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1 Introduction

1 Introduction

The unification of forces is the big dream for physicists since it means that we finally obtain a “theory of
everything.” Building the quantum theory of gravity is expected to be a huge step to seek the ultimate theory.
One strong candidate is the superstring theory, which consists of tiny bits of the one-dimensional object, string,
and many kinds of higher-dimensional objects, branes, in spacetime. Although string theory has been successful
perturbatively, it has not been fully formulated; the nonperturbative definition is still unknown.

Under such circumstances, the properties of branes have been providing us with the progress for constructing
string theory nonperturbatively. An example is the concept of duality; string dualities, T-duality, and S-duality,
for example, revealed the nontrivial connections of different types of string theory and conjectured the exis-
tence of M-theory as a unified description of string theory [1]. Moreover, the holographic duality [2, 3] or the
gauge/gravity duality, more broadly, is conjectured by the two aspects of the branes and connects the sort of
Quantum Field Theories (QFT) and theories of gravity. It has been expected that some QFT in the appropriate
parameter regions describe the nonperturbative effect of string theory. This conjecture includes the well-known
AdS/CFT duality [4–6] and closely relates to the holographic principle and the black hole thermodynamics, espe-
cially when considering the finite temperature system. In other words, it suggests how the gauge/gravity duality
relates the thermodynamics of gauge theories to one of the black holes; this nontrivial problem has been studied
in the literature. This research is also in line with that trend.

The confinement and the thermal phase transition of the gauge theories are intriguing features for the above
purpose. The well-studied example of the connection between thermal phase transitions in gauge theories and
black holes can be seen in the duality between the thermodynamics of the 4d N = 4 super Yang-Mills theory
(SYM) and the type IIB superstring theory on AdS5 × S5, discussed in section 2. In this case, the confined
and deconfined phases on the gauge theory side correspond to the thermal AdS geometry (without black holes)
and the “large” black hole geometry in AdS space, respectively. In the canonical ensemble, the first-order phase
transition called the Hawking-Page transition [7] separates the above two phases. In addition, a “small” black
hole, which is approximately the ten-dimensional Schwarzschild black hole [8, 9], can also appear on the gravity
side of the duality in the microcanonical ensemble, depending on the energy scale. Although the counterpart
of this physical state had not been well-known in terms of the gauge theory side, an intermediate phenomenon
referred to as partial deconfinement gives a good picture to it.

Partial deconfinement [10–17] is the coexistence phenomenon in the space of color degrees of freedom. As
schematically shown in figure 1, the two sectors, which are referred to as the confined and deconfined sectors,
exist simultaneously in color space at some temperatures. It was found on the phase structure of the weakly-
coupled Yang-Mills theory on sphere in the large N limit studied in the pioneering papers [18, 9], which are
also motivated by understanding the relationship between the thermodynamics in field theory and the black
holes in dual gravity. As explained in section 4, the phase structure of these theories is divided by two phase
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1 Introduction

Figure 1: Schematic picture of the gauge and matter field configuration where the partial deconfinement takes
place. The M ×M -block (red) and the rest (blue) represent the deconfined and confined sectors, respectively.

transitions, the Hagedorn transition and Gross-Witten-Wadia transition [19, 20] that is the peculiar transition at
large N . The “phase” partial deconfinement occurs is in between these two phase transitions and characterized
by the properties at the transition points. Until the proposal of partial deconfinement, the phase structure had
been known well in the community, while no one pointed out the physical interpretation of the intermediate
region separated by the two thermal phase transitions from the color degrees of freedom point of view. Partial
deconfinement conjectures the change of the number of degrees of freedom contributing to the thermodynamic
quantities coming from the kinematical aspects of the largeN theories, and hence, the partially-deconfined phase
has a potential to describe the negative specific heat in dual gravity in terms of the thermodynamic behaviors in
the healthy QFTs.

The organization of this thesis as a comprehensive report of partial deconfinement is as follows; In section 2, the
motivation from gravity and the original proposal describing the small black hole state [11,21] is argued. Although
above proposal applied to theHiggsing of the D-branes, themechanism shares the underlying concept with partial
deconfinement. In section 3, we explain the generic features and intuitive pictures of partial deconfinement. Here,
we give a formal definition of partial deconfinement using the so-called Polyakov line phase and its distribution
function. Moreover, the ‘spontaneous breaking of gauge symmetry’ which seems to be an inherent feature of
partial deconfinement is partly discussed in this section. Based on the general argument in the previous section,
we review the analytic results of the large N theories and employ the concept of the two-phase coexistence of
colors to them in section 4. We see in section 5 that the confinement at large N is quit similar to the Bose-

Einstein condensation (BEC) in the N -body ideal Bose gas system. If looking on the permutation redundancy of
the indistinguishable bosons as a kind of gauge symmetry, we can make sense these two apparently different
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1 Introduction

phenomena in a consistent way. Although the Bose-Einstein condensation is discovered in the non-interacting
theory, it has been known that it is effective to examine the superfluidity of 4He which is interacting from the
BEC viewpoint. This feature encourages us to expect that the two-phase coexistence in color space can take
place even in the case beyond the weak-coupling regime. In section 6, we show the numerical evidences of
partial deconfinement in some lower-dimensional bosonic theories as known as matrix models from the lattice
Monte Carlo simulation. They do not have any spatial dimensions and are superior models for the first step
since the occurrence of the confinement/deconfinement transition has nothing to do with the presence of spatial
directions. The efficiency in terms of computational cost is another merit to study these models compared to
the lattice Monte Carlo simulation of theories with spatial dimensions. The numerical simulations enables us to
analyze the configurations of the fields directly and tackle the region where the perturbative approach breaks
down. Because of that, we confirm that partial deconfinement occurs in such cases. In section 7, we conclude
the thesis and mention the perspectives of the study. There are also some appendices to compensate the contents
written in the main text.
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2 Deconfinement in dual gravity

2 Deconfinement in dual gravity

The original motivation considering partial deconfinement [11] is to explain how the gauge/gravity duality
connects the black hole thermodynamics to the statistical physics of gauge theories, which remains as a nontrivial
issue in the literature.

Here, we do not overview the whole story of the gauge/gravity duality due to space limitation and excess of
author’s ability. See several excellent reviews [8, 22–25] or textbooks [26–29], for example.

The gauge/gravity duality conjectures the equivalence between the some specific theories; the theory of grav-
itation and the non-gravitating QFT, defined in different spacetimes. A well-known example of this duality is the
AdS/CFT correspondence [4–6]. The duality is proposed based on the two different aspects of the system with
D-branes, appeared nonperturbatively in string theory. In this correspondence, several coincidences can be con-
firmed by the numerous studies; the matching of the symmetry, the number of degrees of freedom, and the
generating functional of the n-point functions for local operators can be seen using the AdS/CFT dictionary, the
corresponding list of the parameters in both theories. Moreover, the phase structure or the Hilbert space in both
theories is thought to connect via the duality. In the following, we review the spectrums of type IIB superstring
theory on AdS5 × S5 and the connection to its holographic dual gauge theory, N = 4 super Yang-Mills theory
on S3.

A few comments regarding the gauge/gravity duality are given here. The gauge/gravity duality states more
broad relationships. The duality was originally discovered by a concept called holography [2, 3] in the context
of the black hole thermodynamics [30, 31], suggesting certain gauge theories at strong coupling can express the
weakly-coupled gravity. In addition, the equivalences are believed to beyond the AdS and CFT; For instance, the
equivalences between the super Yang-Mills theories in other spatial dimensions than three with 16 supercharges
and the supergravity are known by the study in reference [32]. It contains the duality regarding the (0 + 1)-
dimensional super Yang-Mills theory as known as the Banks-Fischler-Shenker-Susskind (BFSS) matrix model [33,
34], which describes the physics of D0-branes. This model is originating from the quantization of supermembrane
theory in eleven dimensions [34, 35] and also interesting for the M-theory as a nonperturbative definition of the
string theory [1]; it has a potential to describe the M-theory through the string/M-theory correspondence [33,36].
See an excellent review [37] for the details of the M(atrix) theory. Together with the Berenstein-Maldacena-
Nastase matrix model [38] which is a deformation of the BFSS model, it is very important to examine further
in order to construct the nonperturbative definition of string theory via the gauge/gravity and string/M-theory
dualities.

2.1 Spectrum of IIB superstrings on AdS5 × S5

In the ’t Hooft limit, gs → 0with λ = gsN fixed and large, so that the supergravity approximation is valid, and
when the AdS radius R is much larger than the string length ℓs =

√
α′, we can investigate the phase structure of
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2 Deconfinement in dual gravity

the type IIB superstring theory on AdS5 × S5 by the rough estimates. In the following analysis, the parameters
in the theory on AdS5 × S5 is translated into those in the dual N = 4 SU(N) super Yang-Mills theory on S3 as

ms ≃
(
g2YMN

) 1
4R−1, mP ≃ N

1
4R−1, (2.1)

where the string mass ms and the ten-dimensional Planck mass mP. Note that the energy scale on the gauge
theory side is measured by the units of the S3 radius in the ’t Hooft limit. We will therefore ignore numerical
factors in this section and focus on the scaling. In this section, we review the references [8, 27, 9].

2.1.1 Free graviton/string gas

At low energy, the gravitons and their superpartners dominates. We can regard as the stationary wave solu-
tions in the linearized supergravity, and the frequency ω of a stationary mode is quantized in the unit of R. One
may seem effectively that the supergravity particles in AdS as confined ones in the box of size R.

S(E) ∼ (ER)9/10, (2.2)

for E ≫ R−1.
In the dual gauge theory, the Hilbert space contains the products of the chiral primary states and its the

superconformal descendants. The product of gauge invariant operators are only influenced by 1/N -corrections
due to the large-N factorization. The energy scale in this phase is now E ≪ N2, and hence, the confinement is
realized.

2.1.2 Hagedorn string

We have to take excitations of strings into account when the energy E becomes larger and comparable to the
string mass ms. Although it is not well-known how to quantize the string theory in AdS, the excitations where
ℓs ≪ R can be estimated using the perturbation in power of ℓs/R.

The string spectrum in ten dimensions shows the Hagedorn behavior

S(E) ≃ Eℓs, (2.3)

where
E ∼ m10

s R9. (2.4)

We can estimate it from the condition that the supergravity particles is compatible to the excited strings.
In the dual gauge theory, each single trace operator is identified with a single string state in this energy scale(

g2YMN
) 1

4 < E ≪
(
g2YMN

)− 7
2N2. The supergravity particles and their stringy excitations correspond to chiral

primary states and non-chiral primary ones, respectively.
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2 Deconfinement in dual gravity

2.1.3 Small black hole

When the energy becomes further larger, the strings collapse and form a black hole in spacetime. The black
hole can be described by the classical solution of supergravity when the string length ℓs is negligibly small relative
to the horizon r+. In addition, the geometry around the black hole can be described approximately by the 10-
dimensional Schwarzschild solution if r+ is much smaller than R. The Bekenstein-Hawking formula states the
black hole entropy states that the black hole entropy SBH can be computed by the horizon area A as

SBH =
A

4Gd
, (2.5)

where Gd is the Newton constant in d dimensions which relates to the Planck mass in ten dimensions as

ℓP = m−1
P =

√
G10, (2.6)

on the natural unit. It is the well-known fact that the Hawking temperature T can be read off as

T ∼ r−1
+ , (2.7)

by the continuity of the Euclidean metric. Combining above, we can derive

S ∼ (mPr+)
8 ∝ N2T−8, E ∼ m8

Pr
7
+ ∝ N2T−7, (2.8)

and hence,
S(E) ∼ (EℓP)

8
7 . (2.9)

The above estimate is reliable in the region ℓs ≪ r+ ≪ R and hence m8
Pℓ

7
s ≪ E ≪ m8

PR
7.

2.1.4 Large black hole

When the energy becomes further and further larger, the horizon r+ grows and becomes comparable to R

at somewhere, E ∼ m8
PR

7. Beyond there, the ten-dimensional Schwarzschild black hole solution is no longer
reliable, and we should move on to the asymptotically AdS5 solution [7], namely

ds2 = −f(r,R)dt2 +
1

f(r,R)
dr2 + r2dΩ2

3, (2.10)

and
f(r,R) =

r2

R2
+ 1− r40

R2r2
, (2.11)

where r0 is the Schwarzschild radius. The horizon is located at r+ as a solution of f(r+, R) = 0. It leads to the
Hawking temperature

T =
2r2+ +R2

2πr+R2
≃ r+

R2
, (r+ ≪ R) (2.12)

8



2 Deconfinement in dual gravity

The entropy of that AdS Schwarzschild black hole is computed as

S ∼
(
r+
lP

)3

, (2.13)

where lP is the five-dimensional Planck length, connected to ℓP and R

l3P = ℓ8PR
−5, (2.14)

via the matching of the Einstein-Hilbert actions in five and ten dimensions. The energy can be also derived as

E ∼
r2+
l3P

(
1 +

r2+
R2

)
≃

r4+
l3PR

2
∝ T 4. (r+ ≪ R) (2.15)

Therefore, the entropy as a function of the energy E is given by

S ∼
(
ER2

lP

) 3
4

=

(
R

ℓP

)2

(ER)
3
4 . (2.16)

The scaling (2.15) and (2.16) reproduces the expected results at a high energy as known as the Stefan-Boltzmann
law in QFTs at finite temperature. In the canonical ensemble, a phase transition called Hawking-Page transi-
tion [7] separates the phases with and without the black hole, and this energy region has been interpreted as the
deconfined phase in the dual gauge theory.

2.1.5 Short summary and motivation

Aswill be explained in detail later, the graviton gas phase and the large black hole phase are thermodynamically
stable in the canonical ensemble. The Hawking-Page transition decomposed into two phases are translated into
the confinement/deconfinement transition on the dual gauge theory side. Although the intermediate phases are
metastable phases and unfavored thermodynamically in the canonical ensemble, they are stable physical states in
the microcanonical ensemble. The transition between the large and small black hole phases is thought to relate to
the Gregory-Laflamme instability [39] 1). See also references [43–48] for the detailed analysis of the instability. To
determine the gauge theory counterpart of the small black hole phase is an longstanding problem in the context
of the AdS/CFT correspondence. Partial deconfinement, the two-phase coexisting phenomenon in the space of
the color degrees of freedom is proposed to solve this puzzle.

Moreover, the phase structure of the D0-brane matrix model is expected to be quite similar to the above [32,
49–53]. In the type IIA supergravity in ten dimensions dual to the matrix model, a phase transition between
the phase of IIA black zero-brane (or M-theory black string) and the M-theory black hole occurs, where the M-
theory circle in eleventh direction starts to become large. The transition from the black string and black hole is

1)Precisely speaking, the details of the phase transition is still under discussions. See some attempts on the gravity side, e.g. reference [40,
41] and on the gauge theory side, e.g. reference [42]. The numerical analyses in reference [17] are not sufficiently precise to detect such a
fine structure.
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2 Deconfinement in dual gravity

related to the Gregory-Laflamme transition. The M-theory black hole is approximately the eleven-dimensional
Schwarzschild black hole solution, and hence, its specific heat is expected as negative. The partial deconfinement
picture is likely to describe the phase structure of the dual matrix model as well. We will discuss this again in the
conclusion of this thesis.

2.2 Gauge theory description of small black hole

Here, let us review the heuristic proposal of the black hole equation of state from the dual 4dN = 4 super Yang-
Mills theory on S3. Wemainly review references [11,21], and the similar discussion is also found in reference [12].
Originally, the holographic picture is conjectured and justified via D-brane picture. D-branes can appear in string
theory introduced by the boundary condition of open strings. They are massive objects, and hence, distort the
background spacetime if we consider a lot of coincident D-branes at a place in spacetime. Such a system at finite
temperature can be regarded as the black hole geometry, more precisely, the near extremal black-brane solution
of supergravity. Another aspect of this system can be expressed by the Dirac-Born-Infeld theory which gives
the low-energy effective theory of D-branes and open strings, and in turn, the (supersymmetric) gauge theory
description. Then, the gauge group is chosen by U(N) or SU(N) if we considerN coincident D-branes. In super
Yang-Mills theory description, as shown in figure 2, the diagonal and off-diagonal elements of the matrix scalar
fields encodes the place of D-branes and open string stretching in between, respectively [54]. Therefore, the
bound state of D-branes and open strings is the natural counterpart of the black hole in dual gravity. Note that
this physical picture can also apply not only to 4d N = 4 super Yang-Mills theory but to the matrix theory [33]
or the super Yang-Mills theory on other dimensions as well.

Figure 2: Conceptual picture for elements of the matrix configuration and the bound state of D-branes and open
strings. The picture is taken from reference [21].

In the canonical treatment, the transition of the AdS geometry in dual gravity called Hawking-Page transi-
tion [7] corresponds to the confinement/deconfinement transition in gauge theory [55]. On the other hand, the
small black hole phase is not contained in the above correspondence, and its dual gauge theory description is
not well-established. There is one proposal [11] that try to answer the puzzle, which hints the concept of partial
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2 Deconfinement in dual gravity

deconfinement. The proposal suggests that the thermal state that the some of N D-branes is bound and the rest
is emitted from it is corresponding to the small black hole phase. The change of the number building the D-brane
bunch plays the essential role to describe the small black hole phase.

From the scaling of the parameters, the above physical picture is clarified quantitatively in a followingmanner.
As the number of the D-branes in the bound state M changes, the ’t Hooft coupling effectively changes as

λBH ≡ g2YMM =
(
g2YMN

)
· M
N

= λ · M
N

, (2.17)

where gYM is the four-dimensional Yang-Mills coupling constant. Where λM ≪ 1, theM ×M -block is weakly-
coupled, and hence, the Hagedorn growth occurs.

Using the above picture, the energy of the state can be estimated from the contribution of the small black hole
itself and the graviton gas around it, and

Etotal = EBH + Egas. (2.18)

where EBH ∼M2 = O(N2), Egas ∼ (N −M) = O(N). Therefore, in the largeN analysis, the effect of the gas
is negligible. We assume the whole contribution from the action is written by only the function of the potential
term written by six scalar fields XI (I = 1, · · · , 6). Then,

1

g2YM

Tr [XI , XJ ]
2 ∼ 1

g2YM

Tr
[
XBH

I , XBH
J

]2
=

M

λBH
Tr
[
XBH

I , XBH
J

]2
= M Tr

[
X̃BH

I , X̃BH
J

]2
, (2.19)

where X̃BH
I = XBH

I /λ
1/4
BH , and hence, the potential term is independent to the effective coupling constant. Let

us identify the temperature T with the possible lowest one in SU(M) truncated theory, at which M D-branes
build a bound state. Given that, at a fixed temperature T , the eigenvalues of X̃BH

I is independent on the effective
coupling constant λBH, it is natural to suppose that, for the eigenvalues of the original fields XBH

I , the scaling
XBH

I ∼ λ
1/4
BH holds. We take the following normalizations

T̄ (N, g2YM) ∼ 1, E(N, g2YM) ∼ N2, (2.20)

at the lowest temperature of the large black hole state, so that we can see the scaling easily. The eigenvalues
of XBH

I correspond to the radius of the black hole since, as explained, the scalar fields relate to the location of
D-branes. The radius will be set at the inverse of the energy scale of the system, and hence, the scaling of the
temperature is T ∼ λ

−1/4
BH . When the normalized temperature decreases as the some D-branes are emitted from

the bound state to the bulk, the energy should scale

T̄ (M, g2YM) ∼
(
λBH

λ

)−1/4

=

(
M

N

)−1/4

, (2.21a)

E(M, g2YM) ∼
(
λBH

λ

)−1/4

M2 = N2 ·
(
M

N

)7/4

∼ N2 · T̄ (NBH, g
2
YM)−7. (2.21b)
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2 Deconfinement in dual gravity

Here, we implicitly assumed that the ’t Hooft counting is independent on the ’t Hooft coupling in the strongly-
coupled region. It is a presumable assumption since it is equivalent to that the Newton constant is independent
on λ in the dual frame (RS3 and RAdS fixed). Partial deconfinement tells us a way in order the gauge theories
to describe the small black hole [11] by introducing a new phase with negative specific heat in the ordinary
deconfinement transition in a similar manner to above.

Note that the similar analysis of the ABJM theory [56] reproduce the the correct thermodynamic quantities of
eleven-dimensional Schwarzschild solution in supergravity. Note also that similar phases with negative specific
heat are expected for other theories [32], for example, the D0-brane quantum mechanics [33, 34]. See the recent
report for tackling this problem [57].

In the context of dual gravity description via gauge/gravity duality, intermediate phase has negative specific
heat. In more generic gauge theories, there is a variety of the case [10, 13, 14], as we will see in section 3.2.

12



3 Overview of partial deconfinement

3 Overview of partial deconfinement

In this section, we show the basic features of partial deconfinement as the coexisting phenomenon of the
confined and deconfined sectors in the color space. In particular, we explain them by looking ahead to apply
in the deconfinement of the large N U(N) or SU(N) gauge theory. As presented in the following sections,
the thermal phase that partial deconfinement takes place appears in a more rigid sense, due to the existence
of the phase transitions accompanied with the large N limit. Firstly, we discuss a formal definition of partial
deconfinement, which is applicable to the broad class of the large-N gauge theory, including theories at strong
coupling. We also provide the physical interpretations intuitively partial deconfinement implies in this section,
which originates and is somehow related (historically as well) to the string theory picture.

We should emphasize the possibility that the above definition is a temporal one, and the more essential def-
inition might exist. Somehow related to that, since we mainly refer to the intuitions at weak coupling, many
of the readers may wonder the application to the theory beyond the weak-coupling regime. To overcome the
issues, some key concepts in the field theories have been giving several useful insights; see the correspondence
between the confinement at large N and the Bose-Einstein condensation explained in section 5. There, we will
give some outlooks concerning the definition of partial deconfinement by focusing on the global symmetries and
their spontaneous breakings at finite temperature, recently reported in reference [58].

3.1 Formal definition

For a formal definition, let us introduce the distribution of gauge degrees of freedom, the Polyakov line phases.
The Polyakov line, which is the Wilson line towards the temporal direction, is defined by

L(ti, tf) = P exp

[
i

∫ tf

ti

dtAt

]
, (3.1)

where P means path-ordering, and the n-th winding Polyakov loop un by

un =
1

N
TrL(0, β)n =

1

N

N∑
j=1

einθj . (3.2)

This may be understood from that the Polyakov line (3.1) is N ×N unitary matrix 2), and the its eigenvalues are
written as eiθ1 , · · · , eiθN . Therefore, we refer the phases θ1, · · · , θN lie between −π and +π as the Polyakov line
phases. Another way to figure it out is the gauge fixing with the static diagonal gauge

At =
1

β
diag

(
eiθ1 , · · · , eiθN

)
. (3.3)

2)We implicitly assume the gauge group of the theories is U(N), instead of SU(N), since we are interested in the situation at largeN
in the following argument. If we consider SU(N) cases at finite N , the constraint

∑N
j=1 θj = 0 mod 2π is imposed.
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3 Overview of partial deconfinement

For now, we fix the overall ZN rotation ambiguity in the phase of the Polyakov loop by setting P = u1 = |u1|.
Therefore, the Polyakov loops un equals to its complex conjugate u−n.

It is convenient to introduce the distribution function of the Polyakov line phases as

ρ(θ) =
1

N

N∑
j=1

δ(θ − θj). (3.4)

In the large N limit, the number of the Polyakov line phases is taken to be infinite [59]; the dummy variables

xj ≡
j

N
− 1

2
→ x, (3.5)

lies continuously between −1
2 and 1

2 , in the large N limit. Then the expression of the phases changes to θj =

θ(xj)→ θ(x), and the Polyakov loops (3.2) may be

un →
∫ 1

2

− 1
2

dx einθ(x) =

∫ θ0

−θ0

dθ ρ(θ)einθ, (3.6)

where 0 ≤ θ0 ≤ π is determined thermodynamically. Here we perform the variable transformation using the
density of the Polyakov line phases ρ(θ) = dx

dθ , and it is nothing but the continuous version of the phase distri-
bution function (3.4). From the properties of the density, the phase distribution is non-negative on the support,
and normalized as ∫ π

−π
dθρ(θ) = 1. (3.7)

By using ρ(θ), we can distinguish the completely-confined phase, partially-deconfined phase (equivalently,
partially-confined phase), and completely-deconfined phase as follows:

The completely-confined phase

The confined phase, or for emphasis, completely-confined phase refers to an equilibrium state with the uniform
phase distribution, ρ(θ) = 1

2π . See the left panel drawn by blue line in figure 3.

The partially-confined phase / partially-deconfined phase

The partially-confined phase, or equivalently, partially-deconfined phase refers to an equilibrium state with the
nonuniform phase distribution which is positive everywhere, ρ(θ) > 0. The Hagedorn transition separates this
phase to the completely-confined phase. See the center panel drawn by orange line in figure 3.
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3 Overview of partial deconfinement

Figure 3: The distributions of the Polyakov line phases. The left, center and right ones show the completely-
confined, partially-(de)confined and completely-deconfined phases, respectively. At large N , the phases are sep-
arated by two phase transitions, Hagedorn transition and Gross-Witten-Wadia transition. The specific form of
the distribution function ρ(θ) for the partially- and completely-deconfined phases depends on the theory under
consideration.

The completely-deconfined phase

The completely-deconfined phase refers to an equilibrium state with the nonuniform phase distribution which
is non-zero in a finite range. In other words, the eigenvalue distribution is ‘gapped.’ The undistributed region
appears on |θ| > θ0. The Gross-Witten-Wadia transition [19,20] See the right panel drawn by red line in figure 3.

One important point is that the above definition does not refer to the center symmetry. In the context of
deconfinement, the Polyakov loop P plays an important role as the order parameter;

P = 0 (confined phase)

P ̸= 0 (deconfined phase)
, (3.8)

since the Polyakov loop measures the amount of the free energy to create single static quark. As is well known,
the Polyakov loop detects the spontaneous breaking of center symmetry associated with the center of the gauge
symmetry. Every elements in the center commutes to the element in gauge group G. For the theories whose
gauge group isG = U(N), the center is ZN . However, partial deconfinement does not refer the center symmetry
but the gauge symmetry itself3). Therefore, it can also be applied to theories without center symmetry, such as
the Nf -flavor large-Nc QCD or the Gaussian matrix model with Nf fundamental scalar fields in the Veneziano
limit (the large-Nc limit with Nf/Nc fixed).

3)In this sense, we propose that partial deconfinement is outside of box of center symmetry, although it relates somehow to that
symmetry. Therefore, the terminology of partial deconfinement is somewhat different from the one previously used in the context of
center symmetry breaking [60].

15



3 Overview of partial deconfinement

Another interesting point is the Gross-Witten-Wadia-like transition other than at largeN . The essence of this
transition is whether the distribution function becomes ‘gapped’ or not on the circle. The analogous phenomena
may exist in the situation even finiteN and different thermodynamic limit is taken. As we will explain further in
section 5, we have already found one specific example; the mechanism of the transition agrees naturally with the
one of the partially-/completely-deconfined phase transition. We will mention about this topic in the summary.

The actual physical meaning of partial deconfinement is not immediately clear from this formal definition;
for example, the physical picture of figure 1. We will try to provide some intuitive explanations below.

3.2 Physical interpretations

In this section, we present several explanations for partial deconfinement focusing on its physical picture. We
will keep them abstract and generic here and see the specific examples in detail in the following sections.

3.2.1 Intuitive picture

The thermodynamic aspects of the partially-deconfined phase in the large-N gauge theories can be investi-
gated from the point of view of the microcanonical ensemble [10, 13, 14]. In those theories, the thermodynamics
can be analyzed kinematically; What we should do is to count the numbers of degrees of freedom. In the confined
phase, thermodynamic quantities such as the energy E and the entropy S are of order N0 (up to the zero-point
energy), however they are of order N2 in the deconfined phase. There, we are counting hadrons/glueballs in the
confined phase and quarks/gluons in the deconfined phase, to use QCD language. It is the same situation in the
canonical ensemble, as will be explained in the opening of section 4.

Then, let us consider a specific value of energy E = ϵN2, where ϵ is a small but order N0 number. That is
based on the philosophy of the microcanonical treatment since the energy can be varied as a parameter. However,
the energy is too large to realize the confined phase and too small to realize the deconfined phase, following the
above criterion of the deconfinement. It cannot be the confined phase, because the energy is too large and it
cannot be the deconfined phase, because the energy is too small. The answer is an intermediate phase that the
two-phase coexistence takes place with the size M ∼

√
ϵN .

In addition to that, the variation of the excited color degrees of freedom may enable healthy QFTs to express
the negative specific heat in dual gravity. According to the insight of the ideal gas, the temperature T can be
interpreted as the energy per degree of freedom. If the number of color degrees of freedom is fixed and further-
more,independent on the energy, the specific heat which is the T -derivative of the energy must be positive in
any case. However, if it has a nontrivial energy dependence, the specific heat also behaves nontrivially and hence
can be negative. Note that this picture is matching to the system of the black hole constructed by D-branes and
strings [21], as explained in section 2.2.
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3 Overview of partial deconfinement

3.2.2 Phase structures

The significant and essential feature partial deconfinement proposes is that the two phases in the space of
color degrees of freedom, the confined and deconfined phases, can coexist. The appearance of the phase structure
changes nontrivially depending on the thermodynamics of the theory due to the all-to-all interaction among the
color degrees of freedom. Pictorially, we present three possible patterns in figure 4. The blue, orange, and red lines
represent the completely-confined phase, partially-deconfined phase (or equivalently, partially-confined phase)
and completely-deconfined phase. For each pattern, we state that

• The center panel in figure 4 would be the easiest one to understand. The partially-deconfined phase is
realized at a critical temperature T1 = T2 = Tc. It does not have the hysteresis structure with respect to
the temperature T and is on the critical point between the continuous and discrete phase transitions. Many
theories such as the large-N Yang-Mills theory on sphere at zero coupling and the Gaussian matrix model
we consider both in the main text belongs to this class.

• In the class like the left panel in figure 4, the phase structure has the first-order transitionwith the hysteresis,
and the partially-deconfined phase has a negative specific heat. Such an intermediate phase is not favored
as the thermodynamically determined saddle in the canonical ensemble (we used a dotted line to emphasize
this feature). Strongly-coupled 4d N = 4 Yang-Mills theory, pure Yang-Mills theory, and the Yang-Mills
matrix model discussed numerically in sections 6.4 and 6.5 belong to this class. Depending on the geometry
of the ordinary space, instability can set in even in the microcanonical ensemble (see section 3.2.4 for the
details).

• The right panel in figure 4 shows the class with non-first-order phase transitions. The partially-deconfined
phase is thermodynamically stable both in the microcanonical and canonical ensembles. The large-Nc QCD
with Nf -fundamental fields (Nc

Nf
fixed), the O(N) free vector model, and the Gaussian matrix model with

Nf -fundamental scalar fields belongs to this class.

It is quite instructive to consider a similar but essentially distinct example, water around the temperature of
0 ◦C and the standard pressure in the thermodynamic limit. Water exhibits a first-order phase transition in the
canonical ensemble. Due to the latent heat at the transition temperature, the amount of liquid and solid phases
depend on energy E in the microcanonical ensemble. If the energy is appropriately tuned, a mixture of the two
phase, namely icy water appears. The situation is resembling the two-phase coexisting phenomenon in the gauge
theories at large N .

However, we must notice their differences in the following sense; In the liquid and solid water example, the
infinite volume limit works as the thermodynamic limit, while the large N limit is the one in the gauge theories.
Recalling the correspondence between the canonical andmicrocanonical ensembles, it was derived in the situation
with large volume. Therefore, the thermodynamics of the large-N gauge theories with finite volume is not the

17



3 Overview of partial deconfinement

Figure 4: Three basic patterns of T -dependence of M [10]. The blue, orange and red lines are the completely
confined, partially-deconfined and completely deconfined phases, respectively. For the SU(N) theory, the SU(M)

subgroup only deconfines in the intermediate phase, which can be interpreted as the spontaneous symmetry
breaking. This figure corresponds to figure 5. [Left] First-order transition with hysteresis. [Middle] First-order
transition without hysteresis. [Right] Non-first-order transition.

case, and hence, the microcanonical ensemble is a physically more realistic setup than the canonical ensemble in
this case. Moreover, the natures of interaction in both cases are also quite unlike; in the gauge theories, the color
degrees of freedom interact nonlocally in the internal space, while the interaction of water molecules is obviously
local in the ‘ordinary’ space. For the case of water, although the metastable phases associated with the first-order
phase transition can appear as the supercooled water or superheated ice, they are not stable even in the large
volume limit as thermodynamic limit due to the local interaction and small perturbations. The metastable phase
in the confinement/deconfinement process can be stabilized in the large N limit as thermodynamic limit due to
the nonlocal interaction.

Figure 4 indicates that the gauge symmetry related to the number of colors can be interpreted to be sponta-
neously broken in the intermediate region. We can understand the feature from the fact that the each point in the
orange line can be identified as the Gross-Witten-Wadia-transition point for some sector specified by M in the
large N limit. That subsector and its complementary of the full theory describe the each thermodynamics since
the number M characterizes the thermodynamics from the excited degrees of freedom, while the rest N −M

characterizes the one from the degrees of freedom behave in the ground state. As a result, the symmetry is split-
ted into two parts accompanied with that. For example, the SU(N) gauge symmetry can break spontaneously
to SU(M)dec × SU(N −M)con, as a property the saddle points of the effective potential (i.e. the free energy)
have. The change of the symmetry must be smooth since the ratio M

N can vary continuously from 0 to 1 at large
N . Strictly speaking, it caused by the breaking of the global part of gauge symmetry. In this sense, this concept
is compatible with the well-known no-go theorem, the Elitzur’s theorem [61]. We will review this feature more
concretely using the Gaussian matrix model in the Hamilton formalism 4.3.2. Similar to the Higgs mechanism,
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3 Overview of partial deconfinement

this mechanism provides us with the picture of ‘convenient fiction’ [62], that is, it is up to those who do the
physics whether to preserve or fix the symmetry.

3.2.3 Possible objections

In this section, we list the possible objections regarding the physical pictures implied by partial deconfinement
and our replies to them.

1. The confinement/deconfinement transition for the theory at largeN can take place even in the theories with
finite spatial volume, due to the largeN limit as the thermodynamic limit, which is well-known fact [9,18].
The class of theory contains the lower-dimensional QFTs known as matrix models those do not have any
ordinary spatial directions by definition. We show the gauged Gaussian matrix model as a simplest model
of the deconfinement in section 4.3. In these cases, the phase separation can happen in the internal ‘space’
or so-called color space, in which the degrees of freedom interact as all-to-all in general.

2. The confinement/deconfinement transition can also take place even in the theory at zero coupling [18, 9].
Same as the gauged Gaussian matrix model in section 4.3, we can treat the physical degrees of freedom in it
just as quantum harmonic oscillators. Due to the nature of quantization, the energy spectrum is discretized,
and hence, the degrees of freedom cannot be excited ‘mildly.’ In this sense, we can reject the objection
that all the degree of freedom are excited gradually and not separated into distinct groups with respect to
excitation, and the intuition of the two-phase coexistence applies well. This feature is analogous to the case
of water around 0 ◦C and the standard pressure; the finite latent heat inhibits such a mild excitation and
favors the mixture of the solid and liquid regions.

3. One may wonder that the idea shown in figure 1 does not look gauge invariant. The picture shows the
‘typical’ configuration of the matrix field in which the two-phase coexistence in the color space takes place.
We can handle these configurations if we average with respect to the gauge-equivalent families, which is
an ordinary way to estimate the observables in the path integral formalism. This type of configuration can
be realized as the master field, which represents the typicality of field configuration in some sense, as will
be discussed in section 6.2. Moreover, as we will discuss in section 4.3.2, we can explicitly construct the
gauge-singlet states in the Hilbert space in the Hamilton formalism.

4. Associated with the previous objection, one would doubt the necessity of SU(M)-block structure of the
deconfined sector of partial deconfinement. In the weak-coupling limit, the field configuration can be ex-
pressed by harmonic oscillators. For a field configuration at fixed energy, we can always collect the excited
degrees of freedom and form a deconfined block which preserves the sub-symmetry of the full theory, at
least in the large-N sense. For the interacting theories, it is nontrivial the they are still in the case due to
the additional interaction between the confined and deconfined sectors. Intuitively, it is natural to expect

19



3 Overview of partial deconfinement

that the saddle point of the free energy preserves the structure of symmetry. A more precise argument can
be seen in the equivalence between color confinement at large N and Bose-Einstein condensation [15], as
we will see in section 5.

There is an intriguing toy model referred to as the ant-trail model, which enables us to fill the gap between
the picture of D-branes and strings and the phase structure of gauge theory. See appendix B, for the readers who
want to know the detail and its fun.

3.2.4 Remarks on negative specific heat

When the specific heat is negative, the partially-deconfined phase sits at themaximumof the effective potential
in the canonical ensemble [10], as a solution of the saddle-point condition in the large-N theory. On the other
hand, the completely-confined and completely-deconfined phases sit at the minima of the effective potential. See
also appendix A for detail. Since the difference of the potential between the minima and maximum is of orderN2,
the tunneling between the phases is suppressed at large N . As a result, the local minima is stabilized perfectly,
even when it is not the global minimum. This is quite different from the metastable states interacting locally, as
explained in section 3.2.2.

If the volume of the ordinary space becomes gigantic, the phase with a negative specific heat is no longer
stable. Any small perturbation can cause a decay of the metastable states. It is not necessary to occur if the volume
is not large and finite. In the case of matrix models, such an instability cannot exist by definition, because they
have no ordinary space. Moreover, 4dN = 4 super Yang-Mills theory on S3 does not have such an instability [53].
Hence, the partially-deconfined phase in the theory proposed as the dual to the small black hole phase does not
have such an instability via the duality 4) .

4)There is a subtlety regarding this point, near the phase transition associated with the localization on the S5; see section 2.
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4 Analytic examples for partial deconfinement

In this section, we review several analytic examples which exhibit the confinement/deconfinement transition
and partial deconfinement at large N .

At large N , the free energy also plays the role of the order parameter for the deconfinement in the canonical
ensemble since the saddle point approximation becomes exact due to the largeN limit. For example, in the large
N theories with the adjoint matter fields, the free energy is

F ∼

O(N0) (in confined phase)

O(N2) (in deconfined phase)
. (4.1)

This result can be interpreted as the following physical picture [55]; In the confined phase, the condensed objects
such as glueballs contribute to thermodynamics. On the other hand, the objects such as the quark-gluon plasma
appears in the deconfined phase, and the each color degrees of freedom can contribute. This discussion can be
generalized to arbitrary field contents since what we did here is just counting the physical degrees of freedom.
In this sense, the confinement/deconfinement transition at large N is tractable kinematically.

4.1 Weakly-coupled Yang-Mills theories on sphere

The features of partial deconfinement have been analytically found in the generic results for theweakly coupled
theories, studied in the pioneering papers [9, 18]. These studies pointed out that the confinement/deconfinement
transition can exist even in the weak-coupling limit and only due to the gauge-singlet constraint. Here, we briefly
review references [9,18] for the adjoint matter fields and reference [63] for the fundamental matter fields as well.
In section 4.3, we will show the same derivation as here in a somehow different way using the (0+1)-dimensional
bosonic matrix models.

Let us consider the generic setup for free Yang-Mills theory on a compact space (likeR×Sd−1). The restriction
to compact space has everymodes of the fieldsmassive. First and foremost, wewant to know the partition function
governing the thermodynamic behavior in the canonical ensemble;

Z(β) =
∑

physical states

e−βEi =

∫
dE Ω(E)e−βE , (4.2)

whereΩ(E) is the density of states. We have to keep in mind that there is the Gauss’ law constraint and the phys-
ical states must be gauge invariant. To compute the partition function, we count the total number of states when
we specify the matter contents in some group representation R. Since the above problem is just a combinatorial
one, it is convenient to define and use the single-particle partition function for bosons and fermions;

zRB(β) =
∑

bosonic
one-particle states

in R

e−βE , zRF (β) =
∑

fermionic
one-particle states

in R

e−βE . (4.3)
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Therefore, the partition function is obtained as the form of group integral by

Z(β) =

∫
[dU ] exp

[∑
R

∞∑
n=1

1

n

(
zRB(x

n) + (−1)n−1zRF (x
n)
)
χR(U

n)

]
, (4.4)

where x ≡ e−β = e−
1
T . Here, U is the group element and χR(U) is the character for the representation R.

4.1.1 With adjoint matter

For now, let us focus on the U(N) free Yang-Mills theories on R × Sd−1 with only adjoint matter fields
[18, 9]. This situation includes the zero-coupling limit of 4d N = 4 super Yang-Mills theory on sphere. Since
χadj(U) = tr(U) tr

(
U †) where the trace is in the fundamental representation, the partition function is

Z(x) =

∫
[dU ] exp

[ ∞∑
n=1

1

n

(
zB(x

n) + (−1)n−1zF(x
n)
)
trUn trU † n

]
, (4.5)

which is in the form of a unitary matrix model.
We will see this unitary matrix model can be solved directly. From the rather generic form of the partition

function (4.4), we change the variables from U to its eigenvalues
{
eiθj
}
and the density of the eigenvalues ρ(θ).

Then,

Z(x) =

∫
[dθ] exp

[ ∞∑
n=1

1

n

(
zB(x

n) + (−1)n−1zF(x
n)
)
|un|2

]
, (4.6)

and

un =
1

N

N∑
j=1

einθj =

∫ π

−π
dθ ρ(θ) einθ, (4.7)

wherewe use the results at largeN because the eigenvalue distribution ρ(θ) is continuous in the largeN limit. The
eigenvalues θj are nothing but the Polyakov line phases, and the basic properties of the eigenvalue distribution
is mentioned in section 3.1. More precisely, we also performed the following replacement of the path integral
measure; ∫

[dU ]→
∏
i

∫ π

−π
[dθi]

∏
i<j

sin2
(
θi − θj

2

)
. (4.8)

As we can see, the factor from the Vandermonde determinant appears. We can further rewrite equation (4.6) to

Z(x) =

∫
[dθi] exp

−∑
i ̸=j

V (θi − θj)

, (4.9)
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by introducing the pairwise potential

V (θ) = − ln

∣∣∣∣sin θ

2

∣∣∣∣− ∞∑
n=1

1

n

[
zB(x

n) + (−1)n−1zF(x
n)
]
cos (nθ)

= ln 2 +

∞∑
n=1

1

n

[
1− zB(x

n)− (−1)n−1zF(x
n)
]
cos (nθ).

(4.10)

with the repulsive force from the measure, and the attractive force getting stronger with the temperature.

At low temperatures

At first, let us consider the theory at low temperatures, where the repulsive force in the effective potential
(4.10) dominates, and hence, the eigenvalue distribution becomes uniform between ±π. In this case, the saddle
point approximation is exact due to the large N limit, and the stationary point of the effective potential leads to
the uniform distribution of the Polyakov line phases. Combining these facts, the effective action associated with
the partition function (4.9) is

S[{un}] = N2

∫
dθ1dθ2 ρ(θ1)ρ(θ2)V (θ1 − θ2) =

N2

2π

∞∑
n=1

|un|2Vn(x), (4.11)

where we use the Fourier modes un, Vn defined in (4.7) and

Vn(x) ≡
∫

dθ V (θ) cos(nθ) =
2π

n

(
1− zB(x

n)− (−1)n−1zF(x
n)
)
. (4.12)

Here, we implicitly fixed the center symmetry ambiguity such that the phase distribution ρ(θ) is symmetric
around θ = 0 and V (θ) = V (−θ). From the fact that the phase distribution becomes uniform at low temperatures,
un must be zero for all n as long as Vn > 0, and equivalently,

zB(x
n) + (−1)n−1zF(x

n) < 1. (4.13)

Note that the free energy is of order N0 in this phase because of un = 0.
However, we have to care only n = 1 case for the moment because the single partition functions increase

monotonically 5) and 0 ≤ x = e−β < 1. The uniform distribution is the solution of the stationary condition in
the region T ≤ TH = − 1

lnxH
where xH satisfies

zH = zB(xH) + zF(xH) = 1, ⇔ V1(xH) = 0. (4.14)

This temperature TH is the Hagedorn temperature we mentioned in section 3.1.

5)For the precise expression of the bosonic and fermionic single-particle partition functions in various dimensions, see appendix B of
reference [9].
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Near the Hagedorn temperature TH

When the density of states becomes comparable to the Boltzmann weight in the partition function 4.2, namely
Ω(E) ≈ eβHE , the partition function diverges [64]. The temperature TH = β−1

H is the Hagedorn temperature we
have discussed. In terms of the free energy βF = − lnZ , this divergence can be expressed

F ∼ TH ln (TH − T ), (4.15)

as the temperature T approaches to the Hagedorn temperature TH from low temperatures. Note that this behavior
only means the break down of the effective theory and the some sort of the singularity is need such as the phase
transition.

At the Hagedorn temperature T = TH, the coefficient V1 in equation 4.11 vanishes and the Polyakov loop
u1 can only excite and take nonzero values without changing the value of free energy. In other words, the free
energy has a flat direction regarding the value of u1, and the corresponding saddle-point condition gives

ρ(θ) =
1

2π
(1 + 2u1 cos θ). (4.16)

Because of the non-negativity of the distribution function, the Polyakov loop can take any value by 1
2 . Above the

point u1 = 1
2 , the distribution function becomes negative if the same form 4.16 is supposed. In fact, the point can

be identified with the transition point where the analytic form of the distribution is altered, the Gross-Witten-
Wadia-transition point [19, 20].

Substituting the configuration at u1 = 1
2 into the effective action 4.11,

S|T=TH
≈ N2

8π
(T − TH)V

′
1(xH), (4.17)

and hence, the leading order of the free energy can be derived

F

N2
≈

{
0 (T → TH−)

−1
4(T − TH)z

′(xH)βHxH (T → TH+)
. (4.18)

This shows the Hagedorn transition, namely a first-order phase transition at TH, which characterizes the de-
confinement; the free energy jumps from O(N0) to O(N2) before and after the phase transition. Note that
this “phase” is not thermodynamically stable in the canonical ensemble, and can be treated as a stable phase in
microcanonical ensemble.

At high temperatures

When the temperature gets even higher, the attractive force in the pairwise potential becomes so stronger
that the eigenvalues distribute in a finite interval I = [−θ0, θ0] on the circle. Note that we impose the same
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4 Analytic examples for partial deconfinement

assumption that phase distribution ρ(θ) is symmetric around θ = 0 and V (θ) = V (−θ). The ripping of the
distribution at θ = ±π corresponds to the Gross-Witten-Wadia transition [19, 20].

To determine the distribution function, we rewrite the saddle point condition of the effective action (4.11) as∫ θ0

−θ0

dθ ρ(θ) cot
α− θ

2
= 2

∞∑
n=1

anun sin (nα), α ∈ I, (4.19)

where an = zB(x
n) + (−1)n−1zF(x

n), and solve it with respect to ρ(θ) and un self-consistently for the effective
action 6)

S = N

∞∑
n=1

anun
n

(
trUn + trU †n

)
. (4.20)

The method to deal wit it and its exact solution has been known by the study in reference [65] and

ρ(θ) =
1

π

∞∑
n=1

Qn cos

((
n− 1

2

)
θ

)√
sin2

θ0
2
− sin2

θ

2
, (4.21)

for θ ∈ I and ρ(θ) = 0 otherwise. The coefficients Qn is defined by the Legendre polynomials

Qn ≡ 2

∞∑
l=0

an+lun+lPl(cos θ0), (4.22)

∞∑
l=0

Pl(y)z
l =

(
1− 2yz + z2

)− 1
2 . (4.23)

In the theories we consider, the truncation of the coefficients an, such as an>k = 0 for sufficiently large k gives
a good approximation and the same qualitative behaviors. When we take k = 1, the thermodynamic properties
is determined only by u1 and Qn = 0 for n > 1. We obtain the exact solution as

ρ(θ) =
1

πs20
cos

θ

2

√
s20 − sin2

θ

2
, (4.24)

and

s20 = sin2
θ0
2

= 1−

√
1− 1

a1(T )
. (4.25)

Note that the phase distribution (4.24) is identical to the distribution (4.16) where θ0 = π, namely, at the critical
temperature T = Tc and u1 =

1
2 .

We can also compute the free energy under the truncation Ftrunc ∼ O(N2) and

βFtrunc

N2
= − 1

N2
lnZtrunc = −

1

2

(
1

s20
+ ln s20 − 1

)
. (4.26)

6)This effective action is exactly the one solved in references [19, 20].
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4 Analytic examples for partial deconfinement

Figure 5: Three basic patterns of T -dependence of the energy E/N2 and Polyakov loop P [10]. The blue, orange
and red lines are the completely confined, partially-deconfined and completely deconfined phases, respectively.
This figure corresponds to figure 4. [Left] First-order transition with hysteresis. [Middle] First-order transition
without hysteresis. [Right] Non-first-order transition.

Partial deconfinement in terms of ρ(θ)

In conclusion, we obtained the eigenvalue distribution for the free Yang-Mills theories with adjoint matter

ρ(θ) =


1
2π (T ≤ Tc)

1
2π (1 + 2u1 cos θ) (T = Tc = TH)

1
πs20

cos θ
2

√
s20 − sin2 θ

2 (T ≥ Tc)

. (4.27)

In this case, the Hagedorn transition is of first order, and the phase structure agrees with the middle panel of
figure 1. While the thermodynamic quantities are discontinuous at T = Tc in the canonical ensemble, it is not
the case in the microcanonical ensemble since the entropy is maximized for each fixed energy. Therefore, it
follows that M can be determined by the energy itself. In this case, the Polyakov loop P plays the same role
because the free energy is the function of P in the intermediate phase and the energy or entropy comes from the
free energy.

At the critical temperature T = Tc, we can identify

u1 = P =
M

2N
, M ≤ N, (4.28)

and
ρ(θ) =

(
1− M

N

)
ρcon(θ) +

M

N
ρdec(θ) =

(
1− M

N

)
· 1

2π
+

M

N
· 1

2π
(1 + cos θ), (4.29)

by introducing the distribution functions ρcon(θ) and ρdec(θ) defined at the Hagedorn transition point (M = 0)
and Gross-Witten-Wadia transition point (M = N ), respectively. Note that these two phase transitions can be
justified in themicrocanonical sense not the canonical one. The identification (4.28) is essentially equivalent to the
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4 Analytic examples for partial deconfinement

statement that the Polyakov loop P is an order parameter of partial deconfinement and the size of the deconfined
sector can be extracted by P and the minimum of the eigenvalue distribution ρ(θ).

4.1.2 Comments on finite coupling

The previous analysis is performed in zero-coupling limit. In general, introducing the nonzero coupling
changes the phase structure. To incorporate the effect of finite coupling to the effective action, the original
study [9] paid attention to the gauge invariance and constraints brought by it. The effective action is determined
as a function of trUn for any n and must be invariant under gauge transformations. Therefore, the form of
effective action only depends on the combinations of the terms such as

trUn1 · · · trUnm trU−(n1+···+nm). (4.30)

If considering the perturbation theory for small coupling, the effective action becomes further simplified and

Seff = N2
(
m2

1|u1|
2 + b|u1|4 +O(λ2)

)
, (4.31)

where the parameters are determined by the temperature T and the ’t Hooft coupling λ = g2YMN which is
evaluated by at the energy scale, that is, the inverse of the radius of the sphere. Although we omit the higher
corrections with respect to the ’t Hooft coupling, the generic form is already known [9]. Alternatively, it works
to consider the toy model described by the unitary matrices

Z(β) =

∫
[dU ] exp

[
−
(
(m2

1 − 1)|trU |2 + b

N2
|trU |4 + · · ·

)]
, (4.32)

in order to capture the behaviors of the full theory in weak coupling. The dots at the end represents the higher
order corrections in λ. These parameters control the detailed structure of phases. The phase structure of the type
shown in the middle panel of figure 5 is the zero coupling case λ = 0, (b = 0), as explained in the previous
section. When we turn on the finite coupling, the parameter b may become positive or negative. The positive
and negative b correspond to the right and left panels of figure 5, respectively7). In other words, this parameter
governs the existence of the hysteresis in the intermediate region.

The analysis of the above unitary matrix model of the large N pure Yang-Mills theory on S3 up to three-
loop order shows the negative b [66], and the direct path-integral calculation up to two-loop order provides the
consistency check [67]. Besides, the authors of these papers also studied the low-dimensional theories on tori
numerically [68].

7)See also the figure 4 of reference [9].
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4.1.3 With fundamental matter

The argument in section 4.1 is applicable to the theories consists of fields both in the adjoint and fundamental
representations. In this case, we take the large N limit with Nf

N fixed, as known as the Veneziano limit. The
generalization is discussed for the weak-coupling limit [63, 69, 14] and for the perturbation theory [70].

In addition to define the bosonic and fermionic single-particle partition function in the adjoint representation
zB(x), zF(x), let us define the ones in the fundamental representation ZB(x),ZF(x) . Then, the generic form of
the partition function of the U(N) unitary matrix model is

Z(x) =

∫
[dU ] exp

[ ∞∑
n=1

1

n

{
ZB(x

n) + (−1)n−1ZF(x
n)
}(

trUn + trU †n
)

+

∞∑
n=1

1

n

{
zB(x

n) + (−1)n−1zF(x
n)
}
trUn trU †n

]
. (4.33)

The first term appeared additionally is the contribution of the field contents in the fundamental representation
because of the group character χfund(U) = tr(U)+tr

(
U †). The replacement of the integral measure with respect

to the eigenvalues of gauge field provides the pairwise potentials

VA(θ) = ln 2 +
∞∑
n=1

1

n

{
1− zB(x

n)− (−1)n−1zF(x
n)
}
cosnθ, (4.34a)

VF(θ) = −
∞∑
n=1

2

n

{
ZB(x

n) + (−1)n−1ZF(x
n)
}
cosnθ, (4.34b)

and

Z =

∫
[dθi] exp

−
∑

j ̸=i

VA(θi − θj) +
∑
i

VF(θi)


. (4.35)

At low temperature

We can perform the same computation as the case with the adjoint matters. Suppose eigenvalue distribution
is symmetric around θ = 0, and hence, VA(θ) = VA(−θ) and VF(θ) = VF(−θ).

S[{un}] =
∞∑
n=1

N2

n

∫
dα dβ ρ(θ1)ρ(θ2)

[
1− zB(x

n)− (−1)n−1zF(x
n)
]
cosn(θ1 − θ2)

−
∞∑
n=1

2NNf

n

∫
dθ ρ(θ)

[
ZB(x

n) + (−1)n−1ZF(x
n)
]
cosnθ

=
N2

π

∞∑
n=1

[
V A
n (x)|un|2 +

2Nf

N
V F
n (x)un

]
, (4.36)
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where V A
n , V F

n are the Fourier modes in the adjoint and fundamental representations, respectively, defined as

V A
n (x) =

π

n

[
1− zB(x

n)− (−1)n−1zF(x
n)
]
, (4.37a)

V F
n (x) = −π

n

[
ZB(x

n) + (−1)n−1ZF(x
n)
]
. (4.37b)

Therefore, the stationary condition of equation (4.36) gives

un = −Nf

N

(
V F
n

V A
n

)
. (4.38)

As mentioned in the adjoint matter case, only we have to consider is the n = 1 case, and hence,

V F
1 (x) < 0, (4.39)

is always kept, and V A
1 (x) is positive when zB(x)+zF(x) < 1. As a result, the lowest mode u1 becomes nonzero

unless zero temperature or the ratio Nf
N is zero, which returns the theory only with adjoint matters. Although we

can formally define the Hagedorn temperature TH as the solution of

[zB(xH) + zF(xH)] = 1, (4.40)

where u1 is excited and becomes nonzero, this condition is never satisfied in the stationary condition above zero
temperature. Instead,

[zB(x) + zF(x)] +
Nf

N
[ZB(x) + ZF(x)] ≤ 1. (4.41)

It is worthwhile to mention lastly that the free energy of the above stationary point is

βF = −Nf
2

π

∑
n

(
V F
n

)2
V A
n

∝ Nf
2, (4.42)

which differs from the result for the low-temperature phase of the theories with adjoint matters, f ∼ O(N0).
This scaling implies that the color singlet objects such as the mesons and glueballs dominates to thermodynamics.
However, this phase is not the completely-confined phase according to the Polyakov loop as the order parameter,
and seems rather partially-confined phase. We will justify this physical picture in terms of the distribution of the
Polyakov line phases.

Around Gross-Witten-Wadia temperature TGWW

We treat the phase distribution ρ(θ) and its Fourier modes un independently and solve with respect to them
self-consistently under the stationary condition [65] for the following effective action

S = N
∞∑
n=1

cn
2n

(
trUn + trU †n

)
, (4.43)
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where

cn(x) = 2

(
an(x)un +

Nf

N
bn(x)

)
, (4.44a)

an(x) = zB(x
n) + (−1)n−1zF(x

n), (4.44b)

bn(x) = ZB(x
n) + (−1)n−1ZF(x

n), (4.44c)

which is in the same manner as for the adjoint matter.
At low temperatures below the Gross-Witten-Wadia temperature T = TGWW, the phase distribution is non-

uniform and nonzero everywhere on the circle;

ρ(θ) =
1

2π

[
1 + 2

∞∑
n=1

un cos(nθ)

]
, (4.45)

where
un =

Nf

N

bn
1− an

= −Nf

N

(
V F
n

V A
n

)
. (4.46)

which is the same expression as equation (4.38). We can compute the free energy in terms of the coefficients in
(4.44) and

βF

N2
= −Nf

2
∞∑
n=1

b2n
1− an

, (4.47)

which is identical to one derived from (4.42).
When temperature glows and becomes higher than the Gross-Witten-Wadia temperature, the region where

ρ(θ) = 0 for |θ| > θ0 on the circle appears. The Gross-Witten-Wadia temperature separates the low- and high-
temperature phases at the point θ0 = π. The solution of the stationary condition in this phase is given by

ρ(θ) =
1

π

∞∑
n=1

Qn cos

((
n− 1

2

)
θ

)√
s20 − sin2

θ

2
. (4.48)

The difference from the adjoint case appears the definition of the coefficients

Qn ≡
∞∑
l=0

cn+lPl(cos θ0), (4.49)

where Pl(y) is the Legendre polynomial, and the coefficients cn is defined in (4.44).
The truncation of the coefficients an, bn maywork as a good approximation and afford the qualitatively similar

behaviors. If we assume an = bn = 0 for n ≤ 2, for simplicity, the phase distribution this simplified model can
be obtained

ρ(θ) =
1

πs20
cos

θ

2

√
s20 − sin2

θ

2
, (4.50)
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which is identical to the expression of adjoint case (4.24), and

s20 = sin2
θ0
2

=

[
2

(
a1u1 +

Nf

N
b1

)]−1

=
1

Q1
. (4.51)

In the truncated model, from (4.26) and the replacement an → 1
2cn, we can compute the free energy which is of

order N2

βFtrunc

N2
= −1

2

(
1

s20
+ ln s20 − 1

)
− Nf

N
b1u1 = −

1

s20
− 1

2
ln s20 +

7

4
− s20 +

s40
2
− (1− a1)

(
1− s20 +

s40
4

)
.

(4.52)

The minimum of the phase transition vanishes at the Gross-Witten-Wadia temperature TGWW, where θ0 = π

and s20 = 1. The expressions of the phase distribution ρ(θ) and free energy connects smoothly at T = TGWW.
We can compare them, at least, in the truncated model. For the phase distributions, they are a match with

ρGWW(θ) =
1

2π
(1 + cos θ). (4.53)

From equation (4.47), the free energy in the low-temperature phase is

− βF

N2

∣∣∣∣
n=1

= Nf
2 b21
1− a1

=
1

4
(1− a1) =

Nf

2N
b1, (4.54)

and the one in the high-temperature phase is, from equation (4.52)

− βFtrunc

N2

∣∣∣∣
s20=1

=
1

4
(1− a1) =

Nf

2N
b1, (4.55)

which shows the agreement of the expressions of the free energy at T = TGWW. Note that one can see that the
order of this phase transition is third and the similarity to the original transition [19, 20].

Partial deconfinement

Using the nature of the large N theory, we can prove that the partially-deconfined phase exists in the low-
temperature phase, as discussed in references [14,71]. Let us consider the generic form of the free energy for the
U(N) gauge theories consisting of the adjoint and fundamental fields;

βF =
∞∑
n=1

{
N2an(x)|un|2 +NNfbn(x)(un + u∗n)

}
. (4.56)

The coefficients an(x), bn(x) relate to the bosonic and fermionic single-particle partition functions and are de-
termined by the field contents in the adjoint and fundamental representations, respectively. Below the Gross-
Witten-Wadia temperature, equation (4.47) describes the saddle-point solution, and hence, we can estimate the
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thermodynamical quantities from it. For the later use, we derivative the free energy by β and calculate the energy
E

E =
∂(βF )

∂β
=

∞∑
n=1

{
N2∂an

∂β
|un|2 +NNf

∂bn
∂β

(un + u∗n)

}
. (4.57)

At zero temperature T = 0, the variable x also becomes zero. In some specific model such as the weakly-coupled
largeNc QCD withNf fermions (Nf/Nc fixed) discussed in references [69,14] or the Gaussian matrix model with
Nf fundamental scalars that will be discussed in section 4.3.3, one can identify that the Hagedorn temperature
formally exists at zero temperatureTH = 0. The phase structure for this generic model is shown schematically in
the figure 6, which is quite similar to the phase structure in the right panel of figure 5.

Figure 6: Phase structure for the largeN theory with the adjoint and fundamental matters. The ordinary confine-
ment/deconfinement transition at which the Polyakov loop jumps to nonzero value exists at zero temperature
T = 0 (blue dot). At a rather higher temperature, there is the Gross-Witten-Wadia temperature of full theory
TGWW(N) (red dot). The phase structure resembles the one shown in the right panel of figure 5. We can inter-
pret that the low-temperature phase (orange line) separated by these phase transition points is nothing but the
partially-deconfined phase.

Let us further define the free energy of the SU(M) subsector

βF̃ =

∞∑
n=1

{
N2an(x)|ũn|2 +NNfbn(x)(ũn + ũ∗n)

}
, (4.58)

and corresponding energy

Ẽ =
∂(βF̃ )

∂β
=

∞∑
n=1

{
N2∂an

∂β
|ũn|2 +NNf

∂bn
∂β

(ũn + ũ∗n)

}
. (4.59)
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Above, we utilized the fact that we can always collect the excited quanta in the SU(N) subsector since considering
free theory. The Polyakov loops in the subsector is defined as

ũn =
1

M

M∑
j=1

einθj , (4.60)

and satisfy the following relation

un =
1

N

 M∑
j=1

+
N∑

j=M+1

einθj =
M

N
ũn + 0. (4.61)

At T = TGWW(M,Nf) the SU(M) sector reaches the Gross-Witten-Wadia transition point. The Polyakov line
phases not contained in the SU(M) subsector form the uniform distribution since they are not excited thermo-
dynamically, and hence,

min ρ̃(θ) = 0 ↔ min ρ(θ) =
1

2π

(
1− M

N

)
, (4.62)

and from this expression we can read the valueM off. Wewill see the actual phase distribution for the theory with
fundamental matters in section 4.3.3, which is essentially same analysis with above one, and the demonstration
strongly supports the presence of the phase partial deconfinement takes place.

Moreover, partial deconfinement can be seen in terms of the thermodynamic quantities. For example, the
energy E and entropy S are

E = EGWW(M,Nf), S = SGWW(M,Nf), (4.63)

because the contribution of the Polyakov loops un from other than the SU(M) subsector always vanishes up to
zero-point offset.

These observations imply that partial deconfinement takes place in the color sector and separate into the
confined and deconfined sectors, while it does not seem to happen in the flavor sector and perform any separation.
Intuitively speaking, the behavior of partial deconfinement for the fundamental matters happens like in figure 7,
in contrast to figure 1 for the adjoint fields case. Another evidence not to happen the two-phase coexistence
for the flavor sector may be the consensus with the Vafa-Witten theorem [72] which restricts the spontaneous
breaking of the vector-like continuous symmetry. As discussed in reference [14], there is a possibility of the
flavor symmetry breaking, namely, the loophole of the Vafa-Witten theorem. The theorem assumes the positivity
of the fermion determinant in the Euclidean path integral. If we introduce the nonzero baryon chemical potential
µB ̸= 0, the fermion determinant can be complex, and hence, the assumption is no longer valid.

4.2 O(N) vector model

Up here, we have seen the case of the free Yang-Mills theories with adjoint fields. In this section, let us take a
look at the three-dimensional free theory ofN -componentNf -flavor vector of scalar fields on S2 with the radius
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Figure 7: Schematic picture of the matter field configuration in the fundamental representation where the partial
deconfinement takes place. The M × Nf -block (red) and the rest (blue) represent the deconfined and confined
sectors, respectively.

R which also takes place the confinement/deconfinement transition due to the gauge-singlet condition [73] and
partial deconfinement below the GWW temperature TGWW(N) [13]. In the large N limit with Nf

N fixed, the
deconfinement transition is characterized by the growth of thermodynamic quantity such as the entropy S from
N0 to N2 in a double scaling limit with respect to the radius R and N .

This model originates from the coupling of ϕ⃗(x)with theO(N) gauge field in the Chern-Simons action and its
infinite-level limit, for example. The motivation to study this type of model comes from the gauge/gravity duality,
particularly the connection between the thermodynamic behavior in QFT and black holes in the bulk. Specifically,
the duality between this model and the higher spin gravity as known as Vasiliev gravity [74–76] has conjectured
[77] and been studied in the literature (see references [78–81], and textbook [82] in Japanese, for example). This
model is also interesting to compare the (de)confinement at largeN to theN -particle quantum mechanics of the
indistinguishable ideal Bose gas that exhibits the Bose-Einstein condensation at low temperatures explained in
section 5.

The model consists of N -component vector of scalars

ϕ⃗(x) = (ϕ1(x), · · · , ϕN (x)), (4.64)

which transforms in the O(N) fundamental representation. In order for simplicity to consider the occurrence of
partial deconfinement, the number of flavorNf is set to be one. Note that we now consider the theory on S2R×S1β ,
and hence, d = 3. The generalization to the generic dimension d and flavors Nf > 1 is straightforward.
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We can start from the following partition function described by the Polyakov line phases θi;

Z(β) =
1

N !

∫ ∏
i

dθi exp

∑
i<j

2 ln

∣∣∣∣sin θi − θj
2

∣∣∣∣+ 2Nf

∞∑
n=1

1

n
zS(x

n)
∑
i

cos(nθi)

, (4.65)

where
zS(x) = x

d
2
−1 1 + x

(1− x)d−1
. (4.66)

This expression is analogous to equation (4.5) for the weakly-coupled Yang-Mills theories explained the previous
sections.

To solve this model, we can apply the method essentially same as the previous sections. Skipping the detail,
we figure out that the Polyakov loop is zero at zero temperature and nonzero at finite temperature, and the
Gross-Witten-Wadia transition occurs at

TGWW(N) =

√
3

πR

√
N. (4.67)

Therefore the phase structure looks similar to figure 6. Below the TGWW(N), we can confirm that the two-phase
coexistence in terms of color degrees of freedom takes place. If we define the parameter b as

b ≡ TR√
N
∼ N0, (4.68)

the distribution of the Polyakov line phases is obtained, from stationary condition, by

ρ(θ) =
1

2π
+

2b2

π
f(θ), (4.69)

where

f(θ) =
∞∑
n=1

cos(nθ)

n2
=

π2

12
+

(|θ| − π)2

4
. (4.70)

The GWW-transition point is where the minimum of the phase distribution goes to zero, namely min ρ(θ) = 0,
and hence, b = bGWW =

√
3

π . Using this parameter,

ρ(θ; bGWW) =
3

2π2
(|θ| − π)2, (4.71)

which becomes zero at θ = ±π, as we can see. As a result, the phase distribution can bewritten as the combination
of the distribution function defined at T = 0 and T = TGWW(N);

ρ(θ;T ) =

(
1− b2

b2GWW

)
ρcon(θ) +

b2

b2GWW

· ρ(θ; bGWW). (4.72)

The ratio of the mixture with the confined and deconfined sector is

M

N
=

b2

b2GWW

, ⇔ TR = b
√
N = bGWW

√
M, (4.73)
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In the above relation, we can regard the temperature T as the critical temperature in O(M) theory, namely,

TGWW(M)R = bGWW

√
M. (4.74)

In conclusion,

ρ(θ;T = TGWW(M)) =

(
1− M

N

)
· 1

2π
+

M

N
· ρGWW(θ;M), (4.75)

which is in the same form as the obtained in the previous example.
At high temperature, b≫ 1 but still of order N0, the attractive force in the effective action for the Polyakov

line phases θ becomes extremely strong, and their distribution becomes sharpen. In the case, the free energy is

βF = 4ζ(5)Nf
2T 5, (4.76)

From that, we can also calculate the energy and entropy scaling at 1≪ T = TGWW(M) ≤ TGWW(N), and

E = AT 5 = EGWW(M) ∼M
5
2 , S =

5

4
AT 4 = SGWW(M) ∼M2, (4.77)

where A = 16ζ(5). Certainly, the phase transition occurs where the entropy increases to of order N2. However,
notice that the energy scaling with M is different for the free vector fields from the previous examples with the
matrix degrees of freedom.

Above discussion is based on the path integral formalism. We can derive this thermodynamics in the Hamilton
formalism as well. We will discuss that by utilizing the Gaussian matrix model in the next section, which can be
applied to this model.

4.3 Gauged Gaussian matrix model

Previous examples are the theory defined on sphere and have some spatial directions. However, as we
can see in this section, even the toy models not containing the spatial dimensions can exhibit the confine-
ment/deconfinement transition at finite temperature. That surprising model we look at here is the (0 + 1)-
dimensional matrix quantum mechanics called gauged Gaussian matrix model or just Gaussian matrix model.
The gauged Gaussian matrix model is an analytically solvable toy model for the deconfinement and had been
studied in terms of partial deconfinement analytically [13, 12] numerically [17, 71]. The discussion studying the
deconfinement at large N is essentially parallel to the previous examples. Since the model is simpler and easier
to calculate than the above examples, we added some materials to analyse the model in appendix C.

4.3.1 Nf = 0 case

For starter, let us consider the original model of the gauged Gaussian matrix model consisting of only the
matrix fields. The action of the model is

S = N
D∑
I=1

∫ β

0
dtTr

{
1

2
(DtXI)

2 +
1

2
X2

I

}
, (4.78)
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4 Analytic examples for partial deconfinement

where XI is N × N hermitian matrices. The index I runs 1 to D. The covariant derivative is defined as
DtXI = ∂tXI − ig [At, XI ] with the temporal gauge field At. The circumference towards the temporal direction
is identified with the inverse temperature β = 1

T .
To perform the functional integral and obtain the partition function, we choose the static diagonal gauge

At =
1

β
diag (θ1, · · · , θN ), (4.79)

and fix the gauge redundancy. The Polyakov line phases θi are independent on t and θi ∈ (−π, π]. The form of
the free energy8) is given by

βF = − lnZ(β) =
βN2D

2
+N2

∞∑
n=1

1−Dxn

n
|un|2, (4.80)

where x = e−β , same as before. For detailed calculations, see appendix C.
Same as the previous free theories with adjoint matters, this model exhibits the confinement/deconfinement

transition which is of first order at T = Tc =
1

lnD in the canonical ensemble (the middle panel of figure 4 and 5).
At low temperatures, the coefficients of un are all positive, and hence, the saddle point condition requires un = 0

for any n. At T = Tc, the coefficient for n = 1 becomes zero while the rest keeps positive values. Therefore, only
the Polyakov loop P = u1 can take any value between 0 and 1

2 as the saddle point solution. The deconfinement
transition accompanies two different phase transitions, the Hagedorn transition at P = 0 and the Gross-Witten-
Wadia transition at P = 1

2 . The intermediate phase appears where 0 ≤ P ≤ 1
2 separated by these transitions.

Note that we again fix the ambiguity of center symmetry in the Polyakov line phase by the condition P = |P |.
Using a similar analysis to one of the free Yang-Mills theories, the distribution of the Polyakov line phases

ρ(P)(θ) is obtained by

ρ(P)(θ)
∣∣∣
T=Tc

=
1

2π
(1 + 2P cos θ) , (4.81)

in which we emphasize that it represents distribution for the Polyakov line phases.
We can compute the energy and entropy as functions of the Polyakov loop9) ,

E|T=Tc
≡ N

β

∫
dt
∑
I

TrX2
I

∣∣∣∣∣
T=Tc

=
D

2
N2 +N2P 2 (4.82)

S|T=Tc
= lnD ·N2P 2. (4.83)

As we can see, the energyE and entropy S glows fromN0 toN2 up to the zero-point energy d
2N

2 in conjunction
with the growth of P from 0 to 1

2 . Keep in mind that the free energy F = E − TS is

F |T=Tc
=

D

2
N2, (4.84)

8)More precisely, the value of the effective potential at the stationary point ∂Veff
∂un

= 0.
9)There is a subtlety to compute these quantities at the critical temperature. Introducing a “source term” and removing at the end of

calculation enables us to avoid it. See appendix A.1 of reference [13].
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4 Analytic examples for partial deconfinement

and does not depend on P . Therefore, every value of the Polyakov loop equally contributes to the canonical
partition function.

Partial deconfinement

As mentioned, the partially-deconfined phase appears at T = Tc as an intermediate phase divided by the two
distinct phase transitions. In this section, we restrict the argument at the critical temperature. There, the size of
the deconfined sectorM can change fromM = 0 toM = N . Again, the value can be read off from the physical
quantities or the offset of the phase distribution. In the case of the Gaussian matrix model as well, we can identify
the Polyakov loop as

P =
M

2N
. (4.85)

It leads that the distribution of the Polyakov line phases (4.81) can be expressed by

ρ(P)(θ) =
1

2π

(
1 +

M

N
cos θ

)
=

(
1− M

N

)
· 1

2π
+

M

N
· 1 + cos θ

2π
, (4.86)

and therefore
ρ(P)con(θ) =

1

2π
, (4.87)

and
ρ
(P)
dec(θ) =

1

2π
(1 + cos θ). (4.88)

For the energy E and entropy S in equations (4.82), (4.83), we can rewrite the expressions to

E =
D

2
N2 +

M2

4
=

D

2
(N2 −M2) +

(
D

2
+

1

4

)
M2, (4.89)

and
S =

lnD

4
M2 = 0 · (N2 −M2) +

lnD

4
M2. (4.90)

In this way, we can separate two different contributions coming from the confined and deconfined sectors in terms
of the color degrees of freedom. We show the equations such that the first term is interpreted as the contribution
from the ground state, while the second one is the value of each observable for an SU(M) truncated theory
at the Gross-Witten-Wadia-transition point where only M degrees of freedom can be excited. The two-phase
coexistence as schematically shown in figure 1 explains thisM -dependence.

We give a comment to avoid the later confusion; when we carry out the numerical simulation at large but
finiteN , we utilize the equation (4.85) to determine the size of deconfined sectorM by 2NP ∈ [M − 1

2 ,M + 1
2 ].
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4.3.2 The Hamilton formalism

We can parallelly study the thermodynamics of the partially-deconfined phase for the Gaussian matrix model
at large N in the Hamilton formalism [13]. In this approach, we can understand the spontaneous breaking of
gauge symmetry more clearly.

The Hamiltonian of this model is given by

Ĥ =
1

2

∑
I

Tr
(
P̂ 2
I + X̂2

I

)
=

1

2

∑
I,α

Tr
(
P̂ 2
Iα + X̂2

Iα

)
, (4.91)

where

P̂jk =

N2−1∑
α=1

P̂ατ
α
jk, X̂jk =

N2−1∑
α=1

X̂ατ
α
jk, (4.92)

with SU(N) generators τα. Here, the commutation relation
[
X̂Iα, P̂Jβ

]
= iδIJδαβ is satisfied. The creation and

annihilation operators are defined by these operators as

Â†
I =

1√
2

(
X̂I − iP̂I

)
, ÂI =

1√
2

(
X̂I + iP̂I

)
, (4.93)

which is the analogue of the harmonic oscillators in the ordinary quantum mechanics. The arbitrary physical
states can be obtained as a gauge singlet, and

Tr
(
Â†

IÂ
†
J Â

†
K · · ·

)
|0⟩ =

N∑
i,j,k,l···=1

(
Â†

I,ijÂ
†
J,jkÂ

†
K,kl · · ·

)
|0⟩ , (4.94)

where the Fock vacuum |0⟩ which satisfies ÂI |0⟩ = 0.
Let us also consider the truncated operator Â†′

I which is reduced from Â†
I to the SU(M)-subsector. Applying

that operator, the states which are SU(M)-invariant but not SU(N)-invariant can be constructed

Tr
(
Â†′

I Â
†′
J Â

†′
K · · ·

)
|0⟩ =

M∑
i,j,k,l···=1

(
Â†

I,ijÂ
†
J,jkÂ

†
K,kl · · ·

)
|0⟩ , (4.95)

where the indices in the sum run from 1 toM , notN . Obviously, this type of the state is not the invariant under
some SU(N) transformations. Combining such states and constructing the energy eigenstate |E; SU(M)⟩ with
the energy (4.89) determined by M , we can explain the entropy in equation (4.90), and see the consistency with
the distribution of the Polyakov line phases (4.86) in the path integral formalism.

When one would like to discuss in an SU(N)-invariant way, we can construct the SU(N)-invariant states
|E⟩inv by the linear combination of all possible embeddings of SU(M) into SU(N). Namely, we can perform the
SU(N) symmetrization using the |E; SU(M)⟩;

|E⟩inv ≡
1√
N

∫
SU(N)

dU U(|E; SU(M)⟩), (4.96)
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where U represents the gauge transformations and N is the normalization factor related to the volume of the
SU(N) group. The integral is taken over all SU(N) gauge transformations. This type of the eigenstates also
explains the entropy and the phase distributions above in a consistent manner.

A notable feature is that one cannot distinguish the SU(N)-symmetrized, gauge-invariant state |E⟩inv from
the state with a particular embedding of the SU(M), |E; SU(M)⟩ in the situation we have considered at large
N . It can be interpreted as the occurrence of the spontaneous breaking of gauge symmetry. Let us consider a
state with a particular embedding |SU(M)⟩1 and its gauge transformed state |SU(M)⟩2 by some unitary trans-
formation10) Let Ô be a gauge-invariant operator which is a polynomial of O(N0) matrices. Here, we introduce
the ‘short’ gauge-invariant operators Ô as a polynomial of O(N0) matrices. The ‘short’ operators are suitable to
investigate these states with energy of order N2 since they do not change the energy and hence the thermody-
namics in the system drastically. Then, we can derive

2 ⟨SU(M)|Ô|SU(M)⟩1 = 0, (4.97)

since one has to act O(N2) creation and annihilation operators in order to bridge between |SU(M)⟩1 and
|SU(M)⟩2. This has an essentially same meaning as the super-selection rule; distinct embeddings of SU(M)

to SU(N) are separated into distinct super-selection sectors. It can work even when the embeddings are very
close in the large N limit. Suppose that V is a generator of SU(N)/SU(M) with a small but of order N0 norm√
Tr(V V †). When we obtain |SU(M)⟩2 by the transformation eiV , the relation (4.97) is satisfied in the large

N limit with fixed M
N

11). In conclusion, the same expectation value is obtained for Ô which is independent of
whether to use a specific embedding or a super-position of whole embedding.

4.3.3 Nf > 0 case

We can easily consider the deconfinement for the bosonic matrix model, including not only the adjoint scalars
but also the fundamental scalars. Adding such a type of matter fields changes the phase structure significantly.
The phase structure is rather similar to the case of the vector model explained in sections 4.1.3 and 4.2. In this
section, let us study the Gaussian matrix model with Nf -fundamental scalar fields ϕA. They are N -component
complex fields, and the index A runs 1 to Nf . The action of the matrix model is

S = N

∫ β

0
dt

[
Tr

{
1

2
(DtXI)

2 +
1

2
X2

I

}
+
∣∣∣D̃tϕA

∣∣∣2 + |ϕA|2
]
, (4.98)

10)For example, let |SU(M)⟩1 be a state representing only the upper-leftM×M block is excited and hence deconfined, while |SU(M)⟩2
be one representing only the lower-rightM ×M block is done.

11)Imagine a situation that the upper-leftM×M block is deconfined in |SU(M)⟩1, and |SU(M)⟩2 is the one that theM -th andM+1-
th rows and columns are exchanged. Although they seems almost identical, they are actually not since the length of the operator Ô has
to be of order N1 to bridge between |SU(M)⟩1 and |SU(M)⟩2.
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4 Analytic examples for partial deconfinement

where the covariant derivative for the fundamental scalar fields is defined as D̃t = ∂t − iAt. Of course, we can
consider the model with independent masses and coupling constants for the scalar fields. Here, we take those
parameters as the identical ones for simplicity.

One can compute the partition function of this model analytically by performing the functional integral. The
free energy, the equivalent quantity to the partition function as the function of the Polyakov loops un can be
obtained by

βF =
βN2

2

(
D +

2Nf

N

)
+N2

∞∑
n=1

[
an(x) |un|2 +

Nf

N
bn(x) (un + u∗n)

]
, (4.99)

where
an(x) =

1

n
(1−Dxn), bn(x) = −

xn

n
. (4.100)

Again, we use the notation x = e−β . For the detailed computation, see also appendix C. The saddle-point condi-
tion implies that, at low temperatures,

un = −Nf

N
· bn
an

=
Nf

N

xn

1−Dxn
, (4.101)

and the phase structure of this model is like figure 6. At zero temperature, all un become zero and the completely-
confined phase is realized. In this sense, we can regard zero temperature as the ‘Hagedorn’ temperature. The
distribution of the Polyakov line phase at the low temperature phase, namely below the Gross-Witten-Wadia-
transition point TGWW(N) is

ρ(P)(θ;T ) =
1

2π

(
1 + 2

∞∑
n=1

un cos(nθ)

)
, (4.102)

which is identical with equation (4.45). Substituting the solution of the saddle-point condition, the free energy at
the low temperature phase is given by

βF =
βN2

2

(
D +

2Nf

N

)
−Nf

2
∞∑
n=1

x2n

1−Dxn
. (4.103)

It scales O(Nf
2) up to the offset, which indicates the mesonic degrees of freedom are dominant in this phase.

Partial deconfinement

The partially-deconfined phase appears as a thermodynamically stable phase in the range of the temperatures
between the ‘Hagedorn’ temperature TH = 0 and the Gross-Witten-Wadia temperature TGWW(N). The proper-
ties of partial deconfinement can be seen in terms of the distribution of the Polyakov line phases. The two-phase
separation implies that the phase distribution behaves

ρ(P)(θ;T ) =

(
1− M

N

)
ρ(P)con(θ) +

M

N
ρ
(P)
dec(θ;M). (4.104)
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The distribution function ρ
(P)
dec(θ;M) is defined on the Gross-Witten-Wadia point of SU(M) theory described

by ũn = N
M un. Remembering the dependence of the deconfined degrees of freedom M to the temperature

explained in section 3.2.2, the size M relates to the temperature of the distribution of whole theory ρ(P)(θ;T ),
T = TGWW(M). In section 4.1.3, we discussed the separation of the phase distribution somehow abstractly.
Here, we demonstrate the separation specifically using the forms of un at the saddle point (4.101). The figure 8
shows the two phase distributions; one using the expression in the low-temperature phase (4.102), and the other
combining the uniform distribution ρ

(P)
con = 1

2π and the expression defined at the Gross-Witten-Wadia transition
point for truncated SU(M) theory

ρ
(P)
dec(θ;M) ≡ ρ̃(P)(θ;TGWW(M)) =

1

2π

(
1 + 2

∞∑
n

ũn cos(nθ)

)
, (4.105)

which satisfies (4.62). In the former expression as well, the size of the deconfined sector M is evaluated by
the minimum of the phase distribution. As we can see, these two different distributions shows a remarkable
agreement. We emphasize that the temperature T is directly connected to the size of the deconfined sector
M for the theory with this type of phase structure, even in the canonical ensemble; every temperature is the
Gross-Witten-Wadia temperature of the some subsector in the full theory, and the rank of the gauge group for
the subsector M is determined by the minimum of the distribution of the Polyakov line phases ρ(P)(θ). This is
justified at large N andM .

-3 -2 -1 0 1 2 3
θ

0.05

0.10

0.15

0.20

0.25

ρ(θ,T=0.9422) (M∼16.0002)

1
2π

(1-M
N
) + M

N
ρ̃(θ;T=0.9422)

Figure 8: The plots of the phase distribution using two different expressions. One is using the original expression
(4.45) (blue line) and the other is using the ansatz of partial deconfinement, the combination of the contributions
defined at the Hagedorn and Gross-Witten-Wadia transition points with an appropriate weight (orange line). The
difference between these two lines is too small to distinguish.

Moreover, we can understand the two-phase coexistence from the fact that the energy contributions from the
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deconfined sector dominates. The energy below the Gross-Witten-Wadia temperature is given by the configura-
tion at the saddle-point as

E =
∂(βF )

∂β
=

N2

2

(
D +

2Nf

N

)
+N2

∞∑
n=1

[
∂an(T )

∂β
|un|2 +

Nf

N
· ∂bn(T )

∂β
(un + u∗n)

]
. (4.106)

The first term is the zero-point energy, and the second term expresses the contribution of excitations. One can
specify the energy contributions from the adjoint and fundamental scalar fields in a following manner;

E(X) =
D

2
N2 +DN2

∑
n

xn|un|2 =
D

2
N2 +DM2

∑
n

xn|ũn|2, (4.107)

E(ϕ) = NNf +NNf

∑
n

xn(un + u∗n) = NNf +MNf

∑
n

xn(ũn + ũ∗n), (4.108)

connecting the expressions of theU(N) full theory to those of the SU(M) subsector. We can follow the discussion
in the previous sections and state that the thermodynamic quantities such as the energy is controlled by the size
of the deconfined sector M .
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5 BEC-Confinement correspondence

A remarkable connection between color confinement in large-N gauge theories and Bose-Einstein conden-
sation (BEC) [83] plays a crucial role to establish the insight of partial deconfinement [15]. As mentioned in
section 4, the gauge-singlet constraint is the key of the confinement/deconfinement transition, not the strength
of interaction in the large-N gauge theories. It is the well-known fact that the spin statistics of bosons associated
with the particle permutations is the essence of the Bose-Einstein condensation, and the condensations occurs
even in the non-interacting theory. In the following, we confirm this kind of redundancy provides with the com-
mon mechanism to both sides. Moreover, we saw that the size of the deconfined sector M can be read off from
the distribution of the Polyakov line phases;

min ρ(P)(θ) =
1

2π

(
1− M

N

)
, (5.1)

which is quite analogous to the number of the particles in BEC as we will mention in the following. In this section,
we review the correspondence based on reference [15].

5.1 Comparison with ideal boson gas

At first, we consider the system with N ideal boson gas in Rd. The Hamiltonian is described by d-component
harmonic oscillators x⃗1, · · · , x⃗N , and

H =
N∑
c=1

(
p⃗ 2
c

2m
+

mω2

2
x⃗ 2
c

)
. (5.2)

There is the SN -permutation symmetry associated with Bose-Einstein statistics. Although it is unfamiliar for
many people, we can treat this system as the SN -gauged quantum mechanics of N -component vectors. To
compare the following analysis with particularly the one of O(N) vector model on Sd 12) under the translation
(x⃗1, · · · , x⃗N )⇔ (ϕ1, · · · , ϕN ) helps our understanding to this correspondence.

In the Hamilton formalism, the Fock states

|n⃗1, n⃗2, · · · , n⃗N ⟩ ≡
d∏

i=1

â†ni1
i1√
ni1!

â†ni2
i2√
ni2!
· · ·

â†niN
iN√
niN !
|0⟩, (5.3)

can span the extended Hilbert space containing non-gauge-invariant states, using d-dimensional integer-valued
vectors n⃗. The gauge-singlet states are defined as the SN -permutation-invariant states. Using the standard Fock
state, the states expressing the particle condensation are given by

P̂
∣∣∣n⃗1, · · · , n⃗M , 0⃗, · · · , 0⃗

〉
, (5.4)

12)Notice that we take d = 3 in section 4.2 for convenience, and the generalization to higher d is straightforward.
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where
P̂ =

1

N !

∑
g∈SN

ĝ, (5.5)

is the projection operator and ĝ is a unitary operator acting on the Hilbert space, which corresponds to the
group element g ∈ SN . The states before this projection is unsymmetrized state and nothing but the counter-
part of |E; O(M)⟩ for the vector model, analogous to |E; SU(M)⟩ for the Gaussian matrix model explained in
section 4.3.2.

In the grand canonical ensemble with the chemical potential µ (≤ 0), the number of excited particles can be
derived as

M =

∫ ∞

0
dε

cd ε
d−1

eβ(ε−µ)−1

∣∣∣∣
µ=0

=
T dζ(d)

ωd
, (5.6)

where cd = (Γ(d) · ωd)−1, and Bose-Einstein condensation is formed when M = M(µ = 0) < N . This relation
determines the critical temperature Tc whereM = N , and hence

Tc =

(
N

ζ(d)

) 1
d

ω, (5.7)

and
M

N
=

(
T

Tc

)d

. (5.8)

These results are remarkably resembling the relations (4.67) and (4.73) in O(N) vector model, while d is chosen
to 3 there.

As will be omitted details in this thesis, the thermodynamic quantities such as the energy and entropy below
that critical temperature can be obtained by

E(T = Tc(M)) = Ec(M), S(T = Tc(M)) = Sc(M), (5.9)

as analogues of equation (4.77). Certainly, their contribution is coming only from excitation. While the Bose-
Einstein condensation was first found in the non-interacting theory, it can appear even at strong coupling, for
example, the superfluid helium [84]. It led to a two-component fluid theory made by particles in the ground and
excited states and capture the thermodynamic properties of the system. We can find that this two-component
description and partial deconfinement are laid on the common mechanism, as will see in the next section.

5.2 Common mechanism with partial deconfinement

For the system with N ideal boson gas, the partition function incorporating the redundancy of permutation
is obtained [85] by

Z =
∑
g∈G

Tr
(
ĝe−βĤ

)
, (5.10)
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where G = SN . The trace is performed over |n⃗1, n⃗2, · · · , n⃗N ⟩ in equation (5.3). Again, ĝ is a unitary operator
corresponding to the group element g ∈ G. The insertion of ĝ works as the projection to the gauge-invariant
Hilbert space, after the summation over the gauge group G;

Z =
∑
g∈G

∑
n⃗1,··· ,n⃗N

⟨n⃗1, · · · , n⃗N |ĝe−βĤ |n⃗1, · · · , n⃗N ⟩

=
∑

n⃗1,··· ,n⃗N

e−β(En⃗1
+···+En⃗N )

∑
g∈SN

⟨n⃗1, · · · , n⃗N |ĝ|n⃗1, · · · , n⃗N ⟩

=
∑

n⃗1,··· ,n⃗N

e−β(En⃗1
+···+En⃗N )

∑
g∈SN

⟨n⃗1, · · · , n⃗N |n⃗g(1), · · · , n⃗g(N)⟩. (5.11)

For the ground state |⃗0, 0⃗, · · · , 0⃗⟩, every element g ∈ G contributes equally, which leads to an enhancement by a
factor N !. On the other hand, for generic excited states, only g = 1 contributes to partition function since all N
particles are in different states. In other words, the generic states are suppressed by a factor N ! compared to the
ground state, which causes the condensation.

The above formulation enables us to handle the gauge-singlet condition explicitly. Similarly, we could apply it
to different gauge groups such as SU(N) and more generic field contents. Actually, the partition function for the
large-N gauge theory (4.4), for instance, is one counterpart of that. We have seen that the operator ĝ implements
the gauge transformation in the Hilbert space corresponding to a group element g ∈ G. For the U(N) or SU(N)

theory, this element g can be interpreted as the Polyakov loop (3.2), as a role of mediator reflecting the Gauss’
law constraint. In the examples shown in section 4, we can see this makes sense.

In order to determine the distribution function of the Polyakov line phase, we look at permutation matrices
that keep the typical state in the thermodynamics unchanged. When the Bose-Einstein condensation is realized,
long cyclic permutations exchanging the particles in the condensation dominate [85], and the off-diagonal long-
range order (ODLRO) appears [86]; Let ρ̂ be the density matrix of the N -particle system, ρ̂1 be the one-particle
density matrix in which the restN −1 particles are traced out. Using its spectral decomposition with normalized
states, it is also written by

ρ̂1 = nmax |Ψ⟩⟨Ψ|+
∑
i

ni |Ψi⟩⟨Ψi| , (5.12)

where nmax is the biggest eigenvalue and |Ψ⟩ represents its eigenstate. The Bose-Einstein condensation appears
when nmax is of order N . In the previous example for non-interacting bosons, the eigenstate |Ψ⟩ is the one-
particle ground state, and nmax = N −M , which gives the number of particles in the ground state. In terms of
the Polyakov line and its phases, long cyclic permutations affect to the constant offset of the phase distribution
ρ(P)(θ). Remembering the constant offset becomes nonzero when the Bose-Einstein condensation is realized, this
is the analogue of the Gross-Witten-Wadia transition associated with deconfinement for gauge theories. This is
the reason why the constant distribution of the Polyakov line phases is a good indicator of confinement. Note
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that, even if the phase distribution is not uniform, we can extract the constant offset from non-uniform part;

ρ(P)(θ) = C + ρ̃(P)(θ), (5.13)

where C ≥ 0 is the minimum of ρ(P)(θ) and ρ̃(P)(θ) is a non-constant distribution whose minimum is zero. This
C is related to M as

C =
1

2π

(
1− M

N

)
. (5.14)

Therefore, we can pick a particular ordering of θi such that θ1, · · · , θM give the nonuniform part ρ̃(θ), and
θM+1, · · · , θN give the constant part C . It leads to the separation of the degrees of freedom to the confined and
deconfined sectors. When we consider some matrix fields, the phase separation shown in figure 1 can be seen.

We emphasize again that the Bose-Einstein condensation can occur at strong coupling such as the superfluid
helium [84] proposed by F. London. The situation is similar to various quantum field theories at weak and strong
coupling (see e.g. [66, 87]), and hence, it is plausible to motivate that partial deconfinement can be valid even
beyond weak coupling.

Another comment is about the counterpart of the Gross-Witten-Wadia transition for the theory other ther-
modynamic limit than the large N limit is taken. Although the Gross-Witten-Wadia (GWW) transition is no
longer the precise phase transition at the finite N , the GWW-transition point corresponds to the point where
the global symmetry restores [58]. In the reference [58], the authors study the specific examples with the global
symmetry that is broken and preserved in the confined and deconfined phase in the traditional meaning, and
in the partially-deconfined phase, the symmetry is spontaneously broken. The result may suggest to define par-
tial deconfinement in terms of the global symmetry breaking13), although further detailed studies are needed to
confirm the identification between that definition and the original one.

13)See also the independent but somehow relating works [88, 89] to present the intermediate phase associated with the symmetry
breaking and the two-phase separation.
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6 Numerical analysis

In this section, we show the numerical results of the lattice Monte Carlo simulations for the bosonic matrix
models [16, 17, 71].

Until now, we mainly studied the properties of partial deconfinement in the weakly-coupled theories focusing
on the saddle-point configurations of the Polyakov loops un. In the studies [16, 17], we can confirm that partial
deconfinement can take place even beyond the weak coupling regime though the nonperturbative analysis by the
lattice Monte Carlo simulations. Moreover, the two-phase separation as shown in figure 1 can be seen specifically
in the matter field configurations. More details about the simulation will be explained in appendices D, E, and F.

6.1 Simulation schemes

In our Monte Carlo simulation, we employ the several schemes for optimization or demonstration explicitly
studying the partially-deconfined phase. Let us summarize on the list for the simulations in each model;

• For the Gaussian matrix model without the fundamental scalar fields (Nf = 0) explained in section 6.3,
we performed the naive Monte Carlo simulation since the simulation cost is so low that we do not have to
introduce any modification.

• For the Gaussian matrix model with the fundamental scalar fields (Nf > 0) explained in section E.3, we
performed the constrained simulation.

• For the Yang-Mills matrix model, we performed both the “efficient” simulation in section 6.4 and the con-
strained simulation in section 6.5. We compare the obtained results with the one in reference [16] and see
its consistency.

6.1.1 “Efficient” simulation

The size of the deconfined sectorM can change from 0 toN in U(N) or SU(N) theories. Therefore, we need
a long time to generate the Monte Carlo configurations with the specific value of M in order to evaluate the
quantities at fixed M . We can take a more efficient approach by adding a source term

∆S =


γ
2 (|P | − p1)

2 (|P | < p1)

γ
2 (|P | − p2)

2 (|P | > p2)
(6.1)

to the action in order to restrict the Polyakov loop P = 1
N

∑N
j=1 e

iθj . If we take the parameter γ sufficiently
large, this method enables us to collect the configurations in the region between p1 and p2, that is, M at some
fixed values effectively. Note that this method leaves the configurations at p1 < |P | < p2 undeformed.
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6.1.2 Constrained simulation

We further introduce a new approach to study the properties of partial deconfinement in detail. Although this
deformation may look similar to one explained in the previous section, there is a huge difference in the physical
sense.

Let us define the Polyakov loops in each sector, as

PM =
1

M

M∑
j=1

eiθj , PN−M =
1

N −M

N∑
j=M+1

eiθj . (6.2)

We introduce the source term

∆S =


γ
2

(
|PM | −

(
P̄ + δ

))2 (
|PM | > P̄ + δ

)
γ
2

(
|PM | −

(
P̄ − δ

))2 (
|PM | < P̄ − δ

)
γ
2 (|PN−M | − δ)2 (|PN−M | > δ)

(6.3)

to the action. The value |PM | and |PN−M | can be constrained to be around P̄ and 0, respectively, with a width δ

if we take the parameter γ sufficiently large. We used γ ∼ 105 and δ = 0.002 in our simulations.

Figure 9: The intuitive picture of the role of the source term in the constrained simulation. With this term, we
can generate the Monte Carlo configurations of which the observable takes the value as we aimed.

If our scenario regarding partial deconfinement is correct, this constraint should fix the SN permutation
symmetry and make the upper-left SU(M) block deconfined while keeping the rest confined, as in figure 1. In
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other words, we can realize a ‘gauge fixing’ in figure 1 for the configurations generated in the path integral
formalism. In the largeN limit where the sizeM can be also treated as O(N), this deformation does not change
the thermodynamics of the SU(M)-partially-deconfined phase. As we will mention later, we will confirm that, in
our numerical simulation, this deformation works just for optimization and does not affect the original physics
up to numerical errors.

6.2 Typicality and master field

At large N , the path integral can be evaluated by a “typical” configuration at the saddle point up to a gauge
transformation. The configuration is the so-called master field which is a solution of the saddle point equation It
was named by Coleman in his textbook [90], and the existence of such a typical field configuration in large-N
gauge theories was discussed by Witten [91]. For the review of the master field, see also references [92, 93]. In
reference [94], we can find a few comments of the master field for the deconfinement in 4d pure Yang-Mills theory
at N =∞, in the literature of lattice Monte Carlo simulations.

Following the paper [17], the master fields
{
Φ(master)

}
are referred to as a configuration in the Euclidean

path integral of the theory with fields {Φ} at largeN . They provide the accurate expectation values for properly
normalized observables to leading order in the expansion with respect to 1/N ;

⟨f({Φ})⟩ = f({Φ(master)}) (at large N), (6.4)

where f(·) represents a properly normalized gauge invariant following the ’t Hooft scaling. Note that the in-
variant does not affect the dominant configuration in the path integral, similarly to the operator Ô mentioned in
section 4.3.2. The strategy is to find out the features of the master field describing the partially-deconfined phase
firstly though the lattice Monte Carlo simulations in the solvable model such as the Gaussian matrix model. After
that, we figure out the features in nontrivial theories such as the Yang-Mills matrix model. We should notice
that the (lattice) configurations in the path integral do not simply connect to the quantum states in the Hamilto-
nian formalism, except that the expectation values of gauge-invariant observables coincide. We can make sense
that since the configurations have to be averaged to compute the expectation values with the Boltzmann weight,
unlike the wave functions. Of course, the master field cannot also be identified directly with the wave function
corresponding to the state in the Hilbert space.

The lattice Monte Carlo simulations utilize the importance sampling, and hence, the sample-by-sample fluc-
tuations of the properly normalized quantities 14) are suppressed as N is taken to be large. In the strict large
N limit, the configuration generated in lattice simulations coincide with the master field, of course if we could
perform such simulations. In fact, we can only do for large but finite N values in actual simulations. Therefore,
we regard the lattice configurations obtained by the Markov Chain Monte Carlo algorithm at sufficiently largeN

14)For example, E/N2 is such a quantity, which is of order N0 in the large N limit.
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as master fields. In other words, we study the configurations of the models when the finite N fluctuations of the
observables evaluated by them can be negligible in the numerical analysis.

It generates the canonical ensemble in the standard lattice Monte Carlo simulations, and one may wonder
the stability of the intermediate phase for the models with the first-order transition. To clarify the subtlety, we
move on to the microcanonical picture and rely on the relationship to the master field. Since the thermal phase
is defined at each energy, it is reasonable to assume that the microcanonical ensemble at each fixed energy E

can be represented by one master field, and expect that each saddle point has a corresponding master field. In
the case of the first-order phase transition without hysteresis, such as the Gaussian matrix model with the phase
structure as shown in the middle panel of figures 4 and 5, each value of the Polyakov loop between 0 and one at
the Gross-Witten-Wadia-transition point, or equivalently, eachM between 0 andN minimizes the free energy at
T = Tc. Hence, we have to treat all values ofM severally. We expect that a single master field exists for eachM ,
and we identify them with the dominant configurations for a given pair (T,M). Note that the situation is much
simpler when we consider the model with the continuous phase transition since the canonical ensemble matches
to the microcanonical ensemble. For the overview of the microcanonical ensemble and canonical ensemble, see
appendix A.

As mentioned in the beginning of this section, the master field has an ambiguity of gauge redundancy. We
perform the lattice Monte Carlo simulations under a gauge fixing to eliminate the redundancy. The gauge degrees
of freedom are no longer dynamical in the lower-dimensional models we consider now. We choose the static
diagonal gauge, which reduce the gauge symmetry up to SN permutations. Under the gauge, the gauge field
takes the form

At =
1

β
diag (θ1, · · · , θN ), (6.5)

where θ1, · · · , θN are independent of time t, and θi takes a value between ±π. Again, the Polyakov loop P is
expressed asP = 1

N

∑N
j=1 e

iθj by definition. In the partially-deconfined phase at the critical temperature T = Tc,
the Polyakov line phases can be divided into two groups; without loss of generality, we can pick up M of them
(θ1, · · · , θM ), and N −M of them (θ(N−M), · · · , θN ) such that they distribute with 1+cos θ

2π and 1
2π , respectively.

These groups represents nothing but the confined and deconfined sectors, respectively. This operation fixes the
residual SN permutation symmetry to SM × SN−M , which means that the exchanges performed inside these
distinct groups are indistinguishable. In fact, such a separation is not unique due to the residual symmetry under
the inter-group exchanges of θ’s with the same value. The permutation acting on two groups does not modify
the form of the phase distribution. Strictly speaking, the Faddeev-Popov term

SFP = −
∑
i<j

ln

∣∣∣∣sin2(θi − θj
2

)∣∣∣∣ , (6.6)

introduced by the gauge fixing inhibits the coincidence of θ at finite N . However, it is a desired feature in the
large N limit that neighboring θ’s approach infinitesimally close and the distribution function can be regarded
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as continuous. Our numerical results show a consistency with the separation, including the consequence of this
ambiguity 15). For an explicit example, see section 6.3.2, especially after equation (6.22).

In the following section, we show the relationship of the master field and partial deconfinement in lattice
configurations of the Gaussian matrix model, and the Yang-Mills matrix model.

6.3 Case : Gaussian matrix model

For starter, we study the simplest case, the Gaussian matrix model (without fundamental scalar fields,Nf = 0)
to establish the analysis method for partial deconfinement. At first, we discuss the model with the hermitian
matrix fields XI and without fundamental scalars (Nf = 0). See some preliminary results for the model with
fundamental scalars in appendix E.3. We generate field configurations by the lattice Monte Carlo simulation
without any constraints mentioned in section 6.1.

6.3.1 Distributions of scalar degrees of freedom

As a straightforward characterization of the master field, we define the distribution for the scalar fields.
Namely, analogous to the gauge field and the distribution of the Polyakov line phases, we study the distribu-
tion of the independent degrees of the freedom with respect to the adjoint scalar fields

√
NXI,jj(t),

√
2NReXI,jk(t),

√
2N ImXI,jk(t), (j < k), (6.7)

those are the diagonal and off-diagonal elements of all the scalar hermitian matrices. In this thesis, we denote
them as a random variable ‘x’ and its distribution as ρ(X)(x) in comparison with ρ(P)(θ). We make sense the
two-phase coexistence at the critical temperature T = Tc, if we can specify the contributions to the distribution
function from the confine and deconfined sectors, denoting them by ρ(X)

con(x) and ρ
(X)
dec(x), respectively. According

to the faith of partial deconfinement, we set an ansatz

ρ(X)(x;M) =

[
1−

(
M

N

)2
]
· ρ(X)

con(x) +

(
M

N

)2

· ρ(X)
dec(x). (6.8)

Here, the number of the scalar degrees of freedom in the deconfined sector M is related to the observables,
especially the Polyakov loop P by equation (4.85). The ansatz is proposed by the picture of partial deconfinement
that the confined and deconfined sectors coexist in the space of color degrees of freedom. Hence, to confirm above
relation will become a strong evidence for partial deconfinement since it is highly nontrivial if we do not expect
that.

For the numerical analysis later, let us summarize the analytic properties of the distribution function of scalars
ρ(X)(x). As explained, it is convenient to move on to the ‘gauge-fixed’ picture, in which the SN symmetry with
respect to θj is reduced to SM × SN−M .

15)Practically, when we permute θi and θj , we also exchange the i-th and j-th rows and columns of the scalar fields.
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At first, the Polyakov line phases θj and these scalar degrees of freedom x are correlating; Notice that the
part of the action describing the scalar can be written as

N

∫ β

0
dt
∑
I

∑
j,k

1

2

(∣∣∣∣∂tXIjk −
i(θj − θk)

β
XIjk

∣∣∣∣2 + |XIjk|2
)

= N

∫ β

0
dt
∑
I

∑
j,k

1

2

{
|∂t(ReXIjk)|2 +

(
1 +

(θj − θk)
2

β2

)
|ReXIjk|2

+ |∂t(ImXIjk)|2 +
(
1 +

(θj − θk)
2

β2

)
|ImXIjk|2

}
. (6.9)

Looking at this expression, the distribution of
√
2NReXI,jk(t) and

√
2N ImXI,jk(t) depends only on θj−θk. At

the critical temperature T = Tc where partial deconfinement takes place and considering the SU(M)-partially-
deconfined phase, the separation of θi’s into two groups θ1, · · · , θM and θM+1, · · · , θN can be done. If we average
the phases over j = M + 1, · · · , N or k = M + 1, · · · , N , the distribution of θj − θk is uniform, behaved as in
the completely-confined phase. Associated with that, the distribution of x behaves as in the completely-confined
phase. On the other hand, if we take the average over j, k = 1, · · · ,M , θj − θk is no longer uniform, and hence,
the distribution of x is deformed from one in the confined sector.

Using the distribution function ρ(X)(x), we can compute the expectation value of the energy in a different
way; the energy expectation value E in the path integral formalism defined by equation (4.89) can be directly
rewritten to

E =

〈
N

β

∫ β

0
dtTrX2

I

〉
= DN2

∫
dx x2ρ(X)(x), (6.10)

in terms of the second moment or so-called variance of ρ(X)(x). Furthermore, using the distributions in confined
and deconfined sector,

DN2

∫
dx x2ρ(X)(x) = D(N2 −M2)

∫
dx x2ρ(X)

con(x) +DM2

∫
dx x2ρ

(X)
dec(x), (6.11)

where

DM2

∫
dx x2ρ

(X)
dec(x) =

〈
N

β

∫ β

0
dt

∑
1≤j,k≤M

|XI,jk|2
〉

(6.12)

corresponds to the deconfined sector and

D(N2 −M2)

∫
dx x2ρ(X)

con(x) =

〈
N

β

∫ β

0
dt

∑
j≥M+1 or k≥M+1

|XI,jk|2
〉

(6.13)

corresponds to the confined sector. Note that this separation is not unique as well as the distribution function of
the Polyakov line phases due to the residual symmetry. Namely, the SM × SN−M permutations do not change
the phase distributions ρ(P)con(θ) and ρ

(P)
dec(θ), and in turn, keep ρ

(X)
con(x) and ρ

(X)
dec(x) unchanged.
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From the result in equation (4.89), we can compute the variance analytically as∫
dx x2ρ(X)

con(x) =
1

2
(6.14)

and ∫
dx x2ρ

(X)
dec(x) =

1

2
+

1

4D
. (6.15)

The inclement comes from the deconfinement of the upper-left M ×M -block in figure 1. Because of our spe-
cific choice of separation into two groups, the upper-left M ×M -block can be identified with the completely-
deconfined phase of the SU(M) theory. As a result, we build a way to describe partial deconfinement in terms
of the independent scalar degrees of freedom x, and hence, the actual separation in terms of the matter fields of
the theory.

Although, the variances from the distribution functions in the confined and deconfined are tractable in an
analytic manner, the exact forms of the distributions are not known. Therefore, we employ the numerical analysis
to figure out the problem. Generating many samples of x and plot their histogram enables us to determine the
distributions in equation (6.8) from lattice configurations at fixedN andM 16). For fixingM , we refer to the value
of the Polyakov loop, that is,M = 2NP . So far, we tend to assume a specific configuration, the upper-leftM×M
sector to be deconfining like in figure 1. In fact, the very same distributions ρ(X)

dec(x) and ρ
(X)
con(x) are obtained

as long as the static diagonal gauge is used since they average over the specific form of configuration and its
gauge equivalents. To determine ρ(X)

con(x) and ρ
(X)
dec(x) numerically, we solve the relation (6.8) by combining with

different values of M . As an example, for ra = (M/N)2, rb = (M ′/N)2, we can get

rb ρ
(X)(x;M)− ra ρ

(X)(x;M ′) = (rb − ra)ρ
(X)
con(x), (6.16)

and

(1− rb)ρ
(X)(x;M)− (1− ra)ρ

(X)(x;M ′) = (ra − rb)ρ
(X)
dec(x). (6.17)

The lattice configurations, at fixed D = 2, N and L at the critical temperature T = Tc, are used in the basis for
ρ(X)(x). From that, we can construct ρ(X)

con(x) and ρ
(X)
dec(x) solving equations (6.16) and (6.17) for a couple of pairs

ofM and M ′. There, the values of the variance are available to check a consistency for the above logic.
In figure 10, we can see that the distributions obtained by several M match each other, which supports the

existence of ρ(X)
con(x) and ρ

(X)
dec(x) and its consistency. In that analysis, the finite lattice size effects can be seen to be

small; figure 11 shows that using 4 sites towards the time direction is already enough in this case, implying a nice
convergence in the continuum extrapolation. The variances in the confined and deconfined sectors estimated
numerically agree with the ones at large N , equations (6.14) and (6.15), within the statistical errors and this
indicates that the numerical analysis is robust. For the numerical data, see table 1 in appendix D.

16)For example, it is possible to collectDLN2 = 49152 data samples from a single configuration withD = 2,N = 32, L = 24, where
L is the number of lattice points to the temporal direction.
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What we should mention for future reference is that the form ρ
(X)
con(x) and ρ

(X)
dec(x) do not agree with the

Gaussian distribution with the above variances at the critical temperature T = Tc. This result reminds us that
the lattice field configurations are not direct connected to the wave function as explained in the previous section.
At a sufficiently low temperature ρ(X)

con(x) approaches to the Gaussian distribution, as shown in figure 12. In the
completely confined phase, the distribution in the confined sector ρ(X)

con(x)must be equivalent to the original one
ρ(X)(x), and hence, it is affected by the thermal corrections.

6.3.2 Correlation between scalar and gauge degrees of freedom

Another way to detect the coexisting of the confined and deconfined sectors is to focus on the correlation
between the matrix scalar fields XI and the Polyakov line phases θi as the gauge degrees of freedom. Let us
consider the vector-like quantity Ki defined by

Ki ≡
∑
I,j

1

β

∫
dt|XI,ij |2. (6.18)

For the Gaussian matrix model at largeN , the distribution of |XI,ij |2, that is, ρ(X)(x) depends on θi−θj . At each
value of M

N , a one-to-one correspondence between θi and Ki would exist, given by the components which are
labeled by the same index i. The correspondence originally comes from the Gauss’ law constraint. Practically, at
least, it is obvious that there are data of the scalar and gauge components sharing the color index i.

For the Gaussianmatrix model, this quantity relates to the expression of the energy (4.89) byE = N
∑N

i=1Ki.
In the completely-confined phase below the critical temperature T < Tc whereM = 0,

⟨Ki⟩con ≡
1

N

N∑
i=1

Ki|M=0 =
E|M=0

N2
=

D

2
, (6.19)

since the all degrees of freedom in the configuration stay in the ground state. We can regard that contribution as
one in the confined sector at T = Tc (the blue area in figure 1).

For the contribution from the deconfined sector, ⟨Ki⟩dec, let us consider the physic at the point the Gross-
Witten-Wadia transition of the full theory occurs. At the point in SU(N) theory, where all elements are excited
thermally (the red area in figure 1), namely at the point T = Tc andM = N ,

⟨Ki⟩GWW,N ≡
1

N

N∑
i=1

Ki|GWW,N =
E|GWW,N

N2
=

D

2
+

1

4
. (6.20)

When we fix the SN permutation symmetry and choose a separation θ1, · · · , θM and θM+1, · · · , θN such that
they distribute as 1+cos θ

2π and 1
2π , respectively, each θi should belong to the confined or deconfined sector. If θi is

in the deconfined sector,

⟨Ki⟩dec =
(
1− M

N

)
⟨Ki⟩con +

M

N
⟨Ki⟩GWW,M =

D

2
+

M

4N
, (6.21)
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Figure 10: The distribution functions ρ(X)
con(x) and ρ

(X)
dec(x) from the Gaussian Matrix model,D = 2,N = 32, L =

24, at the critical temperature T = Tc =
1

ln 2 . We can see the matching of forms for the different combinations of
M andM ′. These plots are taken from reference [17].
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These plots are taken from reference [17].
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sinceN−M andM components in |Xij |2 belongs in the confined and deconfined sectors, respectively. Similarly,
we expect ⟨Ki⟩con = D

2 if θi is in the confined sector. Therefore, the expectation value averaging them over
becomes

⟨Ki⟩p.d. =
(
1− M

N

)
⟨Ki⟩con +

M

N
⟨Ki⟩dec =

D

2
+

1

4

(
M

N

)2

. (6.22)

In the left side of figure 13, we show the two-dimensional histograms of (θi,Ki) forD = 2,N = 48, L = 16,
at the critical temperature T = Tc, and at each M separately 17). The two-dimensional histograms imply only
one peak at each θ (represented by warm color cells). Furthermore, a relation

Ki = 1 +
M

2N
cos θi (6.23)

can be seen with good accuracy from the observation of the binned histograms shown in the right panel of
figure 13. The binned histograms are drawn by averaging over the samples Ki corresponding to a θi bin of size
∆θ = 0.02. We expect that the fluctuation at each fixed θi comes from the finite-N effect and it is suppressed
as N becomes large. By using the distribution of θi in the confined and deconfined sectors (4.87) and (4.88), we
obtain equations (6.19) and (6.21), and hence, also equation (6.22); by substituting (6.23), the above expectation
value can be understood in terms of the expectation value estimated by the distribution function of the Polyakov
line phase as well. Explicitly,

⟨Ki⟩□ =

∫
dθ Ki ρ

(P)
□ (θ), (6.24)

where the box□ represents its attribution (the confined/deconfined sector, or SU(M)-partially-deconfined phase,
etc…).

One comment is that the feature of the correlation between Ki and θi is the effect of the residual symmetry
after taking the static diagonal gauge, what we emphasized in the previous section. One may expect that the two-
phase separation mean the two peaks for the distribution of Ki corresponding to the confined and deconfined
sectors. Unlike the naive guess, the residual symmetry implies a single peak which satisfies equation (6.19) and
(6.21) simultaneously.

17)We studied the configurations with M = 18, 30, 42. The number of sampled data (θi,Ki) are 16416, 31488, 16557 for the above
values of M , respectively.
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Figure 13: Correlation θi vs Ki, N = 48, D = 2, L = 16, at the critical temperature T = Tc = 1
ln 2 . (a) The

two-dimensional histograms of (θi,Ki). (b) The binnedKi by averaging within the bin∆θ = 0.02. The magenta
lines represent 1 + M

2N cos θ. The error bars are estimated by jackknife analysis. These plots are taken from
reference [17].
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6.4 Case : Yang-Mills matrix model

So far, we mainly consider the two-phase coexistence in the theory without interaction. Including interactions
among the degrees of freedom makes things more complicated, and one may doubt the presence of the interme-
diate phase coexisting occurs. To demonstrate partial deconfinement can take place even in the theory beyond
the weak coupling regime, we study the Yang-Mills matrix model

S = N

∫ β

0
dtTr

[
1

2
(DtXI)

2 − 1

4
[XI , XJ ]

2

]
. (6.25)

The index I, J run 1 to D, and in this analysis, we take D = 9 where the model had been studied [16, 87,
95, 96]18) as known as bosonic BFSS model since it is the bosonic part of the Banks-Fischler-Shenker-Susskind
matrix model [33, 34]. The circumference of the temporal circle β is related to temperature T by β = T−1, and
the covariant derivative is DtXI = ∂tXI − i[At, XI ], where At is the gauge field. In this model, a first order
transition near T = 0.885 [16] exists with a hysteresis in a narrow range19) 20) , as sketched in figure 14. We
can read the hysteresis off from the two-peak signal of the Monte Carlo sampling for the observables. Below, we
approximate the phase transition does not exhibit the hysteresis due to its mildness, and study the properties of
the configurations at fixed temperature T = 0.885. At the temperature, we vary the value of P from 0 to 1

2 , along
the green dotted line in figure 14, similar to the analysis for the Gaussian matrix model. We expect that the above
treatment captures the physic of the partially-deconfined phase (orange dotted line).

At the fixed temperature in the transition region, we figure out numerically that the similar relations in
the Gaussian matrix model (4.86), (4.89) and (4.90) holds for the Yang-Mills matrix model [16]; Namely, with an
identification 2P = M

N , we obtain 21)

ρ(P)(θ) =

(
1− M

N

)
· 1

2π
+

M

N
· 1

2π
(1 + cos θ), (6.26)

E =

〈
−3N

4β

∫
dt Tr [XI , XJ ]

2

〉
= (N2 −M2)ε0 +M2ε1, ε0 ≃ 6.14, ε1 ≃ 6.60, (6.27)

and
R ≡

〈
N

β

∫
dt TrX2

I

〉
= (N2 −M2)r0 +M2r1. r0 ≃ 2.20, r1 ≃ 2.29. (6.28)

These relations strongly support partial deconfinement in this model. Furthermore, the explicit separation to the
SU(M)- and SU(N −M)-sectors shown in figure 1 is demonstrated in the latest paper [17]. Again, unlike in
the Gaussian model, the separation into two different sectors is highly nontrivial due to the interaction in this

18)See also references [97–101] for the analysis of the classical dynamics of the Yang-Mills matrix model.
19)According to the study [16], the two-state signal appears 0.884 ≲ T ≲ 0.886 for N = 64, number of lattice sites L = 24.
20)See also references [102, 103] for the phase structure.
21)The numerical fits in reference [16] were performed in a slightly different way, that is, the power was not fixed to 2. The difference

does not have any influence to the main results.
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model. In this section, we show the separation is doable, at least, in the Yang-Mill matrix model which is beyond
weak coupling. Analogous to the analysis of the Gaussian matrix model explained in section 6.3, we focus on the
aspects of master fields of the lattice configurations in this model at the fixed temperature.

One remark is that, theoretically, there is not a clear and strong reasoning to forbid the nontrivial M -
dependence to the physics in partial deconfinement. In the presence of interactions between the confined and
deconfined sectors, the averaging in the confined and deconfined sectors can be influenced byM . Rather, it seems
natural that the magnitude of the intersector interaction changes depending on the ratio of the coexistenceM/N .
To go straight, it does not affect our argument significantly whether the M -dependence exists or not, as we will
discuss later again.

In this section, we use the static diagonal gauge, as we did in section 6.3, i.e., the gauge field is fixed to
At = diag

(
θ1
β , · · · , θNβ

)
. Unlike the Gaussian matrix model, we generate lattice configurations employing the

“efficient” simulation introducing the source term restricting the value of the Polyakov loop to a specific range, as
explained in section 6.1. In the range of the Polyakov loop we set on (6.1), applying this method does not change
the physics from the previous research [16], and hence, we can reference its result and regard it same the results
performed under the constraint.
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P

T=0.885 T

1

1/2

Figure 14: Sketch of the phase structure of the D = 9 Yang-Mills matrix model with respect to the Polyakov
loop, which is taken from the paper [17]. The red and blue lines correspond to the completely-deconfined and
confined phases, the minima of the free energy in the canonical ensemble. The orange dotted line corresponds
to the partially-deconfined phase, maxima of the free energy. We emphasize that although this phase is not
favored in the canonical ensemble, it is stable in the microcanonical ensemble. In the canonical ensemble, a first
order transition occurs around T = 0.885 [16]. In reference [17], the properties of the configurations at fixed
temperature T = 0.885 were studied as the master fields, varying the value of P (along the green line). As a
comment for other observables, the previous research [16] had found the behaviors of E and R, equations (6.27)
and (6.28).
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6.4.1 Distributions of scalar degrees of freedom

Just as in the Gaussian matrix model, the relation equation (6.28) implies that partial deconfinement occurs
and the separation of the distribution of XI,ij to ρ

(X)
con(x) and ρ

(X)
dec(x) can be seen by the same expression (6.8).

The goal in this section is to demonstrate it.
Here, we are assuming that ρ(X)

con(x) and ρ
(X)
dec(x) are independent of M as we did in the Gaussian matrix

model. As we will see, it seems valid with a reasonable accuracy, although the smallM -dependence may exist. In
section 6.5, we will show a different analysis that does not assume M -independence with employing a different
simulation.

We show the distributions ρ(X)
con(x) and ρ

(X)
dec(x) in figure 15 by using equations (6.16) and (6.17). The same

distributions can be obtained up to error bars by using several pairs (M,M ′), and it shows that the confined and
deconfined sectors behave in a difference manner. Moreover, the variances evaluated by the histograms ρ(X)

con(x)

and ρ
(X)
dec(x) in figure 15 are shown in table 2 in appendix D, which supports the consistency of our analysis. If

ρ
(X)
con(x) and ρ

(X)
dec(x) do not depend of the size of the deconfined sector M , the variances must be related to r0

and r1 according to equations (6.28) and (6.8),

σ2
con ≡

∫
dx x2ρ(X)

con(x) =
r0
d
≃ 2.20

9
≃ 0.244, (6.29)

σ2
dec ≡

∫
dx x2ρ

(X)
dec(x) =

r1
d
≃ 2.29

9
≃ 0.254. (6.30)

We can see a reasonable agreement with the values in table 2 in appendix D.
One may wonder that it only means a separation into M2 and N2 −M2 degrees of freedom, not one into

the SU(M)- and SU(N − M)-sectors. In addition to this, we ideally should not assume from the beginning
that ρ(X)

con(x) and ρ
(X)
dec(x) are independent of M . We will demonstrate the separation to such a SU(M)- and

SU(N −M)-sectors more explicitly in section 6.5 by employing the constrained simulation .
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Figure 15: Distributions ρ(X)
con(x) and ρ

(X)
dec(x) in the “efficient” simulation of the Yang-Mills matrix model,N = 64,

L = 24, and T = 0.885. The same distributions can be obtained within the error bars by using several combina-
tions (M,M ′). The error bars are estimated by jackknife analysis. These plots are taken from reference [17].
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Figure 16: Comparison between ρ
(X)
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con(x) shown in figure 15. (a) A tiny discrepancy can be seen

between ρ
(X)
con(x) and ρ

(X)
dec(x). (b) The difference ρ(X)

dec(x) − ρ
(X)
con(x) is significantly larger than the error bars of

ρ
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dec(x) and ρ

(X)
con(x). The error bars are estimated by jackknife analysis. These plots are taken from reference [17].
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6.4.2 Correlation between scalar and gauge degrees of freedom

As well as the Gaussian matrix model, we can study partial deconfinement in terms of the correlation between
theKi ≡

∑
I,j

1
β

∫
dt|XI,ij |2 and θi in the Yang-Mills matrix model. At first, from the numerical fit (6.28),

⟨Ki⟩con = r0 = 9σ2
con, ⟨Ki⟩GWW,N = r1 = 9σ2

dec, (6.31)

which is, by the way, unlike the case of the Gaussian matrix model, since we could compute the variances for that
model analytically. Here again, we assume that the r0 and r1 obtained in equation (6.31) are the contributions
from the confined and deconfined sectors (the blue area and red area in figure 1). In other words, the assumption
means that the properties of the master fields does not depend on the value of M . Then,

⟨Ki⟩dec = r0 +
M

N
· (r1 − r0), (6.32)

is the natural form when θi corresponding to it is in the deconfined sector. The distribution of the Polyakov line
phases in the confined and deconfined sectors are identical to those in the Gaussian matrix model, 1

2π and 1+cos θ
2π .

Hence, analogous to the form in equation (6.23) for the Gaussian matrix model, we assign an ansatz

Ki = r0 +
M

N
· 2(r1 − r0) cos θi, (6.33)

for the correlation between Ki and θi in the Yang-Mills matrix model.
Figure 17 shows the correlation between θi andKi obtained by numerical simulations. The values of r0 and r1

are obtained by using equation (6.33) as fit ansatz, which is consistent with the values of the variances in table 2
in appendix D.

Same as the result of the Gaussian matrix model, this result supports the occurrence of partial deconfinement
for the scalar fields; with combining (6.33), the distribution of the Polyakov line phases ρ(P)(θ) which shows the
two-phase separation22) reproduces the expected values (6.31) and (6.32). It indicates that the separation of scalar
degrees of freedom into two different sectors takes place in conjunction with the separation of the gauge degrees
of freedom θi in a consistent way.

22)For the plot of the distribution ρ(P)(θ), see also the figure 15 in reference [16].
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Figure 17: Correlation between θi vs Ki for the Yang-Mills matrix model with N = 64, L = 64, T = 0.885.
The total number of data points for each M is (N = 64) × (# configurations) in table 2 placed in appendix D.
The center symmetry is fixed sample by sample such that P = |P |. (a) The two-dimensional histograms of
(θi,Ki). (b) The binnedKi by averaging within the bin∆θ = 0.02. The magenta lines show fit results performed
by equation (6.33), by using the best-fit values r0 = 2.197 and r1 = 2.302. The values obtained by the fits
are consistent with the values of the variances in table 2 placed in appendix D. The error bars are estimated by
jackknife analysis. These plots are taken from reference [17].
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6.5 Case : Yang-Mills matrix model with constrained simulation

In this section, we perform another numerical analysis that theM×M -block-structure like figure 1 ismanifest.
As explained in section 6.1, we call the method constrained simulation.

Again, we adopt the lattice regularization in the static diagonal gauge to Monte Carlo simulation. The center
symmetry is fixed sample by sample such that P = |P |. Although the difference from the previous analysis is the
source term we introduced, the way of numerical analysis we performed are slightly modified based on the form
of separation. At first, we confirm as a consistency check that the thermodynamics of this model is undeformed
under an introduction of the source term (6.3) in the next section. After that, we study the distributions of scalars
and the correlation between the scalar and gauge degrees of freedom what we did in the previous section, in an
essentially same but a bit different manner.

6.5.1 Consistency checks

At finite N , this constraint may change the theory slightly since the Polyakov loops in each sector PM = 1
2

and PN−M = 0 are valid only when M and N −M are sufficiently huge integers. For N = 48, 64 and 128,
M
N = 0.25, 0.50 and 0.75, we can confirm the finite N effects are small.

On behalf of the numerical data, we show the consistency check for N = 64 configurations. In figure 18, we

 6.1

 6.2

 6.3

 6.4

 6.5

E/
N

2

constrained

not constrained

-0.01

 0

 0.01

 0.2  0.4  0.6  0.8
M/N

(constrained)-(not constrained)

(a) E/N2

 2.2

 2.22

 2.24

 2.26

R/
N

2

constrained

not constrained

-0.002

 0

 0.002

 0.2  0.4  0.6  0.8
M/N

(constrained)-(not constrained)

(b) R/N2

Figure 18: Comparison observables obtained by the simulations with and without the source term (6.3), for the
Yang-Mills matrix model, N = 64, L = 24, and T = 0.885. The error bars are estimated by jackknife analysis.
These plots are taken from reference [17].

compare the quantities E/N2 and R/N2 calculated the configurations with and without the constraint (6.3). It
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shows good agreements between them up to error bars, which implies that the addition of the source term for
constraint does not modify the thermodynamics of this model.

The distributions of the Polyakov line phases ρ(P)(θ) for all θ (i.e. both in the confined and deconfined sec-
tors) obtained from the constrained simulations at T = 0.885 are plotted in figure 19. It shows nice matchings
with 1

2π

(
1 + M

N cos θ
)
, which is the confirmed behavior theoretically and numerically in the partially-deconfined

phases of the Yang-Mills matrix model. These observations reinforce the expectation we mentioned before that
the source term in equation (6.3) does not modify the thermodynamic properties of the model.
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Figure 19: Distribution of the Polyakov line phases ρ(P)(θ) obtained by the constrained simulations of the
Yang-Mills matrix model, N = 64, L = 24, M = 16, 32, 48, and T = 0.885. The green lines represent
1
2π

(
1 + M

N cos θ
)
. The error bars are estimated by jackknife analysis. These plots are taken from reference [17].
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6.5.2 Distributions of scalar degrees of freedom

Let us firstly consider the distribution of the scalar degrees of freedom {XI,jk} again. In the previous analysis
for the Yang-Mills matrix model discussed in section 6.4.1, the distribution ρ

(X)
con(x) and ρ

(X)
dec(x) are estimated

by using equation (6.8) where we assumed that they do not depend on the size M . Here, we can estimate the
distributions without assumingM -independence due to the explicit separation of the constraint; In the set of the
independent scalars x, the distribution ρ

(X)
dec(x) and ρ

(X)
con(x) can be determined with 1 ≤ j, k ≤ M and from the

rest, corresponding to the M ×M -upper-left block and the rest in matrix configuration, respectively.
The numerical results for ρ(X)

con(x) and ρ
(X)
dec(x) are shown in figures 20 and 21. We can see an obvious discrep-

ancy between ρ
(X)
con(x) and ρ

(X)
dec(x) from those. In addition, figure 22 shows the comparison of the distributions

obtained from the constrained and “efficient” simulations. It displays a reasonable agreement, and hence, these
independent results guarantee the validity of each other. These observations provide us with an explicit confir-
mation of the M ×M -block structure.

While we have not mentioned up to here, a small M -dependence can be seen in the plots of the constrained
simulation and in comparison with the results without the constraint. When looking at the values of the variances
in table 3 placed in appendix D in detail, one can see a similar dependence. We furthermore estimate the values of
the off-diagonal blocks in the confined sector separately, shown in the same table. There, a similarM -dependence
is visible. We will discuss this in section 6.6 which is a summary of this section. As we will explain there, our
conclusions are not influenced so much even if such an M -dependence affects.

 0

 0.2

 0.4

 0.6

 0.8
ρ(X)

con(x), M = 16

M = 32
M = 48

-0.005

 0

 0.005

-2 -1  0  1  2
x

ρ(X)
con(M=16)-ρ(X)

con(M=32)
ρ(X)

con(M=16)-ρ(X)
con(M=48)

(a) ρ(X)
con(x)

 0

 0.2

 0.4

 0.6

 0.8
ρ(X)

dec(x), M = 16

M = 32
M = 48

-0.01

 0

 0.01

-2 -1  0  1  2
x

ρ(X)
dec(M=16)-ρ(X)

dec(M=32)
ρ(X)

dec(M=16)-ρ(X)
dec(M=48)

(b) ρ(X)
dec(x)

Figure 20: Distributions ρ
(X)
con(x) and ρ

(X)
dec(x) obtained from different values of N and M in the constrained

simulation of the Yang-Mills matrix model with N = 64, L = 24, T = 0.885. The error bars are estimated by
jackknife analysis. These plots are taken from reference [17].
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Figure 22: Comparison with and without constraint for the Yang-Mills matrix model with N = 64, L = 24, and
T = 0.885. The error bars are estimated by jackknife analysis. These plots are taken from reference [17].
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6.5.3 Correlation between scalar and gauge degrees of freedom

In this section, let us again study the correlation between θi and Ki with the explicit separation. We discuss
the cases with and without taking into account a possible M -dependence of ρ(X)

con(x) and ρ
(X)
dec(x). Both cases

describe the data at the same level of precision.
At first, we forget the M -dependence and assign the ansatz for the θ-dependence of Ki given by equa-

tion (6.33). The values of r0 and r1 are taken from the analysis we obtained figure 17. The results are shown
with the magenta lines in figure 23. The figure is essentially the same as figure 17, except the addition of the
source term (6.3) to the action of the model. Moreover in this case, due to the explicit separation using the con-
strained simulation, we can confirm equation (6.33) separately in each sector, which is shown in figure 24. It
enables us to see the residual symmetry in the master field.

Next, we take the possibleM -dependence into account. In the constrained simulation, the expectation values
⟨Ki⟩con and ⟨Ki⟩dec can be obtained directly as

⟨Ki⟩dec =

〈
1

M

M∑
i=1

Ki

〉
, ⟨Ki⟩con =

〈
1

N −M

N∑
i=M+1

Ki

〉
. (6.34)

These values relate to the variances in each sector via the quantity R in equation (6.28). They are listed in table 3
placed in appendix D, and hence

⟨Ki⟩dec =
(
M

N
· σ2

dec +

(
1− M

N

)
· σ2

con,off-diag

)
× 9, (6.35)

and

⟨Ki⟩con = 9σ2
con. (6.36)

Here, σ2
dec, σ

2
con and σ2

con,off-diag are the variances of the distributions of x in the deconfined sector, in the confined
sector, and the off-diagonal block in the confined sector, respectively. Using them, an ansatz can be obtained
without imposing the M -independence of the distributions ρ(X)

con(x) and ρ
(X)
dec(x);

Ki = ⟨Ki⟩con + 2(⟨Ki⟩dec − ⟨Ki⟩con) cos θi, (6.37)

analogous to the previous analyses in the Gaussian and Yang-Mills matrix models. The dotted-black lines in
the right panels of figure 23 and figure 24 show the results of the analysis. Both ansatzs express the numerical
data at the same level of precision, and the difference between the ansatzs with and without imposing the M -
dependence (6.37) and (6.33) is too small to judge the quality of ansatz compared to the errors at this point.
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Figure 23: Correlation between θi vs Ki for the constrained simulation of the Yang-Mills matrix model with
N = 64, L = 24, M = 16, 32 and 48 at T = 0.885. For each M , 1500 configurations are used (the total number
of points is (N = 64)× 1500). (a) The two-dimensional histograms of (θi,Ki). It shows the data points from the
confined and deconfined sector together. (b) The binnedKi by averaging within the bin∆θ = 0.02. The magenta
lines represent equation (6.33), with r0 and r1 from figure 17. The black dotted lines represent equation (6.37),
with variances from table 3 placed in appendix D. The error bars are estimated by jackknife analysis. These plots
are taken from reference [17].
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Figure 24: Correlation between θi vs Ki for the constrained simulation of the Yang-Mills matrix model with
N = 64, L = 24, M = 16, 32, and 48 at T = 0.885. The confined and deconfined sectors are shown separately,
and ∆θ = 0.1 is taken for (b). The total number of the data points are M × 1500 and (64 −M) × 1500 for the
deconfined and confined sectors, respectively. These plots are taken from reference [17].
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6.5.4 Energy increment coming from deconfined sector

Until here, performing the constrained simulation, we have seen the separation consistent with partial decon-
finement via the properties of master field.

In fact, we can furthermore demonstrate the evidence of two-phase coexistence; using the insight of the
weak coupling regime, the zero-point energy is the only contribution of the confined sector, and hence, the
energy contribution from the deconfined sector is dominant in the partially-deconfined phase. It becomes a
strong evidence to the occurrence of the two-phase coexistence even beyond the weak coupling regime if we can
confirm the energy contribution comes only from the deconfined M ×M -block generated in the constrained
simulation. The goal in this section is to reveal that.

Let us introduce the notation XIdec and XIcon to denote the deconfined and confined sectors of the matrix
field configurationXI , respectively. By definition,XI = XIdec+XIcon. The energyE in equation (6.27) includes
the contribution

Econ ≡
〈
−3N

4β

∫ β

0
dt Tr[XIcon, XJcon]

2

〉
, (6.38)

which is only from the confined part, and the terms involving XIdec,

Edec ≡ E − Econ. (6.39)

We can expect that the contribution from the deconfined part and the interaction between confined and de-
confined part is concentrated in the quantity Edec. To check it, we construct the configurations as shown in
figure 25, replacedXIdec with the elements in the completely-confined phase. In other words, the SU(M)-sector
is refilled with the confined configuration by performing another type of constrained simulation. When we need
generic configurations in the completely-confined phase, we generate the lattice configurations without tuning
the Polyakov loops in each sector PM and PN−M zero, although the obtained P must be zero. In order for the
comparison to perform the another constrained simulation, we introduce the new source term

∆S =


γ
2 (|PM | − δ)2 (|PM | > δ)

γ
2 (|PN−M | − δ)2 (|PN−M | > δ)

(6.40)

to the action of the model. Under this constraint, the counterparts of Econ and Edec we need to compute are
denoted by E

(0)
con and E

(0)
dec.

As shown in figure 26, We observe that Econ and E
(0)
con are remarkably close. It leads, with a nice numerical

accuracy, that the increments of the energy from the one in the completely-confined phase originates only from
Edec. Note that the tiny discrepancy can be seen in this analysis, which seems the M -dependence.
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Figure 25: Schematic pictures for two different kinds of constrained simulations. [Left] Field configuration of
partially-deconfined phasewith the source term equation (6.3). [Right] Field configuration of completely-confined
phase with the constraint term equation (6.40). This picture is taken from reference [17].
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Figure 26: Energy contributions Econ and E
(0)
con for the constrained simulation of the Yang-Mills matrix model

with N = 64,M = 16, 32, and 48, 24 lattice points. The error bars are estimated by jackknife analysis. This plot
is taken from reference [17].
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6.6 Summary of the numerical results

In this section, we present the summary of the simulation results and look back the connection to partial
deconfinement.

We performed the lattice Monte Carlo simulations for the Gaussian matrix model in section 6.3 and the Yang-
Mills matrix model in section 6.4 and section 6.5. As explained in section 6.1, the bosonic matrix field configura-
tions are generated by the naive simulation in the Gaussian matrix model, and by the “efficient” or constrained
simulation in the Yang-Mills matrix model.

In order to investigate the configurations as the aspect of master field, we mainly analyzed them in two
approaches; focusing on the distribution of the independent scalar degrees of freedom x ∈ {XI,ij}, ρ(X)(x), and
the correlation between the scalar and gauge degrees of freedom. In the estimate of ρ(X)(x), we confirmed that
the split of the distribution into two distinct functions ρ(X)

con(x) and ρ
(X)
dec(x) can be done with an appropriate ratio

of mixture determined byM in both bosonic matrix models. The separability gives an evidence of the two-phase
coexistence in terms of the scalar field configuration, which can happen even beyond weak coupling. In the
analysis of θj and Kj , we saw that the correlation between them which can be identified with the two-phase
separation occurs consistently in the both sectors of fields. The identification can be derived analytically in the
Gaussian matrix model. We observed the analogous correlation numerically in the Yang-Mills matrix model, and
hence, the model at strong coupling is also following the partial deconfinement scenario. Moreover, the results
show that the way of separation is not uniquely determined due to the residual permutation symmetry with
respect to the Polyakov line phases θj .

In the Yang-Mills matrix model, we additionally performed the constrained simulation to find out the sep-
aration into the SU(M)- and SU(N −M)-sectors. Practically, we generated the configurations the upper-left
M ×M block that behaves in the Gross-Witten-Wadia point of the SU(M) theory (like figure 1) is manifest. In
other words, we performed the simulation with a specific ‘gauge-fixing’ by introducing the source term∆S. The
reason to do so is to demonstrate the explicit separation associated with the phenomenon consistent with gauge
symmetry breaking, not just the division ofM2 andN2−M2 degrees of freedom. In addition, this procedure has
an advantage that we can examine the feature of the confined and deconfined sectors individually and directly.
The safety of the constrained simulation is confirmed by the several check, the matching of observables such as
the distribution of the Polyakov line phase or the variances of scalars with the one of unconstrained simulations.
Furthermore, we confirmed the energy contribution from the deconfined block dominates in the constrained
simulation, which agrees with the nature of the deconfinement and the two-phase coexistence.

In the results of the Yang-Mills matrix models which is the interacting model, we observed the small discrep-
ancies which may be understood as the nontrivial M -dependence. As mentioned in the main text before, there
is no obvious theoretical reason that the distributions ρ(X)

con(x) and ρ
(X)
dec(x) are completely independent of M ,

although we assumed that. Rather, it is natural that the interaction between the confined and deconfined sectors
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affects the manner of separation depending on M .
The M -dependence must be more noticeable in the simulations with the constraint, if it appears, and actu-

ally, we can see the discrepancies depending on M in the several plots for both analysis. In table 3 placed in
appendix D, almost the same dependence on M

N is shown for the results of N = 48, 64, and 128, which implies
this M -dependence is unlikely to be a finite-N artifact. It is possible that such an intricate M -dependence can
be determined as a finite-lattice-size artifact or an effect coming from the smallness of M itself.

In the analysis established for the Gaussian matrix model, we have assumed that the distributions ρ(X)
con(x)

and ρ(X)
dec(x) are independent ofM . In constrained simulations, we confirmed the separation between two sectors

even if taking into account a possibleM -dependence. There, the difference between the confined and deconfined
sectors turned out to be much larger than a possibleM -dependence. Therefore, it does not contradict our conclu-
sions, the occurrence of two-phase coexistence in the space of color degrees of freedom, even if theM -dependence
we observed survives in the ideal setting.
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7 Conclusion and outlook

In this thesis, we have presented the evidences of the two-phase coexisting phenomena in the space of the
color degrees of freedom called partial deconfinement in the context of the deconfinement for the theory at finite
temperature. It states that the partially-deconfined phase appears in the phase structure of the gauge theory
as a thermal phase separated by the Hagedorn and Gross-Witten-Wadia transitions. Partial deconfinement has
been originally conjectured to be the gauge theory counterpart of the black hole phase in dual gravity via the
gauge/gravity duality. In the AdS/CFT correspondence of the four-dimensional N = 4 super Yang-Mills theory,
the small black hole phase with negative specific heat appears in the intermediate energy region in the dual type
IIB supergravity in AdS5 × S5, which is proposed to be the dual of the partially-deconfined phase. For several
weakly-coupled large N gauge theories, the intermediate phase is tractable in an analytical manner using the
Polyakov loops, and characterized by the number of gauge field degrees of freedom in the deconfined sector M ,
closely related to the rank of gauge group. For the U(N) or SU(N) gauge theory at large N , the coexisting
can be interpreted as the spontaneous breaking of gauge symmetry to SU(M)× SU(N −M) and the Polyakov
loops and the Polyakov line phases work as the order parameter of this symmetry breaking. Since it has been
known that the deconfinement can exhibit even in the large N theory at zero coupling, and/or finite spatial
volume (or without spatial directions!), the partial deconfinement scenario provides further understanding of
their thermodynamics. We confirmed, by performing the lattice Monte Carlo simulations of the bosonic matrix
models, that partial deconfinement can take place even beyond the weak coupling regime, as the coexistence of
the confined and deconfined sectors.

One demanding future direction is the connection to the actual deconfinement transition in four-dimensional
QCD with fundamental quarks at finite temperature and density with N = 3. The partially-deconfined phase
exists in the large-N QCD, and its phase structure is quite similar to the one of real QCD, in which the decon-
finement transition is thought to be rather the cross-over [104]. The Gross-Witten-Wadia transition between
the partially- and completely-deconfined phase is characterized by the gap formation for the distribution func-
tion of the Polyakov line phases around θ = ±π which becomes somehow singular at large N . The analogous
‘transition’ has to exist in more broad class of gauge theory, and real QCD is likely to this class. That N = 3

is considered to be large in an analytical [105] and numerical [106] senses, and the numerical simulations for
the SU(N) pure Yang-Mills theory on lattice [107, 108], for the (2 + 1)-flavor QCD [109], and the theoretical
observations regarding the Gross-Witten-Wadia transition [110, 111] provides the consistent results and discus-
sions with the above transition ansatz. Interestingly, the analogous phenomenon to partial deconfinement has
been argued in the context of the chiral symmetry breaking of QCD [112–117], and it is interesting to find out
the relationship to partial deconfinement. Recently, a possibility not to refer to the large N limit in order to the
split the partially-deconfined phase from the completely-confined and deconfined phases is pointed out [58]; the
spontaneous breaking of global symmetry may be able to define the partially-deconfined phase in a consistent
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manner with the original definition referring to the Gross-Witten-Wadia transition. Associated with the Elitzur’s
theorem [61], the well-known no-go theorem of gauge symmetry breaking, the spontaneous breaking of gauge
symmetry accompanied with the breaking of global symmetry enables us easy to understand the concept of par-
tial deconfinement. Of course, sticking on the large N theories and searching the application of the concept of
two-phase separation is also meaningful approach. We have considered the thermal phase transition so far, and
it is also possible to consider the setup with different boundary conditions like the periodic one. The studies
focusing on the index which can be defined inN = 4 super Yang-Mills theory on S1×S3 under that setup found
the analogous phenomenon to the partially-deconfined phase [118–121]. The index is beneficial to investigate the
gauge/gravity duality since it can be computed analytically even at strong coupling and agrees with the quantity
observed in dual gravity [122]. Moreover, in the studies [123, 124], the first-order transitions in holography ex-
hibit similar properties to partial deconfinement. In addition, the large-N models resembling the setting of QCD
deserve to be examined analytically and numerically. Regarding that kind of model, any analogous study to the
investigation of the bosonic matrix models in reference [17] is not employed yet. Further numerical analyses of
the Gaussian matrix model with Nf -fundamental scalar fields would serve that purpose. We intend to perform
that as a next step, including the improvement of the preliminary results for free sector [71].

To reveal partial deconfinement within the framework of the gauge/gravity duality is also a promising di-
rection. Since it is an ongoing research and the full story is not yet clarified at the moment, we will mention in
this outlook the possible scenarios including speculations. See the latest attempt to this topic [57], which finds a
signal of the confined phase that may give a description of the M-theory. See also references [125–130,96,131] for
the study of the deconfined phase done by several collaborations. As claimed in the proposal [33], block-diagonal
configurations in the BFSS matrix model, which express the partially Higgsed situation, describe the multi-body
state of D0-branes and strings in between. This interpretation leads to the multiple partially-deconfined sectors
represented by multiple block configuration and the geometric picture of the partially-deconfined phase, which
would give a natural expansion of the philosophy of BFSS, namely the emergent geometry from matrices, to the
gauge/gravity duality. Note that the geometric picture of the matrix entries has had a puzzle [132] that seems
not to be applicable in the gauge/gravity duality, and lately, an resolution was proposed [133] using notion of the
wave packet in ‘color space.’ Note also that the scenario that the emergence of the bulk geometry is caused by the
entanglement in holography [134, 135] would match the viewpoint [13, 136] since the color degrees of freedom
in the confined sector can be entangled. This speculation may be related to the trendy topics regarding the holo-
graphic entanglement entropy [137–141] and the ideas proposed recently in references [142–145] proposing the
bulk entanglement. Besides, it may connect to the tensor network representation of the bulk geometry [146] and
the space of colors. In addition to above, it is intriguing to seek the relationship of partial deconfinement to other
mechanisms of emergent geometry such as the ones in the Eguchi-Kawai model [147,148] or the Ishibashi-Kawai-
Kitazawa-Tsuchiya (IKKT) matrix model [149–152] since the eigenvalue distribution plays prominent roles there
as well.

79



7 Conclusion and outlook

Regarding the lattice Monte Carlo simulation to examine the above speculations, it is numerically more stable
in the BMN model [38] that is a mass deformed model of the BFSS matrix model with the parameter µ, due to
the presence of the fuzzy-sphere vacua [153–155]. in that model with finite µ, a first-order transition at T ∼ µ is
expected [156]. At larger µ, since the transition temperature becomes higher and the lattice size needed for study
of the transition becomes smaller, simulations near the transition temperature are less demanding. See the latest
study of our collaboration [57], and also references [157–159] for previous attempts of the BMN matrix model.
Not only the Monte Carlo simulation, it is also practically useful to employ the machine learning or quantum
computations techniques towards the matrix model. There are various experimental studies utilizing machine
learning [160, 161] and quantum computation [162–164] for the investigation of matrix models.
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Appendices

A Canonical ensemble vs microcanonical ensemble

In the microcanonical ensemble, thermodynamic states whichmaximaize the entropy S(E) realize when some
specific energyE restricted to a small range [E,E+dE] is given. The entropy S(E) relates to the density of states
Ω(E) asS(E) = lnΩ(E). Themicrocanonical temperatureTMC is obtained from the first law of thermodynamics
as

1

TMC
=

dS

dE
. (A.1)

By using this relation, the specific heat is

dE

dTMC
= − 1

T 2
MC

(
d2S

dE2

)−1

. (A.2)

In the canonical ensemble, temperature T = 1
β is a controllable parameter. The Euclidean path integral

governs the behaviors of thermodynamics in the canonical ensemble, and the partition function is given by

Z(T ) =

∫
dE Ω(E)e−βE =

∫
dE e−F (E,T )/T , (A.3)

and the free energy F is defined by

F (E, T ) = E − TS(E) . (A.4)

Here, we assume for simplicity that the maximum of entropy is unique at each energyE. By taking the derivative
of the free energy with the energy,

∂F (E, T )

∂E
= 1− T

dS(E)

dE
= 1− T

TMC(E)
. (A.5)

Therefore, at the stationary point of the free energy, TMC(E) = T . Furthermore, the second derivative is

∂2F (E, T )

∂E2
= +

T

T 2
MC

(
dE

dTMC

)−1

. (A.6)

The result implies that positive (negative) specific heat in the microcanonical ensemble (A.2) corresponds to the
minimized (maximized) free energy in the canonical ensemble.

A.1 The multiple maxima in the microcanonical ensemble

Let us further consider there are two local maxima of the entropy S1(E) and S2(E) associated with phase-1
and phase-2, as shown in the top row of figure 27. Suppose that S1(E) > S2(E) at E > Ec and S1(E) < S2(E)
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Figure 27: [Top] Coexistence of two local maxima of entropy S1(E) and S2(E) corresponding to phase-1 and
phase-2 in the microcanonical ensemble. [Bottom] Free energy minimum and maximum are shown in the left
and right panels, respectively. This picture is taken from reference [57].

at E < Ec, and hence, a first-order transition occurs at E = Ec. The entropy S(E) in (A.3) becomes S =

ln
(
eS1 + eS2

)
, which is well-approximated solely by S1 and S2 at E > Ec and E < Ec, respectively. However,

we have to take into account both phases when the energy E approaches sufficiently close to Ec,.
We have

dS(E)

dE
=

1

eS1 + eS2
×
(

eS1

TMC,1
+

eS2

TMC,2

)
, (A.7)

where 1
TMC,i

= dSi
dE is the microcanonical temperature of phase-i (i = 1, 2). When E varies slightly from below

Ec to aboveEc, temperature moves from TMC,2 to TMC,1. Therefore, the phase diagram in the canonical ensemble
becomes the bottom row of figure 27.

Suppose another maximum of the entropy S3(E) corresponding to phase-3 appears as shown in figure 28, and
S3(E) is always smaller than at least S1(E) or S2(E). Even though, phase-3 does not affect the canonical phase
diagram at all; see the bottom row of figure 28. Still, it is possible that phase-3 may be visible in the canonical
simulation if other parameters than energy exist fortunately.

83



A Canonical ensemble vs microcanonical ensemble

T

E

T

E

T

E

T

E

Ec Ec

Ec Ec

Phase-1

Phase-2

Phase-2

Phase-1

Phase-3Phase-3

Figure 28: [Top] Coexistence of three local maxima of entropy S1(E), S2(E), and S3(E) in the microcanonical
ensemble. [Bottom] Corresponding phase diagram in the canonical ensemble. Free energy minimum and maxi-
mum are shown in the left and right panels, respectively. This picture is taken from reference [57].
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B Ant trail and D-branes

A phenomenological model of the formation of an ant trail [165] has similar behaviors to the D-branes in string
theory. This relative simple model gave us some lessons for the understanding of the D-branes forming the black
hole and the concept of the partial deconfinement. Here we briefly review this model and its correspondence to
the physics of D-branes and open strings in between [10, 14].

Consider a system with a colony of N ants and one source of food at somewhere. For later comparison with
the large-N gauge theories, let N be a huge number. When some ants fortunately find the food source and
bring them back to their nest, they leave a pheromone trail along the way between the food source and the nest.
Then many ants begin to be attracted by the pheromone and join the trail to the food source and secrete the
pheromone. The strength of the attraction relates to the total mount of secreted pheromones pNtrail, whereNtrail

is the number of the ants forming the ant-trail and p is the pheromone contribution from each ant. Therefore,
more ants join the trail, and more pheromones are released, which in turn leads more and more ants joining it.

The situation of this mathematical model of the collective animal behavior is similar to the one of the system
with many-body D-branes. Let M D-branes form a bound state, and one of the remaining M D-branes be close
by. There are also open strings that can attach among theM different D-branes. At sufficiently high-temperature
region, each open string mode are highly excited and can contribute more to the dynamics, which can capture
the D-brane outside of the bound state. This implies that the system at a high temperature corresponds to the one
with a large value of the pheromone parameter, and hence,

Ntrail ←→M,

p←→ T.
(B.1)

In reference [165], an “equation of states,”

dNtrail

dt
= (α+ pNtrail)(N −Ntrail)−

sNtrail

s+Ntrail
, (B.2)

is introduced in order to describe the behavior of the ants. The parameter α is the probability that each ant find
the food source eventually, and s controls the rate that ants leave the trail. By solving the equilibrium condition
dNtrail

dt = 0, we can estimate the size of the stationary ant-trail. The parameters p, α, s that depend on the several
internal and external factors of the biological system are fixed and Ntrail has been calculated as the function of
N in the original context. Here, we fix α, s, and N , and calculate Ntrail as the function of p in order to compare
with the physics of the black holes and its gauge theory counterpart. For this reason, an interesting ‘large-N ’
limit is where α ∼ N−1, p ∼ N−1, and s ∼ N1 [10, 14]. The solution of dNtrail

dt = 0, or namely the saddles are
shown in figure 29, where x ≡ Ntrail

N and p̃ ≡ Np, by varying s̃. We also fix α = 1
N , s̃ ≡ s

N = 0.1, 1.0, 5.0, and
N = 105 in the plot. The saddles appear where the inflow/outflow of the ants in the trail is balancing. Since we
vary s̃ and see the response ofNtrail, the treatment resembles to being in the canonical ensemble. Three pictures
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Figure 29: Plot x versus p̃ in the ant trail model (B.2).

in figure 29 resembles ones in figure 4, which brings the insight with respect to the phase structure of the large-N
gauge theories at finite temperature.
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C Functional determinants in matrix models

In this appendix, we overview how to perform the functional integral and obtain the effective potential in
terms of the Polyakov loops un. It aims for the (0 + 1)-dimensional matrix models, but it can be generalized to
the theory in higher dimensional spacetime. See references [9, 166] for more detail.

Let us consider the U(N) gauged bosonic matrix model (Gaussian matrix models with or without Nf fun-
damental scalar fields) in which the temporal direction is compactified to S1. The circumference of it may be
interpreted as the inverse temperature β. We take the static diagonal gauge ∂tAt = 0, or equivalently,

At =
1

β
diag (α1, · · · , αN ), (C.1)

where the αj are the Polyakov line phases, independent on the time. Substituting the form of the gauge fixing
into the covariant derivatives of the adjoint and fundamental scalar fields DtX = ∂tX − i[At, X], and D̃tϕ =

∂tϕ− iAtϕ, we can compute that

1

2

∫
dt Tr

[
XI

(
−D2

t +∆2
)
XI

]
=

β

2

∑
n,i,j

X
(n)
I,ij

(
4π2n2

β2
+

4πn

β
(αi − αj) + (αi − αj)

2 +∆2

)
X

(−n)
I,ji (C.2)

1

2

∫
dt ϕA

(
−D̃2

t +∆2
)
ϕA =

β

2

∑
n,i

ϕ
(n)
a,i

(
4π2n2

β2
+

4πn

β
αi + (αi)

2 +∆2

)
ϕ
(−n)
a,i , (C.3)

where ∆ is some parameter such as the thermal mass, and we use the Fourier modes

XI(t) =

∞∑
n=−∞

X
(n)
I e

2πint
β , (C.4a)

ϕA(t) =

∞∑
n=−∞

ϕ
(n)
A e

2πint
β . (C.4b)

Here, the correspondence with respect to the Fourier modes

∂t ⇔
2πin

β
, (C.5)

may be useful. They actually bring the functional determinants for the adjoint and fundamental scalar fields when
performing the path integral.

Using the formula

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
, (C.6)

and we can rewrite (denoting the part depending on the Polyakov line phases as just α),
∞∏

n=−∞

(
4π2n2

β2
+

4πn

β
α+ α2 +∆2

)
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= (α2 +∆2)

∏
m ̸=0

β

2πm

−2[ ∞∏
n=1

(
1− β2(α2 −∆2)

2π2n2
+

(
β2

4π2n2

)2

(α2 +∆2)2

)]

= (α2 +∆2)

∏
m ̸=0

β

2πm

−2[ ∞∏
n=1

(
1− β2(α+ i∆)2

4π2n2

)(
1− β2(α− i∆)2

4π2n2

)]

=

∏
m ̸=0

β

2πm

−2(
4

β2

)
sin

[
β(α+ i∆)

2

]
sin

[
β(α− i∆)

2

]
= N eβ∆

(
1− e−β∆+iβα

)(
1− e−β∆−iβα

)
, (C.7)

where

N =
1

β2

∏
m ̸=0

β

2πm

−2

, (C.8)

is the overall infinite constant. One can neglect it since it is independent of∆ and α and does not affect to physic,
especially for the effective potential we want. Remember that the equivalence of ln det(·) and Tr ln(·) and the
Taylor expansion of the logarithmic function

ln(1− x) = −
∞∑
n=1

xn

n
, (C.9)

and then, the functional determinant in each field becomes

1

2
ln det

(
−D2

t +∆2
)
=

1

2
ln eβ∆ +

1

2
Tr
{
ln
(
1− e−β∆+iβα

)
+ ln

(
1− e−β∆−iβα

)}
=

β∆

2
− 1

2N2

N∑
i,j

∞∑
n=1

1

n

{(
e−β∆ eiβαi e−iβαj

)n
+
(
e−β∆ e−iβαi eiβαj

)n}
=

β∆

2
−

∞∑
n=1

xn∆

n
|un|2, (C.10)

and

1

2
ln det

(
−D̃2

t +∆2
)
=

1

2
ln eβ∆ +

1

2
Tr
{
ln
(
1− e−β∆+iβα

)
+ ln

(
1− e−β∆−iβα

)}
=

β∆

2
− 1

N

N∑
i,j

∞∑
n=1

1

n

{(
e−β∆ eiβαi

)n
+
(
e−β∆ e−iβαi

)n}
=

β∆

2
−

∞∑
n=1

xn∆

n
(un + u∗n). (C.11)

Note that we should be careful about the trace Tr(·) represents whether for the adjoint or fundamental represen-
tation.
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The final form of the effective potential of the theory with both types of scalar fields is

Veff(β) = − lnZ

=
dN2

2
ln det

(
−D2

t + 1
)
− N2

2
ln det

(
−D2

t

)
+

NNf

2
ln det

(
−D̃2

t + 1
)

=
βN2

2

(
D +

Nf

N

)
+N2

∞∑
n=1

1

n

{
(1−Dxn)|un|2 −

Nf

N
xn(un + u∗n)

}
, (C.12)

as desired. As mentioned in the beginning of this appendix, we can refer to the computation of reference [9] for
more generic theories.
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D Data of simulations

D Data of simulations

In this appendix, we list several numerical data generated by the lattice Monte Carlo simulations for the matrix
models. They are taken from the our research [17] for partial deconfinement beyond the weak coupling regime.

Gaussian matrix model

Table 1: Variances in the Gaussian matrix model. D = 2, N = 32 at the critical temperature T = Tc = 1
lnD .

The number of lattice sites is L. The total number of x is obtained by #x = (N2 = 322) × (D = 2) × L ×
(# configurations). These data are taken from reference [17].

L (M,M ′) Confined Deconfined # configs. of (M,M ′)

4 (16, 24) 0.50(3) 0.63(4) (389, 801)

16 (16, 24) 0.50(4) 0.62(5) (241, 408)

24 (16, 24) 0.50(3) 0.63(4) (165, 287)
24 (16, 30) 0.50(2) 0.62(1) (165, 289)
24 (24, 30) 0.50(4) 0.62(2) (287, 289)

Yang-Mills matrix model (“efficient”)

Table 2: Variances of ρ(X)
con and ρ

(X)
dec in the “efficient” simulation of the Yang-Mills matrix model simulation, N =

64, T = 0.885, with 24 lattice sites. The total number of x is obtained by #x = (N2 = 642)× (D = 9)× (L =

24)× (# configurations). These data are taken from reference [17].

(M,M ′) σ2
con σ2

dec # configs. of (M,M ′)

(16, 32) 0.2447(5) 0.254(3) (854, 857)
(16, 48) 0.2447(4) 0.254(1) (854, 814)
(32, 48) 0.2447(8) 0.254(1) (857, 814)

As explained in section 6.4, if ρ(X)
con(x) and ρ

(X)
dec(x) do not depend of the size of the deconfined sector M , the

variances must relate to r0 and r1 in equations (6.28) and (6.8),

σ2
con ≡

∫
dx x2ρ(X)

con(x) =
r0
d
≃ 2.20

9
≃ 0.244, (D.1a)
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D Data of simulations

σ2
dec ≡

∫
dx x2ρ

(X)
dec(x) =

r1
d
≃ 2.29

9
≃ 0.254. (D.1b)

The agreement with the values in table 2 seems reasonable.

Yang-Mills matrix model (constrained)

Table 3: Variances of ρ(X)
con and ρ

(X)
dec in the constrained simulation of the Yang-Mills matrix model, N = 48, 64

and 128, T = 0.885, with 24 lattice sites. The last column is the variance of the distribution of the off-diagonal
block of the confined sector. These data are taken from reference [17].

N M σ2
dec σ2

con σ2
con,off-diag # configs.

48 12 0.2588(5) 0.2442(2) 0.2438(8) 1500
64 16 0.2581(2) 0.2446(1) 0.2439(3) 1500
128 32 0.2582(2) 0.2445(1) 0.2439(1) 500

48 24 0.2568(1) 0.2439(1) 0.2433(2) 1500
64 32 0.2567(1) 0.2441(1) 0.2434(2) 1500
128 64 0.2566(1) 0.2438(1) 0.2431(1) 500

48 36 0.2557(2) 0.2438(3) 0.2433(5) 1500
64 48 0.2555(1) 0.2434(1) 0.2430(2) 1500
128 96 0.2556(1) 0.2433(1) 0.2428(1) 500
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E Details of lattice simulations

E.1 Yang-Mills matrix model

In the numerical analysis [17], we utilize the following lattice action, introduced an one-dimensional lattice
with L sites, and the static diagonal gauge is taken;

SYMMM = Sbosonic + SFP, (E.1)

where

Sbosonic =
N

2a

L∑
t=1

9∑
I=1

Tr
(
UXI(t+ a)U † −XI(t)

)2
− Na

4

L∑
t=1

∑
I,J

Tr [XI(t), XJ(t)]
2, (E.2)

and
SFP = −

∑
i<j

2 ln

∣∣∣∣sin(θi − θj
2

)∣∣∣∣. (E.3)

There areD = 9,N×N hermitian matricesXI in the adjoint representation ofU(N) gauge group at each lattice
point. The link variable is

U = diag
(
eiθ1/L, · · · , eiθN/L

)
, (E.4)

which is independent on time t. The Polyakov line phases θj lie on between ±π. Note that, depending on the
analysis, we added∆S for the “efficient” and constrained simulations. The above is the lattice action with a naive
lattice discretization, and we can also reduce the discretization errors by using the tree-level improved action,
which is actually used for the study of the D0-brane matrix model [131, 167, 16]. The lattice simulation with the
gauge-fixing is similarly to the study of the D0-brane matrix model in references [168,125,129]. For more details
about the lattice setup, see section 2. 2 of reference [167] and a useful document [169]. We have used the Hybrid
Monte Carlo algorithm [170].

E.2 Gaussian matrix model

With respect to the lattice action of the Gaussian matrix model (Nf = 0), we have just replaced the potential
term of the Yang-Mills matrix model with

Spot =
aN

2

L∑
t=1

D∑
I=1

TrXI(t)
2, (E.5)

where D is set to 2 in our analysis.
For the Gaussian matrix model with Nf -fundamental scalar fields, we have added the following terms to the

original Gaussian matrix model;

Sfund = N
L∑

t=1

Nf∑
A=1

[
2

a

{
|ϕA(t)|2 −

N∑
i=1

Re
(
ϕA,i(t+ a)Uiiϕ

∗
A,i(t)

)}
+ a|ϕA(t)|2

]
. (E.6)
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E Details of lattice simulations

There areNf complex vector fields in the fundamental representation of U(N) gauge group at each lattice point.
When we introduce interactions, we just add the lattice discretized interaction terms in principle.

E.3 Case : Gaussian matrix model with fundamental scalars

As explained in section 4.3.3, introducing the matter fields in the fundamental representation modifies the
phase structure of the model drastically. The intermediate phase between the ‘Hagedorn’ and Gross-Witten-
Wadia transitions becomes thermodynamically stable in this case, unlike the original Gaussian matrix model
which exhibits the first order phase transition at the critical temperature. Hence, it is more suitable to demonstrate
the concept of partial deconfinement and study the features of it. The following analysis and numerical result are
based on the study in progress [71].

Our strategy has been to define the distribution function of independent degrees of freedom for the matter
fields as well as the gauge field. Here again, following the belief, we study the distribution with respect to the
scalars in fundamental representation,

√
2NϕA,j . We denote them as the variableφ and its distribution as ρ(ϕ)(φ)

analogous to the one for the adjoint field ρ(X)(x). According to the faith of partial deconfinement, we set an ansatz

ρ(ϕ)(φ;M) =

(
1− M

N

)
ρ(ϕ)con(φ) +

M

N
ρ
(ϕ)
dec(φ). (E.7)

In this case, the size of deconfined sectorM is related to the temperature T as we can see in the phase structure 6,
which is different from the case without the fundamental scalars.

To introduce the distribution functions in this model, we begin with the action (4.98), which includes theNf -
fundamental scalar fields ϕA. Analogous to the Gaussian matrix model with Nf = 0, let us estimate the energy
contributions from each type of the scalar fields. From the virial theorem, we can obtain

E(X) ≡ N

β

∫
dt
∑
I

TrX2
I , E(ϕ) ≡ N

β

∫
dt
∑
A

|ϕA|2. (E.8)

The expectation values of these quantities in the path integral formalism connect to the expectation values ob-
tained by the distribution functions;〈

E(X)
〉
= DN2

〈
x2
〉
= D(N2 −M2)

〈
x2
〉
con

+DM2
〈
x2
〉
dec

, (E.9)〈
E(ϕ)

〉
= NNf

〈
φ2
〉
= Nf(N −M)

〈
φ2
〉
con

+NfM
〈
φ2
〉
dec

, (E.10)

where 〈
x2
〉
=

∫
dx x2ρ(X)(x),

〈
φ2
〉
=

∫
dφ φ2ρ(ϕ)(φ). (E.11)

The energy contributions can be computed analytically at each temperature T by equations (4.107) and (4.108),
and hence, we can compute the variances of the distribution for the adjoint and fundamental scalars as well. We
utilize those values for a consistency check of the analysis.
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E Details of lattice simulations

For the lattice Monte Carlo simulations of this model, we perform the constrained simulation from the begin-
ning. Then, we confirm its consistency with the original thermodynamics of the model which is tractable in an
analytic manner. The distributions of the Polyakov line phases in the confined and deconfined sector ρ(P)con(θ) and
ρ
(P)
dec(θ) are shown in figure 30. We can see the matching of the numerical results with the analytic form of the

phase distributions ρ(P)(θ) and ρ(P)dec(θ;TGWW(M)) obtained in equations (4.102) and (4.105), shown in the figure.
Although we cannot state quantitatively about the discrepancy due to the absence of the numerical errors at this
point, we can expect improvements for the simulation with larger N and more statistics since this constraint is
justified in the large N limit, or at least, sufficiently large but finite integer N .
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Consistency Check
(N=32, L=8, d=2, Nf=8, M=16)
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ρ(P)(θ, T ) = (1 − M
N ) ⋅ 1

2π
+ M

N
ρ(P) (θ; TGWW(M, Nf))

• Constraintの導入による、他の物理量(エネルギー等)への影響は微小 
•  等での解析的振る舞いからのズレ → finite N 補正と予想θ ∼ π

PM ≈ PGWW, PN−M ≈ 0

preliminary
preliminary preliminary

Figure 30: [Preliminary] Distribution of the Polyakov line phases ρ(P)(θ;T ), ρ(P)con(θ), and ρ
(P)
dec(θ;TGWW(M))

from the constrained simulations of theGaussianmatrixmodel withNf fundamental scalar fields,D = 2,N = 32,
the number of lattice sites L = 8, M = 16, R = M

N = 0.5. The center symmetry is fixed sample by sample such
that P = |P |.

The preliminary results of the distribution functions for scalars in the confined and deconfined sectors are
shown in figures 31 and 32. They show reasonable agreements with the several M at N = 32, and significant
difference with the confined and deconfined sectors. We comment that, as a consistency check, we can see the
trend of matching for the variances and some thermodynamic quantities with the theoretical prediction. We also
notice the discrepancies, especially around θ = π (and also −π). It is expected to come from the finite-N effect
that affects the attractive/repulsive forces among the Polyakov line phases, and therefore, the configurations
around there is hardly generated.

In order to confirm above observations more rigidly, more lattice Monte Carlo simulations with larger N is
needed. The goal is to determine the phase structure ab initio and demonstrate the two-phase coexistence in the
intermediate phase of the interacting model with fundamental scalar fields. Therefore, this analysis has an aspect
to establish the methodology for aiming the further simulations of the model with interaction.
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(N=32, L=8, d=2, Nf=8)随伴スカラーXの分布関数 ρ(X)
con/dec(x)

基本スカラーφの分布関数 ρ(ϕ)
con/dec(φ)
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Figure 31: [Preliminary] Distributions ρ(X)
dec(x) and ρ

(X)
con(x) from the constrained simulation of the Gaussian

Matrix model with Nf fundamental scalar fields, D = 2, N = 32, Nf = 8, the number of lattice sites L = 8, for
severalM which is equivalently temperatures. We use the symmetry that the phase distribution is even function
due to the fixing of the center symmetry ambiguity.

/ 1615

��

����

����

����

����

����

���	

���


�� ���� �� ���� �� ���� ��

��
����

�

������

�����	

������

��

����

����

����

����

����

���	

�� ���� �� ���� �� ���� ��


��
���

�

������

�����	

������

��

����

����

����

����

����

���	

���


�� ���� �� ���� �� ���� ��

��
����

�

������

�����	

������

��

����

����

����

����

����

���	

�� ���� �� ���� �� ���� ��


��
���

�

������

�����	

������

(N=32, L=8, d=2, Nf=8)随伴スカラーXの分布関数 ρ(X)
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基本スカラーφの分布関数 ρ(ϕ)
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Figure 32: [Preliminary] Distributions ρ(ϕ)dec(φ) and ρ
(ϕ)
con(φ) from the constrained simulations of the Gaussian

Matrix model with Nf fundamental scalar fields, D = 2, N = 32, Nf = 8, the number of lattice sites L = 8, for
severalM which is equivalently temperatures. We use the symmetry that the phase distribution is even function
due to the fixing of the center symmetry ambiguity.
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E.3.1 A technical remark for constrained simulations

If the adjacent Polyakov line phases θp, θq become closer or coincide at somewhere, the Faddeev-Popov term
associatedwith the gauge fixingSFP (E.3) becomes extremely large. That gives an infinitely strong repulsive force,
which leaves the ordering of θ unchanged in the Monte Carlo simulation. Although, due to the SN permutation
symmetry, it is not the problem in the originalmodel, without the source term∆S, it actually is if∆S is introduced
to the action. We can understand it from that the configurations for θ may freeze at the initial condition; if we
impose the initial condition θ1 < θ2 < · · · < θN , for example, the distribution we desire — 1+cos θ

2π for θ1, · · · , θM
and 1

2π for θM+1, · · · , θN — cannot be realized by the constrained simulation.
To avoid this problem, we carried out the following method; at each step of the Monte Carlo simulation, the

random permutations for p-th and q-th row/column of the field configuration (1 ≤ p ≤M andM +1 ≤ q ≤ N )
were performed. After each the permutation, we test it by the Metropolis test not to violate any condition in
the Markov Chain Monte Carlo. The fact that this procedure works well indicates the non-uniqueness of the
separation into two distinct sectors, which appears in the Gaussian matrix model as the residual symmetry. Since
we assign a very huge coefficient of the source term γ, the permutation is accepted only when θp ≃ θq , which
corresponds to the residual permutation symmetry.
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F More on ρ(X) in Yang-Mills matrix model

F More on ρ(X) in Yang-Mills matrix model

In this appendix, we mention the observations to the distribution ρ(X)(x) in the Yang-Mills matrix model for
future reference.

We compare the distributions ρ
(X)
con(x) and ρ

(X)
dec(x) with the Gaussian distributions with the variances in

equations (6.29) and (6.30). Figure 33 shows the results, which displays that ρ(X)
con(x) and ρ

(X)
dec(x) are close but

not matching to the Gaussian distributions. The discrepancy may come from a finite-N or finite-lattice-spacing
effect. We also compare the distribution ρ

(X)
con in the transition region with ρ(X)(x) at a low temperature, that is,

in the completely-confined phase. The left panel of figure 34 shows the results of the comparison, which displays
the small temperature dependence.
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Figure 33: Comparison between ρ
(X)
con(x) and ρ

(X)
dec(x) of the Yang-Mills matrix model and the Gaussian distri-

butions. The histograms of ρ(X)
con(x) and ρ

(X)
dec(x) are same as ones in figure 15. The variances of the Gaussian

distributions are σ2
con = 0.244 and σ2

dec = 0.254. The error bars are estimated by jackknife analysis. These plots
are taken from reference [17].
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Figure 34: (a) Comparison between ρ(X)(x) at a low temperature (T = 0.4425 ≈ 0.5 · Tc) and the distribution
ρ
(X)
con(x) at T = 0.885. The histogram ρ(X)(x) is plotted by 500 configurations, and ρ

(X)
con(x) is same as one in

figure 15. (b) Comparison ρ(X)(x) at T = 0.4425 with the Gaussian distribution. The variance is σ2
con = 0.244.

The error bars are estimated by jackknife analysis. These plots are taken from reference [17].
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