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Abstract. We study quantum correlations encoded in a three-flavor neutrino system by using
complete complementarity relations (CCR). Due to the presence of local coherence in two-flavor
subsystems, the CCR has an additional contribution not present in the two flavor mixing case.
We investigate such coherence for the three possible bipartite subsystems of the global state
both for an electron and a muon neutrino system.

1. Introduction

In the last few years, elementary particles as neutrinos have been investigated in the context of
quantum information [1]. In fact, the property of neutrinos to interact very weakly and to deeply
penetrate into matter makes these particles interesting candidates for applications of quantum
information beyond photons'. The characterization of quantum correlations in such systems is
therefore important for the development of algorithms and protocols that can harness not only
quantum entanglement but also other resources, such as quantum discord [3] and coherence [4].
Such quantum correlations have been studied and probed in quantum optics and condensed
matter physics, but only recently they have been investigated in relativistic systems of neutrinos
and mesons [5]-[19]. In particular, the phenomenon of neutrino oscillations offers a rare example
of quantum correlation on macroscopic scale.

The quantum nature of neutrino oscillations has been studied in terms of entanglement [5]-[8],
Bell and Leggett-Garg inequalities [11]-[14] and various aspects of quantum coherence such as
steering [16, 17] and Non-local Advantage of Quantum Coherence [18]-[21]. Neutrino oscillations
have also been considered in the context of entropic uncertainty relations [22, 23].

Complete complementarity relations provide a way to characterize quantum correlations in
bi- and multi-partite systems [24] and can be applied to the description of quantum correlations
intrinsic to neutrino systems [25]. The concept of complementarity is often associated with
wave-particle duality [26]: it is summarized in the statement that a quantum system may
possess properties which are equally real but mutually exclusive, in the sense that the more
information one has about one aspect of the system, the less information can be obtained about

! Classical communication using a neutrino beam was demonstrated in [2].
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the other. In the context of the two-slit experiment, CCRs can be formalized [27, 28] by defining
a predictability P, associated to the knowledge of the path of the particle, and a visibility V,
connected with the capacity to distinguish the interference fringes:

P24+V? <1, (1)

Complementarity relation as in Eq.(1) are saturated only for pure single-partite quantum states.
In [29] it is shown that for a bipartite state we have to consider a third entry C' — representing the
correlation between the subsystems — in order to obtain a complete complementarity relation:

PP+VE+C%=1, k=1,2. (2)

The quantities associated with the wave-particle duality generate local, single-partite realities,
while C' generates an exclusive bipartite nonlocal reality. In [24] it has been shown that the
CCR can be efficiently expressed in terms of the elements of the density matrix representing the
system.

In this work, we briefly review the formalism of CCR for bipartite states and its application
to two-flavor neutrino system in the plane-wave approximation. Then, we consider the extension
to the case of three flavors (tripartite system).

The interesting new feature in the three-flavor case with respect to the results of Ref.[25] is
the presence of non-vanishing local coherences for the elements of the possible bipartitions of the
system. We investigate in detail such coherences for an electron and a muon neutrino system.

2. Formalism of CCR

2.1. CCR for bipartite states

Let us consider [24] a bipartite state represented as a vector in the Hilbert state H4 ® Hp of
dimension d = dadp, where d4 and dp are the dimension of the subsystem A and B, respectively.

{liy4®15) 5 = \i,j)AB}?‘j‘»‘;g’dBfl represents an orthonormal basis for H 4 ®H g, where {|i>A}?;‘O_1

and {|j) g ?20_1 are the local basis for the spaces H 4 and Hp, respectively. In this basis, the
density matrix of any bipartite state is:

da—1dg—1

pas=Y_ Y pijkli-i)ap (k1. (3)

i,k=0 j,1=0

The state of subsystem A(B) is obtained by tracing over B(A). For example, for subsystem A,
we have:

da—1 dp—1 da—1
. _ A .
pa= DS v | 1 a (k1= pikli) 4 (Kl (4)
i,k=0 \ j=0 i,k=0

with a similar form for the subsystem B.

In general, even if the joint state pa p is pure, the states of the subsystems A and B are not
pure, which implies that some information is missing when the state of a single subsystem is
considered. The missing information is being shared via correlations with the subsystem B [30].
Hence, the complete complementarity relation to consider is:

da—1
Pas(pa) + Chs(pa) + Cii(pap) = = - (5)

where Pys(pa) = E?ﬁal(pﬁ)z - i is the predictability measure and Cygs(pa) = Zf;‘,;l |pik |2

is the Hilbert-Schmidt quantum coherence, a measure of visibility and Cﬁsl(pm B) =
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D itk Al lpij? — 2 > itk j<i Re(pijrjpi gy) 1 called non local quantum coherence, that is the
coherence shared between A and B.

Another form of CCR can be obtained by defining the predictability and the coherence
measures in terms of the von Neumann entropy:

Cre(pA) + Pvn(pA) + Svn(pA) = 10g2 dA, (6)

where Cre(pa) = Syn(pAa, diag) —Svn(pa) is the relative entropy of coherence, with Sy, (p) denoting

the von Neumann entropy of p, and pa_ diag = 2?21 pg %) (i|. Pyn(pa) =logyda — Sun(pa, diag)s

is a measure of predictability.

2.2. CCR for tripartite states

In [24] the generalization of the CCR for tri-partite pure states is obtained. Let us consider
a tri-partite state represented as a vector in the Hilbert state Hq ® Hp ® Hco of dimension
d = dadpdc, where d4, dp, do are the dimension of the subsystem A, B and C, respectively.

{ly4®15) g ®1k) e = 14, 7, k)ABC}f’]‘?;i’gB_l’dc_l represents an orthonormal basis for H4 ® Hp ®

He, where {|i) 1741, {\j>B};l§61 and {|k)q gial are the local basis for the spaces Ha, Hp
and Hc, respectively. In this basis, the density matrix of any tri-partite state is:

da—1dg—1 do—1

PA,B,C = Z Z Z Pijk,lmn ’ivj’ k)ABC <l’mvn‘ . (7)

i,1=0 j,m=0 k,n=0

The state of subsystem A is obtained by tracing over B and C:

da—1 [dg—1do—1 da—1
- _ A .
pa= > D0 D sk | = > piliall, (8)
il=0 \ j=0 k=0 i1=0

with a similar form for the subsystems B and C.
The complete complementarity relation to consider for subsystem A is:
dg —1
da

Prs(pa) + Cus(pa) + C}?sl(pA|BC) =

where, in this case, the non local coherence is given by:

Citlpape)=>_ 1 D + >, + D> | pijkimnl®

i#EL \g#Fmk#n  j=mk#n jFEmk=n

_QZ Z + Z + Z Re(pijk 1k Pimm,imn)-

£l \j=m,k<n j<m,k=n  j<m,k#n

(10)

The other form of the CCR, Eq.(6), is still valid for the single-partite subsystems A, B
and C. But the interesting behaviour comes out when we consider the three possible bipartite
subsystems AB, AC and BC. Indeed, as it is shown in the next sections, in which we apply
this formalism to a neutrino system, the local coherences for bipartite subsystems are non-zero,
in contrast to the local coherence of a single-partite subsystem. For the subsystem AB, for
example, is valid the following CCR:

Cre(pAB) + Pvn(pAB) + Svn(pAB) = logQ(dAdB)- (11)
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3. The three-flavor neutrino model
Let us consider a three-flavor neutrino oscillation model, in which the flavor states are written
in terms of the mass eigenstates:

|Voz> :ZUak|Vk>7 (12)
k

where £k = 1,2,3 and a = e,u,7. Uyr are the elements of a 3 x 3 unitary PMNS matrix,
characterized by the three mixing angles and a CP violating phase:

€12€13 $12€13 s13e"0cP
_ 6 6
U = | —s12c23 — €12513523€"°CF  c12c23 — 512513523€"°CF €13523 ) (13)
i i
512823 — C12513C23€"°CF  —c12823 — 512513¢C23€"°CF  c13C23

where ¢;; = cos;; and s;; = sinb;j, (1,7 = 1,2,3).
The time evolution of the flavor neutrino state |v,(t)) is given by:

Va(t)) = aae(t) [Ve) + aau(t) [Vu) + aar(t) [vr) (14)

where aqg(t) =) ) Uake_iEkt/hng and E}, is the energy of the k-th mass eigenstate.
The transition flavor probability P.s = |[(v5|va(t))|? is given by:

Pug = Z U;kUBkUalUglefi(Ek*El)t. )
il

2
For ultra-relativistic neutrinos, we can use the approximation Fp ~ FE + %, leading to

2
E, — E ~ A;;’” with Amzl = mz — ml2 E and L ~ ct are the energy and the baseline of

the neutrino experiment, respectively. Hence, Eq.(15) becomes:

* * —'Amil
Pap = UnUsUnUfe 22 -, (16)
kl

It is also possible to write the oscillation probability in a more convenient way that permits us
to separate a constant term to the oscillating one by exploiting the unitary relation UUT = 1,
ie. >, UuU Ek’ = 0qp. From the square of the unitary relation, by separating the real and
imaginary parts of U;kngUalUgl we obtain:

L 3 L 3
P = 0o — ARe (U UptUnt Uy ) sin® <Amiz 4th> +2 I (UapUpkUaiUfy) sin (Amzl 2th>
k>l

(17)
In what follows, we will use the following oscillation parameters [31]-[34]:
Am3, = 7.50 x 107°eV?,
Am?, = 2.46 x 107 2eV?, as)

Am3, = 2.38 x 10 2eV?,
012 = 33.48°, 093 = 42.3°, 613 = 8.50°.
For simplicity, here we consider dcp = 0. We can then use the following correspondence [5]:
ve) = 1), ®0), ®|0). = [100),
V) = 10), @ 1[1), ®10), = [010) , (19)
lvr) =10) ®0), ® [1), = [010),

where it is highlighted the composite nature of neutrino flavor states.
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4. CCR for neutrino states
In [25] we have analyzed the CCR for a bipartite neutrino state. We briefly recall the principal
results. For example, if we consider an initial electronic neutrino Eq.(14) becomes:

[ve(t)) = ee(t) [10) + ac,(t) |01) . (20)

By constructing the density matrix for the state ps p and by tracing to obtain the density
matrices for the subsystems p4 and pp, it is simple to check that Eq.(5) is verified. In
fact, Pus(pa) = P2 + ng — %, Chs(pa) = 0 and Cﬁsl(pAB) = 2P.P.,, where we use

laee(t)]? = P, |aeu(t)|2 = P, and P.. + P., = 1. Furthermore, it is simple to see
that PA = PA, diag anda Consequenﬂy, Svn(pA) = Svn(pA,diag)' As reSUIta Cre(pA) = 07
Pou(pa) = |aee‘2 log, ‘aee|2+‘a6u|2 log, |aeu|2 and Syn(pa) = _|aee|2 log, |aee|2_ |aeu|2 log, |aeu|2-

Since the dimension of subsystem A is d4 = 2, logyd4 = 1 and Eq.(6) is satisfied.

It is worth to notice that in the case of a bipartite pure neutrino state, for both Egs.(5) and
(6), the local coherence term is zero. It is natural to ask what happens in the case of a tripartite
neutrino state, in which there are bipartite subsystems with their own specific internal structure.
We will see indeed that in this case the local coherence terms are non vanishing and depend on
the chosen bipartition.

Let us suppose to have a neutrino state in a flavor « = e, u, 7 at t = 0. The time evolved
state is given by:

[Valt)) = Qe () [100) + aap(£) [010) + aur (£) [001) (21)

The density matrix associated to this state is given by:

0 0 0 0 0 0 00

0 9% p% 0 p3 0 0 0

0 pSy p33 0 pg5 0 0 0

0O 0 0 0 0 0O0O
o _ 22
Par =10 o gy 0 p5 0 0 0 22

0o 0 0 0 0 0O0O

0 0 0 0 0 0O0O

0o 0 0 0 0 0O0O

where the matrix elements are written as:

Py = laar(t)[; p3 = Pa = Aar (t)ag,(t); Pos = PS5z = aar(t)ag.(t);  (23)
Pz = laau(®)*; Pss = P53 = ap(t)age(t); PEs = laae(t)”. (24)
The corresponding oscillation probabilities are Pac(t) = |aae(t)|?, Paup(t) = laau(t)]?,

Por(t) = |aar(t)|?. By tracing with respect one of the subsystems we can obtain the reduced
density matrix for bipartite subsystems ep, er, pr, which are, respectively:

P 0 0 0 P53 0 0 0 pss 0 0 0
o2, = 0 p53 p35 O o0 = 0 p3 p3s O p0 = 0 p35 p33 O
o 0 pg3 pgs O 77 0 p5 pgs Of7 K7 0 p55 p33 0
0O 0 0 O 0O 0 0 0 0O 0 0 O

(25)

By tracing again we can obtain the reduced density matrices of the single-partite subsystems:

a_ (Pratps3 0 a_ (Prtprss 0 a_ (Psstps3 0
pe = ( 0 p?s) N ( 0 p§3> ;= < P p32> . (26)
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Figure 1: CCR terms, for an initial electronic Figure 2: CCR terms, for an initial muonic
neutrino, of Eq.(30) as function of L/E. neutrino, of Eq.(30) as function of L/E.

By following the above prescription, it is simple to evaluate the CCR terms of Eq.(9):
1

Pos(p?) = (aap®)* + |aar () + laac®)* = 3, (27)
Chs(P?) = 07 (28)
C}Tllsl(p?‘,uT) = 1 —aae(t)]” - (|a0cu(t)‘2 + |aar (8)%)%. (29)

By summing up all these terms we verify that Eq.(9) is satisfied.
For a state such as in Eq.(21), C’}’}sl(pg“w) = Chs(pg,) + Chs(p;), i-e. the non-local coherence
that the subsystem e shares with pur is equal to the sum of the bipartite correlations that e

shares with 1 and 7 separately. So, Eq.(9) can be written as:

1
Phs(pe) + Chs(Pep) + Chs(Per) = 55 (30)
with Cs(pg,) = (aae(t)aap(t)*)*+(aapu(t)ag (t))? and Chs(pg,) = (aae(t)ag, (£))*Haar (t)ag, ().
Let us now evaluate the terms of Eq.(11) for subsystem eu. By evaluating the eigenvalues of
the reduced density matrices in Eq.(25) we obtain:

Svn(pgiu) = _(Pae + Pau) 10g2(Pae + Pau) - POéT 10g2 PocT7 (31)
le(pg‘u) = 2+ Puclogy Pae + Poylogy Poy + Porlogy Por, (32)
Cre(ﬂ?u) = _Pae log2 Pae - Pau 10g2 Pau + (Pae + Pau) logQ(Poze + Pau)- (33)

For completeness we also evaluate the CCR terms of Eq.(11) for subsystems et and ur. For
et bipartition we have:

S’un(pgr) = _(Pae + PaT) logQ(Pae + Par) - Pau 10g2 Pau)a (34)
Pvn(p?»r) = 2+ Pae 10g2 Pae + Pau 10g2 Pau + Por 10g2 Pyr, (35)
Cre(pg»r) = —Pge 10g2 Poe — Por 10g2 Pyr + (Pae + PCYT) 10g2(Pae + Pa*r)y (36)

and for p7 bipartition:

Svn(pgq—) = _(Pa,u + PaT) IOgQ(Pa,u + PaT) — Pye 10g2 Pae)a (37)
Pvn(pzq-) = 2 + Pae 10g2 Pae + Pap, 10g2 Pap, + PaT lOgQ PO(T? (38)
Cre(Pr) = —Poplogy Pay — Parlogy Par + (Pay + Par)10gy(Pay + Par). (39)
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Figure 3: CCR terms for bipartite subsystems
ep, er and p7t as function of L/FE in the case
of an initial electronic neutrino.

4.1. Results for electron neutrino oscillations
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Figure 4: CCR terms for bipartite subsystems
ep, er and ut as function of L/FE in the case
of an initial muonic neutrino.

Here we show the results for the case of an initial electron neutrino state, i.e. a = e. In Fig.1 are
plotted the terms of Eq.(30) as function of L/E. We can observe as the bipartite correlations
between e and 1 is greater than the bipartite correlations between e and 7. So, the term Ch(pg),)
gives a greater contribution in completing the complementary relation with respect to Chs(pS,).
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Figure 5: Comparison among Cre(pg,); Cre(pe;) and Cre(py-) (left panel) and Syn(pg,,), Svn(per)
and Sy, (pf;) (right panel), for an electronic neutrino.
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Figure 6: Comparison among Che(pty), Cre(phr) and Cre(plr) (left panel) and Syn(peu), Svn(pbr)
and Sy, (plir) (right panel), for a muonic neutrino.

Similar considerations apply to subsystems p and 7.

In Fig.3, the CCR terms of Eq.(11), written in terms of oscillation probabilities, for
subsystems ey, er and pr are shown as function of L/E. It is interesting to note the plateau
exhibited by the von Neumann entropy in correspondence of its maximum value for e subsystem
Fig.3(a), that persists for a relatively large range of L/E. It would be interesting to analyze this
aspect for quantum information tasks. On the left panels of Fig.5 we can observe a comparison
among the three bipartite local coherences Cie(pg,,), Cre(pe,) and Cre(pf,,). On the right panel
of Fig.5 it is shown a comparison among Sy (pg,); Sun(per) and Syn(pf;), representing the
entanglement between subsystems ey — 7, er — p and u7 — e, respectively. It is worth noting
how the behaviour of these terms is different depending on the bipartite subsystem considered.

4.2. Results for muon neutrino oscillations
Here we consider the case of an initial muon neutrino state, i.e. @ = p. In Fig.2 are shown the
terms of Eq.(30) as function of L/E. We can observe that, differently to the electron case, it is
difficult to recognize a dominant contribution of one of the two bipartite correlations, Cps(pty)
and Chs(ptr). Tt is possible to observe that the bigger the one the smaller the other, showing a
sort of anti-correlation between them. However, overall, they show the same trend.

In Fig.4 the CCR terms, Eq.(11), written in terms of oscillation probabilities, for subsystems
ep, er and pr are shown as function of L/E. In this case, the plateau of the von Neumann
entropy is exhibited for pur subsystem (Fig.4(c)), differently to the electron case.
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On the left panels of Fig.6 we can observe a comparison among the three bipartite local
coherences Cre(phy.), Cre(ptr) and Cre(plir). On the right panel of Fig.6 it is shown a comparison
among Syn(Pep), Svn(per) and Syn(pur), representing the entanglement between subsystems
ep — 7, er — p and uT — e, respectively. It is worth noting how the behaviour of these terms is
different depending on the bipartite subsystem considered.

5. Conclusions
In this paper, we have analyzed the quantumness of a three-flavor pure neutrino state by means
of the complete complementarity relations.

In particular, we focused on the quantum coherence, which can be contained either locally or
in the correlations. We highlight how, in contrast to the case of a pure bipartite neutrino state,
where the local coherences of subsystems are zero, for a tri-partite neutrino system the local
coherences are non-vanishing and we investigate them for the three possible bipartite subsystems
of the global state both for an electron and a muon neutrino system. We find a dependence of
these terms on the particular bipartition chosen.

We plan to extend these consideration by using a wave packet approach for neutrino
oscillation. In fact, in this case we expect that at great distances, one of the three local coherences
associated with the three bipartitions will dominate the other two.

Our analysis has been performed for the case without CP violating phase, which we plan to
include in future work.
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