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Abstract

In this thesis, nonperturbative pair creation from the quantum field theoretic
ground state in the presence of strong macroscopic gauge fields is studied. Em-
ploying different approaches such as the string inspired worldline formalism, the
worldline instanton method, semiclassical WKB techniques as well as quantum
kinetic theory, we investigate various aspects of this so-called Schwinger effect.
More specifically, we study the explicit dependence of the pair production rate
on the underlying background structure. Here, we mainly focus on purely time
dependent as well as spatiotemporal inhomogeneous and oscillatory electric back-
grounds which give rise to substantial enhancement effects. Employing an effective
reflection approach, we analyze many properties and characteristic features of the
corresponding mechanisms. We also study the impact of microscopic details of the
background on nonperturbative and perturbative aspects. Imposing explicit sym-
metry constraints, we generalize the methods for multidimensional backgrounds
which facilitate the nonlocal nature of vacuum pair production. In addition, we
investigate analogous effects in condensed matter systems such as bandgapped
graphene. Constructing appropriate descriptions in lower dimensional spacetimes
via Kaluza-Klein compactifications, we find that creating quasiparticle-hole pairs
in this Dirac material resembles pair creation from the quantum vacuum by the
dynamical Schwinger mechanism.





Zusammenfassung

In der vorliegenden Arbeit befassen wir uns mit der nichtperturbativen Paarerzeu-
gung aus dem quantenfeldtheoretischen Grundzustand in makroskopisch starken
Hintergrundfeldern. Mit Hilfe unterschiedlicher Beschreibungen wie dem String-
inspirierten Weltlinienformalismus, der Weltlinieninstantonmethode, semiklassis-
cher WKB-Näherungen sowie der quantenkinetischen Theorie untersuchen wir
verschiedene Aspekte dieses sogenannten Schwingereffekts. Insbesondere, unter-
suchen wir die explizite Abhängigkeit der Paarproduktionsrate von der zugrunde
liegenden Hintergrundstruktur. Hierbei konzentrieren wir uns hauptsächlich auf
rein zeitabhängige sowie raumzeitliche inhomogene und oszillatorische elektrische
Felder, welche zu erheblichen Verstärkungseffekten verhelfen. Durch das En-
twickeln eines effektiven Ansatzes analysieren wir verschiedene Eigenschaften und
charakteristische Merkmale der entsprechenden Mechanismen. Ebenso untersuchen
wir die Auswirkungen von mikroskopischen Details des Hintergrundfeldes auf die
nichtperturbativen und perturbativen Aspekte. Indem wir die zugrunde liegenden
Symmetrien explizit auferlegen, verallgemeinern wir die Methoden für mehrdi-
mensionale Hintergründe, welche unter anderem die nichtlokale Natur der Vaku-
umpaarproduktion hervorheben. Darüber hinaus untersuchen wir analoge Effekte
in Systemen aus der kondensierten Materie wie im Beispiel von Graphen in Gegen-
wart einer Bandlücke. Mit Hilfe von geeigneten Beschreibungen in niederdimen-
sionalen Raumzeiten mittels Kaluza-Klein-Kompaktifizierungen zeigen wir, dass
die Erzeugung von Quasiteilchen-Loch-Paaren in diesem Diracmaterial der Paar-
bildung aus dem Quantenvakuum mittels des dynamischen Schwingermechanismus
entspricht.





Papers

The main body of this thesis is based on the following publications:

[1] Super Gaussian enhancers in the Schwinger mechanism
Ibrahim Akal
e-print: arXiv:1712.05368 [quant-ph] (2017),

[2] Quantum tunnelling from vacuum in multidimensions
Ibrahim Akal and Gudrid Moortgat-Pick
journal: Phys. Rev. D96 (2017) no. 9, 096027
e-print: arXiv:1710.04646 [hep-th] (2017),

[3] Euclidean mirrors: enhanced vacuum decay from reflected instan-
tons
Ibrahim Akal and Gudrid Moortgat-Pick
journal: J. Phys. G45 (2018) no. 5, 055007
e-print: arXiv:1706.06447 [hep-th] (2017),

[4] Low-dimensional approach to pair production in an oscillating elec-
tric field: Application to bandgap graphene layers
Ibrahim Akal, Reinhold Egger, Carsten Müller and Selym Villalba-Chávez
journal: Phys. Rev. D93 (2016) no. 11, 116006
e-print: arXiv:1602.08310 [hep-ph] (2016).

Parts of the publications above are used either directly or indirectly in this thesis.



Acronyms

Acronyms introduced in this thesis are listed below.
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Conventions

Unless explicitly stated otherwise we will use natural units ~ = 1 and c = 1
throughout this thesis. The most commonly appearing notations are listed below.

xµ, xµ covariant, contravariant four vector
Aµ gauge (background) field
Fµν field tensor associated with gauge (background) field
Aµ external background field
Fµν field tensor associated with external background field
∂t, ∂

∂t partial derivative with respect to variable t
ẋ, ẍ first, second time derivative
× scalar multiplication
∇ Nabla operator
∆ Laplace operator
� d’Alembert operator
< real part
= imaginary part
Resaf residue of f at a
x,E, δδδ,KKK, ... vectors
â,Ĝ, Ĥ, ... operators
S S-matrix
T transfer matrix
Det functional determinant
det matrix determinant
Tr functional trace
tr matrix trace
x · y ≡

∑
xµy

µ Einstein summation convention
γµ Dirac gamma matrices
1 identity matrix
i =
√
−1 imaginary unit



[a, b] ≡ ab− ba commutator
{a, b} ≡ ab+ ba anticommutator
δxy Kronecker delta
δ(n) n-dimensional Dirac delta
ln natural logarithm
exp, e exponential function

ES = 1.32× 1018 V/m critical electric field in QED
Bcr = 4.41× 1022 T critical magnetic field in QED
c speed of light in vacuum
~ reduced Planck constant
e electric charge
m particle mass
vf ≈ c

300 Fermi velocity in graphene
m effective mass in graphene
Eg = m2v3

f

e critical electric field strength in graphene
a0 = 1.42 Å carbon-carbon distance in graphene, 1 Å = 0.1 nm

R set of real numbers
C set of complex numbers
N set of natural numbers
Z set of integer numbers



Structure of thesis

In the following, we outline the structure of this thesis.

Part I serves as a broad overview about the topic. In chapter 1, we begin with
a short summary of general aspects in elementary particle physics, motivate and
review the different frontiers and connect to the strong field regime. Then, we dis-
cuss the phenomenon of vacuum decay in strong fields against matter-antimatter
pair creation. We introduce the basic notions and sketch the different mechanisms.
Following this, we describe the main properties of graphene and the analogies to
pair production from the quantum vacuum. In chapter 2, we comment on the
general assumptions and theoretical ideas in dealing with strong fields in quantum
field theory. After a brief motivation, we sketch the emergence of classical back-
grounds in field theory by formulating the problem in terms of quantum coherent
states. We close with an overview about possible sources of strong fields. In chap-
ter 3, we present the theoretical description of vacuum pair production in more
detail and portray some of the early approaches for the case of static backgrounds.
Introducing the relevant quantities, we discuss characteristic attributes inherent
to this nonperturbative phenomenon.

Part II encompassing chapters 4 - 7 introduces the different approaches which con-
stitute the basis for the methods developed and applied in this thesis. After a brief
motivation, we first introduce the worldline formalism in quantum field theory. We
discuss the basics and sketch the derivation of certain scattering amplitudes which
are of particular relevance for the present studies. Then, in the subsequent two
chapters, we describe semiclassical methods including instanton and WKB tech-
niques. The last chapter introduces a completely different approach building on
ideas in nonequilibrium quantum field theory.



Part III is based on the original papers [1–3]. In chapter 8, an effective reflection
approach is developed. The techniques are applied to study enhancement effects
in the presence of various types of time dependent backgrounds. In chapter 9,
these methods, in combination with further approaches, are employed to study
nonperturbative and perturbative aspects of vacuum pair production. In chapter
10, an advanced approach combining recent ideas is developed. The techniques
are applied in order to study vacuum pair production in multidimensional back-
grounds with genuine space and time dependence.

Part IV is based on the original paper [4]. Here, we investigate analogies of
the Schwinger effect in graphene. We first develop corresponding descriptions for
vacuum pair production in lower dimensional spacetimes. The resulting equa-
tions we then apply in order to study the production of quasiparticle-hole pairs in
bandgapped graphene layers.



Horror vacuiHorror vacuiHorror vacui
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Part I

Introduction



Chapter 1

Review

1.1 Elementary gauge interactions

Q uantum forces are described by gauge theories which are invariant un-
der certain transformations with spacetime dependent parameters. The

Standard Model (SM) of elementary particle physics is the gauge theory which
describes the fundamental strong, weak and electromagnetic interaction [5–8]. Re-
cently, its missing piece has been confirmed at the Large Hadron Collider (LHC)
through the discovery of the Higgs boson [9, 10]. This scalar particle is central for
explaining the origin of masses through spontaneous symmetry breaking [11, 12]
in the electroweak sector via the BEGHHK1 mechanism [13–15]. This nowadays
called Higgs mechanism also guarantees unitarity that is crucial for the SM to be
a consistent quantum field theory (QFT) of gauge interactions. It has another
extremely important consequence — it leads to a renormalizable theory with mas-
sive vector bosons so that infinities due to higher order quantum corrections can
be reabsorbed into the parameters of the Lagrangian.

The group structure of the SM is

SU(3)C × SU(2)W × U(1)Y. (1.1)

The model includes 6 leptons and 6 quarks described by fermionic fields, 12 vector
fields and a complex doublet scalar field H, the Higgs field [16]. The strong and
weak interactions are governed by the SU(3)C and SU(2)W factors. The SU(3)C
factor mixes 3 different colors of quarks and antiquarks where SU(2)W is the weak

1 R. Brout, F. Englert, G. Guralnik, C. R. Hagen, P. Higgs and T. Kibble
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isospin. The remaining U(1)Y factor is of the weak hypercharge Y. All gauge
fields and fermions transform under the fundamental group representations. As
usual, we speak about spontaneous symmetry breaking if the vacuum state of the
theory does not respect the initial symmetry anymore. In the SM, the electroweak
sector is governed by the SU(2)W × U(1)Y gauge symmetry. The Higgs field has
nonvanishing vacuum expectation value (VEV), 〈H〉 6= 0. Due to this, the latter
symmetry is spontaneously broken via the Higgs mechanism to the electromagnetic
U(1)EM ≡ U(1). As a consequence, the W± and Z0 bosons being responsible for
the weak interaction become massive whereas the corresponding gauge boson that
accounts for the electromagnetic interaction, the photon γ, remains massless. This
difference explains why the electromagnetic force is long ranged and the weak force
is short ranged. The gauge bosons that carry the strong interaction are called glu-
ons. They glue the quarks and antiquarks together in form of baryons and mesons.
At large distances, the strong interaction becomes very strong such that the glued
particles cannot be separated. This phenomenon is known as confinement.

Despite the huge success of the SM in predicting experimental data of particle col-
lisions at high energies with an enormous precision, many fundamental questions
are still unanswered. Since the Higgs mechanism is rather an ad hoc attempt in
order to realize the breakdown in the electroweak sector, a deeper explanation for
the structure of the Higgs sector is for sure indispensable. Furthermore, the mass
of the Higgs boson is extremely sensitive to higher order quantum corrections. It
may probably be stabilized at the visible mass at mH ∼ 125 GeV by some so far
unknown mechanism or by an extremely precise fine-tuning. This open question
is often referred to as the hierarchy problem.

The SM also lacks a prediction of neutrino masses which contradicts the experi-
mental confirmation of neutrino oscillations indicating that neutrinos must have
some mass [17], albeit a tiny one. There are also cosmological observations which
remain unexplained within the SM. For instance, many investigations show a huge
asymmetry between matter and antimatter in the universe. This Baryon asym-
metry can only be explained if sufficient charge conjugation parity (CP) violation
appears in addition to the one in the quark sector which clearly necessitates the
extension of the SM.
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These shortcomings, among others, have triggered many extensions of the SM
which go under the name of Beyond the Standard Model (BSM). Moreover, it is
believed that the SM is a low energy effective description of some Grand Unified
Theory (GUT). Similar as for the unification of the electromagnetic and weak
forces above the electroweak scale ΛEW ∼ 2 × 102 GeV, the strong and the elec-
troweak forces may be unified above some hypothetical GUT scale ΛGUT ∼ 1016

GeV in form of a single force governed by some preferably Lie group representa-
tion. Many of the proposed GUT candidates predict the existence of topological
defects such as magnetic monopoles [18]. However, none of the predictions has
been observed so far.

Unfortunately, all the mentioned theories do not describe gravitation whose inclu-
sion, however, is mandatory to understand the very early universe at the Planck
scale ΛPlanck ∼ 1019 GeV. Although, we still have many question marks in under-
standing the nature of quantum gravity, there has recently been made tremendous
progress in string theory which may enlighten some fascinating connections and
unveil deep insights into the structure of space, time and matter.

1.2 Frontiers of fundamental physics

The SM predicts most of the data from collision experiments with an enormous
precision. To specify which of the suggested generalizing models points towards
the right direction is therefore an enormous challenge. High energy particle collid-
ers are extremely important for exploring signatures of new physics or to preclude
some of the possible directions. On the other hand, many of the embeddings of the
SM into a more general unified framework predict some new physics at the sub-eV
scale. These may be probed for instance by utilizing strong electromagnetic fields
or microwave cavities which are, complementary to particle colliders, examples of
alternative approaches at the low energy frontier [19, 20].

Furthermore, one may also look for completely different parameter regions of the
SM in order to seek for mismatches which can help to extend and deepen our un-
derstanding of nature. Possibilities are nonlinear and nonperturbative phenomena
in the low energy and intensity regime. A well known example is the confining
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phase of Quantum Chromodynamics (QCD) which is still not well understood.
Another direction is related to vacuum phenomena in strong macroscopic gauge
fields. In Quantum Electrodynamics (QED), which has been tested experimentally
to a very high precision at high energies [21], the vacuum has crucial imprints in
the strong field regime. QFTs intrinsically allow quantum fluctuations of virtual
particles having the consequence that their vacua cannot be seen as totally empty.
Instead, the quantum vacuum behaves like a polarizable medium that can be de-
scribed by some refractive and absorptive index. Such effects are less relevant in
particle collisions where all observables are measured with reference to the unaf-
fected ground state. The situation changes in the strong field regime where the
vacuum structure gives rise to significant quantum phenomena. The gauge bosons
in QED cannot interact with each other. This restriction is dictated by the Abelian
U(1) gauge symmetry. However, in virtue of vacuum fluctuations, their mutual
interaction becomes possible. This can polarize the vacuum resulting in nonlinear
and even nonperturbative effects such as vacuum birefringence and vacuum pair
production (VPP).

1.3 Vacuum pair production

Destabilizing the quantum vacuum against the production of matter-antimatter
pairs in the presence of a strong macroscopic gauge field is an important nonpertur-
bative prediction in QFT. The first complete derivation in QED in the presence of
a strong static electric field was established by Schwinger in his seminal paper [22].
It is one of the very few nonperturbative analytic results in quantum gauge theo-
ries that has a clear physical prediction. Nowadays, the phenomenon of VPP has
also become known as the so-called Schwinger effect or Schwinger pair creation.2

The leading order vacuum decay rate per unit volume and unit time in the weak
field and weak coupling limit has a much celebrated closed series representation,

R ' e2E2

8π3

∞∑
n=1

1
n2 exp

(
−πnES

E

)
. (1.2)

This infinite sum is sometimes referred to as the Schwinger formula. The first
term in the latter expression is the corresponding VPP rate [23, 24]. Here, e is

2 The mechanism behind nonperturbative VPP in a static Abelian gauge field, as initially
studied in [22], is called the Schwinger mechanism. Other possibilities beyond the simple static
limit are described in section 1.4.
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the electron charge and E denotes the electric field strength. The prefactor takes
into account effects from quantum fluctuations. The characteristic exponential
possesses a nonanalytic dependence on the field strength which already signals
the nonperturbative quantum mechanical tunneling behavior of this absorptive
process. The damping factor in the exponent scales linearly with the critical field
strength

ES = m2

e
≈ 1.32× 1018 V/m (1.3)

where m stands for the particle mass. As can be seen from the tunneling exponen-
tial, for field strengths close to ES spontaneous pair production from the vacuum
is expected to be significant.

Despite its elegant and relatively simple derivation in nonlinear QED, the process
of VPP still could not yet be realized in the laboratory. The technical challenge
goes back to the extremely large value of ES being many orders of magnitude
larger than field strengths feasible in most experiments. For instance, the in-
tensity which corresponds to the critical value ES is almost 7 orders of magnitude
larger than the highest intensity ever reached with a laser, see section 2.6. Unfortu-
nately, intensities corresponding to the critical field ES cannot be made attainable
in the near future. However, during the last couple of years significant efforts,
both on experimental as well as on theoretical side, have been progressed. Such
promising advances may bring the Schwinger effect to experimentally accessible
terrain [25–30]. Namely, strong field laser facilities with field strengths approach-
ing E ∼ 10−3ES or even higher will be available soon. In addition, there have
been predicted highly promising catalyzing mechanisms to achieve a tremendous
enhancement of the decay rate in the presence of time dependent, inhomogeneous
electric fields. One of the most prominent approaches is the so-called dynam-
ically assisted mechanism [31–37]. Overlapping multiple pulsed fields [38] and
optimizing the field shape correspondingly [39–43] can drive the rate higher as
well. Besides, remarkable effects appear if magnetic field components are taken
into account [44–47]. Substantial contributions to the VPP rate also apply due to
finite temperature effects [48–56]. It has also been discussed that VPP can show
universal features that are independent of the details of the background configu-
ration [57–59].
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The Schwinger effect is not necessarily restricted to QED. More general, it applies
to QFTs with a U(1) gauge field. There may be also generalizations to non-Abelian
gauge fields as in QCD [60–63]. The latter, in particular, may give rise to a mech-
anism for confinement/deconfinement phase transition which is regarded as highly
relevant for the Relativistic Heavy Ion Collider (RHIC) and LHC experiments with
both strong electromagnetic as well as color fields involved. These considerations
essentially motivate studies of the Schwinger effect in confining gauge theories
which, however, proves as a very challenging task if described by ordinary meth-
ods in QFT.

Recently, in order to access the Schwinger effect also in strongly coupled theo-
ries, there has been made interesting progress by studying the problem within
certain holographic gauge theories. In this way, various remarkable effects have
been worked out such as catastrophic vacuum instability [64–68] and the appear-
ance of an additional lower critical field strength due to the presence of confine-
ment. Below the lower one the vacuum remains nonperturbatively stable against
pair production [69–75]. Even more surprising, the direct connection between the
Schwinger effect and the recently proposed ER = EPR conjecture [76] has been
unveiled [77, 78] providing further insight into the intriguing connection between
spacetime geometry and quantum entanglement [79–81].

It should be noted that studying VPP can be also relevant in several other con-
texts, cf. e.g. [82, 83]. For instance, it may be enlightening in understanding the
strong electromagnetic environment of astrophysical objects [84–88]. Recently,
some evidence for strong field effects such as vacuum birefringence has been ob-
served [89]. A more comprehensive investigation of the Schwinger effect in QFTs
may also lead to more general insights. These could be valuable for studies of
false vacuum decay [90–97], cosmological pair creation [97–102], Hawking radia-
tion [103–109], black hole creation [110] as well as the spontaneous production of
topological defects in expanding universes [111]. In recent years, much progress
has also been made in scrutinizing the Schwinger effect in Dirac materials like
graphene [4, 112–117], semiconductors [116, 118] and ultracold atoms trapped in
optical lattices [119–122] as well as semimetals [123]. Such findings reveal inter-
esting similarities between nonlinear QFT and nonequilibrium condensed matter
systems.
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On the other hand, the study of strong field effects like VPP requires theoretical
ideas which urgently need to be capable to describe the underlying nonperturbative
physics. This is in general challenging and necessitates formalisms that go beyond
the standard perturbative approach via Feynman diagrams. Depending on the spe-
cific focus and, more importantly, on the nature and explicit shape of the acting
field, various techniques have been developed.3 After the very early approach in
the static field limit via the direct computation of the nonperturbative imaginary
part of the one-loop Euler-Heisenberg (EH) effective action, a variety of semiclassi-
cal methods for beyond the static field limit have been introduced. Main concepts
are based on Wentzel-Kramers-Brillouin (WKB) approximations and Bogoliubov
transformations. A completely different, but more modern and powerful technique
is the worldline instanton method which is based on the string inspired worldline
formulation of the underlying effective field theory (EFT) [124, 125]. Apart from
EFT descriptions, there are ideas which build on nonequilibrium quantum kinetic
formulations. These methods are in particular very advantageous for studying the
phase space of the produced pairs via numerical computation techniques, princi-
pally, also in the case of higher dimensional inhomogeneous fields. Other numerical
techniques have been discussed in [121, 126, 127]. Due to its intrinsically nonper-
turbative character, the Schwinger effect can be also considered as a toy problem
for testing recent theoretical nonperturbative methods in QFT such as resurgent
transseries [128–130] and Lefschetz thimbles [129, 131, 132].

In the Abelian case, it has been found that the VPP rate beyond the static
field limit highly depends on the field shape. Namely, large inhomogeneities
in spacetime are capable to trigger a drastic enhancement even far below ES

[3, 31, 32, 34, 36–39, 41, 43]. It is worth mentioning that in a static magnetic
field VPP cannot occur [133–135], since the underlying divergent, but alternat-
ing expansion of the relevant one-loop EH effective Lagrangian is Borel summable
and therefore has no imaginary part [135]. In plane wave or null electromagnetic
fields, respectively, the imaginary part of the effective action vanishes simply due
to symmetry reasons [22].

3 We will introduce many of the methods in detail, see chapters 4 – 7. These methods
are utilized directly or indirectly to study various aspects of VPP in inhomogeneous external
backgrounds.
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In most cases, preferably for purely electric fields, investigations rely on numerical
solving techniques, see e.g. [136–140]. Analytical results have been so far obtained
only for certain special cases, see e.g. [111, 141–156]. However, due to the ex-
tremely high sensitivity to the field shape, a deeper understanding of the impact
of more complex field constellations is highly desirable to better understand the
formation process of matter.

From a slightly different perspective, such strong field effects may particularly be
interesting in the notion of Liouville integrability [157]. There, the underlying con-
stants of motion would directly be related to the field shape. However, it should
be noted that inhomogeneous fields may not obey the Maxwell equations in vac-
uum and can lead to complicated symmetries rendering the exact identification of
symmetries even more exhausting.

Beyond one-dimensional fields, already purely electric, the identification of the
particles is in general highly demanding and hence diagonalizing techniques, such
as Bogoliubov transformations as well as WKB techniques, are difficult to en-
force. As will be shown, the mentioned semiclassical treatment via the worldline
instanton approach proves highly efficient for that purpose. The latter approach
permits in general a direct multidimensional treatment, since the imaginary part
of the one-loop EH effective action is simply evaluated on classical periodic paths
in Euclidean spacetime [2, 3, 37, 55, 144, 146, 152, 154, 158–163]. Thus, the basic
challenge is to find the associated worldline instantons which have also various
other applications in completely different contexts [73, 164, 165].

Similarly, such closed trajectories also arise in trace formulas [166, 167] relating
the state density to certain properties of periodic orbits in phase space, namely,
for systems with integrable as well as chaotic, nonintegrable classical limit [168–
170]. Indeed, such orbits serve as topological equivalences in QFT [171, 172].
Reformulating the problem of VPP with the help of the Gutzwiller trace formula
[173] leads to a weighted topological sum [174] evaluated on grouped periodic
orbits. The different contributions to the quantum fluctuation prefactor can be
collected in a single determinant specified by the associated monodromy matrix
for a six-dimensional phase space surface transverse to the invariant, classical
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orbit [175]. Interestingly, these orbits may become multiple periodic in the case of
spatiotemporal fields [45]. Assuming that the Hamiltonian of the system defines
an integrable dynamical system, the described multiperiodicity may indicate the
existence of an additional constant of motion reflected by continuous, smooth
trajectories in the Poincaré sections [174, 176] which may provide, together with
the Maslov index, valuable information about system [45]. Those aspects clearly
reinforce the complications regarding the identification of symmetries governed by
such multidimensional systems.

1.4 Beyond the Schwinger mechanism

VPP in an electric field can in principle be realized via different mechanisms. The
basic concepts can be illustrated by drawing on a simple single particle picture
describing a negative Dirac sea and a positive excitation continuum. As we will
see in a moment, this is an efficient way to highlight important aspects of VPP
such as the characteristic nonperturbative tunneling behavior. We should notice
that such a picture is of course not adequate from various points of view. However,
despite the conceptual inconsistencies, we can already gain many useful insights.

We may think of the vacuum as a perfect gap insulator consisting of a valence band
(negative Dirac sea) and a conduction band (positive continuum). The bandgap
has the width of two times the rest mass of the excited particles, say an electron
and a positron. The picture is the following: in the perfectly insulating initial
phase there exist no excitations in the positive continuum and the whole valence
band is filled up with virtual particles of negative energy. This situation is sketched
in figure 1.1 (a).

In figure 1.1 (b), the situation is shown where the pair is produced via the ab-
sorption of multiple high energy photons approaching energies of the order m.
This process is known as multiphoton pair production. It is a purely perturba-
tive phenomenon and hence substantially different from the standard Schwinger
mechanism. Pictorially, the absorption of multiple photons lifts a particle from
the negative valence band (dark gray) to the positive conduction band (light gray)
and leaves behind a hole (red circle) in the Dirac sea. The presence of that hole
can be interpreted as a produced positron, whereas the particle (red dot) in the
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positive continuum corresponds to the other pair constituent, the electron.

2m

No background
(a)

2m

Multi-photon mechanism 
perturbative regime

(b)

2m

Standard mechanism 
nonperturbative regime(c)

2m

Assisted mechanism 
nonperturbative regime

(d)

2m

Assisted (dynamical) mechanism 
nonperturbative (perturbative) regime

(e)

Figure 1.1: Mechanisms for VPP: (a) vacuum in insulating phase, electric field is absent (b)
multi photon process, perturbative (c) standard Schwinger mechanism, nonperturbative
(d) assisted mechanism, nonperturbative (e) dynamical mechanism, nonperturbative →
perturbative. For explanations see discussion in the text.

The Schwinger mechanism, i.e. nonperturbative VPP in a static electric field, is
sketched in figure 1.1 (c). The presence of the electric field tilts the bandgap such
that the production process becomes possible via tunneling from the negative va-
lence band to the positive continuum band. How much the gap is tilted, depends
on the applied field strength E.

In figure 1.1 (d) the so-called dynamically assisted mechanism is illustrated. It ap-
plies in a superimposed electric field consisting of a (locally) static strong mode and
a weak, but rapidly varying mode. The mechanism can be understood as follows:
the weak mode photons, being still insufficient to push the particle to the positive
continuum, lift the particle out of the valence band into the gap. The strong static
mode takes over the remaining work and drives the tunneling of the lifted particle
to the conduction band. As a consequence, the pair production process becomes
enhanced due to the effective bandgap reduced by the additional weak mode. In
the deeply weak regime, the dynamically assisted mechanism requires the full cou-
pling to both modes and therefore operates in the nonperturbative regime.
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Figure 1.1 (e) depicts the purely dynamical Schwinger mechanism where a single-
mode electric field varies in time. For sufficiently large frequencies VPP gets en-
hanced due to the presence of energetic photons. For moderate frequencies, means
much smaller than m, the process resembles nonperturbative VPP (Schwinger
mechanism). With larger frequencies it will be shifted toward the perturbative
regime (multiphoton process).

1.5 Analogies in Dirac materials

Electric fields of upcoming modern high intense lasers with micrometer extensions
and femtosecond duration may come close to the critical field strength ES. To-
gether with an appropriate design of the field shape, these facilities turn out to be
very promising in order to circumvent the huge suppression in the nonperturbative
regime. However, these strategies do not constitute the only way to observe the
destabilization of the vacuum against nonperturbative VPP. As briefly mentioned
in the introduction, alternatively, one may follow a complementary route by re-
sorting to appropriate low energy condensed matter systems where analogies of
the Schwinger effect can be mimicked and detected with much less efforts.

Figure 1.2: Left: lattice structure of graphene including sublattices A (blue) and B (yellow).
The lattice vectors a1 and a2 as well as the vectors δδδ1,2,3 connect nearest neighbor atoms. Center:
Brillouin zone with the reciprocal lattice vectors b1 and b2. Right: dispersion relation of the
π-bonds in the nearest neighbor tight binding model. The plots are taken from [177, 178].

For that purpose, graphene [177, 179–183] has become a very promising material
since its recent discovery. It consists of a layer of carbon atoms arranged in a
honeycomb lattice as shown in figure 1.2 (left). Each of the unit cells of the
hexagonal Bravais lattice has two carbon atoms which build up two independent
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sublattices A and B. The atoms in the sublattice A (B) are surrounded by the
nearest neighbors that are part of the sublattice B (A). Obviously, the lattice can
be seen as a bipartite system if only the nearest neighbor coupling is taken into
account. Close to the Fermi level, the electronic states consist of pz orbitals lying
outside of the carbon plane. Thus, they form bond states with neighboring atoms
and give rise to so-called π-bonds4 as depicted in figure 1.2 (right). To understand
the basic properties one can write down the Hamiltonian for the tight binding
model consisting of an hopping term

Ĥ = −
∑
〈i,j〉

â†i b̂j + â†jbi (1.4)

between the nearest neighbor atoms. Here, âi and b̂i denote the annihilators for the
electrons in the pz orbitals of the two carbon atoms associated with the sublattices
A and B in a unit cell i [184] in form of the diamond-like shaped Brillouin zone5

spanned by the vectors b1 and b2 in figure 1.2 (center). We have set the hopping
parameter in front of the sum in (1.4) [177] to unity. Since each unit cell has two
atoms, the Hamiltonian can be represented in momentum space by a 2×2 matrix,

H(k) =
 0 Ω(k)

Ω∗(k) 0

 (1.5)

where

Ω(k) = −
[
eiδ1·k + eiδ2·k + eiδ3·k

]
. (1.6)

The latter expression includes the three partial hopping amplitudes connecting
each of the atoms in the sublattice A (B) with the three nearest neighbor atoms
in sublattice B (A) through the vectors δδδ1,2,3. The energy band is described by

E(k) = ±|Ω(k)|. (1.7)

4 Each of the carbon atoms contribute one pz orbital that participates in the bonds.
5 The first Brillouin zone is a primitive cell uniquely defined in reciprocal space. The recip-

rocal lattice is divided into such Brillouin zones with boundaries given by planes related to the
reciprocal points. This is analogous to dividing the Bravais lattice in real space into Wigner-Seitz
cells. The importance of the Brillouin zone stems from the Bloch wave description in a periodic
medium. There the solutions can entirely be characterized by their behavior in a single Brillouin
zone. In the first Brillouin zone all reciprocal points are closer to the origin than to any other
reciprocal lattice point.
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The right-hand side only vanishes at the two inequivalent KKK± points. There, the
bands are degenerate and the hopping amplitudes destructively interfere to zero,

Ω(k) ∝ e0 + ei
2π
3 + e−i

2π
3 = 0. (1.8)

The Fermi level lies at E(KKK±) = 0. In the small vicinity of these so-called Dirac
points the Hamiltonian reads, up to a constant phase,

H(KKK± + p) = ~vf

 0 px ± ipy
px ∓ ipy

 (1.9)

which is just the Dirac Hamiltonian

HD = cσσσ · p + mc2σz (1.10)

with m → 0 and c → vf [178]. Here, σσσ = (σx, σy) where σx, σy are the standard
Pauli matrices.

The previous expression shows that the particles close to one of the two Dirac
points in the two-dimensional monolayer exhibit a dispersion relation like massless
Dirac fermions, where the speed of light c in vacuum is just replaced by the char-
acteristic Fermi velocity vf ≈ c

300 . Moreover, the eigenstates have a Dirac spinor
structure in sublattice space [184]. Thus, graphene induces four distinguishable
flavors of Dirac fermions giving rise to two real electron spin degenerate cones
in the vicinity of the Dirac points. The associated pseudospin goes back to the
degrees of freedom of the sublattice and is therefore fundamentally different from
the fermionic spin. The graphene Dirac particles are derived from the electronic
band structure so that they basically are charged electron/hole quasiparticles.

In the limit m → 0, there is no gap in the spectrum of the Dirac Hamiltonian
HD and the quasiparticle dispersion relation turns out to be linear. This is very
different from the parabolic dispersion relation of metals or semiconductors. In
figure 1.3 the Fermi sea of massless Dirac materials as in two-dimensional graphene
monolayers is compared with the corresponding one for conventional metals and
insulators. Even in the case with m 6= 0, positive and negative energy eigenstates
of HD are based on the same space of spinor functions. This has the interest-
ing consequence that particles and holes possess the same effective mass m which
gives rise to a well defined spectral gap 2mc2 [185]. Differently, in metals and semi-
conductors electrons and holes obey separate Schrödinger equations with different
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effective masses. So in these cases there does not exist any unique relation between
gap and mass. Therefore, massive Dirac fermions are still substantially different
from usual Schrödinger fermions.

Graphene, probably the most known Dirac material — here we should note that
systems such as cuprate superconductors [186], silicene and germanene [187], topo-
logical insulators having a gapped spectrum in the bulk but Dirac fermions on the
surface [188–193] as well as ultracold atoms in optical lattices [194, 195] also pro-
vide realizations of Dirac fermions — serves as an ideal low energy environment
for fundamental relativistic quantum phenomena as, for instance, Klein tunnel-
ing [196], Coulomb supercriticality [182], many body renormalization effects [183]
and also universal scaling phenomena [197].

Figure 1.3: The Fermi sea of massless Dirac materials (center) compared to metals (left) and
insulators (right). In d dimensional metals, the Fermi surface has dimension dFS = d− 1. If the
Fermi level coincides with the Dirac point, the Fermi surface for Dirac materials with d ≥ 2 has
dimensionality of one order less, i.e. dFS ≤ d− 2. For the case of graphene layers, i.e. d = 2, the
Fermi surface reduces to a point placed between the two cones. Note that Dirac materials still
exhibit quasiparticles with arbitrarily low energies both above and below the Fermi energy. The
plot is taken from [178].

More importantly, even the Schwinger effect, means particle-hole pair production
in an external field, has been theoretically investigated in graphene. Such studies
were examined by applying techniques in 2 + 1 dimensional QED in the presence
of a static electric field [112],6 a Sauter-like pulse [203] and a time dependent os-
cillating field [115, 204]. However, as discussed above, due to the lack of an energy
gap at the Dirac points, the charge carriers behave as massless Dirac fermions. So

6 Various effects which might provide experimental signatures of electron-hole pair production
have been explored in a static electric field [198–202].
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this does not allow the existence of an analogous critical field strength in graphene.
Accordingly, the tunneling exponential in the production rate is missing which on
the other side is a main characteristic feature in the standard Schwinger effect that
may not be undermined.

There are various techniques on the market which allow to induce a bandgap
∆ε in graphene, for instance, the method of epitaxial growth on suitable sub-
strates [205, 206], elastic strain [183] as well as Rashba spin splittings on magnetic
substrates [207]. A nonvanishing mass m = ∆ε

2v2
f
of the charge carriers still allows

the mobility of relativistic particles as long as their momenta are smaller than
∼ 3 eV/vf [177]. In this case, the field induced particle-hole production may be
expected to possess very similar characteristics as VPP in QED. Such an analogy
for sure allows the opportunity to gain valuable insights about nonperturbative
pair production mimicked in an experimentally accessible low energy condensed
matter environment.



Chapter 2

Coherence, strong fields and
quantum fields

2.1 An hybrid approach

W e consider an electromagnetic field composed of an immense amount of in-
dividual photons. In conventional QFT describing this situation by relying

on the standard procedure in Fock space is extremely exhausting and basically out
of reach. The standard treatment in perturbation theory would require a huge
number of diagrams taking into account each of the photons participating in the
underlying subprocesses [208–212]. Usually, it is argued that strong coherent elec-
tromagnetic fields as, for instance, generated with intense lasers can be assumed
as being free of any depletion and enhancement effects. This mainly is assumed
due to a large total number of photons compared to those which participate in the
interactions [83]. As a consequence, these coherently accumulated photons can be
treated macroscopically by introducing an external background field which does
not change during the interactions.

Quantum mechanics in the presence of a classical potential is described in the Furry
picture [213, 214]. It can be seen as an hybrid between the Heisenberg picture and
the Dirac picture. The external potential is added to the free Hamiltonian which
leads to modified eigenstates embedded in the classical potential.

Transferring the idea to QED, the latter procedure would require the exact so-
lutions of the Dirac equation in the presence of the electromagnetic background.
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However, a solution for a general background does not exist. Differently, for null1

backgrounds such as plane waves the equation has known solutions called Volkov
states [215–218]. This is possible due to the intrinsic symmetry properties of
a plane wave which in fact renders the problem under consideration superinte-
grable [219].

In the usual S-matrix language, the corresponding states would then be repre-
sented by Volkov states. In order to employ the usual picture of asymptotically
free states merging and dispersing in the interaction point, it is necessary that
such states preserve the single particle picture for the Dirac equation including the
background. This is only possible for certain cases such as plane waves. For those
the quantization of the Dirac field can be realized analogous to standard vacuum
QED [51, 220–222]. In this fashion, it is possible to construct some background
field theory, usually referred to as strong field QED, obeying the usual Feynman
rules in vacuum but with the modification that every free propagator of a charged
particle is replaced by the corresponding modified Volkov propagator nonpertur-
batively coupled to the external background field.

In the presence of various other backgrounds including the purely electric one,
as we particularly consider in this thesis, we need to take into account that the
Schwinger effect can be possible. Therefore, studying the Schwinger effect in strong
electric fields requires to go beyond the formalism described above [222]. As we
will discuss, in QFT this is usually carried out by resorting to the EFT description
which gives rise to the famous one-loop EH vacuum diagram.

However, the a priori introduction of any classical background, a c-number, is un-
satisfactory for a consistent quantum field theoretic description. In the following,
we will demonstrate that representing an electromagnetic field in terms of appro-
priate quantum states will render very advantageous. Indeed, assuming the field
to be fully coherent and not subjected to any depletion during the interaction, the
rigorous quantum description based on canonical photon coherent states [223–227]
will show that the former property is equivalent to shifting the photon field oper-
ator by a c-number. In other words, coherent states allow the smooth transition
from rigorously quantum states to an emergent classical entity described by macro-

1 Fields for which the Lorentz invariants of the field tensors vanish are so-called null fields.
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scopic properties like intensity and shape.

2.2 From quantum to classics

Coherent states have immediately been proposed after the invention of quantum
mechanics by Schrödinger [228]. The basic concern was to study quantum states
which can imitate their classical counterparts through the time evolution of the
position operator

x̂(t) = eiĤtx̂e−iĤt (2.1)

where a typical Hamilton operator is of the form

Ĥ = p̂2

2m + V (x̂). (2.2)

The meaning of a classical behavior was understood by Schrödinger through the
property that the expectation value of the position operator in (2.1), i.e.

x(t) = 〈z|x̂(t)|z〉, (2.3)

with respect to some state |z〉 obeys the classical equations of motion

mẍ(t) + ∂V (x)
∂x

= 0. (2.4)

States which fulfill such properties became known as coherent states.

Let us consider an explicit example: in case of the quantum harmonic oscillator,
as first considered by Schrödinger, we have the potential term

V (x̂) = 1
2mω

2x̂2 (2.5)

where the standard commutator relation [x̂, p̂] = i is satisfied. The ladder operators
are given by the following expressions [229]

â =
√
mω

2

(
x̂+ i

mω
p̂
)
,

â† =
√
mω

2

(
x̂− i

mω
p̂
)
.

(2.6)

The latter satisfy canonical bosonic commutation relations, i.e.

[â, â†] = 1, [â†, â†] = 0 = [â, â]. (2.7)
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With the help of the ladder operators, the Hamilton operator in (2.2) can be
rewritten in the following way

Ĥ = ω
(
ââ† + 1

2

)
. (2.8)

The corresponding eigenstates of the Schrödinger equation Ĥ|n〉 = En|n〉 are

|n〉 = (â†)n√
n!
|0〉 (2.9)

with eigenvalues

En = ~ω
(
n+ 1

2

)
. (2.10)

Computing the momentum and space uncertainties by applying the standard def-
initions,

(∆x)2 ≡ 〈n|x̂2|n〉 − 〈n|x̂|n〉2,

(∆p)2 ≡ 〈n|p̂2|n〉 − 〈n|p̂|n〉2,
(2.11)

we find accordingly

∆x∆p = ~(n+ 1
2) ≥ ~

2 (2.12)

where n = 0 corresponds to the ground state.

For the present discussion, let us introduce the following normalized2 coherent
state, i.e. 〈z|z〉 = 1,

|z〉 = ezâ
†−z∗â|0〉 = e−

1
2 |z|

2
ezâ
†|0〉 (2.13)

2 In case of the unnormalized coherent state given by

|z〉 = ezâ
†
|0〉, 〈z| = 〈0|ez

∗â

we get

〈z|z〉 = 〈0|ez
∗âezâ

†
|0〉 = ez

∗z〈0|ezâ
†
ez
∗â|0〉 = e|z|

2

by using [â, â†] = 1, the Baker-Hausdorff formula

eÂeB̂ = e[Â,B̂]eB̂eÂ

and the following relations ez∗â|0〉 = |0〉 and 〈0|ez′â† = 〈0|.

The matrix element for two different states reads

〈z|z′〉 = ez
∗z′〈0|ez

′â†ez
∗â|0〉 = ez

∗z′ .
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parameterized by some number z = |z|eiϕ ∈ C. The coherent state is constructed
via acting with the displacement operator

D̂(z) = ezâ
†−z∗â (2.14)

on the ground state of the quantum system defined in the usual way by â|0〉 = 0.
This explains why coherent states are also called displaced ground states. The
normalized coherent state in (2.13) is an eigenstate of the annihilation operator,

â|z〉 = z|z〉. (2.15)

It can also be written in terms of an exact expansion in Fock space

|z〉 = e−
|z|2

2

∞∑
n=0

zn√
n!
|n〉. (2.16)

The dynamics of the eigenstates of the harmonic oscillator, |n〉, reads

e−iĤt|n〉 = e−iωt(n+ 1
2)|n〉. (2.17)

From this, the time evolution of the coherent state is obtained as

e−iĤt|z〉 = e−
|z|2

2

∞∑
n=0

(zâ†)n
n! e−iĤt|0〉

= e−
|z|2

2

∞∑
n=0

zn√
n!
e−iĤt|n〉 = e−i

ω
2 t|ze−iωt〉.

(2.18)

It can be seen that, except the constant phase in the rightmost expression, the
dynamics of the coherent state is obtained by making the replacement

z → z(t) = ze−iωt. (2.19)

Indeed, it can be shown that the coherent state recovers the familiar sinusoidal
solutions for the quantum averages [230],

〈x̂〉(t) = 〈z|x̂(t)|z〉 ' x0|z| cos(ωt− ϕ),

〈p̂〉(t) = 〈z|p̂(t)|z〉 ' p0|z| sin(ωt− ϕ)
(2.20)

which simply solve the classical harmonic oscillator equation where p0 = mωx0.
Here, x0 =

√
2~
mω

denotes a fundamental quantum length depending on the univer-
sal Planck constant ~ and the constants m and ω which characterize the quantum
counterpart of the harmonic oscillator. So in this way, the coherent state |z〉,
even though it is rigorously quantum, allows a smooth transition from quantum to
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classical mechanics and hence generally allows a classical understanding in various
quantum mechanical situations. This unique attribute results from a set of prop-
erties satisfied by such so-called canonical or standard coherent states, respectively.

In addition to their classicality, coherent states have the property that they can be
expanded in terms of a complete set of states even though they are not orthogonal.3

The completeness relation reads∫ dzdz∗

π
|z〉〈z| = 1, (2.21)

see appendix A for the complete proof. More precisely, coherent states are over-
complete, in other words, one can expand any coherent state in terms of all the
other coherent states due to their nonorthogonality which means that they cannot
be taken as linearly independent.

Another property is that coherent states are minimally uncertain. Namely, starting
on basis of the normalized coherent state introduced in (2.13), we can find that

〈z|x̂|z〉 =
√

2
mω
<(z), 〈z|x̂2|z〉 = 1

2mω
[
4(<(z))2 + 1

]
,

〈z|p̂|z〉 =
√

2mω=(z), 〈z|p̂2|z〉 = mω

2
[
4(=(z))2 + 1

]
.

(2.22)

We use the standard definitions in (2.11) where we replace the eigenstate |n〉 by
the coherent state |z〉. Putting again ~ into the relevant expressions and using the
relations in (2.22), we get

(∆x)2 = ~
2mω, (∆p)2 = mω~

2 . (2.23)

From the latter we find that the coherent state |z〉 saturates the Heisenberg in-
equality,

∆x∆p = ~
2 , (2.24)

3 For the matrix element 〈z′|z〉 we get by using the unnormalized expansion in (2.18)

〈z′|z〉 '
∞∑
n′=0

∞∑
n=0
〈n′| (z

′∗)n√
n′!

(z)n√
n!
|n〉 =

∞∑
n=0

(
z′
∗
z
)n

n! = ez
′∗z

which obviously does not vanish even if z′ 6= z. This is due to the reason that a coherent state is
an eigenstate of the annihilation operator which is not Hermitian, see equation (2.15). Basically,
eigenstates of some operator with different eigenvalues are orthogonal to each other when the
corresponding operator is Hermitian.
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being minimally uncertain in position and momentum as the ground state of the
quantum harmonic oscillator, cf. equation (2.12).

The amplitude |z| ≡ |z(0)| from above is related to the mean value of the occupa-
tion number operator N̂ = â†â,

〈N̂〉 = 〈z(t)|â†â|z(t)〉 = |z(t)|2 = |z|2. (2.25)

The time evolution of 〈N̂〉 follows from [Ĥ, N̂ ] = 0. If 〈N̂〉 � 1, then for most
times t this leads to

|〈x̂〉(t)|2 � ∆x, |〈p̂〉(t)|2 � ∆p. (2.26)

Hence a coherent state with large occupation number 〈N̂〉 results in a quasiclas-
sically behaving harmonic oscillator. Such type of coherent states are also called
quasiclassical states.

2.3 Boson coherent states

Except some earlier applications in condensed matter [231–233] and quantum field
theory [234–237], coherent states were actually not intensively studied until their
first promising application to field theory [223, 224, 238–240] almost four decades
after their first construction by Schrödinger.

Since then, coherent states and their many generalizations have been applied in dif-
ferent areas such as nuclear, atomic, and condensed matter physics, quantum field
theory, path integral formulations and quantum information [227, 230, 241, 242].
We should note that different to the simple formulations proposed for light beams,
many of the generalizations are generated by more involved composite opera-
tors [242].

The most celebrated application of coherent states is to the quantum electromag-
netic field in field theory. These states constitute the basis of modern quantum op-
tics [243, 244]. Due to their unique properties such as coherence, overcompleteness
and intrinsic geometrization [230] coherent states are very powerful descriptions
with many applications in particle physics [245].
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Here, we particularly discuss the special photon coherent states in order to describe
the electromagnetic field. Let us consider the n-th order correlation function of
the electromagnetic field

Gn(x1, . . . , xn, xn+1, . . . , x2n) = tr
(
ρ̂Ê−(x1) · · · Ê−(xn)Ê+(xn+1) · · · Ê+(x2n)

)
.

(2.27)

According to Glauber [223, 224], optical coherence of the radiation field is given if
all correlations satisfy the factorization condition

Gn(x1, . . . , xn, xn+1, . . . , x2n) = E∗(x1) · · ·E∗(xn)E(xn+1) · · ·E(x2n). (2.28)

This means that all electric field operators must behave classically having eigen-
states |Ξ〉 with the classical field variables as their eigenvalues,

Ê+(xi)|Ξ〉 = E(xi)|Ξ〉,

〈Ξ|Ê−(xj) = 〈Ξ|E∗(xj).
(2.29)

Actually, this is a highly nontrivial property to fulfill on a pure quantum level.
For the quantum harmonic oscillator these properties are satisfied by standard
coherent states as introduced above reflected by the resulting minimal uncertainty
relation (2.24). So the corresponding wave packets (2.13) governed by the Hamil-
ton function of the harmonic oscillator follow classical trajectories without any
spread in time.

Quantum fields by construction consist of an infinite number of harmonic oscilla-
tors. The Hamilton function of the classical electromagnetic field reads

H =
∫
d3x

[
E2 + B2

]
(2.30)

where

E = −∂tA,

B = ∇×A
(2.31)

denote the electric and magnetic field, respectively. As usual, the corresponding
photon field operator, Âµ, can be decomposed in terms of plane waves [246, 247]

Âµ(x) =
∫ d3k√

(2π)3

1√
2|k|

∑
λ=1,2

(
âkε

µ
ke
−ikx + â†kε

µ∗
k e

ikx
)

(2.32)
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with ε∗k · εk′ = −δkk′ [248–250]. The operator âk (â†k) is the photon annihilator
(creator) where k numbers the mode (k, λ) with wave vector k and polarization
λ. In close analogy to the Hamilton operator for the single quantum harmonic
oscillator in (2.8), here we have the following Hamilton operator

Ĥ =
∑
k

ωk

(
â†kâk + 1

2

)
. (2.33)

Each of these individual modes correspond to the field photons. As a generalization
of the coherent state in (2.13), the so-called photon or more general boson coherent
state, respectively, describing the coherent electromagnetic field can be written as

|{zk}〉 = exp
(∫

d3k
∑
λ

zkâ
†
k − z∗kâk

)
|vac〉

= exp
(
−1

2

∫
d3k

∑
λ

|zk|2
)

exp
(∫

d3k
∑
λ

zkâ
†
k

)
|vac〉

(2.34)

where |vac〉 stands for the vacuum state defined in the usual way by âk|vac〉 = 0.
The photon coherent state (2.34) is an eigenstate of the positive electric field
operator [227],

Ê+|{zk}〉 = E|{zk}〉, (2.35)

where

E(x) = i
∫ d3k√

(2π)3

√
ωk
2
∑
λ

zk~εke
−i(ωkt−k·x). (2.36)

As for the standard coherent states, the photon coherent states are overcomplete
and satisfy the following relation∫ ∏

k

dzkdz
∗
k

π
|{zk}〉〈{zk}| = 1. (2.37)

This is of course different from the usual completeness relation of states in Fock
space F = ⊗nHn as a direct sum of Hilbert spaces associated with each excitation.
Together with the analyticity, the property of overcompleteness allows to expand
the density operator ρ̂ in diagonal form in terms of the photon coherent state,

ρ̂ =
∫ ∏

k

dzkdz
∗
k P ({zk}) |{zk}〉〈{zk}|, (2.38)

known as the so-called P -representation [223, 224]. Here, P (z) is some weight
function and the density operator trace reads

tr(ρ̂) =
∫ ∏

k

dzkdz
∗
k P ({zk}) = 1. (2.39)
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According to the equations in (2.35), (2.38) and (2.39), the defining factorization
condition for optical coherence in (2.28) is satisfied by the photon coherent states
which have a well defined phase for each mode.

2.4 Vacuum expectation value and S-matrix

As we have discussed above, a coherent photon field can be described in terms of
a photon coherent state |{zk}〉 [223, 224]. The photon coherent state is generated
by acting with the displacement operator

D̂(zk) =
∫
d3k

∑
λ

zkâ
†
k − z∗kâk (2.40)

on the vacuum state in Fock space, see equation (2.34), so that

|{zk}〉 = D̂(zk)|vac〉. (2.41)

We note that |vac〉 is defined in the usual way

âk|vac〉 = 0 ∀ k (2.42)

with 〈vac|vac〉 = 1. The operator âk is the photon annihilator where k numbers
the corresponding mode. The photon field operator is given in equation (2.32)
where the creation and annihilation operators obey the commutation relation

[âk, â†k′ ] = (2π)3δ3(k− k′)δλλ′ . (2.43)

Let Aµ(x) be some classical electromagnetic field associated with the photon co-
herent state denoted in the following as |C〉. As in the case of the photon field in
(2.32), the electromagnetic field can be decomposed as [250, 251]

Aµ(x) =
∫ d3k√

(2π)3

1√
2|k|

∑
λ=1,2

(
αkε

µ
ke
−ikx + α∗kε

µ∗
k e

ikx
)

(2.44)

with αk ≡ αµ(k). The unitary displacement operator for constructing the corre-
sponding photon coherent state becomes

D̂ = exp
∑

λ

∫ d3k√
(2π)3

1√
2|k|

[
αka

†
k − α∗kak

] (2.45)

obtained after setting (zk, z∗k) = (αk,α∗k)√
2(2π)3|k|

in equation (2.40) which then leads to

D̂−1âkD̂ = âk + αk,

D̂−1â†kD̂ = â†k + α∗k.
(2.46)
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From the unitarity of D̂ it follows that 〈C|C〉 = 1, similar as for the standard
vacuum state |vac〉. The commutation relations of the photon creation and anni-
hilation operators introduced in (2.32) with D̂ read

[âk, D̂] = αkD̂,

[â†k, D̂] = α∗kD̂.
(2.47)

Computing the matrix element of the photon field operator in the presence of the
photon coherent state, we find that D̂ results in a shift of the photon field operator
Âµ such that the latter obtains a VEV,

〈C|Aµ(x)|C〉 = αµ(x) + αµ∗(x) ≡ Aµ(x), (2.48)

giving rise to the classical electromagnetic field Aµ. Hence, the photon coherent
state serves as the most classical state of the photon field which yields a simple
correspondence between optical coherence and classical fields in QFT, see e.g. [225].
Assuming that the coherence is preserved during the interactions, we end up with
the same coherent state on both sides of the S-matrix elements for any scattering
process, so

〈C| . . . |C〉 = 〈vac|D̂−1 . . . D̂|vac〉. (2.49)

Taking into account that D̂−1AµD̂ = Aµ +Aµ, we find that instead of considering
interactions between photon coherent states we can shift the photon field operator
by a c-number and consider S-matrix elements between vacuum states as in ordi-
nary QFT [222].

Consider for instance the photon field interacting with a classical source described
by the Lagrangian

L = −1
4FµνF

µν − Aµjµ. (2.50)

The classical current shall be conserved, ∂µjµ = 0. Using Lorenz gauge, ∂µAµ = 0,
the equation of motion for the photon field is [229]

∂µF
µν = �Aν = jν (2.51)

which has formal solution Aν = 1
�j

ν where the inverse 1
� is called Green’s function.

The general solution is [252]

Aµ(x) = Aµ0(x) +
∫
d4y G(x− y)jµ(y). (2.52)
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Aµ0(x) is the free field solution and [229, 250]

G(x, y) = G(x− y) = 1
(2π)4

∫
d4y

e−ip·(x−y)

p2 ± iε
(2.53)

is the Green’s function obtained after Fourier expanding the initial equation

�xG(x− y) = −δ(4)(x− y) (2.54)

to in order to find p2G(p) = 1. Here, �x is the d’Alembert operator acting on
x. Switching on the interaction adiabatically in a finite time duration, the general
solution (2.52) can be written as

Aµ(x) = Aµin(x) +
∫
d4y Gret(x− y)jµ(y)

= Aµout(x) +
∫
d4y Gadv(x− y)jµ(y)

(2.55)

where

Gret
adv

(x− y) = lim
ε→0

1
(2π)4

∫
d4p

e−ip·(x−y)

(p0 ± iε)2 − p2 (2.56)

denotes the retarded
advanced Green’s function and Aµin

out
is the photon field before

after the inter-
action with the classical current. The corresponding in- and out-states, |in〉 and
|out〉, respectively, form two complete sets of free states. So there has to exist a
unitary4 transformation S such that

Aµout = S†AµinS, |out〉 = S†|in〉. (2.57)

As usual, S is called the S-matrix. From the solutions in (2.55) we get

Aµout(x) = Aµin(x) +Aµ(x) (2.58)

where, noting that Gret −Gadv = G,

Aµ(x) =
∫
d4y [Gret(x− y)−Gadv(x− y)] jµ(y) (2.59)

corresponds to the classical field generated by the classical current jµ. The S-
matrix can be written as

S = exp
(
−i
∫
d4x Aout · j(x)

)
= exp

(
−i
∫
d4x Ain · j(x)

)
(2.60)

4 See section 3.1 for more on unitarity.
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such that the final state after the interaction of the photon field Aµ with the
classical current jµ(x) becomes, see equation (2.57),

|out〉 = exp
(
i
∫
d4x Ain(x) · j(x)

)
|in〉. (2.61)

Fourier expanding the photon field operator as in (2.32) and setting

zk = εk · j̃(k), (2.62)

where j̃(k) denotes the Fourier transform of j(x), the final state can be expressed
as

|out〉 = exp
(
−1

2

∫
d3k

∑
λ

|zk|2
)

exp
(∫

d3k
∑
λ

zkâ
†
k

)
|in〉. (2.63)

As we can easily see, this equals to the introduced photon coherent state from
(2.34) after setting |in〉 = |vac〉. Hence, as discussed above, the final state after
the interaction of the photon field with a classical current, here associated with
the classical background field Aµ, becomes a photon coherent state.

2.5 Path integral and coherent states

When quantum fields interact with each other the situation changes and one gener-
ally does not end up with a coherent state as a final state. In the following, we will
see that in such cases coherent states can be used to derive the path integral. As
we have discussed, standard coherent states are special states which, in addition
to their minimal position and momentum uncertainty, are overcomplete fulfilling
the condition (2.21). The analogous relation for the overcomplete photon coher-
ent states is (2.37). Here, we discuss how the quantum mechanical path integral
directly arises from the coherent state. Consider the standard evolution operator
in quantum mechanics

Û(tf , ti) = e−iĤ(tf−ti). (2.64)

Formally, the matrix element of the evolution operator is

〈xf (tf )|xi(ti)〉 = 〈xf |Û(tf , ti)|xi〉. (2.65)

The set of position states, {|x〉}, build up a complete set. Hence, the states obey
the completeness condition ∫

dx |x〉〈x| = 1. (2.66)
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These form in contrast to the coherent state |z〉 an orthonormal basis, i.e. 〈x′|x〉 =
δ(x′ − x). Inserting the resolution of the identity in (2.66), many times between
each of the factors in the matrix element from above, we may write the formal
integral

〈xf (tf )|xi(ti)〉 =
∫
dx1 . . . dxN 〈xf , tf |xN , tN〉

× . . .× 〈xN , tN |xN−1, tN−1〉 . . . 〈x1, t1|xi, ti〉.
(2.67)

Taking the finite time interval |tf − ti| to be fixed, in the limit N → ∞ the
discretized time interval τ ≡ tj − tj−1 becomes infinitesimally small. Hence, we
can write approximately

〈xj, tj|xj−1, tj−1〉 ≈ δ(xj − xj−1)− iτ〈xj|Ĥ|xj−1〉+O(τ 2) (2.68)

which is exact for N → ∞. Next, we additionally introduce the complete set of
momentum states {|p〉} and analogously the associated condition∫ dp

2π |p〉〈p| = 1 (2.69)

where 〈x|p〉 = eipx holds as usual. For instance, using the Hamilton function
introduced in section 2.2, the matrix elements on the right-hand side of equation
(2.68) read

〈xj|Ĥ|xj−1〉 =
∫ dp

2πe
ip(xj−xj−1)

[
p2

2m + V (xj)
]
. (2.70)

Approximating up to the order O(τ 2), we can also write (2.68) as

〈xj, tj|xj−1, tj−1〉 ≈
∫ dp

2πe
ip(xj−xj−1)−τH

(
p,
xj+xj−1

2

)
, (2.71)

where we have used xj → xj+xj−1
2 in H(p, x). Inserting the expressions in (2.68)

and (2.71) into the integral (2.67), we find for the original matrix element

〈xf (tf )|xi(ti)〉 = lim
N→∞

∫ N∏
j=1

dxj

∫ N+1∏
j=1

dpj
2π

× exp
iN+1∑

j=1
pj(xj − xj−1)− τH

(
pj,

xj + xj−1

2

) .
(2.72)

In the limit N →∞, we can formally write the latter as

〈xf (tf )|xi(ti)〉 =
∫
DpDx exp

(
i
∫ tf

ti
dt L(p, x)

)
(2.73)
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with the Lagrange function

L(p, x) = pẋ−H(p, x) (2.74)

and the integration measure

DpDx ≡ lim
N→∞

N∏
j=1

dpjdxj
2π . (2.75)

The configuration (x(t), p(t)) has to satisfy the conditions x(ti) = xi and x(tf ) =
xf . There are no initial and final conditions for the momenta, since the states
have well defined positions. Hence, the matrix element is expressed as a sum over
different histories in phase space weighted by an exponential factor exp(

∫
dt L).

For the matrix element, we may write in compact form

〈xf (tf )|xi(ti)〉 =
∫
DpDx eiS(,x,p) (2.76)

where S is the action of each history (x(t), p(t)) which do not need to satisfy any
condition such as the equations of motion. The only exceptions are the mentioned
initial and final conditions. The expression in (2.76) is the standard path integral.
The latter can be brought into a simpler form. Namely, assuming that the kinetic
energy is quadratic in the momenta, we can explicitly integrate out the momenta
in the path integral, simply, due to its Gaussian form.5 Then, the result depends
only on histories of the space coordinate. This is known as the Feynman path
integral written as

〈xf (tf )|xi(ti)〉 =
∫
Dx exp

(
i
∫ tf

ti
dt L(x, ẋ)

)
(2.77)

where

L(x, ẋ) = mẋ2

2 − V (x). (2.78)

Accordingly, in the classical limit there is only one contributing path, xc(t), on
which the action is stationary, δS = 0. This is known as the least action principle.
The stationary path xc solves the classical Euler-Lagrange equation (ELE),

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (2.79)

5 Here, we use the following result∫
dp

2π exp
(
i

(
pẋ− p2

2m

)
τ

)
=
√

m

2πiτ exp
(
iτ ẋ2

2

)
.
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Now the path integral in (2.73) can be derived in an alternative way. Namely,
instead of using the complete basis of position states satisfying the condition (2.66),
we can resolve the identity using the coherent states. For these, we insert the
corresponding completeness relation (2.21) between the factors in the following
matrix element

〈zf (tf )|zi(ti)〉 = 〈zf |Û(tf , ti)|zi〉. (2.80)

Taking into account that

dzdz∗

π
= 2d<(z)d=(z)

π
(2.81)

and setting

z = x+ ip√
2
≡ â, z∗ = x− ip√

2
≡ â† (2.82)

where ωm = 1, see operators in (2.6), it can be shown that [253]

〈zf (tf )|zi(ti)〉 =
∫
DpDx exp

(
i
∫ tf

ti
dt L(x(t), p(t))

)
(2.83)

where

L(p, x) = 〈z|id/dt|z〉 − 〈z|H|z〉 = 1
2 (pẋ− xṗ)−H(p, x). (2.84)

Thus, using the coherent state one automatically arrives at the quantum mechan-
ical path integral introduced above.

Similarly, one can derive the path integral in field theory by defining the corre-
sponding boson coherent state. For including fermion fields as well, it is neces-
sary to introduce a fermion coherent state which has to be the eigenstate for the
fermionic annihilation operator

âi|θ〉 = θi|θ〉. (2.85)

Here θi represents a Grassmann variable, see section 4.2.3. For instance, satisfying
the underlying properties, the associated coherent state can explicitly be written
as

|θ〉 = exp
(∑

i

θiâ
†
i − θ∗i âi

)
= exp

(
−1

2
∑
i

θ∗i θi

)
exp

(
θiâ
†
i

)
|0〉. (2.86)
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2.6 Strong field sources

2.6.1 Lasers

Modern optical lasers can be used to generate strong electromagnetic fields. For
instance, intensities of the order I = 2× 1022 W/cm2 have already been achieved
with the HERCULES laser [254]. More intense petawatt (1015 W) or even exawatt
(1018 W) lasers such as the Extreme Light Infrastructure (ELI) will be ready within
the next couple of years [255]. These would exceed intensities of the order I ∼ 1025

W/cm2 corresponding to field strengths E ' 10−3ES which may shed light on the
nonlinear regime in QED.6 Such high intense lasers operate in form of pulsed
beams with very short duration in the range of a few up to tens femtoseconds.

Another promising source for strong electromagnetic fields are free electron lasers
with coherent light sources having wavelengths in the X-ray regime. For these high
frequent lasers, the output power is several orders of magnitude smaller than for the
mentioned lasers with optical frequencies. However, their short wavelength allows
a smaller diffraction limited focus which makes it possible to generate higher peak
fields. For the European X-Ray Free-Electron Laser (XFEL) the field strength is
of the order E ' 1017 V/m [25, 26, 256].

A typical optical petawatt laser has an energy of the order 100 J which corresponds
to a total number of ∼ 1020 photons. This is sufficient for fundamental QED
processes. At intensities I ' 1022 W/cm2, it is expected that roughly 1015 photons
will be absorbed from the strong field [83]. This is just a tiny portion of the
value from above which justifies the expectation of an unaffected field that can be
considered as a fixed background.

2.6.2 Astrophysical objects

On astrophysical scales there exist objects which naturally have extremely super
strong field environments. The most known one are pulsars [257]. These are
rotating neutron stars which periodically emit electromagnetic radiation. They

6 The critical value Bcr = 4.41× 1022 T corresponds to the magnetic field strength at which
the electron Landau levels have an energy gap equal to the electron’s rest mass. The associated
intensity with ES and Bcr is I = 2.32× 1029 W/cm2.
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can have surface magnetic fields of the order of B ' 108 T which almost reach the
critical limit. Much larger field strengths, namely exceeding the critical value at
orders B ' 1011 T, are possible for so-called magnetars [258, 259]. There are many
other sources like black holes, active galactic nuclei and gamma ray bursts [260]
that may generate super strong electromagnetic fields as well.

2.6.3 Linear colliders

An electron-positron linear collider (LC) may be very important in electroweak
precision physics and Higgs phenomenology. In particular, these facilities are very
important for BSM physics. In contrast to the LHC, a LC is able to produce
a clean environment in the lepton beam interaction point (IP) [261]. The LHC
strikingly suffers from QCD background processes, since the colliding particles are
protons which are composite objects build up by gluons and quarks; so-called par-
tons. Using an appropriate parton distribution function (PDF) allows to model
the internal structure of protons which is not known exactly. At the LC a main
background process is beamstrahlung caused due to the radiating electrons and
positrons in the electromagnetic field of the oncoming particle bunch. Indeed, the
colliding particles at the IP will see a strong external electromagnetic field gener-
ated by the superposition of the collective fields originating from the two beams.
In particular, each colliding, boosted, particle will see the field originated by the
opposing bunch. This macroscopically extended field can be approximated as a
static strong background [262].

In order to probe the high precision frontier at a future LC, particularly needed
for BSM physics, a very high luminosity is required. The achievable values are
expected to be very high compared to the LHC, namely of orders of 10−34 up
to 10−35 cm−2s−1. In order to reach these intense values, the denseness of the
colliding bunches have to be very high. This leads to the presence of very strong
background fields in the rest frame of the oncoming bunch particles which may
approach the critical field strength ES. Thus, several fundamental processes such
as Breit-Wheeler (γ + γ → e− + e+), Bethe-Heitler (γ + e∓ → e∓ + e− + e+)
as well as pair creation à la Schwinger mechanism may take place in such strong
environments. This can result in significant depletion effects of the initial beams
at their collision time [263].
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2.6.4 Relativistic heavy ion collisions

Heavy nuclei with a large charge number generate very strong Coulomb fields in
their vicinity. For instance, based on the corresponding assumptions, the point
at which the 1s electron wave function joins the negative energy continuum has
been approximated as Zc ≈ 173 [264]. A single stable nucleus with such a high
charge number is not known. The critical number Zc is believed to be realizable
in relativistic heavy ion collision experiments. There, the electron dynamics can
be considered as much faster than the dynamics of the colliding nuclei. This may
lead to the formation of some kind of quasimolecules with charge numbers Z > Zc

leading to pair production [265, 266].

A QCD analog to the original Schwinger effect in QED may be realizable at the
RHIC or at the LHC during the formation of the so-called Quark Gluon Plasma
(QGP). Namely, one possible way to describe the formation of this nonequilibrium
process is to consider the colliding heavy ion nuclei as traversing through each other
such that a chromoelectric flux tube is created that can be broken up against
the production of quark-antiquark pairs [60]. Despite the shortcomings for this
phenomenological model, one may expect that a non-Abelian chromoelectric field
can have similar effects as its Abelian counterpart [267].



Chapter 3

Vacuum decay

3.1 Unitarity

U nitarity is fundamental for any physical local QFT. The assumption that
nothing can be produced or just disappear without external influences re-

quires unitarity. It can be understood as the conservation of probabilities in the
underlying quantum system and dictates how states in the Hilbert space trans-
form in unitary representations of the Poincaré group. Since the S-matrix has to
be unitary, the latter also constraints how and which interactions take place in a
physical QFT. Single and multi particle states being eigenstates of the momentum
operator transform in the usual four vector representation of the Lorentz group.
The former type of states transform under the irreducible unitary representations
of this group as well. For the multi particle state the relevant transformations are
the one for the particles in that state. The ground state in QFT is assumed to be
Lorentz invariant.

The Hilbert space, H, has the property of completeness. For the sum over single
and multi particle states |X〉 this simply means that [229]

∑
X

dΠX |X〉〈X| = 1 (3.1)

where

dΠX =
∏
s∈X

d3ps
(2π)3

1
2Es

. (3.2)

The latter integration measure is related to the Lorentz invariant phase space
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(LIPS) measure

dΠLIPS = (2π)4δ4
(∑

p
)
dΠX . (3.3)

Hence, for the completeness relation in equation (3.1) all states need to be included.
This is a direct consequence of demanding unitarity in QFT.

3.2 Optical theorem

In the following, we discuss the optical theorem which is powerful in relating cross
sections and the imaginary part of the scattering amplitudes in a nonperturbative
fashion.

3.2.1 Generalized version

In perturbation theory, the optical theorem can relate loops to tree level dia-
grams [229, 247]. Since loop diagrams are higher order quantum corrections, the
optical theorem elucidates in an elegant way that higher order quantum correc-
tions must be determined by more classical tree level cross sections. This is a
direct consequence of unitarity.

Let |Ψ; t〉 be a state in the Schrödinger picture. As we have discussed in section
3.1, the norm of such a state has to be the same at any time t, so we write

〈Ψ; t|Ψ; t〉 = 〈Ψ; 0|Ψ; 0〉 (3.4)

where [250]

|Ψ; t〉 = e−iHt|Ψ; 0〉. (3.5)

Since the Hamilton function H has to be unitary, i.e. H† = H, this implies for the
S-matrix

S = e−iHt (3.6)

unitarity as well, that is

S†S = 1. (3.7)
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The general definition for the S-matrix elements can be obtained from

〈f |T|i〉 = (2π)4δ4(pi − pf )Mi→f (3.8)

where |f〉 and |i〉 denote some final and initial state, respectively. The transfer
matrix T is related to the S-matrix according to

S = 1 + iT. (3.9)

Due to the condition (3.7), we get

i(T† − T) = T†T (3.10)

which results in

〈f |i(T† − T)|i〉 = i(2π)4δ4(pi − pf )
[
M∗

f→i −Mi→f
]
. (3.11)

On the other hand, using the completeness relation in equation (3.1) we can write

〈f |T†T|i〉 =
∑
X

∫
dΠX 〈f |T†|X〉〈X|T|i〉. (3.12)

Using the unitarity condition from equation (3.10) brings us to the generalized
optical theorem

Mi→f −M∗
f→i =

∑
X

∫
dΠX i(2π)4δ4(pi − pX)Mi→XM∗

f→X . (3.13)

3.2.2 Special version

The left-hand side of the generalized optical theorem (3.13) has linear dependence
on matrix elements whereas the right-hand side has quadratic dependence. Notic-
ing that the optical theorem holds for all orders in perturbation theory, shows that
the imaginary parts of loops are actually determined by tree level diagrams. For
instance, assuming |i〉 = |f〉 = |A〉 where |A〉 shall be some particle state, one
obtains from the general theorem in equation (3.13)

2i= (MA→A) = i
∑
X

∫
dΠX (2π)4δ4(pA − pX)|MA→X |2. (3.14)

Let |A〉 be a single particle state. Then the decay rate is [229]

RA→X = 1
2mA

∫
dΠX (2π)4δ4(pA − pX)|MA→X |2. (3.15)
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So what follows is the relation

= (MA→A) = mA

∑
X

RA→X = mARtot (3.16)

where Rtot is the decay rate of |A〉 being equal to the inverse of the lifetime of the
initial state.

Instead, if |A〉 is assumed to be a two particle state, the cross section in the center
of mass (CM) frame is

σA→X = 1
4ECM|pi|

∫
dΠX (2π)4δ4(pA − pX)|MA→X |2 (3.17)

where ECM is the energy in the CM frame. From this, one arrives at the following
relation

= (MA→A) = 2ECM|pi|
∑
X

σA→X (3.18)

which is known as the special optical theorem.

3.3 Vacuum decay rate

In the presence of a strong static electric background the quantum vacuum decays
against matter-antimatter pairs [268–270]; this is the standard Schwinger mecha-
nism. It is a nonperturbative absorptive process which requires the full coupling to
the electric background, see section 3.4.2 for more regarding the nonperturbative
character. At leading order, the Schwinger effect is determined by the one-loop
EH effective action1 which is valid for energy scales much below the high energy
degrees of freedom of the underlying theory and hence manifests itself as a low en-
ergy EFT [135, 271]. In QED, the high energy degrees of freedom are the massive
electron and positron fields.

On the other hand, we may ask why pair production is determined by some effec-
tive action for which the particle field is integrated out and therefore not present?

1 In general, as we will see later in chapter 5, the leading order instanton contribution is
referred to as the VPP rate which involves just a tiny portion of the whole information which
is basically included in the total vacuum decay rate from equation (3.22). The latter is not
necessarily restricted to the one-loop EH effective action. Actually, it involves an infinite number
of vacuum diagrams accounting for all permitted combinations of particle loops and gauge boson
lines.
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The reason lies in the unitary construction of any physical QFT as described above.

Let us recall the optical theorem in equation (3.14) written in the form

ImMA→A =
∑
X

dΠX
LIPS|MA→X |2. (3.19)

Assuming that the initial state corresponds to a strong external background con-
sisting of a huge number of coherently accumulated low energy photons described
by some photon coherent state, |A〉 ≡ |C〉, see section 2.4, the left-hand side is in
both full QED and EFT the same. However, the right-hand side would differ if the
mentioned degrees of freedom are integrated out. Hence, the EFT approach turns
out to be nonunitary, a sign for the instability against pair production. However,
this basically makes the direct application of the optical theorem unsuitable, since
one strictly would need to sum over an infinite number of multi particle states [229]
which clearly reveals the immense amount of related subprocesses.

An alternative approach works as follows: if |A〉 remains unchanged, this corre-
sponds to the situation where no pairs are produced and the initial state corre-
sponds to the final state. This can simply be written as

〈A|S|A〉 = 〈0|SA|0〉 = 1 (3.20)

where the dressed S-matrix reads SA = eiΓ[A]. The EH effective action Γ is obtained
after integrating out the high energy degrees of freedom. Since it is just a number
for some given external background, the probability that no pair production occurs
follows from the modulo squared vacuum to vacuum transition amplitude

|〈0|0〉|2 := |〈A|S|A〉|2 = |eiΓ[A]|2 = exp (−2V T=(Leff)) (3.21)

with =(Leff) denoting the imaginary part of the effective Lagrangian [270, 272].
Here, it has been assumed that |0〉 ≡ |0out〉 = |0in〉. Taking into account that the
effective action Γ is generally small for backgrounds in the nonperturbative regime,
the probability for vacuum decay against the production of any number of pairs is

P = 1− |〈0|0〉|2 = 1− e−2R ≈ 2R (3.22)

with the corresponding vacuum decay rate

R = =(Γ). (3.23)
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This basically corresponds to the continuum field version of the optical theorem
introduced in equation (3.16). We should note that in most cases we will restrict
ourselves to the one-loop EH effective action which we call ΓEH.

As demanded, the EH effective action only depends on the electromagnetic back-
ground. Formally, the general (not necessarily one-loop) EH effective action Γ[A]
can be defined according to∫

DA exp (iΓ) =
∫
DADADF exp

(
i
∫
d4x L

)
, (3.24)

writing DF := Dψ̄Dψ in QED and DF := Dφ̄Dφ in the scalar case. Here, L
denotes the full Lagrangian of the theory under consideration.

We keep all diagrams with a single particle loop and drop off all higher loop con-
tributions, see figure 3.1. In other words, we ignore the dynamical gauge field
contribution and therefore all correlations between particle loops connected by
photon lines, see equations (3.40) and (3.44). As will be used later, this approach
is sufficient in the weak field limit due to strong exponential suppression of higher
order vacuum diagrams.

Notably, including additional photon exchanges within the single particle loop re-
sults in the all-loop quenched vacuum diagram, see e.g. [158, 273, 274]. We will be
mostly focusing on the leading single particle loop contribution without internal
photon lines determined by the one-loop EH effective action ΓEH.

Performing the standard Gaussian integrations, ΓEH can most compactly be writ-
ten as

ΓEH = ln Det(i /D −m) (3.25)

in the spinor case

ΓEH = ln Det(D2 −m2) (3.26)

in the scalar case. Dµ = ∂µ − ieAµ denotes the covariant derivative and /D =
γµD

µ, where γµ are the Dirac gamma matrices in relativistic quantum mechan-
ics [270–272].



42 Chapter 3. Vacuum decay

The formal representations for one-loop EH effective actions in (3.25) and (3.26)
can be developed in a perturbative expansion in powers of the external background
field Aµ. As shown first by Euler and Heisenberg for QED [275] and by Weisskopf
for scalar Quantum Electrodynamics (sQED) [276], in case of an external back-
ground where Fµν is assumed to be constant, it is possible to derive closed form
expressions which generate all perturbative orders.

Before we continue with the sketch of Schwinger’s original proper time approach
to the problem, it should be noted that in addition to the decay of the quantum
vacuum in a strong background field, the EH effective action has many other
interesting applications as for instance: derivation of the QED β-function, chiral
anomaly, and the low energy limit for n photon scattering including the light by
light scattering cross section [135, 277, 278].

3.4 One-loop EH effective Lagrangian in static
background

In this section, we sketch the original derivation of the one-loop EH effective action
in a static external background based on the proper time formulation.

3.4.1 Proper time approach

3.4.1.1 Notion of time

Before we start with the actual calculation, let us first discuss the notion of proper
time. The key ingredient we need is the identity

i

A+ iε
=
∫ ∞

0
ds eis(A+iε) (3.27)

where A ∈ R and ε > 0. Using (3.27), the Feynman propagator for a scalar field
with mass m can be written as

DF (x, y) =
∫ d4p

(2π)4
ieip(x−y)

p2 −m2 + iε
=
∫ d4p

(2π)4 e
ip(x−y)

∫ ∞
0

ds eis(p
2−m2+iε). (3.28)

The Gaussian momentum integral can be done exactly

DF (x, y) = −i
16π

∫ ∞
0

ds

s2 exp
(
−i
[

(x− y)2

4s + sm2 − iεs
])

. (3.29)
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For the massless case the result reads

DF (x, y) = − 1
4π2

1
(x− y)2 − iε

. (3.30)

An alternative way to integrate over p can be followed by resorting to standard
quantum mechanics. Consider a one particle Hilbert space spanned by the state
|x〉 such that 〈p|x〉 = eipx [251]. Inserting the latter into (3.28), we get

DF (x, y) =
∫ d4p

(2π)4 〈y|p〉〈p|x〉
∫ ∞

0
ds eis(p

2−m2+iε). (3.31)

Now, introducing p̂µ|p〉 = pµ|p〉 and taking Ĥ = −p̂2 as an Hamilton operator, we
end up with

eisp
2〈p|x〉 = 〈p|e−isĤ |x〉. (3.32)

Hence, inserting the latter into equation (3.31),

〈y|p〉eisp2〈p|x〉 = 〈y|p〉〈p|e−isĤ |x〉, (3.33)

we get

DF (x, y) = 〈y|Ĝ|x〉 =
∫ ∞

0
ds e−sεe−ism

2〈y; 0|x; s〉 (3.34)

after using the completeness relation for |p〉. Here, we have introduced the notation

〈y; 0|x; s〉 ≡ 〈y|e−isĤ |x〉. (3.35)

The operator Ĝ in equation (3.34) denotes the Green’s function operator in terms
of p̂µ and x̂µ. Hence, interpreting s as some time variable, the obtained propagator
can be understood as the amplitude for a propagating particle from x to y in proper
time s integrated over s.

3.4.1.2 Background dependent expectation value

Let us first elaborate the expectation value in the presence of the external back-
ground Aµ. In the following, we particularly focus on the fermionic case. The
QED Lagrangian reads

L = −1
4F

2
µν + ψ̄(i/∂ −m)ψ − eAµψ̄γµψ. (3.36)

The dynamical gauge field Aµ can be simply inserted by adding an additional
term −1

4F
2
µν and coupling Aµ to the current Jµ ≡ ψ̄γµψ. For the one-loop EH
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effective Lagrangian these contributions will be neglected. Now, to integrate out
the irrelevant degrees of freedom, we replace the corresponding fields by their
expectation value. To this end, we will replace the current Jµ coupled to Aµ by
its expectation value in the presence of the background. This leads to an effective
Lagrangian of the form

Leff = −1
4F

2
µν − eAµJ

µ
|C〉 (3.37)

with Jµ|C〉 := 〈C|Jµ|C〉 being the VEV of the current in the presence of the photon
coherent state |C〉, see again section 2.4. Using the proper time approach and the
dressed spinor Green’s function operator [229], i.e.

ĜA = i

/̂p− e /A(x̂)−m+ iε
, (3.38)

we obtain the corresponding propagator,2

GA(x, y) = 〈y|ĜA|x〉 =
∫
ds e−sεe−ism

2〈y|(/̂p− e /A(x̂) +m)e−iĤs|x〉. (3.39)

The EH effective Lagrangian, as we demand, only depends on the background Aµ,

Leff = −1
4F

2
µν + i

2

∫ ∞
0

ds

s
e−sεe−ism

2Tr〈x|e−iĤs|x〉 (3.40)

where Tr(· · · ) denotes the Dirac trace and

Ĥ = −(p̂µ − eAµ(x̂))2 + e

2Fµν(x̂)σµν (3.41)

is the associated Hamilton function operator.

For the scalar case the Green’s function operator is [229]

ĜA = i

(p̂− eA(x̂))2 −m2 + iε
(3.42)

leading to the corresponding propagator

GA(x, y) = 〈y|ĜA|x〉 =
∫
ds e−sεe−ism

2〈y|e−iĤs|x〉. (3.43)

2 Note that the prefactor (/̂p− e /A(x̂) +m) in front of the exponential occurs due to rewriting
the Green’s function operator as

ĜA = i

/̂p− e /A(x̂)−m+ iε
= (/̂p− e /A(x̂) +m) i

(p̂µ − eAµ(x̂))2 − e
2Fµν(x̂)σµν −m2 + iε

.
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Thus, the analogous expression for the one-loop EH effective Lagrangian in sQED
is

Leff = −1
4F

2
µν − i

∫ ∞
0

ds

s
e−sεe−ism

2〈x|e−iĤs|x〉 (3.44)

where

Ĥ = −(p̂µ − eAµ(x̂))2. (3.45)

Note the sign change in front of the integrals in equations (3.40) and (3.44). This
applies due to the difference between fermion and boson statistics in addition to
a factor 1

2 for the spin effect.3

3.4.1.3 Diagrammatic representation

The one-loop EH effective Lagrangians in equations (3.40) and (3.44) already in-
dicate the types of associated diagrams. Let us illustrate this for the scalar case.
Considering the integral in (3.44), we notice that the integrand, except the factor
1
is
, is just the expression for the scalar propagator (3.43) embedded in the back-

ground for the case y → x. Hence, a natural interpretation would be to understand
the included diagrams as some expansion with a single closed loop coupled per-
turbatively to the background in which the particle evolves in proper time s. In
terms of diagrams, we may therefore represent the imaginary4 part of the one-loop
EH effective Lagrangian as in figure 3.1 [279–284].

Due to charge conjugation symmetry in QED these diagrams appear with even
numbers of external photon lines. This expansion rule is known as Furry’s the-
orem [285]. Interestingly, the first loop in figure 3.1 is not coupled to any back-
ground photon, so it corresponds to the limit A → 0 and should therefore account
for the vacuum energy. Indeed, treating the resulting integral appropriately, the
computation of this contribution leads to the finite Casimir force [229, 250].

3 The polarization properties in matter are described in terms of the electric induction and the
magnetic field. Similarly, writing the effective Lagrangian as Leff = L0 + δL where L0 = − 1

4F
2
µν ,

the contribution δL takes into account the effect of vacuum polarization; the interaction of the
background with the vacuum fluctuations of the particle and antiparticle fields.

4 The real part of the effective Lagrangian describes dispersive effects such as vacuum birefrin-
gence and the imaginary part is responsible for absorptive effects such as VPP. It is important to
note that only dispersive effects may be computed in perturbation theory. The process of VPP,
as we will discuss later, is a purely nonperturbative effect. It can be understood as a tunneling
process from the vacuum, see discussion in section 3.4.2.2.
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++ + …

Figure 3.1: Diagrammatic representation of the one-loop EH effective Lagrangian as a pertur-
bative expansion with respect to the number of external gauge bosons indicated by the wavy
lines. The single loop corresponds to the particle loop described in the text.

3.4.1.4 Time propagation

We focus on the fermionic one-loop EH effective Lagrangian from (3.40) with a
constant Fµν . The space operator in the quantum mechanical Heisenberg picture
is written in terms of the related operator in Schrödinger picture,

x̂µ(s) = eiĤsx̂e−iĤs. (3.46)

The first step is the computation of 〈x|e−iĤs|x〉 in (3.40). We again use the no-
tation 〈y|e−iĤs|x〉 = 〈y; 0|x; s〉. Once, an appropriate expression is found, the
coincidence limit, y → x, will be taken.

First, we obtain the following relation

i∂s〈y; 0|x; s〉 = 〈y|e−iĤsĤ|x〉. (3.47)

The next step is to rewrite Ĥ in terms x̂(0) and x̂(s) in order to obtain a differential
equation whose solution is exactly given by 〈y; 0|x; s〉 [229]. Let us introduce
Π̂µ = p̂µ − eAµ(x̂) which leads to the following relations [270]

[x̂µ(s), Π̂ν(s)] = −igµν ,

[Π̂µ(s), Π̂ν(s)] = −ieFµν
(3.48)

where [x̂µ, p̂µ] = −igµν . From this, we can deduce

Ĥ(s) = −Π̂(s) · Π̂(s) + e

2Fµνσ
µν . (3.49)

noticing that we have written x ·y ≡ xµy
µ. Solving the corresponding equations of

motion for Π̂ and x̂ in the Heisenberg picture generated by the Hamilton operator
Ĥ(s), means

dΠ̂µ

ds
= i[Ĥ, Π̂] = 2eFµνΠµ,

dx̂µ

ds
= i[Ĥ, x̂] = 2Πµ,

(3.50)
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leads to the solution of the mentioned differential equation which becomes after
taking the limit y → x

〈x; 0|x; s〉 = −i
16π2s2 exp

(
−iesσµνF

µν

2 + 1
2tr ln

(
sinh(esFµν)

eFµν

))
. (3.51)

Inserting the latter into equation (3.40) and performing the Dirac trace Tr〈x; 0|x; s〉
yields the following unrenormalized one-loop effective Lagrangian [270]

LEH = −1
4F

2
µν −

e2

32π2

∫ ∞
0

ds

s
e−sεe−ism

2<(cos(esX))
=(cos(esX))FµνF̃µν (3.52)

with X ≡
√

2(F + iG) depending on the Lorentz invariants

F = 1
4F

2
µν , G = −1

4FµνF̃µν (3.53)

where the tilde indicates the dual field tensor.

3.4.1.5 Normalization

What remains to be done is the normalization of the effective EH Lagrangian in
(3.52). For this the integrand can perturbatively be expanded in the coupling e.
In that way, one notes that the first two leading terms are divergent in the small
time asymptotics. These UV divergences can be removed by minimal subtrac-
tion. The final QED result for the one-loop EH effective Lagrangian in a static
electromagnetic background is then given by

LEH = −1
4F

2
µν −

e2

32π2

∫ ∞
0

ds

s
exp(isε) exp(−sm2)

×
[
<(cosh(esX))
=(cosh(esX))FµνF̃µν −

4
e2s2 −

2
3F

2
µν

]
.

(3.54)

This result was first obtained by Euler and Heisenberg [269] by finding exact
solutions to the Dirac equation in the static background and later rederived by
Schwinger [270] by utilizing the proper time approach discussed above.

3.4.2 Schwinger effect: a nonperturbative phenomenon

In this part, we explicitly discuss the nonperturbative character of the Schwinger
mechanism. We show that it is a purely electric effect which can be examined
by considering the asymptotic behavior of the perturbative expansion in the weak
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field limit, E � ES. The one-loop EH effective Lagrangian in the spinor case
previously introduced in equation (3.54) can be rewritten as

LEH
QED= − 1

8π2

∫ ∞
0

ds

s3 e
−seES

[
e2abs2

tanh(ebs) tan(eas) − 1− e2s2

3 (b2 − a2)
]
. (3.55)

Note that the prefactor is chosen as in [135]. The exponent depends on the critical
field strength ES from (1.3) and the invariants above are defined as

a :=
√√
F2 + G2 −F ,

b :=
√√
F2 + G2 + F ,

(3.56)

where F and G have been introduced in (3.53). Note that the definitions a and b
fulfill5

a2 − b2 = E2 −B2,

ab = E ·B
(3.57)

where E denotes the electric field and B the magnetic field, respectively. The
analogous expression for the scalar case reads

LEH
sQED= 1

16π2

∫ ∞
0

ds

s3 e
−seES

[
e2abs2

sinh(ebs) sin(eas) − 1− e2s2

6 (b2 − a2)
]
. (3.58)

The effective Lagrangians in equations (3.55) and (3.58) are nonlinear in the back-
ground dependent invariants a and b. The quartic and higher terms correspond to
additional nonlinear interactions which are not present in the tree level Maxwell
action [275, 276]. The nonlinearities can be seen as dielectric fields in a vacuum
showing the behavior of a polarizable medium [266]. The expressions above already
indicate that for plane wave backgrounds obeying the null property, F ,G = 0 and
therefore a, b = 0, nonlinear vacuum phenomena cannot exist [270]. According
to the relations in (3.57), it is clear that VPP is not possible due to symmetry
reasons. Namely, during the delocalization of the virtual particles the magnetic
field with equal strength, a2 − b2 = 0, always counteracts against the orthogonal
electric field, ab = 0.

In the following, we briefly comment on the weak field expansion for the effective
Lagrangians (3.55) and (3.58). These are of special interest, since they directly

5 For differences regarding the convention that appear in the literature we would like to refer
to the remark in [135].
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lead to the famous Schwinger formula determining the decay rate according to

R ' =(ΓEH) = 2V T=(LEH), (3.59)

see equation (3.23). For the second equality, we already have assumed a static
background as in the derivation of the formulas (3.55) and (3.58).

3.4.2.1 Critical field and weak field expansion

In the static limit, the only parameter which is relevant for the VPP rate is the
field strength of the background. For very small values the rate is exponentially
suppressed with the critical field strength (1.3).

Let us first demonstrate how this extremely large value follows from simple energy
conservation. Namely, the energy xeE that is needed during the delocalization
process of the virtual particles to make the pair real along the distance x has to
be equal to the energy gap 2m between the Dirac see and the excitation level, the
positive continuum. Taking into account the Compton wavelength λc ∼ 1

m
, we

have to set x = 2
m

which leads to the critical field strength ES.

Generating field strengths of that order in the laboratory is still extremely chal-
lenging [26, 27, 256, 286, 287]. Here, we will focus on the weak field regime for
purely electric backgrounds, i.e.

E � ES. (3.60)

We may ask how the tunneling exponential will be modified in the presence of
backgrounds beyond the simple static case. Before addressing these aspects, we
first discuss the weak field expansion for the results (3.55) and (3.58) in a static
electric and magnetic background in order to highlight the substantial differences.

For the one-loop EH effective Lagrangian (3.55) the weak field expansion in terms
of the invariants a and b from (3.56) is [135]

LEH ' −m4
∞∑
n=2

(2n− 3)!
n∑
k=0

B2kB2n−k

(2k)!(2n− 2k)!

(
2eb
m2

)2n−2k (2iea
m2

)2k
. (3.61)

For the scalar case in (3.58), the result is slightly modified as

LEH '
m4

2

∞∑
n=2

(2n− 3)!
n∑
k=0

B̄2kB̄2n−2k

(2k)!(2n− 2k)!

(
2eb
m2

)2n−2k (2iea
m2

)2k
. (3.62)
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Here, the expressions

B2n = (−1)n+1 2(2n)!
(2π)2n ζR(2n) (3.63)

denote Bernoulli numbers with ζR being the Riemann zeta function and B̄ defined
as [135]

B̄2n := (1− 22k−1)
22k−1 B2n. (3.64)

The expansion formula (3.61) and (3.62) already reveal that the background type
crucially affects the asymptotic behavior of the series expansions and hence their
exact summability.

3.4.2.2 Electric background

For a purely electric background the resulting integral representations for (3.61)
and (3.62), respectively, have an asymptotic expansion which are divergent and
nonaltering. In other words, they are not Borel summable, means there exists
an imaginary nonperturbative contribution [135, 288] giving rise to VPP. The
imaginary part in QED has the form

=(LEH) ' e2E2

8π3

∞∑
n=1

1
n2 exp

(
−πnES

E

)
(3.65)

and in sQED the analogous expression reads

=(LEH) ' e2E2

16π3

∞∑
n=1

(−1)n−1

n2 exp
(
−πnES

E

)
. (3.66)

These expressions are sometimes called Schwinger formulas.

As we will discuss later, the prefactor is the result of quantum fluctuations over the
stationary instanton solution. The higher order terms included in the characteris-
tic tunneling exponential depend on the so-called winding number of the instanton.

Interestingly, the exponential is identical for both cases. Differences occur only
in the prefactors which go back to different spin statistics between fermions and
bosons. Since the exponential plays a substantial role in the weak field regime
where nonperturbative VPP is strongly suppressed, we will be mostly focusing on
this factor. In light of this, the Schwinger mechanism may be understood as a tun-
neling process through a potential barrier with an extremely small tunneling rate
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Figure 3.2: Top: all-order vacuum diagram for the one-loop EH effective Lagrangian corre-
sponding to the sum of all diagrams appearing in figure 3.1. Bottom: the double line indicates
the arbitrary many couplings to the background.

for field strengths far below ES. To some extend, the exponential dependence in
the Schwinger formula indicates a close similarity to ionization in atomic physics6

which can be also interpreted as a tunneling phenomenon through a potential well.

3.4.2.3 Magnetic background

For a purely magnetic background the weak field expansions in equations (3.61)
and (3.62) are divergent but alternating. In this case, the expansions are Borel
summable leading exactly to the original integral representations in (3.55) and
(3.58), respectively [135]. Hence, there will be no imaginary part for the effective
Lagrangian which means that VPP is simply not possible in a static magnetic
background [133, 270, 289, 290].

3.4.3 Schwinger effect: perturbative aspects

The VPP rate determined by the fermionic (3.65) and bosonic (3.66) Schwinger
formula, respectively, has an exponential dependence on the inverse of the electric
field strength. This already indicates the nonperturbative character of this pro-
cess which therefore invites to interpret VPP by the Schwinger mechanism as a

6 For an electron bound in an atom with binding energy −V0 ≡ −V (0) the ionization proba-
bility in the presence of a static electric field with strength E is proportional to [250]

Pion ∝ exp
(
− 4V0

3eE
√

2mV0

)
which for a potential well with V0 = 2m is quite similar to the exponential factor in the Schwinger
formula.
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tunneling process. Consequently, for subcritical electric fields with E � ES and
extremely small frequencies ω � m there will be no chance to see VPP at lower
orders in perturbation theory.7

The breakdown of perturbation theory in the mentioned tunneling regime shall
be illustrated in the following. As discussed in chapter 2, if we want to compute
the corresponding S-matrix element we just need to shift the photon field by some
c-number which we have associated with the classical background Aµ. The dressed
S-matrix in terms of the interaction Hamiltonian HI(x) = eψ̄(x)γµψ(x)Aµ(x) is
written as

SA = T exp
(
−i
∫
d4x HI(x)

)
(3.67)

where T denotes the standard time ordering operator. Then, the formal expression
for vacuum persistence in an arbitrary electromagnetic background becomes

〈C|S|C〉 = 〈0|SA|0〉 =
∞∑
n=0

(−ie)n
n!

∫
dx1 . . . dxn

× 〈0|T [ψ̄(x1)A(x1)ψ(x1) . . .]|0〉.
(3.68)

Applying the whole machinery of the Wick theorem, one can rewrite the modulus
squared of the persistence amplitude as [250]

|〈0|SA|0〉|2 = exp (−W ) . (3.69)

Accordingly, pairs will be not produced if W = 0. One can expand W perturba-
tively in the coupling constant α ∝ e2. At lowest order, the final expression in the
fermionic case for an electromagnetic background with constant F reads [250]

W (1) = α

3

∫
d4q θ(q2 − 4m2)

(
a2 − b2

)√
1− 4m2

q2

[
1 + 2m2

q2

]
. (3.70)

In the bosonic case, the corresponding result is

W (1) = α

12

∫
d4q θ(q2 − 4m2)

(
a2 − b2

)√
1− 4m2

q2

[
1− 4m2

q2

]
. (3.71)

So one can check that in the presence of a static electric background the exponent
in (3.69) already vanishes at the lowest perturbative order which can be regarded

7 In the static case, i.e. standard Schwinger mechanism, there is no way to see the effect at
any finite order in perturbation theory.
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as a clear indicator for the nonperturbative behavior, see also [229]. This tunneling
regime which has never been directly observed in the experiment is of course the
interesting case. Due to the fact that the VPP rate is one of the very few nonper-
turbative analytic results in QFT with clear physical predictions, the realization of
the Schwinger effect may also help to understand further nonperturbative aspects
in QFTs [26].

The one-loop EH effective Lagrangians in (3.40) and (3.44) are exact in the back-
ground. We have seen that an arbitrary number of contributing background pho-
tons, as shown in figure 3.1, are encoded in a single vacuum diagram sketched in
figure 3.2. Interestingly, including the dynamical gauge field in addition, these
expressions are even fully exact. However, the full effective action including also
higher orders in the coupling constant is not known.

As discussed in section 1.4, with increasing frequencies approaching energies com-
parable to or even larger than the particle mass, VPP is possible perturbatively8

via multi photon absorptions [141–143, 291].

8 The probability that an electron-positron pair is produced per unit time and unit volume
in an alternating external field is proportional to [141, 142]

∼ exp
(
−πg(γ)ES

E

)
.

The function in the exponent satisfies

g(γ) =

 1− γ2

8 +O(γ4) γ � 1
4
πγ ln

( 4γ
e

)
+O

(
1
γ3

)
γ � 1

where γ is a dimensionless inhomogeneity parameter, see discussion below. As can be seen, for
increasing frequencies, γ � 1, the probability is described by perturbation theory where the
terms correspond to the number of quanta required to produce the pair.
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Chapter 4

Worldline quantum field theory

4.1 Scattering amplitudes: from strings to par-
ticles

P ath integrals over the space of closed loops represent one-loop scattering
amplitudes in relativistic QFT and are relatable to the Feynman path inte-

gral in nonrelativistic quantum mechanics [292, 293]. Integrals of that kind can
be treated via string inspired methods.1 Namely, it has been shown that tech-
niques used in string perturbation theory can be directly applied to improve the
computation efficiency in QFT. These achievements are based on the fact that
string theory in certain limits reduces to ordinary QFT. For instance, this is the
case when the string tension of the string becomes infinite such that all massive
string modes become suppressed [294].2 Then, what only remains are the massless
string modes which can be identified with standard massless point particles such
as gauge bosons.

1 The methods are called string inspired, since they have analogies to computations in string
perturbation theory and their development was historically triggered by efforts in using a sys-
tematic organization of string amplitudes with respect to both gauge invariance and exchange
symmetry. However, as will be demonstrated later, the knowledge of string theory is basically
not necessary for the practical application of these techniques.

2 The fact that string theory should lead to local QFT in the infinite string tension limit of
field theory limit, respectively, was clear after the string interpretation of the Veneziano model
which was taken as an attempt to explain the physical properties of strongly interacting mesons,
see e.g. [295].
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Especially, the systematic organization3 of appropriately chosen (super) string am-
plitudes, which involve a much smaller number of scattering diagrams, allows a
significant reduction of the number of terms which otherwise have to be taken
into account in ordinary gauge theory computations. This property substantially
simplifies the derivation of powerful closed parameter integral representations for
certain one-loop amplitudes in ordinary QFT by resorting to the infinite tension
limit for the corresponding string amplitude. As an example, consider, for instance,
the following two-point diagram depicted in figure 4.1 for the closed string. In the
infinite tension limit, the underlying Riemann surface basically reduces to ordi-
nary Feynman graphs with two different topologies as sketched in figure 4.2 [296].
Since scattering amplitudes in string theory are usually calculated in first and not

Figure 4.1: Closed string diagram at two-loop level.

second quantization, the corresponding gauge theory amplitudes are written down
as first quantized integral representations. The first computations of this type
have led to the correct one-loop β function coefficient for pure Yang-Mills theory
starting from the partition function of an open string propagating in a Yang-Mills
background [296].4 More investigations of the infinite string tension limit were un-

Figure 4.2: Feynman graphs with two different topologies resulting from figure 4.1 in the infinite
string tension limit.

dertaken after the pioneering contributions by Bern and Kosower [294] where the
corresponding techniques have been applied to complete on-shell QCD scattering
amplitudes. There, the basic idea was to calculate, in some sense, gauge boson
scattering amplitudes by choosing an appropriate string description containing

3 In fact, string amplitudes contain the complicated rearrangement of different Feynman
diagrams contributing to the scattering amplitude which would emerge in the standard way by
calculating the S-matrix elements in field theory [294].

4 We should note that this computation also leads to the critical dimension D = 26 of the
open string which corresponds to the case where the β-function vanishes, see e.g. [297].
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SU(N) gauge theory up to the level where a closed parameter integral represen-
tation could be written down. The corresponding field theory amplitude then fol-
lowed by performing the infinite tension limit through eliminating all propagating
massive string modes. The detailed analysis of the Bern-Kosower (BK) approach
has led to the so-called BK master formula [294] and to the BK rules [298–300] al-
lowing the construction of final integral representations without explicitly starting
from string diagrams. The BK rules look very different from Feynman rules but
it can be shown that they are indeed equivalent [301]. Applying the BK rules, the
N point gluon amplitude [298, 299] and the four point graviton amplitude [302]
have been successfully computed.

Let us briefly recap some of the basic observations to illuminate the similarities
we want to emphasize. The string scattering amplitude can be computed by us-
ing the Polyakov path integral. For the simplest case, the closed bosonic string
propagating in flat spacetime, it is of the form

〈V1 · · ·VN〉 '
∑

topology

∫
Dh

∫
Dx(σ, τ) V1 · · ·VN e−S[x,h]. (4.1)

The integral
∫
Dx is over the string worldsheets with a fixed topology where

∫
Dh

is the integral over all worldsheet metrics. The analogy for the higher order loop
expansions in usual field theory is the sum over all corresponding topologies as
illustrated in figure 4.3. The Gaussian action in (4.1) has the form

S[x, h] ' T
∫
dσdτ

√
hhαβgµν∂αx

µ∂βx
ν (4.2)

with gµν being the metric on the target space. The factor in front, T ≡ 1
2πα′ ,

denotes the string tension and Vj with j = 1, . . . , N are the vertex operators for
different scattering states. Differently, in case of the open string being the more

+ + + …

Figure 4.3: Higher order expansion in closed string perturbation theory.

interesting situation for the present discussion, the worldsheet is bounded and the
vertex operators are attached to the boundary. At one-loop level the worldsheet
has the form of an annulus where a vertex operator may be integrated along one of
the two boundary segments parameterized by τ which form the annulus as shown
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in figure 4.4 (left). For the closed string, the corresponding one-loop amplitude
is represented by a punctured torus in the right panel of figure 4.4. The vertex
operators can, for instance, represent a scalar and a gauge boson, respectively,

V =
∫
dτ exp (ik · x(τ)) , V =

∫
dτ Tαεµẋ

µ exp (ik · x(τ)) , (4.3)

with definite polarization and momentum where Tα denotes the gauge group gen-
erator in some representation. Then, performing the Gaussian

∫
Dx integral by

Wick contractions

〈xµ(τ1)xν(τ2)〉 = GB(τ1, τ2)gµν , (4.4)

with GB being the bosonic Green’s function for the Laplacian on the annulus with
respect to its boundary, leads to the mentioned BK master formula for the one-loop
N point gluon amplitude serving as a generating functional that has no analogue
in ordinary QFT. The BK formalism in its original form was established for tree-

Figure 4.4: Left: vertex operators on the boundary of the annulus for the open string at
one-loop level. Right: punctured torus as the analog for the closed string.

level and one-loop amplitudes. In the original version, going beyond the one-loop
case corresponds to finding the particle limits of higher genus string amplitudes as
demonstrated in figure 4.3, which is actually a striking task due to the complex
structure of moduli space. There are some partial attempts for the generalization
to the multi-loop case, see e.g. [303, 304].

After the invention of the BK approach, a more efficient method entirely based
on known representations of purely field theoretic amplitudes in terms of (super)
particle path integrals was proposed by Strassler, again for the one-loop case [124].
There, the path integrals are treated as one-dimensional analogs of the Fradkin-
Tseytlin path integral [305] using worldline correlation functions on the circle. This
approach has also become suitable for multi-loop amplitudes as well [306, 307] and
even for generalizations involving external background fields [308, 309]. In the
following section, we introduce this alternative first-quantized approach in detail
which also goes under the name of worldline quantum field theory (WQFT). Before
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proceeding in that direction, we briefly introduce the one-loop effective action in a
Maxwell background involving a scalar loop represented in terms of the following
worldline path integral

Γ[A] =
∫ ∞

0

ds

s
exp

(
−sm2

) ∫
Dx(s) exp

(
−
∫ s

0
dτ

1
4 ẋ

2 + ieA · ẋ
)
, (4.5)

see section 4.2.2. Here, without going into details, we note that expanding the
interaction term in the exponent results in terms which correspond to standard
Feynman diagrams describing a scalar loop perturbatively interacting with the
background field. For instance, the N photon amplitude follows after setting
the background to be the sum of plane waves with definite polarizations. This
results in the same photon vertex operator as in string perturbation theory, with
the exception that it is attached to a circle and not to the mentioned annulus.
However, we recall that the annulus in the open string case gets squeezed to a circle
in the infinite tension limit, x(σ, τ) → x(τ).5 Consequently, the corresponding
vertex operators are inserted on a circle so that the path integral in (4.5) can be
considered as the infinite string tension limit of the previous path integral (4.1)
based on the Polyakov action. The resulting integral for the N photon scattering
amplitude then reduces to the Wick contractions

〈ẋµ1
1 e

ik1·x1 · · · ẋµNN eikN ·xN 〉. (4.6)

A detailed discussion regarding the latter is included in the following sections, see
in particular section 4.3.2.

4.2 One-loop effective actions

In this section, we first discuss the basic quantities which are relevant for most of
the computations in WQFT. Afterwards, we introduce certain one-loop effective
actions using the language of this first-quantized approach. One-loop effective ac-
tions are generally expressed as a determinant of the kinetic differential operator
in the underlying field theory. As we will see, in WQFT the formal expression can

5 In string perturbation theory, we sum over different metrics and topologies of the string
worldsheet. Considering string theory as a σ-model, the loops become suppressed for T → ∞
which results in a reduction to quantum mechanical point excitations. Consequently, the string
loops reduce to certain sets of Feynman graphs. The UV divergences in local QFT, which do
not plague string theory, reappear in the one-dimensional worldline limit due to the absence of
physical analogs of counterterms in QFT, the worldsheet σ-model divergences.
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be transformed into an integral over the space of all closed paths in spacetime of
a moving quantum mechanical particle.

An open ended path integral represents the corresponding propagator in the field
theory. It is performed over the space of paths which connect two fixed spacetime
points with appropriate boundaries [125].

Here, we do not consider propagator path integrals since our main goal is to discuss
the rate for VPP that is to leading order determined by the one-loop EH effective
action, see section 3.3.

4.2.1 Scalar field theory

Let φ be a real massive scalar field in D dimensional Euclidean space which self-
interacts according to some potential U(φ). The normalized one-loop effective
action can formally be written6 as [229]

Γ[φ] = −1
2Tr ln

(
−�+m2 + U ′′

−�+m2

)
(4.7)

where � denotes the associated Euclidean d’Alembert operator. Such a logarith-
mic expression can be rewritten by using an appropriate integral form.7

Neglecting the potential independent contribution and performing a functional
trace over position eigenstates |x〉 in Hilbert space leads to the following integral
representation for the effective action

Γ[φ] = 1
2

∫ ∞
0

ds

s

∫
dDx 〈x|e−s(−�+m2+U ′′(φ))|x〉. (4.8)

Having this in mind, we now consider a quantum mechanical particle with mass
m̃. The evolution in a time dependent potential Ṽ (x) in nonrelativistic quantum
mechanics can be written with the help of Feynman’s path integral formulation
[229, 310]

〈x2|e−i(t2−t1)H |x1〉 =
∫ x(t2)

x(t1)
Dx(t) exp

(
i
∫ t2

t1
dt

(
m̃ẋ2

2 − Ṽ (x)
))

. (4.9)

6 Here, we use the relation ln Det O = Tr lnO.
7 We use

−Tr ln
(
A

B

)
=
∫ ∞

0

ds

s
Tr
(
e−As − e−Bs

)
where A and B are some positive definite operators.
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Here, L(x, ẋ) = 1
2m̃ẋ

2 − Ṽ (x) is just the classical Lagrange function [311]. The
connection to the kinetic operator from above can be made by interpreting

H(x) = p2

2m̃ + Ṽ (x) (4.10)

as the Hamilton function operator for a moving particle in spacetime if we identify

Ṽ (x) = m2 + U ′′(φ(x)), m̃ = 1/2, i(t2 − t1) = s, (4.11)

such that

i(t2 − t1)H → s
(
−�+m2 + U ′′

)
. (4.12)

Thus, without performing the standard path integral discretization [310] we can
immediately write by taking t→ −is the following correspondence

〈x|e−s(−�+m2+U ′′(φ))|x〉 =
∫ x(s)

x(0)
Dx(s) exp

(
ẋ2

4 +m2 + U ′′(φ(x))
)

(4.13)

where x(0) = x(s) = x follows due to the trace performed over position eigenstates.
The final path integral representation for the effective action then reads

Γ[φ] = 1
2

∫ ∞
0

ds

s
exp

(
−sm2

) ∮
Dx(s) exp

(
−
∫ s

0
dτ

[
ẋ2

4 + U ′′(φ(x))
])

(4.14)

for which the following relation∫
d4x

∫
x(s)=x(0)=x

Dx(s) =
∮
Dx(s) (4.15)

has been used.

4.2.2 Bosons

Using equation (4.13), we can analogously obtain the path integral representation
for the Euclidean effective action in sQED, namely in the presence of an arbitrary
background8 minimally9 coupled to the massive scalar field. The corresponding
kinetic operator is

D2 −m2 (4.16)
8 In the present first quantized WQFT formalism, the photon background field Aµ is not a

classical background as introduced before denoted by Aµ. The generalization with an additional
classical background Aµ will be discussed later.

9 By minimally coupled it is meant that the derivative ∂µ acting on the charged field is
replaced by the covariant derivative Dµ = ∂µ + ieAµ to ensure (local) gauge invariance [250].
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where Dµ = ∂µ + ieAµ denotes the standard covariant derivative. The formal
expression for the one-loop effective action is

Γ[A] = −1
2Tr ln

(
−D2 +m2

−∂2 +m2

)
. (4.17)

Constructing the following artificial Hamilton function10

H = (p+ eA)2

2m̃ +m2, (4.18)

the effective action can be transformed11 to

Γ[A] =
∫ ∞

0

ds

s
exp

(
−sm2

) ∮
Dx(s) exp

(
−
∫ s

0
dτ Wboson

)
(4.19)

where

Wboson := 1
4 ẋ

2 + ieẋ · A(x). (4.20)

This is the worldline path integral representation introduced before in (4.5). For
later purpose, we will focus on the scalar case, since it is particularly suitable for
saddle point approximations as we will extensively study, see chapter 5. However,
for reasons of completeness, but also due to the connection to worldline supersym-
metry, the generalization to fermions will be briefly discussed in the following.

4.2.3 Fermions

The worldline path integral representation for Dirac fermions can be achieved in
different ways where one needs to take the spin degrees of freedom into account.
Possible techniques, for instance, are based on the explicit incorporation of γ ma-
trices [312, 313], or resorting to the formulation over Grassmann variables having
the same algebraic properties. The latter will be used in the following. As we will
see, a direct connection to the fermionic coherent states brought up in section 2.5
will appear.

The formal expression for the fermionic Euclidean one-loop effective action is for-
mally written as

Γ[A] = ln Det
(
/p+ e /A− im

)
. (4.21)

10 Note that i(t2 − t1)H → s(−D2 +m2) since (p+ eA)2 → −(∂ + ieA)2 with p = −i∂.
11 The factor 1

2 in front of the original integral is canceled due to the trace operation for which
a double number of degrees of freedom for the scalar field has to be taken into account [125].
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For the fermionic case the direct application of known results from quantum me-
chanics as we have seen for sQED is not possible. In the following, we will go
through the relevant steps reviewed in [125]. Resorting to the same conventions,12

let us first introduce the following useful expressions
(
/p+ e /A

)2
= −(∂µ + ieAµ)2 − ie

2 σ
µνFµν ,

Det
(
/p+ e /A− im

)
= Det

(
/p+ e /A+ im

)
=
√

Det
(
(/p+ e /A)2 −m2

)
.

(4.22)

Then, using the relations in footnote 7, we may first write

ln
√

Det O = −1
2Tr

∫ ∞
0

ds

s
e−sO (4.23)

in order to find the following integral expression for the effective action

Γ[A] = −1
2Tr

∫ ∞
0

ds

s
exp

(
−sm2

)
exp

(
−s

[
−(∂ + ieA)2 − ie

2 σ
µνFµν

])
. (4.24)

This expression is very similar to the previous one in the scalar case, except the
sign change including a factor 1

2 in front and the appearance of an additional
potential term defined as

V (x) := −ie2 σµνF
µν . (4.25)

Here, the field tensor Fµν only depends on the photon background field Aµ. Having
achieved this, what remains to be done is the calculation of the following functional
trace

Tr e−sΣ (4.26)

where Σ := −(∂ + ieA(x))2 + V (x). The transformation of (4.26) into a quan-
tum mechanical path integral can be done via fermionic coherent states [314–317]
leading to the Grassmann representation of the path integral [318–321]. Origi-
nally, applied in supersymmetric formulations, Grassmann variables are suitable
tools for describing spin and internal degrees of freedom of elementary particles,
particularly in the path integral quantization scheme. In addition, there are many
other applications in statistical physics which have tremendously been simplified
in terms of path integrals over Grassmann variables.

12 Note: σµν = 1
2 [γµ, γν ] and {γµ, γν} = 2gµν14 where 14 denotes the 4× 4 identity matrix.
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For the present purpose, the first step is the definition of certain matrices

a±1 := 1
2(γ1 ± iγ3),

a±2 := 1
2(γ2 ± iγ4)

(4.27)

which satisfy the Fermi-Dirac anticommutation relations

{a+
u , a

−
v } = δuv,

{a+
u , a

+
v } = 0 = {a−u , a−v }

(4.28)

where u, v = {1, 2}. Interpreting these as creation (+) and annihilation (−) op-
erators, one may construct the Hilbert space with its corresponding ground state
defined by

a−u |0〉 = 0 = 〈0|a+
u . (4.29)

Now, let θu and θ̄u with u = {1, 2} be Grassmann variables that commute with the
vacuum state |0〉 but anticommute mutually and with the operators a±u . Related
to these, one can introduce the corresponding Grassmann integrals defined as∫

θu dθu = i =
∫
θ̄u dθ̄u. (4.30)

Here, dθu and dθ̄u commute mutually and with the vacuum state, but anticommute
with θu, θ̄u and a±u . Constructing the following coherent states

〈θ̄| := 〈0|e−a
−
1 θ̄1−a−2 θ̄2 , |θ̄〉 := i(θ̄1 − a+

1 )(θ̄2 − a+
2 )|0〉,

〈θ| := i〈0|(θ1 − a−1 )(θ2 − a−2 ), |θ〉 := e−θ1a
+
1 −θ2a

+
2 |0〉,

(4.31)

which resemble the version discussed in section 2.5, leads to the following com-
pleteness relations ∫

|θ〉〈θ| dθ2dθ1 = −i1 =
∫
dθ̄1dθ̄2 |θ̄〉〈θ̄|. (4.32)

Then the trace in Fock space spanned by the generators a±u can be written as
[315, 316]

Tr O = i
∫
dθ2dθ1 〈−θ|O|θ〉. (4.33)

Inserting a complete set of coordinate states and fermionic coherent states from
(4.31), the trace in (4.26) can be written as

Tr e−sΣ = iN
∫ N∏

j=1

[
d4xjdθj2dθ

j
1

〈
xj, θj

∣∣∣∣exp
(
− s

N
Σ
)∣∣∣∣xj+1, θj+1

〉]
(4.34)
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with boundary conditions
(
xN+1, θN+1

)
= (x1,−θ1) for the x and θ integrations.

The exponential function involves certain combinations of gamma matrices. There-
fore, it is useful to consider the matrix element for the product of two gamma
matrices γAγB with A 6= B and A,B = {1, . . . , 4},

〈θj|γAγB|θj+1〉 = −i
∫
dθ̄j,j+1

2 dθ̄j,j+1
1 〈θj|θ̄j,j+1〉〈θ̄j,j+1|θj+1〉 2 jψAψ

j+1
B (4.35)

where

jψ1,2 := 1√
2
(
θj1,2 + θ̄j,j+1

1,2

)
, ψj+1

1,2 := 1√
2
(
θj+1

1,2 + θ̄j,j+1
1,2

)
,

jψ3,4 := i√
2
(
θj1,2 − θ̄

j,j+1
1,2

)
, ψj+1

3,4 := i√
2
(
θj+1

1,2 − θ̄
j,j+1
1,2

)
.

(4.36)

The former equation (4.35) can be verified by writing the gamma matrices in terms
of the Fermi operators a±u and inserting a complete set of the coherent states |θ̄j,j+1〉
in between.

Noting that the superscript φj,j+1 denotes the average of φ with respect to the
discrete points j and j + 1, one finds after expanding the exponential e− s

N
Σ in s

N

and reordering the positions of the Grassmann variables

Tr e−sΣ =
∫ N∏

j+1

(
dxj d4pj,j+1 dθj2dθ

j
1 dθ̄

j,j+1
1 dθ̄j,j+1

2
(2π)4N

)

×
N∏
j+1

[
1− (τ j − τ j+1)Σj +O

(
s2

N2

)]

× exp
 N∑
j=1

[
i(xj − xj+1)pj,j+1 + 1

2
(
θju − θj+1

u

)
θ̄j,j+1
u − 1

2θ
j
u

(
θ̄j−1,j
u − θ̄j,j+1

u

)] .
(4.37)

Since the Hamilton operator depends on the momentum operator, background
Aµ and gamma matrices, we use the notation Σj := Σ

(
pj,j+1, Aj,j+1, 2 jψAψ

j+1
B

)
.

Here, the boundary conditions for the integrals on x, θ and θ̄ are(
xN+1, θN+1,−θ̄N,N+1

)
=
(
x1,−θ1, θ̄0,1

)
. (4.38)

Note that in the expression above the interpolating proper time with

τ 1 = s,

τN+1 = 0,

τ j − τ j+1 = s

N

(4.39)
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has been used.

Now, taking the limit N → ∞, the second product in the integrand in (4.37) be-
comes the standard path ordered exponential which leads to the following worldline
path integral

Tr e−sΣ =
∫
Dp

∫
Dx

∫
AP
DθDθ̄ e

∫ s
0 dτ

[
iẋ·p+ 1

2 θ̇uθ̄u−
1
2 θu

˙̄θu−Σ(p,A,2ψAψB)
]
. (4.40)

Taking the continuum limit of the equations (4.36), one can make a variable change
by rewriting

1
2 θ̇uθ̄u −

1
2θu

˙̄θu = −1
2ψ

Aψ̇A (4.41)

which changes the boundary conditions to (x(s), ψ(s)) = (x(0),−ψ(0)). After-
wards, rearranging the terms which involve the momentum in equation (4.40), the
resulting Gaussian momentum path integral can be done.

The final result after inserting the solution of (4.40) into equation (4.24) reads

Γ[A] = −1
2

∫ ∞
0

ds

s
e−sm

2
∫
P
Dx

∫
AP
Dψ exp

(
−
∫ s

0
dτ Wfermion

)
. (4.42)

The fermionic worldline Lagrangian is given by

Wfermion =Wboson + 1
2ψAψ̇

A − ieψAFABψB. (4.43)

Here, Wboson is the bosonic version in (4.20).

As can be seen, the bosonic coordinate path integral Dx with periodic boundary
(P) is identical with the version for sQED. In addition to this, we have the
Dψ integration over anticommuting Grassmann functions with antiperiodic (AP)
boundary conditions, ψ(s) = −ψ(0). Thus, the resulting path integral for a Dirac
spinor breaks down into a convective part and a spin part [277]. Moreover, there
appears a photon vertex operator in the exponential which acquires an additional
Grassmann dependence. The global prefactor is the result of different statistics
and degrees of freedom between fermions and bosons.

4.2.4 Worldline correlators

An important part of computations in WQFT is related to internal bosonic world-
line and Grassmann contractions. Generally, the idea is that one expands the
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background Aµ in some appropriate CM coordinate and performs the correspond-
ing Wick contractions in some relative coordinate on a circle13 [124, 293].

Consider the one-loop effective action (4.19) which describes a massive scalar par-
ticle circulating in a loop. For a fixed proper time s, this first quantized particle
path integral is set over the space of periodic worldlines xµ(τ) with period s. Let
us assume the Euclidean space to be D-dimensional which is generally advanta-
geous for dimensional regularization. In this case, the path integral (4.19) can be
evaluated by following a one-dimensional perturbative expansion of the interaction
potential,

exp
(
−ie

∫ s

0
dτ ẋ · A

)
=

∞∑
N=0

(−ie)N
N !

N∏
j=1

∫ s

0
dτj ẋ(τj) · A(τj). (4.44)

The diagrammatic representation for each term of this series is depicted in figure
3.1 describing a fixed number of interactions of the scalar loop with the background
photons.

As a first example, we consider the amplitude for two photon scattering, N = 2,
which can be achieved by making a specific choice for the background, namely
decomposing it in form of a sum of two plane waves with definite polarization,

Aµ(x) = ε(1)
µ eik1·x + ε(2)

µ eik2·x. (4.45)

Here, only terms that contain every polarization vector just once will be taken into
account.14 This leads to vertex operators15 of the following form

VA =
∫
dτj ε

(j)
µ ẋµ(τj)eikj ·x(τj). (4.46)

So the evaluation of the path integral reduces to the Wick contraction
〈
ẋµ1

1 e
ik1·x1ẋµN2 eik2·x2

〉
. (4.47)

13 As mentioned in section 4.1, this procedure is usually used in string perturbation theory
and thus explains why the worldline approach is called the string inspired approach.

14 This also removes the 1
N ! factor in the integral.

15 Note that this is the vertex operator introduced before in the context of string perturbation
theory. Again, since the vertex operator is inserted on a circle, it can be understood as the path
integral in the infinite string tension limit for the Polyakov path integral for which the annulus
for the open string gets squeezed to a circle.
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As mentioned, the integrations can be carried out via splitting the path integral
coordinate xµ into some CM coordinate xµ0 and a relative coordinate yµ,

xµ(τ) = xµ0 + yµ(τ),∫ s

0
dτ yµ(τ) = 0

(4.48)

such that ∫
Dx =

∫
dx0

∫
Dy. (4.49)

According to the latter convention, the resulting normalization16 for free path
integrals then reads [277, 306, 308, 322]∫

Dy exp
(
−
∫ s

0
dτ

1
4 ẏ

2
)

= (4πs)−D/2 . (4.50)

In general, other free path integrals are normalized to unity [306, 308].17 Applying
the coordinate splitting in (4.48) leads to the expression

εµ1
1 ε

µ2
2 (ie)2

∫ ∞
0

ds

s

∫
dx0

∫
Dy(τ)

∫ s

0
dτ1dτ2

× ẏµ1
1 eik1·(x0+y1)ẏµN2 eik2·(x0+y2) exp

(
−
∫ s

0
dτ

1
4 ẏ

2
)
.

(4.51)

A basic quantity, as we will discuss in section 4.3.1, is the bosonic Green’s function
for the Laplacian on the circle,

GB(τ1, τ2) = |τ1 − τ2| −
(τ1 − τ2)2

s
=: GB12, (4.52)

that solves the equation

d2

dτ 2
1

[1
2GB12

]
= δ(τ1 − τ2)− 1

s
(4.53)

with periodic18 behavior [322]; the constant 1
s
can be neglected, see footnote 23.

16 The s dependence can be obtained by an appropriate regularization scheme, e.g. zeta
function regularization [317].

17 For instance, ∫
Dψ exp

(
−
∫ s

0
dτ

1
2ψψ̇

)
= 1.

18 The kinetic operator is invertible in the reduced Hilbert space without any zero mode.
Using the eigenfunctions of the Laplacian on the circle with circumference s, the inverse can be
obtained.
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The fermionic Green’s function is given by

GF(τ1, τ2) = sign(τ1 − τ2) =: GF12 (4.54)

which is the solution of

d

dτ1

[1
2GF12

]
= δ(τ1 − τ2) (4.55)

with anti-periodic19 behavior. The Green’s function for the bosonic field yµ with
periodic behavior then reads20

〈yµ1 yν2〉 = −gµνGB12 (4.56)

and the fermionic one is

〈ψµ1ψν2〉 = 1
2g

µνGF12. (4.57)

For contractions involving exponentials depending on yµ, the formulas are known
from string perturbation theory [124]. Using the usual conventions,21 those are
given by [306, 323]

〈ẏµ1 ẏν2〉 = −gµνĠ′B12,

〈ey1∂1ey2∂2〉 = e−GB12∂1∂2 ,

〈ẏ1e
y1∂1ey2∂2〉 = −ĠB12∂2e

−GB12∂1∂2 .

(4.58)

Taking the normalization (4.50) and the identity∫
dx0 e

ix0·(k1+k2) = (2π)Dδ (k1 + k2) (4.59)

into account leads to the final expression

εµ1
1 ε

µ2
2 (ie)2

∫ ∞
0

ds

s
(4πs)−D/2

∫ s

0
dτ1

∫ s

0
dτ2

×
(
−gµνĠ′B12 + Ġ2

B12k
µ
1k

ν
2

)
eGB12k1·k2(2π)Dδ(k1 + k2).

(4.60)

19 Due to the anti-periodicity of ψ there is no zero mode. The Green’s function follows from
inverting the first derivative in the Hilbert space of anti-periodic functions.

20 Note that we use the notation yj ≡ y(τj).
21 The dot in ĠB12 = GB(τ1, τ2) denotes a derivative with respect to the first variable. The

derivative with respect to the second variable is denoted by a prime, see (4.58).
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4.2.5 Propagators

In sQED, the position space propagator in D dimensions can be written in integral
form by using the Schwinger proper-time representation [277], see identity (3.27),
resulting in

〈φ(x1)φ(x2)〉 =
∫ ∞

0
ds e−sm

2(4πs)−D/2 exp
(
−(x1 − x2)2

4s

)
(4.61)

where xj ≡ x(τj). For the massless case one can derive the closed form

〈φ(x1)φ(x2)〉|m=0 = Γ(D/2− 1)
4πD/2(x1 − x2)D−2 (4.62)

where Γ is the standard Gamma function. The extension of the path integral
representation to the fermionic propagator in a background is far more complicated
[222, 320, 321, 324], since this goes beyond the even subspace of the Clifford algebra
as applied in section 4.2.3 [308].

4.2.6 Non-Abelian gauge theory

Motivated by the BK approach, the worldline formalism in QFT can be also gener-
alized to non-Abelian gauge theories. The simplest example is the scalar one-loop
contribution to the gluon scattering amplitude originally considered by Bern and
Kosower. We can start on basis of the previous single scalar path integral from
equation (4.19) for an Abelian background field. Then the corresponding modi-
fications for a non-Abelian background field will be the introduction of a global
color trace, tr. Second, the exponential in the integrand has to be path ordered,
since the quantum mechanical Hamilton operators do not necessarily commute at
different times. So the generalization of the scalar expression in equation (4.19)
to the non-Abelian case can be written as

ΓnA[A] scalar= tr
∫ ∞

0

ds

s
exp

(
−sm2

) ∮
Dx(s) P exp

(
−
∫ s

0
dτ WnA

)
(4.63)

where

WnA := 1
4 ẋ

2 + igẋ · AaT a. (4.64)

Here, g is the associated coupling constant, T a denotes the corresponding gauge
group generator in some representation and P is the mentioned path ordering
operator.
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4.2.7 Worldline supersymmetry

A remarkable property of the fermionic worldline Lagrangian in equation (4.43)
is its supersymmetric formulation which formally resembles the scalar case. Let
us briefly recap the main aspects. Namely, the Lagrangian is invariant under the
transformations [222, 318, 320]

δxµ = −2ηψµ,

δψµ = θẋµ
(4.65)

where θ denotes some Grassmann constant. This globally supersymmetric form of
the Lagrangian can be seen as remnant of local SUSY after gauge fixing [322, 325–
327]. The different boundary conditions for xµ and ψµ, which are not respected by
the transformations in (4.65) for some constant θ, break the supersymmetry [125].
For computational reasons, it is still convenient and advantageous to reformulate
the path integral in the super field formalism introducing some superfield Xµ(τ̃)
on a super worldline τ̃ = (τ, θ) with the constant Grassmann θ according to

Xµ(τ̃) = xµ0 + Y µ(τ),

Y µ(τ) = yµ(τ) +
√

2θψµ(τ).
(4.66)

Defining in addition

D = ∂

∂θ
− θ ∂

∂τ
(4.67)

with
∫
dθ θ = 1, the path integral representation (4.42) for the effective action can

be rewritten in form of the following super path integral

Γ[A] = −1
2

∫ ∞
0

ds

s
exp

(
−sm2

)
×
∫
DX exp

(
−
∫ s

0
dτ
∫
dθ
[
−1

4X ·D
3X − ieDX · A(X)

])
.

(4.68)

Just formally, this expression is quite similar to the scalar case described by the
worldline action in equation (4.20).

4.3 One-loop amplitudes in vacuum

4.3.1 N point amplitude in scalar field theory

We begin with the simplest example for an one-loop amplitude which is the N
point amplitude in massive φ3 theory with potential

U(φ) = λ

3!φ
3. (4.69)
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Figure 4.5: N point diagram in vacuum for massive φ3 theory with potential U from (4.69).
The dots indicate the remaining legs, 5, . . . , N − 1, connected to the single particle loop.

The diagrammatic representation is depicted in figure 4.5. The corresponding
effective action in the path integral representation can directly be obtained from
(4.14) by inserting the derivative

U ′′ = λφ(x). (4.70)

In standard QFT the one-particle irreducible (1PI)22 N point function can be
deduced from the N -fold derivative of the one-loop effective action Γ[φ] with re-
spect to φ. In coordinate space, this can be done by expanding the interaction
exponential [125]

e−λ
∫∞

0 dτ φ(x(τ)) (4.71)

in the coupling constant λ to N -th order and inserting δ functions in the appro-
priate places in the path integral such that

Γ[x1, . . . , xN ] = (−λ)N
2

∫ ∞
0

ds

s
e−sm

2
∫
Dx

N∏
j=1

∫ s

0
dτj δ(x(τj)− xj)e−

∫ s
0

1
4 ẋ

2

= (−λ)N
2

〈
N∏
j=1

∫ s

0
dτj δ(x(τj)− xj)

〉
. (4.72)

A more efficient way operates as follows.

Namely, in momentum space, we can decompose the background φ into the sum
of plane waves like

φ(x) =
N∑
j=1

eipj ·x. (4.73)

22 A diagram is called 1PI if it is still connected after any single line is cut [251].
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Taking the contribution into account that contains every pj only once leads to

Γ[p1, . . . , pN ] = (−λ)N
2

∫ ∞
0

ds

s
e−sm

2
N∏
j=1

∫ s

0
dτj

∫
dx0

×
∫
Dy ei

∑N

j=1 pj ·x(τj)e−
∫ s

0
1
4 ẋ

2

(4.74)

such that every external line is now represented by a scalar vertex operator of the
form

V φ[pj] =
∫
dτj e

ipj ·x(τj). (4.75)

It is convenient to use the string-motivated variable splitting in (4.48). Then, the
integral over the CM coordinate x0 results in the generalized momentum conser-
vation ∫

dx0 e
ix0·
∑N

j=1 pj = (2π)Dδ
 N∑
j=1

pj

 , (4.76)

cf. equation (4.59). The remaining Dy integration is Gaussian. After performing
the relevant operations23 in order to rewrite the second exponential and using the

23 Choosing the momentum representation and splitting the bosonic coordinate field xµ as in
(4.48) leads to an integral of the form∫

Dy e−
∫ s

0
1
4 ẏ

2dτ
∫ s

0

N∏
j=1

dτj e
i
∑N

j=1
pj ·y(τj)

,

cf. (4.74). For the Gaussian integration the corresponding worldline action needs to be brought
into an appropriate form. In general, this can be done by solving the equations of motion,
obtained from the variation of the classical action, δS

δy(τ) = 0, resulting in

−1
42ÿ(τ)− i

N∑
i=1

pµi δ(τ − τi) = 0.

The solution can formally be written as

y(τ) = −i
N∑
i=1

pµi
1
2GB(τ, τi)

where 1
2GB denotes the Green’s function for the Laplacian on the circle with circumference s.

Using this, the second exponent becomes 1
2
∑
j,iGB(τj , τi) pj · pi. The bosonic function is given

by [293]

GB(τ1, τ2) = |τ1 − τ2| −
(τ1 − τ2)2

s
+ C

where C is a constant usually set to 1/s which occurs due to some zero mode contribution.
Note that if the momentum is preserved, which basically follows from the integral over the CM
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elementary formula24 leads to the following parameter integral

Γ[p1; . . . ; pN ] = (−λ)N
2 (2π)D δ

(∑
pj
) ∫ ∞

0

ds

s
(4πs)−D/2 e−sm2

×
N∏
j=1

∫ s

0
dτj e

∑N

j,i=1
1
2GBji pj ·pi

(4.77)

where the normalization constant in equation (4.50) has been applied. This can
be taken as the simplest BK type master formula.

4.3.2 N photon amplitude in sQED

Figure 4.6: N photon diagram in vacuum for sQED, see equation (4.82). The dots indicate
the remaining photon lines, 5, . . . , N − 1, connected to the single scalar loop.

Gaining from the two photon example in section 4.2.4 and using the results for the
N point amplitude in φ3 theory in section 4.3.1, we can conduct the extension to
the N photon amplitude in vacuum which is shown in figure 4.6. Starting on basis

coordinate x0, any constant added to GB drops out. Thus C can be usually deleted at the
beginning, see (4.52).
Alternatively, we can interpret the momenta pµj as sources of yµ(τ) [124],

Jµ(τ) = i

N∑
i=1

pµi δ(τ − τi),

simply due to i
∑
pi · yi =

∫
dτJ · y, to write the exponential as

e
∫
dτ
∫
dτ ′ [− 1

2J
µ(τ)GB(τ,τ ′)Jµ(τ ′)] = e

∑N

j,i=1
1
2GBji pj ·pi .

24 The Gaussian integral has the general solution∫
dx e−x·A·x+2b·x ' 1√

Det(A)
eb·A

−1·b.



4.3. One-loop amplitudes in vacuum 75

of the interaction potential (4.44) for the scalar case, the background will now be
decomposed as a sum of N plane waves with definite polarization

Aµ(x) =
N∑
j=1

ε(j)µ eikj ·x. (4.78)

Hence, one has to compute the following Wick contraction〈
ẋµ1

1 e
ik1·x1 · · · ẋµNN eikN ·xN

〉
(4.79)

already commented on in (4.6). Accordingly, we end up with the expression

εµ1
1 · · · ε

µN
N (ie)N

∫ ∞
0

ds

s

∫
dx0

∫
Dy(τ)

∫ s

0
dτ1 · · · dτN (4.80)

× ẏµ1
1 exp (ik1 · (x0 + y1)) · · · ẏµNN exp (ikN · (x0 + yN)) exp

(
−
∫ s

0
dτ

1
4 ẏ

2
)
.

Note that the polarization vectors can be taken into account if one exponentiates
the relevant expressions. The final result after the computation then has to be
linearized25 again in the polarization vectors such that the only terms to be used
will be those which contain one εj. By doing so, the corresponding vertex operator
can be written as

V A[kj] =
∫
dτj eεj ·ẋ(τ)+ikj ·x(τj)

∣∣∣
linear in εj

. (4.81)

The final result is the following parameter integral

Γ[k1, ε1; . . . ; kN , εN ] = (−ie)N (2π)D δ
(∑

kj
) ∫ ∞

0

ds

s
(4πs)−D/2 e−sm2

×
N∏
j=1

∫ s

0
dτj e

∑N

j,i=1[ 1
2GBji kj ·ki−iĠBji εj ·ki+ 1

2 G̈Bji εj ·εi]
∣∣∣∣
linear in each ε

.
(4.82)

As before, D denotes the spacetime dimensionality. Notably, the Green’s function
now appears also in its first and second derivative.26 Resorting to the superfield
formalism discussed in section 4.2.7, it is possible to obtain an analogous formula
for the fermionic case by computing Grassmann integrals [308].

25 In other words, we rewrite the expression for any polarization vector as

εj · ẋjeikj ·xj = eεj ·ẋj+ikj ·xj
∣∣
linear in εj

.

26 The derivatives are given by

ĠB(τ1, τ2) = sign(τ1 − τ2)− 2(τ1 − τ2)
s

,

G̈B(τ1, τ2) = 2δ(τ1 − τ2)− 2
s

where the derivative indicated by dots is with respect to the first variable.
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4.4 One-loop amplitudes in static external back-
ground

In this section, we derive the N photon amplitude (4.82) for sQED in the presence
of an external background.

4.4.1 Modified worldline correlators

Let Aµ(x) be the external background satisfying Fµν = constant. It can be in-
cluded similar to the procedure in dressed field theory where free propagators
become simply embedded in the external background, see section 2.

In the present case, the external background will be absorbed into the free worldline
correlators introduced in section 4.2.4 which are still quadratic in the worldline
fields. Resorting to Fock-Schwinger gauge27 centered at the CM coordinate x0, we
write

Aµ(x) = 1
2yνFµν . (4.83)

This results in additional contributions28 in the fermionic worldline Lagrangian,

Wfermion ⊃
1
2iey

µFµν ẏν − ieψµFµνψν (4.84)

in comparison to the pure vacuum amplitude (4.43). Hence, the equations deter-
mining the associated Green’s functions generalize to

〈τ1|
(
d2

dτ 2 − 2ieF d

dτ

)−1

|τ2〉 = 1
2GB12,

〈τ1|
(
d

dτ
− 2ieF

)−1

|τ2〉 = 1
2GF12

(4.85)

27 In the background field approach, the Fock-Schwinger gauge with the condition yµAµ(y) = 0
is an efficient choice. It allows a representation of the gauge four-potential expanded only in terms
of gauge covariant quantities such as field strength tensor and covariant derivatives [328]. For
the static case, Fµν = constant, this results in the given relation (4.83).

28 With the definitions in the superfield formalism introduced in section 4.2.7, these contribu-
tions can be written in a more compact form,

Wfermion ⊃ −
1
2 ieY

µFµνDY ν .
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having the solutions [125]

GB12 = s

2(eFs)2

[
(eFs)e−i(eFs)ĠB12

sin(eFs) + i(eFs)ĠB12 − 1
]
,

GF12 = GF12
e−i(eFs)ĠB12

cos(eFs) .

(4.86)

These solutions can be seen as a power series in the Lorentz matrix eFs. The
modified Green’s functions are still translation invariant in τ , so it means that
they again depend only on τ1 − τ2 as in the vacuum case, see equations (4.52)
and (4.54). Due to the complicated matrix structure, the contractions have the
following tensorial form

〈yµ1 yν2〉 = −GµνB12,

〈ψµ1ψν2〉 = 1
2G

µν
F12.

(4.87)

Similar to the vacuum case, the first and second derivatives of the bosonic Green’s
function will be relevant. Reducing the derivative order in the kinetic operator,
the corresponding equations read

〈τ1|
(
d

dτ
− 2ieF

)−1

|τ2〉 = 1
2 ĠB12,

〈τ1|

I− 2ieF
(
d

dτ

)−1
−1

|τ2〉 = 1
2 G̈B12,

(4.88)

which have solutions of the form

ĠB12 = i

(eFs)

[
(eFs)e−i(eFs)ĠB12

sin(eFs) − 1
]
,

G̈B12 = 2δ12 −
2(eFs)e−i(eFs)ĠB12

s sin(eFs) .

(4.89)

As we expect, expanding the functions GB12, ĠB12, G̈B12,GF12 in the background field
tensor, Fµν , all higher order terms vanish in the limit Fµν → 0 and one obtains
the free counterparts GB12, ĠB12, G̈B12, GF12 [308].

In contrast to the vacuum functions ĠB and GF, the background dressed counter-
parts have nonvanishing coincidence limits,

ĠB(τ, τ) = icot(eFs)− i

eFs
,

GF(τ, τ) = −i tan(eFs),
(4.90)



78 Chapter 4. Worldline quantum field theory

leading to the following substitution relation

ĠB(τ, τ)− GF(τ, τ) = i

sin(eFs) cos(eFs) −
i

eFs
. (4.91)

4.4.2 EH effective Lagrangian

The goal is to derive the one-loop results from section 4.3 generalized to the case
with a static external background. So we have to find out how the free path integral
normalization determinants, see (4.50), change in the presence of the external
background. It can be shown that these are given as [308, 329]

(4πs)−D/2 −→ (4πs)−D/2det−
1
2

(
sin(eFs)
eFs

)
(scalar),

(4πs)−D/2 −→ (4πs)−D/2det−
1
2

(
tan(eFs)
eFs

)
(spinor).

(4.92)

Here, we distinguish between the standard matrix determinant and the functional
determinant.

Figure 4.7: N photon diagram in static external background Aµ, see equation (4.4.3). The
dots indicate the remaining photon lines, 5, . . . , N−1, connected to the single double lined scalar
loop dressed by Aµ.

In the following, we demonstrate this modification for the scalar case. It is the
following free path integral29∫

Dy e−
∫ s

0 dτ 1
4 ẏ

2 = 1√
Ďet (−d2/dτ 2)

≡ (4πs)−D/2 (4.93)

29 Note that the second equality follows from
∫
dτ ẏ2 =

∫
dτ y−∂

2

∂τ2 y plus the integral solution
in footnote 24.
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that has to be replaced by

Ďet
− 1

2

(
− d2

dτ 2 + ie2F d

dτ

)
= (4πs)−D/2Ďet

− 1
2

1− ie2F
(
d

dτ

)−1
 . (4.94)

We first transform 1/
√

Ďet(· · · ), where Ďet is meant to be the determinant in
the absence of the zero mode. Rewriting the expression in logarithmic form30 and
using the Mercator series,31 we can find the following transform

Ďet
− 1

2

1− ie2F
(
d

dτ

)−1
 = exp

1
2

∞∑
n=1

(ie2)n
n

tr(Fn)Tr
( d

dτ

)−n . (4.95)

Using the relation [308]

Tr
( d

dτ

)−n = −Bn
n! s

n (4.96)

for periodic functions, where Bn denotes the Bernoulli numbers32 with even order
n, the right-hand side of equation (4.95) can be written as

exp
1

2

∞∑
n=1

(ie2)n
n

tr(Fn)Tr
( d

dτ

)−n = exp
(

1
2

∞∑
n=1

B2n22n(−1)nx2n

(2n)!(2n)

)
. (4.97)

Applying the expansion formula afterwards,33 we find by interchanging the map
30 For this we use the relation

Det−
1
2 Ô = exp

(
−1

2 ln DetÔ
)
.

31 The Taylor series for the natural logarithm of the form ln(1 + x) is known as the Mercator
series

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn.

32 One should distinguish between the Bernoulli polynomials Bn(x) and the Bernoulli numbers
Bn(0) being special values of the former. Here, the Bernoulli numbers are denoted as Bn. Note
that for all odd n > 1 one has Bn = 0. Furthermore, we can write

B2n = −2(−1)n(2n)!ζR(2n)
(2π)2n

∀ n ≥ 1 where ζR denotes the Riemann zeta function.
33 Note that

ln
(

sin(x)
x

)
= −

∞∑
n=1

ζR(2n)x2n

nπ2n .
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order for the logarithm of the trace the following exact resummation

exp
(

1
2

∞∑
n=1

B2n22n(−1)nx2n

(2n)!(2n)

)
= exp

(
−1

2 ln
(

tr
(

sin(eFs)
eFs

)))
. (4.98)

The right-hand side leads to the given sQED result in (4.92).

Using the normalization determinant from (4.92), we can directly write the Eu-
clidean one-loop EH effective action for sQED

ΓEH = V T
∫ ∞

0

ds

s
(4πs)−D/2e−sm2det−

1
2

(
sin(eFs)
eFs

)
(4.99)

where V and T denote the unit volume and unit time, respectively. Inserting the
trace result [329]

tr1/2
(

sin(eFs)
eFs

)
= sin(eas) sinh(ebs)

(eas)(ebs) , (4.100)

where

tr(F2n) = 2
[
(a2)n + (−b2)n

]
(4.101)

applies for the static background with a and b as defined in (3.56), we arrive at
the one-loop EH effective Lagrangian in (3.58).

4.4.3 N photon amplitude in sQED

Now, we have all relevant quantities in order to write down the effective action for
the scalar N photon amplitude in the presence of a static electromagnetic back-
ground. The corresponding diagram is shown in figure 4.7. The single scalar loop
dressed by the background (double line) is coupled to N background photon lines.
Using the previous vacuum result (4.82) and inserting the modified normalization
determinant from (4.92) as well as the modified worldline correlators (4.86) and
(4.89), we finally arrive at the generalized BK type master formula

Γ[k1, ε1; . . . ; kN , εN ] = (−ie)N (2π)D δ
(∑

kj
)

×
∫ ∞

0

ds

s
(4πs)−D/2 det−

1
2

(
sin(eFs)
eFs

)
exp

(
−sm2

)
(4.102)

×
N∏
j=1

∫ s

0
dτj exp

 N∑
j,i=1

[1
2kj · GBji · ki − iεj · ĠBji · ki + 1

2εj · G̈Bji · εi
]∣∣∣∣∣∣linear in

each ε

.
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Despite the additional determinant in front, the last exponent looks as in the
pure vacuum case, with the exception that the worldline correlators now appear in
tensorial form. This powerful formula we will use later for studying certain aspects
in the assisted Schwinger mechanism.



Chapter 5

Worldline instantons

5.1 Weak coupling

W e consider sQED in the presence of an external background. As motivated
in chapter 2 and carried out in the previous computations, we split the

vector field again into the dynamical part Aµ and the external part Aµ. As before,
we work in Euclidean space.1 The corresponding action is∫

d4x
(1

4F
µν + |Dµφ|2 +m2|φ2|

)
(5.1)

with the decomposed covariant derivative

Dµ = ∂µ + ieAµ + ieAµ. (5.2)

In order to arrive at the one-loop EH effective action, we again neglect all contri-
butions from the dynamical part of the vector field. This is referred to as the weak
coupling regime. As will be discussed further below, using the present approach, it
is also possible to make the generalization to the arbitrary coupling regime which
gives rise to the quenched all-loop diagram.2

Proceeding as described above, the worldline Lagrangian Wboson in (4.20) with an
external background Aµ will include an additional contribution of the form

Wboson ⊃ ieẋ · A(x). (5.3)

1 See section 5.2 for details.
2 For the quenched all-loop diagram see figure 5.4.
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This yields the following worldline path integral representation

Γ[A] =
∫ ∞

0

ds

s
exp

(
−sm2

) ∫
d4x0

∫
x(0)=x(s)=x0

Dx(s)

× exp
(
−
∫ s

0
dτ

1
4 ẋ

2 + ieẋ · A(x)
)
.

(5.4)

For simplification we perform a variable rescaling [146, 158, 273]

τ → us, sm2 → s (5.5)

which results in the following expression for the Euclidean effective action

Γ[A] =
∫ ∞

0

ds

s
e−s

∮
Dx exp

(
−
(
m2

4s

∫ 1

0
du ẋ2 + ie

∫ 1

0
du ẋ · A

))
. (5.6)

The previous periodicity condition in (5.4) now reads

xµ(1) = xµ(0). (5.7)

Due to the integration over x0, the worldline xµ(u) becomes a closed periodic path
in spacetime.

We begin with the proper time integral. For this, we introduce the following
representation for the modified Bessel function of the second kind,

K0(x) = 1
2

∫ ∞
0

ds

s
e−(x

2
4s+s). (5.8)

Assuming x to be large, the latter has the following asymptotic behavior

K0(x) ≈
√
π

2xe
−x. (5.9)

Furthermore, we make the assumption

m

√∫ 1

0
du ẋ2 � 1 (5.10)

which is often called the large mass approximation. As we will see below, this
corresponds to the subcritical regime.

Now imposing the condition (5.10), we may use the asymptotic formula (5.9) to
find

Γ[A] '
∮
Dx(u)

√
2π
m2s0

e−W (5.11)
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with the worldline action

W =Wkin +Wext = m2s0 + ie
∫ 1

0
du ẋ · A (5.12)

that consists of a kinetic part Wkin, which is the free scalar loop contribution,
and an external partWext generating the arbitrary many couplings to the external
background photons [273], cf. figure 3.1. The proper time stationary point is

s0 = 1
m

√∫ 1

0
du ẋ2(u). (5.13)

This approximation is equivalent to the Laplace method or, in general, to the
method of steepest descent. It is notable that performing the integrations in the
opposite order, means first the path integral and then the proper time integral,
will lead to the one-loop EH effective action.

5.2 Nonperturbative imaginary part

In the previous steps, we have focused on the real part of the Euclidean worldline
path integral. In Minkowski spacetime the decay rate in (3.22) is determined by
the imaginary part of the effective action. After continuing to the complex plane,
the relevant quantity for pair production from vacuum will be the real part of the
Euclidean effective action,

=(ΓMink) = <(ΓEucl). (5.14)

In other words, we resign the Lorentzian time direction via a rotation in the com-
plex plane in order to get a real valued action describing the decay of the vacuum
state.

However, in order to guarantee this, one has to be careful with the choice for
the external background. For the many examples we consider in this thesis, the
Euclidean gauge potential Aµ(x) is always a symmetric, complex valued function.
This implies that the corresponding stationary path in spacetime is a closed real
path. Accordingly, the stationary worldline action will be real as well which is in
agreement with the correspondence from above.
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5.3 Instanton equations

For the remaining path integral (5.11) we may use again the Laplace method.3 For
this, we need the stationary solution for the nonlocal worldline action

W = m

√∫ 1

0
du ẋ2 + ie

∫ 1

0
du ẋ · A (5.15)

which corresponds the extremum of the exponential. The condition is a vanishing
first order functional derivative of the worldline action,

δW:µ ≡
δW:µ

δxν
δxν + δW:µ

δẋν
δẋν

!= 0 (5.16)

whereW:µ ≡ W [xµ(u), ẋµ(u)]. Using the standard functional operations4 the latter
computation gives first

δW:µ =
∫ 1

0
du

 mẋν(u)√∫
dk ẋ2

+ ieAν
 δẋν + ie(∂νAρ)ẋρδxν

 (5.17)

3 The underlying idea can be demonstrated for the following real integral∫
dx e−Mf(x)

with a real function f(x) of class C2. Assuming M � 1, this integral can be approximated
with the Laplace method or, more generally in the complex case, with the method of steepest
descent.

Namely, suppose the function f(x) has some global minimum at x0. Then, a small perturbation
around x0 will already be strongly suppressed exponentially. Hence, one may take only the value
in x0 as the dominating contribution for the integral. Taking this, the original function can be
expanded around the minimum up to second order where the linear term will of course vanish by
construction. Inserting the expansion into the initial integral and performing the integral, which
can be done exactly due to its Gaussian character, finally gives∫

dx e−Mf(x) ' e−Mf(x0)
∫
dx e

M
2 f
′′(x0)(x−x0)2

=

√
2π

Mf ′′(x0)e
−Mf(x0).

4 Applying the functional operations

δS[F [x]]
δx(u) = ∂S[F [x]]

∂F [x]
δF [x]
δx(u) ,

δF [x(k)]
δx(u) =

δ
∫
dk F ′[x(k)]
δx(u) = ∂F ′

∂x
[x(u)]

consecutively, we derive first

δ
√∫ 1

0 dk ẋ
2

δẋν(u) = 1
2

(∫ 1

0
dk ẋ2

)− 1
2 δ
∫ 1

0 dk ẋ
2(k)

δẋν(u) = 1
2

(∫ 1

0
dk ẋ2

)− 1
2

2 ẋν(u) = ẋν(u)√∫
dk ẋ2(k)

.
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followed by

δW:µ = −
∫ 1

0
du

 mẍν(u)√∫
dk ẋ2

+ ie(∂ρAν)ẋρ − ie(∂νAρ)ẋρ
 δxν (5.18)

after partially integrating the first two terms multiplied with the variation δẋν . In
order to obey the condition (5.16), the following equation

mẍν√∫ 1
0 dk ẋ

2
= ieFνρẋρ (5.19)

has to be satisfied, where Fνρ denotes the antisymmetric field tensor. It is easy to
see that the left-hand side transforms to

m√∫ 1
0 dk ẋ

2

d

du
x2 (5.20)

after contracting with ẋν . Due to the fact that

Fνρẋρẋν = 0, (5.21)

we obtain an internal kinematic invariant denoted as

ẋ2 =: a2 = constant. (5.22)

Finally, rewriting the proper time stationary point in (5.19) as s0 = a
m
, we end up

with the following set of coupled second order differential equations

mẍµ = iaeFµν ẋν . (5.23)

The solutions of the latter, so-called worldline instantons which we denote for a
while as wµ, are the mentioned closed periodic paths in spacetime. The leading
order contribution to the tunneling rate is then determined by

R ' e−W0 . (5.24)

Using the second operation yields

δ
∫
dk Aρ(xµ)ẋρ

δẋν(u) = Aν(xµ(u)),

δ
∫
dk Aρ(xµ)ẋρ

δxν(u) = (∂νAρ)ẋρ(u).

with ∂ν ≡ ∂
∂xν

.
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The exponent

W0 ≡ W [instanton] = ma+ ie
∫ 1

0
du ẇ · A(w) (5.25)

is the stationary worldline action from (5.12) evaluated on the instanton path.
The complete solution including the fluctuation prefactor which will be discussed
below is exact [151, 158, 161] for an action quadratic in xµ(u) and approximate
for actions with higher order dependence.

5.4 Stationary action: integral representation

For certain type of backgrounds one can follow an alternative way to compute the
stationary worldline action W0 without deriving the instanton paths explicitly.

Let us assume a purely temporal electric background field oriented in the x̂3 direc-
tion. Furthermore, we restrict our discussion to the large mass limit (5.10), means,
we only consider the leading n = 1 contribution. We write the Euclidean vector
potential in the general form

A3(x4) = −iE
ω
F(ωx4) (5.26)

where F is assumed to be an odd analytic function. The corresponding instanton
equations in (5.23) then become

ẍ3 = −aeE
m

F′(ωx4)ẋ4,

ẍ4 = +aeE
m

F′(ωx4)ẋ3

(5.27)

where ẋ1 = ẋ2 = 0. In order to find closed paths one can neglect all integration
constants. Thus, the above equations can be integrated as

ẋ3 = −aF(ωx4)
γ

,

ẋ4 = ±a
√

1− F2(ωx4)
γ2 .

(5.28)

The so-called adiabatic Keldysh parameter γ = mω
eE

serves as a useful measure to
characterize the inhomogeneity of the background, see discussion in section 8.3.
Due to the assumed symmetry property for F, the instanton path will be symmetric
for each quarter in the (x3, x4) plane as illustrated in figure 5.1, see section 8.3
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x4

x3

Figure 5.1: Sketch of a symmetric worldline instanton in the (x3, x4) plane. The path segment
in first quarter is colored.

and [37]. Thus, one can evaluate the action over the first quarter and multiply the
result by four afterwards. Proceeding in this way and expressing x3, x4 in units
of m

eE
, we obtain the stationary worldline action given in the following simplified

integral form

W0 = 4m2

eE

∫ z

0
dz

√
1− F2(γz)

γ2 . (5.29)

The upper integration limit, z, which is taken as the turning point at the inter-
section with the neighbored quarter in the instanton plane, is determined by the
relation

γ = F(γz). (5.30)

Hence, even without the explicit derivation of the instanton path it is possible to
compute the stationary worldline action numerically, in certain cases, analytically
as well.

In the following, we generalize the steps from above for an external background as
a superposition of two time dependent fields varying at different time scales. We
first write

A3(x4) = −iE
ω

[
F(ωx4) + ε

ω̃
G(ω̃x4)

]
(5.31)
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where ε := Ẽ/E. The resulting instanton equations then read

ẍ3 = −aeE
m

[F′(ωx4) + εG′(ω̃x4)] ẋ4,

ẍ4 = +aeE
m

[F′(ωx4) + εG′(ω̃x4)] ẋ3.

(5.32)

We can integrate the equations as

ẋ3 = −aF(ωx4) + ε(γ/γ̃)G(ω̃x4)
γ

,

ẋ4 = ±a

√√√√1− [F(ωx4) + ε(γ/γ̃)G(ω̃x4)]2

γ2

(5.33)

with γ̃ := mω̃
eE

. Expressing again x3, x4 in units of m
eE

, we write the following
integral for the worldline action evaluated on the instanton

W0 = 4m2

eE

∫ z

0
dz

√√√√1− [F(γz) + ε(γ/γ̃)G(γ̃z)]2

γ2 . (5.34)

The corresponding turning point z at the intersection with the neighbored quarter
in the instanton plane is determined by

γ = F(γz) + ε(γ/γ̃)G(γ̃z). (5.35)

This form will be useful for later purpose when we discuss the assisted mechanism
delineated in section 1.4.

Without any complications, for a static electric background, means F(γz) = γz

and G = 0, we find the stationary action

W0 = 4m2

eE

∫ 1

0
dz
√

1− z2 = πES

E
(5.36)

which is precisely the leading order exponent in the Schwinger formula.

5.5 Fluctuation prefactor

So far we have discussed the leading order tunneling exponential determined by
the stationary worldline action. In the following, we sketch the computing strategy
for the remaining quantum fluctuation prefactor omitted in equation (5.24).
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5.5.1 Semiclassical approximation

The exponential can be computed by evaluating the worldline action on the in-
stanton. To derive the instanton equations we first have computed the proper time
integral using the Laplace method. Afterwards, the remaining path integral has
been evaluated by performing the method of steepest descends.

The tunneling exponential is the relevant part in studying enhancement effects via
the assisted mechanism. However, the fluctuation prefactor can have significant
impact for single mode backgrounds. For completeness its derivation will be dis-
cussed in the following.

The basic idea is to perform the integrations in the opposite order, namely, first
approximating the path integral semiclassically and then performing the proper
time integration by the method of steepest descents. Notably, even though the
order is interchanged, the introduced instantons will remain as the stationary so-
lutions so that these again constitute the basis for the relevant computations [330].

We start with the original path integral without rescaling the worldline time τ ,∮
Dx(s) e−S[x]. (5.37)

The action

S[x] =
∫ s

0
dτ L (5.38)

is determined by the Lagrange function

L[x, ẋ] = 1
4 ẋ

2 + ieẋ · A(x). (5.39)

The solutions for the classical Euclidean ELE

ẍµ = 2ieFµν ẋν (5.40)

are given by the worldline instantons satisfying

ẋ2 = (2m)2. (5.41)

To obtain the fluctuation prefactor, we need compute the fluctuations over the
instanton paths. Hence, all paths in the functional integral can be expanded like

xµ(τ) = wµ(τ) + ηµ(τ) (5.42)
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where ηµ(0) = ηµ(s) = 0. Performing a semiclassical approximation for the path
integral results in [331]

∮
Dx (. . .) ' e−S[w]√

Det(Λ)
(5.43)

where Λµν denotes the fluctuation operator

Λµν = −δµν2
d2

dτ 2 −
d

dτ

∂2L

∂xν∂ẋµ
+ ∂2L

∂xµ∂ẋν
d

dτ
+ ∂2L

∂xµ∂xν
(5.44)

that determines the second order variation of the action [331, 332]

δ2S[η] =
∫ s

0
dτ ηµΛµνην . (5.45)

5.5.2 Gel’fand–Yaglom method

The previous fluctuation operator Λ is just an ordinary differential operator. So
it is possible to follow the Gel’fand–Yaglom approach to compute the determi-
nant [310, 333–335]. Namely, according to the latter, this computation can be
done without computing the eigenvalues of Λ. This is very advantageous for the
underlying problem, since such an operation is strictly necessary for any proper
time s in order to be able to perform the final integration over s.

The idea is to solve instead the equations of motion for the fluctuations ηµ over
the stationary instanton path,

Λµνην(τ) = 0. (5.46)

These equations are known as the Jacobi equations [332]. Accordingly, the infi-
nite dimensional functional determinant Det(Λ) can be expressed in terms of a
finite dimensional matrix determinant constructed from the values of the (four)
independent solutions evaluated at τ = s,

Det(Λ) = det
(
η(ν)
µ (s)

)
. (5.47)

The semiclassical approximation from (5.43) becomes

∮
Dx(s) e−S[x] ' eiθe−S[w](s)

(4πs)2

√√√√√
∣∣∣det η(ν)

µ,free(s)
∣∣∣∣∣∣det η(ν)

µ (s)
∣∣∣ . (5.48)
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The finite dimensional determinant det
(
η(ν)
µ (s)

)
is determined by a 4 × 4 matrix

formed by solutions for the Jacobi equations, i.e. η(ν)
µ (τ), with initial conditions

η(ν)
µ (0) = 0,

η̇(ν)
µ (0) = δµν

(5.49)

for µ, ν = {1, . . . , 4} [331, 332]. Analogously, det
(
η

(ν)
µ,free(s)

)
is determined by

solutions of the free Jacobi equations

Λµν
freeη

ν
free = 0 (5.50)

where

Λµν
free = −δµν2

d2

dτ 2 . (5.51)

The phase θ in the constant factor eiθ is related to the Morse index of the fluc-
tuation operator Λ [332]. The Morse index accounts for the number of times the
determinant det

(
η(ν)
µ (τ)

)
becomes zero for values τ ∈ [0, s] [336].

5.5.3 Analytical solutions

The closed instanton path wµ(τ) only depends on the (rescaled) worldline time.
This renders the fluctuation operator (5.44) as a simple one-dimensional operator.
For general backgrounds the computation of the determinant (5.47) can at least
be treated numerically following the previous Gel’fand-Yaglom method. However,
for certain one-dimensional backgrounds for which the instanton solution can be
derived in closed form, a much more simple expression for the determinant of the
fluctuation operator has been found.

For such backgrounds, the fluctuation operator is a reduced 2 × 2 matrix which
depends, for instance, on the Euclidean worldline coordinates x3(τ) and x4(τ). In
such a case, the solutions to the Jacobi equations (5.46) can be derived analytically
where the boundary conditions can be easily imposed. Taking then the exact
fluctuations satisfying all required properties, the determinant of the fluctuation
operator can be written as [336]

Det(Λ) =
(

2mẇ4(s)
∫ s

0

dτ

[ẇ4(τ)]2

)2

. (5.52)
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Inserting this closed form of the determinant into the corresponding integral, we
find the Euclidean effective action∫ ∞

0

ds

s

e−(sm2+S[w](s))√
Det(Λ)

. (5.53)

Performing the integral over τ in equation (5.52) and evaluating the proper time
integral in expression (5.53) afterwards, leads to the complete VPP rate including
the prefactor. In the weak field limit the latter integration can be done directly
by applying the Laplace method.

5.6 Connection to Gutzwiller formula

In the following, we briefly sketch the derivation of the Gutzwiller trace formula.
Afterwards, its application to the present problem is discussed.

5.6.1 Trace of Green’s function

In the original worldline path integral representation (5.4), there are in total three
integrals. Each of them contribute with its own prefactor to the final semiclassical
result. As we will see in a moment, this resembles basically the derivation of the
Gutzwiller trace formula [166, 175, 337]. The Gutzwiller formula expresses the
trace of the Green’s function in nonrelativistic quantum mechanics in terms of a
weighted sum over classical, closed periodic orbits,

tr(G(E)) =
∫
d3x G(x, x;E)

=
∫
d3x

∫ ∞
0

dt eiEt〈x|eiHt|x〉 =
∑

orbit p
Tp
eiSp(E)−iπmp(E)/2√

det(1− Jp)
.

(5.54)

Here, Tp stands for the period of the p-th orbit with energy E and Sp(E) for
its action. The matrix Jp denotes the so-called monodromy matrix and mp the
Maslov index for the p-th orbit.

Starting with the sum on the right-hand side, the derivation works as follows:
the first step is to approximate the split kernel semiclassically by making a WKB
ansatz which leads to

K(x, x′; t) := 〈x|eiHt|x′〉

'
∑
p

√√√√∣∣∣∣∣det
(
∂Wp(x, x′; t)

∂x∂x′

)∣∣∣∣∣eiWp(x,x′;t)e−iπmp(x,x′,t)/2.
(5.55)
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Here,

Wp(x, x′; t) ≡
∫ (x,x′,t)

L(x′′(t′), ẋ′′(t′)) dt′ (5.56)

denotes Hamilton’s principal function defined as the function in the upper limit of
the action integral with respect to the minimal trajectories of the system. These
are in the present case all possible paths that connect the points x and x′ in time
t. We only focus on one contribution and therefore drop the subscript p repre-
senting the summation over all possible trajectory contributions. The Van Vleck
determinant in front takes into account the variations with respect to x and x′.
The Maslov index counts how often the sign of the determinant changes on the
trajectory between x and x′ [175].

As the second step, one performs the t integration in (5.54) by means of a stationary
phase approximation.5 From the expression in the exponent,

Et+W (x, x′; t), (5.57)

obtained after plugging (5.55) into the integral in (5.54), we get the important
condition

∂tW = −E. (5.58)

Comparing the latter relation with the Hamilton-Jacobi equation (HJE)

∂tW = −H, (5.59)

where H denotes the system’s Hamilton function, the saddle point for t is just
fixed as the time T (x, x′;E) which the particle takes from x to x′ at fixed energy
E. Hence, introducing the Legendre transform

S(x, x′;E) = ET +W (x, x′;T ), (5.60)

we get fromW (x, x′;T ) to the action S(x, x′;E) for a closed trajectory with energy
E. So, according to (5.60) we have

∂S

∂E
= T,

∂W

∂T
= −E. (5.61)

5 This method is exact for time integrations from −∞ to ∞. In case of integrating from 0 to
∞ it also leads to a good approximation when the saddle point is reached for a sufficiently large
time.
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From (5.56), we can write for the action

S(x, x′;E) =
∫ T

0
dt [L(x′′(t), ẋ′′(t)) + E]

=
∫ T

0
dt p(t)ẋ(t) =

∫ x′

x
p dx.

(5.62)

Noticing the previous transform, we have

∂xW = ∂xS. (5.63)

On the other hand, from the stationary point approximation for the t integral, we
collect a second prefactor

1

i
√

∂2W
∂t2

∣∣∣
t=T

= 1√
−∂2W

∂t2

∣∣∣
t=T

=

√√√√ ∂2S

∂E2

∣∣∣∣∣
t=T

(5.64)

where for the last equality the relation ∂S
∂E

∣∣∣
t=T

= T in (5.61) has been used. In-
serting the obtained results into the trace expression (5.54), we find that

∫ ∞
0

dt eiEt〈x|eiHt|x′〉 ≈

√∣∣∣det
(
∂2W (x,x′;t)

∂x∂x′

)∣∣∣
t=T

i
√

∂2W
∂t2

∣∣∣
t=T

eiS(x,x′;E)e−iπm(x,x′,T )/2

=

√√√√∣∣∣∣∣det
(
∂2W (x, x′; t)

∂x∂x′

)∣∣∣∣∣
t=T

√√√√ ∂2S

∂E2

∣∣∣∣∣
t=T

eiS(x,x′;E)e−iπm(x,x′,T )/2

(5.65)

where we consider only one of the possible trajectories.

The third step is to take the limit x′ → x due to the trace operation and integrate
over x which forces the closed orbit to be periodic. It is advantageous to split
the integration into the integral along the closed periodic orbit, x‖, and transverse
to it, x⊥. Before taking the coincidence limit and integrating in configuration
space, we first rewrite the prefactors in front of the exponentials by splitting up
the coordinates. The determinant in (5.65) can be rewritten as

det
(
−∂

2W (x, x′; t)
∂x∂x′

)∣∣∣∣∣
t=T

=
∂2W
∂t2

ẋ‖ẋ′‖
det

(
−∂

2S(x, x′;E)
∂x⊥∂x′⊥

)
. (5.66)

Using the expression in (5.66), we arrive at the following approximation

G(x, x′;E) ≈

√∣∣∣∣det
(
−∂S(x,x′;E)

∂x⊥∂x
′
⊥

)∣∣∣∣√
ẋ‖ẋ′‖

eiS(x,x′;E)e−iπm(x,x′,T )/2 (5.67)
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which brings us to the trace

tr (G(E)) =
∫
ddx G(x, x′;E)

∣∣∣
x=x′

=
∫
dx‖d

d−1x⊥ G(x, x′;E)
∣∣∣
x=x′

. (5.68)

In the coincidence limit, the integral along the closed trajectory, the periodic orbit,
gives

∮ ∮ √√√√dx‖
ẋ‖

√√√√dx′‖
ẋ′‖

∣∣∣∣∣∣
x=x′

=
∮ dx‖

ẋ‖
=
∮
dt = T (5.69)

where T is the orbit period. The transverse integral produces a third prefactor

1√∣∣∣∣det
(

∂S
∂x⊥∂x⊥

+ ∂S
∂x⊥∂x

′
⊥

+ ∂S
∂x′⊥∂x⊥

+ ∂S
∂x′⊥∂x

′
⊥

)∣∣∣∣
. (5.70)

where we should note that S only depends on the transversal coordinates due to
the last integral along the closed orbit.

These prefactors, three in total, resulting from semiclassical approximations can
be combined in form of a single determinant [166, 173]. The results finally lead to
the compact expression

∫
dx


√∣∣∣det

(
∂2W
∂x∂x′

)∣∣∣√ ∂2S
∂E2√∣∣∣∣det

(
∂2S

∂x⊥∂x⊥

)
+ · · ·+

(
∂2S

∂x′⊥∂x
′
⊥

)∣∣∣∣


x=x′

(. . .)→
∑

orbit p
Tp
eiSp(E)e−iπmp(E)/2√
| det(1− Jp)|

.

(5.71)

The Maslov index and the sum over all possible orbit contributions have been
restored. This single determinant is an invariant of the classical periodic orbit. In
phase space, it characterizes the small deviations from the stable orbit described
by the corresponding monodromy matrix Jp.

5.6.2 Imaginary part of the effective action

Motivated by the previous discussion, we look for an analogous representation
for the imaginary part of the one-loop EH effective action. We try to find an
expression, again after resorting to Euclidean space, of the following form

Γ[A] =
∫
d4x

∫ ∞
0

ds

s
〈x|e−s(−D2

A+m2)|x〉 =
∑

orbit p

e−Sp(E)√
| det (1− Jp) |

(5.72)
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where Dµ
A = ∂µ + ieAµ denotes the corresponding covariant derivative. Of course,

we should be aware of that the Gutzwiller formula has been derived in Minkowski
spacetime. In the present case, we also have an extra factor 1

s
. However, these

changes still allow to proceed as in the previous case. It is advantageous to start
with the second integral on the left-hand side in equation (5.72).

The first step is to make a WKB approximation for the underlying split kernel
which results in

〈x|e−s(−D2
A)|x′〉 '

√√√√∣∣∣∣∣det
(
∂2W

∂x∂x′

)∣∣∣∣∣e−W (x,x′;s). (5.73)

For simplifying reasons, we have dropped the exponent depending on the Maslov
index mp. The minus sign in the exponent appears due to the continuation to the
complex domain. The Hamilton’s principal function has to be understood with
respect to the classical trajectory spanned between x and x′ in Euclidean space
for a single proper time interval s. Inserting the latter approximation into the
integral, we get the exponent

sE +W (x, x′; s) (5.74)

where

E = m2 (5.75)

can be understood as the conserved energy along the trajectory. Due to the irrel-
evance of the integration order, the trajectory is again determined by the classical
ELE satisfying

ẋ2 = (2m)2. (5.76)

So the critical point for the exponential is reached when

∂sW = −E. (5.77)

Analogous to the derivation of the trace formula, it is appropriate to introduce a
Legendre transform of the form

S(x, x′;E) = Es+W (x, x′; s). (5.78)
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The critical value for the proper time, sc, is approached when we set E = m2.
Hence, the original path integral can be approximated as

∫ ∞
0

ds

s
e−sE 〈x|e−s(−D2

A)|x′〉 ≈ 1
sc

√√√√∣∣∣∣∣det
(
∂2W

∂x∂x′

)∣∣∣∣∣
s=sc

1√
|∂2W
∂s2 |s=sc

e−S(x,x′;E=m2).

(5.79)

Then, splitting again the path along the classical trajectory into a transversal x⊥
and a parallel coordinate x‖, we find

det
(
∂2W
∂x∂x′

)
∂2W
∂s2

∣∣∣∣∣∣
s=sc

= 1
ẋ‖ẋ

′
‖

det
(
∂2S(x, x′;E = m2)

∂x⊥∂x′⊥

)
. (5.80)

What remains to be done is to take the coincidence limit for the trace over position
eigenstates. Due to translation invariance along the trajectory, the integration over
the parallel coordinates gives ∫ dx‖

ẋ‖
= sc (5.81)

which cancels the prefactor 1
sc

in (5.79). Having included the third prefactor from
the integration over x⊥, i.e. (5.70) with E = m2, we end up with the semiclassical
approximation for the one-loop EH effective action

Γ ≈ e−S(E=m2)√
| det (1− J) |

(5.82)

where the separate prefactors have been combined in form of a single prefactor
determined by the monodromy matrix J.

5.7 Tunneling exponential

In the following, we demonstrate the worldline instanton method for the static
electric background. Using this method, the first derivation of the Schwinger for-
mula, equation (3.66), has been derived in [158]. This is the simplest case where
one can find a closed instanton path which has maximal symmetry in the two
dimensional plane. As already pointed out in [158], this symmetry property leads
to tremendous simplifications regarding the computation of higher loop diagrams,
see section 5.9.2.
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For a static background pointing in x̂3 direction we obtain the following relations
from (5.23)

ẋ2
4 + ẋ2

3 = a2,
ẍ4

ẋ3
= a

R
,

ẍ3

ẋ4
= − a

R
. (5.83)

Here, a is the kinematic invariant from (5.22) and R represents some constant.
Since a

R
is constant as well, we can integrate the second and third equation in

(5.83) to obtain the system

ẋ4 = a

R
x3, ẋ3 = − a

R
x4 (5.84)

where the integration constants vanish due to the periodicity condition (5.7) and
the invariant (5.22). Squaring the latter equations and applying the first relation
in (5.83) afterwards, we obtain the circle equation

x2
4 + x2

3 = R2. (5.85)

Hence, the instanton for a static field must be a circle. This observation one may
also guess just by looking on the equations in (5.83). In particular the right-hand
side of the last two equations is a fixed constant a

R
. In other words, the ratio

between the acceleration ẍ4 (ẍ3) in one direction and the velocity ẋ3 (ẋ4) in the
remaining direction is constant. Kinematically, this situation is realized along a
circle path. Hence, the electric field in Euclidean spacetime acts like a magnetic
field leading to a circular instanton path.

Explicitly, with

A3(x4) = −iEx4, (5.86)

the mentioned circular path in the (x3, x4) plane is described by [158]

x3(u) = R cos (2πnu) ,

x4(u) = R sin (2πnu) ,
(5.87)

where a = 2πnR and R = m
eE

follow due to (5.7), see figure 5.2.

Applying the instanton solution (5.87), we immediately see that the large mass
approximation in (5.10) corresponds to the weak field limit

E � ES. (5.88)
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R = m
eE

x4

x3

Figure 5.2: Worldline instanton for static electric background pointing in x̂3 direction.

Note that the distance along the spatial axis at time x4 = 0 is

x = 2R = 2m
eE

. (5.89)

As discussed in section 3.4.2.1, the latter relation can already be obtained from
simple energy conservation. Therefore, the width of the effective energy gap be-
tween the excited particle states and the Dirac sea is naturally encoded in the
spatial width6 of the instanton at zero time.

Coming back to the circle solution from (5.87), we find the integer n included in a as
the instanton’s winding number that counts for the number of times the Euclidean
path is traversed. The higher order instanton contributions with n > 1 correspond
to the production of n pairs [338, 339]. It is not clear whether this argument is
justified for the case of strongly coupled non-Abelian gauge theories. The term
with n = 1 is the dominating contribution in the weak field limit (5.88) [158]. As
mentioned in the introduction, this leading term is usually referred to as the VPP
rate [339]. The fluctuation prefactor can be computed by inserting (5.87) into
(5.52) and performing the s integral in (5.53) afterwards. The leading order result
for the vacuum decay rate including all higher order instanton contributions then

6 Note that backgrounds with temporal inhomogeneities in spacetime lead in general to a
substantial reduction of the tunneling barrier, i.e. m∗ < m, which corresponds then to a smaller
spatial width x∗ < x of the instanton trajectory at x4 = 0.
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becomes

R = (eE)2

(2π)3

∞∑
n=1

(−1)n+1

n2 e−πn
ES
E , (5.90)

which is precisely the Schwinger formula introduced in (3.66).

5.8 Effect of inhomogeneities

As we have discussed in chapter 1, the effect of inhomogeneities on the VPP rate
(3.23) can be enormous. Resorting to the worldline instanton approach these can
be very elegantly illustrated in form of modified stationary paths in spacetime. It
has been shown that temporal inhomogeneities of latter type tend to shrink the
worldline instanton which leads to a larger VPP rate [146]. The reason for such
an enhancement can therefore be obtained directly from the instanton equations
in (5.23).

One should note that for arbitrary inhomogeneous backgrounds, particularly for
spatiotemporal type, the situation can be very complicated due to the increas-
ing nonlinear structure of the underlying differential equations (5.23). Hence,
it can be quite difficult to get some approximate information directly from the
instanton equations. Effects of spatiotemporal backgrounds have been recently
studied [137–139, 152, 154, 162]. In the present case, we mainly focus on time
dependent electric backgrounds.

In section 5.7, we have seen that the worldline instanton in a static electric back-
ground is a circle [158], see left panel in figure 5.3. Together with the quantum
fluctuation prefactor these solutions including the higher order instanton contribu-
tions lead to the Schwinger formula (3.66). The situation with a nonstatic electric
background is far more complicated. The system, one has to solve in this case, is
given by

ẋ2
4 + ẋ2

3 = a2,
ẍ4

ẋ3
= f(x4), ẍ3

ẋ4
= −f(x4). (5.91)

The constant right-hand side of the last two equations is now described by ±f(x4).
The function f(x4) is nothing but the analytic continuation — except the imag-
inary prefactor −i — of the physical electric field. Therefore, inhomogeneous
electric backgrounds may become unbounded positive monotonic functions in the



102 Chapter 5. Worldline instantons

instanton equations, cf. lower right panel in figure 5.3.

Let us make this a bit more concrete. For instance, the sinusoidal cosine becomes
after the rotation in the complex plane the hyperbolic cosine function. This in
addition brings the imaginary prefactor7 in front. In other words, the complex
exponential of cosine becomes the unbounded real exponential.

Figure 5.3: Effect of temporal field inhomogeneities: as an example, the comparison between a
static and sinusoidal electric field is sketched. For the latter the bounded cosine function becomes
after the rotation in the complex plane the (from above) unbounded hyperbolic cosine function
(right). The static field remains static (left). Sketched instanton paths around the closing point
are depicted on top.

In this case, one will find points where the acceleration in one direction may become
much larger than the velocity in the other. The Euclidean equations of motion of
such a system may have ellipse-like solutions which can curve much stronger than
the usual circle path. As a consequence, the size of the worldline instanton can
drastically be reduced for appropriate field parameters, e.g. sufficiently large tem-
poral inhomogeneities [146]. From the previous discussion, this reduction would

7 Note that it is this complex prefactor which forces the instanton solution to be real for the
presently considered electric backgrounds.
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correspond to a smaller instanton extension x∗ at x4 = 0 or smaller effective mass
m∗, respectively. This can be understood as a reduction of the tunneling barrier.
Consequently, the rate for VPP in such backgrounds will be increased. Note that
the latter remains static even after continuation to the complex domain, cf. lower
left panel in figure 5.3.

However, the huge impact of temporally inhomogeneous electric backgrounds on
VPP is not only initiated by their unbounded shape in the instanton equations.
Another effect results due to the appearance of pole structures in the instanton
plane. It is this reason why despite the differences regarding interference effects,8 a
weak Sauter field leads to a stronger enhancement than a weak poleless sinusoidal
field. Related studies are discussed in chapter 8.

5.9 Arbitrary coupling

5.9.1 Potential analysis

The nonanalytic dependence on the field strength E in the Schwinger formula
(5.90) already indicates the nonperturbative behavior discussed in section 3.4.2.
For VPP the virtual pair has to become real. This can only be achieved if the
energy is larger then the static energy provided by the external source. Following
an heuristic potential analysis, we may expect that the total potential barrier will
basically consist of three parts,

Vtot(x) = 2m− eEx− α

x
, (5.92)

where α = e2

4π ≈
1

137 is the low-energy QED coupling constant. The first two
terms are the static electron energy and the energy coming from the background,
respectively. The third term arises due the Coulomb interaction between the pair
constituents. This contribution has been completely neglected in the weak cou-
pling approximation in section 5.1. In order to take this term into account, we

8 With the standard worldline instanton approach one cannot directly access interference
effects, see e.g. [34, 340–344]. A modification of the path integral via a Legendre transform
proves helpful [160]. In this case, the saddle points have to be necessarily complexified which
differ from the standard stationary worldline paths. The pole structure of the field can be essential
for interference, cf. [37]. For further sensitivity and optimization studies such effects should be
taken into account. In chapter 6, we introduce an alternative quantum mechanical scattering
approach where different pairs of complex turning points give rise to quantum interference.
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need to include the dynamical part of the vector field as well. This is nothing else
than the introduction of arbitrary many virtual photon exchanges within the single
scalar loop present in the one-loop EH diagram from figure 3.2. This situation is
sketched in figure 5.4.

Figure 5.4: Quenched all-loop diagram with arbitrary many photon lines within the background
dressed particle loop indicated by the double lined circle.

According to the potential analysis from above the tunneling exponential may be
expected to be

R ' exp
(
−πES

E
+ απ

)
. (5.93)

Interestingly, using the electric-magnetic duality such an exponential behavior co-
incides with the production rate for a monopole and antimonopole pair in the
Georgi-Glashow model [158, 345]. This coincidence can be considered as an evi-
dence that the expression (5.93) is valid for arbitrary coupling in the weak field
approximation.

Due to the potential barrier (5.92), we may expect the vacuum decay as soon as
E surpasses the corresponding critical limit Ec which is easily computed as

Ec = 1
α

m2

e
≈ 137ES. (5.94)

This, obviously, exceeds the weak field condition E � ES which brings the
question in mind whether the catastrophic instability9 can really happen or not.
There has recently been made interesting progress on clarifying this open ques-
tion in strongly coupled gauge theories using techniques based on the anti-de Sit-
ter (AdS)/conformal field theory (CFT) correspondence [64, 66, 70, 71].

9 The system is catastrophically unstable if the tunneling barrier vanishes for some critical
value and pair production is driven without any exponential suppression.
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5.9.2 Quenched amplitude

In the present instanton approach, the insertion of an arbitrary number of photon
lines into the scalar loop leads to the following modified worldline path integral

R '
∫ ∞

0

ds

s
exp

(
−m2s

) ∫
d4x(0)

∫
x(0)=x(s)

Dx(τ)

× exp
(
−
∫ s

0
dτ

(
ẋ2

4 + ieA · ẋ
))〈

exp
(
ie
∮
dτA · ẋ

)〉 (5.95)

where the average 〈· · · 〉 is defined as [158]

〈g(A)〉 =
∫
DA exp

(
−1

4
∫
d4x F 2

)
g(A)∫

DA exp
(
−1

4
∫
d4x F 2

) . (5.96)

Here, we keep only diagrams with a single scalar loop and drop off all higher or-
der scalar loop contributions. In other words, we ignore all correlations between
different Tr ln (−D2 +m2) [345] , see appendix B. It has been argued that higher
order scalar loop correlations, as depicted in figure 5.5, are strongly suppressed in
the weak field limit (5.88) or large mass approximation (5.10), respectively [158].
So the additional virtual photon lines within the scalar loop are included in form

Figure 5.5: Diagrams at 3-loop (top) and 4-loop level (bottom) including multiple background
dressed scalar loops (double lined loops) connected to each other via additional photon lines.

of an averaged U(1) Wilson loop.

Now, assuming again (5.10) and using the asymptotic formula for the modified
Bessel function (5.9), we perform the proper time integral in (5.95) and arrive at

R ∼
∮
Dx(u)

√
2π
m2s0

exp (−W)
〈

exp
(
ie
∮
dτA · ẋ

)〉
, (5.97)

where W 'Wkin +Wext corresponds to the previous worldline action in the weak
coupling regime, see (5.12). The additional averaged U(1) Wilson loop in (5.97)



106 Chapter 5. Worldline instantons

can be transformed to [158]〈
exp

(
ie
∮
dτA · ẋ

)〉
= exp (Wint) (5.98)

with an internal Coulomb interaction exponent

Wint = − α

2π

∮ ∮ dx1 · dx2

(x1 − x2)2 (5.99)

where xj ≡ x(uj). Accordingly, we find an extended worldline action of the form

W =Wkin +Wext +Wint. (5.100)

The remaining path integral (5.97) can be computed semiclassically by applying
the circular instanton from (5.87). Basically, the stationary point should change
due to the additional Coulomb interaction. However, the exponentWint is invariant
under scale transformations and rotations in the rotating plane of the instanton.
Therefore, the worldline instanton in (5.87) does not change if one adds the addi-
tional Wilson loop as a perturbation. Evaluating the worldline action (5.100) on
the circle instanton using dimensional regularization yields

R ∼ exp
(
−πnES

E
+ απn

)
. (5.101)

This coincides with the heuristic prediction in (5.93) for n = 1 which is the dom-
inant term in the weak field limit (5.88). The regularization is necessary due to
an nonphysical divergence. Since the contributions of the Coulomb interaction are
small, the previously introduced fluctuation prefactor does not change [158]. The
final result for the rate is then given by

R = (eE)2

(2π)3

∞∑
n=1

(−1)n+1

n2 exp
(
−πnES

E
+ απn

)
. (5.102)

The latter expression is known as the Affleck-Alvarez-Manton (AAM) formula [158]
which generalizes the standard Schwinger formula from (5.90).

5.9.3 All-loop conjecture

The AAM formula (5.102) is very interesting. Namely, according to [158] it in-
cludes an arbitrary number of loop diagrams in the quenched limit. Independent
from the semiclassical derivation of the AAM formula in sQED, the imaginary part
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of the EH effective Lagrangian at two-loop level for spinors was studied in [338].
The authors have found that

=
(
L(2)
EH

)
= (eE)2

(2π)3

∞∑
n=1

απKn

(
E

ES

)
exp

(
−πnES

E

)
(5.103)

which is similar to the standard Schwinger formula from (3.65) (corresponding
to the one-loop effective Lagrangian) with the exception that each term in the
sum is multiplied with a prefactor Kn depending on the summation index. These
prefactors are not known exactly. However, in the weak field limit which has
been assumed for the derivation of (5.100) their form is known [338]. Taking the
dominant contributions in (3.65) and (5.103), it can be shown that

=
(
L(1)
EH

)
+ =

(
L(2)
EH

)
∼ (eE)2

(2π)3 (1 + απ) e−π
E
ES . (5.104)

According to [338] the additional απ can be seen as the truncation of an expansion
series resulting due to an effective mass m∗(E). Namely, a virtual pair that has to
become real at a separation x = 2m

eE
, would experience a negative binding energy

−α
x

if the Coulomb attraction is taken into account leading to the mentioned
effective mass

m∗ ' m
(

1− α

2
E

ES

)
(5.105)

with higher order corrections in E/ES [346, 347]. Then replacing the on-shell
renormalized vacuum mass m in the tunneling exponential by the effective mass
from above leads to

exp
(
−πm

2
∗

eE

)
= exp

(
−π E

ES
+ πα

)
exp

(
−π

(
mα

2
E

ES

)2)

=
[
1 + απ +O(α2)

]
exp

(
−π E

ES

)
.

(5.106)

In the weak field limit this result agrees with the n = 1 exponential in the gener-
alized AAM formula10 from (5.102). Motivated by this insight, one may think of
(5.102) as an all-loop conjecture in the weak field limit.

Notably, for the self dual background in 3 + 1 dimensions, defined by

Fµν = 1
2εµναβF

αβ, (5.107)

10 Note that in the weak field limit the expression is spin independent and varies just by a
factor 1/2 compared to the QED result.
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the analogous functions to the prefactors in (5.103) are explicitly known. In the
weak field limit the relation between the one-loop and the two-loop contributions
for this case are the same as in (5.104) [281]. This case has not been extended to the
three-loop level either. However, it has been shown that there is a similar behavior
for the dual two-loop result in 1 + 1 dimensional sQED [348]. For the spinor
case the one- and two-loop contributions are surprisingly simpler [279]. Based on
this, recently the three-loop extension has been studied for this lower dimensional
case [280, 349]. The findings indicate some deviations from the conjectured scalar
all-loop behavior described by the AAM formula given in (5.102). However, this
is so far only obtained for QED in two dimensions. This will of course not cover
the exact situation in the higher dimensional cases, but may at least provide some
hints regarding the situation beyond the two-loop level.



Chapter 6

Wentzel-Kramers-Brillouin
approximation

6.1 Scattering problem

F or one-dimensional temporal electric backgrounds, it is possible to reformu-
late the problem of VPP as a quantum mechanical scattering problem where

the antiparticle can be seen as a particle traveling backward in time [350]. The
main task is to compute the reflection probability which determines the number of
produced pairs in some momentum mode. This task is possible via numerical or
WKB techniques [37, 133, 134, 141–143, 341, 351–356] where the latter can be seen
as a relativistic version of the seminal Keldysh approach [357, 358] used for inves-
tigating ionization in time dependent electric fields. There is also an alternative
way via the quantum kinetic approach [359–367] which we introduce in chapter 7.

We assume a background pointing in x̂3 direction where E(t) = −Ȧ(t). For the
purely electric case the quantum field operators can be decomposed in terms of
spatial momenta which are appropriate quantum numbers. In the following, we
discuss both sQED and QED. The number of pairs for a specific momentum
mode is determined by the reflection coefficient for the corresponding quantum
mechanical scattering problem.
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6.1.1 Bosons

The bosonic field operator can be decomposed as

Φ(x, t) =
∫
d3k exp(ik · x)

[
φk(t)âk + φ∗k(t)b̂†−k

]
. (6.1)

Here, âk (â†k) is the particle creation (annihilation) operator for each mode k and
b̂−k (b̂†−k) denotes the antiparticle creation (annihilation) operator, respectively.
As required, these operators obey the bosonic commutations relations.1 Inserting
the decomposed field operator Φ into the Klein-Gordon equation,

(
�+m2

)
Φ = 0, (6.2)

with the standard d’Alembert operator �, the latter transforms into the following
decoupled equation for each of the mode functions,

φ̈k(t) + Ω2
k(t)φk(t) = 0 (6.3)

where

Ω2
k(t) := m2 + k2

⊥ + (k‖ − eA(t))2. (6.4)

The quantity k⊥ denotes the momentum transversal to the background field ori-
entation and k‖ is the momentum component pointing in the same direction. We
can define an effective potential

V (t) := −(k‖ − eA(t))2 (6.5)

and energy

ε := m2 + k2
⊥, (6.6)

so that

Ωk(t) = ε− V (t). (6.7)

1 The bosonic commutation relations are

[âk, âk′ ] = 0,
[
â†k, â

†
k′

]
= 0,

[
âk, â

†
k′

]
= δk,k′ .

The operators âk and â†k are the creation and annihilation operators for the mode k. Note that
the present convention is different from the one introduced in chapter 7.



6.1. Scattering problem 111

Then, the equation from above transforms into the time dependent Schrödinger
equation,

−φ̈k(t) + V (t) = εφk(t). (6.8)

Next, as the mentioned WKB ansatz, we rewrite the solution for each mode as

φk(t) = αk(t)√
2Ωk(t)

e−i
∫ t Ωk + βk(t)√

2Ωk(t)
ei
∫ t Ωk , (6.9)

φ̇k(t) = −iΩk(t)
 αk(t)√

2Ωk(t)
e−i

∫ t Ωk + βk(t)√
2Ωk(t)

ei
∫ t Ωk

 . (6.10)

Here, αk(t) and βk(t) denote Bogoliubov coefficients which obey the following
coupled first order differential equations

α̇k(t) = Ω̇k(t)
Ωk(t)

βk(t)
2 e2i

∫ t Ωk , β̇k(t) = Ω̇k(t)
Ωk(t)

αk(t)
2 e−2i

∫ t Ωk . (6.11)

Introducing these coefficients leads to a change from the standard time indepen-
dent creation and annihilation operators âk and b̂†−k to instantaneous, i.e. time
dependent, operators Âk(t) and B̂†−k(t). The relation between these operators is
given by the linear transformation Âk(t)

B̂†−k(t)

 =
αk(t) β∗k(t)
βk(t) α∗k(t)

 âk

b̂−k

 . (6.12)

The associated unitarity condition

|αk(t)|2 − |βk(t)|2 = 1 (6.13)

preserves the bosonic commutation relations for the instantaneous operators Âk(t)
and B̂−k(t). According to this convention, the number of pairs with momentum k
produced from the vacuum is given by the modulus of the coefficient βk(∞),

Nk = |β(t = +∞)|2. (6.14)

The factor β describes the electron with momentum k excited in the positive
continuum and, after leaving behind a hole in the negative Dirac sea, a positron
with −k, see also chapter 7. For the effective Schrödinger problem from above, the
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number of produced pairs can be expressed in terms of the reflection probability2

|Rk|2 =
∣∣∣∣∣βk(t)
αk(t)

∣∣∣∣∣
2

t=∞
, (6.15)

namely as

Nk = |Rk|2

1− |Rk|2
. (6.16)

Since the potential V is defined to be negative and the energy E is positive, the
present problem corresponds to an over-the-barrier scattering. Due to this, the
reflection coefficient is exponentially small in the semiclassical regime, E � m2,
and one may use the approximation

Nk ≈ |Rk|2. (6.17)

6.1.2 Fermions

In the fermionic case, the field operator can be decomposed in an analogous way
with the exception that there appears an additional sum over helicity s = ±1,

Ψ(x, t) =
∑
s

∫
d3k exp(ik · x)

[
uk,s(t)âk,s + v−k,sb̂

†
−k,s

]
. (6.18)

Here, the creation and annihilation operators have to satisfy the fermionic anti-
commutation relations.3 In some appropriate basis for the Dirac matrices γµ the
underlying equation (

i/∂ −m
)

Ψ = 0 (6.19)

with /∂ ≡ γµ∂µ can be transformed into the following time dependent Schrödinger
type equation

ψ̈k(t) +
[
Q2

k(t) + ik‖(t)
]
ψk(t) = 0 (6.20)

2 From equation (6.13) we derive

|Rk|2 = |βk|2

1 + |βk|2
= Nk

1 +Nk
.

3 The fermionic anticommutation relations are

{âk,s, âk′,s′} = 0,
{
â†k,s, â

†
k′,s′

}
= 0,

{
âk,s, â

†
k′,s′

}
= δk,k′δs,s′ .



6.2. Riccati equation 113

with

k‖(t) ≡ k‖ − eA(t). (6.21)

Making an appropriate WKB ansatz for the solution, cf. [368], the associated Bo-
goliubov coefficients are determined by the following coupled first order differential
equations

α̇k(t) = k̇‖(t)ε
2Q2

k(t)βk(t)e2i
∫ t

Qk , β̇k(t) = − k̇‖(t)ε
2Q2

k(t)αk(t)e−2i
∫ t

Qk . (6.22)

The corresponding unitarity condition is

|αk(t)|2 + |βk(t)|2 = 1 (6.23)

which preserves the fermionic anticommutation relations for the resulting time de-
pendent creation and annihilation operators. In contrast to the previous bosonic
case the sign is changed. Accordingly, the number of produced pairs with momen-
tum k is given by

Nk = |β(t = +∞)|2 = |Rk|2

1 + |Rk|2
. (6.24)

Again, assuming that the reflection probability |Rk|2 is typically a small number,
we may finally approximate

Nk ≈ |Rk|2. (6.25)

6.2 Riccati equation

6.2.1 Bosons

It is possible to transform the quantum mechanical problem (6.8) into an appro-
priate differential equation. The latter is advantageous for the direct treatment via
numerical integration techniques. The time evolution for the reflection probability
for each mode k is described by the following Riccati equation

Ṙk(t) = αk(t)β̇k(t)− α̇k(t)βk(t)
α2

k(t) = 1
2

Ω̇k(t)
Ωk(t)

[
e−2i

∫ t Ωk −R2
k(t)e2i

∫ t Ωk

]
(6.26)

where the second equality is obtained by inserting the derivatives from (6.11). For
a given k‖ and A(t) the Riccati equation can be solved with the initial condition

Rk(−∞) = 0. (6.27)

The number of pairs is then given by |R(t = +∞)|2, see equation (6.17). This
method is completely equivalent to the kinetic approach discussed in chapter 7.
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6.2.2 Fermions

We can similarly proceed for the spinor case by transforming the problem (6.20)
into a corresponding differential equation. The time evolution of the reflection
coefficient Rk = βk

αk
leads to the following Riccati equation

Ṙk(t) = αk(t)β̇k(t)− α̇k(t)βk(t)
α2

k(t) = −1
2
k̇‖ε⊥
Ω2

k(t)

[
e−2i

∫ t Ωk +R2
k(t)e2i

∫ t Ωk

]
, (6.28)

where the second equality is obtained by inserting the derivatives from (6.22). This
equation can again be solved numerically after imposing the initial condition

Rk(−∞) = 0. (6.29)

The number of pairs is then given by |R(t = +∞)|2.

6.3 Semiclassical approximation

In the following, we particularly focus on the scalar case. The derivative of the
reflection coefficient is given in (6.26).

6.3.1 Dominant contribution

As mentioned before, we assume that Rk(t) is small for all t. This allows to
neglect the nonlinear term ∝ R2

k on the right-hand side in equation (6.26). With
the initial condition from (6.27), we get the following approximate expression in
the asymptotic time limit

Rk(∞) ≈ 1
2

∫ +∞

−∞
dt

Ω̇k(t)
Ωk(t) exp

(
−2i

∫ t

−∞
dt′ Ωk(t′)

)
. (6.30)

Let us remind that the present method does not lead to the correct prefac-
tor [341, 369, 370] which stems from quantum fluctuations around the classical
stationary worldline solutions as we have seen in chapter 5.

We assume the prefactor Ω̇k
Ωk

and the integral
∫ t dt′Ωk(t′) to be analytic functions

in the complex plane including the real axis. In order to perform the integration∫+∞
−∞ dt (· · · ), we close the integration contour in the upper complex half plane, i.e.
=(t) > 0. Since the exponential

e
−2i
∫ t
−∞ dt′ Ωk(t′) (6.31)
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in this region is highly suppressed, this will lead to a suppression of Rk as well.
Thus, the integral (6.30) is dominated by the contributions of the poles determined
by

Ωk = 0 (6.32)

which are the semiclassical turning points, in the following denoted as tTP. From
the latter condition we get

eA(tTP) = ±im, (6.33)

where we have neglected both the transversal momentum k⊥ as well as the parallel
momentum k‖. This approximation is in particular allowed for backgrounds which
we consider. The reason is that for those the distribution for Nk is symmetrically
peaked around k = 0 [34, 151, 342]. Moreover, one should note that the number of
produced pairs with momentum transversal to the external background are neg-
ligible compared to those with momentum pointing in the same direction as the
background, cf. e.g. [34, 160].

According to Cauchy’s theorem, the dominant solution of (6.30) can be estimated
as

Rk(t = +∞) ∼ exp
(
−2i

∫ tTP
dt′ Ω̃(t′)

)
, Ω̃(t) ≡

√
m2 + e2A2(t), (6.34)

for details see the discussion below. In the low energy regime, we may further
approximate [37],

Rk(t = +∞) ∼ exp (−2|imtTP|) . (6.35)

For instance, the simplest case is the situation with a static electric background
for which A(t) = Et. Inserting this potential into (6.33), we get a pair of complex
turning points tTP = ± im

eE
(where k = 0). Plugging tTP into (6.35) gives the stan-

dard tunneling exponent ∼ ES
E
.

6.3.2 Quantum interference

As we have seen in the previous part, there is only one pair of turning points
present for the static electric background. In general, it is possible that many
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turning points contribute to the exponential factor. Usually those which lead to
the smallest imaginary part in (6.34) are the dominating one. However, it can
happen that interference effects appear in momentum space if some have compa-
rable contribution [34, 160, 340–342].

In the present semiclassical approach interference can be incorporated by taking
into account all present turning points. In the following, we briefly sketch the gen-
eral method for sQED. An analogous approach is possible for the spinor case [341].

For simplifying reason, let us assume that Ω2
k has a first order zero. In the vicinity

of the turning point, we can write

Ωk ∼
√
t− tTP. (6.36)

Introducing a function

x(t) =
∫ t

dt′ Ωk(t′), (6.37)

we obtain from the latter approximate form

x ∼ 2
3(t− tTP)3/2 + xTP. (6.38)

Hence, inserting the relations

Ω̇k(t)
Ωk(t) ∼

1
t− tTP

, t− tTP ∼ (x− xTP)2/3, ∂t ∼ ∂x(x− xTP)1/3 (6.39)

into the derivative expression (6.26) of the reflection coefficient (6.30), i.e. without
the nonlinear term, results in

dRk

dx
∼ 1
x− xTP

e−2ix. (6.40)

Then, according to the residue theorem,4 here multiplied with−2πi due to negative
orientation of the contour, we get

Rk(∞) ≈ −2iπe−2ixTP (6.41)
4 For a positively oriented contour γ the solution to the integral∮

γ

f(z)dz

is given by

2πi
∑
j

Resajf

where aj are the poles. For a pole of order one the Residue is Resaf = limz→a(z− a)f(z) which
is equivalent to Cauchy’s integral theorem.
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where

xTP =
∫ tTP

−∞
Ωk(t) dt. (6.42)

Of course, the prefactor is not correct [371, 372]. However, taking into account
the nonlinear term in (6.26) can help [373–375].

Now including all contributions arising from the turning points in the upper half
plane of the complex domain, the approximate result for the reflection coefficient
can be approximated as

Rk(∞) ≈
∑
tTP

e
−2i
∫ tTP
−∞ Ωk(t)dt

. (6.43)

In order to compute the integral in the exponent we first separate it. Namely,
integrals of Ωk(t) along the real axis are real, whereas integrations along the imag-
inary direction result in imaginary values. Thus, we may rewrite the exponential
from above in the form

Rk(∞) ≈ exp
(
−2i

∫ <(tTP,1)

−∞
Ωk(t)dt

)

×
∑
j

exp
(
−2i

∫ <(tTP,j)

<(tTP,1)
Ωk(t)dt

)
exp

(
−2

∣∣∣∣∣
∫ tTP,j

<(tTP,j)
Ωk(t)dt

∣∣∣∣∣
)
.

(6.44)

The second exponent in the sum is real. The first exponent in the sum is the phase
between neighboring turning points obtained by integrating Ωk along the real axis.
Such phases are responsible for the interplay between different turning points and
hence for interference effects. Taking the modulus squared,5 the semiclassical
approximation for the number of produced pairs with momentum k finally reads

Nk = |Rk(∞)|2 ≈
∑
j

e−2Kk,j +
∑
j 6=l

2 cos
(
2Θk,[j,l]

)
e−Kk,je−Kk,l (6.45)

with

Kk,j :=
∣∣∣∣∣
∫ tTP,j

t∗TP,j

Ωk(t) dt
∣∣∣∣∣ , Θk,[j,l] :=

∫ <(tTP,l)

<(tTP,j)
Ωk(t) dt. (6.46)

5 Here, we use ∑
j

(· · · )j

2

=
∑
j

(· · · )2
j +

∑
j 6=l

(· · · )j(· · · )l.
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The first summation in (6.45) corresponds to contributions from independent turn-
ing points. The second sum includes the interference terms between different turn-
ing points. Due to the exponential suppression, it can be seen that the dominant
contribution comes from turning points tTP,j with smallest integral values Kk,j, as
already discussed in section 6.3.1. Moreover, as the functions in the second sum
in equation (6.45) indicate, interference effects become significant if the integrals
Kk,j are comparable for different pairs of turning points

(
tTP,j, t

∗
TP,j

)
where the

second is meant to be the complex conjugated complement.



Chapter 7

Quantum kinetic theory

7.1 Oscillating electric fields

W e consider VPP from the QED vacuum polarized by an electric back-
ground, spatially homogeneous, but time dependent. As in the previous

chapters, we again omit the potential realization of avalanche processes [376] which
may deplete the background. We note that the oscillatory background we will be
assuming can be Fourier expanded in terms of the canonical momentum p. In
addition, we do not consider any magnetic field components. Let us remind that
according to Noether’s theorem the total momentum of each produced pair will
always sum up to zero. Therefore, for a background in form of a purely time de-
pendent oscillating electric field (OEF), producing an electron with momentum p
will guarantee a produced positron with momentum −p. This is similar to the as-
sumptions in the quantum mechanical scattering approach introduced in chapter 6.

We choose the temporal gauge A0(t) = 0, where Aµ = (A0,AAA). The electric field
we take to be E(t) = (0, E(t), 0) with E(t) = −∂tA(t). We again restrict ourselves
to the subcritical regime, E � ES. We take into account neither the collision
between the produced particles nor their inherent radiation fields. We want to
emphasize that previous investigations have shown that such effects are irrelevant
in the subcritical regime [44, 377, 378].

Here, only those Lorentz transformations that leave the background invariant de-
scribe the formal invariance of the vacuum in the presence of the field. This is in
line with group theoretical studies developed for an external constant [379, 380]
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and for a circularly polarized electromagnetic plane wave [381]. Since they form
a subgroup of the full Lorentz symmetry group and the concept of one-particle
states requires its irreducible representation [246], the standard classification of
elementary particles is no longer applicable during the alterations of the exter-
nal oscillatory background. The canonical quantization in QED with an OEF is
possible [222].

7.2 Quantum Boltzmann-Vlasov equation

The main step is to diagonalize the underlying Hamiltonian in every time instant.
As before in chapter 6, this we achieve by reformulating the problem in terms of
time dependent Bogoliubov coefficients. Hence, the fermionic field operator can
be expressed in terms of the background degrees of freedom,

Ψ(xxx, t) = 1
L

3
2

∑
ppp

Φppp(t)eippp·xxx,

Φppp(t) =
∑

s

{
appp,s(t)uppp,s(t) + b†−ppp,s(t)v−ppp,s(t)

}
.

(7.1)

This is called quasiparticle representation where V = L3 denotes the normalization
volume and

ppp = 2π
L
nnn (7.2)

is the discretized momentum with

nnn = (nx, ny, nz), ni = 0,±1,±2, . . . . (7.3)

The time dependent bispinors uppp,s(t) and vppp,s(t) are eigenfunctions of the boost
operator component along the y direction having eigenvalues s = ±1

2 . The time
dependent operators

âppp,s(t), â†ppp,s(t) (7.4)

are the corresponding annihilator and creator for a quasiparticle, respectively.
Similarly,

b̂−ppp,s(t), b̂†−ppp,s(t) (7.5)

are the analogous operators for the antiquasiparticle. These instantaneous opera-
tors satisfy the fermionic anticommutation relations at equal time{

âppp,s(t), â†ppp′,s ′(t)
}

= δppp,ppp′δs,s ′ ,{
b̂ppp,s(t), b̂†ppp′,s ′(t)

}
= δppp,ppp′δs,s ′ ,

(7.6)
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where all other commutations vanish identically.

Now, due to the temporal dependence of the operators, one can introduce quan-
tities that are generically employed in the study of transport phenomena. A well
example is the single particle distribution function (SPDF)

W (ppp, t) =
∑

s
〈vac, in|a†ppp,s(t)appp,s(t)|vac, in〉. (7.7)

The vacuum state |vac, in〉 is defined as usual by

âin|vac, in〉 = b̂in|vac, in〉 = 0 (7.8)

where

âin := âppp,s(tin), b̂in := b̂−ppp,s(tin). (7.9)

The relation between the in-operators (7.9) and the instantaneous one in (7.6) is
determined by the corresponding Bogoliubov coefficients f(ppp, t) and g(ppp, t) whose
explicit derivation can be found in appendix C.

The time evolution equations are

W (ppp, t) = 2|f(ppp, t)|2. (7.10)

Since the representation (7.1) has to satisfy the Dirac equation in the external
background, this can be used to determine f(ppp, t). This procedure results in a
system of coupled ordinary differential equation (ODE) which have been utilized
in order to study various aspects of VPP [34, 340, 342, 382–384].

The equations of the mentioned ODE can be written in the form

iḟ(ppp, t) = appp(t)f(ppp, t) + bppp(t)g(ppp, t),

iġ(ppp, t) = b∗ppp(t)f(ppp, t)− appp(t)g(ppp, t)
(7.11)

satisfying the following initial conditions

f(ppp,−∞) = 0,

g(ppp,−∞) = 1.
(7.12)



122 Chapter 7. Quantum kinetic theory

Here, the dot corresponds to the time derivative. The remaining functions in (7.11)
are given as

appp(t) = wppp(t) + eE(t)px
2wppp(t)(wppp(t) +m) ,

bppp(t) = 1
2
eE(t)ε⊥

w2
ppp (t) exp

[
−i arctan

(
pxq‖

ε2⊥ + wppp(t)m

)]
.

(7.13)

The kinetic momentum pointing in the same direction as the external field is

q‖(t) = p‖ − eA(t). (7.14)

Furthermore, we have

ε2⊥ = m2 + ppp 2
⊥ (7.15)

defined as the transverse energy squared and

w2
ppp (t) = ε2⊥ + q2

‖(t) (7.16)

which characterizes the total energy squared. Here, ppp⊥ = (px, 0, pz) and ppp‖ =
(0, py, 0) are the components of the canonical momentum being perpendicular and
parallel to the external direction direction, respectively. Due to cylindrical sym-
metry with respect to the y axis, we may choose pz = 0 without loss of generality.

The equations (7.11) including the functions (7.13) are already appropriate for a
numerical treatment. For reasons of simplicity, they will be transformed so that
we can work with an integrodifferential equation of the form

Ẇ (ppp, t) = ∂tW (ppp, t) + eE(t)∂q‖W (ppp, t)

= eE(t)ε⊥
w2
ppp (t)

∫ t

−∞
dt′
eE(t′)ε⊥

w2
ppp (t′) [1−W (ppp, t′)] cos

[
2
∫ t

t′
dt′′ wppp(t′′)

]
.

(7.17)

This is known as the quantum Boltzmann-Vlasov equation (QBVE) which allows
to extract some important quantities. This equation satisfies the initial vacuum
condition W (ppp,−∞) = 0. Its derivation starting from the equations in (7.11) is
shown in appendix D.

From the QBVE in (7.17), we already see that VPP is a nonequilibrium time de-
pendent process. The appearance of the temporal nonlocality and the memory
effects indicated by the quantum statistic factor ∝ [1 −W (ppp, t)] shows that the
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transport equation (7.17) possesses some non-Markovian feature [365, 377, 382].
Namely, the SPDF strictly depends on the initial number of degrees of freedom
in the system. Here, we are interested in the asymptotically large time limits,
t → ±∞, where the OEF is switched off, EEE(±∞) → 0. At these times the de-
grees of freedom in the OEF are relaxed to the single particle states. Therefore,
the physically meaningful quantity we consider is the asymptotic SPDFW (ppp,∞).1

The number of produced pairs per unit volume is then defined via the following
momentum integral

N e−e+ = lim
t→∞

∫
d̄3pW (ppp, t) (7.18)

where we have defined for simplicity

d̄ ≡ d/(2π). (7.19)

We should note that the corresponding VPP rate differs from the asymptotic ex-
pression of the vacuum decay rate Γvac(t) per unit volume given in equation (C.20).
Only if |f(ppp,∞)|2 � 1, it is possible to take the approximate correspondence

Γvac(∞) ≈ −Ṅ e−e+ . (7.20)

However, as we will see in the following, due to substantial resonance effects the
former relation is not always satisfied in an OEF. Hence, in general one clearly
has to distinguish between both concepts.

7.3 Resonances and Rabi frequencies

7.3.1 Multimode oscillating field

VPP in an OEF shows characteristic resonance effects basically due to the ab-
sorption of multiple energy packages, photons, resulting in Rabi-like oscillations,
see [385] and [204, 384, 386, 387] for further developments in case of a single-
mode OEF. In the present section, we provide a generalization of the underlying
equations to the case of a multimode OEF within the described framework of

1 The physical interpretation of quasiparticle states in the presence of a time dependent OEF
has been discussed in [101].
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nonequilibrium QFT, see [34]. We start with the following equations

˙̄f(ppp, t) = −eE(t)ε⊥
2w2

ppp (t) ḡ(ppp, t) exp
[
2i
∫ t

t0
dt′ wppp(t′)

]
,

˙̄g(ppp, t) = eE(t)ε⊥
2w2

ppp (t) f̄(ppp, t) exp
[
−2i

∫ t

t0
dt′ wppp(t′)

] (7.21)

which are equivalent to the equation in (7.17), see appendix D. The lower inte-
gration limit t0 leads to an arbitrary phase at a given time instant. Moreover, we
have again W (ppp, t) = 2|f̄(ppp, t)|2.

Next, we decompose the background consisting of periodic functions as follows

Aµ(η1, . . . , ηk) =
k∑
i=1
A(i)
µ (ηi), with ηi = ωit. (7.22)

Each mode A(i)
µ (ηi) is a 2π-periodic function in ηi. Of course Aµ(η1, . . . , ηk) is not

periodic. However, each of the functions are separately periodic in the correspond-
ing variables η1, η2, . . . , ηk. Hence, we can extract a periodic part Θ̃ppp(η1, . . . , ηk)
in the dynamical phase∫ t

t0
dt′ wppp(t′) = ε̄pppt+ Θ̃ppp(η1, . . . , ηk), (7.23)

with ε̄ppp being the quasiparticle energy. The product of functions in equations
(7.21) can be Fourier expanded,

eE(t)ε⊥
w2
ppp (t) exp

[
2i
∫ t

t0
dt′ wppp(t′)

]
'

∞∑
n1...nk=−∞

Λn1,...,nk(ppp)

× exp
2iε̄pppt− i

k∑
j=1

njηj

 . (7.24)

The Fourier coefficients turn out to be k-fold parametric integral functions

Λn1,...,nk(ppp) =
∫ π

−π
d̄3p η1 . . .

∫ π

−π
d̄3p ηk

eE(η1, . . . , ηk)ε⊥
w2
ppp (η1, . . . , ηk)

× exp
2iΘ̃ppp(η1, . . . , ηk) + i

k∑
j=1

njηj

 (7.25)

whose explicit form is not important for the generic nature of the process.

Now, the only time dependence in (7.24) appears in the complex exponent. This
will result in enormous oscillations as soon as t→ ±∞. From this, the dominant
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contribution is obtained when the exponent vanishes which immediately leads to
the energy conservation

2ε̄ppp =
k∑
j=1

njωj, (7.26)

denoting the Fourier indices by n1, . . . , nk. Dropping the rapidly varying terms,
equation (7.24) can be approximated by the most slowly altering Fourier mode2

eE(t)ε⊥
w2
ppp (t) exp

[
2i
∫ t

t0
dt′ wppp(t′)

]
≈ Λn1,...,nk(ppp) exp [i∆n1,...,nk(ppp)t] (7.27)

with the detuning parameter

∆n1,...,nk(ppp) ≡ 2ε̄ppp −
∑
j

njωj. (7.28)

Owing to the latter approximation, equation (7.21) reduces to a system of ODEs.
The corresponding solutions can be found much easier. The resulting function
f̄(ppp, t) can be used to express the SPDF as

Wn1,...,nk(ppp, t) ≈
1
2
|Λn1,...,nk(ppp)|2

Ω2
Rabi(ppp)

sin2 [ΩRabi(ppp)(t− tin)] , (7.29)

assuming that the field is instantaneously switched on at tin satisfying

f̄(ppp, tin) = 0,

ḡ(ppp, tin) = 1.
(7.30)

The Rabi-like frequency of the instantaneous vacuum is

ΩRabi(ppp) ≡
1
2
[
|Λn1,...,nk(ppp)|2 + ∆2

n1,...,nk
(ppp)
] 1

2 (7.31)

which clearly manifests the instability in a multimode OEF. This statement can
be verified by supposing that the standing wave is instantaneously switched off
after some finite interaction time

τ ≡ tout − tin. (7.32)
2 Note that in case of commensurable field mode frequencies ω1, . . . , ωk, there can exist more

than one exact solution of equation (7.26). For several integer combinations of frequencies this
can apply approximately as well, see section III-C of [34]. So in general it is possible to have
more than one dominant Fourier mode.
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7.3.2 Driven two-level system

Let us set for simplicity ppp = 0 and consider equation (11.32) near the resonance3

[34], means

∆n1,...,nk ' 0. (7.33)

In this case, the Rabi-like frequency approaches

Ω(0)
Rabi ≡ ΩRabi(0) ≈ 1

2 |Λn1,...,nk(0)| (7.34)

which leads to the following approximation for the SPDF from equation (11.32)

Wn1,...,nk(t) ≈


2 sin2

[
Ω(0)

Rabi(t− tin)
]
, t < tout

2 sin2
[
Ω(0)

Rabiτ
]
, t > tout

. (7.35)

The latter indicates an oscillatory pattern due to continuous transitions charac-
terized by a period

T = 2π
Ω(0)

Rabi
. (7.36)

These continuous transitions resemble the Rabi oscillations associated with a
driven two-level atomic system. Therefore, from (11.44) we deduce that in a
multimode OEF the number of quasiparticles with ppp = 0 is not stationary. For
times larger than the interaction time, t > τ , the SPDF for the asymptotic states
is constant. This clearly indicates that both the quantum vacuum and the pro-
duced pairs approach the stability limit which is of course required for experimental
measurements.

3 Away from the resonance the oscillations are faster, but their amplitude is lowered substan-
tially.
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Quantum vacuum



Chapter 8

Dynamical enhancement via
reflections

8.1 Outline

W e study the enhancement of the VPP rate via two mechanisms, the as-
sisted mechanism and the assisted dynamical mechanism as described in

section 1.4. Both mechanisms apply in a time dependent electric background that
consists of a strong field superimposed with a weak field oscillating at a much
shorter time scale. The main difference between both is that in the standard as-
sisted mechanism the strong field is assumed to be (locally) static. A complete
analytical treatment for such complex backgrounds is extremely challenging and
has not been done so far.

We utilize the worldline instanton method to develop an effective reflection ap-
proach.1 Based on this approach, the enhancement can simply be understood by
means of certain critical points which can be directly obtained from the instanton
equations introduced in (5.23). While one of the critical points is the closing point

1 It is important to note that the effect of assistance generally requires the nonperturbative
treatment of both the strong and the weak field and thus preserves the characteristic nonper-
turbative behavior of the Schwinger effect, see section 1.4. A nonperturbative treatment of the
problem is automatically realized in the reflection approach. A characteristic property for back-
grounds of the mentioned type is the appearance of a critical threshold. As we will show for
various cases, below the threshold there are no substantial effects due to assistance. It should
be mentioned that perturbation theory with respect to the weak dependence cannot account for
the described critical behavior, see e.g. [31].
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of the stationary worldline path, the other serves as an Euclidean mirror which
reflects and squeezes the worldline instanton. We show that it is basically this
reflection and shrinking which is responsible for an enormous enhancement of the
VPP rate.

Specifically, we find that many properties and characteristic features can be ex-
plained by means of such reflections even when poles in the instanton plane do not
exist. Particularly, we focus on the role of the assisting weak rapid field.

Consistent with previous studies, we first discuss the standard assisted mechanism
with a static strong field and certain weak fields with a distinct pole structure in
order to show that the reflection takes place exactly at the poles. We also discuss
the effect of possible subcycle structures.

Then, in the first main part, we extend the reflection picture to weak fields which
have no poles present and illustrate the effective reflections with explicit exam-
ples. We find that an additional field strength dependence for the rate occurs in
such cases. We analytically compute the characteristic threshold in the standard
assisted mechanism given by the critical combined Keldysh parameter. We dis-
cuss significant differences between these two types of weak fields. For various
backgrounds, we present the contributing instantons and analytically predict the
corresponding rates treating both fields nonperturbatively.

In the second main part, we study the case with a nonstatic strong field which
gives rise to the assisted dynamical mechanism. For different strong field profiles we
investigate the impact on the critical combined Keldysh parameter. As an explicit
example, we analytically compute the rate by employing the exact reflection points.
The validity of the predictions for both mechanisms is confirmed by numerical
computations.2

2 For the numerical treatment we use the results from the direct approach described in section
5.4, see also [37].
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8.2 Stationary worldlines

We consider time dependent backgrounds oriented in the x̂3 direction. The instan-
ton equations (5.23) then become

ẍ4 = +iea
m
∂4A3(x4)ẋ3,

ẍ3 = −iea
m
∂4A3(x4)ẋ4.

(8.1)

To allow only real instanton solutions, we consider electric backgrounds which are
described by analytic even functions in Minkowskian time t. Note that, generally
those can be complex as well [160]. The Euclidean vector potential (x4 = it) can
be written in the form

A3(x4) = −iEF (x4), (8.2)

where F is assumed to be an odd real function. The complex i in front of F
guarantees that the equations (8.1) have real solutions.

It has been shown that time dependent inhomogeneous electric backgrounds can
enhance the VPP rate even with field strengths E far below ES [32, 141–143, 145,
146, 383, 388]. The physical picture is that the vacuum energy gap can effec-
tively be lowered by the additional inhomogeneity in spacetime. Such an effect
also applies in atomic ionization processes [358]. A geometric explanation based
on worldline instantons has previously been discussed in section 5.8.

In the present case, we consider a linearly combined electric background of the
form

E(t) =
(
Ef(t) + Ẽg(t)

)
x̂3. (8.3)

The weak rapid field, ∝ Ẽ with frequency ω̃, is described by an analytic function
g(t), whereas the the strong slow field, ∝ E with frequency ω, is characterized by
a function f(t). We assume that

ES � E � Ẽ,

m� ω̃ � ω
(8.4)

holds. Furthermore, both functions f and g are taken to be even in Minkowski
time t. After analytic continuation to the complex domain the corresponding gauge
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potential reads

A3(x4) = −iEF (x4)− iẼG(x4). (8.5)

Here F (x4) and G(x4) denote the associated odd functions obtained after the
integration of f(t) and g(t), respectively. Inserting the derivative of the gauge
potential

∂4A3(x4) = −i
(
EF ′(x4) + ẼG′(x4)

)
(8.6)

into the instanton equations (8.1), we find the following nonlinearly coupled system
of differential equations

ẍ4 = +eaE
m

(F ′(x4) + εG′(x4)) ẋ3,

ẍ3 = −eaE
m

(F ′(x4) + εG′(x4)) ẋ4,

(8.7)

where a dimensionless parameter ε := Ẽ/E is introduced for clarity.

8.3 Instanton reflections

For the seek of convenience, we first write down the following dimensionless Keldysh
parameters [146, 357, 389],

γ = mω

eE
, γ̃ = mω̃

eE
. (8.8)

The strong field parameter γ interpolates between the adiabatic nonperturbative
tunneling regime, γ � 1, and the antiadiabatic perturbative multiphoton regime,
γ � 1 [256]. A background composed of a single inhomogeneous field with γ > 0
gives rise to the dynamical Schwinger mechanism without showing the effect of
assistance. The assisted dynamical mechanism is discussed in section 8.6.

The second parameter γ̃ in (8.8) is usually called the combined or relative Keldysh
parameter, respectively. It involves the strong field amplitude E and the weak
field frequency ω̃. In the limit γ̃ → 0 the standard Schwinger mechanism is ap-
proached. Notably, γ̃ � 1 does not correspond to a pure perturbative multiphoton
weak field. It includes both multiphotons with the energy ω̃ as well as the depen-
dence on the field strength E, see e.g. [32]. We will see that in cases where the
weak field possesses a distinct pole structure, this parameter becomes the main
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quantity in the standard assisted mechanism.3

In principal, we can integrate the second equation in (8.7)

ẋ3 = −eaE
m

(F (x4) + εG(x4)) (8.9)

and by using the kinematic invariant a =
√
ẋ2

3 + ẋ2
4, see equation (5.22), we may

write the equation for ẋ4. However, the integral is generally difficult to solve an-
alytically. In certain cases a reflection approach [32] provides a simplified way to
tackle this problem approximately, see also [152].

Namely, since we are interested in the limit ε� 1, we may omit the second term
in equation (8.9). However, going back to the original instanton equations in (8.7),
this is allowed as long as G′(x4) is sufficiently small. As soon as it becomes very
large, which happens for sure at some pole determined by

[g(xp
4)]−1 = 0, (8.10)

we expect a substantial contribution from this term. For the moment, let us there-
fore assume that the weak field has a distinct pole structure. Note that due to
symmetry reasons, which apply for the specific background configurations consid-
ered here, it is sufficient to do the present analysis with respect to the pole on the
positive Euclidean time axis, xp

4.

Thus, the weak field pole acts as an infinite wall where the instanton will be
reflected with a nonvanishing velocity ẋ4. Away from these Euclidean mirrors, as
we call such reflection points, we neglect the second terms in the brackets and
integrate the instanton equations approximately as

ẋ3 ≈ −a
ω

γ
F (x4),

ẋ4 ≈ ±a

√√√√1−
(
ω

γ
F (x4)

)2

.

(8.11)

Since at the reflection points we assume ẋ4 6= 0, the invariant a is expected to
be modified. For the relevant limit ε � 1, we then write the external part in the

3 We discuss in detail that weak fields without a distinct pole structure lead in general to an
additional ε dependence in the VPP rate, cf. section 8.5.
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worldline action (5.12) as

Wext = ie
∫ 1

0
du ẋ · A ≈ eE

∫ 1

0
du ẋ3(u)F (x4(u)), (8.12)

Due to the instanton symmetry

x3 → −x3,

x4 → −x4
(8.13)

we may use the relation ∫ 1/4

0
du ẋ3 =

∫ xc
4

0
dx4

ẋ3

ẋ4
, (8.14)

since the derivatives F ′ and G′ are even functions. Here, xc
4 is the closing point at

the intersection between the first and second quarter where x3 = 0. Accordingly,
we can deduce the external part of the stationary worldline action in equation
(5.25),

W0,ext = 4eE
∫ xc

4

0
dx4

−ω
γ
F (x4)F (x4)√

1−
(
ω
γ
F (x4)

)2
, (8.15)

with xc
4 denoting the point where the instanton has to be closed.

At this stage we are confronted with the problem of choosing an appropriate closing
point. One may think about the critical point

ω

γ
F (x∗4) = 1, (8.16)

that we can read off directly from the denominator in equation (8.15). This point,
however, corresponds to ẋ4 = 0 which cannot be allowed in the reflection picture
with poles in the instanton plane present. If the instanton is reflected at the pole
of the weak field, the path has to be closed there as well. Therefore, in case of
reflection, means if the weak field assists the process of VPP, we have to set

xc
4

!= xp
4. (8.17)

Otherwise, if

xc
4 = x∗4, (8.18)

the instanton path is closed much earlier, means no resizing of the instanton due
to reflections will take place.
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Figure 8.1: Comparison of assisted (left) and standard Schwinger mechanism (right) in time
dependent inhomogeneous electric background. The former is characterized by the additional
instanton reflection due to the additional weak, but rapid field.

The described behavior is schematically illustrated in figure 8.1. In the left panel,
we have drawn the situation in the reflection case where xc

4 = xp
4. In the right

panel, the instanton is closed before reaching the pole, i.e. xc
4 < xp

4. The reflection
condition in equation (8.17) shows that the profile of the weak rapid field, which
basically determines the position of the pole xp

4, is crucial for the assisted mech-
anism. Moreover, the profile of the strong slow field, f , determines the form of
the integrand in equation (8.15). Hence, the interplay between both contributions
will be relevant. We still need to find the invariant a in order to compute the
stationary kinetic term in (5.25),

W0,kin = ma. (8.19)

In fact, demanding the closing point xc
4 to be equal to xp

4, cf. equation (8.17),
leads to substantial modifications of the internal invariant a.

Now, we first rewrite the integration measure and set xc
4 = xp

4 in order to find

1
4 =

∫ 1/4

0
du =

∫ xp
4

0

dx4

ẋ4
. (8.20)

From this equality we can easily determine the kinematic invariant in equation
(5.22) after inserting ẋ4 from (8.11) into the latter integrand on the right-hand
side which yields the following integral representation

a = 4
∫ xp

4

0
dx4

1√
1−

(
ω
γ
F (x4)

)2
. (8.21)

Altogether, combining the relations in equations (8.15) and (8.21), we find the



8.4. Assisted mechanism: fields with poles 135

following integral expression for the stationary worldline action

W0 = 4m
∫ xp

4

0
dx4

√√√√1−
(
ω

γ
F (x4)

)2

. (8.22)

8.4 Assisted mechanism: fields with poles

We begin by illustrating the previous modifications for some well known back-
ground configurations. We consider a static strong field, i.e.

f(t) = 1, F (x4) = x4, (8.23)

which in the presence of a superimposed weak rapid field gives rise to the standard
assisted mechanism [32]. We note that for γ � 1 the effect of assistance does not
set in for relatively small γ̃. This is due to the mentioned occurrence of a threshold
value for the latter which is characteristic for the assisted mechanism [32, 37]. In
such a case, the strong field alone is sufficient to drive the enhancement. This
corresponds to the standard dynamical mechanism which gives rise to the multi-
photon process operating in the perturbative regime, see section 1.4.

Here, we focus on the static strong field case for which the integral in (8.21) can
be solved analytically

a = 4
∫ xp

4

0
dx4

1√
1−

(
ω
γ
x4
)2

= 4γ
ω

arcsin
(
ω

γ
x4

) ∣∣∣∣∣
xp

4

x4=0
(8.24)

leading to the following kinematic invariant

a = 4γ
ω

arcsin
(
ω

γ
xp

4

)
(8.25)

that depends on the pole xp
4 that is not specified yet. The latter expression already

signals the appearance of the mentioned critical value for γ̃ depending on xp
4, since

we need to satisfy
ω

γ
= ω̃

γ̃
≤ 1
xp

4
. (8.26)

Accordingly, the instanton path in the right-half plane, i.e. u ∈
[
−1

4 ,
1
4

]
, see

equation (5.7), is simply an arch-like curve and the large mass approximation
condition from (5.10) becomes

4γm
ω

arcsin
(
ω

γ
xp

4

)
� 1. (8.27)
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After integrating the expression in (8.1) and inserting the modified invariant in
(8.25), we obtain

x4(u) = m

eE
sin

(
4uarcsin

(
ωxp

4
γ

))
,

x3(u) = m

eE
cos

(
4uarcsin

(
ωxp

4
γ

))
− C.

(8.28)

The closed stationary worldline path is realized by the integration constant

C = x3

(
u = ±1

4

)
= m

eE
cos

(
arcsin

(
ωxp

4
γ

))
. (8.29)

The latter shifts the instanton along the x3 axis in order to guarantee the condition

x3

(
u = ±1

4

)
= 0. (8.30)

Finally, evaluating the stationary worldline action with the help of the previously
derived integral form in equation (8.22) yields the following result

W0 = 4m
∫ xp

4

0
dx4

√
1− (ωx4/γ)2

= 2m
ω

xp
4ω

√√√√1−
(
xp

4ω

γ

)2

+ γarcsin
(
xp

4ω

γ

) . (8.31)

8.4.1 Examples

In the following, we demonstrate the described reflections for two different back-
grounds consisting of a weak rapid field with poles in the instanton plane.

8.4.1.1 Weak Sauter

In the first example, we consider a weak field of Sauter type, i.e.

g(t) = sech2(ω̃t), G(x4) = tan(ω̃x4)
ω̃

. (8.32)

The pole structure for this pulsed field is of multi type. However, the (first) relevant
pole for g(x4) = sec2(ω̃x4) is placed at

xp
4 = π

2ω̃ , (8.33)

which leads to the following invariant

a = 4 m
eE

arcsin
(
π

2γ̃

)
. (8.34)
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Figure 8.2: Instanton path for an electric background as superposition of a strong static and
weak Sauter field is shown for different combined Keldysh parameters γ̃ given in the plot labels.

The latter invariant signals that the combined Keldysh parameter has to satisfy
γ̃ > π/2, otherwise we would end up with a ∈ C. Below the critical value,

γ̃crit = π

2 , (8.35)
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there will be no effect of the weak field and we are left with the strong static
field contribution, see [32]. Importantly, even the weak field does not contribute,
there is still a nonzero, but small VPP rate due to the nonperturbative strong
field. Here, the strong field can be in general assumed as locally static as it is seen
by the weak but rapid field. It is clear that this can only be allowed for a large
frequency difference. As soon as γ approaches larger values, it leads to substantial
effects below the critical value γ̃crit as we discuss in section 8.6.

Coming back to the present example, inserting the pole xp
4 into the modified so-

lutions in (8.28), we plot the instanton path for different frequencies ω̃ as shown
in figure 8.2. The size of the instanton decreases with larger γ̃. It is this shrink-
ing which increases the VPP rate, since the stationary worldline action becomes
smaller if the size of the instanton is reduced. These lens shaped instanton paths
also apply if the strong field is a spatially inhomogeneous Sauter field [152].

After inserting the pole into the solution (8.31) we get

W0 = m2

eE

(
π

2γ̃2

√
4γ̃2 − π2 + 2arcsin

(
π

2γ̃

))
, (8.36)

cf. e.g. [32]. Alternatively, this result can be obtained by plugging the instanton
solution from (8.28) into the expression (8.22) and integrating over u ∈

[
0, 1

4

]
.

8.4.1.2 Weak Lorentzian

A second example we want to discuss is the case with a weak Lorentzian field
described by

g(t) = 1
(1 + (ω̃t)2)3/2 , G(x4) = 1

ω̃

ω̃x4√
1− (ω̃x4)2

. (8.37)

The function

g(x4) = 1
(1− (ω̃x4)2)3/2 (8.38)

has the pole

xp
4 = 1

ω̃
. (8.39)



8.4. Assisted mechanism: fields with poles 139

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

γ
˜
= 1

-0.3-0.2-0.1 0.1 0.2 0.3

-1.0

-0.5

0.5

1.0

γ
˜
= π / 2

-0.1 0.1

-1.0

-0.5

0.5

1.0

γ˜ = 3 π / 4

Figure 8.3: Instanton path for an electric background as superposition of a strong static and
weak Lorentzian field is shown for different combined Keldysh parameters γ̃ given in the plot
labels.
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Except the factor π/2, this case resembles the example before and is therefore
expected to lead to similar results. We should remark that not the visually in-
distinguishable bell shaped profiles of the fields is responsible for this similarity,4

cf. [37]. This aspect is discussed in detail in section 8.5.

The modified invariant is given by

a = 4 m
eE

arcsin
(

1
γ̃

)
(8.40)

which leads to

γ̃crit = 1, (8.41)

cf. [390]. Consequently, the weak Lorentzian field will contribute much earlier
compared to the previous Sauter field as it is illustrated in figure 8.3. Inserting
the pole into (8.31), we find the stationary worldline action [390]

W0 = m2

eE

(
2
γ̃2

√
γ̃2 − 1 + 2arcsin

(
1
γ̃

))
. (8.42)

The comparison ofW0 for both fields is shown in figure 8.4. The difference with re-
spect to the critical threshold is clearly observable. Despite the relative difference
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W0 [m2 /eE]

Static

Strong static + Weak Sauter

Strong static + Weak Lorentzian

Figure 8.4: Stationary worldline actionW0 in units of m
2

eE is shown for an electric background as
superposition of a strong static and weak Sauter/Lorentzian (yellow/green) field. The horizontal
blue line corresponds to the static field case with W0 = πm

2

eE .

between the curves, we find that both follow similar trends. Identical results will
apply, if we increase the frequency of the Sauter field by a factor π

2 . This we can
4 It is rather the distinct pole structure of the field which is responsible for such a similarity.
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already observe directly by looking at figure 8.4. For instance, in the Lorentzian
field case the value W0 ≈ 1.8 × ES

E
is reached at γ̃ ≈ 2. The same result applies

for the Sauter field at γ̃ ≈ 3.2 which is just the mentioned factor π
2 .

Now, suppose a general Lorentzian described by

g(t) = 1
(1 + (ω̃t)2)d/2

, (8.43)

where d ∈ N. Apparently, we will obtain the same pole as before which is the
inverse of ω̃. It turns out that in the relevant regime ε � 1 the pole is suffi-
cient to predict the assistance. Namely, after the rotation in the complex plane
the variation of d will have negligible effects on the rate.5 It is the reflection at
the pole from equation (8.39) that predominantly determines the strength of the
enhancement.

8.4.2 Effects of subcycle structure

In the following, we discuss the possible impact of an additional oscillatory subcy-
cle structure. This situation is reflected in laser setups where the field is usually a
very short wave pulse.6 Hence, the question is, how will the rate be influenced?

In order to get some insight, we consider a simple oscillatory pulse described by

g(t) = 1− 3(ω̃t)2 − 2(Nω̃t)2

(1 + (Nω̃t)2)5/2 , G(x4) = 1
ω̃

ω̃x4 + (ω̃x4)3

(1− (Nω̃x4)2)3/2 , N ≥ 1. (8.44)

Its comparison for N = 1 with the Lorentzian profile (8.37) is depicted in the
top-left panel in figure 8.5. In the general case, we find the generalized Lorentzian
pole

xp
4 = 1

Nω̃
. (8.45)

For sufficiently small ε the subcycle structure is expected to be irrelevant, in some
sense, analogous to the considerations before. This means that the pole structure

5 Actually, the variation of d minimally alters the effective field strength. However, this
contribution is small in comparison to effects caused by instanton reflections for γ̃ ≥ γ̃crit.

6 Despite the fact that those are electromagnetic pulses, a pure electric field of this type is
still a good approximation. It can be realized, for instance, through a collision of two counter-
propagating pulses equal in their (linear) polarization and intensity. Usually, the spatial depen-
dence in that case can be neglected due to delocalization effects in vacuum pair production, see
chapter 10, particularly section 10.3.1, as well as chapter 11.
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of the bell shaped Lorentzian mainly regulates the strength of the enhancement.

The expected behavior is indeed confirmed in figure 8.5. In the top-right panel
we have plotted again W0 for the previous Lorentzian field, but now confronting
it with numerical curves for different ε. For ε < 0.01 the analytical prediction
and the numerical result are almost identical. Only for ε = 0.01 there appears a
notable difference. Doing the same computation for the oscillatory pulse, equation
(8.44), we identify a similar trend. Despite the fact, that for larger ε one observes
a stronger deviation which is completely plausible, since the increased total effec-
tive field strength contributes as well, we observe that the prediction agrees very
well with the numerical results.7 Hence, having obtained the exact reflection point
turns out to be sufficient to predict the stationary worldline action and hence the
VPP rate in the interesting regime ε� 1. For γ̃ � 1 both curves merge with each
other, independent of ε.

The previous observations are interesting, since pulsed fields can be described by
an appropriate oscillatory function multiplied with some bell shaped envelope func-
tion. Usually such envelopes lead to poles which are closer to the origin than the
effective reflection points for (infinitely extended) oscillating fields, see section 8.5.
Thus, it is exactly the latter pole originating from the envelope function which will
predominantly determine the reflection of the instanton. Note that an envelope
function which can model such a pulsed field may also exist without a distinct pole
structure. An example is the Gaussian field studied in section 8.5.

At least for ε� 1, we therefore expect that the assistance is mainly determined by
the pole structure of the envelope function and not by the encased oscillatory sub-
cycle structure. However, this strictly applies for the total VPP rate, cf. e.g. [344].
Differences in the momentum spectrum due to the inner subcycle structure can
still be visible. The latter turn out to be very decisive, basically in form of in-
terference patterns, cf. e.g. [34, 340–342, 391]. The observed features will also
change for fields which do not fulfill the symmetry properties we have assumed for
the present studies.

7 To compute W0 numerically we transform the worldline action as described in 5.4 making
use of the underlying structure of the instanton equations (8.1), cf. e.g. [37]. The integration is
done with the standard Mathematica routine.
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Figure 8.5: Analytically and numerically computed stationary worldline actionW0 for the weak
oscillatory pulse in (8.44) with N = 1 (bottom-left) and Lorentzian (8.37) (top-right) profile.
The values for ε are given in the plot legend. The function g(t) for the oscillatory pulse (blue)
and Lorentzian field (yellow) is plotted in the top-left panel. The comparison between the Sauter
and Lorentzian field is depicted in the bottom-right panel where the frequency for the former
one is multiplied by π/2. This leads to the same reflection point xp

4 , see (8.33) and (8.39). Even
though the profiles look different, the corresponding stationary worldline actions are identical for
field strength ratios ε . 10−3.

Another point is that the critical pole for the Lorentzian field is obtained if we
multiply the critical frequency for the Sauter field by a factor π

2 . For a sufficiently
small weak field, say ε = 10−3, the rate is identical for both cases, confirmed by
numerical computations as well. However, the field profiles with this frequency
ratio clearly differ, see bottom-right panel in figure 8.5. This is similar to the
previous situation with the oscillatory pulse. Despite the visual differences in
Minkowski spacetime, we find identical results caused due to same critical points
in the instanton plane.
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8.5 Assisted mechanism: fields without poles

We have so far illustrated the instanton reflections for backgrounds which lead to
a distinct pole structure in the instanton plane. The assisted mechanism operates
more general, namely also for nonstatic weak fields with a completely different
profile [33–37, 41, 392, 393]. A much considered example is the case of a weak
sinusoidal field which is extended to infinity and does not have poles.

As we have seen in the previous examples, instanton reflections at the weak field
poles turn out to be the main mechanism behind assistance. Motivated by this
observation, we come to the first main goal of the present chapter. After a brief
sketch of the basic idea, we aim to find out analogous reflection points in order to
generalize the picture from above even to the case where poles from the weak field
do not exist.

8.5.1 Motivation

f(x4)

ϵ g(x4)

x4

Lorentzian

f(x4)

ϵ g(x4)

x4

Gaussian

f(x4)

ϵ g(x4)

x4

sinusoidal

Figure 8.6: Intersection points between the strong and weak field as reflecting mirrors: The
functions f(x4) (gray line) and εg(x4) (pink curves) are plotted schematically versus x4. After
rotation in the complex plane the strong static field becomes again static (gray line). The
inhomogeneous weak field, however, becomes a positive monotonic function (pink curves). The
weak field is assumed to be Lorentzian (left), Gaussian (center) and sinusoidal (right). Note
that, in contrast to the Lorentzian field, the last two have not a distinct pole structure.

Let us consider the following case: in the limit ω̃ � ω, the function g will be curved
much stronger than the slower varying function f . For sufficiently large frequencies
ω̃ such a bending results in a wall-like potential confining a considerable region
of the strong static curve f as sketched in figure 8.6. The left panel shows the
case with a weak Lorentzian field. The infinite wall is formed at the poles xp

4. In
the remaining two other cases, the Gaussian (center) and sinusoidal (right) field,
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we observe a similar picture. These fields as well seem to result in some effective
reflectors located around the intersection points between f and εg. Thus, at least
for a sufficiently large frequency ω̃, we may expect that the intersection points,
denoted in the following by xi

4, will play a similar role as poles in the instanton
plane. Of course this is a very rough picture. Later, we will show that improving
the location of such effective reflection points is indeed necessary.

According to the described analogy, let us set as a first attempt

xp
4 = xi

4. (8.46)

Taking into account f ∼ F ′ and g ∼ G′, except the prefactors in front, we have to
solve the following conditional equation

F ′(xi
4) != εG′(xi

4). (8.47)

Note that the latter also arises from the original instanton equations in (8.7),
namely, when we want to determine the point at which both fields contribute
equally. Previously, it was the first expression in (8.7) where we have neglected
the term proportional to ε away from the poles. So it is natural to look for critical
points of the described type. Finding a solution for the equation (8.47) by assum-
ing F (x4) = x4 is a straightforward task, see section 8.4.

On the other hand, integrating the spatial coordinate ẍ3, see equation (8.9), we
obtain a second important conditional equation

F (x4) = εG(x4) (8.48)

which basically determines the true critical Keldysh parameter. Indeed, it actu-
ally corresponds to some equivalent condition8 in the semiclassical approach to the
quantum mechanical scattering formulation discussed in chapter 6.

For weak poleless fields, the equation (8.48) is in general transcendental and cannot
be solved directly. We will argue and demonstrate later that perturbing around xi

4,
which is much easier to obtain, proves very powerful in order to analytically derive
an approximate solution for the equation (8.48). This will allow us to analytically

8 Such a conditional equation will lead to a complex turning point which is equally determined
by both fields.
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predict the critical point where both the static strong field and the weak rapid
field contribute equally.

Besides, applying xi
4 for the present purpose is additionally motivated by recent

studies. Namely, the critical threshold can be estimated to a remarkable accuracy
just by applying such intersection points which lead to the same predictions as
in [37, 393]. Due to equation (8.47), it is evident that the effective reflector will
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ϵ g(x4)
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f(x4)

ϵ g(x4)
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Figure 8.7: Similar plot as in figure 8.6. The strength of the weak field is decreased by 5
orders of magnitude compared to the latter plots. The poles for the Lorentzian field (left) do not
change. However, the position of the intersection points for the Gaussian (center) and sinusoidal
(right) field depend on the parameter ε.

depend on the strength parameter ε, another common observation recently dis-
cussed in [37]. Note that such an ε dependence will also apply for the quantum
fluctuation prefactor discussed in section 5.5. This has been shown in numerical
investigations [390].

The ε dependence is schematically demonstrated in figure 8.7. The location of true
poles is fixed, i.e. independent of ε. However, for poleless fields a huge difference
applies where the strength of the weak field is decreased by five orders of magnitude
relatively to figure 8.6. One may expect that the prescribed procedure becomes
more accurate as soon as ε → 0, since this would lead to a very fast increase of
the weak field curve in the intersection points, similar as one finds in the vicinity
of a true pole, cf. left plot in figure 8.7. For poleless weak fields we expect that
the point at which the weak field contributes as much as the strong field will drift
towards the intersection point.



8.5. Assisted mechanism: fields without poles 147

10
-10

10
-8

10
-6

10
-4

10
-2

ϵ

5

10

20

γ
˜crit

Figure 8.8: Critical combined Keldysh parameter γ̃crit for the weak sinusoidal and Gaussian
field, superimposed with a strong static field, is plotted versus ε, where γ̃crit is evaluated assuming
the critical point to be equal to the intersection point xi

4.

8.5.2 Intersection points as reflectors

In the following two sections, we use the intersection points as effective reflectors
in order to predict the VPP rate for γ̃ above the critical threshold. Improvements
for parameters in the vicinity of the critical value are discussed in section 8.5.7.

8.5.2.1 Weak sinusoid

Assume a weak sinusoidal field described by

g(t) = cos(ω̃t), G(x4) = sinh(ω̃x4)
ω̃

. (8.49)

Inserting the derivatives F ′ and G′ into the equation (8.47) leads to the following
intersection point

xi
4 = arccosh(1/ε)

ω̃
. (8.50)

Using the condition in equation (8.46), we can directly obtain the modified kine-
matic invariant by applying the relations in (8.25) and (8.8),

a ≈ 4γ
ω

arcsin
(

1
γ̃

arccosh(1/ε)
)
. (8.51)
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For the critical combined Keldysh parameter, we find from the latter expression,
or alternatively by solving (8.112),

γ̃crit = arccosh(1/ε) ≈ ln(2/ε) ≈ | ln(ε)|, (8.52)

since ε � 1. It is remarkable that this rough estimation already agrees with the
WKB prediction found in [37]. The result from above is depicted in figure 8.8.

Subsequently, applying the findings in (8.28), we obtain the approximate instanton
path described by

x4(u) ≈ m

eE
sin

(
4uarcsin

(
arccosh(1/ε)

γ̃

))
,

x3(u) ≈ m

eE
cos

(
4uarcsin

(
arccosh(1/ε)

γ̃

))
− C

(8.53)

with C = x3(u = ±1/4). Inserting equation (8.50) into equation (8.31), we con-
clude

W0 ≈
m2

eE

(
2arccosh(1/ε)

γ̃2

√
γ̃2 − arccosh2(1/ε) + 2arcsin

(
arccosh(1/ε)

γ̃

))
.

(8.54)

The resulting plots for the stationary worldline action from (8.54) are depicted
in figure 8.9. Although the analytical prediction follows the trend of the exact
numerical curve, both considerably differ from each other. There will be some
region right after the intersection point which will surely have a non-negligible
contribution to the VPP rate. This is completely neglected when we set xp

4 = xi
4.

An improvement of the effective reflection point is therefore needed. Before we
proceed in that direction, let us first introduce a second example which shares
similar features.

8.5.2.2 Weak Gaussian

We consider a Gaussian field described by

g(t) = exp(−(ω̃t)2), G(x4) =
√
πerfi(ω̃x4)

2ω̃ . (8.55)

The intersection point is

xi
4 =

√
ln(1/ε)
ω̃

. (8.56)
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Figure 8.9: Stationary worldline action is plotted for the weak sinusoidal field as described in
(8.49). The analytical prediction in equation (8.54) is compared with the exact numerical result
for ε = {10−3, 10−6} (top,bottom) where we have assumed xp

4 = xi
4.

Proceeding similarly, we get the approximate invariant using equation (8.25),

a ≈ 4γ
ω

arcsin
(

1
γ̃

√
ln(1/ε)

)
, (8.57)

which leads to the following critical combined Keldysh parameter

γ̃crit =
√

ln(1/ε) =
√
| ln(ε)|. (8.58)

As in the previous case, this result again equals to the prediction obtained using
the WKB approach [37]. The critical value is plotted in figure 8.8. Inserting the
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intersection point into equation (8.28), we continue with

x4(u) ≈ m

eE
sin

4uarcsin

√

ln(1/ε)
γ̃

 ,
x3(u) ≈ m

eE
cos

4uarcsin

√

ln(1/ε)
γ̃

− C,
(8.59)

where the constant C = x3(u = ±1/4) plays the same role as before. We can
again plug equation (8.56) into equation (8.31), which results in the following
approximate stationary worldline action

W0 ≈
m2

eE

2
√

ln(1/ε)
γ̃2

√
γ̃2 − ln(1/ε) + 2arcsin


√

ln(1/ε)
γ̃

 . (8.60)

The plots for (8.60) are shown in figure 8.10 where we still find a clear deviation.
However, the discrepancy is significantly smaller than in the case before. This
behavior agrees with the curve trends shown in figure 8.8.

8.5.3 Improved reflection points

We have seen that reflecting the instanton at xi
4 can mimic the reduction of the

stationary worldline action for large γ̃. However, the predictions still considerably
differ from the exact numerical curves. In the following, we improve the effective
reflection points in order to confirm the validity of the reflection approach even for
cases with a weak poleless field.

Before starting with actual calculations, let us emphasize that such an improve-
ment will only affect the region in which γ̃ is considerably larger than the critical
threshold. Strictly speaking, it will in general not allow a prediction at the critical
point.9 But, as will be discussed in section 8.5.7, an appropriate perturbation
around the intersection point allows an analytical prediction for the critical point
as well. This is a powerful method to find out when dynamical assistance sets
in. Actually, to find this out is a highly challenging problem which has been not
approached before analytically. Namely, for most field combinations as weak Gaus-
sian fields, the relevant equation in (8.48) becomes transcendental. More details

9 The critical point here is defined to be the point at which the weak field contribution to the
VPP process starts to exceed the strong field contribution, i.e. effect of dynamical assistance,
see also section 1.4.
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Figure 8.10: Stationary worldline action W0 for the weak Gaussian field described in (8.55).
The analytical prediction in equation (8.60) is compared with the numerical result for ε =
{10−3, 10−6} (top,bottom) where we have assumed xp

4 = xi
4.

are discussed in section 8.5.7.

Let us first elaborate the first improvement mentioned above in order to predict
the rate for sufficiently large γ̃. We argued before that some region after the
intersection points will be necessary. Hence, we make a correction ansatz of the
following form

xp
4 → xi

4 + δ

ω̃
, (8.61)

where δ denotes some displacement parameter that we still have to specify. Once
we have computed δ, the relevant parameter γ̃ in the final expressions has to be
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modified as well, since γ̃crit will still be determined by the intersection point.10

Here, we are interested in the behavior for γ̃ � γ̃crit. Therefore, we keep xi
4 as

some approximate critical point.11 The relevant modifications can be written as
follows

xp
4 → xi

4 + δ

ω̃
, γ̃ → γ̃ + δ. (8.62)

Such a shifted Keldysh parameter signals already that the impact of the weak
rapid field on the VPP rate substantially differs for weak fields with and without
poles. We have seen that weak fields with poles result in vertical reflecting walls.
The position of these mirrors only depends on the weak field frequency. This fact
basically explains why the VPP rate in the assisted mechanism should not alter
with ε. Differently, in case of weak poleless fields, we need to increase the accuracy
of the effective reflection points because of the explicit dependence on ε.

In order to accomplish this, let us recall some findings in the equivalent WKB
approach introduced in chapter 6. The plan is to obtain conditions that we can
combine with our previous analysis in the worldline instanton approach to improve
our analytical predictions for γ̃ being much larger than the critical threshold. This
will also illustrate the equivalence between both methods with respect to the tun-
neling exponential for which both approaches lead in general to the same result if
the momentum spectrum is peaked around zero (canonical) momentum [151]. This
is the case for backgrounds depending on one spacetime coordinate as considered
here, see e.g. [341].

To be concrete, starting with the corresponding state equation in the presence of
a temporal electric background, one can first identify the evolution of the corre-
sponding time dependent Bogoliubov coefficients. Afterwards the resulting system,
which is described by the Riccati equation in (6.26), can approximately be inte-
grated and one obtains for p = 0, after continuing to the complex domain, the

10 This is in general characteristic for fields without poles. There is always a difference between
the effective reflection point and the critical point at which the weak field starts to be dominating.
For fields with a distinct pole structure such a disagreeance is not present, at least in the highly
weak limit ε� 1.

11 We assume the weak field contribution before reaching xi
4 as negligible, since, as will be

shown, the enormous enhancement of the VPP rate is mainly triggered by instanton reflections.
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approximate condition

eE (F (x∗4) + εG(x∗4)) = m (8.63)

for the Euclidean versions of the complex turning points, x∗4, see equation (6.33).
This relation, for instance, can alternatively be read from the right-hand side of
the integrated expression in (8.9). Analogously, the singularities x∗4 then determine
the VPP rate, at least the correct tunneling exponential.12 The solution of this
equation then gives the poles of the fields. If ε� 1 and G is sufficiently small, one
gets the usual strong field pole x∗4 = m

eE
in case we assume F (x4) = x4. For the

assisted mechanism, we have to consider the situation where the smallness of ε is
counterbalanced by the reflection point. This happens in case if

εG(xp
4) != γ̃

ω̃
(8.64)

is satisfied where F is taken to be negligible small in the reflection point, i.e.

F (xp
4)� εG(xp

4). (8.65)

Note that from the previously mentioned conditional equation in (8.48) one de-
duces the point at which both fields contribute equally. This equation can be
transcendental13 and hence cannot be solved algebraically. In this case, we follow
an alternative approach leading to a drastic simplification of the problem. Ob-
serve that deriving that equation after x4 on both sides, leads to the intersection
condition already introduced in (8.47).

Now, if the inverse of G does exist, the equation (8.64) can be solved directly
having the solution

xp
4 = G−1

(
γ̃

εω̃

)
. (8.66)

This yields the improved effective reflection point. Reminding that we have started
from the assumption xp

4 ≈ xi
4, we therefore try to find the displacement parameter

in our ansatz in (8.61). Accordingly, the correcting parameter δ > 0 is determined
by

δ = ω̃G−1
(
γ̃

εω̃

)
− ω̃xi

4. (8.67)

12 As mentioned in chapter 6, the fluctuation prefactor cannot be correctly determined via the
semiclassical WKB approach.

13 For instance, this is the case for a weak (super) Gaussian pulse, cf. section 8.5.
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It is important to note that according to the present approach xi
4 still has to be

the corresponding point for the critical Keldysh parameter γ̃crit, i.e.

γ
!= ωF (xi

4) γ̃crit. (8.68)

The true value that obeys the definition of the actual critical point14 is discussed in
section 8.5.7. According to the latter simplification, contributions from the weak
field are neglected before the instanton reflection.15

However, the improved effective reflection point (8.61) will for sure modify γ̃crit

from above. This value we denote as γ̃p,crit which follows from

γ
!= ωF (xp

4) γ̃p,crit. (8.69)

Thus, in order to keep (8.68) as the critical threshold, one has to shift γ̃ in the
final expressions via (8.67),

γ̃ → γ̃ + δ, (8.70)

where δ can now be written as

δ = γ̃p,crit − γ̃crit. (8.71)

Because of δ > 0 and ε� 1, we assume

2γ̃crit > γ̃p,crit > γ̃crit. (8.72)

Note that the last two steps are justified only if the weak field raises sufficiently fast
in the vicinity of the intersection points which usually applies if γ̃ � 1. Compared
to equation (8.67), we will therefore neglect the explicit γ̃ dependence and rewrite
γ̃p,crit as

γ̃p,crit = (1 + ξ)γ̃crit (8.73)

with 0 < ξ < 1. With this, we obtain

δ = ξγ̃crit. (8.74)

14 The true critical point is defined to be the solution of equation (8.48).
15 As mentioned before, this is a good approximation, since the enormous enhancement is

mainly caused by instanton reflections.
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Combining the equations (8.61) and (8.67), we deduce from (8.69)

γ̃p,crit = ω̃G−1
(
γ̃p,crit

εω̃

)
, (8.75)

where F (x4) = x4 applies for the static strong field. Subsequently, we use the
relation in (8.73) to obtain

(ξ + 1)γ̃crit = ω̃G−1
(

(ξ + 1)γ̃crit

εω̃

)
(8.76)

with γ̃crit known from previous analysis, see condition (8.68). The latter equation
is difficult to solve in general, because of the nonlinear ξ dependence on the right-
hand side. However, since we have ξ < 1, one may Taylor expand the nonlinearity
in the lowest relevant order and compute ξ. This solution can be used to obtain
the displacement parameter from the expression (8.74). This is a powerful way to
compute δ, specifically, in situations where the inverse of G is difficult to find or
does not exist at all, respectively. Finally, all relevant modifications we need for
the improvement are the one given in (8.62).

8.5.4 Reflecting at improved points

Let us apply the ideas from above to the previously discussed examples to compute
the VPP rate for parameters γ̃ above the critical threshold.

8.5.4.1 Weak sinusoid

We start with the weak sinusoidal field. According to the modifications in (8.62),
we first need to compute δ. Applying the inverse function

G−1(x4) = arcsinh(ω̃x4)
ω̃

(8.77)

to equation (8.67), we find

δ = arcsinh
(
γ̃

ε

)
− arccosh

(1
ε

)
. (8.78)

Inserting the corresponding replacements afterwards, i.e.

arccosh(1/ε)→ arccosh(1/ε) + δ,

γ̃ → γ̃ + δ,
(8.79)
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into the equations (8.51), (8.53) and (8.54), we obtain the improved invariant a,
instanton path and stationary worldline action, respectively. The latter written
out explicitly reads

W0 ≈
m2

eE

(
2 (arccosh(1/ε) + δ)

(γ̃ + δ)2

√
(γ̃ + δ)2 − (arccosh(1/ε) + δ)2

+ 2arcsin
(

arccosh(1/ε) + δ

γ̃ + δ

))
.

(8.80)

The action (8.80) plotted in figure 8.11 for ε = {10−3, 10−6} clearly shows a sub-
stantial improvement of the approximate analytical result, cf. figure 8.9. As
expected, despite the region around γ̃ = γ̃crit marked by the vertical dashed red
line, the analytical curve is in good agreement with the exact numerical curve.

8.5.4.2 Weak Gaussian

Now, we can proceed similarly for the weak Gaussian field given in (8.55). The
displacement parameter δ we expect to be smaller compared to the one for the
sinusoidal field from (8.49). This is simply due to a stronger slope of the function
g in the vicinity of the intersection point, cf. figure 8.7. Apart from this, there
is another difference. The function G is the imaginary error function for which
the inverse is difficult to express. However, as discussed in the previous section,
in such a case we can first apply (8.76) and Taylor expand the nonlinearity in ξ
introduced in (8.73), since ξ < 1. Proceeding in that way, we obtain the following
result in leading order

ξ ≈ 1√
2

√√√√√√√ 2
ln
(

1
ε

) −
√
πεerfi

(√
ln
(

1
ε

))
ln

3
2
(

1
ε

) , (8.81)

depending only on ε which is implicitly required due to the assumptions (8.72) and
(8.73). Finally, using the approximate critical value (8.58), we get

δ = ξ
√

ln(1/ε). (8.82)

Inserting the replacements √
ln(1/ε)→

√
ln(1/ε) + δ,

γ̃ → γ̃ + δ
(8.83)
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Figure 8.11: Stationary worldline action W0 plotted for the sinusoidal weak field described in
(8.49). The analytical prediction in equation (8.80) is compared with the exact numerical result.
The ratio between the strong and weak field strengths is set to ε = {10−3, 10−6} (top,bottom).
The vertical dashed red lines are placed at γ̃ = γ̃crit. Here, we have applied the improved effective
reflection point xp

4 = xi
4 + δ/ω̃.

into the equations (8.57), (8.59) and (8.60), we obtain again the improved invariant
a, instanton path and the following stationary worldline action

W0 ≈
m2

eE

2
(√

ln(1/ε) + δ
)

(γ̃ + δ)2

√
(γ̃ + δ)2 −

(√
ln(1/ε) + δ

)2

+ 2arcsin

√

ln(1/ε) + δ

γ̃ + δ

,
(8.84)

respectively. The comparison between the analytically approximated stationary
worldline action in (8.84) and its exact numerical computation is depicted in figure
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Figure 8.12: Stationary worldline action W0 for the weak Gaussian field described in (8.55).
The analytical prediction in equation (8.84) is compared with the numerical result. The ratio
between the strong and weak field strengths is set to ε = {10−3, 10−6} (top,bottom). The vertical
red lines are placed at γ̃ = γ̃crit. Here, we have applied the improved effective reflection point
xp

4 = xi
4 + δ/ω̃.

8.12. As in the previous example, the analytical curve is clearly improved for
sufficiently large γ̃, cf. figure 8.10. The prediction is in good agreement with the
exact numerical computation. This observation confirms again the validity of the
reflection picture.

8.5.5 Weak super Gaussian

The standard Gaussian field (8.55) has led to more accurate results if the inter-
section point is taken as the effective reflector. A field with a stronger slope in
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Figure 8.13: Comparison between the standard Gaussian pulse from (8.55) and the super
Gaussian pulse from (8.85) shown in blue and yellow, respectively. In the left panel the function
g(t) in Lorentzian time is plotted. The right panel shows the analytic continued function g(x4)
depending on Euclidean time.

the vicinity of the intersection points may even lead to more accurate predictions.
For that reason, let us introduce a third example assuming a weak super Gaussian
described by

g(t) = exp(−(ω̃t)10), G(x4) = −
(ω̃x4)E 9

10
((−iω̃x4)10)

10ω̃ (8.85)

where En(z) denotes the exponential integral function. The comparison with the
standard Gaussian field in (8.55) is depicted in figure 8.13. The field profile resem-
bles a rectangular potential wall with a flat top (left panel). Rotating the function
g in the complex plane shows a large curve slope, similar to the situation with a
weak Sauter-like field.

The intersection point for the super Gaussian fro above is

xi
4 = ln(1/ε)1/10

ω̃
. (8.86)

Setting xp
4 = xi

4 leads to the modified invariant

a ≈ 4γ
ω

arcsin
(

1
γ̃

ln(1/ε)1/10
)

(8.87)

and critical Keldysh parameter

γ̃crit = ln(1/ε)1/10 ≈ | ln(ε)|1/10. (8.88)

The large mass approximation condition in (5.10) becomes

ma ≈ ES

E
4arcsin

(
1
γ̃

(ln(1/ε))1/10
)
� 1. (8.89)



160 Chapter 8. Dynamical enhancement via reflections

For the worldline instanton path we obtain

x4(u) ≈ m

eE
sin

4uarcsin
(ln(1/ε))1/10

γ̃

 ,
x3(u) ≈ m

eE
cos

4uarcsin
(ln(1/ε))1/10

γ̃

− C,
(8.90)

where the constant C plays the same role as before, i.e. C = x3(u = ±1/4).

The predicted instantons are plotted in figure 8.14 for ε = {10−3, 10−6}. The paths
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Figure 8.14: Instanton paths for an electric background as superposition of a strong static and
weak super Gaussian field as described in (8.85) are plotted for ε = {10−3, 10−5} (left,right).
The combined Keldysh parameter is set to γ̃ = 2γ̃crit(ε = 0.001). Here, the instanton is reflected
at the intersection point, i.e. xp

4 = xi
4.

do not differ much from each other, in other words, the ε dependence has become
weaker. This is basically in line with the situation for fields which have true poles.
Because of the strong curve slope, the position of the intersection points is almost
fixed and does not change with varying ε. Inserting equation (8.86) into (8.31),
we get

W0 ≈
m2

eE

2 (ln(1/ε))1/10

γ̃2

√
γ̃2 − (ln(1/ε))1/5 + 2arcsin

(ln(1/ε))1/10

γ̃

 (8.91)
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Figure 8.15: Stationary worldline action W0 for the weak super Gaussian field (8.85). The
analytical prediction (8.91) is compared with the numerical result. The instanton is reflected at
the intersection point, i.e. xp

4 = xi
4. The vertical red lines are placed at γ̃ = γ̃crit.

which is shown in figure 8.15. The result agrees well with the numerical curve.
Hence, the discussed features from above lead indeed to a substantial improvement
of the analytical estimation, namely, already with setting xp

4 = xi
4.

These results can be generalized to the case with an arbitrary super Gaussian field
of the form

g(t) = exp(−(ω̃t)(4N+2)), N ∈ N. (8.92)
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The corresponding intersection point is

xi
4 = ln(1/ε)

1
4N+2

ω̃
. (8.93)

Thus, for N > 2 we may expect the prediction with xp
4 = xi

4 to be even more
accurate compared to the latter case with N = 2, means there is principally no
need for any substantial correction δ. Therefore higher order super Gaussians as in
(8.92) almost behave like fields with poles. The ε dependence becomes suppressed
with increasing N regulating the order of the super Gaussian. Hence, the VPP
rate will be enhanced even more, simply due to

ω̃xi
4 → 1 (N →∞). (8.94)

It should be noted that the latter limit coincides with the reflection point for a
weak Lorentzian field. More aspects related to this coincidence is discussed in
chapter 9.

8.5.6 Comparison of stationary worldline actions

In this part, we compare the predicted stationary worldline actions from above.
The results are plotted in figure 8.16 for ε = {10−3, 10−6}. The fields without
poles are marked with asterisks in the plot legend. For simplification, we take the
critical Keldysh parameter to be determined by the approximate value γ̃crit, see
section 8.5.7 regarding the true value.

We observe that the bell shaped fields enhance the rate much more than the in-
finitely extended sinusoidal field. Those among them with true poles tend to reduce
the stationary action even more. This is shown upon the direct comparison with
the Gaussian field which is a bell shaped field but has no poles.

Interestingly, the super Gaussian with N = 2 which does not have true poles as
well leads to comparable enhancement, even much stronger than the Sauter field.
This can be understood by rotating the field in the complex plane where a very
strong slope in the vicinity of the relatively small intersection point applies, see
section 8.5. The computed intersection point is almost equal to the improved
effective reflection point and true critical point which on the other side differ con-
siderably from each other if poles for the weak field are absent, see section 8.5.
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Figure 8.16: Comparison of the stationary worldline action W0 for different weak fields. The
ratio between the strong and weak field strengths is set to ε = {10−3, 10−6} (top,bottom). The
different field are labeled in the legend. Fields without poles are marked with asterisks in the
legend. Note that the applied critical Keldysh parameter for those fields is approximated by
γ̃crit. For more on the true critical value we refer to the discussion in the following section 8.5.7.

Bell shaped fields may have important consequences for oscillatory pulses. The lat-
ter may be described by multiplying, for instance, an infinitely extended sinusoidal
field with a bell shaped envelope function. According to the presented results, a
weak field of this form will predominantly trigger the assistance via instanton re-
flections at the poles of the envelope function. Varying the pulse width via the
frequency of the latter is therefore expected to be dominating the enhancement.

However, as discussed in section 8.4, resolving the momentum spectrum of the pro-
duced pair may disclose interference effects which can be sensitive to the subcycle
structure of a pulse. On the other hand, the total VPP rate is highly sensitive to
the finite size of the weak pulse. This especially is substantial for laser experiments
where pulses have very short duration. These insights can be, for instance, used
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for optimization studies in order to enhance the VPP rate even more by choosing
an appropriate field setup.

8.5.7 Improved critical point

In this part, we discuss how to derive the true critical Keldysh parameter. As
shown in section 8.5.3, for improving the effective reflection point we have com-
puted the displacement parameter δ. For the case, where the inverse of G is
complicated, we have applied some advanced perturbation technique around the
intersection point.

As stressed before, the critical point needs to be improved as well.16 For this, we
can generally assume a correction of the from

(1−∆)xi
4, (8.95)

resulting in the critical threshold

(1−∆)γ̃crit. (8.96)

In the following, we compute the correction ∆ again via perturbing in the vicinity
of xi

4, since the relevant domain to look for is

x4 ∈ (0, xi
4], (8.97)

cf. figures 8.6 and 8.7. This will correct the previous estimations in (8.52) and
(8.58). The relevant equation in the present case is (8.48). Inserting the ansatz
(8.95) into equation (8.48) we write

(1−∆)xi
4 = εG

(
(1−∆)xi

4

)
(8.98)

where we again have set F (x4) = x4. In contrast to the original equation in (8.48),
the modified version in (8.98) can be Taylor expanded on the right-hand side for
which we find the series

(1−∆)xi
4 ≈ G(xi

4)−G′(xi
4)∆− 1

2G
′′(xi

4)∆2 +O(∆3). (8.99)

Now, this equation can be solved by truncating after a sufficient order in ∆. This
allows to solve the relevant equation (8.48) which in general is hard to tackle
directly due to its transcendental form for various types of backgrounds. In the
following, we explicitly compute ∆ for the weak sinusoidal and Gaussian field.

16 It is taken as the point where both the strong, slow and weak, rapid field contribute equally
to the VPP process.
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8.5.7.1 Weak sinusoid

The sinusoidal field is described in (8.49). Plugging into the corresponding function
into the equation (8.98) yields

(1−∆)xi
4 = ε

ω̃
sinh((1−∆)ω̃xi

4). (8.100)

With the intersection point (8.50), we obtain up to order O(∆2),

γ̃crit(1−∆) ≈ ε
(1

2 γ̃
crit2∆2 sinh(γ̃crit)− γ̃crit∆ cosh(γ̃crit) + sinh(γ̃crit)

)
. (8.101)

Here, we have used the relation ω̃xi
4 = γ̃crit. The parameter ∆ is then determined

by

∆ ≈ −csch(γ̃crit)
γ̃critε

+ coth(γ̃crit)
γ̃crit + csch(γ̃crit)

×

√
(2γ̃crit − 2γ̃critε cosh(γ̃crit))2 − 4γ̃crit2

ε sinh(γ̃crit)(2ε sinh(γ̃crit)− 2γ̃crit)
2γ̃crit2

ε
.

(8.102)

8.5.7.2 Weak Gaussian

The weak Gaussian field is given in (8.55) with the corresponding intersection
point in (8.56). As before, we plug the associated quantities into the equation
(8.98) and get

(1−∆)ω̃xi
4 = ε

√
π

2 erfi((1−∆)ω̃xi
4). (8.103)

This equation can be written up to order O(∆2) as

(1−∆)γ̃crit ≈ ε

−2
(
eγ̃

crit2
γ̃crit

)
∆

√
π

+ 2eγ̃crit2
γ̃crit3∆2
√
π

+ erfi(γ̃crit)

 (8.104)

so that we find

∆ ≈
e−γ̃

crit2
√(√

πγ̃crit − 2eγ̃crit2
γ̃critε

)2
− 8eγ̃crit2

γ̃crit3
ε (
√
πεerfi(γ̃crit)−

√
πγ̃crit)

4γ̃crit3
ε

−
√
πe−γ̃

crit2

4γ̃crit2
ε

+ 1
2γ̃crit2 .

(8.105)
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8.5.7.3 Comparisons

In case of a distinct pole structure, we can compute γ̃crit by solving the simple
equation

xp
4 = γ

ω
, (8.106)

cf. equation (8.112). If poles are not present, we may set xp
4 = xi

4. In order to
consider γ̃crit as the critical threshold, we can assume that the background after
the rotation in the complex plane is approximated by f for γ̃ ≤ γ̃crit, cf. figures
8.6 and 8.7, respectively. This is for sure not the realistic situation, since there is
some contribution from the weak field described by g which actually leads to an
increased effective field strength. Nevertheless, the simplification has allowed to
predict the stationary worldline action for γ̃ being larger than the critical thresh-
old. In the absence of true poles simple arguments are not very clear. Therefore,
the obtained agreements from above have helped to sort earlier observations into
a more general picture. One should bear in mind, that further improvements with
respect to the effective reflection points are needed, see equation (8.61).

Improving the estimations in (8.52) and (8.58), respectively, can be accomplished
by starting from the ansatz in (8.96). We expect that the difference between the
resulting true critical point (8.95) and the intersection point decreases for ε → 0,
see figures 8.11 and 8.12.

On the other hand, if poles exist then intersection, critical and reflection point are
just given by the pole itself, means δ → 0 and ∆ → 0. This is the main reason
why poleless weak fields assist less at the critical onset determined by the improved
value (8.96). In contrast, for weak fields with true poles, the stationary worldline
action decreases very rapidly as soon as γ̃ approaches the critical threshold, cf.
figure 8.4. The difference between the intersection point and the true critical
point from (8.95) is

xi
4 − (8.95) = xi

4 − (1−∆)xi
4 = ∆xi

4 = ∆ γ̃crit

γ̃

m

eE
(8.107)

where ∆ denotes the correction in (8.102) and (8.105), respectively, plotted in
figure 8.17. In the limit ε → 0, we find that ∆ → 0. This is consistent with our
expectation and observations in the figures 8.11 and 8.12. The improved critical
combined Keldysh parameter in (8.96) is plotted in the right panel of figure 8.17.
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Figure 8.17: Comparison of ∆ for the sinusoidal and Gaussian field (top-left). The difference,
here with γ̃ = γ̃crit, between the improved effective reflection point from (8.61) and the true
critical point from (8.95) is shown in units of m

eE (top-right). Note that for fields with a distinct
pole structure we find δ,∆→ 0 in the relevant regime, ε� 1. The true critical combined Keldysh
parameter for fields without poles as introduced in (8.96) is plotted in the bottom panel. Note
the difference compared to the previous estimations in figure 8.8. The correction ∆ is computed
up to order O(∆2). For improvements, in particular, for the sinusoidal field due to a in general
larger ∆, see top-left panel, we can simply truncate the Taylor series in equation (8.99) after
higher orders in ∆. The vertical pink dashed line is placed at ε = 0.1.

The found values coincide very well with the critical behavior in figures 8.11 and
8.12. The improved values are of high accuracy, although ∆ has been computed
only up to order O(∆2), see equation (8.99).

A small deviation, however, occurs in case of the sinusoidal field where ε = 10−3.
Namely, the analytically predicted value is (1 − ∆)γ̃crit ≈ 4, blue dashed curve,
while we observe γ̃ ≈ 3 in the left panel in figure 8.11, dashed gray curve. Such
a difference originates due to ∆ . 1 as reflected in figure 8.17. To improve the
analytical prediction, one can truncate the Taylor series in (8.99) after an appro-
priate higher order in ∆. The very well coincidence in the remaining other cases
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confirm the validity of our predictions (8.102) and (8.105) obtained by solving the
conditional equation in (8.48). As mentioned, in may cases finding some analyt-
ical (approximate) solution for the latter equation can be highly challenging, see
e.g. [37, 390] for numerical investigations.

In addition, we also have plotted the constant lines in figure 8.17 (bottom) at π
2

and 1 for the Sauter and the Lorentzian field, respectively. For the remaining two
poleless fields we find the nonstatic dependence on ε. Increasing the parameter ε,
the critical threshold (8.96) turns out to be smaller compared to the first estima-
tions introduced in (8.52) and (8.58), see figures 8.8 and 8.17 (bottom) as well.
This is also in agreement with the presented plots in figures 8.11 and 8.12. For
sufficiently large ε, say ∼ 10−2, we even achieve values below π

2 . However, although
in this case the Gaussian field starts to assist before the Sauter field, it reduces the
stationary worldline action much slower. This difference is a direct consequence of

(8.61)− (8.95) = δ + ∆γ̃crit

γ̃
> 0 (8.108)

written in units of m
eE

. Using the equations (8.78), (8.102) for the weak sinusoidal
field and (8.82), (8.105) for the weak Gaussian, respectively, we have plotted the
corresponding curves for γ̃ = γ̃crit in figure 8.17. Differently, if the underlying weak
field has a pole we have (8.108) = 0.

We conclude that for ε� 1 the critical combined Keldysh parameter for fields with
poles determines exactly the point where the weak field contribution becomes es-
sential and the reflection sets in. If poles are not present, the true critical point
of the form (8.95) does not generally correspond to the effective reflection point
(8.61). The latter is usually much larger. So we find a much larger range below
the critical Keldysh parameter where the dynamical assistance does not have any
effect on VPP, see for instance figure 8.11. Consequently, the reduction of the sta-
tionary worldline action progresses very slow. Nevertheless, a minimal reduction
is somewhat triggered. This is an effect of the minimally increased effective field
strength due to the superposition of the strong and weak field, see left and right
panels in figure 8.6. This somewhat resembles the standard dynamical mechanism
in a singlemode inhomogeneous electric background, see gray solid curve in figure
8.19. In this parameter range the effective reflection point is simply too far away
from the true critical point.
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We note that as soon as (8.108) → 0, which applies for large γ̃ exceeding γ̃crit,
the enhancement becomes much stronger due to a small effective reflection point.
Consequently, the decrease of the stationary action evolves more quickly, similar to
the case with true poles. We should note that γ̃ � γ̃crit is actually the regime where
the instanton can be seen as reflected at the effective reflectors, see e.g. figures
8.11 and 8.12. A nonzero difference as in (8.108) turns out to be the characteristic
attribute of poleless weak fields.

8.6 Assisted dynamical mechanism

As brought up in the beginning of this chapter, we now discuss the assisted dy-
namical mechanism again utilizing the reflection approach.

8.6.1 Impact on critical threshold

First, we want to find out the effect of the strong field on the critical combined
Keldysh parameter. From equation (8.16), we can directly read off the critical
point

x∗4 = F−1
(
γ

ω

)
(8.109)

corresponding to ẋ3 = 0. Closing the instanton in x∗4 results in the standard
Schwinger mechanism. For dynamical assistance we need to satisfy (8.17). From
the equality

x∗4 = xp
4, (8.110)

we immediately obtain a critical frequency

ω̃crit = eE

m
γ̃crit. (8.111)

Below this, there will be no assistance. In case a weak Sauter field is superimposed
with a strong static field, the critical value is known from (8.35). For the case of
a weak Lorentzian field see equation (8.41).

Note that the condition (8.110) clearly indicates that the critical combined Keldysh
parameter basically depends on the strong field, which determines the left-hand
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side of the equation (8.110), and on the weak field itself, which is responsible for
the right-hand side of the equation. This is expected, since with increasing γ the
closing point xc

4 drifts towards the origin along the complex time axis as sketched
in the left panel of figure 8.18. Accordingly, the pole xp

4 has to become smaller as
well, see condition (8.17). This is why the threshold depends on γ as well as on the
strong field profile. Such a dependence has analytically been obtained for the case
of a strong spatial Sauter field combined with a temporal Sauter field, treating
both fields nonperturbatively [152]. Following analogous geometric arguments as
discussed here, the present approach has been extended to spatiotemporal elec-
tric backgrounds with temporal sinusoidal or Gaussian dependence [2] resulting in
highly accurate predictions for the critical Keldysh parameter. This extension to
multidimensional backgrounds is discussed in chapter 10.

Coming back to the present example, for too large γ the strong field drives the
enhancement in the VPP process alone, since the critical combined Keldysh pa-
rameter becomes too large. As noted Such a singlemode dynamical background
gives rise to the usual antiadiabatic perturbative multiphoton process. For not too
large γ, the assistance is expected to set in even for moderate γ̃. However, as soon
as γ becomes much smaller than unity, the (locally) static strong field will again be
a good approximation. An explicit example for which the strong field is assumed
to be nonstatic is studied in the following section 8.6.2. Before we proceed with an
explicit example, the question is whether the reflection approach is valid or not if
one allows for γ values of order unity or larger. We should note that this situation
may be not appropriate for current or planned experimental designs.

In order to resolve the latter question, let us bear in mind that the basic starting
point for the reflection picture was based on the negligibility of the weak field
contribution away from the reflection point in the original instanton equations
(8.7). Therefore, even if we allow γ to be large, there will be always a reflector from
the much more rapid weak field that will dominate above the critical threshold.
Also for very weak fields, ε� 1, such poles will be much closer to the origin than,
if present, the strong field poles, simply because of ω̃ � ω. In order to study
the strong field profile dependence of the critical threshold, we use the relation in
(8.109) which leads to the following criticality condition

γ = ωF (xp
4) . (8.112)
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Figure 8.18: Left panel: condition for the assisted mechanism. In case of reflection both critical
points, i.e. closing point of the instanton (red dots) and the weak field pole (yellow dot), have to
coincide, see conditional equation in (8.110). For increasing γ the closing points drift towards the
origin (red dots) and the instanton (solid lines) curves much stronger around its closing point.
Right panel: critical combined Keldysh parameter γ̃crit for the case of a weak Lorentzian field
superimposed with a strong field of different profiles. The profiles are listed in the legend. The
relevant regime for the assisted mechanism, γ̃ > γ̃crit, is depicted by the colored region. The
adiabatic nonperturbative regime, γ � 1, lies to the left of the vertical dashed red line where
γ̃crit ≈ 1.

For illustrative reasons, let us assume the weak field of Lorentzian type described
as in (8.37) with the corresponding pole given in equation (8.39). Using this
setup, we can easily compute the critical combined Keldysh parameter for several
strong field profiles starting from equation (8.112) and using the relation ω = mγE

ES
:

Strong static field f(t) = 1, F (x4) = x4,

ω̃crit = m
E

ES
, γ̃crit = 1, (8.113)

Strong Lorentzian f(t) = 1
(1 + (ωt)2)3/2 , F (x4) = x4√

1− (ωx4)2
,

ω̃crit = m
E

ES

√
1 + γ2, γ̃crit =

√
1 + γ2, (8.114)

Strong sinusoid f(t) = cos(ωt), F (x4) = sinh(ωx4)
ω

,

ω̃crit = m
E

ES

γ

arcsinh(γ) , γ̃crit = γ

arcsinh(γ) , (8.115)
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Strong Sauter f(t) = sech2(ωt), F (x4) = tan(ωx4)
ω

,

ω̃crit = m
E

ES

γ

arctan(γ) , γ̃crit = γ

arctan(γ) . (8.116)

In the limit γ → 0, we approach for all cases the static strong field, i.e. (8.113),
corresponding to the adiabatic nonperturbative tunneling regime. However, for
larger γ the critical value γ̃crit increases first parabolic then linear with γ, see right
panel in figure 8.18. The relevant regime for the assisted mechanism, i.e. γ̃ > γ̃crit,
is indicated by the colored patterns. For values γ > 0.1 which lie to the right of
the vertical dashed red line, we leave the region with almost constant dependence
on γ where γ̃crit ≈ 1. The latter is the nonperturbative regime for the strong
field. The slope of the plotted curves turns out to be much stronger for fields
that gives rise to small reflection points. This explains why for these the weak
field inhomogeneity has to be much larger. Such studies exhibit the two types of
mechanisms which basically lead to a substantial enhancement of the VPP rate in
time dependent electric backgrounds:

1. The enhancement is driven by a singlemode field, i.e. antiadiabatic perturbative
multiphoton regime. This is also known as the dynamical Schwinger mechanism.
The role of a second weak field becomes negligible with increasing γ. A character-
istic threshold in this case does not exist.

2. The electric background is composed of a strong static field in the adiabatic
nonperturbative tunneling regime, superimposed with a weak, but rapid field.
This situation corresponds to the assisted Schwinger mechanism. The contribu-
tion of the weak field is essential for the enhancement. It sets in for γ̃ above the
characteristic threshold, the critical combined Keldysh parameter. Here, we have
distinguished between the standard assisted mechanism and the assisted dynam-
ical mechanism. The latter is characterized by an inhomogeneous strong field in
addition to the weak rapid field.
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Figure 8.19: Combined electric background after rotation in the complex plane: the strong
inhomogeneous field (without poles, grey solid curve) and weak inhomogeneous field (with poles,
pink curve) for γ/γ̃ < 1 are plotted separately. Dotted gray curves indicate the increase of γ
starting at γ = 0 (horizontal dotted line).

8.6.2 Strong sinusoid and weak Lorentzian

To study the effects described in section 8.6.1, we consider the example with a
strong sinusoidal field and a weak Lorentzian pulse,

f(t) = cos(ωt), F (x4) = sinh(ωx4)
ω

,

g(t) = 1
(1 + (ωt)2)3/2 , G(x4) = x4√

1− (ωx4)2
.

(8.117)

The corresponding modification compared to a static strong field is shown schemat-
ically in figure 8.19. For increasing γ we leave the static limit by bending up the
initial horizontal line, shown as dotted gray curves that represent the function
f(x4). For γ 6= 0, there will be a substantial structure (solid gray curve) between
the poles of the Lorentzian field (pink curve). The interplay between this parabolic
strong field curve and the reflecting weak field poles has to be computed. The pole
for the weak Lorentzian is xp

4 = 1
ω̃
. Using the expression in (8.21), we get

a = −i 4
ω

F
(
i
γ

γ̃

∣∣∣∣∣−1
γ2

)
, (8.118)

where F(·|·) is the incomplete elliptic integral of the first kind. From the latter
invariant (8.118), we can read off the critical combined Keldysh parameter γ̃crit

depending on γ which equals to the one given in (8.115). Using the modified
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The critical combined Keldysh parameter is given in (8.115).

invariant in (8.118), the large mass approximation condition in (5.10) reads

m

ω

(
−i4F

(
i
γ

γ̃

∣∣∣∣∣−1
γ2

))
� 1 (8.119)

which is plotted in figure 8.20 versus γ and different Keldysh parameters γ̃. Very
large γ̃ are excluded because of the latter condition. Using the equation (8.22),
we obtain the stationary worldline action

W0 ≈
m2

eE

4
γ

(
−iE

(
i
γ

γ̃

∣∣∣∣∣−1
γ2

))
. (8.120)

The function E(·|·) denotes the incomplete elliptic integral of the second kind. The
instanton solutions for the sinusoidal field are known [146]. Based on these, we
can write the present modified solution in the right half plane, i.e. u ∈

[
−1

4 ,
1
4

]
, as

x4 = m

eE

1
γ

arcsinh
(

γ√
1 + γ2 sd

(
−iF

(
i
γ

γ̃

∣∣∣∣∣−1
γ2

) √
1 + γ2

γ
u

∣∣∣∣∣ γ2

1 + γ2

))
, (8.121)

x3 = m

eE

1
γ

arcsin
(

γ√
1 + γ2 cd

(
−iF

(
i
γ

γ̃

∣∣∣∣∣−1
γ2

) √
1 + γ2

γ
u

∣∣∣∣∣ γ2

1 + γ2

))
− C. (8.122)

The functions sd(·|·) and cd(·|·) denote Jacobi elliptic functions. The shifting
constant along the x3 axis is again determined by

C = x3

(
u = ±1

4

)
. (8.123)

The action above applies only for γ̃ ≥ γ̃crit. Taking into account the case when
the contribution of the weak field is absent, we can write the complete stationary
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worldline action as

W0 =


m2

eE
4
γ

(
−iE

(
iγ
γ̃

∣∣∣∣∣−1
γ2

))
γ̃ ≥ γ̃crit

4m2

eE

√
γ2+1
γ2

(
K
(

γ2

γ2+1

)
− E

(
γ2

γ2+1

))
γ̃ < γ̃crit

. (8.124)

Here, K(·) and E(·) denote the complete elliptic integrals of the first and second
kind, respectively.
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Figure 8.21: Stationary worldline action from (8.124) for a strong sinusoidal field superimposed
with the weak Lorentzian field from (8.49) is plotted versus γ. The analytical prediction is
compared with exact numerical computations. The ratio between the strong and weak field
strengths is set to ε = {10−3, 10−1, 100} (top, bottom-left, bottom-right). The values for the
combined Keldysh parameter are given in the plot legend with γ̃crit being computed according
to the found relation in (8.115).

The stationary worldline action in (8.124) is plotted in figure 8.21. Setting γ̃ =
5
3 γ̃

crit, we compare between the analytical prediction and the exact numerical com-
putation. Both results do perfectly coincide as long as ε � 1 which is the valid
regime in the reflection picture. Only if relatively large values ε = {0.1, 1.0} are
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applied, there appears a notable difference between both curves. The effect of the
weak field is well indicated. A considerable decrease applies in contrast to the
situation with γ̃ = γ̃crit, where the weak field contribution is absent. For γ → 0,
means γ̃ = 5

3 , we again find the result previously depicted in figure 8.4.
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Figure 8.22: Same stationary worldline action as in figure 8.21, here, plotted versus the com-
bined Keldysh parameter γ̃. The corresponding strong field inhomogeneities γ as well as the
ratios ε between the field strengths are given in the plots. The gray dotted curve is the previous
result in figure 8.4, i.e. green curve.

We have seen that the superposition of a strong field with γ > 0 and a weak faster
field leads to a stronger enhancement compared to the case with a static strong
dependence. However, this is only operative for γ̃ below the threshold γ̃crit. For
larger values, it is again the weak rapid field that mainly drives the enhancement,
see figure 8.22.

In the latter case, we have set γ = 2 for the strong field. Technically, a very strong
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pulsed field as at ELI together with a high frequency as, for instance, realizable
with the European XFEL, are neither possible with current experimental facilities
nor visioned for upcoming setups. One can alternatively think of the following
more realistic situation. Assume we have a very strong field with strength E1 and
frequency ω1 → 0. Superimposing this low frequent field with a second weak more
rapid field, i.e. E2

E1
� 1 and ω2 � ω1, resembles the strong field setup sketched in

figure 8.19.

8.7 Summary

We have studied enhancement effects in VPP via two mechanisms; the assisted
mechanism (sections 8.4 and 8.5) and the assisted dynamical mechanism (sec-
tion 8.6). Based on the worldline instanton approach described in chapter 5, we
have found two separate critical points. While one of them is responsible for the
closing of the instanton path, the other serves as a reflecting mirror in the instan-
ton plane. Developing an effective reflection approach, we have analyzed various
characteristic features. Specifically, we have focused on the role of the assisting
weak rapid field. Based on geometric considerations, we have explained the ori-
gin for substantial differences by distinguishing between two types of backgrounds.

The first type is characterized by weak fields which possess a distinct pole struc-
ture in Euclidean space. This is the case where geometrical arguments become
very intuitive. Revisiting previous observations for the standard assisted mecha-
nism, we have shown that the drastic enhancement is the direct consequence of
instanton reflections at such poles (section 8.4). More precisely, this has been il-
lustrated for weak fields of Sauter and Lorentzian type leading to similar behavior.
We have shown that these findings are caused due to their similar pole structure.
We have also discussed the impact of a possible subcycle structure. Performing
explicit computations, we have seen that the assistance is primarily determined
by the pole of the bell shaped envelope function. Only for sufficiently large ε, the
encased subcycle structure of the considered oscillatory pulse leads to considerable
deviations.

For the standard assisted mechanism, we then developed an extended reflection
approach for backgrounds consisting of poleless weak fields (section 8.5). Based
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on geometrical arguments, we have obtained specific conditions from combined
analysis based on the instanton and the equivalent WKB approach described in
chapter 6. By doing so, we have analytically computed corresponding effective
reflection points.

In addition, we have predicted the critical point at which the weak field contribu-
tion starts to dominate so that dynamical assistance sets in. We have shown that
the critical point deviates from the relatively large valued effective reflection point,
even in the highly weak limit. This feature turns out to be the major difference
between weak fields with and without poles. In the former case, reflection and
critical point are equal to the pole itself. We have demonstrated that this dis-
crepancy can be seen as the primary reason why poleless fields enhance less than
fields with poles or pole-like behavior, respectively. We have also shown that an
additional ε dependence occurs if the weak rapid field cannot be characterized by
a distinct pole structure. However, for weak super Gaussian pulses such a depen-
dence becomes increasingly suppressed.

In the second main part, we have studied the assisted dynamical mechanism where
the strong field is assumed to be nonstatic in addition to the weak but more rapid
variation (section 8.6). Again, applying the reflection approach, we have analyti-
cally computed the rate for an explicit example. The additional inhomogeneity has
led to substantial enhancement effects compared to the standard assisted mecha-
nism. Our analytical predictions in the relevant regime are in perfect agreement
with numerical computations.

We conclude that the dynamical assistance is predominantly determined by in-
stanton reflections, no matter whether poles are present or not. The location of
critical points for the weak field determines the strength of the assistance. It is
notable that reflection points close to the origin, that is along the imaginary time
axis, basically lead to a stronger enhancement. Such insights may allow to pursue
further optimization studies with respect to the weak field in order to maximize
these effects.

The presented techniques can also be applied to the case of an additional spatially
inhomogeneous field which allows an analytical treatment for electric backgrounds
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with genuine spatiotemporal dependence. This can in particular facilitate the role
of such backgrounds with regard to the nonlocal nature of nonperturbative VPP.
Results in that direction have been presented in [2] which are discussed in chapter
10 of the present thesis.



Chapter 9

Nonperturbative and
perturbative aspects

9.1 Outline

W e study the Schwinger mechanism in the presence of an additional uni-
formly oriented, weak super Gaussian of integer order 4N + 2 (dynamical

assisted mechanism) motivated by previous findings in section 8.5.5. Using the
worldline instanton approach introduced in chapter 5, we determine the relevant
critical points developed in section 8.5 in order to compute the leading order tun-
neling exponential analytically.

For N = 2, we already find a much stronger dynamical enhancement compared to
a weak contribution of Sauter type. For higher orders, specifically for N →∞, we
approach the same stationary worldline action as obtained for a weak Lorentzian.
Even though such backgrounds significantly differ in Minkowski spacetime, we
show that the found coincidence applies due to identical reflection points in the
instanton plane.

In addition to this, we also treat the background in perturbation theory using the
N photon master formula derived in section 4.4.3 within the framework of string-
inspired WQFT, similar to the studies in [393]. We show that the parameter N
and thus the background shape determines whether the weak contribution behaves
perturbatively or nonperturbatively.
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9.2 Nonperturbative approach

As before, we again consider spin zero particles and restrict ourselves to the adia-
batic, nonperturbative regime where we neglect contributions from the dynamical
gauge field, see discussion in section 5.1. As in section 5.3, the stationary world-
line action in the tunneling exponential is obtained after evaluating the worldline
action on the periodic instanton path, see equation (5.25). The stationary path
is determined by the equations (5.23). Since the exponential factor is the domi-
nant quantity for the present study, which generally strongly suppresses the VPP
process, we set the quantum fluctuation prefactor again to unity and approximate
the VPP rate according to (5.24).

As described above, we consider a purely electric background which is a uniformly
oriented superposition described by

EEE(t) = E (f + εg) x̂3 (9.1)

where ε� 1 and

f(t) = 1, g(t) = e−(ωt)4N+2
, N ∈ N. (9.2)

In figure 9.1 the function g is depicted for various N including the Sauter and
Lorentzian cases considered in section 8.4.1. After the rotation in the complex
plane we arrive at

A3(x4) = −iE(F + εG), (9.3)

where

F (x4) = x4,

G(x4) = − 1
ω

(ωx4)E 4N+1
4N+2

(−(ωx4)4N+2)
4N + 2 .

(9.4)

Here, En denotes the exponential integral function. Inserting the vector potential
in equation (9.3) into the instanton equations (5.23), we find the following coupled
system of differential equations

ẍ4 = +aE
m

[
F ′ + εG′

]
ẋ3,

ẍ3 = −aE
m

[
F ′ + εG′

]
ẋ4.

(9.5)
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3 5 10 30

300 3000 Lorentzian

Figure 9.1: Comparison of function g plotted versus t. The numbers in the legend correspond
to the integer N in (9.2). The pink curve corresponds to a modified Sauter pulse with frequency
shift ω → ωπ/2 leading to the same W0 as the Lorentzian (blue). For N →∞ we approach the
usual rectangular potential barrier.

The prime denotes the derivative with respect to x4.

For conventional reasons, we again introduce the dimensionless combined Keldysh
parameter [32]

γ = mω

E
. (9.6)

Moreover, due to simplifying reasons, we have absorbed the particle charge e into
the field strength, eE → E.

As presented in section 8.5 the idea again is to compute the points for which the
strong contribution can be taken as negligible compared to the weak term, see
in particular section 8.5.4. This can be done by using the additional condition
that determines the complex turning points in the equivalent WKB approach; see
chapter 6, more precisely section 6.3.

For one-dimensional temporal backgrounds these turning points lead to the correct
tunneling exponent, see e.g. [37, 341, 394]. So starting on basis of the condition
given in (6.33), the relevant equation we have to solve is of the form

εG(x∗4) = γ

ω
. (9.7)
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Figure 9.2: Comparison of ξ = −Z/(αD) versus N (starting with N = 1) for various ε given
in the plot legend. With increasing N the dependence on ε gets suppressed. For N → ∞ we
approach the Lorentzian case, i.e. δ = ξγ̌ → 0 (since ξ → 0) and γ̌ → 1.

Once x∗4 has been computed, it can be applied as an effective reflection point in the
instanton plane. This allows to find a sufficiently accurate analytical expression for
the stationary worldline action. For more details, we refer to the previous chapter
8.

Interestingly, an appropriate modification of the background shape can lead to
time scale reductions in driven quantum systems, see e.g. [395]. Therefore, one
may think about analogies related to such reflection points placed on the Euclidean
time axis.

Proceeding in the described way, we end up with the following stationary worldline
action

W0 '
ES

E


π γ < γ̌

2x̌4

√
1− x̌2

4 + 2arcsin(x̌4) γ ≥ γ̌
, (9.8)

where

x̌4 = γ̌ + δ

γ + δ
, γ̌ = (ln(1/ε))

1
4N+2 , δ = − γ̌

α

Z

D
. (9.9)

In order to compute the remaining quantities α,Z and D appearing in the last ex-
pression of (9.9), we Taylor expand the associated function in ξ < 1, where δ ≡ ξγ̌,
see section 8.5.4 for detailed discussion. The related steps have been established
in [3].
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By doing so, we then truncate the resulting series after the second order which
leads to the following expressions

D := 2ε(2N + 1)(2αΩ2 + 4αNΩ2 + 4NΩ1 + 3Ω1),

Z := 2αΩ1ε+ 4αNΩ1ε+ 4N + Ωε+ 2 +
[
(ε(2αΩ1 + Ω) + 4N(αΩ1ε+ 1) + 2)2

− 4αε(2N + 1)(4N + Ωε+ 2)(2α(2N + 1)Ω2 + (4N + 3)Ω1)
]1/2

,

Ω := E 4N+1
4N+2

(−α), Ω1 := E 4N+1
4N+2−1(−α), Ω2 := E 4N+1

4N+2−2(−α), α := γ̌4N+2.

(9.10)

We begin with the correction δ, which we expect to vanish for increasing N , here
denoted as N ↑. The parameter ξ is plotted versus N in figure 9.2, where the field
strength ratio ε varies between different values as given in the plot legend.

For N = 1 the points clearly differ. However, as soon as N ↑, they rapidly merge
together and converge to zero. Thus, the ε dependence becomes strongly sup-
pressed and we find ξ → 0, see figure 9.2. Remarkably, such an ε independence
applies usually for Sauter-like pulses which have a distinct pole structure in the
instanton plane, see section 8.4.1 as well as [37]. Super Gaussians do not share
such properties, even for very large N , which is therefore an interesting coincidence
in itself. We will come back to this point later on.
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γ

0.5

1.0

1.5

2.0

2.5

3.0

W0[m
2/eE]

Pi Sauter 2 3 5 10

30 300 3000 Lorentzian

Figure 9.3: Stationary worldline actionW0 in units of [ES/E]. The integer values in the legend
correspond to the parameter N in (9.2).

The nonperturbative prediction for the stationary worldline action in equation
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(5.25) is plotted in figure 9.3 versus the combined Keldysh parameter γ, again
for different N as listed in the plot legend including the Sauter (red solid) and
Lorentzian (blue solid) case. The dashed curves depict the predictions for the su-
per Gaussian case. Starting with N = 2 (green), which already lies below the red
solid curve, we find that as soon as N ↑, the curves converge to the blue solid one.
For N = 3000 (magenta) both results are visually indistinguishable.

Moreover, the critical threshold1, which can be approximated2 by γ̌ for large N
quite accurately, converges to γ = 1. Hence, for N → ∞, corresponding to the
usual rectangular potential barrier, we approach the blue solid curve as we have
also seen in direct numerical computations.3 The numerically found threshold
matches with our prediction γ̌. We conclude that for parameters

N ∈ N>1 (9.11)

the corresponding curves for the stationary worldline action W0 lie within the
throat-like region bounded by the red (Sauter) and blue (Lorentzian) one, see
figure 9.3.

9.3 Perturbative expansion

For weak Sauter-like pulses the first order contribution in perturbation theory re-
spective ε turns out to be sufficient to reproduce the leading order exponential
factor in the VPP probability, P . If their Fourier transform (FT) in the large
frequency limit falls faster than exponentially, higher order contributions become
relevant [393].

However, to find out whether two different weak fields lead to the same tunneling
exponent are not directly visible via their FTs, even in the large frequency limit.
Let us make this more concrete: for instance, both a Lorentzian and a Sauter
pulse have FTs in the mentioned limit which decay exponentially, see expressions

1 The critical point is defined as the point where both the strong and the weak contributions
are equal, see [3].

2 For this particular type of fields the ∆ correction introduced in [3], see section 8.5.7, is
negligible small, in particular for N � 1.

3 The accuracy of the analytical prediction in (9.8) increases as soon as N ↑. A similar
behavior applies for ε ↓ with moderate N as discussed in [3] for N = {0, 1}.
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(9.20) and (9.28) below. These functions are clearly distinguishable in form of a
frequency shift by a factor π

2 and thus do not coincide.

So although for both the first order in the small parameter ε is sufficient to ap-
proach the nonperturbative result, the corresponding stationary worldline action
W0 is distinct. According to previous findings [393], one may explain the men-
tioned frequency shift and hence the impact on W0 via the approximate FTs in
the large frequency limit just by rescaling the large frequency estimate in (9.20),
means ω → 2ω

π
, or vice versa.

However, note that this case is very special. Namely, in section 9.2 we have shown
hat the weak super Gaussian with N →∞ leads to the same stationary worldline
action as one obtains for the Lorentzian, see figure 9.3. So it is reasonable to
expect that for such a rectangular pulse the first order in ε will be sufficient.

Referring to the findings in [393], such a behavior can be anticipated, since the
FT does not decay faster than an exponential. However, the obtained coincidence
for the stationary worldline action cannot be unveiled just by working out the
corresponding FTs which are indeed highly distinct, see equations (9.12) and (9.16)
as well as figure 9.5. As shown in section 9.2, this result can be explained by means
of the corresponding effective reflection points in the instanton plane. Nevertheless,
not only in order to support our results, but also to demonstrate in particular
the differences occurring for any finite parameter N > 1, which has not been
analytically studied so far, we discuss in the following the super Gaussian from
(9.2) in Fourier space.

9.3.1 Fourier space

Let g̃ denote the FT of the weak pulse. As mentioned, the order by order contri-
butions in ε can be written in terms of g̃. For the Lorentzian we find

g̃($) = 1
ω

√
2
π

$

ω
K1

(
$

ω

)
(9.12)

with K1 being the first order modified Bessel function of the second kind. For
super Gaussians as described in equation (9.2), the representation in Fourier space
is much more difficult to obtain. Therefore, we need to introduce a slightly differ-
ent strategy which may also be suitable for other backgrounds leading to similar
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problems.

We construct the super Gaussian pulse (SG4N+2), particularly in the (almost)
rectangular potential barrier limit, i.e. N � 1, which is the interesting case here,
via the convolution of an ordinary Gaussian,

Gσg=̂ e−(t/σg)2
, (9.13)

with the standard rectangular function,

Rσr=̂ rect
(
t

2σr

)
. (9.14)

So in order to compute g̃, we proceed according to the following prescription

SG4N+2 S̃G4N+2

1
Cσg,σr

(
Gσg ⊗ Rσr

)
1

C̃σg,σr

(
G̃σg × R̃σr

)

FT

'

FT

'

where ⊗ denotes the convolution product and Cσg ,σr , C̃σg ,σr are some normalization
factors. Identifying

N ↔ 1/κ,

σr ↔ 1/ω,
(9.15)

with κ := σg/σr, we can finally write (including the prefactor) the following FT

g̃($) = 1
ω

√
2
π

ω

$
sin

(
$

ω

)
exp

(
−κ

2$2

4ω2

)
(9.16)

having assumed the condition κ� 1. It is important to keep the parameter κ for
later purpose.

9.3.2 First order

The general expression after perturbing the interaction Hamiltonian in the (dressed)
S-matrix approach gives [393]

P = V3

∫ dp3

(2π)3

∣∣∣∣∣. . .+ ε
∫ d$

2π g̃ Πppp + . . .

∣∣∣∣∣
2

. (9.17)
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For simplifications we assume ppp = 0 which is reasonable, since the spectrum for
backgrounds considered here is symmetrically peaked around the origin. Then the
matrix element at O(ε) takes the form

Π0($) = e

ES
E

([
$

2m

√
1−( $

2m)2
+arcsin( $

2m)
]
−π2

)
(9.18)

which, not surprisingly, becomes unsuppressed for $ = 2m. We begin with the
Lorentzian pulse,

g(t) =
[
1 + (ωt)2

]−3/2
. (9.19)

In order to perform a saddle point approximation to the $ integral in (9.17), we
first assume $ � ω to estimate

g̃ ' exp
(
−$
ω

)
. (9.20)

We insert the approximate expression (9.20) into equation (9.17) and find the
corresponding saddle point [393]

$sp = 2m
√

1− 1
γ2 . (9.21)

The latter leads to the previously introduced threshold γ ≥ 1 after plugging into
the exponent in equation (9.18). For γ = 1 the contribution g̃($sp) is maximal
where the exponential Π0($sp) approaches its minimum. Defining a variable

x := $

ω
, (9.22)

we find the following integral solution for the FT in (9.12)

∫
d$ g̃ =

√
2
π

∫ ∞
0

dx xK1(x) =
√
π

2 . (9.23)

In case of the super Gaussian, we are particularly interested in the limit κ → 0.
For this, we cannot write an exponential expression for g̃ just by assuming x� 1.
However, according to the findings in section 9.2 we check whether $ = $sp, see
equation (9.21), solves the saddle point condition

∂(g̃ Π0)
∣∣∣
κ→0

= 0 (9.24)
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Figure 9.4: Saddle point condition (9.24) evaluated in $sp for different ratios E/ES plotted
versus γ. The vertical dashed line is placed at the critical threshold γ = 1.

where ∂ ≡ ∂
∂$

. It turns out that for the nonperturbative weak field regime, i.e.
E
ES
� 1 and ω � m, the condition (9.24) is fulfilled, see figure 9.4. For E

ES
= 10−2

and γ & 2 the curve becomes increasingly oscillating until it settles down at ' 0.15.
Such a breakdown is reasonable, since according to 2 E

ES
= ω

m
the gray solid curve

with ω
m
> 2×10−2 almost approaches the Compton scale. An approximate validity

condition for $sp can therefore be given as

γ
E

ES
. 10−2 (9.25)

which is obviously satisfied for E
ES

= 10−4, red dashed curve, and E
ES

= 10−6, blue
dotted curve, as depicted in figure 9.4.

Now, applying again the previous variable substitution to the FT in equation
(9.16), we obtain the same integral solution as in the Lorentzian case, see equation
(9.23),

∫
d$ g̃ =

√
2
π

∫ ∞
0

dx
sin(x)
x

e−κ
2x2/4 κ→0=

√
π

2 . (9.26)

For large x the integrand oscillates around the function in equation (9.12), but
asymptotically converges to zero. Therefore, since $sp works for any ω, at least
for ω � m, we may conclude that the threshold at γ = 1 applies for the super
Gaussian in the limit N →∞ as well. This is exactly what we have found within
the previous nonperturbative reflection approach, see section 9.2, which has also
been confirmed in direct numerical computations. Note that, as soon as κ is taken
to be sufficiently large, which basically corresponds to super Gaussians with finite
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order N , the latter coincidence will not apply anymore.

For completeness, let us discuss the Sauter pulse, g(t) = sech2(ωt), which has the
following FT

g̃($) = 1
ω

√
π

2
$

ω
csch

(
π

2
$

ω

)
. (9.27)

Again, we can write an approximate expression assuming x� 1,

g̃ ' exp
(
−π2

$

ω

)
. (9.28)

Inserting the expressions (9.28), (9.18) and the saddle point (9.21) into equation
(9.17), results in the known critical threshold γ ≥ π/2. Integrating the FT in
(9.27) as before, we find∫

d$ g̃ =
√
π

2

∫ ∞
0

dx xcsch
(
π

2x
)

=
√
π

2 .
(9.29)

So the solution is identical to the previous one obtained for the Lorentzian and
rectangular pulse in equations (9.23) and (9.26), respectively.

9.3.3 Integral coincidence
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Figure 9.5: FTs, ωg̃(ωx), where x := $/ω are plotted for the cases indicated in the plot legend.
For the ordinary Gaussian (N = 0) we have

√
2ωg̃(ωx) = e−x

2/4. In the inset the same curves
are shown with logarithmic scaling.

Evaluating first the exponential via a saddle point approximation using a large
frequency estimation for g̃, we consider the integral

∫
d$ g̃ as a prefactor in front

of the leading order exponential (9.18) in the perturbative expansion (9.17). Our
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findings above suggest that this integral seems to incorporate useful information
about the impact of the additional weak dependence.

Namely, we have seen that ∫ ∞
0

dx ωg̃(ωx) =
√
π

2
(9.30)

applies for all weak pulses, i.e. Lorentzian, super Gaussian with N → ∞ and
Sauter, which approach the nonperturbative result already at lowest order O(ε).
Notably, a Sauter pulse with frequency shift ω → ω π

2 behaves similarly. We should
note that the FTs as well as the condition in (9.30) do not carry sufficient infor-
mation for unveiling whether the stationary worldline action from equation (5.25)
matches for two different backgrounds.

On the other hand, we have seen in section 9.2 that even when two backgrounds
crucially differ in Minkowski spacetime, see figure 9.1, they can result in the same
tunneling exponential. These insights can be taken as a strong evidence that the
mechanism of dynamical assistance is mainly triggered by the nonperturbative
(effective) reflection points in the instanton plane, which, in contrast to g̃($) de-
picted in figure 9.5, do perfectly agree.

Coming back to the integral condition in (9.30), let us adduce an additional ex-
ample. We consider a weak pulse of modified Sauter type described by

g(t) = sech(ωt), g̃($) = 1
ω

√
π

2 sech
(
π

2
$

ω

)
. (9.31)

In this case, we will find the same stationary worldline action for sufficiently small
field strengths, usually ε < 10−2, as for the ordinary Sauter pulse (9.27). This
coincidence is rooted in the same reflection point, cf. [3]. Therefore, we expect the
same behavior with respect to ε. Indeed, as in the previous cases, computing the
corresponding integral, the result obeys again the condition in (9.30),∫

d$ g̃ =
√
π

2

∫ ∞
0

dx sech
(
π

2x
)

=
√
π

2 . (9.32)

We close this part by noting that for the super Gaussian with any finite order N
we have ∫ ∞

0
dx ωg̃(ωx) <

√
π

2 , (9.33)
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since κ > 0, see (9.16). For such pulses, as will be shown in the following, higher
orders in ε generally become relevant. It is an interesting coincidence that in such
a situation the condition (9.30) is not fulfilled anymore.

9.3.4 Higher orders

To compute higher order contributions we rely on the general expansion

P ' P0 + εP1 + ε2P2 +O(ε3). (9.34)

According to Furry’s theorem, all odd orders in ε should vanish, see section 3.4.1.3.
Here, in the presence of a static background such contributions are included as
well [329, 396–398]. The zeroth order term stems again only from the strong
background dependence. At a given order N, the perturbative probabilities PN in
the expansion (9.34) can be written as

PN '
∫
d$1 g̃($1) . . .

∫
d$N g̃($N) FN (9.35)

where g̃ again denotes the FT of the weak pulse.

The functions FN can be computed by using the N photon master formula from
section 4.4.3. Let us remind that the latter exactly describes the situation where a
single particle loop in a static background is perturbatively coupled to N photons.
Therefore, we can use it for the present purpose.

The starting point is equation (4.4.3) where the initial polarization vectors εµj
are replaced by g̃($) and the background is assumed to be a static electric one,
cf. [393]. This exactly results in the introduced perturbative expansion as in (9.34)
given above. Setting kµj = (ωj, 0, 0, 0) for all j = 1, . . . ,N, the functions FN, in
particular the exponential dependence, reads

FN ' δ

 N∑
j=1

ωj

∫ ∞
0

ds
∫ 1

0

N∏
j=1

dτj (. . .)

× exp
−m2

E

s+ 1
2

N∑
j,i=1

EωjGBjiωi

 (9.36)

where

GBji = cos(sĠBji)− cos(s)
2E sin(s) ,

ĠBji = sign(τj − τi)− 2(τj − τi),
(9.37)
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see [329]. The latter bosonic worldline correlator GBji has been introduced in
section 4.2.4. The prefactors in (9.36) represented by (. . .) which depend on the
integration variables have no influence on the exponential contribution. So as done
before, we focus on the exponential in order to study the behavior with respect to
higher orders in ε. The leading order contribution can be obtained by determin-
ing those integration variables for which the dominant exponential suppression is
minimized.

Proceeding in this way, means performing a saddle point approximation with re-
spect to the proper time, s, and worldline time, τ , see equation (5.5) in [393], the
leading order approximation for PN reads

PN '
∫
d$1 g̃($1) . . .

∫
d$N g̃($N)

× exp
(

2m2

E

[
Σ
√

1− Σ2 + arcsin(Σ)− π

2

]) (9.38)

where 0 < Σ < 1 is defined as

Σ := 1
2m

J∑
i=1

$i, (9.39)

and
∑

l∈{1,...,J,...,N}
$l = 2mΣ +

N∑
j=J+1

$j = 0 (9.40)

which applies due to energy conservation. Note that the exponential in (9.38) is
of the same form as in (9.18).

Without loss of generality let us assume 2mΣ� ω. So for the Lorentzian we use
again the approximate expression (9.20) and compute the $l integrals via (9.40).
Carrying out a saddle point approximation with respect to Σ results in

PN ' exp
(
−4m2

E

Σsp

γ

)

× exp
(

2m2

E

[
Σsp

√
1− Σ2

sp + arcsin(Σsp)− π

2

]) (9.41)

where Σsp =
√

1− 1/γ2. For the super Gaussian in the rectangular potential bar-
rier limit, i.e. κ → 0, the situation is not much different. First, we solve the $l

integrals using condition (9.40).
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The prefactor in front of the exponential in (9.38) takes the form
∏
i

ω

$i

sin
(
$i

ω

)∏
j

ω

$j

sin
(
$j

ω

)
(9.42)

with

$i = 2mΣ
J − 1 , i ∈ {2, . . . , J},

$j = −2mΣ
N− J − 1 , j ∈ {J + 1, . . . ,N− 1}.

(9.43)

In case of 2mΣ� ω, we may use again the approximate form in equation (9.20),
since in the relevant regime it leads to the correct leading order contribution as
we have seen before, see figure 9.4.

So the prefactors (9.42) in equation (9.38) reduce then to an exponential that
yields the following expression

PN ' exp
(
−4mΣ

ω

)

× exp
(

2m2

E

[
Σ
√

1− Σ2 + arcsin(Σ)− π

2

])
.

(9.44)

Rescaling 2mΣ → Σ subsequently, the saddle point is simply given by Σsp =
$sp
2m . This gives the same exponential factor as in equation (9.41) which remains
unchanged for any N ≥ 1. We conclude that similar as in the Sauter-like cases,
the first order contribution in ε will be sufficient to approach the nonperturbative
result. Of course, this is quite different from the ordinary Gaussian, i.e. N = 0,
which behaves nonperturbatively, since higher orders in ε turn out to be necessarily
relevant [393].

9.4 Summary

In this chapter we have studied the Schwinger mechanism in the presence of an ad-
ditional, uniformly oriented super Gaussian of integer order 4N+2, the dynamical
assisted mechanism. In the first part, section 9.2, we have treated the background
nonperturbatively utilizing the reflection approach. We have shown that already
for N = 2 a much stronger dynamical enhancement applies in comparison to a
weak contribution of Sauter type.
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Taking the limit N → ∞, which corresponds to the usual rectangular potential
barrier, results in the same leading order exponential factor as one finds for the
bell shaped Lorentzian. Although both setups are highly distinct in Minkowski
spacetime, the found coincidence applies due to identical effective reflection points
in the instanton plane which turn out to be the main regulator in this dynamical
mechanism.

In the second part, section 9.3, we have studied the impact of the weak super
Gaussian in perturbation theory and found that in the rectangular potential bar-
rier limit it shares the same higher order behavior as Sauter-like pulses. We have
argued that the leading order contribution in ε already approaches the nonpertur-
bative result, although a distinct pole structure, as one finds in the latter cases,
is not present. In addition, we have seen that for any finite N a found integral
condition is not fulfilled which indicates the relevance of higher order terms in the
strength parameter ε.

The results clearly demonstrate that tunneling in such complex backgrounds can
lead to nontrivial physics. The fact whether the weak pulse behaves perturba-
tively or nonperturbatively depends on its microscopic details determined by the
parameter N .



Chapter 10

Instantons in multidimensions

10.1 Outline

W e study the VPP process in multidimensions. We focus on electric back-
grounds as a linear combination of a spatial Sauter field and, interchange-

ably, certain weaker time dependent fields without poles in the complex plane such
as the sinusoidal and Gaussian cases. Based on geometric considerations within
the worldline formalism, as discussed in section 8.5, we employ the relevant critical
points in order to analytically estimate a characteristic threshold for the temporal
inhomogeneity.

We set appropriate initial conditions and apply additional symmetry constraints in
order to determine the classical periodic paths in spacetime. Using these worldline
instantons, we compute the corresponding leading order exponential factors show-
ing large dynamical enhancement in general. We work out the main differences
caused by the analytic structure of such composite backgrounds and also discuss
the case with a strong temporal variation of Sauter type.

10.2 Tunneling instantons

10.2.1 Stationary points

We consider a purely electric background oriented in x̂3 direction where the spatial
part is represented by the scalar potentialA4(x3) and the temporal part by a vector
potential A3(t). Due to simplifying reasons, both parts shall be described by even
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functions in t and x3, respectively. After the rotation in the complex plane, we
derive

A3(x4) = −iEω
ω
T (ωx4),

A4(x3) = i
Ek
k
S(kx3),

(10.1)

where T and S are odd functions in the corresponding spacetime coordinates.
Here, Ek and Eω denote the field strengths and k and ω the wave number and
frequency, respectively. Inserting the expressions from (10.1) into the instanton
equations (5.23), we end up with the following system of differential equations

ẍ4 = +aEk
m

[
ε
∂4T (ωx4)

ω
+ ∂3S(kx3)

k

]
ẋ3,

ẍ3 = −aEk
m

[
ε
∂4T (ωx4)

ω
+ ∂3S(kx3)

k

]
ẋ4,

(10.2)

where ẍ1 = ẍ2 = 0. As in the previous chapters, we define for the sake of conve-
nience the dimensionless field strength ratio parameter ε := Eω

Ek
.

Next, we specify the spatial part as a Sauter pulse described by

SSauter(kx3) = tanh(kx3) (10.3)

and introduce the following dimensionless quantities

γk = mk

Ek
, γω = mω

Ek
, (10.4)

which in the present case are referred to as the spatial and temporal Keldysh pa-
rameter, respectively. Note that, as in chapter 9, the particle charge e is absorbed
into the spatial field strength, eEk → Ek.

For the temporal dependence we choose between two different profiles that are
described by

Tsinusoid(ωx4) = sinh(ωx4),

TGaussian(ωx4) =
√
πerfi(ωx4)

2 .
(10.5)

A temporal Sauter field,

TSauter(ωx4) = tan(ωx4), (10.6)
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has been both analytically and numerically investigated in the weak limit ε � 1,
leading to an enormous enhancement due to instanton reflections at poles in the
complex plane [152]. Of course, as we have seen in the previous chapters, such
an enhancement is not restricted to this specific case and is expected to apply in
general for any time dependent field with a distinct pole structure in the instanton
plane [3].

We aim to extend such considerations for poleless fields as introduced in (10.5).
Laser fields have an oscillatory structure leading to substantial interference effects
in phase space [34, 341, 342]. Such setups motivate investigations for time depen-
dent backgrounds entailing an oscillatory subcycle structure such as the sinusoidal
field. For the field examples introduced above, a spatially inhomogeneous field is
closely related to a temporal one by the analytic continuation

γω → iγk. (10.7)

This correspondence is automatically included in the worldline instanton approach
[146, 159]. In the remaining part the dimensional quantities x3, x4 and a will be
given in units of m

Ek
.

10.2.2 Symmetries

For backgrounds composed of fields as introduced in equations (10.3) and (10.5),
the closed instanton paths preserve (discrete) reflection symmetry,1

x3 → −x3,

x4 → −x4,
(10.8)

i.e. isomorphic with C2. In this case, one can set the starting point on the solution
path satisfying, for instance,

x3(0) 6= 0,

x4(0) = 0.
(10.9)

Afterwards, from the symmetry properties (10.8) we get ẋ3(0) = 0 and therefore
ẋ4(0) = a, which is a direct consequence of the instanton periodicity. We may

1 Let us remind that the static field instanton in the two-dimensional plane is maximally
symmetric with C∞, see section 5.7.
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therefore conclude

x3(0) = x3(1) = −x3(1/2) 6= 0,

x3(1/4) = x3(3/4) = 0,

x4(0) = x4(1/2) = x4(1) = 0,

x4(1/4) = −x4(1/4) 6= 0.

(10.10)

As we will see, such relations lead to very powerful constraints improving numerical
methods in order to find the correct instanton solutions, see section 10.3.3.

10.3 Strong spatial dependence

10.3.1 Analytical approximations

We suppose a dominant spatial dependence, ε � 1, such that the terms propor-
tional to ε in the instanton equations (10.2) can be neglected, except the cases
where the contribution from T counterbalances the smallness of the field strength
ratio parameter ε. For TSauter this happens at the pole

xref
4 = π

2γω
(10.11)

which serves as a reflection point. For the sinusoidal and Gaussian fields the situ-
ation is not so obvious.

However, if the Keldysh parameter of the weak field is much larger than the criti-
cal threshold, whose presence is characteristic for the dynamically assisted mech-
anism [31, 32, 152], a similar criterion applies even for poleless fields, as discussed
in chapter 8. Here, we show, among others, that such effective reflection points
apply for backgrounds depending on space and time as well.

We start by observing that for k → 0 the spatial part has the largest contribution.
This follows due to the field’s Euclidean form that remains bounded from above.
Therefore, we fix k = 0 and determine the critical point xref

4 for which the spatial
contribution becomes negligible compared to the weak time dependent one. Since
in this static limit the maximal contribution from the spatial part is reached, xref

4
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may also apply for k > 0. The effective reflection points read as

sinusoidal xref
4 (γω, ε) ≈

arcsinh(γω/ε)
γω

,

Gaussian xref
4 (γω, ε) ≈

√
ln(1/ε)(1 + ξ)

γω
,

(10.12)

revealing an additional ε dependence which has interesting consequences for the
tunneling rate as we also have seen before in the case with purely time dependent
electric backgrounds. The detailed derivation of ξ has been accomplished in [3]
which is revisited in chapter 8.

Following this reflection picture, one can analytically integrate the approximated
instanton equations in order to get

ẋ4 ≈ a
SSauter(kx3)

γk
+ aR,

ẋ3 ≈ a

√√√√1−
(
SSauter(kx3)

γk
+R

)2 (10.13)

after applying the relation

a2 = ẋ2
3 + ẋ2

4. (10.14)

Here, R represents a dimensionless reflection constant (it is not the vacuum decay
rate in section 3.3) which determines the velocity ẋ4(±1/4) where x3 = 0, see
also [152].

Using the relation

1
4 =

∫ xturn
3

0
dx3

1
ẋ3
, (10.15)

which is justified due to the underlying instanton symmetry in (10.8), and inserting
the second expression in (10.13) into the latter integral, the invariant a satisfies

a ≈ 4
∫ xturn

3

0
dx3

1√
1−

(
SSauter(kx3)

γk
+R

)2
(10.16)

where the upper integration limit, the spatial turning point, is determined by

SSauter(kxturn
3 ) + γkR = γk. (10.17)
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The constant R can be computed employing the relation

xref
4 =

∫ xturn
3

0
dx3

ẋ4

ẋ3
(10.18)

and inserting the expressions (10.13) into the latter integral which results in the
following implicit condition

xref
4

!=
∫ xturn

3

0
dx3

SSauter(kx3) + γkR√
γ2
k − (SSauter(kx3) + γkR)2

. (10.19)

In case of reflection one has R 6= 0. However, setting R = 0 and replacing xref
4

on the left-hand side by the corresponding critical point xcrit
4 ,2 we can straightfor-

wardly compute γcrit
ω . As shown in section 8.5, such critical points can be obtained

via perturbations around certain intersection points which, in the present case,
read

sinusoidal xint
4 (γω, ε) = arccosh(1/ε)

γω
,

Gaussian xint
4 (γω, ε) =

√
ln(1/ε)
γω

.

(10.20)

Accordingly, we may write

xcrit
4 = xint

4 (1−∆) (10.21)

with the corresponding correction ∆ which we explicitly have computed for the
time dependent fields under consideration up to order O(∆2), see section 8.5.7.

For fields with a pole structure both xref
4 and xcrit

4 are identical in the limit ε� 1,
so ∆ = 0. For the sinusoidal and Gaussian fields which have no poles present,
these two points are not equal, ∆ > 0. Generally, the values for the effective
reflection points are much larger. Due to the intersection points in (10.20), we
find that the threshold depends on ε which has been discussed in the purely time
dependent case [3, 37, 152], but needs some further modifications for the present
spatiotemporal setup, see appendix E.

2 The critical temporal Keldysh parameter is determined by the critical point denoted as xcrit
4

which we take as the point where the weak field contribution starts to become dominating, i.e.
S = εT .
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Namely, the effective field strength ratio for γk > 0 is

ε̃ = ε cosh2

arcsinh
 γk√

1− γ2
k

 . (10.22)

Here, one may only consider the spatial Sauter field where the right-hand side
follows from max{x3} determined by the corresponding exact instanton solution,
see appendix E. With these modifications and applying the integral result from
[152], the critical temporal Keldysh parameter can be generalized to

γcrit
ω = γωx

int
4 (1−∆)

γk
√

1− γ2
k

arcsin(γk)
(10.23)

with

xint
4 ≡ xint

4 (γω, ε̃), ∆ ≡ ∆(ε̃), ε̃ ≡ ε̃(γk, ε). (10.24)

Inserting the pole for the Sauter field, xint
4 = π

2γω and ∆ = 0, leads to the threshold
in [152].

0.0 0.2 0.4 0.6 0.8 1.0
γk0

2

4

6

8

γω
crit

Sauter

Sinusoid ϵ = 10-3

Sinusoid ϵ = 10-4

Sinusoid ϵ = 10-5

Gaussian ϵ = 10-3

Gaussian ϵ = 10-4

Gaussian ϵ = 10-5

Figure 10.1: Critical temporal Keldysh parameter γcrit
ω from (10.23) is plotted versus the spatial

Keldysh parameter γk. The values for ε are listed in the plot legend.

The analytically predicted critical Keldysh parameters for all three weak fields are
plotted in figure 10.1 where for the poleless cases we have used ε ∈ {10−3, 10−4, 10−5}.
In the case γk = 0, the critical threshold γcrit

ω increases as soon as ε → 0. In this
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limit, the Gaussian field leads to a much smaller value for γcrit
ω in comparison to the

sinusoidal case, being in accordance with previous findings in a purely temporal
background.

In the limit γk → 1, the threshold in the deeply weak regime, ε � 1, behaves as
γcrit
ω → 0. This clearly reflects delocalization effects which are generally inherent

to finitely extended spatial fields.3 To be more precise, for γk ≥ 1 the width of
the spatial field falls down below the Compton wavelength. Consequently, without
additional assistance, that is γω = 0, the delocalized virtual pair cannot absorb
sufficient energy to become a real pair. However, it is expected that the thresh-
old at γk = 1 [23, 146, 388] will be shifted to larger values for increasing time
variations approaching the Compton scale [57]. This would result in additional
energetic multiphoton contributions leading to a substantial support.

A similar effect also applies for ε→ 1, see e.g. [154, 162, 399]. On the other hand,
if ε > 1 and γω → 0, there will be no critical value present for γk at all. In the
latter scenario the tunneling can entirely be driven by the strong time dependent
term even if the electrostatic energy provided by the weaker spatial term alone is
incapable to produce the pair. More details on this are discussed in section 10.4.

Coming back to the present case, the remaining quantities can be computed ac-
cording to the following prescription

xref
4 & (10.19) & (10.17) R,

R & (10.17) & (10.16) a,

R & (10.17) xturn
3 .

(10.25)

Let us remind that due to restrictions regarding the derivation of xref
4 stressed

above, we expect the predictions in (10.25) to be valid if

γω � γcrit
ω (10.26)

which is the condition for dynamical assistance [32]. For more details of the ap-
proach, we again refer to section 8.5.

3 It is worth mentioning that the worldline instanton approach automatically accounts for
such interesting effects.
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10.3.2 Comparison with numerical results
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Sinusoid with γk = 0.5 and ϵ = 10
-4
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γω
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x3

turn

Sinusoid with γk = 0.5 and ϵ = 10
-4

Figure 10.2: a (top) and xturn
3 (bottom) for time dependent sinusoidal field plotted versus

γω ∈ {0, 1, . . . , 15}: values are computed via numerical shooting (red dots), where starting points
(astart, xstart

3 ) have been set by hand, and via the prescription in (10.25) (blue dots). Remaining
field parameters are given as γk = 0.5 and ε = 10−4. The vertical, dashed, red line is located at
γcrit
ω from (10.23), whereas the dashed, green line has been obtained without replacing ε by the

modified parameter ε̃ from (10.22).

In this part, we compare the predictions in (10.25) with directly obtained nu-
merical results. For solving the system in (5.23), having closed periodic paths as
solutions, we transform an appropriate boundary value problem via constructing
a convenient multivariate function of an initial condition set by a and xturn

3 which
we treat via the shooting technique, see also [400].

The idea is to reduce the whole task to the problem of finding the root of the
multivariate function. This can be easily carried out, for instance, with standard
computational tools for which we first estimate the required starting point

(
astart, xstart

3

)
(10.27)

by hand.

Taking into account the instanton symmetry from (10.8), we first set

ẋ3(0) = 0,

x4(0) = 0.
(10.28)
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Figure 10.3: a (top) and xturn
3 (bottom) for time dependent Gaussian field plotted versus

γω ∈ {0, 1, . . . , 15}. Remaining parameters and colors are set as in figure 10.2.

Using the relation for the invariant a, we end up with the following initial condi-
tions

x3(0) = x̌3,

ẋ3(0) = 0,

x4(0) = 0,

ẋ4(0) = ǎ.

(10.29)

The function, whose root we have to determine, then can be defined, for instance,
as

ΩΩΩ1(ǎ, x̌3) :=
 x3(1)− x̌3

x4(1)

 ∈ R2. (10.30)

Note that ΩΩΩ1 basically includes only information about the periodicity of the sta-
tionary path. Having done this, we can evolute the solution for the pair (ǎ, x̌3)
solving the system of differential equations in (10.2) by imposing the initial con-
ditions in (10.29) until a numerical root of the function ΩΩΩ1 is found, which then
provides a solution, so that

(a, xturn
3 ) ∈ {(ǎ, x̌3) | ΩΩΩ1(ǎ, x̌3) = 0}. (10.31)

Even though this is an efficient way to find a solution, the result is very sensitive
to the initial starting point which has to be preset for the root finder very care-
fully. One should note that restricting the solution via ΩΩΩ1 may lead to closed paths
which, however, cannot be accepted as a correct solution simply due to violation of
(10.8). Modifications needed in order to avoid such inconsistencies are discussed
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in section 10.3.3. Nevertheless, apart from these technicalities, we can adjust the
starting points for any setting by hand until an appropriate solution is found.

Proceeding in this way, the obtained results are depicted in figures 10.2 and 10.3,
respectively, fixing the parameters γk = 0.5, ε = 10−4 and varying γω as given in
the figure captions. As one can clearly observe, the analytical approximations ap-
proach the numerical results for sufficiently large temporal inhomogeneities being
in line with our expectation (10.26). Furthermore, the critical threshold (10.23),
both with and without the replacement ε → ε̃, turns out to be remarkably accu-
rate. For γω < γcrit

ω both a and xturn
3 behave almost constant, reflecting the absence

of substantial contributions from the weak field.

10.3.3 Starting points and symmetry constraints

Finding the worldline instantons directly, that is, without tweaking the starting
point by hand, requires some refining of the previous strategy. The starting point
has to be set accurately in order to find the correct root of ΩΩΩ1. This is actually
very difficult to control, since the algorithm is highly sensitive to the initial starting
points and also to numerical inaccuracies. However, once the correct invariant and
spatial turning point is determined, solving the resulting system by incorporating
the found root will supply the closed instanton path.

The previous comparisons show that we cannot benefit from (10.25), in particular,
for values in the vicinity of γcrit

ω . A possible approach can be pursued as follows:
for γω ≤ γcrit

ω one simply assesses the starting point as the one that is obtained only
for the strong spatial background term, which we denote as (a0, x

turn
0,3 ), whereas for

γω > γcrit
ω one decides whether the prediction via (10.25) is smaller or larger than

(a0, x
turn
0,3 ). In the former case, the analytical approximation can be taken as the

corresponding starting point. These steps can be put together as

astart =

 a0, a0 ≤ a

a, a0 > a
,

xstart
3 =

 x0,turn
3 , x0,turn

3 ≤ xturn
3

xturn
3 , x0,turn

3 > xturn
3

(10.32)
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where

a0 = 2π√
1− γ2

k

, xturn
0,3 = 1

γk
arcsinh

 γk√
1− γ2

k

 , (10.33)

see appendix E. As a last and crucial step, we replace the previous function by

ΩΩΩ2(ǎ, x̌3) :=
 x3(1/4) + x3(3/4) + x4(1/2)− x4(1)
x4(1/4) + x4(3/4) + x3(1/4)− x3(3/4)

 (10.34)

for which we have explicitly imposed the constraints from (10.10). Due to the
symmetry of the instanton, both components of the latter function have to be
zero. The solution to the problem is then

(a, xturn
3 ) ∈ {(ǎ, x̌3) | ΩΩΩ2(ǎ, x̌3) = 0}. (10.35)

It turns out that searching for a numerical root of the function ΩΩΩ2 is much more
robust and accurate for finding the correct solution which leads to closed paths
keeping the instanton symmetry preserved.

10.3.4 Worldline instantons

Following the strategy described in section 10.3.3, we find the corresponding in-
stanton paths for any field parameters of interest. The new results for a spatial
Sauter field, superimposed with a time dependent sinusoidal and Gaussian field,
are shown in figures 10.5 and 10.6, respectively. Here, we have fixed γk = 0.5 and
varied only γω and ε where the corresponding numerical values are listed in the
figure captions.

For backgrounds with a weak temporal Sauter-like dependence, instantons admit a
lens shape with cusped turning sections [3, 152], see figure 10.4. However, for pole-
less fields, reflections turn out to be softened and the paths curve much smoother.
For γω � 1 they tend to become increasingly lens shaped but still remain smoothly
curved. This effect seems to be much stronger for the Gaussian field, see figures
10.5 and 10.6.

Furthermore, due to the additional ε dependence, there appear significant differ-
ences among the paths, independent from the field profile. The described effects
are much more pronounced for the oscillatory sinusoidal field.
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Figure 10.4: Worldline instantons for superimposed temporal Sauter field with γω ∈
{0.001, 2.5, 5, 7.5, 10} (from blue, outer path, to magenta, inner path). In the right panel the
components x3 (dashed) and x4 (dotted) are separately plotted. Remaining field parameters are
chosen as γk = 0.5 and ε = 10−4.

The presence of poles for Sauter-like fields is basically responsible for the ε in-
dependence and the seemingly related cusps. This may explain why the leading
order exponential factor in P can be accurately approached already at O(ε) in
perturbation theory [1, 393], see chapter 9. Since the stationary worldline action
W0 does not feature any ε dependence, at least in the limit ε� 1, the same expo-
nent has to apply at any higher order in ε. Therefore, the first order contribution
stemming from the weak field should indeed be capable to approximate W0. Note
that we treat the background nonperturbatively.

For time dependent fields, such as of sinusoidal and Gaussian type, poles are
not present. In these cases, since the stationary worldline action does in general
depend on ε, we may expect different exponents in the perturbative expansion of
P . Hence, the effective reflection picture already elucidates the relevance of higher
orders in ε for poleless fields as found in [1, 393]. For super Gaussians of the form

Eωe
−(ωt)4N+2

, N ∈ N, (10.36)

which do not have poles in the instanton plane, such aspects have been extensively
discussed in chapter 9.

Coming back to the worldline instantons in figures 10.5 and 10.6, the advantage
for treating the system with the help of ΩΩΩ2 and rearranging the starting points
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Figure 10.5: Worldline instantons for superimposed temporal sinusoidal field with γω ∈
{0.001, 5, 10, 15, 20, 25}, from blue outer path to orange inner path. In the right panel the
components x3 (dashed) and x4 (dotted) are separately plotted. Remaining field parameters
are chosen as γk = 0.5 and ε ∈ {10−1, 10−3, 10−4}, from top to bottom.
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Figure 10.6: Worldline instantons for superimposed temporal Gaussian field with γω ∈
{0.001, 5, 10, 15, 20, 25}, from blue outer path to orange inner path. In the right panel the
components x3 (dashed) and x4 (dotted) are separately plotted. Remaining field parameters
are chosen as γk = 0.5 and ε ∈ {10−1, 10−3, 10−4}, from top to bottom.
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is clearly reflected. The root finding works very robustly and provides the cor-
rect paths independently from the chosen field parameters which was not possible
with ΩΩΩ1. Additional constraints resulting from the underlying instanton symmetry
improve the root finding routine substantially.

10.3.5 Stationary worldline actions

What still remains to be done is the computation of the stationary worldline ac-
tion, W0. This can be directly performed following the previous recipe in section
10.3.3. First, we numerically find the worldline instantons for a set of parameters
and take the data afterwards to evaluate the worldline action W on these paths.
For this, let us fix the field strength ratio as ε = 10−4. The spatial as well as
Keldysh parameter is varied in a convenient range.

The results for the stationary worldline action are depicted in figures 10.7 and
10.8, respectively. In the top panels, W0 has been plotted versus γω for different
γk listed in the corresponding captions. In both cases, one finds that W0 ↑ if γk ↑
as long as γω � γcrit

ω . If the weak field starts to assist, i.e. γω > γcrit
ω , we find

W0 ↓ for γω ↑. For γω � γcrit
ω the different curves converge to a single curve which

one would obtain for γk = 0. This is in agreement with our expectation, since
a static spatial field provides the largest contribution to the effective total field
strength.

Interestingly, the critical threshold for the weak sinusoidal field applies much later
compared to the Gaussian case. Moreover, for the former field all curves drop
much slower for temporal Keldysh parameters γω > γcrit

ω . This is consistent with
the observations in chapter 8. There, such differences have been argued to be
caused by the relatively large effective reflection point. Indeed, this has been pre-
sumed to be the key reason why a weak time dependent sinusoidal field assists less
than a Sauter pulse for which the reflection point is much smaller and, even more
important, ε independent [3, 32, 37, 152, 390]. As a consequence, in the latter
case, worldline instantons are reflected and squeezed already for relatively small
γω leading to the mentioned faster decrease of the stationary worldline action. The
effective reflection picture, as presented in chapter 8, helps to understand such dif-
ferences in a quite intuitive way in terms of instanton reflections.
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Figure 10.7: Top panel: stationary worldline action W0 [ES/Ek] plotted versus γω for the
temporal sinusoidal field for fixed γk ∈ {0.2, 0.4, 0.6, 0.8}, from blue to red, and ε = 10−4.
Bottom panel: W0 is depicted as a contour plot. The thick lines are the analytically predicted
γcrit
ω from (10.23) with (pink) and without (green) the modified field strength parameter ε̃, see

(10.22), included.

In the bottom panels of figures 10.7 and 10.8, the separate curves are combined
in a contour plot where the associated stationary worldline action is plotted ver-
sus γk and γω. The color maps on the right-hand side are scaled according to
the numerical values of the stationary worldline action. The previously described
trends are again clearly reflected. However, in addition, we have now included the
analytically predicted critical threshold γcrit

ω from (10.23) as well. The difference
between the shown two critical curves, one in green and the other in pink, is that
the former has been generated without incorporating the modified field strength
parameter ε̃ from (10.22) in (10.23).
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Figure 10.8: Top panel: stationary worldline action W0 [ES/Ek] plotted versus γω for the
temporal Gaussian field for fixed γk ∈ {0.2, 0.4, 0.6, 0.8}, from blue to red, and ε = 10−4. Bottom
panel: W0 is depicted as a contour plot. The thick lines are the analytically predicted γcrit

ω from
(10.23) with (pink) and without (green) the modified field strength parameter ε̃, see (10.22),
included.

For γk ↑, the curve with ε̃ included is much more accurate being in agreement
with the discussion in section 10.3.1. To the right of this critical curve, we find
strong evidence for dynamical assistance indicated by the strongly bent gray, solid
contour lines. Hence, the analytical approximations match very well with the exact
numerical results. Such remarkable agreements suggest that the present approach
serves as an efficient way to get some analytical insights even in cases with such
complex backgrounds.
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10.4 Strong time dependence

In an electric background being too localized in space, γk ≥ 1, tunneling of vir-
tual dipole pairs is not possible for ε � 1 and γω → 0. This corresponds to the
nonexistence of a periodic path in spacetime, see e.g. [146, 388]. However, for the
present type of backgrounds this effect will be absent if ε > 1.

In the following, we assume the background to be the linear combination of two
Sauter pulses. The numerical computation strategy is the same as discussed in
section 10.3.3 which works very robust even for the present purpose. The obtained
worldline instantons are depicted in the left panel of figure 10.9, whereas in the
right panel, both space and time components, x3 and x4, are plotted separately.
Chosen field parameters are given in the figure caption. In case of γω ↑ the instan-
ton paths tend to shrink smoothly, means no appearance of discontinuities in form
of cusped turning sections. More importantly, for γk ↑ instantons are real [146],
since the dominant contribution comes from the stronger temporal dependence, see
discussion in section 10.3.1. Thus, there will be no additional instanton reflections
and, consequently, no dynamical assistance. For γk � 1 the spatial contribution
will become increasingly negligible.

As soon as γk → 0, the strength of the spatial Sauter field approaches its peak
value and maximally contributes to the total effective field strength. This shrinks
the instanton paths even more.

10.5 Summary

We have investigated the tunneling process of virtual pairs from the quantum vac-
uum in the presence of certain multidimensional (1+1) electric backgrounds which
depend on space as well as on time.

Going beyond the case of two linearly combined Sauter pulses as considered in
[152], we have studied a weak time dependence of sinusoidal and Gaussian type,
respectively, which do not have poles in the complex plane. Using the worldline
formalism, the resulting background has been treated nonperturbatively. The un-
derlying equations have been simplified by applying certain effective critical points
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Figure 10.9: Worldline instantons for a spatial Sauter field combined with a stronger temporal
Sauter field. The field parameters are γk = 0.5, ε = 10 and γω ∈ {0.001, 2, 5, 10, 15, 20}, from
blue outer path to orange inner path. The two components x3 (dashed) and x4 (dotted) are
separately plotted in the right panel. The values are given in units of [m/Ek].

as discussed in chapter 8. On this basis we have analytically predicted a threshold
γcrit
ω for the temporal inhomogeneity γω depending on both the field strength ratio
ε and the spatial inhomogeneity γk.

We have set appropriate initial conditions and applied additional symmetry con-
straints present due to the assumed background structure in order to establish an
efficient algorithm. Using the latter allowed us to find the corresponding world-
line instantons for any parameters of interest. Then taking these closed paths in
spacetime, the leading order exponential factors for both backgrounds have been
computed for which we have found a large dynamical enhancement in general. We
have seen that below the predicted threshold γcrit

ω there is no substantial contribu-
tion from the weak term.

Furthermore, we have found that such backgrounds lead in general to a smaller
enhancement compared to the case with a Sauter-like time variation. This applies
due to the fact that for γk → 0, the limit where the spatial term maximally con-
tributes to the delocalization of the virtual pair, the critical threshold γcrit

ω becomes
relatively large. This effect is much more likely in the oscillatory sinusoidal case.

On the other hand, for γk → 1 the width of the spatial Sauter pulse decreases
towards the critical Compton region with the consequence that γcrit

ω → 0. In this
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case, even arbitrarily small time variations are not negligible. The tunneling rate,
however, decreases due to a large exponential suppression which slows down the
enhancement even more compared to the Sauter case.

Finally, we have also discussed the 1+1 dimensional double Sauter background for
ε > 1 and figured out the main differences found for the instanton paths compared
to earlier studies in [152] with ε� 1.
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Graphene



Chapter 11

Dynamical Schwinger mechanism
in QED2+1 and graphene

11.1 Outline

W e study the production of pairs of massive Dirac particles from the quan-
tum field theoretic ground state in an external time dependent oscillating

electric field. Starting from the quantum kinetic description in 3 + 1 dimensions,
we obtain the corresponding equations in lower dimensionality by spatial compact-
ification. We apply the resulting descriptions to bandgapped graphene layers with
charge carriers behaving like light massive Dirac fermions.

By doing so, we show that the production of electron-hole pairs in a vicinity of
the Dirac points is described by a kinetic equation reflecting a characteristic non-
Markovian nature. We compute the production rate and the momentum distribu-
tion of created particles developing numerical techniques. We demonstrate that
the process closely resembles electron-positron VPP by the dynamical Schwinger
mechanism. In addition, we describe suitable field parameters for the experimental
observation of this effect.

11.2 Quantum kinetic approach
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11.2.1 Assumptions in 3 + 1 dimensions

The study of VPP in fields which may be generated with appropriate lasers is
in general a major task due to both analytic and numerical reasons. Difficulties,
introduced by the naturally complicated shape of such fields, are usually simplified
for the sake of having a concise analytical access to the problem.1

As studied in the previous chapters, assuming a purely electric background can
simplify the problem.2 Even more specific, many of the results developed in the
literature focus on more simple cases where the background instead is a spatially
homogeneous, but temporally oscillating electric field [23, 142, 385, 402–405].

For fields of that type, for instance EEE(t) = (0, E(t), 0),3 one may also utilize the S-
matrix formalism [23, 142, 203, 353, 385, 386, 403, 404] or use ideas from transport
theory as introduced in chapter 7 [34, 39, 340, 365, 377, 378, 382, 387, 406, 407].
Both formulations are equivalent and complement each other.

Here, we will focus on the latter quantum kinetic description which particularly
highlights the nonequilibrium nature of VPP. As introduced in chapter 7, studies
are carried out in terms of the SPDF from (7.7) to which the degrees of freedom
in the external field are relaxed at asymptotically large times at which the field is

1 We note that such descriptions cannot include an external plane wave background which
has internal symmetries that can indeed crucially simplify the underlying problem. However,
for such a background the invariants F and G vanish identically, see section 3.4.2, and therefore
nonlinear phenomena as VPP cannot exist [22, 135, 222].

2 This can be obtained to a good approximation through the head-on collision of two linearly
polarized laser pulses with equal intensities, frequencies and polarizations. The resulting field
will be a spatially inhomogeneous standing wave with time dependence. For treating the problem
numerically the dependence on the space coordinates is still hard to deal with. However, this
complication is mostly avoided, even though there exist some results including their effects [136,
401].

3 We again treat the external background field as being not affected during the formation
of the pair. Hence, we disregard the potential appearance of avalanche processes [376]. It is
believed that these already set in below ES which may rapidly deplete the applied external field
by emitting hard photons producing the pair production avalanche. Similar depletion effects are
generally expected due to backreaction as well. There, the number of produced pairs becomes
so large that their total rest energy is comparable with the energy of the applied field. This
eventually confirms Bohr’s conjecture which states that an electric field with ES may be never
generated [376].
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switched off. The time evolution of this quantity is prescribed by a QBVE showing
a remarkable non-Markovian behavior,4 see equation (7.17),

Ẇ (ppp, t) = eE(t)ε⊥c
w2
ppp (t)

∫ t

−∞
dt′
eE(t′)ε⊥c

w2
ppp (t′) [1−W (ppp, t′)] cos

[
2
∫ t

t′
dt′′ wppp(t′′)

]
, (11.1)

where W (ppp,−∞) = 0. We remind that the latter equation represents a semiclas-
sical approximation in the sense that the external field is not quantized while the
equation itself results from the quantization of the Dirac field. The SPDF involves
a sum over both spin states, providing an overall factor two. The corresponding
energy functions, see equations (7.14) and (7.16), are given by

ε2⊥ = m2c4 + ppp 2
⊥c

2, (11.2)

w2
ppp (t) = ε2⊥ + [p‖ − eA(t)/c]2c2 (11.3)

with ppp⊥ and ppp‖ as in chapter 7. For the four potential we again chose the temporal
gauge.

As mentioned, equation (7.17) or (11.1), respectively, does not take into account
neither the collision between the created particles nor their inherent radiation
fields. In the presence of a constant electric field (CEF) both phenomena are pre-
dicted to become relevant as the field strength E reaches ES [44, 377, 378], see
discussion in section 3.4.2.1.

So the solution of equation (11.1) is expected to be valid in the subcritical regime
E � ES where the number of produced pairs per unit volume reads

N3+1 = lim
t→∞

∫
d̄3pW (ppp, t), (11.4)

see chapter 7.

For a time dependent OEF with frequency ω and strength E, the resulting N 3+1

should be much smaller than the maximum density

N max ∼
E2

2ω (11.5)

that can be created from it, otherwise the external field approach is no longer
justified.

4 In contrast to chapter 7, here we only set the Planck constant equal to unity, ~ = 1, and
keep the speed of light, c, in the equations for later purpose.
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11.2.2 Dimensional reduction: compactification

Quantum kinetic theory turns out to be very advantageous for investigating VPP
in a time dependent OEF in low dimensional spacetimes. The associated quantum
QBVEs can be derived from the dressed Dirac equation following a similar path
as considered in the 3 + 1 dimensional case leading to equation (7.17), for details
see [365, 406]. Alternatively, a dimensional reduction à la Kaluza-Klein [408, 409]
can be applied with respect to the coordinates perpendicular to the field.5 Indeed,
using the latter approach, the corresponding formulations with different dimen-
sionality can be obtained.

We consider VPP in 2 + 1-dimensional Minkowski spacetime, M2+1. For this, we
treat the dimension in excess xi as curled up in form of a circle S1 with radius R

such that the motion of the Dirac fermions is confined within the interval

0 6 xi 6 2πR . (11.6)

Since this compactified coordinate is periodic and the applied OEF is homoge-
neous, we can Fourier expand the Dirac field in terms of the corresponding quan-
tized momentum, see equation (7.1),

pin = nR −1, n ∈ Z. (11.7)

The exponentials in the expansion, exp (inxi/R ), undergo large oscillations as soon
as R → 0. In this limit only, the fundamental mode n = 0 that corresponds to
a vanishing momentum along the compactified direction dominates. Accordingly,
once the momentum ppp is locked up to a plane perpendicular to xi, spontaneous
pair production induced by an OEF in a 2 + 1-dimensional spacetime is effectively
described by the QBVE in (11.1). However, compared to the QED case in M3+1,
the SPDF in M2+1 does not involve a summation over the double valued spin in-
dices. This sum is canceled out by dividing the resulting expression for W (ppp, t) by
a factor 2 [34, 401].

It is important to say that this effective description will be valid as long as the
typical energy of the problem is much smaller than the characteristic energy scale

ε0 ' cR −1. (11.8)
5 This is 2 + 1 dimensional QED where the external field lives in the plane spanned by the

space coordinates.
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The final expression for the number of produced pairs per unit area in M2+1 follows
from equation (11.4) after making the transition to the discrete limit∫

d̄p→ 1
2πR

∑
pi

. (11.9)

As noted, we only consider the contribution of the vanishing mode. So, accordingly,
we conclude

N 2+1 ≡
1
2 lim

R→0
2πR N 3+1 = lim

t→∞

∫
d̄2pW2+1(ppp, t), (11.10)

where W2+1(ppp, t) corresponds to W (ppp, t) [≡ W3+1(ppp, t)] divided by 2 for which the
momentum component pi is set to zero due to the dominance of the fundamental
mode n = 0,

W2+1(ppp, t) = W3+1(ppp, t)
2

∣∣∣∣∣
pi=0

, (11.11)

see (11.7).

Following the steps made in the previous case allows to apply equation (11.1) for
the 1 + 1-dimensional case as well. For this, accordingly, two spatial coordinates
need to be compactified on a torus S1 × S1. So we have to set the respective
components of the quantized momentum to zero as the characteristic radii of the
torus R̃ and R vanish identically. Hence, the resulting expression based on the
QBVE including the division by a factor 2 gives the produced pair density

N 1+1 = lim
t→∞

∫
d̄p W1+1(ppp, t). (11.12)

Let us consider the procedure described above for a CEF, means

A(t) = −cEt, (11.13)

in M2+1. We can use the known asymptotic expression for the SPDF in M3+1 given
by [401]

W3+1(ppp,∞) ' 2 exp
(
− πε2⊥
|e|Ec

)
. (11.14)
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After compactifying the axis being perpendicular to the CEF and taking into
account the fundamental mode, n = 0⇒ pz = 0, we find that the VPP rate, ∝ P ,
per unit area is

Ṅ 2+1 ≈
(|e|E)3/2

4π2c1/2
exp

(
−πES

E

)
, (11.15)

for field strengths E � ES.

A similar result appears in M1+1 for which we find that the asymptotic expression
of the SPDF is momentum independent,

W1+1(∞) ' exp
(
−πES

E

)
. (11.16)

The related VPP rate per unit length is of the form

Ṅ 1+1 ≈
|e|E
2π exp

(
−πES

E

)
. (11.17)

The results in equations (11.15) and (11.17) are in agreement with previous expres-
sions obtained by utilizing other methods, see e.g. [126, 339, 353, 410]. As we can
see, a direct comparison between both formulas indicates a clear dependence on
the respective spacetime dimensionality. Interestingly, this difference only occurs
in the quantum fluctuation prefactor, see section 5.5, and not for the tunneling
exponent which reveals the sensitivity of such fluctuations with respect to the
corresponding dimensionality of the system under consideration.

11.2.3 Dirac fermions in graphene layers

The procedure described above can be applied to the production of Dirac fermions
in graphene layers, since, as introduced in section 1.5, these basically approach a
2+1-dimensional system. However, inherent features of this material require some
modifications. Namely, while some of the seen characteristics can be used directly,
there exist some other attributes which must be treated with certain carefulness.

For instance, the previous formulas do not take into account finite temperature
effects. Due to this, their applicability will only be valid in the zero temperature
limit. In addition, we suppose that the electron-hole symmetry in the graphene
layer is preserved. This has been theoretically verified within the nearest neighbor
tight binding model, see section 5.5. However, it is no longer valid as soon as the
next to nearest neighbor interactions are taken into account as well [184].
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Here, we assume for the charge carriers a tiny mass m that gives rise to a corre-
sponding energy gap ∆ε = 2mv2

f in contrast to earlier investigations [112, 115, 203,
204]. Later, for numerical calculations presented in section 11.3, the specific value
∆ε = 0.26 eV is chosen for practical purposes. Such an energy gap, for instance,
can originate from the epitaxial growth of graphene on SiC substrates [205], see
figure 11.1.

Figure 11.1: Left panel: sublattices in graphene in real (top) and KKK± space (bottom). Right
panel: gap opening in graphene via epitaxial growth on the Si face of SiC substrates. Angle-
resolved photoemission spectroscopy (ARPES) dispersion close to the Dirac point shows a gap
of ∆ε = 0.26 eV. Black triangles indicate the positions of the peaks in the energy distribution
curves. The plots are taken from [205].

In order to make a comparison an energy gap ∆ε = 0.12 eV is considered in addi-
tion to the latter value. We should emphasize that also other values for the energy
gap can be realized in graphene [206].

Another important point is the following: when adapting the 2 + 1-dimensional
analogue of equation (11.1), one has to take into account that the Fermi velocity
vf ≈ c/300 as introduced in section 1.5 cannot be exceeded in graphene. The
inclusion of this material induced constraint requires that one slightly has to modify
the corresponding QBVEs in M2+1 which previously described the situation in
vacuum where c, the speed of light, is the appropriate velocity in the equations.
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These modifications can be implemented just by making the following replacements

mc2 → mv2
f ,

pic→ pivf ,

eEc→ eEvf ,

Ac→ Avf .

(11.18)

Consequently, the production of quasiparticle-hole pairs in graphene will be gov-
erned by the following equation

Ẇg (ppp, t) = Q(ppp, t)
∫ t

−∞
dt′Q(ppp, t′)

[1
2 −Wg (ppp, t′)

]
cos

[
2
∫ t

t′
dt′′ wppp(t′′)

]
. (11.19)

Here, we have introduced the function

Q(ppp, t) ≡ eE(t)vfε⊥
w2
ppp (t) . (11.20)

The expression

ε2⊥ = m2v4
f + p 2

xv2
f (11.21)

is the squared transverse energy of the Dirac fermions and

w2
ppp (t) = ε2⊥ + [py − eA(t)/c]2v2

f (11.22)

denotes their total energy squared. Of course, for zero mass and vanishing external
field we find the characteristic pseudo-relativistic dispersion relation w2

ppp = |ppp|2v2
f

with |ppp|2 = p2
x + p2

y depicted in figure 11.2 compared to other charged carriers in
condensed matter systems.

From equation (11.19) we already deduce that the production of electron-hole pairs
in graphene turns out to be a nonequilibrium phenomenon. As seen in QED, the
combination of the nonlocality in time and the memory effects associated with the
quantum statistic factor, ∼

[
1/2−Wg (ppp, t)

]
, shows that equation (11.19) has a

pronounced non-Markovian behavior [365, 377, 382]. So analogous to the ordinary
QED case discussed in chapter 7, the SPDF Wg (ppp, t) depends on the number of
pairs that are already present in the system under consideration.

We should mention that the spectral information encoded in (11.19) is only valid in
the vicinity of any of the two inequivalent lattice points in the reciprocal spaceKKK±,



226 Chapter 11. Dynamical Schwinger mechanism in QED2+1 and graphene

Figure 11.2: Dispersion relation of massless Dirac fermions in graphene compared to other
quasiparticles: A charge carriers described by the Schrödinger equation with an effective massm∗

different from the free electron mass m are often considered in condensed matter physics. Here,
p̂ denotes the momentum operator. B Relativistic particles with zero rest mass are described
by the Dirac equation, where c is the speed of light in vacuum and ~σ is the Pauli matrix. C
Massless Dirac fermions are described by a two dimensional analogy of the Dirac equation, with
the characteristic Fermi velocity vf ≈ c/300 ≈ 1× 106 m/s replacing c and a pseudospin matrix
~σ due to the two sublattices of the honeycomb, see section 1.5. Similar to the fermionic spin that
can be up and down oriented, the pseudospin is an index indicating location of the quasiparticle
on the two sublattices. The pseudospin can be indicated by a color index, here, red and green.
D Bilayer graphene allows the identification of another type of quasiparticles without any known
analogies. These are described as massive Dirac fermions obeying a mixed Hamiltonian which
has both Dirac and Schrödinger behavior. For these the pseudospin changes its color index four
times (red, green, yellow, purple), since it moves among four carbon sublattices. The plots are
taken from [411].

see section 1.5. Thus, the momentum of the quasiparticle, ppp, has to be understood
as relative to KKK± with

|ppp| � |KKK±| =
4π

3
√

3a0
(11.23)

and a0 = 0.142 nm [177]. This upper bound in fact does guarantee the relativistic-
like behavior of the charge carriers in graphene. Therefore, in order to compute
the density of pairs per unit area, see equation (11.15), the respective integral has
to be evaluated over a surface limited by

pmax � |KKK±| ∼ 3 eV/vf . (11.24)

Note that the existence of the two inequivalent Dirac points together with the
spin degeneracy leads to four different types of quasiparticles. Therefore, the total
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number density of produced pairs in graphene is basically taken to be

Ng = lim
t→∞

4
∫
|ppp| �|KKK±|

d̄2p Wg (ppp, t) (11.25)

after the mentioned cutoff in the reciprocal space.

Applying the result (11.25) to the system that is driven by a CEF results in a Ng

which differs from the expression one would derive from equation (11.15),6

Ng ≈
2pmax

π2

(
|e|E

vf

)1/2

exp
(
−π

Eg

E

)
. (11.26)

Note that

Eg =
m2v3

f

|e|
(11.27)

is the corresponding critical field strength analogy in graphene.

For instance, setting an energy gap ∆ε = 0.26 eV, gives

Eg ' 2.6× 105 V/cm (11.28)

which arises in some sense from the break down of the chiral symmetry due to the
mass m . Interestingly, the critical field strength Eg ' 2.6× 107 V/m turns out to
be enormously smaller than the critical Schwinger limit in QED, ES, namely by
eleven orders of magnitude.

The density of produced pairs in equation (11.26) can be seen as a saturation
density of Dirac-like pairs. It is approached when the interaction time with the
CEF becomes of the order

Tsat ∼
pmax

eE
. (11.29)

For much longer interactions, particles with momenta larger than pmax will be
created as well. However, these are not properly described by the Dirac equa-
tion [115, 203].

We should note that the effective description via the QBVEs describing the sponta-
neous production of electron-hole pairs is valid as long as the external field strength

6 For more details regarding the integration, we would like to refer to section V of [203].
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obeys the corresponding weak field condition, E � Eg . As in the vacuum case, the
kinetic equation (11.19) does not take into account neither the contributions due
to the inherent radiation of the charge carriers nor the possible collisions between
the produced pairs.

11.3 Numerical results

11.3.1 Resonant approach and numerical aspects

The similarity between pair production in graphene described by the kinetic equa-
tion in (11.19) and the situation in QED, see equation (7.17), allows to extrapo-
late interesting outcomes associated with the production process in bandgapped
graphene.

Namely, as discussed in chapter 7, for an electric field periodically oscillating in
time, we expect that Wg (ppp, t) gives rise to the characteristic resonances associated
with the absorption of energy packages, photons, from the external field [384–387,
412, 413] which takes place when the following resonance condition

2ε̄ppp ' nω (11.30)

is satisfied, cf. section 7.3. Here, n denotes the number of absorbed photons
whereas

ε̄ppp = 1
τ

∫ τ

0
dtwppp(t) (11.31)

is the quasienergy of the produced particles, more precisely it is the energy averaged
over the total pulse length τ . The behavior of the distribution function W3+1(ppp, t)
near a resonance characterized by n is known. Referring to the results obtained
in [34, 386, 412] and discussed in chapter 7, and following the procedure described
in the previous section, we can write

Wg ,n(ppp, t) ≈ 1
4
|Λn(ppp)|2
Ω2

Rabi(ppp)
sin2 [ΩRabi(ppp)(t− tin)] . (11.32)

This expression is obtained by assuming that field is suddenly switched on at tin
and instantaneously switched off after some interaction time. Here, the explicit
expression for the complex time independent function Λn(ppp) is not important. In
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equation (11.32), the quantity

ΩRabi(ppp) = 1
2
[
|Λn(ppp)|2 + ∆2

n(ppp)
]1/2

(11.33)

is referred to as the Rabi-like frequency of the vacuum where

∆n(ppp) ≡ 2ε̄ppp − nω (11.34)

denotes the so-called detuning parameter. Here, we should note that the resonant
condition (11.30) from above is only valid if the latter frequency is slow compared
to the field frequency, ΩRabi(ppp)� ω [384, 413].

Now, let us consider an explicit example for which we numerically evaluate the
relevant kinetic equation in (11.19). We assume an OEF described by the following
potential

AAA(t) =− cE

ω
F (φ) sin(φ)n̂nn, (11.35)

where ω and E denote the frequency and the electric field strength, respectively.
Moreover, we abbreviate φ = ωt and set the polarization direction of the field
assuming n̂nnT = (0, 1, 0). The envelope function F in (11.35) is chosen with sine-
squared shaped switch-on and switch-off segments enclosing a plateau region of
constant field strength in between. Explicitly, such an envelope function can be
written as

F (φ) =



sin2
(

1
2φ
)

0 6 φ < π

1 π 6 φ 6 2πK

sin2
(
Nπ − 1

2φ
)

2πK < φ 6 2πN

0 otherwise

, (11.36)

where

N = Nplateau + 1,

K = N − 1
2 .

(11.37)

The equations (11.35) and (11.36) guarantee that the OEF with zero amplitude
starts at t = 0.

Even though equation (11.19) already allows various physical insights inherent to
pair production in graphene, its numerical evaluation turns out to be much easier
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when we reformulate the problem in form of an equivalent system of ODEs written
as

iḟ(ppp, t) = appp(t)f(ppp, t) + bppp(t)g(ppp, t),

iġ(ppp, t) = b∗ppp(t)f(ppp, t)− appp(t)g(ppp, t)
(11.38)

cf. equations (7.11). As in chapter 7, according to this reformulation the distribu-
tion function is given by

Wg (ppp, t) = |f(ppp, t)|2 (11.39)

and the initial conditions are

f(ppp,−∞) = 0, g(ppp,−∞) = 1. (11.40)

The remaining parameters in (11.38) are given as

appp(t) = wppp(t) +
eE(t)pxv2

f

2wppp(t)[wppp(t) + mv2
f ] ,

bppp(t) = 1
2
eE(t)vfε⊥

w2
ppp (t) exp

[
−i arctan

(
pxq‖v2

f

ε2⊥ + mv2
fwppp(t)

)]
,

where again, now inserting c,

q‖ = py −
eA(t)
c

(11.41)

denotes the longitudinal kinetic momentum. The equivalence between equation
(11.19) and the ODEs in (11.38) is shown in several references, see for instance
[34, 365, 401]. However, various other formulations of the QBVE can be found in
the literature. These are mainly motivated for optimizing the underlying numerics.

11.3.2 Results and discussions

In the following, we take the mass of the Dirac fermions as m = ∆ε/2v2
f . For

∆ε = 0.12 eV this corresponds to m = 0.06 eV/v2
f or m ≈ 5.4 keV/c2, respec-

tively. For ∆ε = 0.26 eV we find m ≈ 11.7 keV/c2. The field frequency is set
ω = 24.032 meV. The length of the plateau region of the pulse is characterized by
Nplateau = 241 cycles such that the total pulse duration is τ = 2πN/ω ' 41.625 ps.
For the field strength we choose E = 6.6×104 V/cm corresponding to a peak laser
intensity of the order I = cE2 ' 1.1 × 107 W/cm2. These parameters have been
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Figure 11.3: Logarithmic plots of the SPDFs for massless (top) and massive (∆ε = 0.26 eV,
bottom) charged carriers are shown. In both cases the OEF parameters are chosen as E =
6.6× 104 V/cm, τ ' 41.625 ps and ω = 24.032 meV.

chosen, since in case of massive particles with ∆ε = 0.26 eV the SPDF Wg (000, t)
sits in a resonance which corresponds to the absorption of n ≈ 15 photons from
the strong OEF, see equation (11.30). Similar field parameters are easily attain-
able with terahertz laser pulses with picosecond duration [414, 415]. Moreover, the
mentioned critical field Eg in graphene establishes a typical field strength Ig = cE2

g

which corresponds to Ig ' 1.8×108 W/cm2 for ∆ε = 0.26 eV. This intensity bound
can be easily approached and exceeded with the current laser technology.
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The system of ODEs in (11.38) has been solved for particle momenta chosen in the
range −0.4 eV 6 px,yvf 6 0.4 eV. The results are depicted in figure 11.3 in form
of a density plot with a color scheme scaling corresponding to log10[Wg (ppp, τ)].

The upper panel shows the data associated with the massless case, m = 0. In
the bottom panel the effects resulting from the chiral symmetry breaking are plot-
ted. As can be clearly observed, the spectral density for the massive particles is
highly distinct from the case with massless charge carriers. For instance, for zero
momenta, ppp = 0, the SPDF for the massive charge carriers hits the maximum
value Wg (0, τ) = 1. For the same momenta, the analogous result for the mass-
less case results in a minimum Wg (0, τ) = 0. Importantly, this minimum extends
along the whole vertical line located at px = 0. This is an inherent feature of the
present scenario. Its occurrence can already be anticipated by looking on equa-
tion (11.19). Namely, the right-hand side of this equation is proportional to the
transverse energy squared,

Q(ppp, t)Q(ppp, t′) ∝ ε2⊥ = p2
xv2
f + m2v4

f . (11.42)

The latter vanishes if we set the mass of the charge carriers and their momentum
px to zero. In this case, the kinetic equation just reads Ẇg (py, t) = 0 which has
the only conceivable solution Wg (py, t) = 0 that is in accordance with our initial
condition.

The ring-like patterns present in both panels correspond to isocontours of the
quasienergy ε̄ppp which obey the resonance condition (11.30). The number of photons
participating in each of the resonant processes can be obtained. Further insights
regarding Wg (ppp, τ) can be obtained by contrasting the numerical results with the
approximate behavior near a resonance ring found in (11.32). For this,Wg ,n(ppp, t) is
computed for times t larger than the interaction time τ after it approaches constant
values. At the resonance where equation (11.30) is fulfilled, means ∆n ' 0, the
Rabi-like frequency can be approximated like

ΩRabi(ppp) ≈
1
2 |Λn(ppp)| (11.43)

and therefore we may write

Wg ,n(ppp,∞) ≈ sin2 [ΩRabi(ppp)τ ] . (11.44)
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Figure 11.4: Number of electron-hole pairs produced per cm2 in an OEF is plotted. The result
for massless carriers is shown in green. The outcome for massive charges is shown in red and
blue, with the data points connected by straight lines. The curves corresponding to the cases
driven by a CEF, see equation (11.26), are displayed in green dashed dotted line for massless
and blue dashed line for massive carriers. The vertical grey dashed line indicates the electric
field strength which is used in figure 11.3. The same benchmark values and notation of figure
11.3 must be understood.

At a given interaction time τ , the equation (11.44) reaches its maximum value giv-
ing Wg ,n(ppp0, τ) = 1 for a certain pair of momenta ppp0 = (px0 , py0). So, accordingly,
the condition

ΩRabi(ppp0) = (2k + 1)π
τ

, k ∈ Z (11.45)

must hold. The previous setting has shown that τ has been chosen such that
the maximum applies for ppp = 0. Note that, away from the resonance, means for
∆n 6= 0, the amplitude of Wg ,n(ppp, τ) decreases, see equation (11.32). This can be
observed in both panels around each of the isocontours in form of light red, some-
times orange, valleys. Additionally, these trends gradually decrease in the SPDF
as soon as the momentum components increase.

Furthermore, we should emphasize that the isocontours have ellipse-like shapes
with the long axis lying along the y direction. Such an elongation along that axis
reflects the asymmetry due to the pointing direction of the external field in equa-
tion (11.19), see the term py−eA(t)/c. This clearly indicates that the creation of a
particle/hole with large momentum py is more likely to happen than with a large
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transverse momentum. This observation resembles the pattern seen for a CEF
where the SPDF is homogeneous along the longitudinal direction but suppressed
by a Gaussian profile transversally.

In addition, comparing both panels reveals that the red colored region in the mass-
less case is drastically larger than for the massive charge carriers for which only
a few resonances appear. This already shows that the volume below the surface
Wg (px, py) with zero mass exceeds the one seen for massive carriers. Since these
volumes are directly connected to the integrations over momenta, they determine
the number of pairs for each case in the vicinity of a Dirac point. Accordingly, the
plots depicted in figure 11.3 already make clear that the density of produced pairs
in the massless case will be substantially larger than for the massive case.

The previous expectation is perfectly reflected in figure 11.4 showing the trend for
(11.25) with respect to the electric field strength E. The green curve corresponds
to the number of pairs per cm2 for the massless case. The blue line is the corre-
sponding curve for the massive charge carriers with ∆ε = 0.26 eV. The respective
results for a CEF have been included as well. From figure 11.4 we can see that
the production efficiency for massive particles is reduced by several orders of mag-
nitude. This mainly illustrates the effect of the tunneling exponential in equation
(11.26) which is absent in the massless limit. So the outcomes for the latter case
are more flat. The curves in the massive case have a stronger dependence on the
electric field strength E.

For massive particles with a gap ∆ε = 0.26 eV our numerical results for an OEF
and the analytical prediction for a CEF are quite close to each other for field
strengths above E & 4 × 104 V/cm. This may be understood by taking into
account that the field oscillations are slow ω � m . So as a result, the OEF locally
resembles a CEF. The dimensionless intensity parameter7

ξg = |e|E
mωvf

(11.46)

is of order unity for E ≈ 4.7 × 104 V/cm. For field strengths below E . 3 × 104

V/cm the pair density for the OEF is significantly larger than for a CEF. This
7 Note that this is just the inverse of the Keldysh parameter. Due to the same subscript, ξg

shall not be confused with the critical field strength Eg .
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can be understood due to the fact that in an OEF pairs can be generated both
by the field amplitude and additionally by the time dependence of the field, i.e.
dynamical Schwinger mechanism [115, 204]. It is clear that the latter channel is
absent in a CEF which is the standard Schwinger mechanism, see section 1.4 for
comparison. So for ξg < 1 the production by multiphoton absorption can be dom-
inating which leads to an enhancement in an OEF compared to a static field.

For massless particles our numerical results for an OEF and the analytical predic-
tion for a CEF shown in figure 11.4 turn out to be running almost parallel to each
other. Here, the CEF curve which describes the saturation density in accordance
with equation (11.26) is larger by a few orders of magnitude. We argue that the
reason lies in the field oscillations which can be considered as very fast in this case,
since ω � m = 0. Therefore, the effective field strength present during the pair
formation time is reduced by a corresponding time average. This explains the sup-
pression shown in figure 11.4. We should note that this behavior is different from
a nonoscillating, bell shaped Sauter-like field. For the latter, the pair production
efficiency of massless charge carriers approaches the CEF result to within a factor
of order unity [203].

As a comparison, our estimates for the number of produced massive pairs with
∆ε = 0.12 eV are shown in figure 11.4 as well. In accordance with the naive
expectation, the values turn out to be significantly larger than for ∆ε = 0.26 eV
and approaches the massless limit. For this, the critical field strength only amounts
to Eg ' 5.5 × 104 V/cm. Since this turns out to be comparable with the values
encompassed in the picture, the curve for analytical result associated with a CEF
is not shown here.

11.4 Summary

We have investigated VPP in low dimensional spacetimes by carrying out dimen-
sional compactifications. The resulting effective descriptions have shown that the
process in the 2+1 and 1+1 cases can be described by appropriate kinetic QBVEs.

The results for the former case have been applied to massive Dirac fermions in
bandgapped graphene layers. We have studied the case where the system is driven
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by an OEF. Similarly, as for the QED vacuum, we have found a pronounced reso-
nant behavior reflected in the momentum distribution of produced quasiparticle-
hole pairs. The total number density of pairs strongly depends on the applied field
strength which is caused due to the tunneling exponential factor in the Schwinger
effect involving the critical field strength analogue in graphene. This goes back to
the massive quasiparticles in bandgapped graphene layers compared to the massless
charge carriers in ordinary gap free graphene. Differences between the pair den-
sities could be traced back to effects of the oscillatory structure of the background.

Our numerical findings have shown that terahertz laser pulses in combination with
the substrate induced bandgap technique for graphene might provide a feasible
scenario in which the creation of light quasiparticle-hole pairs could be realized.
This may allow to simulate strong field induced vacuum decay in QED.



Conclusion

In the present thesis, we have addressed nonperturbative pair creation from the
quantum field theoretic ground state (Schwinger effect). Particular focus has been
placed on the impact of the corresponding background properties. We have consid-
ered purely electric time dependent as well as spatiotemporal backgrounds which
give rise to substantial enhancement effects. In addition, we have investigated the
pair creation process in lower dimensional spacetimes. The effective descriptions
have been applied to bandgapped graphene layers.

Beginning with a comprehensive overview describing basic aspects and introducing
the underlying concepts, we have discussed in detail different approaches such as
the worldline formalism in quantum field theory, semiclassical instanton and WKB
techniques as well as quantum kinetic descriptions. Combining these approaches
has helped to advance the corresponding methods which allowed to obtain new
and more general insights.

The first main part focuses on the quantum vacuum. In the first chapter, we have
studied the enhancement via two mechanisms; the assisted mechanism and the
assisted dynamical mechanism. Reformulating the problem using worldline meth-
ods, we have found two critical points where one is responsible for the closing of
the instanton and the other serves as a reflecting mirror in the configuration plane.
Developing an effective approach, we have analyzed characteristic features of dif-
ferent backgrounds with particular focus on the role of the dynamically assisting
weak field. Making the extension to more general backgrounds, namely even for
those which consist of poleless weak fields, it has been demonstrated that the ef-
fect of dynamical assistance is predominantly determined by instanton reflections,
no matter whether poles are present or not. We have seen that reflection points
located close to the origin lead to a stronger enhancement. In addition, we have
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analytically calculated a characteristic critical threshold below which the effect of
assistance is absent. The predictions have been confirmed by numerical computa-
tions. Our analytical findings have shown that the explicit shape of both strong
and weak field is crucial for the strength of the assistance.

In the second chapter, we have studied the assisted mechanism for a certain class
of weak fields. We have shown that two different setups that are highly distinct in
Minkowski spacetime can surprisingly lead to the same leading order exponential
factor in the vacuum pair production rate. It has been found that such a coinci-
dence applies due to identical effective reflection points in the instanton plane. In
addition, using the N coupling master formula, we have treated the weak field in
perturbation theory and found that in the mentioned coincidence limit the leading
order contribution in the field strength ratio parameter already approaches the
nonperturbative result.

In the third chapter, we have investigated the tunneling process in multidimen-
sional backgrounds. For doing so, we have determined the corresponding critical
points and used them in order to simplify the underlying equations. This has
allowed to analytically predict the critical threshold for the effect of assistance.
We further have established an efficient algorithm by setting appropriate initial
conditions and using additional symmetry constraints which we have implemented
to find the corresponding worldline instantons. Utilizing the latter, the leading
order tunneling exponential has been computed. We have seen that backgrounds
which genuinely depend on space and on time give rise to substantial delocaliza-
tion effects.

In the second main part, we have studied condensed matter analogs of the Schwinger
effect. First, we have described vacuum pair production in lower dimensional
spacetimes. In order to do so, we have derived effective quantum kinetic descrip-
tions by employing compactification techniques. The resulting equations have been
applied to Dirac fermions in bandgapped graphene layers in the presence of time
dependent oscillatory backgrounds. We have found a pronounced resonant be-
havior reflected in the momentum distribution of the produced quasiparticle-hole
pairs. In contrast to the vacuum case, the tunneling exponential factor depends on
the critical field strength analogue in graphene. Differences between the pair densi-
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ties could be traced back to effects of the background oscillations. We have shown
that terahertz laser pulses applied to bandgapped graphene layers may simulate
vacuum decay by the Schwinger effect.



Appendix A

Proof of overcompleteness

In the following, we proof the overcompleteness

1 = 1
π

∫
d2z |z〉〈z| (A.1)

for the normalized coherent state |z〉 in (2.13) where we have introduced the no-
tation d2z ≡ dzdz∗. Expressing the coherent state in form of an exact expansion
in Fock space, see equation (2.16), we first rewrite the right-hand side as

1
π

∫
d2z |z〉〈z| = 1

π

∑
n,m

1√
n!m!

|n〉〈m|
∫
d2z e−|z|

2
znz∗m. (A.2)

In order to compute the integral, we first introduce polar coordinates z = reiϕ

where r ≡ |z|. Then the integral can be transformed as∫
d2z e−|z|

2
znz∗m =

∫ ∞
r=0

rdr e−r
2
rn+m

∫ 2π

ϕ=0
dϕ ei(n−m)ϕ. (A.3)

The ϕ integral yields 2πδnm which results in

(A.2) = 1
π

∑
n,m

2πδnm√
n!m!

|n〉〈m|
∫ ∞
r=0

rdr e−r
2
rn+m

=
∑
n

|n〉〈n|
n! 2

∫ ∞
0

rdr e−r
2
r2n.

(A.4)

For the remaining r integral we make the variable substitution r2 = t such that

2
∫ ∞

0
rdr e−r

2
r2n =

∫ ∞
0

dt tne−t (A.5)

which exactly corresponds to the definition of the standard Gamma function∫ ∞
0

dt tne−t = Γ(n+ 1). (A.6)

Now, using (A.5) and inserting the relation Γ(n + 1) = n! into the second line in
(A.4) leads to the condition in (A.1).
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Effective action from the path
integral

We start with the most general representation in the path integral formulation
from (3.24). We consider sQED without any external background field for which
the corresponding integral in Minkowski spacetime reads∫

DA eiΓ[A] =
∫
DADφDφ∗ ei

∫
d4x(− 1

4F
2
µν−φ∗(D2+m2)φ). (B.1)

Because of the quadratic dependence on the scalar field φ, this integral is Gaussian
and can be computed exactly. Using the standard formula1 we arrive at∫

DA eiΓ[A] =
∫
DA e−i

∫
d4x 1

4F
2
µν

N
Det (−D2 −m2) (B.2)

which is of course fulfilled only if

ei[Γ[A]+
∫
d4x 1

4F
2
µν ] = N

Det (−D2 −m2) . (B.3)

Taking the logarithm on both sides of the latter equation, we get

iΓ[A] + i
∫
d4x

1
4F

2
µν − lnN = − ln Det

(
−D2 −m2

)
. (B.4)

If we now neglect the contribution of the dynamical gauge field and introduce an
external background field Aµ which dresses the correlation functions in the usual

1 The standard result we use is∫
DφDφ∗ei

∫
d4x(φ∗Mφ+Jφ) = N (det M)−1

eiJM
−1J

where M denotes a matrix and N is a normalization constant.
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way, that means in form of the following covariant derivative Dµ
A = ∂µ− ieAµ, we

immediately obtain the formal expression for the one-loop EH effective action,

Γ[A] = i ln Det
(
−D2

A −m2
)
. (B.5)

For the case without any external background field, but exact in the coupling
to the dynamical gauge field Aµ, we can evaluate the trace in position space by
resorting to the quantum mechanical formulation,

iΓ[A] =
∫
d4x

[
−i14F

2
µν − 〈x| ln

(
−D2 −m2

)
|x〉
]

+ lnN . (B.6)

Using the relation in footnote 7 and ignoring the normalization constant, we can
write the corresponding effective Lagrangian

Leff = −1
4F

2
µν − i

∫ ∞
0

ds

s
e−sεe−ism

2〈x|e−iĤs|x〉 (B.7)

where the usual iε constant has been included, see equation (3.27). This is the
formal expression introduced in equation (3.44). Notably, this expression is even
fully exact if both the dynamical photon field and the external background are
taken into account.
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Derivation of Bogoliubov
coefficients

As in chapter 7, we consider a time dependent electric field of the form EEE(t) =
(0, E(t), 0). The initial ground state |vac, in〉, that is at time the field is switched
on, is defined as

âin|vac, in〉 = b̂in|vac, in〉 = 0 (C.1)

with

âin ≡ appp,s(tin), b̂in ≡ b−ppp,s(tin). (C.2)

In an analogous way, the instantaneous vacuum state |vac, t〉 can then be defined
according to

âppp,s(t)|vac, t〉 = b̂−ppp,s(t)|vac, t〉 = 0, (C.3)

where âppp,s(t) and b̂−ppp,s(t) denote the annihilation operators for the quasiparticle
and the antiquasiparticle, respectively, which together with the creation operators
â†ppp,s(t) and b̂†−ppp,s(t) build up the corresponding Fock space. A connection between
the operators in (C.2) and the instantaneous one in (C.3) is possible via a canonical
unitary evolution operator U(t, tin), see [222, 403, 404], allowing

|vac, t〉 = U(t, tin)|vac, in〉. (C.4)

Using the latter relations, we can find

âppp,s(t) = U(t, tin)âinU†(t, tin), b̂†−ppp,s(t) = U†(t, tin)b̂†inU(t, tin). (C.5)
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The evolution operator above can be constructed similar to the procedure as fol-
lowed in the Bardeen-Cooper-Schrieffer (BCS) theory, see [416] and references
therein. Following the ansatz in [222, 403, 404], we express U(t, tin) as

U(t, tin) = exp[Λ(t, tin)], (C.6)

where

Λ(t, tin) =
∑
ppp,s

Λppp,s(t, tin),

Λppp,s(t, tin) = αâ†inb̂
†
in − α∗b̂inâin + iβâ†inâin − iβb̂inb̂

†
in

(C.7)

depend on functions

α ≡ α(ppp, t) ∈ C, (C.8)

β ≡ β(ppp, t) ∈ R. (C.9)

Note that the constructed evolution operator in (C.6) is unitary and has canonical
features. In order to find the relation between the function α and the coefficient
arising from the Bogoliubov transformations, we Taylor expand U(t, tin) in (C.5)
which formally gives

âppp,s(t) =
∞∑
n=0

1
n! [Λ, [Λ, . . . [Λ, âin] . . .]] ,

b̂†−ppp,s(t) =
∞∑
n=0

1
n!
[
Λ,
[
Λ, . . .

[
Λ, b̂†in

]
. . .
]]
.

(C.10)

Using the following commutation relations iteratively

[Λ, âin] = −αb̂†in − iβâin,[
Λ, b̂in

]
= αâ†in − iβb̂in,

[Λ, â†in] = −α∗b̂in + iβâ†in,

[Λ, b̂†in] = α∗âin + iβb̂†in,

(C.11)

we can write the relations in (C.10) in the following compact form âppp,s(t)
b̂†−ppp,s(t)

 =
 g∗(ppp, t) f(ppp, t)
−f ∗(ppp, t) g(ppp, t)

 âin

b̂†in

 , (C.12)

where the Bogoliubov coefficients read

f(ppp, t) = − α√
|α|2 + β2

sin(
√
|α|2 + β2),

g(ppp, t) = cos(
√
|α|2 + β2) + i

β

α
f(ppp, t),

(C.13)
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satisfying the condition

|g(ppp, t)|2 + |f(ppp, t)|2 = 1. (C.14)

According to equation (C.4) which connects the initial and the instantaneous
ground state, Taylor expanding U(t, tin) and acting on |vac, in〉 leads to many
complicated combinations of the operators âin, b̂in, â

†
in, b̂

†
in. These operations can

be simplified by noting that the evolution operator can be disentangled as

U(t, tin) =
∏
ppp,s

exp[Λppp,s(t, tin)] (C.15)

which is allowed, since two arbitrary elements Λppp,s(t, tin) and Λppp′,s ′(t, tin) commute
with each other. Taking this into account, we expand exp[Λppp,s(t, tin)] and write
the identities

Λ2n+1
ppp,σ (t, tin) = (−1)n(|α|2 + β2)nΛppp,σ(t, tin),

Λ2n
ppp,σ(t, tin) = (−1)n−1(|α|2 + β2)n−1Λ2

ppp,σ(t, tin)
(C.16)

where

Λ2
ppp,σ(t, tin) = −(|α|2 + β2)(b̂†inb̂inâ

†
inâin + b̂inb̂

†
inâinâ

†
in). (C.17)

Using the latter equations (C.13) and (C.16), we can express the instantaneous
ground state as a two-mode squeezed state of the in-particle states,

|vac, t〉 =
∏
ppp,s
g∗(ppp, t) exp

[
f(ppp, t)
g∗(ppp, t) b̂

†
inâ
†
in

]
|vac, in〉. (C.18)

Based on this expression, one can verify that the vacuum persistence probability
is given by

Pvac(t) = |〈vac, t|vac, in〉|2 = exp
∑
ppp,s

ln
[
g(ppp, t)2

]
= exp [(t− tin)V Γvac(t)] .

(C.19)

Here, Γvac(t) is the instantaneous vacuum decay rate per unit volume V given as

Γvac(t) = ln[Pvac(t)]
(t− tin)V = 2

t− tin

∫
d̄3p ln

(
1− |f(ppp, t)|2

)
(C.20)

which is obtained after taking the infinite volume continuum limit where

1
V

∑
ppp

→
∫
d̄3p. (C.21)
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The factor 2 in equation (C.20) is again the result of the summation over the
discrete spin variable s . This is the spin statistics factor discussed before for the
bosonic and fermionic Schwinger formulas, cf. (3.66) and (3.65). In the subcritical
regime E � ES and for a static electric background, the expression (C.20) gives
the known vacuum decay probability, P ∝ R = Γvac(∞), [44]

P ' =(ΓEH) = (eE)2

(2π)3

∞∑
n=1

1
n2 exp

(
−πnES

E

)
, (C.22)

see equations (3.22) and (3.65).



Appendix D

Derivation of the quantum
Boltzmann-Vlasov equation

In the following, we derive the integrodifferential representation of the quantum
kinetic equation in (7.17) by using the equations (7.11). For this, we consider the
temporal equations of the functions f̄(ppp, t) and ḡ(ppp, t) which are related to the
original Bogoliubov coefficients f(ppp, t) and g(ppp, t) through the following unitary
transformations

f̄(ppp, t) = −if(ppp, t) exp
[
i
∫ t

t0
dt′appp(t′)

]
,

ḡ(ppp, t) = ig(ppp, t) exp
[
−i
∫ t

t0
dt′appp(t′)

]
.

(D.1)

Taking the latter equations, together with the equations in (7.11), allows to derive
the following system of ODEs

˙̄f(ppp, t) = −1
2Qppp(t)ḡ(ppp, t) exp [2iΘppp(t)] ,

˙̄g(ppp, t) = 1
2Qppp(t)f̄(ppp, t) exp [−2iΘppp(t)]

(D.2)

with Qppp(t) and Θppp(t) defined as

Qppp(t) := eE(t)ε⊥
w2
ppp (t) , Θppp(t) :=

∫ t

t0
dt′ wppp(t′). (D.3)

Here, the initial conditions

f̄(ppp,−∞) = 0,

ḡ(ppp,−∞) = 1
(D.4)
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ensure the pure vacuum condition. Now, we recall the time evolution equation
(7.10) with (7.7) and introduce the quasiparticle correlation function

O(ppp, t) =
∑

s
〈vac, in|b†−ppp,s(t)a†ppp,s(t)|vac, in〉 = 2f(ppp, t)g∗(ppp, t). (D.5)

Using the equations in (D.2), we find

Ẇ (ppp, t) = −Qppp(t)<{O(ppp, t) exp [−2iΘppp(t)]} ,

Ȯ(ppp, t) = −Qppp(t) [1−W (ppp, t)] exp [2iΘppp(t)] .
(D.6)

Now, we first perform the time integration from−∞ to t in the second expression in
(D.6). Afterwards, we insert the resulting function O(ppp, t) into the first expression
in (D.6). This leads to the QBVE introduced in (7.17).



Appendix E

Critical Keldysh parameter

The critical temporal Keldysh parameter γcrit
ω in case of γk > 0 requires a modifi-

cation of the (effective) spatial field strength. This modification goes back to the
observation in [3] where

γk ↑ ⇒ ∆ ↑ ⇒ γcrit
ω ↓ (E.1)

holds in general. The corresponding value can be obtained by taking max{x3}
minimizing the field strength for a fixed γk. This maximum may be computed
only for the spatial Sauter field, since we are interested in the critical threshold
where the contribution of the temporal field may still be assumed as negligible.
Note that the enormous enhancement applies for values above the threshold γcrit

ω .
In this case, the additional contribution for sure decreases max{x3} which is,
however, irrelevant for the present purpose. For the spatial Sauter field, the exact
instanton solution reads

x3(u) = 1
γk

arcsinh
 γk√

1− γ2
k

cos(2πnu)
 ,

x4(u) = 1
γk
√

1− γ2
k

arcsin (γk sin(2πnu)) .
(E.2)

Taking the leading worldline instanton with winding number n = 1 [146, 158], the
maximum of the spatial component is reached at (rescaled) proper time u = 0,

x3,max = 1
γk

arcsinh
 γk√

1− γ2
k

 , (E.3)
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which subsequently results in

min
fixed k,Ek

{
Ek sech2(kx3)

}
= Ek sech2(kx3,max)

= Ek sech2

arcsinh
 γk√

1− γ2
k

 . (E.4)

Hence, the effective field strength ratio for the general case 0 ≤ γk < 1 takes the
form

ε̃ = ε cosh2

arcsinh
 γk√

1− γ2
k

 (E.5)

which, accordingly, has to be plugged into equation (10.23), replacing the initial
parameter ε.
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