4+u5−1)+u5(t22u3−t2(u3−u2u4+1)+1)
)a+2n1+2n2−∆5

2

2∏
i=1

(−1)niΓ(2ni+∆ki
)

(
∆ki
2

)2

ni

(ti(1−ti))
∆ki

+2ni
2 −1

ni!(∆ki
)2ni

(
2∆ki

+4−d

2

)
ni

Γ2

(
2ni+∆ki

2

) (3.128)

where a = ∆k1 + ∆k2 . One nice feature of this result is that it allows to to analytic

continuations in u2, u4, u5 at all orders in u1 and u3, this is specially useful to verify that

the analytic continuation of the conformal block has a distinct behavior in the Regge limit.

With this expression in our hands we can also do a Mellin transform and obtain the Mellin

amplitude associated with the scalar conformal block. For instance the function Qm1,m2 in

(3.98) is given in this case by

Qm1,m2 =
∑
ni=0

2∏
i=1

2(−1)miΓ(∆ki)

(mi−ni)!Γ2

(
∆ki
2

)
Γ

(
∆ϕ−mi−

∆ki
2

)
(1− d

2
+∆ki)mi−ni

(
∆−∆ϕ

2

)
m1−n1

(n1+n2+
∆ϕ
2 −m1−m2−

∆
2

n1
)

Γ

(
∆ϕ+2m1−2m2+∆k1

−∆k2
2

)

×

(
∆+2−d−∆ϕ

2

)
m1−n1

(
2m1+∆−2n1−∆ϕ

2

)
m2−n2

(
2m1+∆+2−d−2n1−∆ϕ

2

)
m2−n2

(
2n2+∆ϕ−2m1−2m2−∆

2
n2

)

Γ

(
∆ϕ−2m1+2m2−∆k1

+∆k2
2

)
Γ

(
2m1+2m2+∆−∆ϕ

2

)
(3.129)

where ∆ = ∆k1 +∆k2 . Note that it does not depend on the variables sij as expected since

the exchanged operators are scalars. The apparent asymmetry in the channels (12) and

(34) is related with the choice of which differential operator Fk we decide to act first on

139
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a three-point function. Another advantage of having the Mellin amplitude for the scalar

conformal block is that it can be used to generate some solutions for spinning blocks as we

have shown in section 3.4.2.

We have checked that the solution (3.129) satisfies the Casimir recurrence equation, in

the channel (12), given by

[
d00000

(
2c∆1J1 − a21 + a1(2a4 + a5 − a3 − 2d+ 3∆ϕ)− 2a2(a3 + a4) + 2a23 − 2a3a4 − 2a3a5

+∆ϕ(5a3 − 4a4 − 2a5 + 4d) + 2a24 + a4a5 − 2∆2
ϕ

)
+ d00−200(a1 − a3 + a4 − 2∆ϕ)(a3 − 2a2 − a5 + 2∆ϕ)

− d000−20(a1 − 2a2 + a4 −∆ϕ)(a1 − a3 + a4 − 2∆ϕ)− a3d002−20(a1 − 2a2 + a4 −∆ϕ)

+ a1d−2000−2(a1 − 2a2 − a5 +∆ϕ) + a1d−2002−2(a1 − 2a2 − a5 +∆ϕ) + 2a1a2d−2−2−200

+ 2a1a2d−2−2000 + a1a5d−20−220 + a1a5d−20000 + a4d00−220(2a2 − a3 + a5 − 2∆ϕ)

+ a4d00020(a3 − a4 − a5 +∆ϕ) + a3d00200(a4 + a5 − a3 −∆ϕ)
]
f(tij , sij) = 0 (3.130)

where di1i2i3i4i5 is defined by di1i2i3i4i5f(t12, t34, s13, s25, s45) = f(t12+ i1, . . . , s45+ i5) and

the coefficients ai are given by

a1 = 2∆ϕ − t12, a2 =
2∆ϕ − t34

2
, a3 = ∆ϕ − s13, (3.131)

a4 = s25 + t12 − t34 +∆ϕ, a5 = s45 − t12 + t34 +∆ϕ .

This recurrence relation is also valid for spinning conformal blocks.

3.A.1 Spinning recursion relations

In [62] the authors have derived identities that blocks with different values of spin satisfy.

It is possible to verify part of these relations using lightcone blocks for unequal external

dimensions introduced in the previous subsection. Using (3.72) we can verify that the

lightcone blocks satisfy

(2J1 + 2ℓ+ τ1 + τ2 − 2−∆5)G
∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
+ 2(J2 − ℓ)G∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ+1 (3.132)

+
4(2J1 + τ1 − 2)(2J1 + τ1 − 1)

(2J1 + τ1 −∆12 − 2)

[√
u5G

∆1+1,∆5+1,∆3

τ1+1,J1−1,τ2,J2,ℓ√
u1

−G∆1,∆5,∆3

τ1,J1−1,τ2,J2,ℓ

]
= 0
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where G∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
represents the lightcone conformal block for the exchange of a twist τi

and spin Ji in the channels (12) and (34) for external with dimension ∆i,

G∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
= u

τ1
2
1 u

τ2
2
3 u

∆5
2

5 (1− u2)
ℓ

∫
[dt1dt2](1− u2u5 + t2(u2 − 1)u5)

J1−ℓ (3.133)

(1−u2u4+t1(u2−1)u4)J2−ℓ

(1+t1(u5−1))
∆5+2J1+τ1−τ2−2ℓ

2 (1+t2(u4−1))
∆5+2J2−τ1+τ2−2ℓ

2 (1+(1−t1)(1−t2)(u2−1))
2J1+2J2+τ1+τ2−∆5

2

where [dt1dt2] =
∏2

i=1
dti Γ(2Ji+τi)t

τi+2Ji+ai
2 −1(1−ti)

τi+2Ji−ai
2 −1

Γ
(

τi+2Ji+ai
2

)
Γ
(

τi+2Ji−ai
2

) with a1 = ∆12, a2 = ∆34. As

before, the index ℓ labels a particular structure in the three-point function (3.47)

By considering the Mellin transform of G∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
we can phrase the recurrence rela-

tion in spin (3.132) in terms of a Mellin amplitudes

2(2J1 + τ1 − 2)(2J1 + τ1 − 1)((∆5 − 2δ25 + τ12)M∆1+1,∆5+1,∆3

τ1+1,J1−1,τ2,J2,l
−M∆1,∆5,∆3

τ1,J1−1,τ2,J2,ℓ
)

(2J1 + τ1 −∆12 − 2)

+ (2J1 + 2ℓ+ τ1 + τ2 −∆5 − 2)M∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
+ 2(J2 − ℓ)M∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ+1 = 0 (3.134)

with

G∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
= u

τ1
2
1 u

τ2
2
3

∫
[dδij ]M∆1,∆5,∆3

τ1,J1,τ2,J2,ℓ
(δij)u

−δ45
4 u

δ25+
τ2−τ1

2
5 u

δ13−δ45+
∆5−a2−τ1

2
2

∏
i<j

Γ(δij)

(3.135)

where we have used the constraints to eliminate the some of the δij and δ12 and δ34 are set

to ∆1+∆2−τ1
2 and ∆3+∆4−τ2

2 respectively. We have suppressed the dependence on Mellin

variables in (3.134) since there are no shifts in them.

There is an extra identity that is needed to turn (3.132) into a self-consistent recurrence

relation

4(τ1 + 2ℓ− 1)(τ2 + 2ℓ− 1)(τ1 + τ2 + 4ℓ−∆5 − 4)

(τ1 + 2ℓ−∆12 − 2)(∆34 + τ2 + 2ℓ− 2)

[
G∆1+1,∆5,∆3−1

τ1+1,ℓ−1,τ2+1,ℓ−1,ℓ−1√
u1

√
u3

−G∆1,∆5,∆3

τ1,ℓ−1,τ2,ℓ−1,ℓ−1

]
+

(∆5 − τ12)(τ1 + 2ℓ− 1)

(τ2 + 2ℓ− 2)(τ1 + 2ℓ−∆12 − 2)

[√
u5(∆5 + τ12)G

∆1+1,∆5+1,∆3

τ1+1,ℓ−1,τ2,ℓ,ℓ−1√
u1

− 2G∆1,∆5,∆3

τ1,ℓ−1,τ2,ℓ,ℓ−1

]
−

(∆5 + τ12)(τ2 + 2ℓ− 1)(τ1 + τ2 + 4ℓ−∆5 − 4)G∆1,∆5,∆3

τ1,ℓ,τ2,ℓ−1,ℓ−1

(τ1 + 2ℓ− 2)(∆34 + τ2 + 2ℓ− 2)

+ (τ1 + τ2 + 4ℓ−∆5 − 2)G∆1,∆5,∆3

τ1,ℓ,τ2,ℓ,ℓ
= 0. (3.136)



142 Higher-point Correlators and the Conformal Bootstrap

3.B Scalar Mellin partial-wave

In this appendix, we derive the Mellin partial-wave for scalar exchange within a five-point

function. We start from partial-wave definition in position space

Fν1,ν2,0,0,0(xi) =

∫
dx6dx7⟨ϕ1ϕ2ϕ(x6)⟩⟨ϕ̃(x6)ϕ5ϕ̃(x7)⟩⟨ϕ3ϕ4ϕ(x7)⟩ (3.137)

where the subscripts 0 in Fν1,ν2,0,0,0 denote the scalar exchanges and ν1, ν2 refer to prin-

cipal series representations of the exchanged operators. The notation ⟨ϕiϕjϕk⟩ denotes

kinematical structure of three-point functions

⟨ϕ1ϕ2ϕ3⟩ =
1

(−2P1 · P2)
1
2
(∆1+∆2−∆3) (−2P1 · P3)

1
2
(∆1+∆3−∆2) (−2P2 · P3)

1
2
(∆2+∆2−∆1)

,

(3.138)

where we use embedding space where −2Pi · Pj = x2ij . Note that as we only consider

scalar exchanges there is no sum over different possible tensor structures. In general, we

consider unequal scalar fields labelled by their scaling dimensions ∆i. For operators of

fixed position we do the abuse of notation ϕi ≡ ϕ(xi) but we retain the dependence on

integrated variables using ϕ(xi). The latter notation corresponds to scalar operators of

scaling dimension h+ iνi with h = d/2. Moreover, shadow operators of scaling dimension

h− iνi are denoted with an extra tilde.

In order to integrate over x6 and x7 we use the Schwinger parametrization

1

(−2Pi · Pj)a
=

1

Γ (m+ a)

∫ ∞

0

dtij
tij

tm+a
ij (−∂tij )me2tijPi·Pj . (3.139)

for any power a, (−Pi · Pj) > 0 and some integer m such that Re(m + a) > 0. For our

purposes here, it is enough to take m = 0. It will also be useful to consider the following

change of variables

t12 = 2t1t2 , t16 = 2t1t , t26 = 2t2t , t34 = 2t3t4 , t37 = 2t3s ,

t47 = 2t4s , t56 = 2t5t , t57 = 2t5s , t67 = 2ts , (3.140)

which is introduced to reproduce the form of integral one finds from considering a tree-level

Witten diagram with two scalar exchanges using the notation of [143]. Here ti’s are related

with bulk-to-boundary propagators of the external scalars whereas t, t, s, s refer to split

representations of the bulk-to-bulk propagators.
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The integrals over x6 and x7 are easy to compute successively by noting [143]∫ ∞

0

dtdt

tt
t∆tt

∆t

∫
dPe2P ·(tX+tY ) = 2πh

∫ ∞

0

dtdt

tt
t∆tt

∆te(tX+tY )2 (3.141)

where ∆t+∆t = 2h with X and Y two timelike vectors. We then find (dropping constants)

Fν1,ν2,0,0,0(xi) ∼
∫
dtdtdsds

ttss
th+iν1t

h−iν1sh+iν2sh−iν2

 5∏
i=1

∫
dti
ti
t∆i
i

 exp

[
−t1t2x212

(
t2
(
s2t

2
+ 1
)
+ 1

)

−t1t3x213ttss− t1t4x
2
14ttss− t1t5x

2
15tt

(
s2
(
t
2
+ 1
)
+ 1

)
− t2t3x

2
23ttss− t2t4x

2
24ttss

−t2t5x225tt
(
s2
(
t
2
+ 1
)
+ 1

)
− t3t4x

2
34

(
s2 + 1

)
− t3t5x

2
35ss

(
t
2
+ 1
)
− t4t5x

2
45ss

(
t
2
+ 1
)]

(3.142)

which is of the form of Symanzik’s formula [184]

2

∫ ∞

0

n∏
i=1

dti
ti
t∆i
i e−

∑n
i<j titjQij =

1

(2πi)(n(n−3))/2

∫
dδij

n∏
i<j

Γ(δij)Q
−δij
ij , (3.143)

with Qij > 0. The Mellin variables δij are integrated along a contour parallel to the

imaginary axis with Re(δij) > 0 and obey the constraints

n∑
j ̸=i

δij = ∆i . (3.144)

This allows us to find the inverse Mellin transform of the position-space partial-wave and

the Mellin partial-wave

Fν1,ν2,0,0,0(xi) =
1

(2πi)5

∫
dδijMν1,ν2,0,0,0(δij)

n∏
i<j

Γ(δij)x
−2δij
ij (3.145)

The remaining integrations in t, t, s and s are straightforward to do. We then find

Mν1,ν2,0,0,0(δij) =

π2h


∏2

i=1 Γ

(
∆2i−1+∆2i−t2i−1 2i

2

)∏
σ=± Γ

(
h+σ(∆2i−1−∆2i)+iνi

2

)



−1

Γ(∆5)Γ
(

∆5−iν1+iν2
2

)
Γ
(

t12−t34+∆5
2

)
Γ
(

2h−∆5−iν1−iν2
2

)
Γ
(

h−t12+∆5−iν2
2

)
(3.146)[(∏

σ=± Γ
(
h−t12+σ∆5−iν2

2

)
Γ
(
∆5+σiν1+iν2

2

))
Γ
(
h−t34+iν2

2

)
Γ
(
t12−t34+∆5

2

)
3F2

(
t12−t34+∆5

2
,
∆5−iν1+iν2

2
,
∆5+iν1+iν2

2

∆5 ,
2−h+t12+∆5+iν2

2

; 1

)
+ Γ (∆5) Γ

(
t12−h+∆5+iν2

2

)
(∏

σ=±
∏2

i=1 Γ
(
h−t2i−1 2i+σiνi

2

))
3F2

(
h−t12−iν1

2
,
h−t12+iν1

2
,
h−t34−iν2

2
2+h−t12−∆5−iν2

2
,
h−t12+∆5−iν2

2

; 1

)]
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where we use the notation δij =
∆i+∆j−tij

2 .

Let us finish this appendix by noting that a similar computation can be performed for

spinning exchanges using Schwinger parametrization (3.139). To do so, at each moment,

we multinomially expand the integrand decomposing it into sums over integrands of similar

form to the ones encountered for scalar exchanges. In the end, one finds a spinning Mellin

partial wave written as several sums over scalar-type Mellin partial waves. In particular

the sums are bounded by the values of spin of the exchanged operators. This is no-good

for an analytic continuation in spin that we want to consider here. For that reason and

due to its length we do not write that result here.

3.C Explicit examples in position space

In this appendix, we single-out a conformal block contribution in position space and com-

pute its Regge-limit behavior.

We start with five-point conformal block lightcone limit in its integral representation

Gk1k2ℓ(ui) = u
τ1
2
1 u

τ2
2
3 (1− u2)

ℓu
∆ϕ
2

5

∫ 1

0
[dt1][dt2] (3.147)(

1− t1(1− u2)u4 − u2u4
)J2−ℓ(

1− t2(1− u2)u5 − u2u5
)J1−ℓ(

1− (1− u4)t2
)h2−τ1−2ℓ+∆ϕ

2
(
1− (1− u5)t1

)h1−τ2−2ℓ+∆ϕ
2

(
1− (1− t1)(1− t2)(1− u2)

)h1+h2−∆ϕ
2

,

where τi = ∆i − Ji is the twist and hi = ∆i + Ji the conformal spin of the i-th exchanged

operator. The measure is given by [dt] = Γ(∆i+Ji)

Γ2(
∆i+Ji

2
)
(t(1− t))

∆i+Ji
2

−1.

Generically, we do not know how to evaluate these integrals in terms of known analytic

functions. However, when the exponents in the denominator of the integrand are integers,

this is no longer the case.22 As a matter of example we consider the simple case of ∆i =

∆ϕ = 2 and J1 = J2 = ℓ = 0. Note that this is just a choice and spinning cases would also

have a similar discussion but with longer explicit expressions. In this case, equation (3.147)

can be integrated and yields (apart from an overall constant)

u1u3u5
1− u5 + u4 (u2u5 − 1)

[
Li2 (u2u4)− Li2 (u4) + Li2 (u2u5)− Li2 (u5)− Li2 (u2) (3.148)

− log (1− u2) log (u2)− log (1− u4) log (u4)− log (1− u5) log (u5)

+ log (u4) log (u5) + log (u2u5) log (1− u2u5) + log (u2u4) log (1− u2u4) + ζ(2)
]
.

22The package HyperInt [146] is particularly useful to evaluate these integrals.
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Figure 3.12: Discontinuities of lightcone block under analytic continuation (3.78). In
blue, the real part of the stripped-off lightcone block. In orange, the real part of the block
with log(u2) → log(u2) + 2πi. In green, the previous with log(u4) → log(u4) − 2πi and
in red, the latter with log(u5) → log(u5)− 2πi. On the right, a zoomed-in version of the

same plot. The plots are obtained with δ2 = 0.73δ1.

As we perform the analytic continuation from an Euclidean to double-Reggeon exchange

kinematics that we presented in (3.78), we cross block branch-cuts and it mixes with other

solutions of the Casimir equations. In particular, the discontinuities of the block contain

the leading contributions in the Regge limit. Having an explicit expression to work with

we can tell the full story.

As we perform the analytic continuation and as the lightcones are crossed, pairs of

operators become timelike separated and cross-ratios u2, u4 and u5 go around 0. Note then

that we are indeed crossing branch-cuts of the expression (3.148). In particular, we observe

that only log terms in (3.148) can contribute to the discontinuity as ui goes around 0 with

log(x) → log(x)± 2πi. The actual sign one picks is determined by how one moves around

branch-cuts. As we reviewed in the main text, this depends on the ordering of operators of

the Wightman function we consider. As before, here we take an ordering compatible with

the time-ordering of Regge kinematics, i.e. ⟨ϕ4ϕ1ϕ2ϕ5ϕ3⟩. Taking this ordering and the

associated iϵ-prescription, we can perform the path continuation to Regge kinematics in

our explicit-lightcone-block contribution and observe its discontinuities concretely. This is

plotted in figure 3.12.23 As we move according to the chosen path for analytic continuation,

we observe that the lightcone block (blue) has discontinuities. The first one can be removed

if one replaces log(u2) → log(u2)+2πi as shown by the orange line. Clearly, this shows that

the discontinuity of the lightcone block is due to a logarithmic discontinuity in u2. Similarly,

when the orange line has a discontinuity, there is a continuation provided by the green line.

The latter is defined from the former with the replacement log(u4) → log(u4) − 2πi. We

23In this plot we only considered the terms within the brackets in (3.148). Note that only this part is
relevant for the discontinuities we want to study.
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conclude that a discontinuity in u4 has taken place. The same is true for the red line which

provides the continuation of the green line once we take log(u5) → log(u5)− 2πi and once

again a discontinuity, this time in u5, has to be considered. This simple example shows in

practice what we had already guessed: the lightcone block has discontinuities associated

with u2, u4 and u5 going around 0 and all of them are important. Let us then study the

discontinuities of (3.148) on these variables.

It is possible to use the integral representation of the lightcone block to argue that there

are no sequential discontinuities involving u2, i.e.

Discu2Discu4 oru5Gk1,k2,ℓ = Discu4 oru5Discu2Gk1,k2,ℓ = 0 . (3.149)

In the expression (3.148) this is straightforward to see as there are no products of the

type log(u2) log(u4) or log(u2) log(u5). As it was stated in the main text and as we will

see below, it is actually the sum Discu2Gk1,k2,ℓ + Discu5Discu4Gk1,k2,ℓ that dominates the

Regge behavior of the correlation function.

The discontinuity of expression (3.148) as u2 goes around 0 with fixed u4, u5 > 0 is

given by

±2πi
u1u3u5

1− u5 + u4(u2u5 − 1)
log

(
1− u2

(1− u2u4)(1− u2u5)

)
, (3.150)

which in the limit u4, u5 → 1 with χ2 =
1−u2

(1−u4)(1−u5)
fixed simplifies to

±2πi

√
u1

√
u3

(χ2 − 1)χ4χ5
log (χ2) , (3.151)

where we also use χ4 = 1−u4√
u3

and χ5 = 1−u5√
u1

which approach infinity due to the order

of limits considered. This order of limits does not correspond to the actual Regge limit:

indeed, we will call this ordered limit a boundary condition for Regge limit. The name

simply follows from the fact that we use it below as a boundary condition for a set of

recursion relations where we compute the Regge limit of a conformal block starting from

the lightcone. Note, moreover, that the scaling in both u1 and u3 in the expression above

agrees with the expected u
(1−Ji)/2
i of Regge limit. As stated above we are indeed describing

a double Reggeon exchange. This clearly contrasts with the Euclidean OPE scaling, u
∆i/2
i ,

manifesting the difference between Regge and Euclidean kinematics. Perhaps a more strik-

ing example would follow from considering a spinning case from the beginning. The story

is no different in those cases but the expressions grow considerably in size. We also note the

existence of a log term in the case at hand. We point out that some other examples where

the lightcone block can be integrated do not have these contributions in the above limit.
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Its existence in this case suggests however that a generic function for the discontinuity of

the lightcone block as u2 goes around 0 must contain log terms when the representation

labels of the external and exchanged operators conspire in a certain way.

We now consider the discontinuity in u4 with fixed and positive u2, u5. This gives

±2πi
u1u3u5

1− u5 + u4(u2u5 − 1)
log

(
1− u4

(1− u2u4)u5

)
, (3.152)

which yields a boundary condition for Regge limit

±2πi
u1

√
u3

χ4
. (3.153)

From the symmetry of (3.148) between u4 and u5 we immediately see that a similar result

follows for the discontinuity in u5. Note that these terms are subdominant in the limit

u1, u3 → 0 when compared to (3.151). In particular, in expression (3.153) u1 scales as

u
∆1/2
1 whereas u3 scales as u

(1−J2)/2
3 . The converse happens in the discontinuity in u5

complex plane. This behavior should correspond to single Reggeon exchanges. Notably,

the sequential discontinuity in u4 and u5 produces a dominant contribution for the double

Reggeon kinematics. To see this, consider (3.152) and take the sequential discontinuity in

u5. This gives

±4π2
u1u3u5

1− u5 + u4 (u2u5 − 1)
, (3.154)

which fixes the boundary condition for Regge limit

4π2
√
u1

√
u3

(χ2 − 1)χ4χ5
, (3.155)

that is as dominant as (3.151). We conclude in this simple example, the generic state-

ment we have made in the main text that Discu2Gk1,k2,ℓ+Discu5Discu4Gk1,k2,ℓ provide the

dominant contributions of the correlation function in Regge limit.

Even though the existence of log terms in the boundary condition for the Regge limit

is not generic, we should however show how to deal with them when we compute the

conformal blocks at Regge limit. If there are no log terms in your case of interest, simply

set those terms to zero in the procedure below. We consider the Casimir equations in the

limit of u1, u3 → 0 with a block that scales as

Gk′1k
′
2ℓ
(xi) ∝ u

1−J1
2

1 u
1−J2

2
3 H(χ2, χ4, χ5) . (3.156)



148 Higher-point Correlators and the Conformal Bootstrap

In this limit, the Casimir equations for H simplify and read[
χ2
4

(
4(2χ2 − 1)(∂χ2 − χ5∂χ2∂χ5)− (d− 1)χ3

5∂χ5 −
(
χ2
5 − 4

)
χ2
5∂

2
χ5

)
+4
(
(χ2 − 1)χ2χ

2
4 + 1

)
∂2χ2

+ (∆1 − 1)(∆1 − d+ 1)χ2
4χ

2
5

]
H(χ2, χ4, χ5) = 0 (3.157)

with an entirely similar second equation obtained from the above by replacing ∆1 by ∆2

and permuting the roles of χ4 and χ5. In our particular case of study, in the limit of

u1, u3 → 0, large χ4, χ5 and fixed χ2, the leading Regge contribution of the block behaves

as √
u1

√
u3

(χ2 − 1)χ4χ5

(
a+ b log(χ2)

)
(3.158)

where a and b are constants. We can thus further impose in (3.157)

H(χ2, χ4, χ5) =
H(χ2, χ4, χ5)

χ4χ5
. (3.159)

According to (3.158) and considering a small-χ2 limit, we can look for solutions of the

Casimir equations of the form

H(χ2, χ4, χ5) =
∑

n1,n2,n3

an1,n2,n3χ
n1
2 χ

−n2
4 χ−n3

5 + bn1,n2,n3 log(χ2)χ
n1
2 χ

−n2
4 χ−n3

5 (3.160)

where the coefficients an1,n2,n3 and bn1,n2,n3 reduce to a and b, respectively, when all ni

are 0. The remaining expansion coefficients an1,n2,n3 and bn1,n2,n3 are fixed by the Casimir

equations. It is easy to see that this ansatz gives rise to terms in the Casimir equations of

the form

χc1+n1
2 χc2−n2

4 χc3−n3
5 ×


an1,n2,n3

bn1,n2,n3

bn1,n2,n3 log(χ2)

. (3.161)

Clearly, the terms that depend on log should cancel among each other in order to satisfy

the Casimir equation. This leads to two constraints per Casimir equation, one for the log-

dependent terms and one for the remaining. For the isolated log terms, we find recursion

relations for the coefficients by removing the χ-dependence from the equations. To do so,

we shift each term accordingly, i.e. n1 → n1 − c1, n2 → n2 + c2 and n3 → n3 + c3. This
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leads to the following recursion relations

bn1,n2,n3 =
1

n3(d− n3 − 4)

[
4(n1 + 1)

(
(n1 + n3)bn1+1,n2,n3−2 − (n1 + 2)bn1+2,n2−2,n3−2

)
−4(n1 + n3 − 1)(n1 + n3)bn1,n2,n3−2

]
(3.162)

with a similar one where we exchange the roles of n3 and n2. Clearly, the above recursion

relation cannot be used whenever n3 = 0. In such case, the other recursion relation can

be used instead (and vice-versa). An entirely similar argument follows for the non-log-

dependent terms. We find the recursion relations

an1,n2,n3 =
4

n2(4− d+ n2)

[
(n1 + n2 − 1)(n1 + n2)an1,n2−2,n3 − (n1 + 1)(n1 + n2)an1+1,n2−2,n3

+(n1 + 1)(n1 + 2)an1+2,n2−2,n3−2 + (2n1 + 2n2 − 1)bn1,n2−2,n3 − (2n1 + n2 + 1)bn1+1,n2−2,n3

+(2n1 + 3)bn1+2,n2−2,n3−2

]
(3.163)

with another equivalent relation where the roles of n2 and n3 are swapped.

These recursion relations are only meaningful once one prescribes a boundary condition.

We impose that

an1,n2,n3 = bn1,n2,n3 = 0 if n1 < 0 ∨ n2 < 0 ∨ n3 < 0 ,

a0,0,0 = a and b0,0,0 = b . (3.164)

It is easy to check that these recursion relations fix the behavior of all the coefficients up

to those of the form an1,0,0 and bn1,0,0 but note that these can be read from (3.158) by

expanding it on small χ2 limit.

3.D Other Regge kinematics

In this short appendix, we detail other possible Regge kinematics that we did not explore

in detail in this chapter but that might be worth studying in the future.

Single Reggeon exchange

Within a five-point function, one can consider a single Reggeon exchange. In terms of

Mandelstam invariants s25 or s45 of figure 3.1 only one of the two becomes large. In the

context of CFTs, this translates to having only two operators, one in the first and one in
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the second Poincare patches, approaching each other in such a way that there is only one

cross-ratio going to 0 rather than two.

One possible analytic continuation that describes single Reggeon exchange is given by

x1 = −r
(
sinh(δ1), cosh(δ1), 0d−2

)
x3 = (0, 1, 0d−2) x5 = (0, h1, h2, 0d−3)

x2 = r
(
sinh(δ2), cosh(δ2), 0d−2

)
x4 = (0,−1, 0d−2) . (3.165)

with positive rapidities δi and 0d denoting a d-dimensional vector of zeros. In the large-

rapidities limit, one can check that u1 → 0 and u2, u5 → 1 with unfixed u3 and u4. This

agrees with the Euclidean OPE limit in the (12) channel. Again, we emphasize that this

limit is attained after branch-cuts are crossed and thus in an intrinsically Lorentzian Regge

sheet.

Six-point snowflake

The six-point conformal block of external scalars is known in the lightcone limit in the

snowflake topology [1]. Even though here we did not attempt to analyze the cut-structure

of this block, we nonetheless write down an analytic continuation prescription to achieve

a Regge limit configuration that is consistent at the level of the cross-ratios with the OPE

on channels (12), (34) and (56).

We use the set of 9 cyclic cross-ratios

u1 =
x212x

2
35

x213x
2
25

ui+1 = ui|xi→xi+1 mod 6

U1 =
x213x

2
46

x214x
2
36

Ui+1 = Ui|xi→xi+1 mod 3 . (3.166)

In the snowflake OPE limit u1, u3, u5 → 0 and the remaining all go to 1. In the Regge

limit one should reobtain the same limiting values of the cross-ratios after some lightcones

are crossed. We start with a totally spacelike configuration and perform the analytic

continuation

x1 = −r1
(
sinh(δ1), cosh(δ1), 0d−2

)
x4 =

(
sinh(δ1),− cosh(δ1), 0d−2

)
(3.167)

x2 = r1
(
sinh(δ2), cosh(δ2), 0d−2

)
x5 = (r2 sinh(δ3), r3, h, r2 cosh(δ3), 0d−4)

x3 =
(
− sinh(δ2), cosh(δ2), 0d−2

)
x6 = (−r2 sinh(δ3), r4, h,−r2 cosh(δ3), 0d−4) .

where one can see that we use 9 degrees of freedom. Note as well that for six-point functions

one can at most use the conformal symmetry to state that any generic correlation function
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is related to one that lives in some half-subspace in 4 dimensions [185]. Perhaps the most

notorious difference in this case is the need to boost a pair of points along some different

plane. It is easy to check however that this prescription indeed leads to the expected OPE

behavior for a snowflake six-point function.





Chapter 4

Kaluza-Klein Five-Point Functions

from AdS5 × S5 Supergravity

4.1 Introduction

Recent years have seen significant progress in computing holographic correlators, which

are key objects for exploring and exploiting the AdS/CFT correspondence. Traditionally,

holographic correlators are computed by diagrammatic expansions in AdS. Such a method

works in principle. However, in practice, it requires the precise knowledge of the exceedingly

complicated effective Lagrangians and is extremely cumbersome to use. Therefore, for

almost twenty years the diagrammatic approach led to only a handful of explicit results.

The new developments, on the other hand, are based in a totally different strategy which

relies on new principles. This is the bootstrap approach initiated in [128, 186], which

eschews the explicit details of the effective Lagrangian altogether. The new approach

works directly with the holographic correlators and uses superconformal symmetry and

consistency conditions to fix these objects. The bootstrap strategy has produced an array

of impressive results.1 For example, at tree level general four-point functions for 1
2 -BPS

operators with arbitrary Kaluza-Klein (KK) levels have been computed in all maximally

superconformal theories [128, 186, 188, 189], as well as in theories with half the amount of

maximal superconformal symmetry [190–192]. Note that these general results are all in the

realm of four-point functions. Higher-point functions still mostly remain terra incognita. In

fact, only two five-point functions have been computed in the literature for IIB supergravity

on AdS5 × S5 [57] and SYM on AdS5 × S3 [129] respectively, and both for the lowest KK

1See [187] for a review.

153
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modes only. For the latter case, recently in [130], the authors computed the six-point

correlator of the lowest KK modes as well.

However, as stressed in this thesis, studying higher-point holographic correlator is of

great importance. Firstly, higher-point correlators allow us to extract new CFT data

which is not included in four-point functions. For example, the OPE coefficient of two

double-trace operators and one single-trace operator can only be obtained from a five-

point function. Moreover, via the AdS unitarity method [50] higher-point correlators are

also necessary ingredients for constructing higher-loop correlators. Secondly, via the Ad-

S/CFT correspondence holographic correlators correspond to on-shell scattering ampli-

tudes in AdS. Recently, there has been a lot of progress in finding AdS generalizations of

flat-space properties [129, 192–205]. As we know from flat space, many remarkable proper-

ties of amplitudes are only visible at higher multiplicities. To further explore the analogy

between holographic correlators and scattering amplitudes it is necessary to go to higher

points. Finally, it has been observed in [48] that a ten-dimensional hidden conformal sym-

metry is responsible for organizing all tree-level four-point functions for IIB supergravity

on AdS5 × S5. The nature of this hidden structure is still elusive. It is an interesting

question whether the 10d hidden symmetry is just a curiosity for four points or it persists

even at higher points.

For these reasons, in this chapter we continue to explore the bootstrap strategy for

computing higher-point correlators. In particular, we will focus on computing the five-

point functions of the form ⟨pp222⟩ for IIB supergravity in AdS5 × S5, where three of the

operators have the lowest KK level but the other two have arbitrary KK level p. Our

strategy will be similar to that of [57], which computed the p = 2 case, but with impor-

tant differences. In [57], the starting point is an ansatz in position space which is a linear

combination of all possible Witten diagrams with unfixed coefficients. To fix the coef-

ficients, one imposes various constraints from superconformal symmetry and consistency

conditions. These includes factorization in Mellin space [144], the chiral algebra constraint

[206] and the Drukker-Plefka twist [207]. The first constraint is the consistency condition

for decomposing the five-point function into four-point functions and three-point functions

at its singularities. The second and the third conditions come from superconformal sym-

metry and are the statement that the appropriately twisted five-point function becomes

topological. Although these conditions uniquely fix the p = 2 five-point function, the

strategy of [144] suffers from a few drawbacks which make it difficult to apply efficiently
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to correlators with higher KK levels. Firstly, computing the higher-point Witten diagrams

in the ansatz is a nontrivial task. In particular, simplifications used in [144] for computing

p = 2 diagrams no longer exist for p > 2 and the analysis is in general more complicated.

Secondly, the three constraints were implemented in difference spaces, which makes the

algorithm less efficient. Factorization is most convenient in Mellin space. However, the

chiral algebra constraint and the Drukker-Plefka twist were implemented in the original

position space. The position space implementation requires computing explicitly a set of

five-point contact diagrams, i.e., D-functions, to which the ansatz reduces. As was shown

in [144], these D-functions can further be expressed in terms of one-loop box diagrams

which can be written as Li2 and logarithms. But the complexity of the expression for

each D-function is determined by its total external conformal dimensions. For ⟨pp222⟩
five-point functions, the sum of dimensions grows linearly with respect to p. Therefore, it

soon becomes computationally very expensive for large enough p.

We overcome these difficulties by proposing a new algorithm. It relies on the key ob-

servation that a more careful analysis of the Mellin factorization condition together with

the Drukker-Plefka twist allow us to completely fix the five-point correlators without using

the chiral algebra constraint. Although computing Witten diagrams is difficult in position

space, formulating the ansatz in Mellin space is straightforward thanks to their simplified

analytic structure in Mellin space. This is further aided by a new pole truncation phe-

nomenon which keeps the number of poles fixed irrespective of the KK levels. As a result,

we can write down the ansatz for the Mellin amplitude for general p. Moreover, we find

a way to implement the Drukker-Plefka twist directly in Mellin space. Therefore, we can

perform the bootstrap entirely within Mellin space without ever taking the position space

detour. This allows us to compute the five-point ⟨pp222⟩ Mellin amplitudes for arbitrary

p in a closed form. Although here we focused on this particular family of correlators, the

strategy applies straightforwardly to more general five-point functions.

The rest of the chapter is organized as follows. In Sec. 4.2 we discuss the superconformal

kinematics of the five-point functions. In particular, we will introduce the Drukker-Plefka

twist. In Sec. 4.3 we review the Mellin space formalism and the factorization of Mellin

amplitudes. We also explain how to implement the Drukker-Pleka twist in Mellin space. We

bootstrap the five-point functions in Sec. 4.4 and give the general formula for the ⟨pp222⟩
Mellin amplitudes. In Sec. 4.4.5 we also comment on how to perform the bootstrap in

position space. We conclude in Sec. 4.5 with an outlook for future directions. Technical
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details are contained in the two appendices. In Appendix 4.A we explain how to compute

spinning four-point functions which are needed for factorizing the five-point functions.

In Appendix 4.A.4 we discuss how to glue together the R-symmetry dependence when

performing factorization.

4.2 Superconformal kinematics of five-point functions

We consider the correlation functions of the super primaries of the 1
2 -BPS multiplets.

These are scalar operators OI1...Ik
k with I = 1, . . . , 6, k = 2, 3, . . ., transforming in the rank

k symmetric traceless representation of the SO(6) R-symmetry group. Their conformal

dimensions are protected by supersymmetry and are determined by the R-symmetry rep-

resentation ∆ = k. Via the AdS/CFT correspondence, they are dual to scalar fields in AdS

with KK level k and are usually referred to as the super gravitons. A convenient way to

keep track of the R-symmetry information is to contract the indices with null polarization

vectors

Ok(x; t) = OI1...Ik
k tI1 . . . tIk , t · t = 0 . (4.1)

Our main target in this chapter is the following five-point correlator

Gp(xi; ti) = ⟨Op(x1; t1)Op(x2; t2)O2(x3; t3)O2(x4; t4)O2(x5; t5)⟩ . (4.2)

More precisely, we will compute the leading connected contribution which is of order 1/N3

and corresponds to tree-level scattering in AdS. The disconnected piece factorize into a

three-point function and a two-point function, and is protected because the lower-point

functions are.

Symmetry imposes strong constraints on the form the correlator. For example, con-

formal symmetry allows us to write the five-point function as a function of five conformal

cross ratios after extracting an overall kinematic factor2

u1 =
x212x

2
35

x213x
2
25

, u2 =
x214x

2
23

x213x
2
24

, u3 =
x225x

2
34

x224x
2
35

, u4 =
x213x

2
45

x214x
2
35

, u5 =
x215x

2
24

x214x
2
25

(4.3)

where we have defined xij = xi − xj . Similarly, extracting a kinematic factor also allows

us to express the R-symmetry dependence as a function of the following five R-symmetry

2We are using a different, but equivalent, set of cross ratios here compared to [57]. These new cross
ratios have appeared before in [64]. One reason why these variables are nice is that it is possible to associate
some x2

ij to uk, for example x12 only appears in u1. Another interesting property is that they are cyclically
related to each other.
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cross ratios

σ1 =
t12t35
t13t25

, σ2 =
t14t23
t13t24

, σ3 =
t25t34
t24t35

, σ4 =
t13t45
t14t35

, σ5 =
t15t24
t14t25

(4.4)

where we have introduced the shorthand notation tij = ti · tj . However, there is more

we can say about the R-symmetry dependence. Since the polarization vectors ti are just

multiplied to saturate the R-symmetry indices, they must appear in Gp with positive

powers. Therefore, Gp must be a collection of monomials of the form
∏

i<j t
aij
ij , with the

conditions

aij = aji ≥ 0 ,
∑
j ̸=i

aij = ki , (4.5)

where k1 = k2 = p, k3 = k4 = k5 = 2 are the weights of the external operators. Note

the number of these monomials is finite and we will refer to them as different R-symmetry

structures. In Section 4.2.1, we will explicitly write down these structures.

The considerations so far have only used the bosonic symmetries in the full super-

conformal group. The dependence on the spacetime variables x2ij and on the R-symmetry

variables tij are not related. However, the fermionic generators in the superconformal group

will impose further constraints which correlate the x2ij and tij dependence. For five-point

functions, a thorough analysis the full consequence of the fermionic symmetries has not

been performed in the literature. However, two classes of such constraints are known. The

first is the chiral algebra construction [206] which constrain the five-point function when

all the operators are inserted on a two dimensional plane. The other is the Drukker-Plefka

twist [207] which imposes constraints on the correlator with generic insertion positions. In

this chapter, we will only need the latter. We will review these conditions in Section 4.2.2.

4.2.1 R-symmetry

A systematic way to enumerate the R-symmetry structures of the ⟨pp222⟩ five-point func-
tion is to consider the Wick contractions. Different Wick contractions are illustrated in
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Figure 4.1: Inequivalent R-symmetry structures in the ⟨pp222⟩ five-point function. Here
(a1, a2) is (1, 2) or (2, 1) and (a3, a4, a5) can be any permutation of (3, 4, 5). Each thin line
represents a single contraction. The thick line represents the multi-contraction ta12 with
the power a given by the number next to the line. The R-symmetry structures in the first
row have counterparts in the ⟨22222⟩ five-point correlator. For ⟨pp222⟩ they are simply
obtained by multiplying the p = 2 structures with tp−2

12 . The R-symmetry structures in
the second row are new and do not appear in ⟨22222⟩.

Fig. 4.1 and the corresponding R-symmetry structures are explicitly given by

P (I)
a3a4a5 = tp−1

12 t2a3ta3a4ta4a5t1a5 ,

P (II)
a3a4a5 = tp−2

12 t1a3t2a3t2a4ta4a5t1a5 ,

T (I)
a3a4a5 = tp12ta3a4ta4a5ta3a5 ,

T (II)
a3a4a5 = tp−1

12 t2a3t1a3t
2
a4a5 ,

T (III)
a1a2a3a4a5 = tp−2

a1a2ta1a4ta4a5t1a5t
2
a2a3 ,

N (I)
a3a4a5 = tp−3

12 t1a3t1a5t2a3t2a5t1a4t2a4 ,

N (I)
a3a4a5 = tp−3

12 t21a3t
2
2a4t1a5t2a5 .

(4.6)

Here (a1, a2) is (1, 2) or (2, 1) and (a3, a4, a5) can be any permutation of (3, 4, 5). The

Wick contractions in the first row of Fig. 4.1 exist for all p ≥ 2 while the second row are

only possible when p ≥ 3. This is a new phenomena that arises at the level of five-point

functions and should be contrasted with the four-point function case. In the four-point

function ⟨pp22⟩, the number of Wick contractions is the same irrespective of the Kaluza-

Klein weight p.3

3In fact, this is true even in the more general case ⟨pqrs⟩ as long as the extremality E of the correlator
remains the same. Here extremality is defined as E = s − p − q − r and we have assumed that s is the
largest weight of them.
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For p = 2, all the five points are on the same footing and there is no distinction

between P
(I)
a3a4a5 , P

(II)
a3a4a5 and among T

(I)
a3a4a5 , T

(II)
a3a4a5 , T

(III)
a1a2a3a4a5 . Multiplying them by

tp−2
12 gives the corresponding structures when p > 2. Note that even when p ≥ 3, some of

these R-symmetry structures in Fig. 4.1 still have residual symmetries and are invariant

under certain permutations of {a3, a4, a5}. For example, T
(I)
a3a4a5 = T

(I)
a4a3a5 = T

(I)
a3a5a4 and

T
(II)
a3a4a5 = T

(II)
a3a5a4 . We choose the independent R-symmetry structures to be

P (I,II)
a3a4a5

: (a3, a4, a5) ∈ {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} ,

T (I)
a3a4a5

: (a3, a4, a5) ∈ {(3, 4, 5)} ,

T (II)
a3a4a5

: (a3, a4, a5) ∈ {(3, 4, 5), (4, 3, 5), (5, 3, 4)} ,

T (III)
a1a2a3a4a5

: (a1, a2, a3, a4, a5) ∈ {(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 2, 5, 3, 4), (2, 1, 3, 4, 5),

(2, 1, 4, 3, 5), (2, 1, 5, 3, 4)} ,

N (I)
a3a4a5

: (a3, a4, a5) ∈ {(3, 4, 5)} ,

N (II)
a3a4a5

: (a3, a4, a5) ∈ {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} .

(4.7)

This gives in total 29 independent R-symmetry structures. When p = 2, N
(I)
a3a4a5 and

N
(II)
a3a4a5 do not exist and we have 22 structures.

4.2.2 Drukker-Plefka twist and chiral algebra

A highly nontrivial constraint from superconformal symmetry is given by the topological

twist discovered in [207], which we will refer to as the Drukker-Plefka twist. In [207], it was

found that when the operators have the following position-dependent polarization vectors

(commonly referred to as a twist)

ti = (ix1i , ix
2
i , ix

3
i , ix

4
i ,
i

2
(1− (xµ)2),

1

2
(1 + (xµ)2)) , (4.8)

the twisted correlator preserves certain nilpotent supercharge. The twisted operators are

in its cohomology. More importantly, the translations of operators while keeping the po-

larizations twisted are exact. It then follows that the twisted correlators are topological,

i.e., independent of the insertion locations

Gp(xi; ti) = constant . (4.9)
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Note that in terms of the variables x2ij and tij , the twist condition can also be written as

tij = x2ij .

Let us also mention another twist for contrast, namely the chiral algebra [206]. However,

we will not exploit this twist here. The chiral algebra twist requires that all the operators

are inserted on a two dimensional plane. The coordinates therefore can be parameterized by

the complex coordinates z, z. Furthermore, the polarization vectors need to be restricted

to be four dimensional

ti = (tµi , 0, 0) , µ = 1, 2, 3, 4 , (4.10)

where tµ can be written in terms of two-component spinors

tµi = σµαα̇v
αvα̇ . (4.11)

Using the rescaling freedom of the polarization vector, we can write v and v as

vi = (1, wi) , v = (1, wi) . (4.12)

When we twist the operators by setting wi = zi, the correlator also preserves certain nilpo-

nent supercharge. The twisted operators are in its cohomology while the antiholomorphic

twisted translations are exact. Therefore, the twisted correlator are meromorphic functions

of zi only.

4.3 Mellin representation

It has been commonly advertised that Mellin space [142, 143] is a natural language for dis-

cussing holographic correlators. In this formalism, the connected correlators are expressed

as a multi-dimensional inverse Mellin transformation

⟨O(x1) . . .O(x5)⟩conn =

∫
[dδ]M(δij)

∏
1≤i<j≤5

Γ(δij)(x
2
ij)

−δij , (4.13)

where the Mellin-Mandelstam variables satisfy

δij = δji , δii = −∆i ,
∑
j

δij = 0 . (4.14)

The function M(δij) encodes the dynamical information and is referred to as the Mellin

amplitude. Note that this definition is a bit schematic. To be precise, both the correlator

and the Mellin amplitude also depend on R-symmetry structures. However, for the moment

we will suppress this dependence to emphasize the analytic structure related to spacetime.
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One of the reasons that Mellin amplitudes is convenient for describing scattering in AdS is

they are meromorphic functions of the Mellin-Mandelstam variables. This follows directly

from the existence of the OPE in CFT. Moreover, in the supergravity limit, the poles

are associated with the exchanged single-trace particles in AdS. This makes the Mellin

amplitudes have similar analytic structure as tree-level scattering amplitudes in flat space

and allows us to apply flat-space intuitions in AdS.

More precisely, the exchange of a conformal primary operator with spin J and dimension

∆ = τ + J in a channel is represented by a series of poles in the Mellin amplitude, labelled

by m = 0, 1, 2, . . ., starting from the conformal twist τ

M ≈ Qm(δij)

δLR − (τ + 2m)
, δLR =

q∑
a=1

n∑
b=q+1

δab. (4.15)

Here, the exchange channel divides the external particles into two sets which we refer to as

L and R. We label the particles in L from 1 to q and the ones in R from q+ 1 to n. δLR is

the Mandelstam variable in this channel. The residues Qm(δij) have nontrivial structures.

They are related to the lower-point Mellin amplitudes ML and MR for the (q + 1)- and

(n − q + 1)-point functions involving particles in L and R respectively (Figure 4.2). The

extra external state in each lower-point amplitude is the exchanged particle which has now

been put on-shell. This is the basic idea of Mellin factorization [144, 208]. In fact, it is very

similar to the factorization of amplitudes in flat space which has been studied for a long

time. However, there are also important differences. In flat space, the poles are located

at the squared masses of the exchanged particles. In Mellin space, as already pointed out,

the squared mass is replaced by the conformal twist and there is in general a series of poles

for each particle which are labelled by m in (4.15). These are related to the conformal

descendants. However, in theories with special spectra such as AdS5×S5 IIB supergravity,

the series usually truncates. For example, for p = 2 the series truncates at m = 0 and

contains just one term. Moreover, compared to flat-space amplitudes, the lower-point

Mellin amplitudes also appear in the residue Qm in a more complicated way. The precise

expression for the residues depends on the spin of the operator that is exchanged. The goal

of the following subsection is to explain all the details of this formula. In particular, we will

present the explicit residue formulas for exchanged fields with spins up to 2. We should

emphasize that the structure of factorization for the general ⟨pp222⟩ five-point functions

will turn out to be far richer than for the simple case of p = 2 which was analyzed in [57].

In particular, we will see poles with m ≥ 1.
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Figure 4.2: Mellin amplitudes have poles correponding to the exchange of single-trace
operators. The residues at the poles are associated with lower-point Mellin amplitudes.
In the channel depicted in the figure, we have n = 5 and q = 3. The Mellin amplitude on

the left has four points while the one on the right has only three.

Note that for the five-point function Gp with p > 2 there are three non-equivalent

factorization channels which we choose to be

(12) : ⟨pp⋆⟩ ⟨⋆222⟩ ,

(45) : ⟨22⋆⟩ ⟨⋆pp2⟩ ,

(13) : ⟨2p⋆⟩ ⟨⋆p22⟩ ,

(4.16)

In each of them there are exchanged primary operators with spins ranging from 0 to 2 as

will be discussed in the following subsection.

4.3.1 Melllin factorization

To discuss Mellin factorization, we need to be more explicit about what fields can be

exchanged as they give rise to different lower-point functions. The problem of enumerating

exchanged fields reduces to finding all the possible cubic vertices sk1sk2X where sk is the

scalar field dual to the superconformal primary Ok and X is a field to be determined. This

problem already appears in the case of four-point functions and therefore the answer is

also the same. The possible cubic vertices are determined by two conditions. The first is

the R-symmetry selection rule. The second is the condition that the cubic vertices cannot

be extremal4. These determine the possible exchange fields to be [128, 186]

{k1, k2} = {p, p} : X = s2 , A2,µ , φ2,µν .

{k1, k2} = {2, 2} : X = s2 , A2,µ , φ2,µν , (4.17)

{k1, k2} = {2, p} : X = sp , Ap,µ , φp,µν .

4It also follows that four-point functions cannot be extremal or next-to-extremal. In particular, we do
not have the four-point functions ⟨4222⟩ and ⟨6222⟩.
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Here sk is a scalar field and is dual to the superconformal primary Ok which has dimension

∆ = k and transform in the [0, k, 0] representation of SU(4). Ak,µ is a vector field and

is dual to a spin-1 operator Jk,µ which has dimension ∆ = k + 1 and transforms in the

[1, k − 2, 1] representation. φk,µν is a spin-2 tensor field and is dual to a spin-2 operator

Tk,µν which has dimension ∆ = k + 2 and representation [0, k − 2, 0]. When k = 2, A2,µ

is the graviphoton and φ2,µν is the graviton. Their dual operators are correspondingly the

R-symmetry current and the stress energy tensor.

Let us emphasize again that in this subsection we will only focus on the Mellin-

Mandelstam variable dependence. Both ML and MR in fact also depend on R-symmmtry

variables. Therefore in the residuesQm there is also a gluing of the lower-point R-symmetry

structures. However, this gluing is purely group theoretic. To avoid distracting the reader

from the discussion of the dynamics, we will leave the details of R-symmetry gluing to

Appendix 4.A.4. Alternatively, we can view the discussion in this subsection as the Mellin

factorization for each R-symmetry structure.

4.3.1.1 Exchange of scalars

The simplest example of factorization is the exchange of a scalar operator with dimension

∆. The resulting ML and MR are again scalar Mellin amplitudes. Nevertheless, this

example contains most of the features we shall need. In particular, the m dependence will

be shared in the spinning cases. Therefore, we will first analyze this case in detail. The

residue Qm introduced in (4.15) is given in [144]

Qm =
−2Γ(∆)m!(
1 + ∆− d

2

)
m

LmRm , (4.18)

where Lm is related to ML by5

Lm =
∑

nab≥0∑
nab=m

ML(δab + nab)
∏

1≤a<b≤q

(δab)nab

nab!
(4.19)

and similarly for Rm. Notice that here and in the following we will often leave the spacetime

dimension d unspecified, but it should always be set to 4. This equation has several

interesting consequences, which will become more evident after analyzing a few examples.

Let us start with a three-point Mellin amplitude for ML, which is just a constant c. In

5Notice that ML(δab + nab) is well defined when the Mellin-Mandelstam variables satisfy the pole
condition (4.15), in addition to their constraints (4.14). The parallel with scattering amplitudes makes this
point clear.
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this case, recalling that δ12 = 1
2(∆1 + ∆2 − δLR) and δLR is set to ∆ + 2m by the pole

condition (4.15), equation (4.18) with q = 2 immediately gives

M3-pt
L = c =⇒ Lm = c

(
δLR

)
m

m!
, δLR := 1

2(∆1 +∆2 −∆)−m. (4.20)

Factorizing a five-point function leads to a three-point function and a four-point function.

For ⟨pp222⟩, there are three inequivalent factorization channels, which can be chosen to be

(12), (45) and (13). From (4.17), we know that the exchanged scalar operators in these

three channels have twists 2, 2 and p respectively. Thus, δLR in each case is given by

(12) : δLR = p− 1−m ,

(45) : δLR = 1−m ,

(13) : δLR = 1−m ,

(4.21)

and the correspoding values of δLR are 2 +m, 2 +m, p +m. After plugging these values

in (4.20), it is straightforward to see that the residue vanishes for m > 0 in the channels

(13) and (45), and for m ≥ p− 1 in the channel (12)6. Naively, one would conclude that in

the (12) channel the number of poles increases with p. However, this is too fast since the

other part Rm can give more constraints. To see this explicitly, let us look at a four-point

Mellin amplitude which has the following generic form

M4pt
R =

c1δ
2
45 + c2δ45 + c3
δ34 − 1

+ c4 + c5δ34 + c6δ45 =⇒ Rm =
1

m!

[
c1mδ45 (δ45 + 1) (3−m)m−1

δ34 − 1

+

(
c1δ

2
45 + c2δ45
δ34 − 1

+ c4

)
(2−m)m +

c3(1−m)m
δ34 − 1

+ (c5δ34 + c6δ45)(3−m)m

]
. (4.22)

Here we have evaluated the expression at the pole δLR = τ + 2m. It follows that Rm

vanishes for this four-point Mellin MR for m ≥ 3 and therefore the number of poles does

not increase for arbitrary value of p. Let us also emphasize that all four-point Mellin

amplitudes that appear in the OPE of the correlator ⟨pp222⟩ have this structure as can be

checked in Appendix 4.A.

Let us note that the absence of poles for m ≥ p − 1 can also be understood from the

pole structure of the Mellin integrand. The Gamma functions in the definition of Mellin

amplitude already have poles in this location and a pole in the Mellin amplitude atm ≥ p−1

would give rise to a double pole. Such double poles are associated with the appearance of

6The zeros in these pochhammer symbols are exactly at a position to avoid a double pole, formed by one
coming from the explicit Gamma functions in the definition and the other from the factorization formula
(4.15).
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anomalous dimension [128, 143, 186], which we do not expect at this order. On the other

hand, at the moment we do not have a direct physical argument for the truncation of poles

at m ≥ 3. Finally, this truncation continues to hold for the factorization formulas when

the exchanged operators have spins. This will be analyzed in the following subsubsection.

4.3.1.2 Exchange of operators with spins 1 and 2

In this subsection we will be interested in studying the contribution of operators with spins.

As it turns out, the analysis of the scalar case straightforwardly generalizes to the spinning

case. It is convenient to get rid of the Lorentz indices of these operators by contracting

them with null polarization vectors

O(x, z) = Oa1...aJ (x)za1 . . . zaJ , (4.23)

where z2 = 0 ensures the operator is traceless (we refer the reader to Section 3 of [144] for

a more detailed review). The definition of Mellin amplitudes of one spinning operator and

n scalar operators is given by [144]

⟨O(x0, z0) . . .On⟩ =
n∑

a1,...,aJ=1

J∏
i=1

(z0 · xai0)
∫
[dδ]M{a}(δij)

n∏
i=1

Γ(δi + {a}i)
(x2i0)

δi+{a}i

∏
1≤i<j≤n

Γ(δij)

(x2ij)
δij
,

(4.24)

where

{a}i = δδa1i + · · ·+ δδaJi , δi = −
n∑

j=1

δij ,
n∑

i,j=1

δij = J −∆0 . (4.25)

We have used δδ to denote the Kronecker delta so that it can be distinguished from the

Mellin-Mandelstam variables δ. The Mellin amplitudesM{a} satisfy certain linear relations

that follows from the conformal invariance of the correlator, see equation (46) in [144]. Let

us first focus on the spinning generalization of (4.18) for the conserved currents which

reside in the k = 2 supermultiplet. For exchanging the graviphoton, the residues are given

by7

Qm =
(d− 1)Γ(d− 2)m!(

d
2

)
m

q∑
a=1

n∑
b=q+1

δabL
a
mR

b
m , (4.26)

For exchanging the graviton, the residues are

Qm =
−(d+ 1)Γ(d− 1)m!

2
(
d
2 + 1

)
m

[
Q(1)

m −
(

1

2m
+

1

d

)
L̃mR̃m

]
, (4.27)

7As above we write d to denote the dimension of space-time and we will always set d = 4.
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where

Q(1)
m =

q∑
a,b=1

n∑
i,j=q+1

δai(δbj + δδabδδ
i
j)L

ab
mR

ij
m, (4.28)

L̃m =

q∑
a,b=1

δab[L
ab
m−1]

ab , R̃m =

q∑
a,b=1

δab[R
ab
m−1]

ab .

Here we used the notation [f(δij)]
ab = f(δij + δδai δδ

b
j + δδaj δδ

b
i). The functions La

m and Lab
m

(and analogously Ra
m, Rab

m) are defined in the same way as in (4.19). Let us also add that

for m = 0 the second term in Qm for spin 2 is zero since both L̃0 and R̃0 vanish from the

definition. Therefore, the appearance of the pole in m does not lead to a divergence.

These residue formulas for spinning operators clearly are not the full story as there are

also non-conserved currents in the multiplets with k > 2. However, from (4.17) we can see

that such non-conserved currents only appear in the channel with s2 and sp. Similar to

the scalar case (4.21), the analysis of the three-point functions requires the truncation at

m = 0. The residues are

Q0 = −∆Γ(∆− 1)

q∑
a=1

n∑
b=q+1

δabL
a
0R

b
0, for spin 1 , (4.29)

Q0 = −(∆ + 1)Γ(∆− 1)

2

q∑
a,b=1

n∑
i,j=q+1

δai(δbj + δab δ
i
j)L

ab
0 R

ij
0 for spin 2 . (4.30)

The most general expressions for factorization with arbitrary external and internal dimen-

sions and m can be found in [144]. But they are not needed in this chapter.

As in the scalar case, the truncation of poles also relies on the form of the spinning

four-point amplitudes. They are given in Appendix 4.B (see (4.154) and (4.159) for explicit

expressions). In particular, they have the same analytic structure as the scalar four-point

amplitude (4.22) except that now they carry additional indices. As a result, the truncation

of poles also holds for the exchange of spinning operators. More precisely, we have the

same pole locations as in (4.21) where the allowed values for m are m = 0, 1, 2 for (12) and

m = 0 for (45), (13).

To summarize, the Mellin factorization formulas allow us to reconstruct all the polar

part of the amplitude from the lower-point Mellin amplitudes. Furthermore, the spectrum

of the theory gives rise to a further simplification where the poles truncate to a finite range

independent of p.
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4.3.2 Drukker-Plefka twist in Mellin space

As we reviewed in the introduction, the two superconformal constraints, namely the chiral

algebra and the Drukker-Plefka twist, were both formulated and implemented in position

space [57]. To have a more streamlined algorithm, we would like to perform the bootstrap

entirely within Mellin space and therefore need to translate such position space constraints

into Mellin space. Let us first define the Mellin amplitude more precisely by restoring the

R-symmetry dependence suppressed in the definition (4.13). For the ⟨pp222⟩ correlator,

we have

Gp(xi, ti) =

∫
[dδ]M(δij , tij)

∏
1≤i<j≤5

Γ(δij)(x
2
ij)

−δij , (4.31)

where M(δij , tij) is a linear combination of the 29 R-symmetry structures listed in (4.7).

Usually the implementation of the twists in Mellin space is achieved by using the observa-

tion that x2ij monomials multiplying the Mellin transform (4.31) can be absorbed into the

definition by shifting the Mellin-Mandelstam variables. This gives rise to difference equa-

tions in Mellin space. This strategy has been used, for example, in [209, 210] to rewrite

the superconformal Ward identities in Mellin space for four-point functions. In our case,

there are extra complexities.

The issue is that the chiral algebra constraint requires all the operators to be on a two

dimensional plane. When the number of operators n > 4, this cannot be achieved by a

conformal transformation and there are relations among the cross ratios.8 The meromorphy

of the correlator after the chiral algebra twist depends crucially on these relations. On the

other hand, these relations do not hold in the definition of the Mellin ampllitude where the

locations of the operators are assumed to be general. Therefore, the position space chiral

algebra condition cannot be translated into Mellin space using the same strategy.

By contrast, the Drukker-Plefka twist only imposes conditions on the R-symmetry

polarizations and has no restriction on the operator insertions. Therefore, we can use the

same trick to implement the Drukker-Plefka twist in Mellin space. More precisely, we can

extract a kinematic factor and rewrite (4.31) in terms of cross ratios (4.3), (4.4)

Gp(xi, ti) = Kp

∫
dδijM(δij , σi)Γpp222 u

p−δ12
1 u−δ23

2 u2−δ34
3 u−δ45

4 u1−δ15
5 . (4.32)

8In two dimensions, the number of independent cross ratios is 2n−6 for n ≥ 2. However, in high enough
spacetime dimensions, the number of independent cross ratios is n(n−3)

2
. The relation for the cross ratios

can be written in form of detM = 0 where the matrix M has elements Mij = x2
ij .
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Here Kp is a kinematic factor

Kp =
x213t

p
12t

2
34t15t35

(x212)
p(x234)

2(x215x
2
35)t13

, (4.33)

and

Γpp222 = Γ (δ12) Γ (δ15) Γ (δ23) Γ (δ15 − δ23 − δ34 + 1)Γ (δ34) Γ (δ23 + 1− δ15 − δ45) Γ (δ45)

Γ (p− δ12 − δ15 + γ34 − 1) Γ (δ12 − p− δ34 − δ45 + 3)Γ (p− δ12 − δ23 + δ45 − 1) . (4.34)

Moreover, we have chosen δ12, δ23, δ34, δ45 and δ15 as the independent Mellin variables.

Performing the Drukker–Plefka twist amounts to setting tij → x2ij , or equivalently σ → u

for the cross ratios. To implement this in practice, we notice that doing the twist reduces

to multiplying the Mellin representation of different terms of the correlator K−1
p Gp(xi, ti)

by monomials un1
1 un2

2 u
n3
3 u

n4
4 u

n5
5

M(δij , σi) =
∑
{ni}

σn1
1 σn2

2 σn3
3 σn4

4 σn5
5 M{ni}(δij) →

∑
{ni}

un1
1 un2

2 u
n3
3 u

n4
4 u

n5
5 M{ni}(δij) .

(4.35)

We can absorb them by shifting δij and this has the effect on the Mellin amplitudes by

acting with a difference operator

un1
1 un2

2 u
n3
3 u

n4
4 u

n5
5 M{ni}(δij) → Dn1,...,n5 ◦M{ni}(δij) , (4.36)

where the explicit action of Dn1,...,n5 reads

Dn1,...,n5 ◦M{ni}(δij) = M{ni}(δ12 + n1, δ23 + n2, . . . )× (δ12)n1
(δ15)n5

(δ23)n2
(δ34)n3

(δ45)n4

(δ15 − δ23 − δ34 + 1)n5−n2−n3
(δ23 − δ15 − δ45 + 1)n2−n4−n5

(p− δ12 − δ15 + δ34 − 1)n3−n1−n5

(δ12 − p− δ34 − δ45 + 3)n1−n3−n4
(p− δ12 − δ23 + δ45 − 1)n4−n1−n2

. (4.37)

The various Pochhammer symbols come from comparing the shifted Gamma factor with

the one in the Mellin representation definition. The full difference operator from the

Drukker-Plefka twist, denoted as DDP, is then a sum of such operators acting on different

R-symmetry structures. As we explained in Sec. 4.2.2, the twisted correlator is just a

constant in position space. Following [128, 186], we should interpret its Mellin amplitude

as zero. Therefore, the Drukker-Plefka twist condition becomes in Mellin space

DDP ◦M(δij , σi) = 0 , (4.38)
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which explicitly reads ∑
{ni}

Dn1,...,n5 ◦M{ni}(δij) = 0 . (4.39)

The implications of this equation are discussed in the following section.

4.4 Bootstrapping five-point Mellin amplitudes

4.4.1 Strategy and ansatz

After introducing all the necessary ingredients, we are now ready to state our strategy. Our

strategy is comprised of three steps. First, we start by formulating an ansatz in Mellin space

which is based on our analysis of the analytic structure of the Mellin amplitudes. Second,

we impose the Mellin factorization condition which is the statement that the pole residues

should be correctly reproduced by the lower-point amplitudes. Finally, we implement the

Drukker-Plefka twist in Mellin space and completely fix the ansatz. In the following, we

explain the details of each step.

Step 1: Ansatz

As we emphasized in the previous section, Mellin amplitudes are merophormic functions

with simple poles corresponding to exchanging single-trace operators and residues related

to lower-point amplitudes via factorization. Based on this, we have the following ansatz

for the ⟨pp222⟩ Mellin amplitude

M(δij , tij) =
2∑

m=0

Am(δij , tij)

(δ12 + 1 +m− p)
+

∑
a=1,2,a=3,4,5

Baa(δij , tij)

δaa − 1
+

∑
3≤a<b≤5

Cab(δij , tij)

δab − 1

+D(δij , tij) . (4.40)

Here Am(δij , tij) is a rational function with possible poles in δ34, δ35, δ45. In particular,

it includes simultaneous poles which correspond to double exchange processes in the (12),

(34) channels etc. Similarly, Baa(δij , tij) is a rational function with possible poles in δkl at

δkl = 1. The labels k, l need to satisfy k, l ̸= a, a but can be both from the set {3, 4, 5}, or
belong to different sets {1, 2} and {3, 4, 5}, see equation (4.44). To avoid double counting,

Cjk(δij , tij) and D(δij , tij) do not have poles and they are polynomial functions of the

Mellin-Mandelstam variables. Note that here we have also used our Mellin factorization

analysis for the subleading poles from Section 4.3.1. We imposed that the poles in the (12)

channel truncate to m = 0, 1, 2.
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More concretely, the function Am(δij , tij) in the ansatz has the following form

Am(δij , tij) =
A34,m(δij , tij)

δ34 − 1
+
A35,m(δij , tij)

δ35 − 1
+
A45,m(δij , tij)

δ45 − 1
+A∅,m(δij , tij) , (4.41)

where A34,m, A35,m and A45,m are polynomials of degree 2 and A∅,m is a polynomial of

degree 1. Written explicitly, A34,m reads

A34,m(δij , tij) =

α1+α2+α3≤2∑
αi

29∑
I=1

aI34,m,{αi}δ
α1
23 δ

α2
25 δ

α3
45 TI , (4.42)

where {δ23, δ25, δ45} are chosen to be the independent Mellin-Mandelstam variables in ad-

dition to δ12 and δ34 which already appear in the poles. We have also used {TI} to denote

collectively the 29 independent R-symmetry structures in (4.7). The expressions for A35,m,

A45,m are similar. The polynomial A∅,m is given by

A∅,m =

α1+α2+α3+α4≤1∑
αi

29∑
I=1

aI∅,m,{αi}δ
α1
23 δ

α2
25 δ

α3
45 δ

α4
34 TI . (4.43)

The other terms in the ansatz are similar and are given by

B13 =
29∑
I=1

( α1+...α3≤2∑
αi

[bI13,24,{αi}δ
α1
15 δ

α2
23 δ

α3
45

δ24 − 1
+
bI13,45,{αi}δ

α1
15 δ

α2
23 δ

α3
34

δ45 − 1
+
bI13,25,{αi}δ

α1
23 δ

α2
34 δ

α3
45

δ25 − 1

]

+

α1+...α4≤1∑
αi

bI13,∅,{αi}δ
α1
23 δ

α2
34 δ

α3
45 δ

α4
15

)
TI , (4.44)

C34 =

α1+...α3≤1∑
αi

29∑
I=1

cI34,{αi}δ
α1
12 δ

α2
23 δ

α3
45 δ

α4
15 TI ,

D =

29∑
I=1

dITI .

In making the ansatz we have assumed that the degrees of various polynomials are the

same as in the p = 2 correlator. This is expected from the flat-space limit which is related

to the high energy limit of the Mellin amplitude [143]. This can also be confirmed by Mellin

factorization, which will be used in greater detail in the next step.9

Step 2: Mellin factorization

9For example, it is straightforward to see that these are the correct degrees when exchanging scalar
operators. Exchanging vector or tensor fields is a bit more nontrivial but it is possible to check that the
degrees are correct. The only subtle point which avoids the factorization argument is the degree of the
regular piece. However, it is natural to assume that the degree is the same as the p = 2 case so that it has
the same high energy growth as the other terms.



4. Kaluza-Klein Five-Point Functions from AdS5 × S5 Supergravity 171

The second step of our strategy is to impose Mellin factorization. As explained in

the previous section, all the polar terms of the Mellin amplitude can be completely fixed

in terms of the lower-point Mellin amplitudes. For the ⟨pp222⟩ five-point function, all

these lower-point amplitudes are known and are given in Appendix 4.B. These lower point

functions depend on R-symmetry polarization vectors. One important detail which we

did not discuss is how to glue together the R-symmetry structures in the lower-point

functions using the representation of the exchanged fields. This step is explained in detail

in Appendix 4.A.4. Thus all terms in the ansatz (4.40), except for the regular term D,

can be fixed by using this factorization procedure. Note that the number of coefficients

that remain unfixed in the ansatz is quite low as D is just a constant with respect to the

Mellin-Mandelstam variables. It can depend only on the linear combination coefficients of

the 29 R-symmetry structures.

Step 3: Drukker-Plefka twist

The final step is to impose the Drukker-Plefka twist. As explained in Section 4.3.2 this

twist can be phrased in terms of a difference operator DDP acting on the Mellin amplitude,

see (4.38). This relates the regular part with the singular part already fixed by factorization

and completely fixes the remaining coefficients10.

Using this strategy, we obtain the ⟨pp222⟩ Mellin amplitudes in a closed form for arbi-

trary p. The final result for the Mellin amplitudes will be presented in the next section11.

4.4.2 Mellin amplitude for p = 2

Due to the many R-symmetry structures involved, the expression for the full Mellin am-

plitude appears to be quite complicated at first sight. Therefore, before we present the

Mellin amplitude for general p, let us first revisit the p = 2 result of [57] and present it in

a simpler way.

When p = 2, the amplitude is symmetric under permutations of all the five external

points. The 22 R-symmetry structures also split into two classes and within each class the

10At the same time the Drukker-Plefka twist provides a very non trivial consistency check for the proce-
dure of extracting correlation functions of super-descendants and gluing of R-symmetry structures described
in Appendix.

11It would also be interesting to extend this analysis to the first correction in α′. One promising candidate
is the p = 2 case since it is more symmetric and we can also use the known results for the four-point function
as an input [211].
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structures are related by permutations. The first class is the pentagon contraction

Pa = {t12t23t34t45t15, . . .} , a = 1, 2, . . . , 12 , (4.45)

which includes P
(I,II)
a3a4a5 in (4.7). The second class is the contraction of three points times

the contraction of the remaining two points

Ta = {t12t23t13t245, . . .} , a = 1, 2, . . . , 10 , (4.46)

which includes T
(I,II,III)
a3a4a5 in (4.7). The full amplitude can be written as

Mp=2 =

12∑
a=1

MP
a Pa +

10∑
a=1

MT
a Ta . (4.47)

It is sufficient to determine the coefficient amplitudes MP
1 and MT

1 as the rest can be

obtained by permutations. We find

MP
1 = 4

√
2

{
(δ14 + δ24)(δ13 + δ14)

(δ12 − 1)(δ34 − 1)
+

(δ14 + δ24)(δ24 + δ25)

(δ12 − 1)(δ45 − 1)
+

(δ25 + δ35)(δ24 + δ25)

(δ23 − 1)(δ45 − 1)

+
(δ25 + δ35)(δ13 + δ35)

(δ23 − 1)(δ15 − 1)
+

(δ13 + δ35)(δ13 + δ14)

(δ15 − 1)(δ34 − 1)
+

1

2

(
δ35

δ12 − 1
+

δ14
δ23 − 1

+
δ25

δ34 − 1
+

δ13
δ45 − 1

+
δ24

δ15 − 1

)
− 2

}
,

(4.48)

MT
1 = − 2

√
2

(
(δ13 + δ14)(δ23 + δ24)

(δ12 − 1)(δ34 − 1)
+

(δ13 + δ15)(δ23 + δ25)

(δ12 − 1)(δ35 − 1)
+

(δ14 + δ15)(δ24 + δ25)

(δ12 − 1)(δ45 − 1)

)
.

It is clear that terms of the same structure are related by the permutations preserved by

the R-symmetry structure. We will see that the Mellin amplitude for general p also has

similar structures.

4.4.3 Mellin amplitudes for general p

For p > 2, we no longer have the full permutation symmetry and there are seven types

of R-symmetry structures as we discussed in Section 4.2.1. The Mellin amplitude can be

written as a sum over all the inequivalent R-symmetry structures

Mp =
∑
I1

MP,(I)
a3a4a5P

(I)
a3a4a5 +

∑
I1

MP,(II)
a3a4a5P

(II)
a3a4a5 +MT,(I)

345 T
(I)
345 +

∑
I2

MT,(II)
a3a4a5T

(II)
a3a4a5

+
∑
I3

MT,(III)
a1a2a3a4a5T

(III)
a1a2a3a4a5 +MN,(I)

345 N
(I)
345 +

∑
I1

MN,(II)
a3a4a5N

(II)
a3a4a5 , (4.49)
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where the sets I1,2,3 contain the following permutations

I1 = {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} ,

I2 = {(3, 4, 5), (4, 3, 5), (5, 3, 4)} , (4.50)

I3 = {(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 2, 5, 3, 4), (2, 1, 3, 4, 5), (2, 1, 4, 3, 5), (2, 1, 5, 3, 4)}

The coefficient Mellin amplitudes are given as follows. For the structures of P
(I)
a3a4a5 , P

(II)
a3a4a5 ,

the coefficients are

MP,(I)
a3a4a5 = 2

√
2p

{
2

p

δ1a4 + δ2a4
δ12 − p+ 1

(
δ1a3 + δ1a4
δa3a4 − 1

+
δ2a4 + δ2a5
δa4a5 − 1

)
+

1

p

δa3a5
δ12 − p+ 1

+
p− 2

p

δ1a4 + δ2a4 − 1

δ12 − p+ 2

(
δ1a3 + δ1a4
δa3a4 − 1

+
δ2a4 + δ2a5
δa4a5 − 1

− 1

)
− (p− 2)(p− 3)

2p

δa3a5
δ12 − p+ 3

+
(δ2a5 + δa3a5)(δ2a4 + δ2a5)

(δ2a3 − 1)(δa4a5 − 1)
+

(δ1a3 + δa3a5)(δ1a3 + δ1a4)

(δ1a5 − 1)(δa3a4 − 1)

+
p

2

(δ1a3 + δa3a5)(δ2a5 + δa3a5)

(δ1a5 − 1)(δ2a3 − 1)
+

1

2

(
δ2a4

δ1a5 − 1
+

δ1a4
δ2a3 − 1

)
+
p− 1

p

(
δ2a5

δa3a4 − 1
+

δ1a3
δa4a5 − 1

)
+

6− 7p

2p

}
, (4.51)

MP,(II)
a3a4a5 =

√
2p2
{
(δ12 + δ2a5)(δ2a5 + δa3a5)

(δ1a5 − 1)(δ2a3 − 1)
+

(δ12 + δ1a4)(δ1a4 + δa3a4)

(δ2a4 − 1)(δ1a3 − 1)

+
(δ12 + δ2a5)(δ12 + δ1a4)

(δ1a5 − 1)(δ2a4 − 1)
− (p− 2)δ12

(δ1a5−1)(δ2a4 − 1)
+

2δ12
p(δa4a5 − 1)

(
δ1a4

δ2a3 − 1
+

δ2a5
δ1a3 − 1

)
− 2(p+ 1)δ12
p2(δa4a5 − 1)

+
(p− 2)(δ12 + 1) + δa3a4

p(δ1a5 − 1)
+

(p− 2)(δ12 + 1) + δa3a5
p(δ2a4 − 1)

+
1− p

p

(
δ1a4

δ2a3 − 1
+

δ2a5
δ1a3 − 1

)
+
p− 2

p

}
. (4.52)

Upon setting p = 2, the two coefficient amplitudes become degenerate up to permuta-

tions and reproduce MP
1 in (4.48). The coefficient Mellin amplitudes of T

(I)
345, T

(II)
a3a4a5 and

T
(III)
a1a2a3a4a5 are given by

MT,(I)
345 = − 2

√
2

{
1

δ12 − p+ 1

(
(δ1a3 + δ1a4)(δ2a3 + δ2a4)

δa3a4 − 1
+

(δ1a3 + δ1a5)(δ2a3 + δ2a5)

δa3a5 − 1

+
(δ1a4 + δ1a5)(δ2a4 + δ2a5)

δa4a5 − 1

)
+

(p− 2)(δ12 − p)

δ12 − p+ 2

}
,

(4.53)
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MT,(II)
a3a4a5 = −

√
2p(p− 1)

δa4a5 − 1

{
(δ2a4 + δ3a4)(δ2a5 + δ3a5)

δ2a3 − 1
+

(δ1a4 + δ3a4)(δ1a5 + δ3a5)

δ1a3 − 1

+
2

p(p− 1)

(δ1a4 + δ2a4)(δ1a5 + δ2a5)

δ12 − p+ 1
+

4(p− 2)

p(p− 1)

(
(δ1a4 + δ2a4 − 1)(δ1a5 + δ2a5 − 1)

δ12 − p+ 2

+
p− 3

4

(δ1a4 + δ2a4 − 2)(δ1a5 + δ2a5 − 2)

δ12 − p+ 3
− 1

2
(pδa4a5 − p− 1)

)}
,

(4.54)

MT,(III)
a1a2a3a4a5 = −

√
2p(p− 1)

δa2a3 − 1

{
(δa1a2 + δa2a5)(δa1a3 + δa3a5)

δa1a5 − 1
+

(δa1a2 + δa2a4)(δa1a3 + δa3a4)

δa1a4 − 1

+
2

p(p− 1)

(δa2a4 + δa2a5)(δa3a4 + δa3a5 + p− 2)

δa4a5 − 1
− p− 2

p− 1

(
δa1a2δa2a4
δa1a5 − 1

+
δa1a2δa2a5
δa1a4 − 1

− 1 + 2p

p
δa1a2 −

δa2a3
p

+ 1

)}
.

(4.55)

They become MT
1 in (4.49) when p = 2. Finally, the coefficients of the two new structures

N
(I)
345, N

(II)
a3a4a5 are

MN,(I)
345 =

√
2p2(p− 2)δ12

{
1

(δ15 − 1)(δ23 − 1)
+

1

(δ15 − 1)(δ24 − 1)
+

1

(δ13 − 1)(δ24 − 1)

+
1

(δ13 − 1)(δ25 − 1)
+

1

(δ14 − 1)(δ23 − 1)
+

1

(δ14 − 1)(δ25 − 1)

− 2

p

(
1

δ15 − 1
+

1

δ25 − 1
+

1

δ13 − 1
+

1

δ23 − 1
+

1

δ14 − 1
+

1

δ24 − 1

)}
,

(4.56)

MN,(II)
a3a4a5 = −

√
2p(p− 2)δ12

{
δ2a3

(δ1a5 − 1)(δ2a4 − 1)
+

δ1a4
(δ2a5 − 1)(δ1a3 − 1)

+
1 + δ12 − p(δ1a3 + δ2a4 + δa3a4)

p(δ2a4 − 1)(δ1a3 − 1)

}
.

(4.57)

Note that they are proportional to p− 2 and therefore vanish for p = 2.

Let us also make a comment regarding the seemingly confusing bevahior at the flat-space

limit. The flat-space amplitude which one obtains from holographic correlators corresponds

to that of gravitons. In general, one expects that the dependence on the KK levels should

factorize as different KK modes all correspond to the same particle in flat space. However,

this is not the case if we naively take the high energy limit of the Mellin amplitudes. Clearly,

the p-dependence is not factored out as the component amplitudes of the new R-symmetry

structures for p > 2 have the same high energy scaling behavior as the other component

amplitudes. To understand this, it is important to note that the flat-space amplitude from

AdS is in a special kinematic configuration where the polarizations of the gravitons are

perpendicular to all the momenta [192]. However, such an amplitude for five points is zero
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in flat space.12 Therefore, the high energy limit of the Mellin amplitudes is not the flat-

space amplitude as one might have naively expected. In fact, in applying the prescription

of [143], there is an additional power of the inverse AdS radius 1/R which renders the flat-

space limit zero. In other words, the high energy limit of the Mellin amplitudes computes

only the 1/R corrections. We expect these corrections to have the same power counting for

different KK modes. However, we do not expect their explicit expressions to be universal.

4.4.4 A comment on consistency

Let us make a comment regarding the consistency of our result. In Section 4.3 we proved

the truncation of the poles in δ12 by using factorization in the (12) channel which only

exploits the general analytic structure of the resulting four-point amplitude. Here we point

out that the truncation can also be seen from a different point of view when it involves

simultaneous poles with another channel. For concreteness, let us focus on the residue

of the amplitude at the pole δ45 = 1. The residue is, via the factorization in the (45)

channel, related to a four-point function ⟨pp2X⟩ where the first three operators are 1, 2, 3

respectively. As we know from (4.17), the operator X belongs to the k = 2 multiplet and

can be the superprimary O2, the R-symmetry current Jµ or the stress tensor Tµν . The

Mellin amplitude of ⟨pp2X⟩ contains poles in δ12 due to the operator exchanges in the (12)

channel. These four-point Mellin amplitudes are given explicitly in Appendix 4.B and we

observe a truncation of the subleading poles in δ12 for m ≥ 3. This gives another derivation

of the structure of the simultaneous poles in δ12 and δ45.

Similar consistency checks have also been performed in other channels (e.g., in the (13)

and (45) channel), as well as for the R-symmetry gluing (see Appendix 4.A.4 for details).

4.4.5 Comments on position space

Up to this point, all of our discussions are exclusively in Mellin space. This is mainly

because of the simplified analytic structure of Mellin amplitudes, as can be seen from

our main result (4.49). However, it is also sometimes convenient to have position space

expressions as some information is difficult to extract from the Mellin space representation.

This has to do with the fact that certain nonzero expressions in position space may naively

vanish in Mellin space. More precisely, different inverse Mellin transformations can only

12This is easiest to see using double copy. The gluon five-point amplitude with orthogonal polarizations
vanishes because it is impossible to contract five polarization vectors among themselves. By double copy,
the graviton five-point amplitude also vanishes.
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be added up if their contours can be smoothly deformed from one to another. Usually the

contour part is ignored for simplicity and one just adds up the Mellin amplitudes. This

causes some information to be lost in the process. In fact, we have already encountered

such an example in this chapter: The Drukker-Plefka twisted correlator is a constant in

position space but has zero Mellin amplitude.13 The existence of the ambiguities makes a

direct translation of Mellin space results into position space difficult.

One could also try to directly extend the position space algorithm of [57] to the ⟨pp222⟩
correlators. However, as explained in the introduction, this is technically difficult. Here

we propose a hybrid approach. As explained in [57, 129], all five-point Witten diagrams

can be expressed as a linear combinations of five-point D-functions by using integrated

vertex identities14. It is then natural to construct an ansatz in position space directly in

terms of the D-functions. This will avoid directly computing the Witten diagrams which

is a nontrivial task. More concretely, we propose that the ansatz for Gp in position space

should have the following form

A∆1...∆5(xi) =
∑
{β}

c{β}(tij)(x
2
ij)

−βijD∆̃1...∆̃5
(xi) , (4.58)

where the coefficients c{β}(tij) are linear combinations of all possible R-symmetry struc-

tures. The summation over βij are subjected to the constraints

∆̃i +
∑
j

βij = ∆i, (4.59)

∑
i

∆̃i ≤ 2 +
∑
i

∆i, (4.60)

βij > 0 , βkl > 0 , only if {i, j} ≠ {k, l} (4.61)

βij ≥ −2, (4.62)

β12 ≤ p− 1, βij ≤ 1 (i, j ̸= 1, 2) . (4.63)

Let us now unpack these constraints a little. The first condition (4.59) ensures that the ex-

ternal operators have the correct weights under conformal transformations. The constraint

(4.60) imposes a bound on the sum of weights in each D-functions.15 This is expected

13See also [128] for more examples in four-point functions.
14It is known for some time [121] that four point exchange Witten diagrams can be express in terms D-

functions when certain conditions on the dimension of the operators are met, which is what often happens
in N = 4 SYM.

15One can see explicitly that it is the case for the p = 2 five-point function. Moreover, the same bound
also holds for four-point functions of higher KK modes.
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if we use the integrated vertex identities16 to reduce the exchange Witten diagrams to

contact Witten diagrams. Exchanging single-trace operators leads to singularities in po-

sition space. The condition (4.61) is the statement that particle exchanges have to be in

the compatible channels. The constraint (4.62) arises because the exchanged single-trace

operator operators have maximal spin 2. To understand this more precisely, let us notice

the following translation between position and Mellin space

∏
1≤i<j≤5

(x2ij)
−αijD∆̃1...∆̃5

→ Mαij (δ) =

π
d
2Γ

(∑
i ∆̃i−d
2

)
∏

i Γ(∆̃i)

∏
i<j

Γ(δij − αij)

Γ(δij)
. (4.64)

The condition (4.62) ensures in Mellin space that the numerator associated with an ex-

change pole is at most quadratic. Finally, the constraint (4.63) controls the twists of the

exchanged single-trace operators. Let us emphasize that this position ansatz, as it stands,

does not manifest the truncation of poles seen in (4.40). Nevertheless, this truncation can

still be imposed in position space, though in a more intricate manner (this is in stark con-

trast with Mellin space). We notice that a given negative power (x212)
−α will lead to poles

in Mellin space at all the locations δ12 = 1, 2, . . . , α. Therefore, even though the δ12 poles

in Mellin space truncate according to (4.40), in position space the result will necessarily

involve all negative powers of (x212)
−α with α = 1, 2, . . . , p − 1. Truncation only implies

that the negative powers are related but cannot just simply eliminate a subset of them.

This is another instance where we can see explicitly that Mellin space is simpler.

To fix the coefficients in the ansatz, one can translate the ansatz back into Mellin space

and compare with the Mellin amplitude (4.49). This can be achieved by using the rule

(4.64). However, as explained above, only some of the coefficients can be fixed due to the

ambiguities of the translation. One may wonder if implementing the Drukker-Plefka twist

and the chiral algebra condition in position space17 will give rise to additional constraints.

But unfortunately we find that this is not the case. There still remains the possibility

that one can fix the remaining coefficients using the recently derived higher-point lightcone

conformal blocks [133] to impose factorization in position space. But we have not found a

very efficient way to implement this. Therefore, we will postpone the task of finding the

expressions in position space and leave it to future work.

16These will generalize the ones presented in Appendix A of [57] for p = 2.
17See Appendix D of [57] for more details on how to obtain explicit expressions for D-functions.
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4.5 Discussion

In this chapter we continued the journey of exploring the structure of five-point functions

of 1
2 -BPS operators of 4d N = 4 SYM in the strongly coupled regime which is dual to

AdS5×S5 IIB supergravity. We improved the bootstrap approach of [57] which relies only

on superconfromal symmetry and consistency with factorization. The important difference

compared to the old approach is that both constraints are now implemented in Mellin

space. Moreover, in the new method we only need to use the Drukker-Plefka twist and the

chiral algebra condition is not needed. Using this approach, we obtained in a closed form

the Mellin amplitudes for the infinite family of correlators of the form ⟨pp222⟩.
Compared to the simplest ⟨22222⟩ case studied in [57], the pole structure of the Mellin

amplitudes of operators with higher KK levels is in general more complicated. However,

an important simplifying feature we observed here is a new type of pole truncation phe-

nomenon. We find that the residues of certain poles associated with conformal descendants

vanish. Moreover, in the ⟨pp222⟩ case the number of poles does not grow with respect to

p when p is large enough. Consequently, the pole structure of the Mellin amplitudes is

much simpler than what is naively expected. This property played an important role in

obtaining the ⟨pp222⟩ amplitudes and also gives us hope to bootstrap in closed forms more

general families of five-point functions with different KK levels.

Note that in deriving the pole truncation conditions, we have only used general proper-

ties of Mellin factorization. The same argument holds in many other theories and we expect

similar simplifications in the pole structure. This leads to a number of possible extensions

of our results in different setups. A prime example to consider is the gluon sector of certain

4d N = 2 SCFTs which is dual to SYM in AdS5 × S3. The first five-point function for

the lowest KK level has been computed in [129]. To make further progress in computing

amplitudes of higher KK levels, one can adapt the strategy used here. One important

ingredient which still needs to be worked out is the relations between different component

correlators of the super four-point functions (see [202] for progress in this direction). This

would be the input for exploiting the full power of the Mellin factorization. However, this

will be a direct generalization to what we have done in Appendix 4.A. Another interesting

application is the 6d N = (2, 0) theory which is dual to eleven dimensional supergravity in

AdS7 × S4.

Going beyond five-point functions, an exciting future direction is to compute the su-

per graviton six-point function of AdS5 × S5 IIB supergravity. This will provide a new
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benchmark for the program of holographic correlators at higher points. The results in this

chapter can already help us gain a nontrivial amount of knowledge of the structure of this

new correlator. Moreover, much of the technology developed here, in particular the Mellin

Drukker-Plefka twist, can also be straightforwardly applied to that problem. It appears to

be a feasible target and we hope to report progress in this direction in the near future.

Finally, let us mention that the ⟨pp222⟩ five-point functions we computed in this chapter

contain a wealth of new data of 4d N = 4 SYM. Through OPE, we can extract various

non-protected three- and four-point functions. In [57] the authors constructed five-point

conformal blocks (see [1, 60, 61, 64, 212] for progress in higher-point conformal blocks) and

explained how to use them to extract data from the p = 2 five-point correlator. It would be

interesting to perform a similar analysis here for the ⟨pp222⟩ correlators. The expression

we have for general p will be helpful for solving the mixing problem for the CFT data

which is similar to the one appearing in four-point functions. It would also be interesting

to extract the chiral algebra correlator from our supergravity result and compare with the

field theory calculation. The four-point function case has been analyzed in [213, 214].





Appendices for chapter 4

4.A Higher R-charge super multiplet

A key element of the bootstrap analysis undertaken in the main text is the factorization of

Mellin amplitudes into lower-point correlators. As explained in Section 4.3.1 we do need as

an input the explicit expression for the Mellin amplitudes associated with the four-point

functions

⟨O2O2O2O2⟩ ⟨J2O2O2O2⟩ ⟨T2O2O2O2⟩ (4.65)

⟨O2OpOpO2⟩ ⟨J2OpOpO2⟩ ⟨T2OpOpO2⟩ (4.66)

⟨OpOpO2O2⟩ ⟨JpOpO2O2⟩ ⟨TpOpO2O2⟩ (4.67)

where Op, Jp and Tp denotes the following components of the half-BPS supermultiplet Op

Op : ∆ = p , R = [0, p, 0] , spin 0 , (4.68)

Jp : ∆ = p+ 1 , R = [1, p− 2, 1] , spin 1 , (4.69)

Tp : ∆ = p+ 2 , R = [0, p− 2, 0] , spin 2 . (4.70)

In the special case p = 2 they correspond respectively to the su(4) current and stress tensor,

hence their names. The first goal of this appendix is to explain how the correlators above

can be extracted from the ⟨OpOpO2O2⟩ component. This is a generalization of what has

been done in [215] for the case p = 2. The second goal of this appendix is to explain how the

factorization in Mellin space is implemented in the presence of some global symmetry. This

is done in Appendix 4.A.4. A final warning about notation is necessary. In the main text

we use the six component null vectors on which the R-symmetry act linearly. Here, as it

is natural from the super-space prospective will use four component R-symmetry variables

y. The basic two-point invariants are identified as

tij = y2ij . (4.71)
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4.A.1 Conventions

In the following we will list all the conventions for raising and lowering indices

yaȧ = ϵabyḃbϵ
ḃȧ , (4.72)

where the ϵ tensor is defined with

ϵ12 = ϵ12 = 1 . (4.73)

It follows that

(y1i)ȧa(y1j)
aȧ = y21i + y21j − y2ij , (4.74)

which, in a particular case becomes

det yij =
1

2
(yij)ȧa(yij)

aȧ = y2ij . (4.75)

The Schouten identity can be used to show that

ϵȧḃϵbay2ij = yaȧij y
bḃ
ij − ybȧij y

aḃ
ij . (4.76)

Finally, the inverse can easily be seen to be

y−1
ȧa =

yȧa
y2

, (4.77)

and, with these conventions we also have

∂

∂yaȧ
y2 = yȧa . (4.78)

4.A.2 Differential Operators

In order to consider different components of the 1
2 -BPS supermultiplets we will work in

analytic superspace. The eight bosonic and eight fermionic coordinates of this superspace

are packaged in a supermatrix

XAȦ =

xαα̇ ραȧ

ρaα̇ yaȧ

 , (4.79)

whose superdeterminant is

sdetX =
det
(
xαα̇ − ραȧy−1

ȧa ρ
aα̇
)

det yaȧ
. (4.80)
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The supersymmetrization of the propagator dij = y2ij/x
2
ij is given by

d̂ij =
1

sdet(Xij)
=
y2ij
x̂2ij

, (4.81)

where we introduce the short-hand notation

x̂αα̇ = xαα̇ − ραȧy−1
ȧa ρ

aα̇ . (4.82)

The two-point function of half-BPS superfields Op is then simply

⟨Op(Xi)Op(Xj)⟩ = (d̂ij)
p . (4.83)

The relevant superdescendants are obtained extracting the appropriate component by act-

ing with certain differential operators:

Jp =
1

2
D(J)Op(X)

∣∣
ρ=ρ=0

,

Tp =
1

4
D(T )Op(X)

∣∣
ρ=ρ=0

. (4.84)

Given the charges and symmetries of those operators the ansatz for the differential opera-

tors needs to be18

D(J) = λαλ
α̇
vavȧ

( ∂

∂ρaα̇
∂

∂ραȧ
+ µ

∂

∂yaȧ
∂

∂xαα̇

)
, (4.85)

and

D(T ) =λα1λα2λ
α̇1
λ
α̇2
ϵȧ1ȧ2ϵa1a2 ×

( ∂

∂ρa1α̇1

∂

∂ρa2α̇2

∂

∂ρα1ȧ1

∂

∂ρα2ȧ2
+

+ ν1
∂

∂ρa1α̇1

∂

∂ρα1ȧ1

∂

∂ya2ȧ2
∂

∂xα2α̇2
+ ν2

∂

∂ya1ȧ1
∂

∂ya2ȧ2
∂

∂xα1α̇1

∂

∂xα2α̇2

)
, (4.86)

Before fixing the coefficients let us quote two simple identities which are very useful in the

following19

∂

∂XAȦ

1

sdet(X)
= −(−1)|A|

X−1

ȦA

sdet(X)
, (4.88)

∂

∂XAȦ
X−1

ḂB
= −(−1)(|A|+|Ȧ|)(|A|+|Ḃ|)X−1

ḂA
X−1

ȦB
, (4.89)

18These differential operators depend on p through the coefficients µ, ν1, ν2. This dependence is not
explicit in the notation.

19The second identity is obtained as follows

0 =
∂

∂XAȦ
δCB =

∂

∂XAȦ
XCḂX−1

ḂB
= δCA δḂȦ X−1

ḂB
+ (−1)(|A|+|Ȧ|)(|C|+|Ḃ|) XCḂ ∂

∂XAȦ
X−1

ḂB
. (4.87)

Multiplying this equation by (−1)(|A|+|Ȧ|)(|C|+|Ḃ|) and X−1

ĊC
from the left (with summation over C) we obtain

(4.89).
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where |α| = |α̇| = 0 , |a| = |ȧ| = 1. In order to fix the coefficients in the ansatz (4.85),

(4.86) it suffices to impose that two-point functions do not have off-diagonal components

between different superdescendants. So we impose

⟨Jp(1)Op(2)⟩ = D(J)
1 ⟨Op(X1)Op(X2)⟩

∣∣
ρ,ρ=0

!
= 0 , (4.90)

which fixes the unknown coefficient in D(J) to be

µ =
1

p
. (4.91)

The action of the resulting operator on the two-point function is given by20

D(J)
1 (d̂12)

p = (1− p2)λα1 λ
α̇
1 v

a
1 v

ȧ
1X

−1
α̇a X

−1
ȧα (d̂12)

p , (4.92)

where X = X12, from which one derives the two-point function of the descendant J using

the formula

D(J)
1 D(J)

2 (d̂12)
p
∣∣
ρ,ρ=0

= (1− p2)
(
λ1x

−1
12 λ2

)(
λ2x

−1
12 λ1

)(
v1y

−1
12 v2

)(
v2y

−1
12 v1

)
(d12)

p .

(4.93)

From this equation we can extract the normalization of Jp. For the spin 2 operator we

need to consider

⟨Tp(1)Op(2)⟩ = D(T )
1 ⟨Op(X1)Op(X2)⟩

∣∣
ρ,ρ=0

!
= 0 ,

⟨Tp(1)Jp(2)⟩ = D(T )
1 D(J)

2 ⟨Op(X1)Op(X2)⟩
∣∣
ρ,ρ=0

!
= 0 , (4.94)

which in turn fixes the coefficients νi to be

ν1 = − 4

2 + p
, ν2 = − 2

(1 + p)(2 + p)
. (4.95)

In the case of the stress tensor multiplet, when p = 2, these coefficients agree with those

found in [215]. The action of the resulting operator on the two-point function is given by

D(T )
1 (d̂12)

p = 2p2(p− 1)(p+ 3)λα1
1 λα2

1 λ
α̇1

1 λ
α̇2

1 ϵȧ1ȧ2ϵa1a2X−1
α̇1a1

X−1
α̇2a2

X−1
ȧ1α1

X−1
ȧ2α2

(d̂12)
p ,

(4.96)

20The fact that is vanishes when p = 1 is consistent with the fact that in this case the (field strength)
supermultiplet is ultrashort and does not possess a J component.
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where X = X12, from which one derives the two-point function of the descendant T using

the formula

D(T )
1 D(T )

2 (d̂12)
p
∣∣
ρ,ρ=0

= 16p2(p− 1)(p+ 3)
(
λ1x

−1
12 λ2

)2 (
λ2x

−1
12 λ1

)2 (y212)
p−2

(x212)
p+2

. (4.97)

Three-point function with one descendant operator can be obtained using the formulae

D(J)
1 (d̂12)

a(d̂13)
p−a
∣∣
ρ,ρ=0

= AΛ1,23 V1,23 (d12)
a(d13)

p−a , (4.98)

D(T )
1 (d̂12)

p(d̂13)
p−a
∣∣
ρ,ρ=0

= B
(
Λ1,23

)2
det
(
y−1
12 − y−1

13

)
(d12)

a(d13)
p−a , (4.99)

where

Λ1,23 := λ1(x
−1
12 − x−1

13 )λ1 , V1,23 := v1(y
−1
12 − y−1

13 )v1 . (4.100)

and

A = −a(p− a)

p
, B = −8a(a+ 1)(p− a)(p− a+ 1)

(p+ 1)(p+ 2)
. (4.101)

4.A.3 Four-point functions

The two- and three-point functions of Op operators are related in a simple way to the ones

of their superprimaries Op: they are obtained by replacing the propagators dij with the

super-propagators d̂ij . For four-point functions the situation is more involved due to the

presence of cross ratios, but it is still true that the correlators of Op is uniquely fixed by

the one of Op. This is achieved by replacing the familiar space-time and R-symmetry cross

ratios

u =
x212x

2
34

x213x
2
24

= zz , v =
x214x

2
23

x213x
2
24

= (1− z)(1− z) ,

σ =
y212y

2
34

y213y
2
24

= αα , τ =
y214y

2
23

y213y
2
24

= (1− α)(1− α) . (4.102)

with their super-symmetrizations, namely the four eigenvalues of the supermatrix

Z = X12X
−1
13 X34X

−1
24 . (4.103)

More explicitly, we can extract the independent superconformal invariants by taking four

independent supertraces

t̂k = Str(Zk) = ẑk + ẑ
k − α̂k − α̂

k
, k = 1, 2, 3, 4 . (4.104)
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When all fermionic variables are set to zero the matrix above reduces to

Z
∣∣
ρ,ρ=0

=

x12x−1
13 x34x

−1
24 0

0 y12y
−1
13 y34y

−1
24

 . (4.105)

and upon taking the supertrace gives

tk := t̂k
∣∣
ρ,ρ=0

= zk + zk − αk − αk , (4.106)

which establishes the relation between the quantities tk and the cross ratios introduced

above. In terms of the cross-ratios the four point function reads

⟨Op1(X1)Op1(X2)Op2(X3)Op2(X4)⟩ = (d̂12)
p1 (d̂34)

p2 G(ẑ, ẑ; α̂, α̂) . (4.107)

The function G satisfies the super-conformal Ward Identities and have a specific polyno-

mial dependence on the R-symmetry cross ratios. We will come back to these constraints

momentarily. To extract the relevant components from (4.107) we need to act with the

differential operators D(J) and D(T ) given in (4.85), (4.86).

Action of D(J), D(T ) on four-point functions. The spinning four-point functions are

extracted by the action of the differential operators from (4.85) and (4.86)

⟨Jp1(1)Op1(2)Op2(3)Op2(4)⟩ = 1
2D

(J)
1 ⟨O(X1)Op1(X2)Op2(X3)Op2(X4)⟩

∣∣
ρ,ρ=0

,

⟨Tp1(1)Op1(2)Op2(3)Op2(4)⟩ = 1
4D

(T )
1 ⟨O(X1)Op1(X2)Op2(X3)Op2(X4)⟩

∣∣
ρ,ρ=0

, (4.108)

with coefficients determined in (4.91) and (4.95) above. In what follows we will always

apply the differential operator at point 1, so we will need to consider two particular cases

of the four-point function, either p1 = 2 and p2 = p, or the opposite. The action of

derivatives on the superpropagators are discussed in the previous section. The action of

derivatives on the G factor is done in two steps. First we relate the derivatives with respect

to the eigenvalues of the Z matrix

z1 = ẑ , z2 = ẑ , z3 = α̂ , z4 = α̂ . (4.109)

to derivatives with respect to the supertraces (4.104). This is done by using the chain rule

∂G
∂t̂j

=
4∑

i=1

∂zi

∂t̂j

∂G
∂zi

. (4.110)
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The Jacobian matrix can be derived easily since the variables are related according to

(4.106), and is given by

∂zi
∂tj

=
(−1)j+Fi

j

Q
(i)
4−j∏

k ̸=i(zi − zk)
, (4.111)

where Q
(i)
4−j are symmetric polynomials formed with the three variables zk ̸=i (here written

for i = 4)

Q
(4)
0 = 1 , Q

(4)
1 = z1 + z2 + z3 ,

Q
(4)
2 = z1z2 + z1z3 + z2z3 , Q

(4)
3 = z1z2z3 , (4.112)

and F1 = F2 = 0 and F3 = F4 = 1. The second step is to take derivatives of t̂k with respect

to the supercoordinates XAȦ
1 using, for example

∂

∂ZA
B

t̂k = k (−1)|A| (Zk−1)BA , (4.113)

∂

∂XAȦ
1

t̂k = k (−1)|A| (X−1
12 Z

kX12)
Ḃ
Ȧ
(X−1

12 −X−1
13 )ḂA , (4.114)

and similarly for higher derivatives. This procedure is straightforward but tedious, the

result takes the schematic form given in (4.126).

General structure of the correlator. Superconformal Ward identities and polynomiality

in the R-symmetry variables imply that

⟨Op(1)Op(2)O2(3)O2(4)⟩ = Gfree + dp−2
12 RHp(u, v) , (4.115)

where R is the well-known function

R = v d212d
2
34 +

v

u
d213d

2
24 +

v2

u
d214d

2
23 +

v

u
(v − u− 1)d12d13d24d34

+
v

u
(1− u− v)d12d14d23d34 +

v

u
(u− 1− v)d13d14d23d24 . (4.116)

The free piece of the correlator can be supersymmetrized as shown in the next paragraph,

while the supersymmetrization of the anomalous component is achieved with the method

described above, where we supersymmetrize the cross ratios. The spinning anomalous

functions will then be expressed in terms of derivatives of the dynamical function Hp(u, v).

The free theory check. As a check of the formulae derived in the previous section, will

now consider the case of correlators in the free field theory. In the SU(N) gauge theory,

and for the particular configuration we are interested in, the tree-level four-point functions
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at any value of N are

⟨Op(1)Op(2)O2(3)O2(4)⟩free = dp12d
2
34 + δ2p

(
d214d

2
23 + d213d

2
24

)
+

2p(p− 1)

N2 − 1
dp−2
12 d14d23d13d24

+
2p

N2 − 1
dp−1
12 d34(d14d23 + d13d24) . (4.117)

The four-point function ⟨OpOpO2O2⟩ is obtained from the above by simply replacing the

propagator dij with its supersymmetrized version d̂ij introduced in (4.81). We can rewrite

this expression in terms of cross ratios as

Gpp22 = 1 + δ2p

(
v2σ2

u2τ2
+
σ2

u2

)
+

2p

N2 − 1

(
(p− 1)

u2τ

vσ2
+
uτ

vσ
+
u

σ

)
. (4.118)

In this case, the correlation function of superdescendants can be obtained either applying

the general procedure discussed in the previous paragraph or by replacing the propagator

dij with d̂ij in (4.117) and then applying the differential operators D(J), D(T ). Both

procedures give the same result, as they should, providing a check of the general procedure.

Frame simplifications. The computation we described can be simplified by choosing a

frame. First, we wish only to apply the differential operator on the point 1 of the four-

point function, so we can set to zero the fermionic variables associated to the remaining

points from the beginning. Second, the matrix Z is superconformally invariant, so we can

take advantage of conformal and R-symmetry transformations to send both x2 and y2 to

0, while sending x3 and y3 to infinity. Effectively the computation simplifies significantly

to the evaluation of

t̂k = Str
(
(X1X

−1
4 )k

) ∣∣
ρi>1,ρi>1=0

, (4.119)

where the matrix Z becomes

(
X1X

−1
4

)A
B

∣∣
ρ4,ρ4=0

=

(x1x
−1
4 )αβ (ρ1y

−1
4 )αb

(ρ1x
−1
4 )aβ (y1y

−1
4 )ab

 , (4.120)

and the cross ratios in this frame are given by

x21
x24

= zz ,
x214
x24

= (1− z)(1− z) ,

y21
y24

= αα ,
y214
y24

= (1− α)(1− α) . (4.121)
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With a simple calculation we obtain (in this frame)

t̂1 = t1 = Tr(x1x
−1
4 )− Tr(y1y

−1
4 ) = z + z − α− α (4.122)

t̂2 = t2 − 2 Tr
(
ρx−1

4 ρy−1
4

)
,

t̂3 = t3 − 3 Tr
(
ρx−1

4 x1x
−1
4 ρy−1

4

)
− 3 Tr

(
ρx−1

4 ρy−1
4 y1y

−1
4

)
,

t̂4 = t4 − 4 Tr
(
ρx−1

4 (x1x
−1
4 )2ρy−1

4

)
− 4 Tr

(
ρx−1

4 ρy−1
4 (y1y

−1
4 )2

)
− 4 Tr

(
ρx−1

4 x1x
−1
4 ρy−1

4 y1y
−1
4

)
− 2 Tr

(
ρx−1

4 ρy−1
4 ρx−1

4 ρy−1
4

)
, (4.123)

where ρ = ρ1, ρ = ρ1.

Summary. The final expression for the spinning correlators in (4.108) involves the struc-

tures Λ1,ij and V1,ij introduced in (4.100). These quantities are not independent but satisfy

the relation

Λ1,24 = Λ1,23 + Λ1,34 , (4.124)

and similarly for V1,ij . In particular the correlator involving Jp is linear in Λ1,ij and V1,ij ,

while the one involving Tp is quadratic in Λ1,ij and independent of V1,ij . Once the general

expression for the correlator is obtained in terms of Λ1,ij , one can decompose into

λ1x
−1
1k λ1 =

z · x1k
x21k

, zµ = σµαα̇λ
α
1λ

α̇
1 (4.125)

elements, which will have a natural counterpart in the Mellin approach of the next section

(compare to (4.24))

⟨Jp1(1)Op1(2)Op2(3)Op2(4)⟩ =
1

x2p112 x
2p2
34

4∑
k=2

α(k)
p1,p2(u, v; yij , Y1,ij)

z · x1k
x21k

,

⟨Tp1(1)Op1(2)Op2(3)Op2(4)⟩ =
1

x2p112 x
2p2
34

4∑
k,l=2

β(k,l)p1,p2(u, v; yij)
z · x1k
x21k

z · x1l
x21l

, (4.126)

where

Y1,ij = y21iy
2
1j V1,ij . (4.127)

4.A.4 R- Symmetry gluing

Realization of su(4) R-symmetry in the space of polynomials. It is convenient to use an

index free notation to implement finite dimensional representations of su(4). The compo-

nents of a given representation are packaged in a polynomial OR(y, v, v) in the variables

yaȧ, va, vȧ (here a ∈ {1, 2}, ȧ ∈ {1̇, 2̇}) subject to certain constraints that depend on the
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su(4) Dynkin labels R = [q, p, r]. The fist constraint states that OR(y, v, v) is homogeneous

in v and v of degree q and r respectively. The second constraint is slightly more involved.

In the case R = [0, p, 0], so that OR is independent of v, v it reads(
wawȧ ∂

∂yaȧ

)p+1

OR(y) = 0 , ∀ w,w . (4.128)

The case R = [1, p − 2, 1] is more involved. Since we will not use it in this work we will

not present the identification of R = [1, p − 2, 1] as the kernel of differential operators.

Two-point functions take the form

G[q,p,r](1, 2) = (y212)
p (v1y12v2)

q (v2y12v1)
r . (4.129)

Projections and gluing. To implement factorization in Mellin space in the presence

of some global symmetry (in our case the su(4) R-symmetry) it is necessary to take into

account this extra structure. To do so, we introduce a projector that singles out the

contribution of a given operator21 O which we denote by

|O| = 1

NO
D(ℓ,r)

R[O] |O(ℓ)⟩⟨O
∗(r)|

∣∣∣
ℓ=r

, (4.130)

whereD is a differential operator which is fixed (up to a normalization that will be explained

momentarily) by the requirement that (4.130) is invariant under su(4). The notation ∗

denotes conjugation which acts on representations as [q, p, r]∗ = [r, p, q]. When we insert

the quantity |O| in an n-point correlation function it is understood that we first place

|O(ℓ)⟩⟨O∗(r)|, next act with the differential operator D on the coordinates ℓ and r and

finally set the coordinates ℓ and r to be equal. To fix the normalization of D we insert |O|
in the two-point function

⟨O∗(1)O(2)⟩ = NOGR[O](1, 2) , (4.131)

where GR is given in (4.129) and obtain the condition

D(ℓ,r)
R GR(1, ℓ)GR(r, 2)

∣∣∣
ℓ=r

= GR(1, 2) . (4.132)

The explicit form of DR is slightly complicated. The simplest one is given by

D(ℓ,r)
[0,p,0] =

p∑
n=0

(−∂ℓ · ∂r)p−n

Γ(p+ 1)Γ(p+ 2)

n∑
k=0

(−1)n−M(k,n−k) (p− n+ 1)m(k,n−k)+1

Γ(m(k, n− k) + 1)
(□ℓ)

k(□r)
n−k ,

(4.133)

21Here we use the notation O instead of O since we are ignoring the space-time part.
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where (a)n denotes the Pochhammer symbol, M(a, b) = max(a, b), m(a, b) = min(a, b) and

∂i · ∂j := ϵa1a2ϵȧ1ȧ2
∂

∂ya1ȧ1i

∂

∂ya2ȧ2j

, □i =
1

2
∂i · ∂i . (4.134)

The general expression for the differential operator D[1,p−2,1] is more complicated, but it

easy to obtain for fixed p using the defining relation (4.132). Let us report the simplest

member of this family as an example

D(ℓ,r)
[1,0,1] =

(
∂vℓ∂vr

) (
∂vℓ∂vr

) (
1
2∂ℓ · ∂r −□ℓ −□r

)
− 3

16

(
∂vℓ∂yℓ∂vℓ

) (
∂vr∂yr∂vr

)
, (4.135)

where the contraction of indices is understood using the ϵ tensor.

Application to five-point functions. When we insert the projector (4.130) in a 5-point

function we will produce a product of a 3-point and a 4-point function on which the

differential operator D acts. In the following we denote by → the combination of acting

with D(ℓ,r) and setting the coordinates ℓ = r. The case that is relevant for the exchange of

Op which transform in a [0, p, 0] representation is

[
(y21ℓ) (y

2
2ℓ)

p−1
] [
(y2ri)

p−2(y2rj)(y
2
rk)
]
→ (4.136)

1
p(y

2
2i)

p−3
(
y22i (y

2
2jy

2
1k + y21jy

2
2k) + (p− 2)y21iy

2
2jy

2
2k − p−2

p+1 y
2
12 (y

2
2ky

2
ij + y22jy

2
ik)− 1

p+1 y
2
12y

2
2iy

2
jk

)
(4.137)

Similarly, using the definitions above, gluing the 3 and 5 point functions corresponding to

the exchange of Jp (which transforms in the representation [1, p− 2, 1]) is achieved by the

subsitution [
(y22ℓ)

p−2 Yℓ,12

][
(y2ri)

p−3(y2rj) Yr,kl

]
→ (4.138)

(y22i)
p−4

(
y22i y

2
2j (y

2
1ky

2
2l − y21ly

2
2k) + y212

(
p−3
p+2y

2
2j(y

2
ily

2
2k − y22ly

2
ik) +

1
p+2y

2
2i(y

2
jly

2
2k − y22ly

2
jk)
))

(4.139)

For the exchange of Tp we use the same rules as (4.136) with p replaced by p− 2.

4.B Strong coupling correlators

We can define the inverse Mellin transform of the scalar correlator as

⟨Op1(1)Op1(2)Op2(3)Op2(4)⟩ = dp112 d
p2
34 G(zk) =

∫
dδijM(δij , yij)

∏
i<j

Γ(δij)

x
2δij
ij

. (4.140)
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Conformal symmetry requires the Mellin variables δij to obey the following equations

∑
j ̸=i

δij = ∆i , (4.141)

effectively leaving only two degrees of freedom for four-point functions. It is useful to

consider the following parametrization

δij =
∆i +∆j − sij

2
, (4.142)

so that the solution is given simply as

s12 = s34 = s , s14 = s23 = t , s13 = s24 = 2(p1 + p2)− s− t . (4.143)

For the configuration we are interested in we can then write the inverse Mellin transform

as

G(u, v;σ, τ) =

∫
dsdt

4
u

s
2 v

t−p1−p2
2 M(s, t;σ, τ)

∏
i<j

Γ(δij(s, t)) . (4.144)

Equivalently, the Mellin transform of the spacetime correlator is

M(s, t;σ, τ)
∏
i<j

Γ(δij(s, t)) =

∫ ∞

0
du

∫ ∞

0
dv u−

s
2
−1v

p1+p2−t
2

−1G(u, v;σ, τ) . (4.145)

When the correlator has a factorized form as in (4.115), then it is convenient to introduce

the Mellin transform of the dynamical function Hp(u, v)

M̃p(s, t)
∏
i<j

Γ(δ̃ij(s, t)) =

∫ ∞

0
du

∫ ∞

0
dv u−

s
2
−1v

p−t
2 Hp(u, v) , (4.146)

where the shifted variables are defined as

δ̃13 = δ13 + 2 , δ̃24 = δ24 + 2 ,

δij = δij otherwise, (4.147)

and make crossing properties of the Mellin amplitude simpler. At strong coupling the

Mellin space version of the correlator was found to have a particularly simple structure

[128, 186], and in the case under consideration it reduces to

M̃p(s, t) =
32

(s− 2)(t− p)(p− s− t)
. (4.148)
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For the spinning correlators we can also write inverse Mellin transforms as follows

⟨Jp1(1)Op1(2)Op2(3)Op2(4)⟩ =
4∑

k=2

z · x1k
x21k

∫
[dδ]Mk

p1,p2

4∏
i=2

Γ(δi + δδki )

x2δi1i

∏
i<j

Γ(δij)

x
2δij
ij

,

⟨Tp1(1)Op1(2)Op2(3)Op2(4)⟩ =
4∑

k,l=2

z · x1k
x21k

z · x1l
x21l

∫
[dδ]Mkl

p1,p2

4∏
i=2

Γ(δi + δδki + δδli)

x2δi1i

∏
i<j

Γ(δij)

x
2δij
ij

,

(4.149)

with δδki the Kronecker-delta, and the Mellin variables are constrained by

δi = −
4∑

j=2

δij , δii = −∆i ,
4∑

i,j=2

δij = S −∆1 . (4.150)

In the two cases of interest we have S − ∆1 = p1, so the δij variables have the same

solution as in the scalar case, see (4.142) and (4.143). Comparing with the form of the

correlators obtained in the previous section, we can see that the inverse Mellin trasform of

the functions introduced in (4.126) are exactly the Mk and Mkl above

α(k)
p1,p2(u, v; yij , Y1,ij) =

∫
dsdt

4
u

s
2 v

t−p1−p2
2 Mk

p1,p2(s, t; yij , Y1,ij)
4∏

i=2

Γ(δi + δδki )
∏
i<j

Γ(δij) ,

β(k,l)p1,p2(u, v; yij) =

∫
dsdt

4
u

s
2 v

t−p1−p2
2 Mkl

p1,p2(s, t; yij)

4∏
i=2

Γ(δi + δδki + δδli)
∏
i<j

Γ(δij) . (4.151)

Inversing the logic we then have

Mk
p1,p2(s, t; yij , Y1,ij)

4∏
i=2

Γ(δi + δδki )
∏
i<j

Γ(δij) =

∫ ∞

0
dudv u−

s
2
−1v

p1+p2−t
2

−1α(k)
p1,p2(u, v; yij , Y1,ij) ,

Mkl
p1,p2(s, t; yij)

4∏
i=2

Γ(δi + δδki + δδli)
∏
i<j

Γ(δij) =

∫ ∞

0
dudv u−

s
2
−1v

p1+p2−t
2

−1β(k,l)p1,p2(u, v; yij) .

(4.152)

As explained in the previous section, the functions α
(k)
p1,p2 and β

(k,l)
p1,p2 are given in terms of

derivatives of the dynamical function from the scalar correlator. When p1 = 2 and p2 = p,

or p1 = p and p2 = 2, we are then relating with Hp from (4.115), and so we should use∫ ∞

0
du

∫ ∞

0
dv u−

s
2
−1v

p+2−t
2

−1umvn
∂a

∂ua
∂b

∂vb
Hp(u, v) = M̃p(s− 2m+ 2a, t− 2n+ 2b)

× (−1)a+b

(
m− a− s

2

)
a

(
n− b+

p+ 2− t

2

)
b

∏
i<j

Γ(δ̃ij(s− 2m− 2a, t− 2n− 2b)) ,

(4.153)
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which allows us to write Mk
p1,p2 and Mkl

p1,p2 for those two configurations in terms of

the scalar Mellin amplitude M̃p(s, t). At the end of the day, the Mellin amplitudes for

⟨J2O2OpOp⟩ are

M2
2,p = −2(t− p− 2)

(
2(p− 2)

s− 4
+

2

s− 2
+

p

4 + p− s− t

)
y224 y

2(p−1)
34 Y1,23

− 2(2 + p− s− t)

(
2(p− 2)

s− 4
+

2

s− 2
+

p

t− p

)
y223 y

2(p−1)
34 Y1,24

− 2p(s− 2p)

(
1

t− p
− 1

4 + p− s− t

)
y223 y

2
24 y

2(p−2)
34 Y1,34 ,

M3
2,p = 2(t− p− 2)

(
2

s− 2
+

p

4 + p− s− t

)
y224 y

2(p−1)
34 Y1,23

+ 2(2 + p− s− t)

(
2

s− 2
− p

t− p

)
y223 y

2(p−1)
34 Y1,24

− 2p(s− 2p)

(
1

t− p
+

1

4 + p− s− t

)
y223 y

2
24 y

2(p−2)
34 Y1,34 . (4.154)

Note that in general we expected poles at s−2, t−p and p+4−s−t. However, in the M2
2,p

component we see also the presence of a pole at s−4. While this might appear unexpected

at first, it is in fact due to the shift in the Gamma functions of spinning correlators. When

p1 = 2 and p2 = p the relevant factors are

Γ(δ2 + 1)Γ(δ34) = Γ

(
3− s

2

)
Γ

(
p− s

2

)
. (4.155)

It is then evident that the Gamma functions do not prohibit the satellite pole at s − 4

(unless p = 2, in which case the residue vanishes). Meanwhile for ⟨JpOpO2O2⟩ we have

M2
p,2 =

2(p− 2)s

p

[
t− p− 2

4 + p− s− t
y
2(p−3)
12 y213 y

4
24 Y1,23 +

2 + p− s− t

t− p
y
2(p−3)
12 y214 y

4
23 Y1,24

+2

(
1 +

p

t− p
+

p

4 + p− s− t

)
y
2(p−3)
12 y214 y

2
23 y

2
24 Y1,23

]

+
2(t− p− 2)

p

(
p− 2− 4

s− 2
− 2p

4 + p− s− t

)
y
2(p−2)
12 y224 y

2
34 Y1,23

+
2(2 + p− s− t)

p

(
p− 2− 4

s− 2
− 2p

t− p

)
y
2(p−2)
12 y223 y

2
34 Y1,24

+
2

p

(
s(p− 2)− 2p(s− 2p)

t− p
+

2p(s(p− 1)− 2p)

4 + p− s− t

)
y
2(p−2)
12 y223 y

2
24 Y1,34 ,



4. Kaluza-Klein Five-Point Functions from AdS5 × S5 Supergravity 195

M3
p,2 =
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In this case the Gamma factors for M2
p,2 are

Γ(δ2 + 1)Γ(δ34) = Γ

(
p+ 1− s

2

)
Γ

(
2− s

2

)
, (4.157)

and that is why the shift does not lead to any unexpected pole. For the other Mellin

components M3
p1,p2 and M4

p1,p2 we have

Γ(δ3 + 1)Γ(δ24) = Γ

(
s+ t− p

2

)
Γ

(
s+ t− p− 2

2

)
,

Γ(δ4 + 1)Γ(δ23) = Γ

(
4 + p− t

2

)
Γ

(
2 + p− t

2

)
, (4.158)

which explains why there cannot be any new poles in these channels for any of the two

configurations considered.

Moving on to the spin 2 case, the Mellin amplitudes for the ⟨T2O2OpOp⟩ correlator are
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There are once again some satellite poles, but the explanation follows exactly the same

reasoning as before. The relevant Gamma factors in M2,2
2,p are in this case

Γ(δ2 + 2)Γ(δ34) = Γ

(
4− s

2

)
Γ

(
p− s

2

)
, (4.160)
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thus allowing poles both at s− 4 and s− 6 (except if p = 2, 3). Meanwhile, for M2,3 (and

also M2,4) the relevant Gammas are

Γ(δ2 + δδ22)Γ(δ34) = Γ

(
3− s

2

)
Γ

(
p− s

2

)
, (4.161)

and so the only satellite pole in those Mellin components is at s − 4. At last, for the

correlator ⟨TpOpO2O2⟩ we have
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Note that in the final expressions above we omit the M4
p1,p2 and Mk,4

p1,p2 cases, but they

can be easily obtained from the equations relating different Mellin components

∑
k

δkMk = 0 ,

∑
k

(δk + δδlk)Mkl = 0 , (4.163)

which play a similar role to the equation (4.124) relating the tensor structures in position

space. Finally, note that for the particular case of p1 = p2 = 2 the expressions above

simplify and agree with those found in our earlier work [57].

4.B.1 Example of factorization

The goal of this subsection is to show explicitly how to use factorization, lower-point Mellin

amplitudes and the R-symmetry gluing rules from Appendix 4.A.4 to recover part of the

five-point function. To simplify the presentation we will focus on the factorization of the

scalar 20′ operator exchanged in the channel (45).

The building blocks for the factorization are the Mellin amplitude of the four-point

function ⟨OpOpO2O2⟩ and the three-point function ⟨O2O2O2⟩

Mpp22 =
4t01t23t

p−2
12

(
δ12
(
p (t02t13 − t03t12)− (p− 1)t01t23

)
+ (p− 1)pt03t12 + δ212t01t23

)
δ23 − 1

+ . . .

M222 =COOO t45t40t50 (4.164)

where we decided to write explicitly only part of the four point function to simplify even

further the analysis. The label 0 in the formula is associated to the operator that is being

exchanged in the factorization channel.

Now we can borrow the formula from (4.15,4.18)to obtain

Mpp222 = 2Γ(2)
Mpp22M222

(2δ45 − 2)
+ . . . (4.165)

where the . . . stand for other poles and contributions of other operators. The gluing in

R-symmetry space gives, implementing22 (4.136) for p = 2,

tℓ4tℓ5 tri1tri2 → 1

2

(
(t4i1t5i2 + t4i2t5i1)−

t45ti1i2
3

)
, (4.166)

tℓ4tℓ5t
2
ri1 → t4i1t5i1 . (4.167)

22Recall that tij = y2
ij .
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Thus we obtain

Mpp222 =
2COOOt23t45t

p−2
12

3 (δ23 − 1) (δ45 − 1)

[(
3δ12

(
p t15 (t13t24 − t12t34) + t14

(
p (t13t25 − t12t35)

−2(p− 1)t15t23
))

+ (p− 1)pt12 (3t15t34 + 3t14t35 − t13t45) + 6δ212t14t15t23

)]
+ . . .

(4.168)

where, again, the dots stand for other poles and contributions of other operators. In

particular this formula can be compared with our previous result for five point function of

20’ operators.



Chapter 5

Conclusion and open directions

In this last chapter, we summarize the contributions of this thesis and comment on possible

open avenues extending this work. We hold ourselves from repeating the discussions in the

end of each chapter, but for convenience we stress the main conclusions and targets for

future research.

Motivated by the potential game-changer and revolution that higher-point functions

can be in the bootstrap program discussed in chapter 1, we made significant contributions

to make these observables more amenable to analytic studies in various regimes.

In chapter 2, we introduced an analytic lightcone bootstrap for five and six-point corre-

lators in a snowflake topology. In doing so, we found the form of the large spin behaviour

of new OPE coefficients. For the five-point case, this includes the OPE coefficients of two

double-twist-like operators and the external scalar. For the six-point correlators, we went

one step further. Besides finding the large-spin behaviour of OPE coefficients with three

spinning operators of the leading double-twist family [ϕϕ]0,J , we considered subleading

corrections in the direct channel. These are reproduced in the cross channel by considering

anomalous dimensions and corrections to the OPE coefficients of these operators. There

are some clear open directions stemming from this work that one may want to pursue.

As mentioned above, this program was carried out in a snowflake decomposition of the

correlators. The extension of these ideas to the comb-channel decomposition of six-point

correlators would provide access to large-spin behaviour of triple-twist operators. The first

steps towards this goal were done in the recent work [66]. It would be interesting to push

further their ideas by analysing more possible contributions in the direct channel. Still in

the snowflake channel, there is more to be done. Similarly to the four-point follow-ups of

the original works [44, 45], one can consider subleading contributions in conformal spin for
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both anomalous dimensions and OPE corrections as done in [75, 76]. This can in prin-

ciple be done by using only the lightcone blocks that are available in this chapter, but

it is not clear yet what role will be played by the label for different tensor structures of

three-point functions in this generalization. On the other hand, by computing subleading

corrections to the lightcone blocks, one expects to be able to bootstrap subleading families

of double-twist operators. These are directions we intend to study in the near future.

An important question raised by our lightcone bootstrap for higher-point functions is

the possible existence of analyticity of OPE coefficients not only in spin but also in the

label of different three-point functions involving spinning operators. This question was

also naturally found in chapter 3. In this chapter, we discussed the generalization of Regge

limit and Regge theory for five-point correlation functions of primary operators in CFT. We

proposed Regge limit’s corresponding kinematics and stressed the relevance of the position

of the new fifth operator. In particular, we showed that this kinematics leads to a similar

cross-ratio behaviour to that of Euclidean OPE limit but only after crossing branch-cuts

of the conformal block. Also, in Mellin space, we noted that the proposed kinematics is

translated to the dominance of a region of large Mellin variables in close analogy with the

Regge limit of scattering amplitudes in flat space. After reviewing flat-space literature for

multi-Regge theory, we extended conformal Regge theory to higher-point functions. In this

process, we found the need to appeal for analyticity of CFT data in spin and in the basis

of tensor structures of three-point functions with spins in (at least) 8 different signatures.

However, this label is basis dependent and does not identify the operators of the theory,

therefore we expect no dynamical poles in it.

Finding a Lorentzian inversion formula for higher-point correlators would answer the

question about the existence of analyticity in this label or not. Note, however, that as

there is a basis choice to make, it is not clear if the analyticity can only be made manifest

in a given basis and, if so, what basis that is.

For the derivation of a Lorentzian inversion formula for higher-point functions, we

expect Regge boundedness to be an important ingredient. Even though we expect this

boundedness to be true for our choice of kinematics, we have not provided a proof of

that fact. The general proof for four-point correlators uses a positive-definite Rindler

inner product and explores the fact that the Regge limit is given by a Rindler-symmetric

configuration. This is not the case of the five-point Regge limit we presented. It would

be interesting to establish Regge boundedness by other means. For example, by exploring
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a different OPE channel where no cuts are crossed and OPE convergence is guaranteed.

Alternatively, by finding some conformal mapping between this kinematics and other that

can be bounded by the Euclidean correlator. This calls for a more systematic understanding

of singularities in higher-point functions. Proving Regge boundedness is important per se

but would, most likely, also invite the explorations of conformal dispersion relations for

higher-point functions.

As a byproduct of our studies in chapter 3, we also introduced a new basis for three-

point functions with spins, that allowed us to completely factorize the conformal block in

the Euclidean limit. The full implications and simplifications that this basis can bring to

the efficient computation of higher-point conformal blocks are yet to be discovered, but we

hope to report on that soon.

In chapter 4, we continued exploring the structure of five-point functions of half-BPS

operators in N = 4 SYM in the strongly coupled regime, dual to IIB supergravity in

AdS5 × S5. We presented an algorithmic bootstrap approach and found the closed-form

expression in Mellin space for the infinite number of correlators ⟨pp222⟩, extending previous

results for p = 2 [57]. Our method is entirely done in Mellin space and relies only on Mellin

factorization and a superconformal twist. A key and essential simplification allowing us to

study generic p contributions was the discovered pole truncation mechanism in Mellin space

that allows us to have an ansatz with a pole structure much simpler than one could have

previously anticipated. This property gives us hope that it is possible to bootstrap the form

of more generic five-point functions with different Kaluza Klein modes. This is an avenue

that we wish to pursue. Moreover, we believe the algorithm, with slight modifications,

can be applied in a broad spectrum of problems such as five-point correlation functions in

different superconformal theories and six-point functions in AdS5 × S5. Furthermore, it

would be interesting to use the factorization properties of Mellin amplitudes to compute

stringy corrections to our result. This is another open direction in which we hope to report

news in the near future.

Let us conclude this thesis by making some final remarks about other potential appli-

cations of higher-point functions that would be very interesting to explore. As stressed

throughout the thesis, scalar higher-point functions probe infinitely many OPE coefficients

between generic spinning operators in a very natural way. This opens the door to extract

CFT data that is unreachable by current methods. It would be interesting to further de-

velop numerical bootstrap methods for higher-point functions. First steps towards this
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goal were done in [58, 59, 68]. In Lorentzian kinematics, causality imposes nontrivial

constraints on CFT data. In this regard, extending causality constraints to higher-point

functions may then help us find new bounds for OPE coefficients of generic spin operators

and, for instance, further constrain the effective action of dual gravity theories in AdS.
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