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Chapter 1

Introduction

1.1 Motivation

The metal-insulator transition (MIT), and disordered systems have been at the forefront
of condensed matter research since the middle of the last century. Our work focuses on
Anderson metal insulator transition (AMIT) [1], which has a very wide literature [2, 3,
4, 5], and yet this topic still has several open questions and is still actively investigated.
There are several reasons behind this, what we would like to discuss here to shed light
on the motivations of this work. We �nd Ref. [2] especially didactic, therefore we use
several thoughts from this review.

We can describe good metals and good insulators at low temperature very well, but
they are robust against changing external parameters. This makes the manipulation of the
properties of these materials di�cult, what would be important for modern technology.
Now let us assume that there is an externally tunable parameter which drives the system
from a metal to an insulator. This parameter can be for example the number of charge
carriers. Figure 1.1 shows the schematic picture of the MIT. For di�erent parameter
values one can see a metallic or an insulating behavior below a temperature, T ∗, see
Figure 1.1(a). This temperature goes to zero exactly at the transition point, which is
visible in Figure 1.1(b), while T ∗ depending on the external parameter separates three
regions: the metallic, the critical and the insulating ones. In the critical region, where
the MIT occurs, one can change the properties of the matter dramatically by tuning the
external parameter.

As mentioned above, T ∗ reaches zero at the transition point, therefore MIT is a
genuine quantum phase transition. Since electric conduction properties are based on the
properties of the electrons, and the transition occurs at T = 0, quantum �uctuations
dominate the critical region. As one expects for a quantum phase transition, we can �nd
universal quantities and universal phenomena. This allows us to investigate relatively
simple models, and extract results, which are useful for real materials too. This makes
this �eld very interesting both from the theoretical and the practical point of view.

Although we used the word �relatively� above, these models are rather hard -and
therefore still interesting and challenging- to solve analytically for several reasons. Good
metals are well-described by Fermi-liquid theory, where the elementary excitations are
fermionic quasiparticles: electrons, which can be excited above the Fermi-surface. Good
insulators can be described at low temperature usually by collective bosonic excitations,
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Figure 1.1: Schematic picture of MIT. The �gure was taken from the review of Dobrosavl-
jevi¢ [2]

like phonons. In between, in the critical regime fermionic and bosonic excitations of the
two limiting cases can coexist, which de�nitely makes theoretical description di�cult.
Usually phase transitions are related to spontaneous symmetry breaking. For example in
the Ising model at zero external �eld spins break the spin-�ip symmetry of the Hamil-
tonian below Tc leading to a ferromagnetic phase, while the system shows the symmetry
above Tc, resulting in a paramagnetic phase. Therefore average magnetization can be
used as order parameter. MIT has no such an obvious symmetry-breaking which could
lead us to a proper order parameter.

Since analytical description is quite di�cult, the development of computational re-
sources in the past decades is crucial for the research. The lower critical dimension for
the MIT is in most cases two, therefore many times three-dimensional systems must be
investigated numerically. The progress of computational e�orts in the past decades allows
us to run such large-scale simulations that was not possible not even twenty years ago.
In this work we exploit this advancement, too.

There are several reasons, why MIT can occur. We are going to discuss the case in
this work, when the MIT is induced by disorder, called Anderson transition (see Sec-
tion 1.2). However, the e�ect of disorder sometimes can be neglected, disorder is present
in every real system. Moreover, there are systems where disorder plays an important
role or even dominates the behavior. One such case is the integer quantum Hall e�ect,
where disordered potential plays a crucial role in the understanding of the plateau tran-
sitions [6]. Interestingly disorder can have even positive e�ect for superconductivity, it
can increase the superconducting critical temperature through the large overlap between
critical multifractal (see Chapter 2) electronic states [7]. Multifractals have strong �uc-
tuations on every length scale, they are discussed in detail in Chapter 2. Multifractality
has an important role in the �eld of Kondo-physics also, the multifractal �uctuations of
the local density of states (LDOS) close to criticality induces a new phase due to the
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presence of local Kondo e�ects induced by local pseudo gaps at the Fermi energy [8].
Anderson localization is present on di�erent topologies also, Sade et al. found Anderson
localization on various complex networks [9].

Another reason why physicists still examine MIT is that experimental methods also
developed a lot lately. In the last few years experimental evidence has been obtained
about this topic. Richardella et al. [10] examined the MIT in a dilute magnetic semi-
conductor Ga1−xMnxAs , which is a strongly interacting and disordered system, which
still does not have a complete theoretical description. They used scanning tunneling
microscopy, and investigated the LDOS of the excitations. They found a diverging cor-
relation length at the Fermi energy, exponential LDOS autocorrelation function above
and below the Fermi energy, and power law LDOS autocorrelation at the Fermi en-
ergy, indicating a second order phase transition. Moreover they even found that the
LDOS has multifractal �uctuations at the Fermi-energy showing that multifractality is
a robust property of critical electronic wave-functions. The group of A. Aspect and P.
Bouyer found Anderson-localization in a three-dimensional disordered ultracold atomic
system. [11] Although several things can result in the observed localization, they found
a time-evolution, which is compatible only with the predictions of Anderson localization.
Since Anderson localization is mainly an interference e�ect (see Section 1.2), not only
condensed matter systems can produce the phenomenon. The group of van Tiggelen
reported Anderson localization of ultrasound in a three-dimensional elastic network [12],
later they found multifractality also [13]. Segev et al. found Anderson localization of
light in disordered photonic lattices in the transverse direction [14].

Many-body localization [15] is also an actively examined aspect of localization. Its
main idea is that if the eigenvectors of the many-body Hamiltonian are localized, the
system fails to thermalize. In other words if one prepares the system near to a many-
body localized eigenvector, the system cannot be described by usual statistical ensembles,
it preserves some reminiscence of the initial state for arbitrarily long time.

1.2 Introduction to Anderson metal insulator transi-

tion

Band theory works well for a very wide range of materials, and gives a simple explanation
for the conduction properties. But it works only if the kinetic energy of the electrons
dominate over all other energy scales. Band theory does not always give a complete
description: It can happen that a band is not fully �lled, and meanwhile the matter is
an insulator.

For example certain metal oxides can be described well by the Hubbard model. If
they have an odd number of electrons per unit cell they should be metals according to
band theory. If pressure is decreased, the lattice constant increases leading to decreasing
hopping integral. If hopping becomes much smaller than the on-site repulsion between
the electrons, large energy cost of hopping to an occupied site can prevent the hopping
of electrons, this way the material becomes an insulator. The phenomenon is called Mott
transition.

Without any interaction, disorder itself can also lead to MIT, known as AMIT or
Anderson localization. A schematic �gure is seen in Figure 1.2. At zero disorder a crys-
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Ballistic Di�usive Localized

disorder

Figure 1.2: The schematic e�ect of disorder.

tal is periodic, the electronic eigenstates are Bloche-states, the conduction is ballistic. If
disorder is induced on a moderate level, conduction becomes di�usive due to scattering,
and the usual Drude theory applies. However, if disorder is strong enough, it can trap
electrons due to multiple scattering leading to no conduction at all, this way disorder can
induce an MIT. Since electrons are quantum waves, it is more appropriate to think about
Anderson localization as an interference e�ect, than multiple bouncing of balls. It has
to be noticed that the above reasoning can be applied not just for electrons, but for any
kind of wave-phenomena, see Section 1.1. According to Ref. [14], even the opacity of mi-
croscopically transparent media, like clouds or milk, might be explained through multiple
random scattering of light, which is exactly the phenomenon in Anderson localization.

The random misplacement of the lattice points in Figure 1.2 can be viewed as an
additional random potential to the original periodic potential of the lattice. Similar
e�ect can be realized thorough injecting impurities, where the di�erence of the potential
of the randomly placed impurity atoms and the atoms of the lattice can be treated as
an additional random potential. If the impurity concentration is small, and therefore
the energy scale of the additional random potential is small, its e�ect can be treated as
a perturbation, and Drude model describing a di�usive transport works nicely. On the
other hand if impurity concentration is large enough, thus the energy scale of the random
potential is larger than the kinetic energy, electrons can get trapped at the impurities.
In a condensed matter system of course thermal excitations can move out the electrons
from the trap, therefore this phenomenon leads to a real sharp phase transition only at
zero temperature, like in Figure 1.1. At �nite temperature one can �nd only a crossover,
see also Figure 1.3(b).

The order of the metal insulator phase transition is a non-trivial question. In the
late 1970s Mott argued that if Drude model works, disorder only reduces the mean free
path, which cannot be shorter than the lattice constant, a. This leads to a minimal
Drude-conductivity, σmin = ne2a

mvF
[16], suggesting that the transition is �rst order. A few

years later, however a conductivity much smaller than the Mott-limit was found in a
doped semiconductor, Si:P. In Figure 1.3(a) it is shown that conductivity drops down
very rapidly near a critical impurity concentration, and conductivity can be two orders of
magnitude smaller than the Mott limit suggesting a continuous, second-order phase tran-
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Figure 1.3: Conductivity of disordered systems. (a) First experimental result of Rosen-
baum et al.[17] suggesting a second-order phase transition using doped semiconductor,
Si:P. (b) Schematics of a typical behavior of the conductivity as the function of disorder.

sition. Since then various theoretical works assuming a second-order transition were very
successful, such as the non-linear sigma model [18] or one-parameter scaling theory [19].
The result of diverging correlation length and the power-law LDOS autocorrelation at
the transition found by Richardella et al. [10] is a recent experimental con�rmation of
the second-order nature of the transition. Figure 1.3(b) shows the schematic behavior of
the conductivity as the function of disorder. If disorder, W , is small (metallic regime), at
T = 0 one �nds a decreasing conductivity with increasing disorder. Conductivity tends
to zero at a critical value of disorder, Wc, and for W > Wc it remains zero describing an
insulator.

As mentioned in Section 1.1, for a second-order phase transition one expects uni-
versality, therefore one can extract valid results for universal quantities from any model
belonging to the same universality class. We describe di�erent cases in more details
in Chapter 4, but now for an introduction we would like to consider one of the simplest
models to describe a disordered system: a non-interacting spinless nearest-neighbor tight-
binding Hamiltonian, where disorder is introduced through a random on-site potential,
called the Anderson model:

HA =
∑
i

εic
†
ici − t

∑
〈ij〉

c†icj + h.c. (1.1)

For setting the unit of energy it is common to use t = 1, for the random potential a
W -wide uniform distribution around zero is a usual choice, εi ∈ U

[
−W

2
, W

2

]
. Since the

Hamiltonian is symmetric on average for re�ection of energy, −E ↔ E, every disorder-
averaged quantity is a symmetric function of energy, therefore in many cases the range
E ≥ 0 is investigated. Examples for the electronic eigenfunctions for the Anderson model
and for the quantum percolation model (see Chapter 5) is visible in Figure 1.4.

IfW is large enough, the Hamiltonian is diagonally dominant, and states are typically
exponentially localized around a site, see the right column of Figure 1.4. If W is small,
the o�-diagonal hopping elements (kinetic energy) dominate, and states will extend over
the whole system, which is visible in the left column of Figure 1.4. However, in this
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Figure 1.4: First row: Eigenvectors of the Anderson model at E = 0 on the metallic side
at W = 14, close to criticality W = 16.5 and on the insulating side at W = 20. Second
row: Eigenvectors of the quantum percolation model at energy E = 0.1 on the metallic
side at p = 0.5, close to criticality p = 0.4535 and on the insulating side at p = 0.4.
Box sizes correspond to 400 ·

√
|Ψ|2 for the left column, 70 ·

√
|Ψ|2 in the middle column

and 20 ·
√
|Ψ|2 in the right column. Multiplying factors were tuned to best sight but

without overlapping cubes. System size is L = 120 for all sub�gures. Coloring is due to
x coordinate.
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Figure 1.5: Typical structure of a disordered band, Ec denotes the mobility edge sepa-
rating extended and localized states.

case there are localized states in the system also, separated in energy from the extended
states by the so-called mobility edge, Ec, see Figure 1.5. The reason why a mobility
edge should exist is the following: Suppose that there is a localized state in the energy
regime of extended states. Due to perturbation theory with an in�nitesimal change of
the random disorder the localized state hybridizes with the extended states to a new
extended state. Even though there is no rigorous proof for localized states being near
the edge of the band and for extended states being in the middle of the band, mostly
this is the situation. On the other hand approaching the very edge of the band, beyond
the critical energies, E±, one �nds the so-called Lifschitz-tail [4, 20] which consists of
strongly localized states. In this region the density of states decreases rapidly, with a
typical functional form DOS(E) = Ae−B(±(E−E±))α .

Figure 1.5 actually explains, how a disordered material with un�lled band can be
an insulator. If the Fermi-energy, EF , is in the localized regime, electrons near EF are
exponentially localized, hence no conduction is possible. Now by changing EF for example
with a gate voltage, one can shift EF into the extended region, and one can measure a
�nite conduction. In between, exactly at the mobility edge, Ec, electronic eigenstates
are multifractals, see the middle column of Figure 1.4, here the critical behavior can be
measured. For theoretical computations sometimes it is more convenient to �x the energy,
E, and change the disorder. With increasing disorder the mobility edges start to shift
towards to band center, and it reaches the examined energy value at a certain value of
disorder. As written above, one can �nd critical behavior at this speci�c energy-disorder
combination resulting an energy-dependent critical disorder-value, Wc(E). The Wc(E)
curve, which is often referred to as the mobility edge curve, for the model described here
is seen in Figure 1.6.

With growing disorder the mobility edge moves away from the band center, but of
course in the meantime the band also widens with the increasing disorder. Then it turns
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extended

localized

Figure 1.6: The critical disorder as the function of energy, Wc(E), or in other words the
mobility edge curve of the Anderson model [21].

back, and moves rapidly in, leading to a large interval, 0 ≤ E ≤ 4.0, where the mobility
edge is roughly constant. At a certain critical disorder, Wc ≈ 16.5, the mobility edge
curve reaches zero energy, i.e. the two mobility edges, ±Ec, merge at E = 0. This point
is usually called the critical point of the system, since increasing disorder beyond this
limit, W > Wc, the whole band will consist of localized states. The trajectory of the
mobility edge is continuous, so the number of extended states varies continuously with
disorder if the density of states, DOS, is continuous. Since these extended states are
responsible for the conductance of the system, it is plausible that the conductance also
varies continuously with disorder suggesting a second-order transition again.

1.3 Global symmetries

The latest theoretical and experimental works, discussed in Section 1.1, show an increased
interest in understanding the nature of the Anderson transition in the presence of various
global symmetries. A comprehensive review of the current understanding is given in
Ref. [5]. These symmetry classes have been introduced �rst to describe random matrix
ensembles, but the naming conventions are the same in the �eld of disordered systems.

The original classi�cation considers two global symmetries: time-reversal and spin-
rotational symmetry. If time-reversal and spin-rotational symmetries are also present, the
Hamiltonian is invariant under orthogonal transformations, thus it is a real symmetric
operator. This class is called the orthogonal class. If time-reversal symmetry is broken,
which can be realized physically by applying a magnetic �eld, the system is invariant
under unitary transformations. The Hamiltonian is a complex hermitian operator in this
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case, and it belongs to the unitary class. It can be shown that either spin rotational
symmetry is broken or not, the model is in the unitary class. In the symplectic class
time-reversal symmetry is present, and spin-rotational symmetry is broken, which de-
scribes a system with spin-orbit interaction. In this case the Hamiltonian is invariant
under symplectic transformations, leading to a quaternion hermitian operator. These
three classes are called together the Wigner-Dyson (WD) classes. Since time-reversal
symmetry can be represented by an anti-unitary symmetry operator, A, the classi�cation
can be formulated the following way also: The absence of any anti-unitary symmetry,
corresponds to the unitary class. If an anti-unitary symmetry is present, there are two
cases. If A2 = I, the system belongs to the orthogonal class, if A2 = −I, it belongs to
the symplectic class.

The reason why naming conventions come from the �eld of random matrix theory is
that in the metallic phase the eigenvalue statistics of disordered systems is well-described
by eigenvalue statistics of random matrices with the same symmetry. For example the
nearest level spacing distribution, P (s), characterizes the probability distribution of hav-
ing two eigenvalues separated by an energy distance s. For random matrices and disor-
dered systems in the metallic phase this function is well-described by the Wigner-Dyson
distribution, which has Gaussian envelope, and it is proportional to sβ for s � 1 with
β = 1, 2 and 4 for the orthogonal, unitary and symplectic class, leading to level repulsion.
Meanwhile the nearest level spacing distribution of a disordered system in the insulating
regime follows the distribution of a random diagonal matrix, ∼ e−s, called Poisson statis-
tics. The �rst numerical works on disordered systems used the P (s) functions in the two
phases to obtain critical properties.

Later it turned out that there are three more symmetry classes according to the
presence of chiral symmetry beside the above symmetries, leading to the chiral orthogonal,
chiral unitary and chiral symplectic classes. By chirality we mean that there exists an
operator C, such that C†C = C2 = 1 holds that anticommutes with the Hamiltonian,
{C,H} = 0. Therefore these models are symmetric not only on average for the exchange
of eigenenergies, −E ↔ E, but for every single disorder realization. A chiral disordered
system can be realized for example by o�-diagonal disorder on a bipartite lattice, where
the hopping elements are random, and on-site terms are the same, hence set to zero. In
the chiral classes the band center, E = 0, is a special point in the spectrum, and many
anomalies were found in this regime [22]. We discuss anomalies also in Section 5.3. On
the other hand according to Ref. [22] the bulk of the spectrum behaves similarly to the
corresponding non-chiral class. For example the authors of Ref. [22] found Wigner-Dyson
statistics in the bulk spectrum of a three-dimensional chiral orthogonal disordered model.
Moreover even the critical exponent of the orthogonal and chiral orthogonal class which
will be de�ned in Section 3.1, turns out to be the same numerically up to a very high
precision [23]. These show that in the bulk of the corresponding chiral and non-chiral
classes are very similar, chirality a�ects the band center mainly.

For the sake of completeness we mention that there are four Bogoliubov-de Gennes
classes also, corresponding to particle-hole symmetry [5], but the examination of these
classes is beyond the scope of our work.

The structure of this work is the following: First we introduce and describe the
theoretical background of the concepts and tools we use later, therefore in Chapter 2
we introduce multifractals, and in Chapter 3 we describe �nite-size scaling laws and
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their usage for multifractal quantities, called multifractal �nite-size scaling. In the next
Chapters we show how powerful multifractal �nite-size scaling is for various problems of
disordered systems: For Anderson models in the three Wigner-Dyson classes (Chapter 4)
and for the quantum percolation model (Chapter 5). In Chapter 6 we show that at
very strong disorder Anderson models can be described -at least qualitatively- by simple
analytically solvable two- and three-site models. In Chapter 7 we use multifractal �nite-
size scaling for quantum chromodynamics. After these, in Chapter 8, we list the thesis
points, publications and the acronyms we use.
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Chapter 2

Multifractals

2.1 Fractals

A fractal is a set with non-integer dimension. Dimension can be de�ned through the box
counting algorithm, and the result is the so called box dimension. The main idea of the
de�nition is to cover the set with N hypercubes with linear size `, and let λ = `

L
be the

portion of ` and the full linear size of the system, L. The resulting number of necessary
boxes N ∝ λ−D, as λ → 0, therefore D = − lim

λ→0

lnN
lnλ

. A fractional dimension can be

produced with a recursion method, like for the Koch snow�ake, but fractals in nature
usually are not coming from a recursion, there is no strict deterministic rule to produce
them. Their self-similarity is a statistical property: any measurable average quantity
shows scale independence, and as an outcome of the box counting algorithm the dimension
is non-integer. For example the borderline of the geometric clusters of the Ising model at
the critical point is this kind of fractal, with dimension D = 187

96
[24]. At criticality Ising

model does not change during renormalization, thus it must be statistically the same
on all length scales (scale independence), which means self similarity. Critical systems
are �xed points of renormalization �ows, thus one expects that some kind of fractality
appears in critical systems.

2.2 Introduction to multifractals

Multifractals are the generalization of fractals [25], and since we will use them to analyze
simulation data, we will de�ne them on a lattice, not on a continuum. For an introduction,
let us consider �rst a little handwaving picture of multifractals. A multifractal, p, is a
normalized probability distribution function on a d-dimensional hypercube with linear size

L,
∑Ld

i=1 pi = 1. Such a multifractal function is depicted in two dimensions in Figure 2.1(a)
and (b) as an example. p �uctuates in a very broad range, therefore it seems useful to
investigate its logarithm, or more precisely the variable α = − ln p

lnL
, see Figure 2.1(c) and

(d). One can cut this α function and obtain the contour of it at di�erent values, see
Figure 2.2. The mass corresponding to a contour is given by the probability distribution
of alpha:

P(α) ∼ Lf(α), (2.1)
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where f(α) is the fractal dimension of the contour at height α:

f(α) = lim
L→∞

lnP(α)

lnL
. (2.2)

(a) (b) (c) (d)

Figure 2.1: A multifractal, p, and its transformed variable, α over a two dimensional
lattice on a 3D plot ((a) and (c)) and on a contour plot ((b) and (d)).

Figure 2.2: Upper row: The α function cut at di�erent levels. Lower row: Contours
obtained by cutting the α function at di�erent values.

For a regular set or a regular fractal, S, p is a uniform distribution over S:

pi =

{
L−Df , if i ∈ S
0, otherwise

, (2.3)

where Df stands for the fractal dimension of S. In this case P(α) = δ(α−Df ). The P(α)
distribution has a �nal width for a multifractal, and its scaling is described by f(α).

The multifractal quantities can be precisely de�ned on a lattice in the following way:
First take a d-dimensional hypercubic lattice with linear size L, and a normalized proba-
bility on it,

∑
i = 1L

d

pi = 1. Divide this lattice into smaller hypercubes (boxes) with size
`, and introduce the ratio λ = `

L
. With coarse graining pi, in other words with summing

all its values in the kth box, we obtain:

µk,λ =
∑
i∈boxk

pi, (2.4)
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µk,λ is the weight associated to the kth box termed as box�probability. As an average
over boxes α can be obtained, from which P(α) can be computed which leads to the
de�nition of f(α) as

α = lim
λ→0

ln 〈µλ〉
lnλ

P(α) ∼ λf(α) f(α) = − lim
λ→0

lnP(α)

lnλ
. (2.5)

f(α) is called the singularity spectrum, and describes the usual fractal dimension of
the set of points having value α. Later we would like to investigate disordered system,
where averaging over di�erent disorder-realizations is essential. Therefore for a disordered
system, the 〈.〉 sign in Eq. (2.5) means average over disorder too, as it will mean that
later in the thesis also.

There is another way to describe multifractals through the qth moment of the mass,
frequently called generalized inverse participation ratio (GIPR), and it's derivative:

Rq =
λ−d∑
k=1

µqk Sq =
dRq

dq
=

λ−d∑
k=1

µqk lnµk, (2.6)

The average of Rq and Sq follows a power-law behavior as a function of λ = `
L
, with

exponent τq and αq:

τq = lim
λ→0

ln 〈Rq〉
lnλ

αq =
dτq
dq

= lim
λ→0

〈Sq〉
〈Rq〉 lnλ

. (2.7)

τq can be written in the form:

τq = Dq(q − 1) = d(q − 1) + ∆q, (2.8)

where Dq is the generalized fractal dimension, and ∆q is the anomalous scaling exponent:

Dq =
1

q − 1
lim
λ→0

ln 〈Rq〉
lnλ

∆q = (Dq − d)(q − 1). (2.9)

The function f(α) and τq are related through Legendre-transformation:

f(αq) = qαq − τq = qαq −Dq(q − 1). (2.10)

τq, αq, Dq and ∆q are often referred to as multifractal exponents (MFEs). Dq is directly

related to the so-called Rényi-entropy, Hq = − ln〈Rq〉
q−1

, which in the limit q → 1 yields the

well-known Shannon-entropy, i.e. −
〈∑

k

µk lnµk

〉
. This is the reason why D1 is also

referred to as information dimension:

D1 = lim
q→1

1

q − 1
lim
λ→0

ln 〈Rq〉
lnλ

L′H
= α1 = lim

λ→0

1

lnλ

〈
λ−d∑
k=1

µk lnµk

〉
, (2.11)

while another frequently used dimension is the correlation dimension, D2. The latter
dimension appeared often in recent studies of the physical relevance of multifractal eigen-
states [26]. A schematic �gure of the above MFEs is depicted in Figure 2.3. Easy to
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Figure 2.3: Schematic behavior of MFEs.

check that for a regular fractal Dq and αq are q-independent, and Dq ≡ αq = Df . In this
sense multifractals are generalized fractals.

According to recent results a symmetry relation exists for αq and ∆q given in the
form [27]:

∆q = ∆1−q αq + α1−q = 2d (2.12)

This relation was �rst obtained for some random matrix ensemble numerically and using
the supersymmetric non-linear sigma model analytically [27]. It was later con�rmed for
several two dimensional [28, 29] and three-dimensional systems [30]. The robustness of
this relation has been investigated also for many-body localization [31].

2.3 Numerical calculation of GMFEs

For numerical approaches one has to de�ne the �nite-size version of these MFEs at
a particular value of disorder, termed as generalized multifractal exponents (GMFEs),
τ̃q, α̃q, D̃q and ∆̃q.

For a quantummechanical system, the absolute value square of the wave-function
de�nes a natural probability measure in real space, therefore the obvious choice for µk is

µk =
∑
i∈boxk

|Ψi|2 . (2.13)

With the above µk from the eigenfunction Rq and Sq can be computed according to
Eq. (2.6) for every state at di�erent values of q. Later we would like to investigate
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Anderson transitions, where disorder, denoted by W , drives the system through the
transition, which occurs at a critical value of disorder, Wc. The value of the GMFEs
depends on disorder of course, therefore at �xed W , system size, L, and box size, `, every
�nite size GMFE is computable from Rq and Sq in the following way [32]:

τ̃ ensq (W,L, `) =
ln 〈Rq〉

lnλ
τ̃ typq (W,L, `) =

〈lnRq〉
lnλ

(2.14a)

α̃ensq (W,L, `) =
〈Sq〉
〈Rq〉 lnλ

α̃typq (W,L, `) =

〈
Sq
Rq

〉
1

lnλ
(2.14b)

D̃ens
q (W,L, `) =

1

q − 1

ln 〈Rq〉
lnλ

D̃typ
q (W,L, `) =

1

q − 1

〈lnRq〉
lnλ

(2.14c)

∆̃ens
q (W,L, `) =

ln 〈Rq〉
lnλ

− d(q − 1) ∆̃typ
q (W,L, `) =

〈lnRq〉
lnλ

− d(q − 1), (2.14d)

where ens and typ denote the ensemble and typical averaging over disorder. Every
GMFE approaches the value of the corresponding MFE at the critical point, W = Wc,
only in the limit λ→ 0, when self-similarity and therefore multifractality is expected.

We would like to emphasize that τq � and therefore every MFE � in principle is de�ned
through ensemble averaging (see Eqs. (2.7) and (2.9)), and ensemble and typical averaged
MFEs are equal only in a range of q [5]. It can be shown that

τ typq =


qαq− , if q < q−

τ ensq , if q− < q < q+

qαq+ , if q+ < q

, (2.15)

where q− and q+ correspond to values, where the singularity spectrum reaches zero,
f(αq±) = 0. Therefore when we compute an MFE later, we will use ensemble averaging
always.

The choice of the investigated range of q is in�uenced by the following three e�ects. If
q is big, the qth power in Eq. (2.6) enhances the numerical and statistical errors, leading
to a noisy dataset. If q is negative with large absolute value, the relatively less precise
small wave-function values dominate the sums in Eq. (2.6), which also results in a noisy
dataset. These two e�ects together lead to a regime qmin ≤ q ≤ qmax, where GMFEs
behave numerically the best. The third e�ect is that coarse graining suppresses the noise.
For ` > 1 in an ` × ` × ` sized box positive and negative errors on the wave-functions
can cancel each other. Besides in a box large and small wave-function amplitudes appear
together with high probability, and this way the relative error of a µk box probability is
reduced. In other words coarse graining has a nice smoothing e�ect, which can help to
widen the investigable range of q.
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Chapter 3

Finite-size scaling

3.1 Introduction

Scaling theory [33] has been proven to be very useful for solving various statistical physics
problems. Anderson transition can be very e�ciently described in the frame of one param-
eter scaling theory introduced by the �gang of four�, Abrahams, Anderson, Licciardello
and Ramakrishnan in 1979 [19] based on the ideas of Thouless [34] and Wegner [35]. The
dimensionless conductance, g = 2e2

h
G, of a sample is the function of the linear size of the

sample, L, and the dimensionless disorder w = W−Wc

Wc
: g = g(L,w). Putting together bd

pieces of these systems, yields to a system with linear size bL, see Figure 3.1(a), with
conductance, g(bL, w). According to one parameter scaling theory the conductance of
the big and the original system is related as

ln g(bL, w) = F (ln g(L,w), b) , (3.1)

or in continuous form
d ln g(L,w)

d lnL
= β (ln g(L,w)) (3.2)

meaning, that the conductance of the rescaled system depends on the scaling factor,
b, and the original conductance only. From the renormalization point of view β > 0
(β < 0) means, that the system shifts towards a metallic (insulating) �xed point, since
the conductance increases (decreases) in a renormalization step. In between there should
be an unstable critical �xed point of the renormalization �ow corresponding to β = 0. In
the metallic regime for large conductance, g � 1, in the Ohmic limit

g =
2~
e2
σLd−2 ⇒ β(ln g) = d− 2 (3.3)

holds, where σ is the conductivity of the sample. In the insulating regime, g � 1, due to
exponentially localized wave-functions g reads as

g = g0e
−L
ξ ⇒ β(ln g) = ln g − ln g0, (3.4)

where ξ is the localization length of the electrons. On the metallic side the important
length scale is the correlation length, that we are going to denote also with ξ, since
localization length on the insulating side and correlation length on the metallic side of
the transition play similar role from the point of view of scaling theory.
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Figure 3.1: (a) Schematic �gure for the renormalization. (b) β(ln g) in di�erent dimen-
sions. Dotted line stands for the symplectic symmetry class in two dimensions. The �gure
is based on Figure 1 of the article of Abrahams et al. [19]. Arrows show the directions of
the renormalization �ow, the critical point is marked with gc.

Using perturbation theory around the metallic �xed point for weak localization the
�rst non-vanishing correction happens to be negative for the orthogonal and the unitary
symmetry classes, but positive for the symplectic class [5]. β is assumed to be contin-
uous, therefore its schematic shape looks like Figure 3.1(b), resulting critical point and
Anderson metal-insulator transition in three dimensions and in two dimensions for the
symplectic class only.

Let us denote the derivative of the β function at the critical point with s, dβ(ln g)
d ln g

∣∣
gc

= s.

Near the critical point up to linear order

d ln g

d lnL
= s(ln g − ln gc) ⇒ 1

ln g − ln gc
d(ln g) = s · d(lnL) (3.5)

holds. Let us integrate both sides of this equation from a lower bound L0 and g0, a
microscopic cuto� and the corresponding conductance, to an upper bound, ξ and gc, the
correlation length and the critical conductance. Since for a system having size L > ξ one
basically sees a critical system, the above ξ ↔ gc pairing is proper. The result of the
integration is

ln
g0

gc
=

(
ξ

L0

)−s
⇒ ξ ∼

(
ln
g0

gc

)− 1
s

. (3.6)

Since ln g0
gc
≈ g0−gc

gc
, and g − gc ∼ W −Wc is expected,

ξ ∼ w−ν , (3.7)

where the the variable ν = 1
s
is introduced describing the divergence of the correla-

tion/localization length near the transition point, called the critical exponent. Consider-
ing higher order terms leads to

ξ ∼ %(w)−ν , (3.8)

where %(w) ≈ w for w � 1.
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3.2 Multifractal �nite-size scaling (MFSS)

3.2.1 Introduction

In recent high-precision calculations [32] MFEs (see Chapter 2) have been used to describe
the AMIT. The renormalization �ow of the AMIT, as mentioned in the Section 3.1, has
three �xed points: a metallic, an insulating and a critical one. In the metallic �xed point
every state is extended with probability one, thus with increasing system size, the e�ective
size of the states also grows proportional to the volume. So the fractal dimension of the
states, is just the embedding dimension q-independently, Dmet

q ≡ d. In the insulating
�xed point every state is exponentially localized, their e�ective size does not change with
growing system size, thus for q > 0 Dins

q ≡ 0, for q < 0 Dins
q ≡ ∞. At criticality the

system does not change during renormalization, thus it must be statistically the same
on all length scales showing scale independence, which means self similarity. Therefore
wave-functions are multifractals, in other words generalized fractals [25], see Figure 1.4.

Close to the critical point due to standard �nite-size scaling arguments we can suppose
that the average of Rq and Sq shows scaling behavior determined only by the ratio of two
length scales, L and `, and the localization/correlation length, ξ, in the insulating/metallic
phase:

〈Rq〉 (W,L, `) = λτqRq

(
L

ξ
,
`

ξ

)
. (3.9)

According to Eqs. (2.14a)�(2.14d) for all GMFEs the scaling-law holds independently
from the type of averaging [32]:

τ̃q(W,L, `) = τq +
q(q − 1)

lnλ
Tq
(
L

ξ
,
`

ξ

)
(3.10a)

α̃q(W,L, `) = αq +
1

lnλ
Aq
(
L

ξ
,
`

ξ

)
(3.10b)

D̃q(W,L, `) = Dq +
q

lnλ
Tq
(
L

ξ
,
`

ξ

)
(3.10c)

∆̃q(W,L, `) = ∆q +
q(q − 1)

lnλ
Tq
(
L

ξ
,
`

ξ

)
, (3.10d)

Since Eqs. (3.10a)�(3.10d) has the same structure, one can summarize them in one equa-
tion, using a common letter, G, for the GMFEs:

G̃q(W,L, `) = Gq +
1

lnλ
Gq
(
L

ξ
,
`

ξ

)
. (3.11)

(L, `) on the left-hand side and
(
L
ξ
, `
ξ

)
on the right-hand side can be changed to (L, λ)

and
(
L
ξ
, λ
)
:

G̃q(W,L, λ) = Gq +
1

lnλ
Gq
(
L

ξ
, λ

)
. (3.12)

Our goal is to �t the above formulas to the numerically obtained data, where Wc, ν, Gq

and y (irrelevant exponent) appear among the �t parameters. This �t procedure will
provide us the physically interesting quantities and con�dence intervals. In the next
subsections we are going to present di�erent methods for the �nite-size scaling.
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3.2.2 Finite-size scaling at �xed λ

At �xed λ, Gq and the 1
lnλ

factor in Eq. (3.12) can be merged with the constant term of
Gq, therefore

G̃q(W,L) = Gq
(
L

ξ

)
, (3.13)

where the constant λ has been dropped from the notations. Gq can be expanded with one
relevant, %(w), and one irrelevant variable, η(w), by using Eq.(3.8) the following way:

G̃q(W,L) = Gq
(
%L

1
ν , ηL−y

)
= Grq

(
%L

1
ν

)
+ ηL−yGirq

(
%L

1
ν

)
, (3.14)

where %L
1
ν is used instead of %νL for better numerical stability. It is important to mention

that the irrelevant term is not dangerously irrelevant, therefore the formula above can be
applied. All the disorder-dependent quantities in the above formula can be expanded in
Taylor-series:

Grq
(
%L

1
ν

)
=

nr∑
i=0

ai

(
%L

1
ν

)i
(3.15)

Girq
(
%L

1
ν

)
=

nir∑
i=0

bi

(
%L

1
ν

)i
(3.16)

%(w) = w +

n%∑
i=2

ciw
i η(w) = 1 +

nη∑
i=1

diw
i (3.17)

The advantage of this method is that in the Taylor-series only one variable appears,
%L

1
ν , therefore the number of parameters (including Wc, ν and y) is nr +nir +nρ+nη +4,

which grows linear with the expansion orders. This method is very e�ective for computing
Wc, ν, and y, but since λ is �xed, one can not obtain the MFEs. In all cases we used
λ = 0.1 (except in Chapter 7), because it leads to excellent results in Ref. [32]. It seems
that it is small enough to capture the details of a wave-function, and it allows a lot
di�erent system sizes in the 20 ≤ L ≤ 100 range, what we investigated. This way we can
also compare our results to the results of Ref. [32] very well.

3.2.3 Finite-size scaling for varying λ

In order to take into account di�erent values of λ, the scaling law given in Eq. (3.11) has
to be considered. The expansion of G in (3.11) is

Gq
(
%L

1
ν , %`

1
ν , η′L−y

′
, η`−y

)
= Grq

(
%L

1
ν , %`

1
ν

)
+

+η′L−y
′G ′irq

(
%L

1
ν , %`

1
ν

)
+ η`−yGirq

(
%L

1
ν , %`

1
ν

)
. (3.18)

According to the numerical results of Rodriguez et al. [32] the most important irrelevant
term is the one containing the �nite box size, `, therefore we took into account that only.
This leads to

G̃q(W,L, `) = Gq +
1

lnλ

(
Grq
(
%L

1
ν , %`

1
ν

)
+ η`−yGirq

(
%L

1
ν , %`

1
ν

))
. (3.19)
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The Taylor-expansions of the above functions are

Grq
(
%L

1
ν , %`

1
ν

)
=

nr∑
i=0

i∑
j=0

aij%
iL

j
ν `

i−j
ν (3.20)

Girq
(
%L

1
ν , %`

1
ν

)
=

nir∑
i=0

i∑
j=0

bij%
iL

j
ν `

i−j
ν (3.21)

%(w) = w +

n%∑
i=2

ciw
i η(w) = 1 +

nη∑
i=1

diw
i (3.22)

The advantage of this method is that it provides the MFE, since it is one of the parameters
to �t, Gq. There are also many more data to �t compared to the �xed λ case. Fixed
λ means that at a given system size one can use GMFEs obtained at a certain ` � the
one that leads to the desired λ � , while in this case one can �t to GMFEs obtained at
di�erent values of `. However, these GMFEs are correlated, because they are the result of
coarse graining the same wave-functions with di�erent sizes of boxes. During the �tting
procedure one has to take into account these correlations, see Section 3.2.5. Since the
relevant and irrelevant scaling functions have two variables, %L

1
ν and %`

1
ν , one has to �t a

two-variable function with the number of parameters (nr + 1)(nr + 2)/2 + (nir + 1)(nir +
2)/2+nρ+nη +3. We can see that the number of parameters grows as ∼ n2

r/ir, instead of
as ∼ nr/ir as for �xed λ. This makes the �tting procedure -together with the correlations-
de�nitely much more di�cult.

3.2.4 Finite-size scaling at �xed ` = 1

For �xed ` the scaling law given in Eq. (3.11) has to be considered also. The expansion
of G in Eq. (3.11) reads still as Eq. (3.18). Choosing ` = 1, and considering that in
most cases η and η′ are constant, i.e. nη = 0, the last term can be merged with the
relevant part. Equation (3.11) has the following form for �xed ` = 1 (leaving the ′ of one
remaining irrelevant term):

G̃q(W,L) = Gq +
1

lnL

(
Grq
(
%L

1
ν , %
)

+ ηL−yGirq
(
%L

1
ν , %
))

. (3.23)

The Taylor-expansions of the above functions are

Grq
(
%L

1
ν , %
)

=
nr∑
i=0

i∑
j=0

aij%
iL

j
ν (3.24)

Girq
(
%L

1
ν , %
)

=

nir∑
i=0

i∑
j=0

bij%
iL

j
ν (3.25)

%(w) = w +

n%∑
i=2

ciw
i η(w) = 1 +

nη∑
i=1

diw
i (3.26)

The advantage of this method is that it can be used for irregular lattices or graphs also,
where it is nontrivial how to introduce boxes. Since GMFEs obtained at ` = 1 are
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used only, there are no correlations. On the other hand according to the arguments of
Section 2.3 the smoothing e�ect of coarse graining is missing at ` = 1, therefore the noise
is bigger. Besides there is less data to �t, and one has to �t a two-variable function
with the number of parameters ∼ n2

r/ir, which is the most di�cult from the three cases
considered in this work.

3.2.5 General principles for the FSS �t procedures

In this section we would like to discuss the details of the methods and criteria we used
during the MFSS. In order to �t the scaling law Eq. (3.14), (3.19) or (3.23) we used the
MINUIT library [36]. To �nd the best �t to the data, obtained numerically, the order

of expansion of Gr/irq , % and η must be decided by choosing the values of nr, nir, n% and
nη. Since the relevant operator is more important than the irrelevant one we always
used nrel ≥ nir and n% ≥ nη. To choose the order of the expansion we used basically
three criteria. The �rst criterion we took into account was to check how close the ratio
χ2/(Ndf − 1) approached unity. Let us denote the numerically obtained data points by
yi, the �t function value at the ith parameter value by fi, and the covariance matrix of
the numerically obtained data points by C, which can be computed numerically with a
similar expression to the variance. With these notations χ2 reads as

χ2 =
∑
i,j

(yi − fi)
(
C−1

)
ij

(yj − fj), (3.27)

for more details see Ref. [32]. If the data points are not correlated, C is a diagonal matrix,
and the expression leads to the usual form:

χ2 =
∑
i

(yi − fi)2

σ2
i

. (3.28)

Let us use the notation Ndf for the number of degrees of freedom, namely the number of
data points minus the number of �t parameters. A ratio χ2/(Ndf − 1) ≈ 1 means that
the deviations from the best �t are of the order of the standard deviation (covariance
matrix). The second criterion was that the �t has to be stable against changing the
expansion orders, i.e. adding a few new expansion terms. From the �ts that ful�lled
the �rst two criteria we chose the simplest model, with the lowest expansion orders.
Sometimes we also took into account the error bars, and we chose the model with the
lowest error bar for the most important quantities (Wc, ν, etc...), if similar models ful�lled
the �rst two criteria.

The error bars of the best �t parameters were obtained by a Monte-Carlo simulation.
The data points are results of averaging, so due to the central limit theorem, they have a
Gaussian distribution. Therefore we generated Gaussian random numbers with parame-
ters corresponding the mean of the raw data points and standard deviation (or covariance
matrix) of the mean, and then found the best �t. Repeating this procedure NMC = 100
times provided the distribution of the �t parameters. We chose 95% con�dence level to
obtain the error bars.

Unfortunately for the �xed ` = 1 case the �ts were not so stable against changing the
expansion orders, as the ones for example for �xed λ, because at �xed ` = 1 we had to �t
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much more parameters to the same amount of data. The value of the critical point must
be q-independent, which � contrary to the other two methods � we had to keep also as a
criterion. we had to compare �ts at di�erent values of q and choose the lowest expansion
orders that led to a q-independent critical point, and still had χ2/(Ndf − 1) ratio close
to one. In some cases we also had to leave out the smallest system size(s) to ful�ll the
criteria above.
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Chapter 4

MFSS for the three-dimensional

Anderson models in the conventional

Wigner-Dyson symmetry classes:

orthogonal, unitary and symplectic

class

4.1 Introduction

Our goal in this section is to compute critical quantities of Anderson models in the three
conventional Wigner-Dyson (WD) classes, which were introduced in Section 1.3. To this
end we apply the MFSS toolkit � see Section 3.2 �, developed by Rodriguez, Vasquez,
Slevin and Römer [32, 37], to Anderson models in the WD classes. In these cases there is
no chiral and no particle-hole symmetry. We will investigate the case of diagonal disorder
and nearest-neighbor hopping only, therefore the Hamiltonian reads as

H =
∑
iσ

εic
†
iσciσ −

∑
〈ij〉σσ′

tijσσ′c
†
iσcjσ′ + h.c., (4.1)

where i, j and σ, σ′ stand for site- and spin indexes, εi-s are random on-site energies,
which are random uniformly distributed numbers over the interval

[
−W

2
, W

2

]
, W acts as

disorder. Using uniform distribution is just a convention, other distributions of disorder,
like Gaussian, can be used as well.

4.2 Numerical method, and representations of the sym-

metries

In the orthogonal class time-reversal and spin-rotational symmetries are preserved, the
Hamiltonian is a real symmetric matrix. Since spin does not play a role, we consider a
spinless Anderson model. In the numerical simulations the Hamiltonian is represented
by an N × N real symmetric matrix, where N = L3, and L is the linear system size in
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lattice spacing. The diagonal elements, are uniformly distributed random numbers, the
o�-diagonal elements are zero, except for the case, when i and j are nearest neighbors:

HO
ij =


εi ∈ U

[
−W

2
, W

2

]
, if i = j

−1, if i and j are neighboring sites

0, otherwise

(4.2)

The energy unit is �xed by setting the hopping elements to unity. To avoid surface e�ects,
we use periodic boundary conditions. Even though this case was investigated very deeply
by Rodriguez et al. [32], we consider this symmetry class to verify our numerical method,
and to obtain complete description of all the WD classes.

In the unitary class time-reversal symmetry is broken, the Hamiltonian is a complex
hermitian matrix. We discuss the case when spin-rotational symmetry is present, because
this way we can use spinless fermions again, which keeps the matrix size N×N . However,
one has to store about twice as much data compared to the orthogonal case, because here
every o�-diagonal matrix element is complex. Finding an eigenvalue and an eigenvector
takes more time also. For the numerical simulations we follow the method described by
Slevin and Ohtsuki [38]. Let us consider a magnetic �eld pointing in the y direction with
�ux Φ, measured in units of the �ux quantum, h

e
. Its e�ect can be represented by a unity

phase factor for the hopping elements of the Hamiltonian matrix. The upper triangular
of the Hamiltonian reads as

HU
i≤j =


εi ∈ U

[
−W

2
, W

2

]
, if i = j

−1, if i and j are neighboring sites in the x or y direction

−ei2πΦx, if i and j are neighboring sites in the z direction

0, otherwise

(4.3)

Complex hermiticity de�nes the o�-diagonal elements in the lower triangular part, j < i.
Periodic boundary conditions and �ux quantization force a restriction for the magnetic
�ux, namely that Φ ·L must be an integer. In the thermodynamic limit, arbitrarily small
magnetic �eld drives the system from the orthogonal to the unitary class. However, in
a �nite system the relationship between the system size, L, and the magnetic length,
LH = 1√

2πΦ
matters. In the case of weak magnetic �eld, L � LH , the system belongs

to the orthogonal class, in the case of strong magnetic �eld, L � LH , it belongs to the
unitary class. Since we use system sizes that are multiples of 10 lattice spacings, see
Table 4.1, we chose Φ = 1

5
. This leads to LH ≈ 0.892, therefore this choice clearly ful�lls

the two conditions above.
In the symplectic class time-reversal symmetry is present, and spin-rotational sym-

metry is broken, therefore the Hamiltonian is a quaternion hermitian matrix. For the nu-
merical simulations we followed the method described by Asada, Slevin and Ohtsuki [39].
Since in this case we have to deal with the spin index also, the Hamiltonian is a 2N ×2N
complex hermitian matrix. Diagonal elements corresponding to the ith site and hopping
elements between sites i and j are 2 × 2 matrices because of the spin indexes, having a
form

εi =

(
εi 0
0 εi

)
tij =

(
eiαij cosβij eiγij sinβij

−e−iγij sinβij e−iαij cosβij

)
, (4.4)
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system size (L) number of samples
20 15000
30 15000
40 15000
50 15000
60 10000
70 7500
80 5000
90 4000
100 3500

Table 4.1: System sizes and number of samples for the simulation for each WD symmetry
class.

where εi is still a uniformly distributed random on-site energy from the interval
[
−W

2
, W

2

]
,

αij, βij and γij were chosen to form an SU(2)-invariant parametrization, leading to the
so-called SU(2) model: αij and γij are uniform random variables from the interval [0, 2π],
and β has a probability density function p(β)dβ = sin(2β)dβ in the range

[
0, π

2

]
. The

upper triangular of the Hamiltonian has the following form:

HS
i≤j =


εi, if i = j

tij, if i and j are neighboring sites

0, otherwise

(4.5)

The o�-diagonal elements in the lower triangular are de�ned following complex hermitic-
ity. To store the Hamiltonian requires about eight times more space compared to the
orthogonal case, because here every o�-diagonal element contains four complex numbers.
Finding an eigenvalue is much slower than for the unitary case, mainly because the linear
size of the matrix is twice as large.

MFSS deals with the eigenvectors of the Hamiltonian, which is a large sparse matrix.
Recent high precision calculations [32] use Jacobi-Davidson iteration with incomplete
LU preconditioning, therefore we decided to use this combination. For preconditioning
ILUPACK [40] was used, for the JD iteration the PRIMME [41] package was used. Since
the metal-insulator transition occurs at the band center [5] (E = 0) at disorderWO

c ≈ 16.5
for the orthogonal, at WU

c ≈ 18.3 for the unitary (depending on the strength of magnetic
�eld), at W S

c ≈ 20 for the symplectic class (for our parameters), most works study the
vicinity of these points. To have the best comparison, we analyzed this regime also,
therefore about 20 disorder values were taken from the range 15 ≤ W ≤ 18 for the
orthogonal class, 23 disorder values were taken from the interval 17 ≤ W ≤ 20 for the
unitary class, and 20 disorder values were taken from the interval 19.4 ≤ W ≤ 20.5 for
the symplectic class. System sizes were taken from the range L = 20..100, the number of
samples are listed in Table 4.1.

We considered only one wave-function per realization, the one with energy closest to
zero in order to avoid correlations between wave-functions of the same system [32]. From
the eigenvectors every GMFE is computable. Since only Aq and Tq appear as a scaling
function in Eqs.(3.10a)�(3.10d), we used only the α̃q and D̃q GMFEs for the MFSS. We
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investigated the range −1 ≤ q ≤ 2, because GMFEs behave the best in this regime. As
written in the end of Section 2.3, if q is a negative number with large absolute value, the
smallest, and � because of the numerical errors � the most uncertain wave-function values
dominate the sums of Eq. 2.6, which enhance noise. If q is much larger than 1, numerical
uncertainties also increase in Eq. 2.6, because of the qth power in the formulas.

4.3 Results of the MFSS at �xed λ = 0.1

The typical behavior of the GMFEs is presented in Figure 4.1. In all cases there is a
clear sign of phase transition: With increasing system size the GMFEs tend to opposite
direction on two sides of their crossing point. Note that there is no well-de�ned crossing
point due to the irrelevant term in Eq. (3.14). Applying the MFSS method described in
Section 3.2.2 with the principles of Section 3.2.5 to the raw data leads to a well �tting
function, see the red lines on Figure 4.1. After the subtraction of the irrelevant part from
the raw data, plotting it as a function of %L

1
ν results a scaling function also, see the insets

of Figure 4.1.
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Figure 4.1: Dots are the raw data for di�erent GMFEs in the conventional WD symmetry
classes. Red line is the best �t obtained by MFSS. Insets are scaling functions on a log-log
scale, after the irrelevant term was subtracted. Error bars are shown only on the large
�gures, in order not to overcomplicate the insets.

The MFSS provided us the critical point, Wc, the critical exponent, ν, and the irrel-
evant exponent, y at every investigated values of q. The numerical results are listed in
Table 4.2�4.4, and visible in Figure 4.2.

The parameters of the critical point correspond to the system itself, therefore it should
not depend on the quantity we used to �nd it. In other words it should be independent
of q, averaging method and the GMFE we used. From Figure 4.2 it is clear that this
requirement is ful�lled very nicely. There is a small deviation for the irrelevant exponent,
y, obtained from αtyp at q = −1 and q = −0.75 in the unitary and symplectic class, but
since y describes the subleading part, it is very hard to determine, and we cannot exclude
some sort of underestimation of the error bar of this exponent. Another interesting
feature of the results is that the error bars are getting bigger as q grows above 1. As
written in Section 2.3, large q enhances the errors through the qth power in Eq. (2.6),
leading to bigger error bars. A similar e�ect can be seen around q ≈ −1, where the
relatively less precise small wave-function values dominate the sums in Eq. (2.6), which
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Figure 4.2: Critical parameters of the Anderson models in WD classes obtained by MFSS
at �xed λ = 0.1. First row corresponds to the orthogonal class, second row corresponds to
the unitary class, and third row corresponds to the symplectic class. The corresponding
numerical values are listed in Table 4.2�4.4 alongside with the parameters of the �t
method.

can also contribute to the deviation of y obtained from α̃typ in this regime. These two
e�ects together lead to our investigated interval −1 ≤ q ≤ 2, where GMFEs behave the
best. The results are strongly correlated, since they were obtained from the same wave-
functions, therefore they cannot be averaged. We are going to choose a typical point from
the dataset to describe the values of the critical parameters.

In the orthogonal class the critical parameters obtained from α̃ens0.6 are the following:
WOλ
c = 16.524 (16.511..16.538), νOλ = 1.598 (1.576..1.616) and yOλ = 1.763 (1.679..1.842).

These values are in excellent agreement with the most recent high precision result of Ro-
driguez et al. [32], WOλ

c Rod = 16.517 (16.498..16.533), νOλRod = 1.612 (1.593..1.631) and
yOλRod = 1.67 (1.53..1.80), obtained from α̃0 with the same method (�xed λ). This agree-
ment veri�es our numerics and �t method, and makes it reliable for the other two uni-
versality classes.

In the unitary class we selected the critical parameters obtained from α̃0: W
Uλ
c =

18.373 (18.358..18.386), νUλ = 1.424 (1.407..1.436) and yUλ = 1.636 (1.521..1.763). Our
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values match with the results of Slevin and Ohtsuki [38], WU
c Sle = 18.375 (18.358..18.392)

and νUSle = 1.43 (1.37..1.49), obtained by transfer matrix method (they did not published
the value of the irrelevant exponent). They used magnetic �ux Φ = 1

4
, while we used

Φ = 1
5
, and according to Dröse et al. [42], WU

c depends on the applied magnetic �ux.
However, in Figure2. of Ref. [42] it can be seen that the critical points at Φ = 1

4
and

Φ = 1
5
are very close to each other, hence the agreement between our critical point and

the result of Slevin and Ohtsuki.
For the symplectic class we chose the critical parameters obtained from D̃typ

−0.25: W
Sλ
c =

19.838 (19.812..19.869), νSλ = 1.369 (1.305..1.343) and ySλ = 1.508 (1.309..1.743). These
results agree more or less with the values of Asada, Slevin and Ohtsuki [39], W S

c Asa =
20.001 (19.984..20.018), νSAsa = 1.375 (1.359..1.391) and ySAsa = 2.5 (1.7..3.3), obtained
by transfer matrix method. However, the di�erence does not seem to be very large, our
critical point is signi�cantly di�erent, even though we used exactly the same model. Due
to bigger computational resources we could investigate much bigger system sizes than
they did, therefore it possible that they underestimated the role of the irrelevant scaling,
resulting a little bit higher critical point.

The critical points are higher in the unitary and in the symplectic class, than in the
orthogonal class, showing that broken time-reversal or spin-rotational symmetry requires
more disorder to localize wave-functions. Since the value of the critical point in the unitary
and symplectic class can be in�uenced by the applied magnetic �ux and the strength of
the spin-orbit coupling, the relationship between WUλ

c and W Sλ
c probably depends on

these two parameters. However, because of their close value of the critical exponents,
νUλ and νSλ are the same within our con�dence interval, the following relation appears:
νOλ > νUλ ≥ νSλ. We would like to note that a bit di�erent values for these exponents
� obtained at slightly di�erent parameters � also appear in Refs. [38] and [39], which are
signi�cantly di�erent from each other, conforming the relation νU > νS. Similar is the
situation for the irrelevant exponent, namely that they are the same within error bar,
but yOλ seems to be slightly higher than yUλ, which is a bit higher than ySλ.

28



q exp WOλ
c νOλ yOλ Ndf χ2 nrnirn%nη

−1

αens 16.547 (16.520..16.572) 1.617 (1.579..1.670) 1.897 (1.758..2.052) 170 182 4 3 1 0

αtyp 16.533 (16.520..16.549) 1.606 (1.587..1.624) 1.833 (1.765..1.901) 172 187 3 2 1 0

Dens 16.535 (16.517..16.551) 1.609 (1.582..1.639) 1.832 (1.744..1.917) 171 183 4 2 1 0

Dtyp 16.526 (16.513..16.538) 1.600 (1.583..1.617) 1.795 (1.731..1.856) 171 187 4 2 1 0

−0.75

αens 16.537 (16.520..16.553) 1.609 (1.576..1.646) 1.844 (1.745..1.964) 170 179 4 3 1 0

αtyp 16.527 (16.512..16.542) 1.602 (1.580..1.620) 1.810 (1.744..1.881) 171 187 4 2 1 0

Dens 16.529 (16.511..16.544) 1.598 (1.573..1.621) 1.797 (1.714..1.881) 171 184 4 2 1 0

Dtyp 16.525 (16.508..16.537) 1.596 (1.577..1.615) 1.783 (1.704..1.856) 171 186 4 2 1 0

−0.5

αens 16.529 (16.514..16.546) 1.603 (1.582..1.627) 1.802 (1.736..1.878) 171 183 4 2 1 0

αtyp 16.525 (16.512..16.540) 1.599 (1.585..1.618) 1.791 (1.728..1.872) 171 188 4 2 1 0

Dens 16.526 (16.509..16.538) 1.595 (1.576..1.617) 1.767 (1.660..1.853) 171 185 4 2 1 0

Dtyp 16.525 (16.511..16.539) 1.592 (1.574..1.609) 1.771 (1.694..1.835) 171 185 4 2 1 0

−0.25

αens 16.525 (16.512..16.538) 1.593 (1.574..1.613) 1.765 (1.692..1.832) 171 185 4 2 1 0

αtyp 16.524 (16.511..16.539) 1.592 (1.574..1.611) 1.765 (1.685..1.850) 171 186 4 2 1 0

Dens 16.525 (16.514..16.537) 1.589 (1.574..1.610) 1.745 (1.668..1.829) 171 184 4 2 1 0

Dtyp 16.523 (16.509..16.540) 1.591 (1.569..1.611) 1.741 (1.664..1.848) 171 184 4 2 1 0

0 αens/typ 16.523 (16.504..16.540) 1.591 (1.570..1.609) 1.712 (1.599..1.824) 171 181 4 2 1 0

0.1
Dens 16.524 (16.505..16.540) 1.590 (1.569..1.611) 1.706 (1.601..1.820) 171 180 4 2 1 0

Dtyp 16.521 (16.506..16.539) 1.589 (1.566..1.616) 1.688 (1.593..1.796) 171 180 4 2 1 0

0.25

αens 16.520 (16.500..16.541) 1.600 (1.568..1.632) 1.599 (1.460..1.755) 171 170 4 2 1 0

αtyp 16.523 (16.499..16.545) 1.598 (1.566..1.627) 1.605 (1.438..1.778) 171 171 4 2 1 0

Dens 16.523 (16.506..16.542) 1.590 (1.573..1.613) 1.680 (1.554..1.810) 171 177 4 2 1 0

Dtyp 16.524 (16.501..16.543) 1.589 (1.558..1.620) 1.685 (1.537..1.834) 171 177 4 2 1 0

0.5
Dens 16.522 (16.502..16.540) 1.597 (1.568..1.623) 1.636 (1.503..1.773) 171 173 4 2 1 0

Dtyp 16.523 (16.504..16.540) 1.595 (1.572..1.625) 1.637 (1.500..1.778) 171 174 4 2 1 0

0.6
αens 16.524 (16.511..16.538) 1.598 (1.576..1.616) 1.763 (1.679..1.842) 172 176 3 2 1 0

αtyp 16.526 (16.511..16.538) 1.605 (1.590..1.626) 1.758 (1.650..1.855) 172 178 3 2 1 0

0.75

αens 16.522 (16.501..16.542) 1.599 (1.572..1.618) 1.642 (1.521..1.798) 171 170 4 2 1 0

αtyp 16.523 (16.502..16.547) 1.600 (1.572..1.625) 1.648 (1.509..1.823) 171 172 4 2 1 0

Dens 16.520 (16.500..16.544) 1.600 (1.568..1.630) 1.579 (1.438..1.741) 171 175 4 2 1 0

Dtyp 16.524 (16.502..16.547) 1.598 (1.572..1.627) 1.600 (1.442..1.766) 171 176 4 2 1 0

0.9
Dens 16.524 (16.500..16.551) 1.602 (1.567..1.640) 1.578 (1.440..1.780) 171 178 4 2 1 0

Dtyp 16.526 (16.500..16.551) 1.600 (1.564..1.635) 1.587 (1.402..1.809) 171 179 4 2 1 0

1 αens/typ 16.525 (16.495..16.551) 1.604 (1.569..1.642) 1.569 (1.362..1.808) 171 180 4 2 1 0

1.25

αens 16.533 (16.470..16.570) 1.617 (1.565..1.685) 1.564 (1.173..1.897) 172 187 3 2 1 0

αtyp 16.522 (16.485..16.554) 1.619 (1.568..1.667) 1.488 (1.263..1.748) 171 178 4 2 1 0

Dens 16.527 (16.483..16.562) 1.610 (1.564..1.661) 1.528 (1.269..1.771) 171 185 4 2 1 0

Dtyp 16.524 (16.494..16.551) 1.608 (1.555..1.654) 1.533 (1.324..1.745) 171 180 4 2 1 0

1.5

αens 16.542 (16.485..16.597) 1.635 (1.542..1.737) 1.604 (1.068..2.167) 171 184 4 2 1 0

αtyp 16.521 (16.478..16.568) 1.629 (1.579..1.685) 1.435 (1.165..1.751) 171 171 4 2 1 0

Dens 16.532 (16.481..16.570) 1.612 (1.573..1.664) 1.555 (1.210..1.901) 172 186 3 2 1 0

Dtyp 16.526 (16.483..16.564) 1.621 (1.582..1.676) 1.516 (1.271..1.825) 172 179 3 2 1 0

1.75

αens 16.561 (16.454..16.614) 1.631 (1.529..1.774) 1.772 (0.924..2.573) 171 181 4 2 1 0

αtyp 16.526 (16.463..16.583) 1.642 (1.580..1.720) 1.409 (1.051..1.835) 171 166 3 2 2 0

Dens 16.531 (16.488..16.576) 1.611 (1.546..1.671) 1.514 (1.150..1.916) 172 186 3 2 1 0

Dtyp 16.520 (16.480..16.558) 1.628 (1.582..1.685) 1.454 (1.198..1.688) 172 174 3 2 1 0

2

αens 16.574 (16.372..16.624) 1.634 (1.535..1.883) 1.762 (0.567..3.029) 171 181 4 2 1 0

αtyp 16.518 (16.463..16.571) 1.643 (1.582..1.695) 1.363 (1.081..1.768) 171 164 4 2 1 0

Dens 16.545 (16.500..16.592) 1.606 (1.548..1.686) 1.648 (1.212..2.273) 171 182 4 2 1 0

Dtyp 16.518 (16.473..16.551) 1.629 (1.573..1.682) 1.420 (1.167..1.696) 171 171 4 2 1 0

Table 4.2: Resulting parameters of the MFSS at �xed λ = 0.1 for the orthogonal class
and parameters of the �t method. The results are visible in Figure 4.2.
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q exp WUλ
c νUλ yUλ Ndf χ2 nrnirn%nη

−1

αens 18.378 (18.348..18.398) 1.460 (1.431..1.494) 1.473 (1.282..1.591) 198 201 4 2 1 0

αtyp 18.348 (18.334..18.361) 1.448 (1.433..1.461) 1.354 (1.290..1.427) 198 212 4 2 1 0

Dens 18.372 (18.359..18.384) 1.439 (1.413..1.459) 1.541 (1.433..1.654) 198 197 4 2 1 0

Dtyp 18.362 (18.350..18.375) 1.433 (1.419..1.449) 1.491 (1.409..1.578) 198 204 4 2 1 0

−0.75

αens 18.370 (18.353..18.387) 1.444 (1.419..1.477) 1.501 (1.371..1.619) 198 198 4 2 1 0

αtyp 18.356 (18.342..18.368) 1.439 (1.423..1.457) 1.433 (1.356..1.508) 198 211 4 2 1 0

Dens 18.371 (18.356..18.386) 1.433 (1.416..1.452) 1.573 (1.460..1.679) 198 195 4 2 1 0

Dtyp 18.366 (18.355..18.379) 1.430 (1.415..1.444) 1.543 (1.457..1.639) 198 200 4 2 1 0

−0.5

αens 18.369 (18.355..18.386) 1.436 (1.415..1.457) 1.548 (1.440..1.681) 198 196 4 2 1 0

αtyp 18.366 (18.356..18.378) 1.432 (1.418..1.447) 1.531 (1.464..1.614) 198 206 4 2 1 0

Dens 18.371 (18.360..18.382) 1.426 (1.412..1.443) 1.595 (1.504..1.692) 198 192 4 2 1 0

Dtyp 18.369 (18.358..18.378) 1.426 (1.408..1.443) 1.579 (1.496..1.656) 198 195 4 2 1 0

−0.25

αens 18.370 (18.358..18.383) 1.427 (1.410..1.444) 1.596 (1.479..1.699) 198 192 4 2 1 0

αtyp 18.370 (18.357..18.383) 1.428 (1.411..1.443) 1.592 (1.497..1.679) 198 196 4 2 1 0

Dens 18.371 (18.358..18.383) 1.425 (1.410..1.442) 1.609 (1.507..1.722) 198 187 4 2 1 0

Dtyp 18.372 (18.360..18.383) 1.424 (1.409..1.440) 1.613 (1.516..1.726) 198 188 4 2 1 0

0 αens/typ 18.373 (18.358..18.386) 1.424 (1.407..1.436) 1.633 (1.516..1.751) 198 179 4 2 1 0

0.1
Dens 18.374 (18.361..18.388) 1.426 (1.409..1.445) 1.636 (1.521..1.763) 198 176 4 2 1 0

Dtyp 18.374 (18.362..18.387) 1.423 (1.407..1.440) 1.642 (1.514..1.774) 198 175 4 2 1 0

0.25

αens 18.375 (18.358..18.391) 1.427 (1.408..1.449) 1.639 (1.496..1.776) 198 159 4 2 1 0

αtyp 18.377 (18.361..18.393) 1.425 (1.400..1.451) 1.653 (1.495..1.824) 198 159 4 2 1 0

Dens 18.374 (18.361..18.387) 1.421 (1.404..1.438) 1.633 (1.520..1.768) 198 170 4 2 1 0

Dtyp 18.375 (18.362..18.387) 1.423 (1.408..1.441) 1.649 (1.527..1.764) 198 169 4 2 1 0

0.5
Dens 18.376 (18.360..18.391) 1.424 (1.406..1.441) 1.640 (1.476..1.777) 198 164 4 2 1 0

Dtyp 18.375 (18.360..18.393) 1.425 (1.405..1.447) 1.635 (1.468..1.821) 198 164 4 2 1 0

0.6
αens 18.375 (18.362..18.388) 1.441 (1.417..1.462) 1.680 (1.579..1.796) 197 204 4 3 1 0

αtyp 18.373 (18.360..18.385) 1.442 (1.415..1.467) 1.660 (1.527..1.763) 197 215 4 3 1 0

0.75

αens 18.374 (18.362..18.387) 1.429 (1.411..1.448) 1.631 (1.510..1.749) 198 162 4 2 1 0

αtyp 18.376 (18.363..18.390) 1.426 (1.407..1.448) 1.650 (1.521..1.807) 198 164 4 2 1 0

Dens 18.377 (18.362..18.390) 1.421 (1.398..1.446) 1.637 (1.497..1.785) 198 169 4 2 1 0

Dtyp 18.377 (18.360..18.395) 1.421 (1.397..1.445) 1.641 (1.485..1.804) 198 171 4 2 1 0

0.9
Dens 18.375 (18.355..18.392) 1.425 (1.397..1.450) 1.610 (1.431..1.795) 198 174 4 2 1 0

Dtyp 18.378 (18.360..18.393) 1.422 (1.394..1.447) 1.634 (1.471..1.799) 198 176 4 2 1 0

1 αens/typ 18.376 (18.352..18.396) 1.422 (1.396..1.447) 1.608 (1.372..1.825) 198 177 4 2 1 0

1.25

αens 18.372 (18.346..18.396) 1.428 (1.383..1.473) 1.535 (1.275..1.797) 198 168 4 2 1 0

αtyp 18.370 (18.342..18.393) 1.430 (1.384..1.468) 1.497 (1.279..1.739) 198 166 4 2 1 0

Dens 18.376 (18.351..18.399) 1.425 (1.389..1.463) 1.577 (1.366..1.820) 198 173 4 2 1 0

Dtyp 18.374 (18.354..18.392) 1.428 (1.396..1.458) 1.547 (1.365..1.723) 198 170 4 2 1 0

1.5

αens 18.365 (18.322..18.399) 1.433 (1.363..1.500) 1.452 (1.085..1.781) 198 165 4 2 1 0

αtyp 18.360 (18.331..18.384) 1.437 (1.393..1.480) 1.374 (1.150..1.599) 198 165 4 2 1 0

Dens 18.372 (18.343..18.394) 1.424 (1.388..1.469) 1.542 (1.311..1.761) 198 165 4 2 1 0

Dtyp 18.372 (18.344..18.395) 1.430 (1.403..1.460) 1.511 (1.274..1.714) 198 165 4 2 1 0

1.75

αens 18.359 (18.293..18.420) 1.448 (1.375..1.534) 1.430 (0.962..2.151) 198 171 4 2 1 0

αtyp 18.354 (18.308..18.391) 1.439 (1.373..1.499) 1.303 (1.029..1.590) 197 171 4 3 1 0

Dens 18.366 (18.330..18.403) 1.426 (1.380..1.470) 1.482 (1.124..1.906) 198 162 4 2 1 0

Dtyp 18.366 (18.338..18.394) 1.435 (1.398..1.483) 1.436 (1.212..1.697) 198 163 4 2 1 0

2

αens 18.355 (18.271..18.407) 1.482 (1.382..1.565) 1.431 (0.756..2.069) 198 175 4 2 1 0

αtyp 18.352 (18.297..18.389) 1.439 (1.371..1.494) 1.264 (0.947..1.530) 197 176 4 3 1 0

Dens 18.364 (18.322..18.393) 1.435 (1.379..1.495) 1.455 (1.052..1.788) 198 163 4 2 1 0

Dtyp 18.365 (18.337..18.391) 1.434 (1.387..1.478) 1.421 (1.152..1.644) 198 164 4 2 1 0

Table 4.3: Resulting parameters of the MFSS at �xed λ = 0.1 for the unitary class and
parameters of the �t method. The results are visible in Figure 4.2.
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q exp WSλ
c νSλ ySλ Ndf χ2 nrnirn%nη

−1

αens 19.818 (19.709..19.899) 1.409 (1.184..1.674) 1.153 (0.650..1.693) 172 185 3 2 1 0

αtyp 19.767 (19.717..19.806) 1.440 (1.347..1.555) 0.960 (0.813..1.103) 172 170 3 2 1 0

Dens 19.821 (19.771..19.858) 1.371 (1.273..1.474) 1.285 (1.029..1.558) 171 169 4 2 1 0

Dtyp 19.813 (19.781..19.844) 1.383 (1.301..1.470) 1.253 (1.112..1.427) 171 160 4 2 1 0

−0.75

αens 19.817 (19.765..19.861) 1.370 (1.257..1.491) 1.217 (0.924..1.531) 172 174 3 2 1 0

αtyp 19.796 (19.760..19.833) 1.415 (1.339..1.502) 1.136 (1.008..1.295) 172 166 3 2 1 0

Dens 19.831 (19.797..19.863) 1.366 (1.289..1.447) 1.387 (1.175..1.610) 172 162 3 2 1 0

Dtyp 19.824 (19.795..19.852) 1.385 (1.328..1.462) 1.352 (1.195..1.521) 171 157 4 2 1 0

−0.5

αens 19.827 (19.790..19.858) 1.369 (1.272..1.459) 1.342 (1.138..1.548) 172 163 3 2 1 0

αtyp 19.818 (19.789..19.843) 1.389 (1.327..1.472) 1.302 (1.165..1.466) 171 160 4 2 1 0

Dens 19.836 (19.796..19.866) 1.363 (1.280..1.426) 1.454 (1.178..1.729) 171 155 4 2 1 0

Dtyp 19.831 (19.806..19.855) 1.376 (1.318..1.449) 1.431 (1.249..1.596) 171 154 4 2 1 0

−0.25

αens 19.837 (19.806..19.865) 1.365 (1.290..1.437) 1.476 (1.240..1.704) 171 154 4 2 1 0

αtyp 19.835 (19.808..19.866) 1.376 (1.304..1.445) 1.459 (1.264..1.687) 171 154 4 2 1 0

Dens 19.842 (19.817..19.865) 1.366 (1.294..1.461) 1.535 (1.364..1.772) 171 151 4 2 1 0

Dtyp 19.838 (19.812..19.869) 1.369 (1.305..1.430) 1.508 (1.309..1.743) 171 151 4 2 1 0

0 αens/typ 19.845 (19.812..19.873) 1.364 (1.306..1.435) 1.580 (1.297..1.832) 171 149 4 2 1 0

0.1
Dens 19.845 (19.816..19.869) 1.369 (1.299..1.458) 1.577 (1.341..1.797) 171 149 4 2 1 0

Dtyp 19.847 (19.805..19.875) 1.369 (1.285..1.475) 1.598 (1.277..1.876) 171 148 4 2 1 0

0.25

αens 19.849 (19.812..19.882) 1.388 (1.293..1.471) 1.630 (1.290..2.017) 171 150 4 2 1 0

αtyp 19.848 (19.808..19.877) 1.375 (1.275..1.473) 1.626 (1.276..1.952) 171 146 4 2 1 0

Dens 19.846 (19.813..19.881) 1.376 (1.300..1.458) 1.603 (1.314..1.962) 171 149 4 2 1 0

Dtyp 19.846 (19.817..19.872) 1.367 (1.283..1.465) 1.588 (1.306..1.899) 171 147 4 2 1 0

0.5
Dens 19.844 (19.791..19.880) 1.383 (1.310..1.468) 1.579 (1.202..1.910) 171 149 4 2 1 0

Dtyp 19.844 (19.807..19.881) 1.369 (1.281..1.453) 1.580 (1.249..1.993) 171 147 4 2 1 0

0.6
αens 19.850 (19.824..19.872) 1.358 (1.294..1.417) 1.651 (1.412..1.874) 171 155 4 2 1 0

αtyp 19.852 (19.829..19.875) 1.352 (1.272..1.433) 1.676 (1.459..1.917) 171 154 4 2 1 0

0.75

αens 19.848 (19.811..19.877) 1.376 (1.301..1.459) 1.619 (1.337..1.874) 171 149 4 2 1 0

αtyp 19.846 (19.807..19.879) 1.366 (1.266..1.447) 1.604 (1.286..1.949) 171 147 4 2 1 0

Dens 19.850 (19.812..19.887) 1.383 (1.287..1.472) 1.621 (1.297..2.010) 171 150 4 2 1 0

Dtyp 19.843 (19.795..19.881) 1.381 (1.282..1.483) 1.564 (1.188..1.988) 171 148 4 2 1 0

0.9
Dens 19.839 (19.772..19.880) 1.394 (1.275..1.484) 1.523 (1.060..1.904) 171 150 4 2 1 0

Dtyp 19.842 (19.782..19.876) 1.385 (1.290..1.492) 1.550 (1.110..1.953) 171 149 4 2 1 0

1 αens/typ 19.836 (19.790..19.880) 1.376 (1.248..1.499) 1.475 (1.100..1.891) 171 150 4 2 1 0

1.25

αens 19.825 (19.724..19.887) 1.383 (1.188..1.549) 1.417 (0.810..2.082) 171 151 4 2 1 0

αtyp 19.843 (19.795..19.888) 1.411 (1.254..1.578) 1.501 (1.097..1.901) 171 155 4 2 1 0

Dens 19.828 (19.756..19.885) 1.400 (1.238..1.566) 1.407 (0.931..1.975) 171 151 4 2 1 0

Dtyp 19.833 (19.757..19.883) 1.412 (1.223..1.519) 1.456 (0.944..1.889) 171 153 4 2 1 0

1.5

αens 19.786 (19.597..19.893) 1.358 (0.914..1.748) 1.174 (0.331..2.282) 171 151 4 2 1 0

αtyp 19.833 (19.765..19.890) 1.418 (1.281..1.568) 1.409 (0.962..1.871) 171 158 4 2 1 0

Dens 19.819 (19.732..19.872) 1.400 (1.197..1.561) 1.356 (0.762..1.934) 171 151 4 2 1 0

Dtyp 19.831 (19.745..19.887) 1.411 (1.267..1.550) 1.424 (0.890..1.918) 171 155 4 2 1 0

1.75

αens 19.756 (19.610..19.905) 1.428 (0.766..1.984) 1.054 (0.406..2.252) 170 151 4 2 2 0

αtyp 19.826 (19.733..19.900) 1.432 (1.284..1.582) 1.341 (0.808..1.947) 172 161 3 2 1 0

Dens 19.778 (19.602..19.872) 1.514 (1.084..1.886) 1.146 (0.481..1.848) 170 150 4 2 2 0

Dtyp 19.829 (19.736..19.884) 1.407 (1.266..1.562) 1.388 (0.867..1.891) 172 158 3 2 1 0

2

αens 19.752 (19.568..19.898) 1.195 (0.591..2.195) 1.029 (0.223..2.544) 171 150 4 2 1 0

αtyp 19.836 (19.760..19.912) 1.414 (1.247..1.614) 1.382 (0.896..2.041) 172 161 3 2 1 0

Dens 19.769 (19.631..19.872) 1.488 (1.022..1.746) 1.091 (0.526..1.932) 170 150 4 2 2 0

Dtyp 19.829 (19.763..19.893) 1.426 (1.258..1.570) 1.378 (0.947..1.896) 172 159 3 2 1 0

Table 4.4: Resulting parameters of the MFSS at �xed λ = 0.1 for the symplectic class
and parameters of the �t method. The results are visible in Figure 4.2.
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4.4 Results of the MFSS at varying λ

As mentioned in Section 2.3, GMFEs obtained by typical averaging are equal with
ensemble-averaged GMFEs only in a range of q, q− < q < q+. Since we intend to
compute the MFEs also, we restrict our analysis to ensemble averaged GMFEs, and drop
the label ens from the notations.
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Figure 4.3: Critical parameters of the Anderson models in WD classes obtained by
twovariable MFSS with varying λ. First row corresponds to the orthogonal class, sec-
ond row corresponds to the unitary class, and third row corresponds to the symplectic
class. The corresponding numerical values are listed in Table 4.6�4.8 alongside with the
parameters of the �t method.

We �t the formula Eq. (3.19) to the raw data. To do that, we have to choose a range
of box size `, which is used for the MFSS. We always use the widest range of ` that results
in convergence, χ2/(Ndf − 1) ≈ 1. We �nd that for our dataset for di�erent values of q
for αq or Dq di�erent ranges of ` were the best. We use minimal box sizes `min = 2 or
`min = 3 and maximal box sizes corresponding to λmax = 0.1 or λmax = 0.066. At α0.4

and α0.6 the �tting method sometimes su�ered from convergence troubles and resulted
in large error bars, because these points are close to the special case of q = 0.5 where by
de�nition α0.5 = d. Artifacts from this regime were also reported in Ref. [32], therefore
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we decided not to take into account these points for α. We tried several combinations
of `min, λmax and expansion orders in the symplectic class for α1.75 and α2, but none of
them resulted in stable �t parameters. Therefore values computed from these points are
also missing from our �nal results, which are listed in Tables 4.6�4.8, and visualized in
Figure 4.3.

The results are independent of q and the GMFE we used, similar to the �xed λmethod.
In Section 4.3 we already saw that according to the arguments of Section 2.3 error bars
get bigger, if q grows above 1. This phenomenon is more ampli�ed here, especially for
values coming from �ts for αq, but larger error bars on values corresponding to Dq are
present on a moderate level also. Since Figure 8 of Ref. [32] shows results for this regime
only for values corresponding to ∆q, which is a linear transform of Dq, we can compare
their results only to ours corresponding to Dq. One can see that our error bars are similar,
even though there are di�erences probably due to the fact that they used system sizes
up to L = 120, which was not possible for us, mainly because of the long runtime and
large memory usage for the symplectic model. They also use `min = 1 and `min = 2,
while `min = 1 was never suitable for our dataset. We do not know the precise origin
of this behavior, but we have a few possible explanations. We experience that larger
system sizes allow a wider range of ` to be used. We have smaller system sizes than
Ref. [32], and fewer samples for the largest systems sizes. Noise also gets bigger as `
decreases, because of the smoothing e�ect of boxing described in Section 3.2.5, which can
also explain partly our experience. Another important di�erence is that in Eq. (37) of
Ref. [32] the authors use an expression in the expansion of the scaling function, which is
proportional to the square of the irrelevant term, (η`−y)2. According to our experience
the inclusion of this term produced no improvement in the scaling analysis, therefore we
used the scaling function described in Eq. 3.19. Such a di�erence might be explained
again by our di�erent dataset.

As written in Section 4.3, the results for di�erent values of q are strongly correlated,
therefore we chose one of them with the lowest error bars that represents well the results
for that universality class. The critical parameters listed in Table 4.5 are in a very nice
agreement with our previous results for the �xed λ = 0.1 method, see Section 4.3, and
also with the results of Refs. [32][38][39]. Comparing the critical parameters for the
orthogonal case with the results of Rodriguez et al. [32] obtained by the same method,
WO
c Rod = 16.530 (16.524..16.536), νORod = 1.590 (1.579..1.602), we see a nice agreement

again. Moreover these results are more accurate with this method compared to the �xed
λ method, leading to (for yO and yU only almost) signi�cantly di�erent critical exponents
and irrelevant exponents for the di�erent WD classes, νO > νU > νS and yO ≥ yU > yS.

class exp Wc ν y
ort α̃0 16.524 (16.513..16.534) 1.595 (1.582..1.609) 1.749 (1.697..1.786)

uni D̃0.1 18.371 (18.363..18.380) 1.437 (1.426..1.448) 1.651 (1.601..1.707)
sym α̃0 19.836 (19.831..19.841) 1.383 (1.359..1.412) 1.577 (1.559..1.595)

Table 4.5: Critical parameters of the Anderson models in the WD symmetry classes
obtained by two-variable MFSS with varying λ.
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q exp Wc ν y Ndf χ2 nrnirn%nη

−1
α 16.548 (16.511..16.588) 1.581 (1.526..1.639) 1.894 (1.692..2.092) 239 246 4 1 1 0

D 16.533 (16.512..16.550) 1.584 (1.558..1.612) 1.812 (1.731..1.903) 241 260 3 2 1 0

−0.75
α 16.533 (16.508..16.562) 1.584 (1.555..1.625) 1.815 (1.691..1.951) 241 262 3 2 1 0

D 16.525 (16.512..16.541) 1.580 (1.560..1.600) 1.777 (1.716..1.854) 236 246 4 2 1 0

−0.5
α 16.527 (16.511..16.543) 1.594 (1.574..1.613) 1.791 (1.717..1.865) 271 274 3 2 1 0

D 16.524 (16.511..16.535) 1.574 (1.558..1.592) 1.766 (1.707..1.821) 236 256 4 2 1 0

−0.25
α 16.527 (16.516..16.539) 1.605 (1.589..1.619) 1.778 (1.726..1.829) 240 250 3 2 2 0

D 16.524 (16.515..16.533) 1.607 (1.583..1.633) 1.750 (1.707..1.795) 232 249 4 3 1 0

0 α 16.524 (16.513..16.534) 1.595 (1.582..1.609) 1.749 (1.697..1.786) 241 267 3 2 1 0

0.1
α 16.524 (16.512..16.534) 1.601 (1.586..1.615) 1.727 (1.675..1.781) 241 253 3 2 1 0

D 16.524 (16.515..16.535) 1.597 (1.580..1.612) 1.739 (1.689..1.782) 241 260 3 2 1 0

0.2
α 16.523 (16.509..16.537) 1.585 (1.560..1.607) 1.679 (1.607..1.760) 236 204 4 2 1 0

D 16.521 (16.508..16.537) 1.602 (1.584..1.618) 1.715 (1.653..1.791) 241 254 3 2 1 0

0.25
α 16.525 (16.504..16.542) 1.589 (1.563..1.618) 1.662 (1.557..1.753) 236 195 4 2 1 0

D 16.524 (16.510..16.536) 1.604 (1.589..1.622) 1.723 (1.655..1.777) 241 252 3 2 1 0

0.3
α 16.528 (16.506..16.545) 1.599 (1.571..1.626) 1.644 (1.530..1.741) 236 187 4 2 1 0

D 16.524 (16.510..16.537) 1.608 (1.590..1.624) 1.718 (1.643..1.780) 241 249 3 2 1 0

0.4 D 16.523 (16.509..16.537) 1.585 (1.562..1.607) 1.690 (1.622..1.751) 236 202 4 2 1 0

0.5 D 16.526 (16.510..16.544) 1.590 (1.564..1.617) 1.681 (1.596..1.780) 236 193 4 2 1 0

0.6 D 16.528 (16.509..16.546) 1.591 (1.563..1.622) 1.677 (1.578..1.770) 236 188 4 2 1 0

0.7
α 16.520 (16.504..16.535) 1.594 (1.551..1.636) 1.720 (1.639..1.794) 232 235 4 3 1 0

D 16.533 (16.509..16.554) 1.594 (1.560..1.623) 1.677 (1.553..1.798) 236 189 4 2 1 0

0.75
α 16.522 (16.507..16.537) 1.582 (1.555..1.608) 1.694 (1.610..1.774) 236 233 4 2 1 0

D 16.539 (16.517..16.561) 1.599 (1.564..1.629) 1.701 (1.557..1.851) 236 192 4 2 1 0

0.8
α 16.526 (16.511..16.542) 1.588 (1.562..1.611) 1.683 (1.604..1.777) 236 201 4 2 1 0

D 16.539 (16.519..16.564) 1.601 (1.566..1.643) 1.683 (1.571..1.856) 236 195 4 2 1 0

0.9
α 16.537 (16.513..16.558) 1.600 (1.565..1.637) 1.680 (1.539..1.819) 236 192 4 2 1 0

D 16.544 (16.516..16.574) 1.603 (1.556..1.656) 1.679 (1.504..1.902) 236 203 4 2 1 0

1 α 16.549 (16.521..16.580) 1.602 (1.551..1.652) 1.672 (1.488..1.890) 236 212 4 2 1 0

1.25
α 16.551 (16.526..16.575) 1.624 (1.577..1.676) 1.580 (1.470..1.676) 361 398 3 2 1 0

D 16.548 (16.529..16.572) 1.619 (1.570..1.661) 1.618 (1.542..1.712) 361 387 4 2 1 0

1.5
α 16.544 (16.507..16.587) 1.584 (1.497..1.675) 1.469 (1.316..1.713) 356 393 3 2 1 0

D 16.551 (16.522..16.582) 1.615 (1.571..1.677) 1.587 (1.476..1.728) 361 393 3 2 1 0

1.75
α 16.552 (16.499..16.616) 1.574 (1.432..1.734) 1.481 (1.175..1.948) 361 383 3 2 1 0

D 16.549 (16.511..16.588) 1.592 (1.523..1.664) 1.554 (1.394..1.758) 361 386 3 2 1 0

2
α 16.568 (16.480..16.666) 1.519 (1.313..1.685) 1.667 (1.087..2.707) 361 375 3 2 1 0

D 16.554 (16.507..16.608) 1.573 (1.478..1.666) 1.562 (1.311..1.865) 361 380 3 2 1 0

Table 4.6: Resulting parameters of the MFSS at varying λ for the orthogonal class and
parameters of the �t method. The results are visible in Figure 4.3.
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q exp Wc ν y Ndf χ2 nrnirn%nη

−1
α 18.388 (18.366..18.405) 1.442 (1.405..1.480) 1.684 (1.526..1.841) 418 476 3 2 1 0

D 18.375 (18.367..18.383) 1.431 (1.408..1.457) 1.651 (1.608..1.710) 413 390 4 2 1 0

−0.75
α 18.375 (18.365..18.384) 1.441 (1.418..1.461) 1.638 (1.574..1.698) 413 427 4 2 1 0

D 18.372 (18.366..18.378) 1.432 (1.419..1.447) 1.651 (1.623..1.682) 413 383 4 2 1 0

−0.5
α 18.374 (18.363..18.386) 1.447 (1.432..1.465) 1.658 (1.585..1.737) 275 275 4 2 1 0

D 18.371 (18.358..18.381) 1.435 (1.422..1.448) 1.651 (1.585..1.711) 275 219 4 2 1 0

−0.25
α 18.372 (18.364..18.382) 1.442 (1.432..1.454) 1.661 (1.610..1.725) 275 287 4 2 1 0

D 18.373 (18.368..18.378) 1.444 (1.432..1.456) 1.675 (1.660..1.691) 413 420 4 2 1 0

0 α 18.373 (18.365..18.381) 1.441 (1.431..1.453) 1.665 (1.616..1.715) 275 289 4 2 1 0

0.1
α 18.373 (18.363..18.383) 1.442 (1.429..1.452) 1.663 (1.600..1.734) 275 290 4 2 1 0

D 18.371 (18.363..18.380) 1.437 (1.426..1.448) 1.651 (1.601..1.707) 275 232 4 2 1 0

0.2
α 18.377 (18.367..18.389) 1.440 (1.426..1.454) 1.675 (1.602..1.767) 275 282 4 2 1 0

D 18.371 (18.361..18.381) 1.436 (1.421..1.453) 1.646 (1.573..1.705) 275 235 4 2 1 0

0.25
α 18.377 (18.365..18.390) 1.438 (1.423..1.454) 1.668 (1.576..1.799) 275 272 4 2 1 0

D 18.375 (18.369..18.381) 1.444 (1.432..1.461) 1.681 (1.661..1.702) 413 423 4 2 1 0

0.3
α 18.380 (18.362..18.396) 1.436 (1.416..1.458) 1.703 (1.571..1.838) 278 286 4 1 1 0

D 18.375 (18.369..18.381) 1.442 (1.427..1.457) 1.678 (1.654..1.701) 413 424 4 2 1 0

0.4 D 18.376 (18.370..18.383) 1.438 (1.424..1.456) 1.681 (1.655..1.710) 413 423 4 2 1 0

0.5 D 18.376 (18.368..18.382) 1.436 (1.419..1.455) 1.674 (1.633..1.707) 413 419 4 2 1 0

0.6 D 18.378 (18.373..18.385) 1.433 (1.416..1.451) 1.681 (1.634..1.715) 413 415 4 2 1 0

0.7
α 18.381 (18.367..18.395) 1.442 (1.426..1.458) 1.750 (1.643..1.870) 275 261 4 2 1 0

D 18.379 (18.372..18.387) 1.430 (1.412..1.447) 1.682 (1.629..1.732) 413 414 4 2 1 0

0.75
α 18.378 (18.365..18.391) 1.438 (1.422..1.453) 1.700 (1.610..1.805) 275 278 4 2 1 0

D 18.380 (18.371..18.387) 1.429 (1.408..1.450) 1.688 (1.621..1.749) 413 413 4 2 1 0

0.8
α 18.378 (18.366..18.392) 1.439 (1.420..1.459) 1.684 (1.592..1.783) 275 277 4 2 1 0

D 18.375 (18.351..18.396) 1.430 (1.401..1.467) 1.618 (1.460..1.782) 414 414 4 2 1 0

0.9
α 18.380 (18.363..18.396) 1.439 (1.414..1.467) 1.650 (1.534..1.777) 275 253 4 2 1 0

D 18.375 (18.349..18.401) 1.435 (1.397..1.475) 1.587 (1.428..1.767) 275 203 4 2 1 0

1 α 18.380 (18.351..18.408) 1.444 (1.407..1.481) 1.603 (1.390..1.852) 275 251 4 2 1 0

1.25
α 18.365 (18.330..18.405) 1.424 (1.321..1.500) 1.313 (1.068..1.642) 275 248 4 2 1 0

D 18.363 (18.334..18.403) 1.433 (1.354..1.506) 1.413 (1.227..1.692) 275 203 4 2 1 0

1.5
α 18.391 (18.348..18.425) 1.386 (1.301..1.483) 1.529 (1.282..1.782) 386 392 4 3 1 0

D 18.398 (18.371..18.420) 1.430 (1.393..1.470) 1.923 (1.625..2.262) 413 395 4 2 1 0

1.75
α 18.407 (18.349..18.457) 1.449 (1.332..1.537) 2.064 (1.194..3.674) 417 450 3 2 2 0

D 18.384 (18.343..18.426) 1.382 (1.306..1.460) 1.522 (1.290..1.808) 390 360 4 2 1 0

2
α 18.438 (18.302..18.528) 1.458 (1.229..1.770) 2.288 (1.071..4.442) 420 454 3 1 2 0

D 18.370 (18.326..18.415) 1.409 (1.290..1.525) 1.390 (1.169..1.613) 395 392 3 2 1 0

Table 4.7: Resulting parameters of the MFSS at varying λ for the unitary class and
parameters of the �t method. The results are visible in Figure 4.3.
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q exp Wc ν y Ndf χ2 nrnirn%nη

−1
α 19.848 (19.821..19.870) 1.370 (1.230..1.508) 1.518 (1.318..1.694) 356 385 4 2 1 0

D 19.839 (19.830..19.850) 1.377 (1.321..1.430) 1.541 (1.474..1.626) 361 384 3 2 1 0

−0.75
α 19.838 (19.828..19.848) 1.384 (1.309..1.439) 1.512 (1.437..1.610) 356 384 4 2 1 0

D 19.835 (19.828..19.841) 1.383 (1.349..1.421) 1.531 (1.492..1.565) 361 372 3 2 1 0

−0.5
α 19.834 (19.828..19.840) 1.381 (1.351..1.427) 1.522 (1.475..1.558) 356 365 4 2 1 0

D 19.835 (19.829..19.840) 1.383 (1.352..1.418) 1.549 (1.527..1.567) 361 348 3 2 1 0

−0.25
α 19.834 (19.830..19.839) 1.381 (1.354..1.408) 1.551 (1.530..1.572) 361 345 3 2 1 0

D 19.835 (19.830..19.839) 1.381 (1.355..1.409) 1.565 (1.546..1.582) 361 335 3 2 1 0

0 α 19.836 (19.831..19.841) 1.383 (1.359..1.412) 1.577 (1.559..1.595) 361 352 3 2 1 0

0.1
α 19.836 (19.831..19.840) 1.386 (1.358..1.416) 1.581 (1.565..1.599) 361 372 3 2 1 0

D 19.836 (19.832..19.840) 1.385 (1.358..1.414) 1.580 (1.559..1.597) 361 358 3 2 1 0

0.2
α 19.836 (19.831..19.842) 1.391 (1.355..1.425) 1.577 (1.550..1.608) 361 375 3 2 1 0

D 19.836 (19.833..19.841) 1.387 (1.350..1.422) 1.578 (1.561..1.601) 361 368 3 2 1 0

0.25
α 19.835 (19.829..19.840) 1.390 (1.350..1.427) 1.565 (1.520..1.607) 361 370 3 2 1 0

D 19.836 (19.831..19.841) 1.391 (1.358..1.419) 1.576 (1.555..1.601) 356 368 4 2 1 0

0.3
α 19.834 (19.826..19.842) 1.400 (1.356..1.446) 1.558 (1.493..1.624) 361 366 3 2 1 0

D 19.836 (19.831..19.841) 1.388 (1.357..1.418) 1.575 (1.551..1.600) 361 371 3 2 1 0

0.4 D 19.835 (19.830..19.841) 1.389 (1.352..1.424) 1.571 (1.535..1.604) 361 369 3 2 1 0

0.5 D 19.835 (19.829..19.841) 1.400 (1.359..1.439) 1.560 (1.523..1.596) 361 366 3 2 1 0

0.6 D 19.833 (19.826..19.839) 1.403 (1.363..1.455) 1.546 (1.503..1.596) 361 365 3 2 1 0

0.7
α 19.841 (19.835..19.847) 1.365 (1.329..1.399) 1.620 (1.572..1.667) 356 359 4 2 1 0

D 19.833 (19.825..19.839) 1.410 (1.360..1.454) 1.542 (1.486..1.600) 361 367 3 2 1 0

0.75
α 19.838 (19.833..19.845) 1.376 (1.325..1.413) 1.598 (1.558..1.644) 356 364 4 2 1 0

D 19.833 (19.821..19.842) 1.411 (1.360..1.458) 1.542 (1.446..1.610) 361 369 3 2 1 0

0.8
α 19.836 (19.831..19.841) 1.396 (1.361..1.433) 1.572 (1.536..1.617) 356 363 3 2 1 0

D 19.833 (19.823..19.841) 1.415 (1.364..1.469) 1.540 (1.469..1.614) 413 371 3 2 1 0

0.9
α 19.833 (19.824..19.842) 1.413 (1.370..1.482) 1.540 (1.457..1.603) 356 363 3 2 1 0

D 19.834 (19.821..19.845) 1.409 (1.358..1.471) 1.554 (1.442..1.663) 361 374 3 2 1 0

1 α 19.834 (19.822..19.848) 1.406 (1.345..1.484) 1.568 (1.449..1.685) 361 381 3 2 1 0

1.25
α 19.838 (19.819..19.855) 1.399 (1.347..1.447) 1.536 (1.398..1.720) 361 369 3 2 1 0

D 19.846 (19.833..19.859) 1.382 (1.351..1.417) 1.683 (1.547..1.831) 361 373 3 2 1 0

1.5
α 19.861 (19.831..19.887) 1.350 (1.223..1.515) 2.080 (1.595..2.552) 361 356 3 2 1 0

D 19.841 (19.823..19.857) 1.402 (1.347..1.452) 1.573 (1.393..1.772) 361 363 3 2 1 0

1.75
α no stability

D 19.858 (19.829..19.884) 1.364 (1.239..1.470) 2.016 (1.475..2.624) 361 355 3 2 1 0

2
α no stability

D 19.864 (19.800..19.891) 1.365 (1.243..1.499) 2.223 (1.222..2.982) 361 352 3 2 1 0

Table 4.8: Resulting parameters of the MFSS at varying λ for the symplectic class and
parameters of the �t method. The results are visible in Figure 4.3.

4.5 Analysis of the multifractal exponents

MFSS for varying λ provided us the MFEs in all WD classes, which are listed in Table 4.10,
and depicted in Figure 4.4. For the orthogonal class one can �nd matching results with the
listed MFE-s in Ref. [32]. Since the precise values of the MFEs in three dimensions were
determined �rst in Ref. [32] for the orthogonal class only, the lack of reliable analytical
and numerical results for the other symmetry classes makes our results more important.
The most conspicuous thing in Figure 4.4 is that curves for di�erent symmetry classes
are very close to each other, they are almost indistinguishable at �rst sight. This shows
that the broken time-reversal or spin rotational symmetry has a very small e�ect on the
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Figure 4.4: MFEs of the Anderson models in the WD universality classes. Corresponding
data are listed in Table 4.10.

MFEs in three dimensions. Taking a closer look (or from Table 4.10) one can see that
curve of Dq and αq is the steepest in the symplectic class, the second steepest in the
unitary class, and the less steep in the orthogonal class. From Table 4.10 it is also clear
that at most of the q values there is a signi�cant di�erence between the MFEs of di�erent
symmetry classes.

There are no critical states in the two dimensional orthogonal class [5], but one can
�nd values of α0 for the two dimensional unitary class (Integer Quantum Hall), αU0 2D =
2.2596 ± 0.0004 [29], and symplectic class, αS0 2D = 2.172 ± 0.002 [28]. Comparing the
di�erence between these exponents in two dimensions we get αU0 2D − αS0 2D = 0.0876 ±
0.0024, while our result for three dimensions is αU0 3D − αS0 3D = −0.03 ± 0.015. There is
about a factor of 3 between the magnitude of these values, and even their sign is opposite,
which shows very di�erent e�ect of presence or absence of spin rotational symmetry in
di�erent dimensions.

We tested the symmetry relation Eq. (2.12) for αq and ∆q, the results are listed in
Table 4.10 and depicted in Figure 4.5. The symmetry relation is ful�lled in the range
−0.25 ≤ q ≤ 1.25 (in the symplectic class only for −0.25 ≤ q ≤ 1), and small deviations
are visible outside this interval. In this regime error bars are growing very large, coming
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Figure 4.5: Test for symmetry relation Eq. (2.12) in the WD symmetry classes. Points are
shifted horizontally a little bit for better visualization. Only the q ≥ 0.5 range is visible
because expression αq + α1−q (∆q −∆1−q) is symmetric (antisymmetric) to q = 0.5.

mainly from the large errors of αq≥1.5 and Dq≥1.5. Similar e�ects were already seen for
the critical parameters in Figure 4.3. It is really hard to estimate the correct error bars
in this large q case, and the deviation from the symmetry are small, therefore we believe
that di�erences appear only because of slightly underestimated error bars of αq≥1.5 and
Dq≥1.5. All in all we �nd numerical results basically matching Eq. (2.12).

Assuming that ∆q is an analytic function of q, and using the symmetry relation,
Eq. (2.12), one can expand ∆q in Taylor series around q = 1

2
:

∆q =
∞∑
k=0

ck

(
q − 1

2

)2k

=
∞∑
k=0

ck

(
q(q − 1) +

1

4

)k
=

=
∞∑
k=0

ck

k∑
i=0

(
k

i

)
(q(q − 1))i

(
1

4

)k−i
=
∞∑
k=1

dk (q(1− q))k , (4.6)

where the condition ∆0 = ∆1 = 0 enforced by the de�nition of ∆q (see Eq. (2.8)) was used
in the last step, leading to k = 1 as lower bound for the summation. Similar expression
can be derived for αq by using the connection αq = d+ d

dq
∆q derived from Eqs. (2.7)�(2.8):

αq = d+ (1− 2q)
∞∑
k=1

ak (q(1− q))k−1 , (4.7)

where ak = kdk, and a1 = d1 = α0 − d. One can obtain the dk and ak coe�cients by
�tting the expressions Eqs. (4.6)�(4.7). We used only the range q ≤ 1.25, because beyond
this regime error bars grow extremely large, and moreover there are small deviations from
the symmetry relation Eq.(2.12) also. We plotted ∆(q)

q(1−q) and
α(q)−d
1−2q

in Figure 4.6 to make
the presence of higher-order terms of the expansion visible.

We �t expressions Eq. (4.6)�(4.7)up to third order in all cases, the resulting expansion
coe�cients are listed in Table 4.9. From the listed data one can see that the expansion
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Figure 4.6: Dots and error bars are numerical values for the corresponding quantities,
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and ∆(q)
q(1−q) , for the WD symmetry classes. Lines are the best �ts. Several points

are shifted horizontally a bit for better viewing.

class ort uni sym
d1 1.044 (1.041..1.047) 1.097 (1.095..1.098) 1.123 (1.122..1.125)
d2 0.095 (0.085..0.105) 0.096 (0.091..0.100) 0.088 (0.084..0.093)
d3 0.018 (0.011..0.025) 0.017 (0.014..0.020) 0.014 (0.010..0.017)
a1 1.045 (1.042..1.048) 1.099 (1.096..1.102) 1.124 (1.123..1.126)
a2 0.182 (0.168..0.195) 0.185 (0.174..0.197) 0.185 (0.179..0.191)
a3 0.044 (0.035..0.053) 0.043 (0.035..0.050) 0.044 (0.038..0.049)

Table 4.9: Expansion coe�cients of Eqs. (4.6)�(4.7) obtained by a �t depicted in Fig-
ure 4.6.

coe�cients ful�ll the relation ak = kdk. However, αq and ∆q were obtained from the same
wave-functions, they are results of completely independent �t-procedures. Therefore the
fact that they satisfy the equation ak = kdk further con�rms our result for their value
listed in Table 4.10 for q ≤ 1.25 and shows the consistency of the MFSS.

As one would expect for expansion coe�cients, dk and ak show decreasing behavior as
k grows. Only d1 and a1 are signi�cantly di�erent for the di�erent symmetry classes, while
d2, d3, a2, and a3 are the same within error bars. Their real value is probably di�erent,
but the relative error of the expansion coe�cients naturally increases as k grows, leading
to indistinguishable values for the di�erent symmetry classes for k ≥ 2.

Wegner computed analytically [43] the value of ∆q with ε expansion using nonlinear
σ-model up to fourth-loop order for the orthogonal and the unitary symmetry class,
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resulting an expansion in dimensions d = 2 + ε for ε� 1 [5]:

∆O
q = q(1− q)ε+

ζ(3)

4
q(q − 1)(q2 − q + 1)ε4 +O(ε5) (4.8)

=

(
ε− ζ(3)

4
ε4

)
q(1− q) +

ζ(3)

4
ε4(q(1− q))2 +O(ε5) (4.9)

∆U
q =

√
ε

2
q(1− q)− 3

8
ζ(3)ε2(q(1− q))2 +O(ε

5
2 ) (4.10)

Even though ε � 1 should hold, one can try to extrapolate to three-dimensions by
inserting ε = 1. This leads to dO1 ≈ 0.699, dO2 ≈ 0.301, dU1 ≈ 0.707 and dU2 ≈ −0.451.
As one can see, these values are rather far from our numerical results, but this is not
surprising for an ε-expansion at ε = 1. These results capture well the tendency at least
that dO1 is slightly smaller, than dU1 . On the other hand it leads to dO2 and dU2 having
opposite sign, which is highly inconsistent with our numerical results. It is interesting
to mention that the �rst-loop term, which is proportional to ε and leads to parabolic
∆q, results in dO1 = 1 and aO1 = α0 − d = 1, which are very close to our numerically
measured values. In this sense parabolic approximation is better for the orthogonal class,
as compared to the fourth-loop order approximation. If higher-order terms were obtained,
or if ∆q were expanded by using another approach, our coe�cients could provide relatively
accurate values as compared with analytical results.
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q class αq Dq f(αq) αq+α1−q ∆q−∆1−q

−1

ort 5.555 (5.490..5.626) 3.926 (3.914..3.938) 2.297 (2.338..2.250) 6.275 (6.042..6.661) −0.102 (−0.218..0.000)

uni 5.671 (5.629..5.707) 3.970 (3.966..3.976) 2.269 (2.303..2.245) 6.331 (6.215..6.444) −0.130 (−0.195..−0.062)

sym 5.751 (5.690..5.799) 4.001 (3.994..4.010) 2.251 (2.298..2.222) 6.379 (6.197..6.584) −0.134 (−0.237..−0.063)

−0.75

ort 5.225 (5.187..5.267) 3.715 (3.708..3.722) 2.582 (2.599..2.564) 6.153 (5.988..6.353) −0.035 (−0.094..0.032)

uni 5.333 (5.317..5.349) 3.751 (3.749..3.754) 2.565 (2.573..2.557) 6.176 (6.131..6.239) −0.062 (−0.098..−0.025)

sym 5.406 (5.387..5.430) 3.773 (3.770..3.777) 2.549 (2.558..2.537) 6.221 (6.113..6.349) −0.060 (−0.114..−0.023)

−0.5

ort 4.876 (4.856..4.896) 3.492 (3.488..3.496) 2.800 (2.803..2.796) 6.061 (5.959..6.149) −0.008 (−0.045..0.025)

uni 4.975 (4.958..4.994) 3.517 (3.512..3.521) 2.788 (2.789..2.785) 6.103 (6.000..6.167) −0.009 (−0.025..0.004)

sym 5.030 (5.019..5.039) 3.532 (3.531..3.534) 2.784 (2.787..2.781) 6.103 (6.039..6.206) −0.019 (−0.041..−0.001)

−0.25

ort 4.488 (4.477..4.499) 3.254 (3.252..3.255) 2.945 (2.946..2.944) 6.016 (5.951..6.094) 0.000 (−0.012..0.010)

uni 4.563 (4.553..4.574) 3.267 (3.266..3.268) 2.943 (2.945..2.941) 6.037 (5.998..6.081) −0.006 (−0.011..0.002)

sym 4.607 (4.603..4.611) 3.274 (3.274..3.275) 2.941 (2.941..2.941) 6.033 (5.997..6.072) −0.004 (−0.011..0.003)

0

ort 4.043 (4.035..4.049) 3 (3..3) 3 (3..3) 5.991 (5.965..6.012) 0 (0..0)

uni 4.094 (4.087..4.101) 3 (3..3) 3 (3..3) 6.000 (5.974..6.026) 0 (0..0)

sym 4.124 (4.121..4.127) 3 (3..3) 3 (3..3) 6.010 (5.999..6.023) 0 (0..0)

0.1

ort 3.849 (3.843..3.855) 2.895 (2.894..2.895) 2.990 (2.989..2.991) 5.995 (5.978..6.014) −0.001 (−0.003..0.002)

uni 3.890 (3.883..3.897) 2.890 (2.889..2.891) 2.990 (2.988..2.991) 5.997 (5.981..6.014) 0.000 (−0.002..0.002)

sym 3.913 (3.911..3.915) 2.887 (2.886..2.887) 2.989 (2.989..2.990) 6.005 (5.998..6.013) 0.001 (−0.000..0.002)

0.2

ort 3.645 (3.638..3.651) 2.789 (2.786..2.790) 2.960 (2.957..2.962) 5.998 (5.985..6.011) −0.001 (−0.005..0.003)

uni 3.678 (3.673..3.684) 2.778 (2.777..2.780) 2.958 (2.956..2.961) 5.999 (5.987..6.011) −0.000 (−0.004..0.004)

sym 3.693 (3.691..3.695) 2.772 (2.772..2.773) 2.956 (2.955..2.957) 5.999 (5.995..6.004) 0.001 (−0.000..0.003)

0.25

ort 3.541 (3.534..3.547) 2.734 (2.733..2.737) 2.936 (2.933..2.939) 6.000 (5.987..6.012) −0.001 (−0.006..0.003)

uni 3.569 (3.563..3.575) 2.721 (2.720..2.722) 2.933 (2.931..2.935) 5.999 (5.987..6.011) −0.000 (−0.002..0.001)

sym 3.579 (3.577..3.581) 2.715 (2.714..2.715) 2.931 (2.930..2.932) 5.997 (5.992..6.001) 0.001 (−0.001..0.003)

0.3

ort 3.436 (3.430..3.441) 2.681 (2.678..2.684) 2.907 (2.903..2.911) 6.001 (5.991..6.012) −0.001 (−0.006..0.004)

uni 3.459 (3.453..3.464) 2.665 (2.664..2.666) 2.903 (2.900..2.905) 5.999 (5.987..6.010) −0.000 (−0.002..0.001)

sym 3.465 (3.462..3.467) 2.657 (2.656..2.658) 2.899 (2.898..2.901) 5.995 (5.991..6.000) 0.001 (−0.001..0.003)

0.4

ort − 2.573 (2.570..2.577) − − −0.001 (−0.006..0.004)

uni − 2.551 (2.550..2.553) − − −0.000 (−0.002..0.002)

sym − 2.542 (2.540..2.543) − − 0.001 (−0.001..0.003)

0.5

ort 3 (3..3) 2.466 (2.459..2.471) 2.733 (2.730..2.736) 6 (6..6) 0 (0..0)

uni 3 (3..3) 2.439 (2.437..2.441) 2.719 (2.719..2.721) 6 (6..6) 0 (0..0)

sym 3 (3..3) 2.427 (2.425..2.429) 2.714 (2.712..2.715) 6 (6..6) 0 (0..0)

0.6

ort − 2.358 (2.352..2.366) − − 0.001 (−0.004..0.006)

uni − 2.327 (2.325..2.329) − − 0.000 (−0.002..0.002)

sym − 2.314 (2.311..2.317) − − −0.001 (−0.003..0.001)

0.7

ort 2.566 (2.561..2.571) 2.252 (2.242..2.263) 2.472 (2.466..2.479) 6.001 (5.991..6.012) 0.001 (−0.004..0.006)

uni 2.540 (2.535..2.545) 2.217 (2.214..2.220) 2.443 (2.438..2.448) 5.999 (5.987..6.010) 0.000 (−0.001..0.002)

sym 2.530 (2.528..2.532) 2.203 (2.199..2.207) 2.432 (2.429..2.435) 5.995 (5.991..6.000) −0.001 (−0.003..0.001)

0.75

ort 2.459 (2.454..2.465) 2.198 (2.186..2.209) 2.394 (2.387..2.401) 6.000 (5.987..6.012) 0.001 (−0.003..0.006)

uni 2.430 (2.424..2.436) 2.163 (2.159..2.168) 2.363 (2.358..2.369) 5.999 (5.987..6.011) 0.000 (−0.001..0.002)

sym 2.417 (2.415..2.419) 2.148 (2.143..2.156) 2.350 (2.347..2.353) 5.997 (5.992..6.001) −0.001 (−0.003..0.001)

0.8

ort 2.354 (2.347..2.360) 2.147 (2.135..2.157) 2.312 (2.304..2.319) 5.998 (5.985..6.011) 0.001 (−0.003..0.005)

uni 2.320 (2.314..2.326) 2.111 (2.099..2.125) 2.278 (2.271..2.286) 5.999 (5.987..6.011) 0.000 (−0.004..0.004)

sym 2.307 (2.304..2.309) 2.095 (2.090..2.100) 2.264 (2.261..2.267) 5.999 (5.995..6.004) −0.001 (−0.003..0.000)

0.9

ort 2.146 (2.135..2.159) 2.046 (2.029..2.060) 2.136 (2.124..2.149) 5.995 (5.978..6.014) 0.001 (−0.002..0.003)

uni 2.107 (2.097..2.117) 2.009 (1.991..2.025) 2.097 (2.087..2.108) 5.997 (5.981..6.014) −0.000 (−0.002..0.002)

sym 2.092 (2.088..2.099) 1.988 (1.981..1.997) 2.082 (2.077..2.088) 6.005 (5.998..6.013) −0.001 (−0.002..0.000)

1

ort 1.948 (1.930..1.963) α1 α1 5.991 (5.965..6.012) 0 (0..0)

uni 1.905 (1.886..1.925) α1 α1 6.000 (5.974..6.026) 0 (0..0)

sym 1.886 (1.877..1.896) α1 α1 6.010 (5.999..6.023) 0 (0..0)

1.25

ort 1.520 (1.508..1.535) 1.727 (1.715..1.738) 1.477 (1.418..1.551) 6.009 (5.985..6.034) −0.001 (−0.006..0.003)

uni 1.473 (1.442..1.499) 1.688 (1.660..1.708) 1.422 (1.391..1.457) 6.036 (5.995..6.073) 0.006 (−0.002..0.011)

sym 1.437 (1.424..1.450) 1.644 (1.634..1.655) 1.371 (1.338..1.409) 6.044 (6.027..6.061) 0.004 (0.001..0.007)

1.5

ort 1.185 (1.161..1.206) 1.534 (1.518..1.550) 1.007 (0.912..1.079) 6.061 (6.017..6.102) 0.005 (−0.009..0.019)

uni 1.096 (1.073..1.124) 1.468 (1.453..1.483) 0.958 (0.836..1.017) 6.072 (6.031..6.118) 0.009 (−0.004..0.025)

sym 1.060 (1.044..1.080) 1.450 (1.437..1.465) 0.889 (0.827..1.011) 6.090 (6.063..6.118) 0.024 (0.015..0.034)

1.75

ort 0.920 (0.889..0.949) 1.372 (1.349..1.395) 0.590 (0.422..0.818) 6.145 (6.076..6.216) 0.029 (−0.001..0.058)

uni 0.841 (0.814..0.873) 1.301 (1.273..1.329) 0.479 (0.459..0.529) 6.175 (6.130..6.222) 0.041 (0.015..0.065)

sym no stability 1.262 (1.242..1.290) 0.050 (0.030..0.077)

2

ort 0.719 (0.683..0.754) 1.231 (1.203..1.256) 0.190 (−0.068..0.727) 6.274 (6.173..6.380) 0.083 (0.031..0.132)

uni 0.622 (0.583..0.690) 1.173 (1.147..1.205) 0.131 (0.039..0.230) 6.293 (6.212..6.396) 0.113 (0.076..0.154)

sym no stability 1.118 (1.099..1.167) 0.120 (0.083..0.184)

Table 4.10: MFE αq, Dq and f(αq), and values for the corresponding symmetry relation
Eq. (2.12) obtained for the WD symmetry classes.
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4.6 Finite-size scaling for the Anderson model in the

orthogonal class at �xed ` = 1

Our further goal in Section 5 is to investigate the quantum percolation problem without
broken time-reversal and spin-rotational symmetry. Percolation is a kind of disorder,
therefore the model is expected to behave similar to the orthogonal Anderson model.
In this model a fraction of lattice points is missing, therefore when performing a coarse
graining, de�ned in Eq. 2.13, immediate di�culties arise. It is not clear how the `-sized
boxes have to be made, or how the boxes containing di�erent number of �lled sites should
be compared. One way to resolve this problem is to choose ` = 1, meaning that a box
contains only one site. Even though this choice eventually opens the possibility to extend
the MFSS method for irregular lattices or even for graphs and networks in the future,
there is also a huge cost to be paid: the smoothing e�ect of the coarse graining is lost, and
only the more complicated method of �xed-` technique described in Section 3.2.4 remains.
In this section we would like to test and also verify this technique for the Anderson model.
Since we would like to investigate the multifractal exponents also, we will use ensemble

averaged quantities only as in Section 4.4.
As mentioned in Section 2.3, there is always some numerical noise on the data, which

becomes even more relevant for the smallest wave-function components. In case of nega-
tive q these uncertain small values are dominating the sums in Rq and Sq (see Eq. (2.6)).
As written in Section 2.3 coarse graining clearly suppresses this e�ect, while at �xed
` = 1 the smoothing e�ect of coarse graining is missing, thus for q < 0 the numerically
obtained D̃q and α̃q values are very noisy, see Figure 4.7(a). This makes every attempt
to get results for negative q very hard if not impossible.
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Figure 4.7: D̃ens
q (W,L, ` = 1) at (a) q = −0.5 (b) q = 0.5 (c) q = 2 without coarse

graining for �xed ` = 1. Dots are raw data, solid black lines on (a) connect data points
having the same system size as a guide for the eye, while solid red line on (b) and (c)
shows the best �t obtained by MFSS.

The other problem is that the scaling law becomes more complicated, the leading
number of �t parameters grow as ∼ n2

rel/irrel for �xed ` = 1, instead of ∼ nrel/irrel as for
�xed λ, while the amount of data is the same.

Performing the MFSS another problem appeared with Eq. (3.23). During the �t the
irrelevant exponent, y, converged to very small (10−3 − 10−5) or very large (102 − 103)
values. In the �rst case the irrelevant term can be merged with the relevant one, since
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Figure 4.8: (a) The critical point, Wc, (b) the critical exponent, ν, (c) and the symmetry
relation Eq. 2.12 for the 3D Anderson model obtained by MFSS at �xed ` = 1. Error
bars are 95% con�dence levels. On sub�gure (c) the q ≥ 0.5 range is depicted, because
of the symmetry of the depicted quantities for this point.

η is in most cases constant. In the second case L−y suppresses the irrelevant part. This
caused really large error in the bij, and it rendered the whole irrelevant part meaningless.

To �nd out whether this is just a numerical problem or if there is also some systematic
physical meaning behind this behavior, we modeled the above problem: First a dataset
was made by evaluating the expression Eq. (3.23) at system sizes and disorder we used
before, with some expansion parameter values similar to ones provided by previous MFSS
procedures. Of course �tting Eq. (3.23) to this dataset gave a perfect �t. Now adding
some small random noise to the initial dataset started to shift the resulting �t parameters
a little. By increasing the noise to the order of the standard deviation of our original
dataset for the Anderson model the �t showed the expected phenomenon: The irrelevant
exponent, y, converged to either large or small values. This shows that this is just a
numerical artifact. There is a shift on the D̃q(W,L) curves for di�erent system sizes,
see Figure 4.7(b). This comes mostly from the 1/ lnL term of Eq. (3.23), and if noise
is present it is numerically hard to determine the e�ect of the L−y irrelevant part. All
in all, however, in a �nite system irrelevant variables are always present, considering an
irrelevant term only will increase the error of the �t parameters. Therefore it seems to
be useful to drop the irrelevant part, and keep the relevant one only. This way the �tting
function reads as

G̃q(W,L) = gq +
1

lnL

(
nrel∑
i=0

i∑
j=0

aij%
iL

j
ν

)
. (4.11)

We performed MFSS in the range 0 ≤ q ≤ 2 with the criteria described in Sec-
tion 3.2.5. The resulting critical point and exponent is visible in Figure 4.8. As we have
already seen in Section 4.4, error bars are growing large beyond q = 1. The reason be-
hind this is that increasing q increases the numerical and statistical errors through the µqk
expression. As mentioned above, increasing error on the data makes really di�cult to get
acceptable results from the MFSS. Therefore it is worth investigate the range 0 ≤ q ≤ 1
only approximately.

As a result the critical point, Wc, and the critical exponent, ν, is consistent with
our results at �xed λ = 0.1 (see Section 4.3) and also with the varying λ method (see
Section 4.4). The resulting MFEs also agree with the results listed in Table 4.10 and
with high precision results of Rodriguez et al. [32].
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A test for the symmetry relation Eq. (2.12) is depicted in Figure 4.8(c). Eq. (2.12) is
clearly ful�lled in the 0 ≤ q ≤ 1 range.

4.7 Summary

In this chapter we examined the three-dimensional Anderson models belonging to the
conventional WD symmetry classes with the help of multifractal �nite-size scaling using
two methods: a simpler method for �xed λ leading to a single-variable scaling function,
and a more complicated one for varying λ resulting in a two-variable scaling function.
Both methods con�rmed the presence of multifractality in all three symmetry classes, and
we obtained critical parameters in agreement with each other and with previous results
known from the literature. The more complicated varying λ method provided more
precise values for the critical parameters, listed in Table 4.5, and signi�cantly di�erent
critical exponents for the di�erent WD symmetry classes.

Applying the method of varying λ we also calculated the multifractal exponents, which
basically ful�ll the expected symmetry relation Eq. (2.12), small deviations were detected
for large values of q probably due to slightly underestimated error bars. In Figure 4.4
one can see that the MFEs of di�erent symmetry classes are very close to each other,
but Figure 4.6 or Table 4.10 shows signi�cant di�erences between them for most of the
values of q. We compared the di�erence of α0 in the unitary and symplectic class to
available results in two dimensions, and we found completely di�erent relation between
the two and three-dimensional cases. We expanded the MFEs in terms of the variable
q(1 − q), and determined the expansion coe�cients up to third order numerically. The
expansion coe�cients of Eq. (4.6)�(4.7) ful�ll the expected relation ak = kdk giving a
further con�rmation for the validity of our results for the MFEs listed in Table 4.10. We
also compared the numerical results to available analytical estimates, and found in some
cases similar, but in other cases opposite qualitative behavior for expansion coe�cients
for the orthogonal and the unitary classes. Nevertheless, we believe that the numerical
precision of our results should be used as tests for future renormalization or other type
of expansion approximations. Therefore our results await analytical comparison.

We also performed MFSS at �xed ` = 1, to develop the method applicable for irregular
lattices, or even for graphs in the future. We found that due to growing error bars, the
range 0 ≤ q ≤ 1 is worth to investigate. We found matching results for the critical point,
critical exponent and multifractal exponents with our previous results at �xed λ and
varying λ, what veri�es this method.
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Chapter 5

Quantum percolation model

5.1 Introduction

Beside diagonal disorder resembling substitutional disorder the other main cause of irreg-
ularity in condensed systems is structural disorder. For the investigation of topological
and structural disorder percolation is one of the most important and widely used mod-
els. Percolation in general has a wide applicability in many �elds of physics [44]. In the
Bernoulli site-percolation problem every site is �lled with probability p and is empty with
probability 1 − p independently. The main goal of classical percolation is to tell for a
given p whether an in�nite cluster of �lled sites may exist in the thermodynamic limit or
not. It turns out that there is such a critical probability, pCc , below which (p < pCc ) there
is no in�nite cluster but above which (p > pCc ) there is. On a hypercubic lattice in one
dimension [45] pCc = 1, in two dimensions [46] pCc = 0.592746216 ± 0.00000013, in three
dimensions [47] pCc = 0.3116077±0.0000002. In the p > pCc case the existence of an in�nite
cluster ensures that the system can be treated as a conductor, since classical particles
can travel through the whole system. On the other hand if p < pCc , the system consists
of a set of disjoint, �nite clusters, and as a consequence, it behaves as an insulator, since
no particle can escape from its initial �nite cluster.

For the electric conduction properties of a sample the electrons are responsible, there-
fore to examine the most simple model, we shall investigate spinless non�interacting
electrons on a percolated lattice without magnetic �eld, this is called the quantum per-
colation model. The corresponding Hamiltonian is

H =
∑
i∈A

εa†iai −
∑
〈i,j〉
i,j∈A

(
a†iaj + a†jai

)
, (5.1)

where A is the set of �lled sites, ε is a constant on�site energy, whose value can be safely
set to zero without loss of generality. Setting the hopping elements to 1 is equivalent
to choosing the energy unit. Note that the pure site�percolation problem is equivalent
to a binary Anderson model [48, 49, 50] with constant εA and εB but taking the limit
εB →∞:

H =
∑
i∈A

εAa
†
iai +

∑
i∈B

εBa
†
iai −

∑
〈i,j〉

(
a†iaj + a†jai

)
(5.2)
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This Hamiltonian could describe an alloy of a perfect metal consisting of atoms A and
a perfect insulator consisting of atoms B only. All A sites are equivalent, and the B
sites cannot be reached due to their in�nite on-site energy, therefore B sites behave
as if they were empty. This suggests that quantum percolation behaves similar to the
Anderson model. In this chapter we shall show many similarities between quantum
percolation and the original Anderson problem. The most important similarity with
the Anderson problem is the existence of a metal�insulator transition for the quantum
percolation model too, however, here p, or strictly speaking (1 − p), plays the role of
disorder: For p < pCc every state is localized onto �nite, connected islands, thus the
sample is an insulator. Increasing p beyond pCc , however, a classical particle can travel
through the sample, the electron wave-functions are localized due to strong interference
e�ects caused by disorder, the sample still remains an insulator. For p values slightly
below 1 states are perturbed Bloch-states, the sample is a metal. In between there
exists a mobility edge, pQc (E), an energy�dependent quantum critical point, below which
electronic eigenstates are Anderson-localized giving rise to an insulator, and above which
they are extended forming a metal. Along the mobility edge, pQc (E), the states are
supposed to be multifractals, see Figure 1.4 for the phenomenon and similarities between
the two models. In Section 5.4.2 we argue that the corresponding Anderson model and
the quantum percolation model belong to the same universality class.

Conductivity is possible through an in�nite cluster only, therefore only the in�nite
cluster should be investigated, thus pQc > pCc , so only the p > pCc regime is interesting for
us. Since numerically we can deal with a �nite lattice only, we restricted our work on the
largest �nite cluster, which was found by a Hoshen-Kopelman algorithm [51].

Electronic conduction is only possible on an in�nite cluster, so pQc > pCc is expected,
therefore the in�nite cluster should be investigated, therefore only the p > pCc regime is
interesting for us. Since numerically one can deal with a �nite lattice only, we restricted
our work on the largest �nite cluster found by a Hoshen-Kopelman algorithm [51].

At �rst let us take a glance at the density of states (DOS) because for the quantum
percolation problem it deserves a special attention.

5.2 Density of states

The DOS of the giant cluster has itself an unusual form. The evolution of this function
with p is depicted in Figure 5.1. With increasing disorder, in the present case this
means decreasing p, more and more sharp peaks appear in the spectrum. These peaks
correspond to special, so-called �molecular states�, which are localized on a few sites [48].
These states are non-zero on a few sites only and exactly zero on every other one due to
exact destructive interference. Therefore they are not localized in the sense of Anderson
localization, there is no exponential decay in the wave-function envelope. Typical few-site
structures and corresponding energies are given on the right side of Figure 5.1. Since the
value E = 0 appears for most clusters as an eigenvalue, the highest peak of the DOS is
at the middle of the band, and there is also a pseudo�gap around it.

Considering other few-site clusters there is no reason for the eigenvalues to avoid any
part of the band, therefore peaks in the DOS corresponding to molecular states should
appear densely in the thermodynamic limit. The energy of a molecular state is a strict
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Figure 5.1: Left side: Density of states of quantum percolation model at di�erent site-
�lling probabilities, (a) p = 0.35, (b) p = 0.4, (c) p = 0.5, (d) p = 0.6. Panel (e):
Small clusters corresponding to special energies taken from the review of Schubert and
Fehske [52].

value, thus the peaks in the DOS appear as a series of Dirac-deltas. As we can see, the
spectrum consists of two parts: a dense point spectrum due to molecular states, and a
continuous one due to all other states [48]. This statement has been rigorously proven
recently in the case of a 2D square lattice, and for tree graphs corresponding to an e�ective
in�nite dimension, therefore it is conjectured to be true in any dimension [53].

5.3 The role of chirality

In Figure 5.2 two states are visible from the band center. Figure 5.2(a) looks like a
molecular state from Figure 5.1(e), but in Figure 5.2(b) and (c) one can see that states
at the band center can extend over rather large regions also. This suggests that not
only strogly localized molecular states are present at the band center. Looking more
carefully one can notice a chessboard pattern on Figure 5.2(c). To see this e�ect better
in Figure 5.3 we present wave-functions also in two dimensions, where this e�ect is visible
more clear.

The cubic lattice is a bipartite lattice and the Hamiltonian (5.1) couples nearest neigh-
bors only, therefore from one sublattice, α, it is possible to hop to the other sublattice, β,
only. The chessboard pattern resembles to chiral states living on sublattices of bipartite
lattices. In fact introducing the i = xL2 + yL+ z index, the matrix

Cii =

{
1 if i is even (α sublattice)

−1 if i is odd (β sublattice)
(5.3)
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(a) (b) (c)

Figure 5.2: Wave-functions at p = 0.5, E = 0: On (a) and (b) the size of a cube
is proportional to

√
|Ψi|2, coloring is due to x coordinate, on (c) size is uniform, but

coloring is due to
√
|Ψi|2.

(a) (b) (c)

Figure 5.3: Wave-function in two dimensions at p = 0.8 (a) E = 0 , square of the wave-
function at (b) E=0, (c) E = 0.02. Coloring is due to Ψi on (a) and |Ψi|2 on (b) and (c),
blue squares are empty sites.
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Figure 5.4: Hopping elements in the �renormalized� Hamiltonian, H2

anticommutes with the Hamiltonian in Eq. (5.1), thus C acts as a chirality transforma-
tion [54]. Therefore the quantum percolation model is a chiral model. In the low (high)
energy range the states have antibonding (bonding) character. In the middle of the band,
around E = 0, chessboard-like chiral states appear. These chiral states exactly at E = 0
are eigenfunctions of C, as well, therefore they are protected against o�-diagonal disorder.

In other words the lattice is bipartite, and it can be decoupled into two sublattices,
α, β. Let us introduce the projections to the sublattices:

Pα =
∑
i∈α
|i〉 〈i| Pβ =

∑
j∈β
|j〉 〈j| C = Pα − Pβ. (5.4)

Since the lattice is bipartite

HPα |Ψ〉 = EPβ |Ψ〉 HPβ |Ψ〉 = EPα |Ψ〉 (5.5)

holds, therefore the square of the Hamiltonian decouples the two sublattices:

H2Pα |Ψ〉 = E2Pα |Ψ〉 H2Pβ |Ψ〉 = E2Pβ |Ψ〉 (5.6)

Now one can �renormalize� the square of the Hamiltonian, see [54]. This Hamiltonian has
hopping elements depicted in Figure 5.4.

In order to understand the sub gap appearing around the middle of the band, E = 0,
we invoke the arguments of Ref. [54]. The vicinity of E = 0 belongs to the low-energy
regime of the spectrum of H2, therefore here antibonding states should appear, which are
more or less visible in the alternating light blue and orange squares of Figure 5.3(a), if the
white parts corresponding to the β sublattice is removed. But the hopping elements to
the diagonal-lying second neighbors in Figure 5.4 introduce triangles. Triangles and the
antibonding nature together lead to frustration. Based on the frustration of the states
around zero energy Naumis et al. [54] showed in two dimensions, that the width of the
pseudogap around zero energy, ∆, is connected to the peak at E = 0:

∆ ∼ √ρ0, (5.7)

where ρ0 stands for the weight of the zero energy states in the spectra. They also showed
that the width of the pseudogap tends to zero in the non-disordered limit, lim

p→1
∆ = 0.
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The extension of these arguments to three dimensions should be valid, since the most
important ingredient of their calculation is the coordination number of the lattice, and
not the dimensionality itself explicitly.

The states close to E = 0 belong to the edge of the spectrum of H2, which is a
disordered Hamiltonian. Therefore the pseudogap might be qualitatively interpreted as
the Lifshitz tail (see Section 1.2) of H2, leading to localized states close E = 0.

5.4 Finite size scaling for the 3D quantum percolation

model using MFEs

5.4.1 Numerical calculations

In this section our goal is to �nd the mobility edge and the critical exponent of the 3D
quantum percolation model, and investigate the multifractal properties of the critical
wave-functions. Since molecular states are strongly localized, they cannot contribute
to conduction. Therefore we restrict our investigation to the continuous part of the
spectrum only. Since the Hamiltonian Eq. 5.1 is symmetric for E ↔ −E exchange, the
E ≥ 0 interval is investigated only. With the numerical method described in Section 4.2
we are computed one single eigenstate of the Hamiltonian having an eigenenergy close
to a given value of E. In Figure 5.1 it is shown that in a �nite system molecular states
appear frequently at few special energies only, e.g. E = 0,±1,±

√
2 . . . , therefore for

our purpose we have chosen energy windows avoiding the peaks in the DOS. Beside
that, to cover the most interesting regions of the band we chose the following energies:
E = 0.001, 0.01, 0.1, 0.3, 0.7, 1.1, 1.5, 2.1, 3.1, 4.1. For averaging we considered
only one wave-function per realization with the eigenvalue closest to the chosen energy
E to avoid correlations. We only used an eigenfunction if its energy was in a ∆E = 0.01
wide interval around E, except for E = 0.001 and E = 0.01, where ∆E = 0.00001 and
∆E = 0.001 were used.

Our ∆E energy intevals are so small that it completely excludes the e�ect of molecular
states. We ran a test after the �nite-size scaling was performed: Molecular states have
strict energy value, therefore at �xed system size, L, disorder, p, and energy, E, we left
out from our raw dataset all the wave-functions with the same energy value (at most
2% of the original raw dataset). Note that these states are not necessarily molecular
states, they can be regular ones too, having the same energy within numerical precision.
We redid our whole �nite-size scaling procedure (as described in Section 5.4.2), but this
additional re�nement had no e�ect on the results. This test ensures that we �ltered out
the molecular states very e�ectively, and if they were present in our raw dataset, their
e�ect would be negligible.

At every energy we searched for the pQc point. From the approximately ∆p = 0.01
wide neighborhood around pQc we picked about 20 values of p. For the higher pQc values
at �xed system size, L, there are more sites in the giant cluster, thus the Hamiltonian
matrix is larger, and takes more time to �nd the closest eigenvalue to the given energy.
On the other hand Rq and Sq are calculated from more data, thus they are more precise.
Considering these arguments we investigated system sizes and number of samples visible
in Table 5.1. All in all 45 045 000 wave-functions were calculated.

50



system size (L)
number of samples
pQc < 0.41 pQc > 0.41

20 50000 50000
30 50000 50000
40 50000 50000
60 50000 25000
80 20000 10000
100 10000 5000
120 5000
140 4000

Table 5.1: System sizes and number of samples of the simulation for the 3D quantum
percolation model.

5.4.2 Finite size scaling at �xed ` = 1

The method we use here has been described in Section 4.6 for the orthogonal Anderson
model. As written in Section 4.6 error bars are very large for q > 1, thus we investigate
the range 0 ≤ q ≤ 1 only. Since we would like to investigate the MFEs also, we use only
the ensemble averaged GMFEs. The typical behavior of these exponents is depicted in
Figure 5.5, note that curves do not have a common crossing point due to the 1/ lnL term
in Eq. 4.11.
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Figure 5.5: The generalized multifractal exponents (a) α̃ens1 (p, L, ` = 1) at E = 0.7 and
(b) D̃ens

0.5 (p, L, ` = 1) at E = 0.1 for the 3D quantum percolation model. Points with
error bars are the raw data, red solid lines are the best �ts of the function Eq. 4.11 as a
function of disorder, p, at di�erent system sizes, L.

The MFSS at �xed ` = 1 for the range 0 ≤ q ≤ 1 provided critical points, critical
exponents and MFEs for every q value at every chosen energy, E. For �xed energy
the critical points and critical exponents should be q-independent, which can be ful�lled
within the 95% con�dence level, see Figure 5.6. To achieve the q-independence we had
to limit the minimal system size at Lmin = 30 or Lmin = 40 in some cases.
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Figure 5.6: Critical point (left column) and critical exponent (right column) of the 3D
quantum percolation model at di�erent energies. Error bars are 95% con�dence levels.

The critical point, pQc , shifts in most cases, but the shift is within the 95% con�dence
band. An interesting feature is that pQc obtained from αq for q ≤ 0.5 and q ≥ 0.5 shifts in
the opposite direction. For α0.4 and α0.6 the MFSS mostly did not converge since α0.5 = d
and close to the q = 0.5 point α̃ curves have similar steepness close to the critical point,
therefore it is numerically hard to determine a well�de�ned crossing point after scaling
out the lnL shift, see Figure 5.7. Therefore these data are not presented in Figure 5.6,
similarly to Section4.4.

For E = 0.001 and E = 0.01 the MFSS showed severe convergence troubles, and even
if it converged, provided �t parameters with very large error. The reason behind this
behavior is presumably the close vicinity of the pseudogap at E = 0 in the DOS, and it
is very hard even to �nd eigenvalues close enough to the desired energies E = 0.001 or
E = 0.01. Another di�culty in this case is that the mobility edge becomes anomalous
approaching E = 0, see Figure 5.8(a). Therefore only a narrow energy-band is permitted
for averaging around E = 0.001 or E = 0.01, which decreases further the possible number
of eigenstates. For these reasons parameters coming from MFSS at E = 0.001 and
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Figure 5.7: The generalized multifractal dimensions (a) α̃ens0.4 (p, L, ` = 1) at E = 1.5 and
(b) α̃ens0.6 (p, L, ` = 1) at E = 0.1 for the 3D quantum percolation model. Dots are raw
data, solid lines connect data points having the same system size as a guide for the eye.

E MFE pQc ν Ndf χ2 Lmin nrel n%

0.1 D0.5=2.421 (2.416..2.426) 0.45384 (0.45365..0.45402) 1.591 (1.508..1.682) 136 113 20 3 1

0.3 D0.5=2.397 (2.393..2.402) 0.40241 (0.40228..0.40257) 1.705 (1.578..1.879) 157 123 20 3 1

0.7 D0.6=2.271 (2.265..2.278) 0.38402 (0.38387..0.38418) 1.645 (1.572..1.741) 181 150 20 4 1

1.1 D0.6=2.262 (2.257..2.268) 0.38518 (0.38504..0.38531) 1.609 (1.542..1.688) 243 155 20 3 1

1.5 D0.8=2.027 (2.020..2.035) 0.38459 (0.38443..0.38476) 1.688 (1.589..1.789) 144 154 20 3 2

2.1 D0.5=2.439 (2.431..2.448) 0.40466 (0.40443..0.40492) 1.606 (1.530..1.692) 127 116 40 2 2

3.1 D0.4=2.542 (2.538..2.546) 0.50628 (0.50606..0.50647) 1.603 (1.515..1.695) 138 113 20 3 1

4.1 α0.9=2.108 (2.101..2.114) 0.63827 (0.63806..0.63845) 1.584 (1.486..1.699) 128 113 20 3 1

Table 5.2: Resulting data along the mobility edge. These q values were chosen to compute
ν and obtain the mobility edge depicted in Figure 5.8.

E = 0.01 were only used to plot the mobility edge, these two points are denoted with
empty squares in Figure 5.8(a).

At �xed energy we picked one q point that represents well the results for that en-
ergy. The pQc values are leading to a mobility edge, see Figure 5.8(a). The ν values are
independent, and due to universality they should not depend on the energy. Thus they
can be averaged, providing a more precise critical exponent, ν = 1.622 (1.587..1.658),
see Figure 5.8(b). To derive the average, the data points were weighted by their inverse
variance, the error bar is twice the standard deviation of the mean, which is about the
95% con�dence band for a Gaussian.

In the literature there are previous works showing a mobility edge [49, 50, 52, 55], see
Figure 5.9. The shapes of these curves are very similar: a steep decrease around E = 0,
then a plateau resulting in a global quantum percolation threshold for the system, and
�nally an increasing behavior with growing energy. The curves are in good qualitative
agreement with each other, beyond E = 3 quantitative agreement is also present. Curves
of Soukoulis [50] and Schubert [52] have jumps at E = 1 and E =

√
2 (only Ref. [52])

due to the most frequent molecular states probably. Our curve is in really good agree-
ment with recent result of Travenec [55] obtained by transfer matrix methods; curves are
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Figure 5.8: (a) Mobility edge for the 3D quantum percolation model, dotted line denotes
the classical percolation threshold, pCc = 0.3116077± 0.0000002 [47]. Circles are approxi-
mate values of the bandwidth, beyond them only the Lifshitz-tail is present. Squares are
results from MFSS, line is a spline to guide for the eye. Empty squares and dashed lines
are for approximate data obtained from MFSS at E = 0.001 and E = 0.01 (b) Critical
exponent for the 3D quantum percolation model. Error bars are for 95% con�dence band.
Dashed line is the average, dotted lines note the 95% con�dence band around the average.
The resulting critical exponent is ν = 1.622 (1.587..1.658). Corresponding data is listed
in Table 5.2.

almost covering each other. His critical exponent is also in good agreement with ours,
see Table 5.3.

At low p values the bandwidth is small, but increasing p results in a wider band. In
the Lifshitz-tail only localized states are present, therefore the mobility edge curve should
be above the curve of the bandwidth. As a result the mobility edge curve increases at
high energies in Figure 5.8(a). Reaching the edge of the band, E → 6, the mobility
edges drawn from the data points of di�erent authors seem to converge to 1. Therefore
we put a point in the right-top corner of Figure 5.9; however, at p = 1 the sample is
a perfect crystal, and wave-functions are completely extended Bloch-functions over the
whole band.

Exactly at the center of the band, E = 0, on the other hand, extremely localized
molecular states disturb the picture, in addition close to the band center a pseudogap
forms in the DOS (see Section 5.2 and Figure 5.1), therefore this regime is really hard
to investigate numerically. Even though the localized molecular states at E = 0 belong
to the point spectrum, it is still not clear, what is the E → 0 limit of the mobility edge,
describing the continuous spectrum. The question arises: Does the very steep increase
of the mobility edge approaching E = 0 result in a lim

E→0
pQc (E) = 1 or the limit is lower

than one? Based on the arguments in Section 5.3 our guess is that at any �nite disorder,
p < 1, there are localized states near E = 0, resulting a limit of unity for the mobility
edge, lim

E→0
pQc (E) = 1.

Some values of the critical exponent can also be found in the literature. In Ta-
ble 5.3 we collected these values ranging from 1.2 to 1.95. Because of the more limited
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Figure 5.9: Mobility edge of the 3D quantum percolation model in the litera-
ture [52][49][50][55][47].

computational e�orts, previous works used much smaller system sizes compared to our
possibilities, leading to much bigger �nite size e�ects, a�ecting their FSS. Conductiv-
ity or transfer matrix methods used to overestimate, while level statistics and Green-
function techniques used to underestimate the critical exponent, ν. Our critical exponent
is practically in the center of the interval of previous results 1.2 ≤ ν ≤ 1.95. Our expo-
nent, ν = 1.622 (1.587..1.658) is in very good agreement with the most recent study of
Travenec[55] similarly to the mobility edge. Furthermore the critical exponent is within
con�dence band with our most precise previous result for the orthogonal Anderson model
(ν = 1.595 (1.582..1.609)) obtained by the varying λ method, see Table 4.5, or with the
high precision value (ν = 1.590 (1.579..1.602)) of Rodriguez et al. [32], however our result
seems to be a bit higher. As written in Section 1.3, chiral and non-chiral Anderson models
are very similar to each other in the bulk of the spectrum. Therefore our matching critical
exponent provides further evidence to previous conjectures and statements, saying that
the chiral orthogonal Anderson model and the 3D quantum percolation model belong to
the same universality class.

5.5 Analysis of MFEs

MFSS provided us the points of the Dq(E) and αq(E) surface at the investigated energies
and q values. By inversion of the mobility edge curve, pQc (E) one can derive the MFEs
as a function of pQc and of q, see Figure 5.10. Since D0 = d, at small q values, i.e. q → 0,
the results for Dq are p

Q
c -independent, but for larger values of q the Dq starts to shift

down with decreasing pQc , which shows up in the lower right corner of Figure 5.10(a). In
the lower regime of Figure 5.10(c) this shift is visibly signi�cant. The same phenomenon
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Author Year ν Method Sytem size
Root-Bauer-Skinner[56] 1988 1.8± 0.11 conductivity L = 3− 9
Koslowski-von Niessen[57] 1991 1.95± 0.12 conductivity L = 6− 9
Berkovits-Avishai[58] 1996 1.35± 0.1 level statistics L = 7− 15

Kusy et al.[49] 1997 1.2± 0.2 Green-function L = 4− 8
Kaneko-Ohtsuki[59] 1999 1.46± 0.09 level statistics L = 12− 21

Travenec[55] 2008 1.6± 0.1 conductivity L = 14− 20
Present work 2014 1.622± 0.035 multifractality L = 20− 140

Table 5.3: Critical exponent of the 3D quantum percolation model in the literature.

can be detected for αq. This suggests that Dq and αq seem not to behave as universal
quantities.

At relatively larger values of pQc , Dq and αq ful�ll the symmetry relation Eq. (2.12),
see Figure 5.11 (a), (b), (e) and (f). However, at the bottom of the mobility edge, where
pQc is smaller, meaning that the lattice is more diluted or more irregular, deviations from
the symmetry law seem to be prominent. The Dq and αq values remain the same at small
q, i.e. when q → 0, but drop down as q increases. Resulting in a conclusion that the
symmetry relation, Eq, (2.12), is violated in this regime, see for example Figure 5.11 in
range 0.3 ≤ E ≤ 2.1.
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Figure 5.11: Symmetry relation of ∆q (left column) and αq (right column) of the 3D
quantum percolation model at di�erent energies. Error bars are 95% con�dence levels.
Points are naturally symmetric (antisymmetric) for q = 0.5 for ∆q (αq) because of the
subtraction (addition) of terms corresponding to q and 1− q.

The non-universality of Dq and αq would automatically imply the non-universality of τq,
as well. On the other hand with a Legendre-transform for τq, f(α) can be obtained,
describing the scaling of the probability distribution of the wave-function amplitudes.
This distribution should be universal, therefore f(α) should be universal, too. From the
αq and Dq exponents presented in Figure 5.10(a) and (b) we computed the f(α) curve
using Eq. 2.10, which is depicted in Figure 5.12. The values from di�erent regimes of the
mobility edge seem to form a unique curve, but this is mostly due to the scale on the
axis. The upper inset of Figure 5.12 shows signi�cant di�erences between data points at
di�erent energies. The approximate shape of the curve is a parabola, however, a quartic
curve �ts the data points slightly better.

According to Eq. (2.10) q = 1 corresponds to the �xed point of the f(α) function,
f(α1) = α1. For di�erent values of p

Q
c the exponent α1 is not unique, leading to a linear

regime of the f(α) function, see the lower inset of Figure 5.12. This makes the whole
Legendre-transformation di�cult, since it needs strict convexity. Conversely an f(α)
that is not strictly convex would lead to ill-de�ned τq, Dq and αq, like in our case, which
contradicts universality again. A possible resolution of this contradiction could be that
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Figure 5.10: First row: (a) Dq (b) αq as a function of q at di�erent energies, E. Second
row: MFEs shifted by their value for the Anderson model, (a) DQP

q −DAnd
q (b) αQPq −αAndq

as a function of pQc at di�erent q values. Dotted lines are guides for the eye, error bars
represent a 95% con�dence band on (c) and (d). Insets are the same, but without the
shift.

our result for the MFEs is just simply not complete, perhaps a p-dependent phenomenon
has not been taken into account a�ecting the results. Since the problem appeared at the
bottom of the mobility edge, closest to the classical percolation threshold, one possible
candidate for such phenomenon is the existence of an additional length scale, namely
the correlation length of the classical percolation. In order to test it we added this
length scale to the �tting function leading to a 3-variable function with number of �t
parameters ∼ n3

rel, but we could not �t so many parameters to our dataset. There is only
a small di�erence between the values of the MFEs for the quantum percolation model
and for the orthogonal Anderson model, see Figure 5.10, and the symmetry relation
(2.12) is almost valid within the error bar at the bottom of the mobility edge, too, see
Figure 5.11. Therefore another explanation would be that somehow we underestimated
the error bars of the MFEs. In the p→ 1 limit, our exponents seem to be close to their
value for the orthogonal Anderson model, that together with our former claim in the
Section 5.4.2 saying that quantum percolation belongs to the chiral orthogonal Anderson
class, corroborate this possibility further. We believe that there is a unique and universal
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Dq, αq and f(α) curve for the quantum percolation model, and it is identical with the
one for the orthogonal Anderson model that ful�lls the symmetry relation (2.12).

As a conclusion the present coherent set of data with a coherent technology in de-
riving multifractal exponents ful�ll our expectations for larger values of pQc ≥ 0.5 but
unfortunately unexpected deviations occur for lower values, i.e. pQc ≤ 0.5.

5.6 Summary

In this chapter we have numerically investigated the quantum percolation model in 3D,
and discussed its non-trivial DOS along with the role of chirality. In order to describe
the localization transition we used the MFSS method described in Section4.6, and we
found q-independent results. We numerically determined the mobility edge of the sys-
tem, con�rming previous calculations. We also gave an explanation for the behavior of
the mobility edge near E = 0 and at high energy. For the critical exponent we got
energy-independent values within 95% con�dence level. The average of these values is
the same as the critical exponent of the orthogonal Anderson model, implying that quan-
tum percolation belongs to the chiral orthogonal Anderson universality class. We also
determined the MFEs Dq and αq along the mobility edge, and for larger values of pQc we
found no signi�cant di�erence from the Anderson model con�rming the statement of the
universality class further. In this regime the symmetry relation (2.12) is ful�lled. On
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the other hand in the case of lower pQc regime the exponents started to deviate violating
universality and (2.12), probably caused by some unexpected p-dependent phenomenon.
This behavior deserves further attention.
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Chapter 6

Anderson localization at large disorder

6.1 Introduction

In the present chapter we investigate the properties of the eigenstates of the orthogonal
Anderson-model, de�ned in Eq. (1.1), close to the band-edge in the strongly localized
regime, W � Wc. The spatial extent of the eigenstates is commonly characterized by
the inverse participation ratio (IPR), R2 [5, 60],

R2 =
N∑
i=1

|Ψi|4 . (6.1)

This is equivalent to the de�nition in Eq. 2.6 at ` = 1. For a state extending homoge-
neously over k sites R2 = k−1, thus 1/R2 tells us the e�ective number of sites a state
extends to, hence the name. A state localized on one single site would give R2 = 1, but
extending over the whole system of size N , R2 = 1/N . Therefore any states will have an
R2 value between these two cases, 1/N < R2 < 1. In summary the R2, is a measure of
localization, its inverse a measure of extension.

For strong disorder the states are expected to extend over a few sites only, therefore
one expects IPR values typically of the order of R2 ≈ 1, hence �nite size e�ects will not
disturb our numerical simulations and in addition relatively small systems can be used.
We employed periodic boundary conditions, and linear system sizes L = 512 in d = 1,
L = 20 in d = 2 and L = 8 in d = 3. We computed the eigenvalues and the eigenvectors
of the Hamiltonian Eq. (1.1), and the IPR for every state. We made statistical averaging
over M = 12500 realizations, the results of the one dimensional (1D) case are shown in
Figure 6.1 for disorder strength W = 32. In Figure 6.1(a) it is shown that the dots are
distributed symmetrically around the band center, E = 0, due to E ↔ −E exchange
symmetry on average. In Figure 6.1 we may also see that the distribution of the IPR is
broad but many of the states seem to have values close to unity, R2 ≈ 1, and there is
a considerable amount of them around R2 = 1/2, as well. As a function of energy we
can see that moving away from the band-center the average IPR, 〈R2〉, �rst increases
in accordance with our expectation of increasing localization towards the band edge.
However, beyond a certain energy to be discussed later,

E0 =

√
1 +

(
W

2

)2

, (6.2)
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(a) (b)

Figure 6.1: (a) IPR of the states as a function of energy for W = 32. The red dots
correspond to the states, the black curve is the average. (b) The same as (a) but zoomed
to the band edge.

the average IPR decreases again, even though the localization length (not shown here)
should further increase undisturbed over this energy scale. This phenomenon has been
recently noticed and presented in Ref. [61]. This means that at the band edge the e�ective
size of a state becomes larger, even if the localization length decreases. Our main aim
in this chapter is to understand and give an analytic explanation for the behavior of
Figure 6.1 especially its part (b), showing an empty region of the IPR for large value of
the energy together with a decrease of the average IPR, 〈R2〉.

A qualitative explanation of the existence of this region is as follows. If the energy of
an eigenstate is bigger than W/2 then it must extend at least over two sites, because the
on-site energies are bounded by |ε| ≤ W/2, hence for large energies beyond the potential
energy the states should have some additional kinetic energy which can be obtained by
allowing their extension over more than one site. This is the reason why close to the
band edge the states become more extended and hence the IPR has an upper bound. A
similar argument can be found in [61].

In order to understand the behavior of the sates at large disorder, �rst we have to start
with the asymptotic behavior, i.e. as W → ∞. In that limit all the states are localized
to a single site and hopping, i.e. kinetic energy, plays no role. In this case the system
is a kind of sum of independent sites, therefore from the point of view of a probabilistic
description, it is enough to take into account just one site with a random on-site energy
and one electron on it. The probability distribution for E and IPR of this one-site system
is the same as for a large system due to the independence of sites. The energy is just the
random potential energy, thus the model gives us a W wide band, which is very close to
reality (see Figure 6.1), for large enough disorder. Since every state is localized to one
site, for every state R2 = 1 and that also becomes a increasingly better approximation
as W increases. But as mentioned above, for �nite disorder there is an interesting inner
structure in the �gures that this one-site model cannot capture. Thus we tried to �nd
a better model. For large enough W the states are strongly localized and extend over a
few sites, which can be seen in Figure 6.1. For example at W = 32 most of the IPRs are
larger than 1/2, in other words most of the states extend approximately over two sites,
so a two- or three-site model should be enough - at least qualitatively - to describe this
strongly localized system.
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6.2 The two-site model

As mentioned above, an improvement to the asymptotic, large disorder limit where the
one-site model works, is the so-called two-site model. We show here that it gives us the
main physics of Anderson model at large disorder. For such a model the Hamiltonian
reads as

H =

(
ε1 −1
−1 ε2

)
, (6.3)

where ε1 and ε2 are uncorrelated random numbers drawn with uniform distribution,
p(ε1, ε2) = W−2 from the interval [−W

2
, W

2
]. Consequently the support of the probability

distribution is a square, which is shown in Figure 6.2(a).
(a) (b)

Figure 6.2: The domain of (a): p(ε1, ε2), (b): p(E1, I) for W = 8.

The eigenvalues and the unnormalized eigenvectors of the Hamiltonian (6.3) are

E1,2 =
ε1 + ε2

2
±
√

1 +

(
ε1 − ε2

2

)2

, (6.4)

v1,2 =

(
− ε1−ε2

2
∓
√

1 +
(
ε1−ε2

2

)2

1

)
. (6.5)

Changing ε1 and ε2 to new variables, t = 1
2
(ε1 + ε2) and u = 1

2
(ε1 − ε2), the probability

distribution function is still constant, but on a square rotated with 45◦, p(t, u) = 2/W 2.
Using these transformed variables the eigenenergies and the IPRs can be writen the
following way

E1,2 = t±
√

1 + u2 , (6.6)

R2 =
1 + 2u2

2 + 2u2
. (6.7)

At this point we take the larger eigenvalue, E1, and express t with E1 and u, and then
express u using R2. After these two transformations the probability density function of
E1 and R2 become

p(E1, R2) =
2

W 2

1√
2(1− 2R2)(R2 − 1)3

, (6.8)
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whose support is quite non trivial:

1

2
≤ R2 ≤ 1− 1

2

1 +

[(
E1 + W

2

)2 − 1

W + 2E1

]2
−1

(6.9)

if −W
2

+ 1 ≤ E1 ≤ E0 and

1

2
≤ R2 ≤ 1− 1

2

1 +

[(
E1 − W

2

)2 − 1

W − 2E1

]2
−1

(6.10)

if E0 ≤ E1 ≤ 1 + W
2
using E0 the energy border de�ned in Eq. (6.2) and appearing in

Figure 6.1. This domain is shown in Figure 6.2(b).
The probability distribution function p(E1, R2) is obtained for the larger eigenvalue,

E1. For the smaller eigenvalue, E2 the result is identical, except E1 must be replaced by
−E2. Thus the probability density function describing the whole system is p(E,R2) =
p(E1, R2) + p(E2, R2) = p(E1, R2) + p(−E1, R2), which is shown in Figure 6.3(a). If we
compare this analytic function to Figure 6.3(b), the probability density function obtained
numerically on a system with linear size L = 512, the qualitative similarity is obvious.
In Figure 6.1 one can clearly see that the function is symmetric, and it is a sum of two
components. In our case these two components are the two eigenvalues. This simple
two-site model also explains the behavior of the IPR as a function of energy close to the
band-edge. Eq.(6.10) is responsible for the decrease of the IPR depicted on the right
side of Figure 6.2(b). Another feature of the two-site model is the peak in p(E,R2) at
R2 ≈ 1/2. However, there are some di�erences between the model and the numerical
results. First of all in a two site model R2 ≥ 1/2, because the state can extend maximum
to two sites, but in a bigger system there exist a few states extending over more than two
sites. Therefore in the low-R2 regime the two-site model naturally underestimates the
reality. Nevertheless both distributions are normalized, therefore if somewhere there is an
underestimation, elsewhere there must be an overestimation, which gives us the hump at
high R2 values in Figure 6.3(c). Looking at Figure 6.3(d) it is clear that the two-site model
captures very well the shape of the domain of de�nition for the two components, we see a
little overestimation for high values of the IPR. From p(E,R2) we calculated the average
of IPR, 〈R2〉 as a function of the energy, E, which can be seen in Figure 6.5(b). The
analytic curve shows a qualitative agreement with the numerical function: moving away
from the band-center we see an increase in 〈R2〉, and beyond E0 it decreases, showing a
little shoulder. Quantitatively in the band-center the model overestimates 〈R2〉, but in
the decreasing regime the two site model becomes a good approximation (see the inset
of Figure 6.5(b). In addition the two-site model has a band of

[
−W

2
− 1, W

2
+ 1
]
but

obviously the real band extends beyond these limits.
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(a) (b)

(c) (d)

Figure 6.3: p(E,R2) (a) The analytic result of the two-site model, (b) numerical result
for system size L = 512, (c) the di�erence between (a) and (b). (d) Red points are the
numerically obtained E and R2 values at system size L = 512, black curve is the domain
of the two eigenstate in the framework of the two-site model.

6.3 The three-site model

The two-site model introduced in Section 6.2 seems to give a qualitatively correct explana-
tion for the numerically obtained distributions but as pointed out there are de�ciencies. In
the present subsection we outline the generalization of this model to a three-site model,
and we investigate how the results change. The Hamiltonian incorporating three-sites
reads as

H =

 ε1 −1 0
−1 ε2 −1
0 −1 ε3

 (6.11)

In the three-site model the domain of the probability density function is a cube (see
Figure 6.4(a)), and the function is constant, p(ε1, ε2, ε3) = W−3. As in the two-site
model, the eigenvectors and IPRs should not depend on the average energy, therefore
it seems helpful to introduce new variables: ε1 = t + u, ε2 = t + v, ε3 = t − u − v.
This transformation changes the domain to a parallelepiped, and the probability density
function remains constant, because the transformation is linear, p(t, u, v) = 3/W 3. It
is easy and straightforward to compute the eigenvalues and eigenvectors of Eq. (6.11),
but the expressions are very long, so we do not list here the exact expression, instead
we only present their support. Every eigenvalue has the form Ei = t + χi(u, v), with
i = 1, 2, 3. Similarly to the two-site case, the size of the eigenvectors, i.e. the IPRs
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(a) (b) (c) (d)

Figure 6.4: The domain of de�nition for variables (a) ε1, ε2, ε3 (b) E1, u, v (c) E2, u, v (d)
E3, u, v in a three-site model.

depend on u and v only, R2(u, v). Picking one of the eigenvalues the problem can be
transformed to the variables Ei, u and v. The probability density function remains
constant, p(Ei, u, v) = 3/W 3. The di�cult part of the problem is that the domain
changes to a very complicated object, which is shown in Figure 6.4(b)(c) and (d) for E1,
E2 and E3. To compute p(Ei, R2) one has to express u as a function of R2 and v, then
calculate the new domain and then integrate over v.

This resulted in a di�cult task analytically because the expressions of the IPRs are
very complicated. Instead we performed our calculation based on p(Ei, u, v) = 3/W 3

using a Monte Carlo integration over the domains depicted in Figure 6.4(b),(c) and (d).
The result is given in Figure 6.5(b).

In view of Figure 6.5(b) it is clear that the three-site model gives a quantitatively
better approximation of a large system, especially approaching the edge of the band (see
the inset), but qualitatively the main behavior is captured already by the two-site model.

6.4 Higher dimensions and summary

Generalization of our results to higher dimensions, d = 2, 3 and their comparisons to the
numerical simulations are presented in Figure 6.5. There is a striking similarity between
the �gures which is due to the fact that the strongly localized regime is e�ectively zero
dimensional, i.e. as W → ∞ the states become localized over a few sites only. The
major di�erence is that the line separating the two components becomes less sharp with
increasing dimensionality. In one dimension this line can be seen very clearly, in d = 2 it
is still visible, but in d = 3 it becomes hardly visible.

To summarize we have shown that the Anderson-model at strong localization shows
interesting behavior especially approaching the band-edge. As already known the states
become more and more localized as energy increases from the band-center towards the
band-edge, i.e. the inverse localization length of the states increases as a function of
energy. The IPR, on the other hand, increases up to a critical energy, E0 (6.2). Beyond
this limit the e�ective extension of the states can be described by a multi-site (2-site or
3-site) model because in case the eigenenergy becomes larger than this critical energy,
E > E0, some kinetic (hopping) energy is needed besides the random potential energy
yielding in an upper bound of the IPR which in turn results in a decrease of the average
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Figure 6.5: Left side: IPR as a function of energy (a) in d = 1 with L = 512 for W = 32,
(c) in d = 2 with L = 20 for W = 50, (e) in d = 3 with L = 8 for W = 100. Red dots
correspond to single states, black curve is the average. Right side: R2 as the function
of energy (b) in d = 1, (d) in d = 2, (e) in d = 3. Dots correspond to the numerically
obtained average curve for a big system, black curve corresponds to the one-site model,
blue to the two-site model, and green to the three-site model. Insets are the same, but
zoomed to the left band edge.
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IPR, 〈R2〉 as a function of energy in this regime. In order to understand the numerical
simulations we introduced a few-site model and solved analytically capturing the main
physics of the problem.

In Ref. [61] it is argued that the behavior explained in the present work is attributed
to the crossover towards resonant states similar to the e�ect produced by the Lifshitz-tail
(see Section 1.2). It would be interesting to �nd the relation between our results and the
resonant states.

71



Chapter 7

Anderson transition and multifractals

in the spectrum of the Dirac operator

of Quantum chromodynamics at high

temperature

7.1 Introduction

Several recent works show that there is an Anderson transition in the spectrum of the
Dirac operator of Quantum chromodynamics (QCD) [62, 63, 64, 65]. These works used
mainly spectral statistics to characterize the transition, our goal in this chapter is to
investigate eigenvectors through GMFEs. We show that MFSS works for this problem,
implying multifractality of the eigenvectors at the critical point. Moreover the estimated
MFEs are compatible with the ones for the corresponding Anderson model con�rming
that this transition is really an Anderson transition.

QCD is the theoretical description of strong interaction. It contains 6 �avors of quarks
(fermions), which build up hadronic matter, and carry 3 possible color charge. Gluons
(bosons) are mediating the strong interaction, and they carry color charge also. Due to
exact SU(3) symmetry in color space, the theory is an SU(3) gauge theory. An interesting
feature of QCD is that it behaves completely di�erent at low and high temperature. At
low temperature anti-screening is present, because beside quarks, gluons also have color
charge. This leads to con�nement, which makes impossible to observe a single quark.
At high temperature the coupling constant, g, decreases, leading to asymptotic freedom
of the quarks, the matter forms in this regime a quark-gluon plasma. In between, at
temperature Tc, there is a crossover from one state to the other.

Let us denote the quark �elds by ψ (�avor and color indexes are left for simplicity),
the color vector potential by Aµ, and the �eld strength, expressible from Aµ, by Fµν .
Introducing the inverse temperature, β = 1/T as imaginary time, β = it, the partition
function has the fallowing form:

Z = Tr
(
e−βH

)
=

∫
Dψ̄DψDA e−SE [ψ̄,ψ,A], (7.1)

where Dψ̄, Dψ and DA denote path integrals, and SE is the Euclidean action, SE =
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∫
d4xLE. The Euclidean Langrangian of QCD has the following form:

LE =
∑
f

ψ̄f (γµ(∂µ + igAµ) +mf )ψf︸ ︷︷ ︸
LquarkE

+
1

4
Tr (FµνF

µν)︸ ︷︷ ︸
LgaugeE

, (7.2)

The �rst term in Eq.(7.2) describes the quarks, f is an index for di�erent �avors, the
second term describes the gauge �eld. The operator between the quark �elds (without
the mass term) is the Dirac operator [66],

D = γµ(∂µ + igAµ), (7.3)

which will be investigated in this chapter. Since quarks are fermions, they are Grassmann-
valued, hence the quark terms in the partition function can be written as

Zf =

∫
Dψ̄Dψ e−ψ̄(D(A)+mf)ψ = det (D(A) +mf ) , (7.4)

leading to

Z =

∫
DA

∏
f

det(D(A) +mf )e
−SgaugeE [A] . (7.5)

7.2 Spectral properties of the Dirac operator

Our aim in this chapter is to investigate the properties of the eigenvectors of the Dirac
operator, describing quark modes. The Dirac operator plays an important role, because
the quark Green's function between spacetime points x and x′ is the matrix element of
the inverse of the Dirac operator corresponding x and x′. The low-energy eigenmodes are
dominant in this respect, therefore it is important to know their nature.

To be clear about the structure of the Dirac operator, de�ned in Eq.(7.3), we would
like to note that the Euclidean γ matrices satisfy the relations

{γµ, γν} = 2δµν γ5 = γ1γ2γ3γ4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (7.6)

The Dirac operator is an anti-hermitian and chiral operator, because the following equa-
tions hold:

D = −D† {γ5, D} = 0 γ†5γ5 = γ2
5 = I. (7.7)

Therefore it has the following structure:

D =

(
0 iW
iW † 0

)
. (7.8)

W is a complex matrix with no further symmetry [66], thus according to Section 1.3,
the system should belong to the chiral unitary class. Due to anti-hermiticity the Dirac
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Figure 7.1: Schematic �gure of the density of states of the Dirac operator at di�erent
temperatures.

operator has purely imaginary eigenvalues, iEn, chirality leads to eigenvalue pairs iEn ↔
−iEn. Therefore we use only the magnitude, En, and we investigate the E ≥ 0 regime.

Figure 7.1 shows how the Density of states, i.e. the probability density function of
eigenvalue magnitudes, En, changes with growing temperature. At low temperature,
when con�nement is present, the eigenmodes of the Dirac operator are extended. In this
regime eigenvalue correlations obey random matrix statistics with level repulsion, and the
DOS is nonzero at zero energy. Increasing the temperature to Tc a pseudogap opens in
the DOS. Increasing the temperature above Tc, a critical energy appears, which moves to
higher energies with increasing temperature. Recent studies show that above Tc quarks
with small energy are localized, having Poisson spectral correlations, while quarks at large
energy are extended, having Wigner-Dyson statistics [62, 64, 65]. An example how the
eigenvectors change with energy is given in Figure 7.2. In Ref. [65] the authors performed
�nite-size scaling for an order parameter derived from the nearest neighbor level spacing
distribution. For �xed temperature they found a sharp transition as a function of energy
between the two limiting cases (Poisson an Wigner-Dyson), with a critical exponent
compatible with the three-dimensional unitary Anderson model. For �xed temperature
Ec seems to be a real critical point, where an Anderson-transition occurs. Our goal is to
investigate this transition through the eigenvectors instead of eigenvalues, and see whether
multifractality is present at Ec or not. Therefore temperature is �xed to T ≈ 2.6Tc
as written in Section 7.3. In Ref. [64] the authors investigated also the temperature-
dependence of the critical energy, Ec(T ), forming a mobility edge. They found that it
reaches zero energy at a temperature compatible with the crossover temperature, Tc.

7.3 Numerical method

For our investigation we use numerical simulations for QCD, called Lattice QCD, which
requires the discretization of Eq.(7.5) on a �nite lattice. For a review of lattice QCD see,
e.g., Ref. [67]. While the discretization of the gauge �elds poses no particular problem,
and can be performed preserving exact gauge invariance [68], fermion �elds are known to
be more problematic, and the discretization of the Dirac operator spoils some of the prop-
erties of its continuum counterpart. Nevertheless, the discretization that we employed,
namely staggered fermions [69], preserves the anti-hermiticity and the symmetry of the
spectrum with respect to the origin, and moreover preserves the chiral unitary symmetry
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(a) (b) (c)

energy

Figure 7.2: Eigenvectors of the Dirac operator of QCD at T ≈ 2.6Tc at (a) E = 0.15
in the insulating regime (b) E = 0.3355 near criticality (c) E = 0.365 in the metallic
regime. Box sizes correspond to A ·

√
|Ψ|2. Multiplying factor, A, was tuned to best sight

for each sub�gure. Spatial system size is L = 56 for all sub�gures. Coloring is due to x
coordinate.

class [66].
Let us now describe the numerical setting in some detail. QCD is discretized on a

periodic hypercubic lattice, of spatial extent L in each direction and temporal extent Lt.
The gauge �elds Aµ are replaced by corresponding gauge links, i.e., parallel transporters
along each link of the lattice, which are elements of the gauge group, SU(3). The func-
tional SgaugeE is discretized and expressed in terms of the gauge links, and the integration
over gauge �elds is replaced by the integration with the Haar measure over gauge links,
i.e., over the gauge-group valued variables on the links. Finally, the continuum Dirac
operator is replaced by the staggered Dirac operator, which reads

Dstag
xy =

1

2

4∑
µ=1

ηµ(x)
[
δx+µ̂,yUµ(x)− δx−µ̂,yU †µ(x− µ̂)

]
, (7.9)

with ηµ(x) = (−1)
∑
ν<µ xν , and Uµ(x) ∈ SU(3) the gauge link connecting the lattice

site x to the neighboring site along direction µ̂. The staggered Dirac operator carries
only spacetime and color indexes, i.e., it has no spinorial structure. The eigenvalue
equation Dstagχ = iEχ must be supplemented with the antiperiodic boundary condition
in imaginary time direction, and to avoid surface e�ects we used periodic boundary
condition in spatial directions.

The Dirac operator can be viewed as i times a random Hamiltonian, with disorder
provided by the �uctuations of the gauge �elds, and distributed according to the Boltz-
mann weight appearing in the partition function. In its discretized version, the Dirac
operator is a large sparse matrix, with nonzero random elements only in the o�-diagonal,
nearest-neighbor hopping terms, which depend on the parallel transporter on the corre-
sponding link of the lattice. This resembles an Anderson model with o�-diagonal disorder,
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although here the �uctuations of the gauge links are correlated, rather than independent.
However, since the theory has a mass gap, correlations decrease exponentially with the
distance. The size of the gauge �eld �uctuations are determined by the temperature,
which therefore is expected to play the same role as the amount of disorder in the An-
derson model. This is con�rmed by the fact that the temperature governs the position
of the mobility edge.

In this chapter we study the spectrum of the Dirac operator by generating gauge link
con�gurations, i.e., realizations of disorder, by means of Monte-Carlo methods. Numerical
calculations were done on a GPU cluster. In our simulations we have included only the
three lightest �avors (up, down, and strange), with equal masses for the up and down
quark, which is a good approximation of the real world for many purposes. Because of the
fermion doubling problem with staggered quark �elds we can simulate four degenerate
�elds at the same time, hence a fourth root has to be introduced for the determinant of
the strange quark, and a square root for the up and down quarks leading to

Z2+1 =

∫
DU det

1
2 (D(U) +mud)det

1
4 (D(U) +ms)e

−SgaugeE [U ] . (7.10)

The lattice spacing in physical units was set to a = 0.125 fm and the temporal size
was �xed to Lt = 4, resulting in the temperature T ≈ 2.6Tc, well above the crossover
temperature (see Refs. [62, 63, 64, 65] for more details). Technical details about the
numerical implementation and the scale-setting procedure can be found in Refs. [70, 71].
We have computed the eigenpairs of the Dirac operator from the smallest eigenvalue up
to the upper end of the critical region, on lattices of spatial sizes in the range L = 24−56
(in lattice units). A detailed list is reported in Table 7.1 along with the corresponding
number of samples.

The three-dimensional box probability, Eq.(2.4), required for the multifractal analysis,
was constructed as follows. To have a gauge-invariant description we summed over the
color components, labeled by c. Moreover, due to the strong correlation between the
lattice time-slices, the eigenvectors of the Dirac operator look qualitatively the same on
each of them, so we can also sum over the time-slices, t. The squared amplitude at site i,
|Ψi|2 is then de�ned as |Ψi|2 ≡

∑
t,c

|χci,t|2, and provides the basic three-dimensional spatial

probability distribution, from which the box probability distribution is then obtained in
the usual way.

7.4 Correlations between eigenvectors

In this section we would like to investigate the correlations between di�erent eigenvectors
of an edge con�guration. Our motivation is twofold: On one hand we want to compare the
eigenvector correlations in QCD with the eigenvector correlations in the unitary Anderson
model. On the other hand we also want to check how much the data, which we use in
Section 7.5 for �tting, are correlated. Cuevas and Kravtsov showed for the Anderson
model that there are non-negligible correlations between eigenvectors in a disordered
system [26]. They investigated the density-density correlations, therefore let us de�ne
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system size (L) number of samples
24 41517
28 20548
32 19250
36 14869
40 8812
44 5242
48 7008
56 3107

Table 7.1: System sizes and number of samples of the simulation for the Dirac operator
of QCD.

the overlap integral of the ith and jth eigenfunctions:

Kij
2 =

∫
d3r |Ψi|2 |Ψj|2 (7.11)

If two states are localized to the same volume, the overlap integral is high, Kij
2 ≈ Kii

2 =
Ri

2(` = 1) (cf. Eq (7.11) and (2.6)), while for two delocalized states Kij
2 ≈ 1/N , where

N = L3 is the volume of the system. This quantity, and the energy di�erence of states
will be in our main interest in this section, thus the joint probability distribution of these
is important:

P (ω, k) =

〈∑
i,j

δ(Ei − Ej − ω)δ(Kij
2 − k)

〉
. (7.12)

P (ω, k)dωdk is the probability that two randomly chosen eigenvectors have energy dif-
ference in the interval [ω, ω + dω), and overlap integral in the interval [k, k+ dk). Let us
introduce two more quantities:

K(ω) =

∫
dk kP (ω, k) =

〈∑
i,j

Kij
2 δ(Ei − Ej − ω)

〉
(7.13)

R(ω) =

∫
dk P (ω, k) =

〈∑
i,j

δ(Ei − Ej − ω)

〉
. (7.14)

The conditional distribution function of k has the form

P (k | ω) =
P (ω, k)

R(ω)
, (7.15)

which describes the probability distribution of k for a �xed energy di�erence, ω. To
characterize the average behavior of the overlap integral as a function of energy, the
conditional expectation value of k is the natural choice,

C(ω) = Ek(k | ω) =

∫
dk

kP (ω, k)

R(ω)
=
K(ω)

R(ω)
. (7.16)
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Figure 7.3: Correlations between the eigenfunctions of the unitary Anderson model at
system size L = 10 (a) at criticality, W = 18.37 (b) in the localized phase, W = 30.

In the extended phase C(ω) ≈ 1/N , because Kij
2 ≈ 1/N in this regime. In the localized

phase C(ω) ≈ 1/N should hold again, because one expects localized states distributed
independently over the sample, and the probability of that such localized states overlap
is approximately ξ3/N . Therefore NC(ω) ≈ 1 should hold for states in the metallic
and insulating regime also. In contrast to this, Cuevas and Kravtsov found notable
correlations for the orthogonal Anderson model deep in the insulating phase also by
examining this quantity, NC(ω) [26]. Figure 7.3 shows the correlations for the unitary
Anderson model at criticality and in the localized phase. One can see large enhancement
of correlations at small ω in both cases, and decreasing behavior with growing energy
separations, ω, similar to the results of Ref. [26]. According to Ref. [26] the reason
behind this is that these exponentially localized states have a reminiscent multifractal-
like texture.

By examining the correlations in QCD we �nd also an enhancement at small energy
separations, see Figure 7.4. In the critical regime the behavior of the two systems is very
similar, even the approximate exponent of the decay is close to 0.5 in both cases. Even
though in the localized regime one can see an enhancement at small energy separations,
and it shows mainly decreasing behavior, in Figure 7.4(b) a large hump is also visible
around ω ≈ 0.02.

This suggests that there are eigenvectors separated in energy typically by ω ≈ 0.02,
whose overlap integral is large. This behavior is visible in Figure 7.5(a), where P (k | ω),
de�ned in Eq. (7.15), is depicted. As written above, the overlap integral depends on
the nature of the states, therefore we compared this quantity to the inverse participa-
tion ratio of the corresponding states. We considered the overlap large, if the relation

Kij
2 /
√
Ri

2R
j
2 ≥ 0.8 held. We divided the C(ω) function to two parts corresponding to

eigenstate-pairs with large and small overlap: C(ω) = CL(ω) + CS(ω). The line on Fig-
ure 7.5(a) shows NCL(ω), which has a hump around ω ≈ 0.02, where P (k | ω) has
non-vanishing probability at large k, showing largely overlapping eigenvectors separated
by ω ≈ 0.02. The behavior of CS(ω) is visible in Figure 7.5(b), where the hump is
almost completely missing, and one can see a decreasing behavior with growing energy
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Figure 7.4: Correlations between the eigenfunctions of the Dirac operator of QCD (a) in
the critical regime, 0.32 ≤ E ≤ 0.35 (b) in the localized regime, 0.15 ≤ E ≤ 0.25 for
di�erent systems sizes.

separation, ω.
We do not know the precise origin of the hump, but one possible explanation is the

following: Because of the fermion doubling problem [62] we would simulate 24 = 16
fermions on the our four-dimensional lattice. Using staggered fermions reduces this to 4,
which means that we would simulate 4 degenerate fermions in the absence of the gauge
�eld, i.e. with unity values on the edges. The gauge �eld breaks up the degeneracy,
but on our scales for the lattice constant doublets of these fermions can still survive.
We believe that the hump is caused by these doublets of states. We also experienced
that large overlap was produced by two states in 95% of the cases, the rest can be
accidental large overlap of three states. This phenomenon supports also the idea of
doublets. Since the fermion doubling problem is the consequence of our discretization
scheme of the continuum model, it has no physical e�ect. Therefore we believe that in
the continuum limit NC(ω) should behave as NCS(ω) in Figure 7.5(b), which shows the
expected decreasing tendency.

7.5 MFSS for the eigenvectors of the Dirac operator

In this section we would like to characterize the Anderson phase transition in the spectrum
of the Dirac operator of QCD (see Section 7.2) in the frame of and MFSS, see Section 3.2.
As written in Section 7.3, a three-dimensional spatial probability distribution was calcu-
lated from the eigenvectors. From that the GMFEs α̃q and D̃q were computed according
to Eq. (2.14b) and (2.14c). In this case the only di�erence compared to these equations
is that now �disorder strength� (gauge �eld coupling, g, determined by the temperature)
is �xed, and we observe the transition as a function of energy, thus W should be replaced
with E. An example of the resulting GMFEs at �xed λ = 0.125 is depicted in Figure 7.6.
The curves shift to the opposite direction with growing system size on the di�erent sides
of the transition. At low energy they shift down, indicating a localized phase, while at
high energy they shift up, suggesting a metallic phase, as expected. In between there
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Figure 7.5: (a) P (k | ω) at system size L = 40 for the eigenvectors of the Dirac operator
of QCD. The line shows the behavior of NCL(ω), the contribution of the largely over-
lapping eigenvector pairs to NC(ω). (b) NCS(ω) which characterizes the contribution of
eigenvectors with small overlap.

should be a crossing point, which is not precisely visible due to �nite size e�ects and
irrelevant scaling.

Important to mention that since there are strong correlations between two eigenvectors
of a gauge �eld con�guration, described in Section 7.4, we had to take them into account.
We took 26 values of energy, Ei, from the range E ∈ [0.32, 0.35]. In order to decrease the
numerical noise for the kth gauge-�eld con�guration we performed averaging for of all
the eigenvectors in a ∆E = 0.0012 wide energy range around Ei, resulting R

k
qi and S

k
qi.

The GMFEs α̃q(Ei, L, `) and D̃q(Ei, L, `) can be computed from averages for Rk
qi and S

k
qi

over the index k. However, GMFEs at di�erent energies α̃q(Ei, L, `) and α̃q(Ej, L, `) (or
D̃q(Ei, L, `) and D̃q(Ej, L, `)) are of course correlated, since the eigenvectors we used to
calculate them are correlated. Therefore to compute the χ2, we had to use the whole
covariance matrix, and not just the variances even for the �xed λ method.

For the MFSS, described in Section 3.2, we used �rst �xed λ = 0.125, because this
value is close to the previously used λ = 0.1, and it is compatible with several system sizes,
listed in Table 7.1. This �xed λ method is more stable, since the number of parameters
to �t grows only linear with the expansion orders. Stability was a serious issue, because
the largest system size, listed in Table 7.1, was about the half we used for the Anderson
models in Wigner-Dyson classes, see Table 4.1, or for the quantum percolation model,
see Table 5.1. This resulted that �ts were stable for adding or removing an expansion
parameter only in the range 0 ≤ q ≤ 1.

The results are independent of q and the type of averaging, as expected. The results
at di�erent values of q were calculated from the same quark modes, hence they are
strongly correlated and cannot be averaged. Since critical parameters computed from
Dens

0.1 represent well the results and their error bar a small, we choose these values for
our �nal result. Our critical point, Ec = 0.3355 (0.3345..0.3364), is compatible with
the values of Giordano et. al, EG

c = 0.33637 (0.33589..0.33685) (using the double of the
standard deviation as error bar listed in Table I of Ref. [65]). The critical point and
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Figure 7.6: Dots are the raw data for GMFEs (a) D̃ens
0.1 (b) α̃typ1.0 at �xed λ = 0.125

for di�erent system sizes. Red line is the best �t obtained by MFSS. Insets are scaling
functions on a log-log scale, after the irrelevant term was subtracted. Error bars are
shown only on the large �gures, in order not to overcomplicate the insets.

critical exponent is also independent of the width of the energy window, ∆E, used for
averaging, which is shown in Figure 7.8. Our critical exponent, ν = 1.449 (1.429..1.481),
also agrees with the result of Giordano et. al, νG = 1.434 (1.33..1.538) [65], and with our
value in Table 4.5 for the unitary Anderson model. However, our values for the critical
point seem to be a bit lower, and for the critical exponent seem to be higher than the
reference values, our results at di�erent values of q are strongly correlated, therefore this
cannot be interpreted as a tendency. On the other hand our value for the irrelevant
exponent, y = 3.178 (2.258..4.134), is signi�cantly di�erent from the value in Table 4.5.
The irrelevant term with the second or the third largest irrelevant exponent might have
larger contribution at our smaller system sizes compared to the ones for the Anderson
model. Therefore we might measured a di�erent irrelevant exponent. It is also possible,
that at our smaller system sizes we measured a mixture of di�erent irrelevant exponents
resulting an e�ective irrelevant exponent, which can explain our di�erence. But since
irrelevant exponent describes a sub-leading term, it is extremely hard to calculate it
accurately. Therefore it is also possible, that our results are not complete, and they
deserves further analysis. The fact that MFSS converges for the problem, shows that
multifractality is present, and the system undergoes a true localization-delocalization
transition. As mentioned in Section 1.3, one expects similar behavior in the bulk of a
chiral and the corresponding non-chiral class. From the symmetries of the Dirac operator
one expects unitary symmetry, and as written above, our critical exponent for QCD
matches with our value for the unitary Anderson model. This shows that the transition
belongs to the chiral unitary Anderson class.

The varying λ method resulted more precise critical parameters for the Anderson
models in the WD classes (see Section 4.4), and it also provides the multifractal exponent.
Therefore we tried to use this method also. The χ2/(Ndf − 1) ratio reached a value close
to unity only if we left out the smallest system sizes, leading to Lmin = 36, and if we used
data corresponding to ` = 1 and 2. The reason behind this is that by adding new values
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Figure 7.7: Critical parameters of the MFSS for the eigenvectors of the QCD Dirac
operator at �xed λ = 0.125. Corresponding data is listed in Table 7.2.
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q exp Wc ν y NDF χ2 nrnirn%nη

0 αens/typ 0.3353 (0.3340..0.3363) 1.443 (1.421..1.478) 3.069 (2.382..4.010) 118 120 4 2 2 0

0.1
Dens 0.3355 (0.3345..0.3364) 1.449 (1.429..1.481) 3.130 (2.509..4.094) 118 119 4 2 2 0

Dtyp 0.3354 (0.3344..0.3365) 1.456 (1.425..1.478) 3.322 (2.564..4.301) 118 120 4 2 2 0

0.25

αens 0.3359 (0.3342..0.3368) 1.470 (1.437..1.521) 3.380 (2.217..4.683) 118 118 4 2 2 0

αtyp 0.3358 (0.3341..0.3365) 1.485 (1.457..1.539) 3.736 (2.443..4.896) 117 121 4 2 2 1

Dens 0.3355 (0.3340..0.3366) 1.457 (1.426..1.494) 3.190 (2.258..4.134) 118 117 4 2 2 0

Dtyp 0.3354 (0.3333..0.3362) 1.488 (1.448..1.567) 3.228 (1.971..4.058) 117 116 4 3 2 0

0.5
Dens 0.3357 (0.3346..0.3369) 1.466 (1.433..1.510) 3.220 (2.416..4.504) 118 117 4 2 2 0

Dtyp 0.3356 (0.3324..0.3368) 1.450 (1.416..1.496) 3.356 (1.666..4.845) 116 117 4 3 2 1

0.75

αens 0.3356 (0.3339..0.3366) 1.462 (1.424..1.517) 3.221 (2.154..4.364) 118 119 4 2 2 0

αtyp 0.3355 (0.3330..0.3366) 1.465 (1.443..1.543) 3.453 (1.955..4.937) 117 122 4 2 2 1

Dens 0.3361 (0.3348..0.3371) 1.468 (1.428..1.507) 3.264 (2.392..4.563) 118 117 4 2 2 0

Dtyp 0.3360 (0.3340..0.3371) 1.449 (1.425..1.529) 3.394 (2.127..5.271) 117 119 4 2 2 1

0.9
Dens 0.3363 (0.3342..0.3374) 1.465 (1.422..1.573) 3.313 (1.984..4.770) 118 118 4 2 2 0

Dtyp 0.3361 (0.3344..0.3372) 1.437 (1.412..1.538) 3.298 (2.145..4.711) 117 118 4 2 2 1

1 αens/typ 0.3364 (0.3346..0.3376) 1.464 (1.425..1.535) 3.334 (2.175..5.018) 118 118 4 2 2 0

Table 7.2: Result of the MFSS at �xed λ = 0.125 for the eigenvectors of the Dirac
operator of QCD, which is visible in Figure 7.7.

of L or ` one adds new information, but in the same time the scaling function must be
�tted for a wider range. The interplay of these two e�ects resulted in convergence using
data described above only.

However, using Lmin = 36 and ` = 1, 2 resulted in convergence, �ts were still unstable
for changing the expansion orders. We have similar amount of independent data as
for the �xed λ case, but many more parameters to �t, as described in Section 3.2. In
order to be able to estimate the MFEs, we �xed the critical energy and the critical
exponent to the average of the values obtained with the �xed-λ method, Eav

c = 0.3357
and νav = 1.461, in this way stabilizing the �ts. The systematic uncertainty corresponding
to this procedure was estimated by repeating the �ts with Ec and ν �xed to one of the
four possible combinations of the values El,u

c and νl,u, which are the average of the lower
and upper boundaries of the con�dence interval of Ec and ν, respectively (see Figure 7.7
and Table 7.2). The largest and smallest values obtained in this way were then used
as upper and lower error bar on the MFEs. We experienced that the main source of
uncertainty comes from the choice of Ec, while �ts are much less sensitive to the choice of
ν. Moreover, statistical errors (estimated by Monte-Carlo) were comparatively negligible.

The results of this procedure are depicted in Figure 7.9. A set of nontrivial MFEs
was obtained, thus providing direct evidence of the multifractality of the critical eigen-
functions of the QCD Dirac operator. Moreover, our results for the MFEs in QCD are
compatible with the ones obtained in the unitary Anderson model, which further con�rms
that the transition belongs to the chiral unitary Anderson class.
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Figure 7.9: Estimated values of MFEs (a) αq and (b) Dq of the QCD model, and the
MFEs of the unitary Anderson model taken from Table 4.10. Values for the Anderson
model were shifted a bit horizontally for better sight.

7.6 Summary

In this chapter we investigated the Anderson transition in the spectrum of the Dirac
operator of QCD at high temperature, which was found by the authors of Ref. [65] using
spectral statistics. Our aim was to examine the transition through eigenvectors, and
search for similarities between this model and the corresponding Anderson model. The
Dirac operator has only chiral symmetry, thus the transition should belong to the chiral
unitary Anderson class. Because of the similarity between the bulk behavior of chiral-
and corresponding non-chiral classes, we compared the results to the unitary Anderson
model. First we examined the correlations between eigenvectors of an edge con�guration.
Even though probably doublets of the fermion doubling problem disturb the picture in
the localized regime, we found basically the same phenomenon for the Dirac operator
of QCD and the unitary Anderson model. MFSS with the �xed λ method resulted
matching results with Ref. [65] for the critical point, and with our results for the critical
exponent for the unitary Anderson model, see Figure 7.7. For several reasons we could
only approximate the MFEs using MFSS at di�erent values of ` if we �xed the critical
point and critical exponent. The resulting MFEs are compatible with the MFEs of
the unitary Anderson model, see Figure 7.9. Our work con�rms that there is a metal-
insulator phase transition in the spectrum of the Dirac operator of QCD, and it belongs
to the chiral-unitary Anderson class. Our work shows also that critical wave-functions
are multifractals. The physical consequences of the QCD Anderson transition and of
multifractality still largely need to be explored. Further work along these lines might
prove bene�cial for condensed matter physics as well, as it approaches the subject of
localization/delocalization transitions from a broader perspective.
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Chapter 8

Thesis statements, publications and

acronyms

8.1 Thesis statements

In this Section I list the thesis statements.

1. I examined the three-dimensional Anderson models belonging to the conventional
Wigner-Dyson symmetry classes with the help of multifractal �nite-size scaling.
With the �xed λ and varying λ methods I con�rmed the presence of multifractality
in all three Wigner-Dyson symmetry classes. I obtained the critical point, critical
exponent and irrelevant exponent for each symmetry class. These parameters were
in agreement with each other for the di�erent methods, and with previous results
known from the literature. The varying λ method provided signi�cantly di�erent
critical exponents for the di�erent symmetry classes. I computed the multifractal
exponents also for every symmetry class. Multifractal exponents of di�erent sym-
metry classes were very close to each other for �xed q, but signi�cantly di�erent for
most of the values of q.
Publication [a] is related to this thesis point.

2. I investigated numerically the quantum percolation model in 3D. In order to de-
scribe the localization transition I used multifractal �nite-size scaling. I determined
the mobility edge of the system, con�rming previous calculations. For the critical
exponent I obtained energy-independent values within 95% con�dence level. The
average of these values is the same as the critical exponent of the orthogonal An-
derson model, implying that quantum percolation belongs to the chiral orthogonal
Anderson universality class. I also determined the multifractal exponents Dq and
αq along the mobility edge, and for larger values of pQc I found no signi�cant di�er-
ence from the Anderson model con�rming the statement of the universality class
further.
Publication [b] is related to this thesis point.

3. I have shown that the Anderson model at strong localization shows non-trivial
behavior especially approaching the band-edge. I showed that only a 2-site or a
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3-site model can describe qualitatively well the system.
Publication [c] is related to this thesis point.

4. I investigated the Anderson transition in the spectrum of the Dirac operator of
Quantum chromodynamics at high temperature. I found similar correlations be-
tween the eigenvectors of the Dirac operator of QCD and the Hamiltonian of the
unitary Anderson model. Multifractal �nite-size scaling with the �xed λ method
resulted matching results with previous works for the critical point, and with my
results for the critical exponent for the unitary Anderson model. The approxi-
mate values of the multifractal exponents were compatible with the multifractal
exponents of the unitary Anderson model. My work con�rms that there is a metal-
insulator phase transition in the spectrum of the Dirac operator of QCD, and it
belongs to the chiral-unitary Anderson class.
Publication [d] and [e] are related to this thesis point.

8.2 Publications

Publications related to this thesis:

[a] L. Ujfalusi and I. Varga : Finite size scaling and multifractality at the Anderson tran-
sition for the three Wigner-Dyson symmetry classes in three dimensions, Physical
Review B 91, 184206 (2015).

[b] L. Ujfalusi and I. Varga: Quantum percolation transition in three dimensions: Den-
sity of states, �nite-size scaling, and multifractality, Physical Review B 90, 174203
(2014).

[c] L. Ujfalusi and I. Varga: Anderson localization at large disorder, Physical Review B

86, 125143 (2012).

[d] M. Giordano, T. G. Kovács, F. Pittler, L. Ujfalusi and I. Varga : Dirac eigenmodes
at the QCD Anderson transition, PoS LATTICE2014 (2015) 212.

[e] L. Ujfalusi, M. Giordano, F. Pittler, T. G. Kovács and I. Varga: Anderson transition
and multifractals in the spectrum of the Dirac operator of Quantum Chromody-
namics at high temperature, submitted to PRB

Other publication:

[f ] L. Ujfalusi, D. Schumayer and I. Varga: Quantum chaos in one dimension?, Physical
Review E 84, 016230 (2011).
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8.3 Acronyms

MIT Metal-insulator transition
AMIT Anderson Metal-insulator transition
DOS Density of states
LDOS Local density of states
WD Wigner-Dyson
IPR Inverse participation ratio
GIPR Generalized inverse participation ratio
MFE Multifractal exponent
GMFE Generalized multifractal exponent
FSS Finite-size scaling
MFSS Multifractal �nite-size scaling

Table 8.1: Anacronyms used in this work.
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