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2 Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132 I-84084 Fisciano
(SA), Italy.
3 INFN, Sezione di Napoli, Gruppo collegato di Salerno, Italy.
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Abstract. We study quantum correlations encoded in a three-flavor neutrino system by using
complete complementarity relations (CCR). Due to the presence of local coherence in two-flavor
subsystems, the CCR has an additional contribution not present in the two flavor mixing case.
We investigate such coherence for the three possible bipartite subsystems of the global state
both for an electron and a muon neutrino system.

1. Introduction
In the last few years, elementary particles as neutrinos have been investigated in the context of
quantum information [1]. In fact, the property of neutrinos to interact very weakly and to deeply
penetrate into matter makes these particles interesting candidates for applications of quantum
information beyond photons1. The characterization of quantum correlations in such systems is
therefore important for the development of algorithms and protocols that can harness not only
quantum entanglement but also other resources, such as quantum discord [3] and coherence [4].
Such quantum correlations have been studied and probed in quantum optics and condensed
matter physics, but only recently they have been investigated in relativistic systems of neutrinos
and mesons [5]-[19]. In particular, the phenomenon of neutrino oscillations offers a rare example
of quantum correlation on macroscopic scale.

The quantum nature of neutrino oscillations has been studied in terms of entanglement [5]–[8],
Bell and Leggett-Garg inequalities [11]–[14] and various aspects of quantum coherence such as
steering [16, 17] and Non-local Advantage of Quantum Coherence [18]–[21]. Neutrino oscillations
have also been considered in the context of entropic uncertainty relations [22, 23].

Complete complementarity relations provide a way to characterize quantum correlations in
bi- and multi-partite systems [24] and can be applied to the description of quantum correlations
intrinsic to neutrino systems [25]. The concept of complementarity is often associated with
wave-particle duality [26]: it is summarized in the statement that a quantum system may
possess properties which are equally real but mutually exclusive, in the sense that the more
information one has about one aspect of the system, the less information can be obtained about

1 Classical communication using a neutrino beam was demonstrated in [2].
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the other. In the context of the two-slit experiment, CCRs can be formalized [27, 28] by defining
a predictability P , associated to the knowledge of the path of the particle, and a visibility V ,
connected with the capacity to distinguish the interference fringes:

P 2 + V 2 ≤ 1. (1)

Complementarity relation as in Eq.(1) are saturated only for pure single-partite quantum states.
In [29] it is shown that for a bipartite state we have to consider a third entry C – representing the
correlation between the subsystems – in order to obtain a complete complementarity relation:

P 2
k + V 2

k + C2 = 1, k = 1, 2. (2)

The quantities associated with the wave-particle duality generate local, single-partite realities,
while C generates an exclusive bipartite nonlocal reality. In [24] it has been shown that the
CCR can be efficiently expressed in terms of the elements of the density matrix representing the
system.

In this work, we briefly review the formalism of CCR for bipartite states and its application
to two-flavor neutrino system in the plane-wave approximation. Then, we consider the extension
to the case of three flavors (tripartite system).

The interesting new feature in the three-flavor case with respect to the results of Ref.[25] is
the presence of non-vanishing local coherences for the elements of the possible bipartitions of the
system. We investigate in detail such coherences for an electron and a muon neutrino system.

2. Formalism of CCR
2.1. CCR for bipartite states
Let us consider [24] a bipartite state represented as a vector in the Hilbert state HA ⊗ HB of
dimension d = dAdB, where dA and dB are the dimension of the subsystem A and B, respectively.

{|i⟩A⊗|j⟩B = |i, j⟩AB}
dA−1,dB−1
i,j=0 represents an orthonormal basis for HA⊗HB, where {|i⟩A}

dA−1
i=0

and {|j⟩B}
dB−1
j=0 are the local basis for the spaces HA and HB, respectively. In this basis, the

density matrix of any bipartite state is:

ρA,B =

dA−1∑
i,k=0

dB−1∑
j,l=0

ρij,kl |i, j⟩AB ⟨k, l| . (3)

The state of subsystem A(B) is obtained by tracing over B(A). For example, for subsystem A,
we have:

ρA =

dA−1∑
i,k=0

dB−1∑
j=0

ρij,kj

 |i⟩A ⟨k| ≡
dA−1∑
i,k=0

ρAik |i⟩A ⟨k| , (4)

with a similar form for the subsystem B.
In general, even if the joint state ρA,B is pure, the states of the subsystems A and B are not

pure, which implies that some information is missing when the state of a single subsystem is
considered. The missing information is being shared via correlations with the subsystem B [30].
Hence, the complete complementarity relation to consider is:

Phs(ρA) + Chs(ρA) + Cnl
hs(ρA|B) =

dA − 1

dA
(5)

where Phs(ρA) =
∑dA−1

i=0 (ρAii)
2 − 1

dA
is the predictability measure and Chs(ρA) =

∑dA−1
i ̸=k |ρAik|2

is the Hilbert-Schmidt quantum coherence, a measure of visibility and Cnl
hs(ρA|B) =
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∑
i ̸=k,j ̸=l |ρij,kl|2 − 2

∑
i ̸=k,j<l Re(ρij,kjρ

∗
il,kl) is called non local quantum coherence, that is the

coherence shared between A and B.
Another form of CCR can be obtained by defining the predictability and the coherence

measures in terms of the von Neumann entropy:

Cre(ρA) + Pvn(ρA) + Svn(ρA) = log2 dA, (6)

where Cre(ρA) = Svn(ρA,diag)−Svn(ρA) is the relative entropy of coherence, with Svn(ρ) denoting

the von Neumann entropy of ρ, and ρA,diag =
∑dA

i=1 ρ
A
ii |i⟩ ⟨i|. Pvn(ρA) ≡ log2 dA − Svn(ρA, diag),

is a measure of predictability.

2.2. CCR for tripartite states
In [24] the generalization of the CCR for tri-partite pure states is obtained. Let us consider
a tri-partite state represented as a vector in the Hilbert state HA ⊗ HB ⊗ HC of dimension
d = dAdBdC , where dA, dB, dC are the dimension of the subsystem A, B and C, respectively.

{|i⟩A⊗|j⟩B⊗|k⟩C = |i, j, k⟩ABC}
dA−1,dB−1,dC−1
i,j,k=0 represents an orthonormal basis for HA⊗HB⊗

HC , where {|i⟩A}
dA−1
i=0 , {|j⟩B}

dB−1
j=0 and {|k⟩C}

dC−1
k=0 are the local basis for the spaces HA, HB

and HC , respectively. In this basis, the density matrix of any tri-partite state is:

ρA,B,C =

dA−1∑
i,l=0

dB−1∑
j,m=0

dC−1∑
k,n=0

ρijk,lmn |i, j, k⟩ABC ⟨l,m, n| . (7)

The state of subsystem A is obtained by tracing over B and C:

ρA =

dA−1∑
i,l=0

dB−1∑
j=0

dC−1∑
k=0

ρijk,ljk

 |i⟩A ⟨l| ≡
dA−1∑
i,l=0

ρAil |i⟩A ⟨l| , (8)

with a similar form for the subsystems B and C.
The complete complementarity relation to consider for subsystem A is:

Phs(ρA) + Chs(ρA) + Cnl
hs(ρA|BC) =

dA − 1

dA
(9)

where, in this case, the non local coherence is given by:

Cnl
hs(ρA|BC) =

∑
i ̸=l

 ∑
j ̸=m,k ̸=n

+
∑

j=m,k ̸=n

+
∑

j ̸=m,k=n

 |ρijk,lmn|2

− 2
∑
i ̸=l

 ∑
j=m,k<n

+
∑

j<m,k=n

+
∑

j<m,k ̸=n

Re(ρijk,ljkρ
∗
imn,lmn).

(10)

The other form of the CCR, Eq.(6), is still valid for the single-partite subsystems A, B
and C. But the interesting behaviour comes out when we consider the three possible bipartite
subsystems AB, AC and BC. Indeed, as it is shown in the next sections, in which we apply
this formalism to a neutrino system, the local coherences for bipartite subsystems are non-zero,
in contrast to the local coherence of a single-partite subsystem. For the subsystem AB, for
example, is valid the following CCR:

Cre(ρAB) + Pvn(ρAB) + Svn(ρAB) = log2(dAdB). (11)
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3. The three-flavor neutrino model
Let us consider a three-flavor neutrino oscillation model, in which the flavor states are written
in terms of the mass eigenstates:

|να⟩ =
∑
k

Uαk |νk⟩ , (12)

where k = 1, 2, 3 and α = e, µ, τ . Uαk are the elements of a 3 × 3 unitary PMNS matrix,
characterized by the three mixing angles and a CP violating phase:

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23
s12s23 − c12s13c23e

iδCP −c12s23 − s12s13c23e
iδCP c13c23

 , (13)

where cij = cos θij and sij = sin θij , (i, j = 1, 2, 3).
The time evolution of the flavor neutrino state |να(t)⟩ is given by:

|να(t)⟩ = aαe(t) |νe⟩+ aαµ(t) |νµ⟩+ aατ (t) |ντ ⟩ , (14)

where aαβ(t) =
∑

k Uαke
−iEkt/ℏU∗

βk and Ek is the energy of the k-th mass eigenstate.

The transition flavor probability Pαβ = |⟨νβ|να(t)⟩|2 is given by:

Pαβ =
∑
kl

U∗
αkUβkUαlU

∗
βle

−i(Ek−El)t. (15)

For ultra-relativistic neutrinos, we can use the approximation Ek ≃ E +
m2

k
2E , leading to

Ek − El ≃ ∆m2
kl

2E with ∆m2
kl = m2

k − m2
l . E and L ≈ ct are the energy and the baseline of

the neutrino experiment, respectively. Hence, Eq.(15) becomes:

Pαβ =
∑
kl

U∗
αkUβkUαlU

∗
βle

−i
∆m2

kl
2E

L. (16)

It is also possible to write the oscillation probability in a more convenient way that permits us
to separate a constant term to the oscillating one by exploiting the unitary relation UU † = 1,
i.e.

∑
α UαkU

∗
βk = δαβ. From the square of the unitary relation, by separating the real and

imaginary parts of U∗
αkUβkUαlU

∗
βl we obtain:

Pαβ = δαβ − 4Re
(
U∗
αkUβkUαlU

∗
βl

)
sin2

(
∆m2

kl

Lc3

4ℏE

)
+2

∑
k>l

Im
(
U∗
αkUβkUαlU

∗
βl

)
sin

(
∆m2

kl

Lc3

2ℏE

)
.

(17)
In what follows, we will use the following oscillation parameters [31]–[34]:

∆m2
21 = 7.50× 10−5eV 2,

∆m2
31 = 2.46× 10−3eV 2,

∆m2
32 = 2.38× 10−3eV 2,

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦.

(18)

For simplicity, here we consider δCP = 0. We can then use the following correspondence [5]:

|νe⟩ = |1⟩e ⊗ |0⟩µ ⊗ |0⟩τ = |100⟩ ,
|νµ⟩ = |0⟩e ⊗ |1⟩µ ⊗ |0⟩τ = |010⟩ ,
|ντ ⟩ = |0⟩e ⊗ |0⟩µ ⊗ |1⟩τ = |010⟩ ,

(19)

where it is highlighted the composite nature of neutrino flavor states.
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4. CCR for neutrino states
In [25] we have analyzed the CCR for a bipartite neutrino state. We briefly recall the principal
results. For example, if we consider an initial electronic neutrino Eq.(14) becomes:

|νe(t)⟩ = aee(t) |10⟩+ aeµ(t) |01⟩ . (20)

By constructing the density matrix for the state ρA,B and by tracing to obtain the density
matrices for the subsystems ρA and ρB, it is simple to check that Eq.(5) is verified. In
fact, Phs(ρA) = P 2

ee + P 2
eµ − 1

2 , Chs(ρA) = 0 and Cnl
hs(ρAB) = 2PeePeµ, where we use

|aee(t)|2 = Pee, |aeµ(t)|2 = Peµ and Pee + Peµ = 1. Furthermore, it is simple to see
that ρA = ρA, diag and, consequently, Svn(ρA) = Svn(ρA, diag). As result, Cre(ρA) = 0,
Pvn(ρA) = |aee|2 log2 |aee|2+ |aeµ|2 log2 |aeµ|2 and Svn(ρA) = −|aee|2 log2 |aee|2−|aeµ|2 log2 |aeµ|2.
Since the dimension of subsystem A is dA = 2, log2 dA = 1 and Eq.(6) is satisfied.

It is worth to notice that in the case of a bipartite pure neutrino state, for both Eqs.(5) and
(6), the local coherence term is zero. It is natural to ask what happens in the case of a tripartite
neutrino state, in which there are bipartite subsystems with their own specific internal structure.
We will see indeed that in this case the local coherence terms are non vanishing and depend on
the chosen bipartition.

Let us suppose to have a neutrino state in a flavor α = e, µ, τ at t = 0. The time evolved
state is given by:

|να(t)⟩ = aαe(t) |100⟩+ aαµ(t) |010⟩+ aατ (t) |001⟩ , (21)

The density matrix associated to this state is given by:

ραeµτ =



0 0 0 0 0 0 0 0
0 ρα22 ρα23 0 ρα25 0 0 0
0 ρα32 ρα33 0 ρα35 0 0 0
0 0 0 0 0 0 0 0
0 ρα52 ρα53 0 ρα55 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(22)

where the matrix elements are written as:

ρα22 = |aατ (t)|2; ρα23 = ρα∗32 = aατ (t)a
∗
αµ(t); ρα25 = ρα∗52 = aατ (t)a

∗
αe(t); (23)

ρα33 = |aαµ(t)|2; ρα35 = ρα∗53 = aαµ(t)a
∗
αe(t); ρα55 = |aαe(t)|2. (24)

The corresponding oscillation probabilities are Pαe(t) = |aαe(t)|2, Pαµ(t) = |aαµ(t)|2,
Pατ (t) = |aατ (t)|2. By tracing with respect one of the subsystems we can obtain the reduced
density matrix for bipartite subsystems eµ, eτ , µτ , which are, respectively:

ραeµ =


ρα22 0 0 0
0 ρα33 ρα35 0
0 ρα53 ρα55 0
0 0 0 0

 , ραeτ =


ρα33 0 0 0
0 ρα22 ρα25 0
0 ρα52 ρα55 0
0 0 0 0

 , ραµτ =


ρα55 0 0 0
0 ρα22 ρα23 0
0 ρα32 ρα33 0
0 0 0 0

 .

(25)
By tracing again we can obtain the reduced density matrices of the single-partite subsystems:

ραe =

(
ρα22 + ρα33 0

0 ρα55

)
, ραµ =

(
ρα22 + ρα55 0

0 ρα33

)
, ρατ =

(
ρα55 + ρα33 0

0 ρα22

)
. (26)
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Figure 1: CCR terms, for an initial electronic
neutrino, of Eq.(30) as function of L/E.
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Figure 2: CCR terms, for an initial muonic
neutrino, of Eq.(30) as function of L/E.

By following the above prescription, it is simple to evaluate the CCR terms of Eq.(9):

Phs(ρ
α
e ) = (|aαµ(t)|2 + |aατ (t)|2)2 + |aαe(t)|2 −

1

2
, (27)

Chs(ρ
α
e ) = 0, (28)

Cnl
hs(ρ

α
e|µτ ) = 1− |aαe(t)|2 − (|aαµ(t)|2 + |aατ (t)|2)2. (29)

By summing up all these terms we verify that Eq.(9) is satisfied.
For a state such as in Eq.(21), Cnl

hs(ρ
α
e|µτ ) = Chs(ρ

α
eµ) +Chs(ρ

α
eτ ), i.e. the non-local coherence

that the subsystem e shares with µτ is equal to the sum of the bipartite correlations that e
shares with µ and τ separately. So, Eq.(9) can be written as:

Phs(ρ
α
e ) + Chs(ρ

α
eµ) + Chs(ρ

α
eτ ) =

1

2
, (30)

with Chs(ρ
α
eµ)=(aαe(t)aαµ(t)

∗)2+(aαµ(t)a
∗
αe(t))

2 and Chs(ρ
α
eτ )=(aαe(t)a

∗
ατ (t))

2+(aατ (t)a
∗
αe(t))

2.
Let us now evaluate the terms of Eq.(11) for subsystem eµ. By evaluating the eigenvalues of

the reduced density matrices in Eq.(25) we obtain:

Svn(ρ
α
eµ) = −(Pαe + Pαµ) log2(Pαe + Pαµ)− Pατ log2 Pατ , (31)

Pvn(ρ
α
eµ) = 2 + Pαe log2 Pαe + Pαµ log2 Pαµ + Pατ log2 Pατ , (32)

Cre(ρ
α
eµ) = −Pαe log2 Pαe − Pαµ log2 Pαµ + (Pαe + Pαµ) log2(Pαe + Pαµ). (33)

For completeness we also evaluate the CCR terms of Eq.(11) for subsystems eτ and µτ . For
eτ bipartition we have:

Svn(ρ
α
eτ ) = −(Pαe + Pατ ) log2(Pαe + Pατ )− Pαµ log2 Pαµ), (34)

Pvn(ρ
α
eτ ) = 2 + Pαe log2 Pαe + Pαµ log2 Pαµ + Pατ log2 Pατ , (35)

Cre(ρ
α
eτ ) = −Pαe log2 Pαe − Pατ log2 Pατ + (Pαe + Pατ ) log2(Pαe + Pατ ), (36)

and for µτ bipartition:

Svn(ρ
α
µτ ) = −(Pαµ + Pατ ) log2(Pαµ + Pατ )− Pαe log2 Pαe), (37)

Pvn(ρ
α
µτ ) = 2 + Pαe log2 Pαe + Pαµ log2 Pαµ + Pατ log2 Pατ , (38)

Cre(ρ
α
µτ ) = −Pαµ log2 Pαµ − Pατ log2 Pατ + (Pαµ + Pατ ) log2(Pαµ + Pατ ). (39)
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Figure 3: CCR terms for bipartite subsystems
eµ, eτ and µτ as function of L/E in the case
of an initial electronic neutrino.
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Figure 4: CCR terms for bipartite subsystems
eµ, eτ and µτ as function of L/E in the case
of an initial muonic neutrino.

4.1. Results for electron neutrino oscillations
Here we show the results for the case of an initial electron neutrino state, i.e. α = e. In Fig.1 are
plotted the terms of Eq.(30) as function of L/E. We can observe as the bipartite correlations
between e and µ is greater than the bipartite correlations between e and τ . So, the term Chs(ρ

e
eµ)

gives a greater contribution in completing the complementary relation with respect to Chs(ρ
e
eτ ).
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Figure 6: Comparison among Cre(ρ
µ
eµ), Cre(ρ

µ
eτ ) and Cre(ρ

µ
µτ ) (left panel) and Svn(ρ

µ
eµ), Svn(ρ

µ
eτ )

and Svn(ρ
µ
µτ ) (right panel), for a muonic neutrino.

Similar considerations apply to subsystems µ and τ .
In Fig.3, the CCR terms of Eq.(11), written in terms of oscillation probabilities, for

subsystems eµ, eτ and µτ are shown as function of L/E. It is interesting to note the plateau
exhibited by the von Neumann entropy in correspondence of its maximum value for eτ subsystem
Fig.3(a), that persists for a relatively large range of L/E. It would be interesting to analyze this
aspect for quantum information tasks. On the left panels of Fig.5 we can observe a comparison
among the three bipartite local coherences Cre(ρ

e
eµ), Cre(ρ

e
eτ ) and Cre(ρ

e
µτ ). On the right panel

of Fig.5 it is shown a comparison among Svn(ρ
e
eµ), Svn(ρ

e
eτ ) and Svn(ρ

e
µτ ), representing the

entanglement between subsystems eµ − τ , eτ − µ and µτ − e, respectively. It is worth noting
how the behaviour of these terms is different depending on the bipartite subsystem considered.

4.2. Results for muon neutrino oscillations
Here we consider the case of an initial muon neutrino state, i.e. α = µ. In Fig.2 are shown the
terms of Eq.(30) as function of L/E. We can observe that, differently to the electron case, it is
difficult to recognize a dominant contribution of one of the two bipartite correlations, Chs(ρ

µ
eµ)

and Chs(ρ
µ
eτ ). It is possible to observe that the bigger the one the smaller the other, showing a

sort of anti-correlation between them. However, overall, they show the same trend.
In Fig.4 the CCR terms, Eq.(11), written in terms of oscillation probabilities, for subsystems

eµ, eτ and µτ are shown as function of L/E. In this case, the plateau of the von Neumann
entropy is exhibited for µτ subsystem (Fig.4(c)), differently to the electron case.
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On the left panels of Fig.6 we can observe a comparison among the three bipartite local
coherences Cre(ρ

µ
eµ), Cre(ρ

µ
eτ ) and Cre(ρ

µ
µτ ). On the right panel of Fig.6 it is shown a comparison

among Svn(ρeµ), Svn(ρeτ ) and Svn(ρµτ ), representing the entanglement between subsystems
eµ− τ , eτ − µ and µτ − e, respectively. It is worth noting how the behaviour of these terms is
different depending on the bipartite subsystem considered.

5. Conclusions
In this paper, we have analyzed the quantumness of a three-flavor pure neutrino state by means
of the complete complementarity relations.

In particular, we focused on the quantum coherence, which can be contained either locally or
in the correlations. We highlight how, in contrast to the case of a pure bipartite neutrino state,
where the local coherences of subsystems are zero, for a tri-partite neutrino system the local
coherences are non-vanishing and we investigate them for the three possible bipartite subsystems
of the global state both for an electron and a muon neutrino system. We find a dependence of
these terms on the particular bipartition chosen.

We plan to extend these consideration by using a wave packet approach for neutrino
oscillation. In fact, in this case we expect that at great distances, one of the three local coherences
associated with the three bipartitions will dominate the other two.

Our analysis has been performed for the case without CP violating phase, which we plan to
include in future work.
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