2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

Execution Management of Distributed Quantum
Computing Jobs

Davide Ferrari, Michele Bandini and Michele Amoretti
Quantum Software Laboratory
Department of Engineering and Architecture
University of Parma
43124 Parma, Italy
{davide.ferraril | michele.bandini | michele.amoretti } @unipr.it

Abstract—In a distributed quantum computation, a large
quantum circuit gets sliced into sub-circuits that must be executed
at the same time on a quantum computing cluster. The interac-
tions between the sub-circuits are usually defined in terms of
non-local gates that require shared entangled pairs and classical
communication between different nodes. Assuming that multiple
end users submit distributed quantum computing (DQC) jobs
to the cluster, an execution management problem arises. This is
actually a parallel job scheduling problem, in which a set of jobs
of varying processing times need to be scheduled on multiple
machines while trying to minimize the length of the schedule. In
a previous work, we started investigating the problem considering
random circuits and approximating the length of each DQC job
with the number of layers of the circuit. In this work, we put
forward the study by considering a more realistic model for
estimating DQC job lengths and by performing evaluations with
circuits of practical interest.

I. INTRODUCTION

Currently available quantum computers work with a small
number of noisy qubits with non-uniform quality. To cope
with large quantum circuits, a different approach consists in
using distributed quantum computing (DQC) [1] to increase
the number of available qubits by means of networked quan-
tum processing units (QPUs). Both classical and quantum
communications are necessary, to that purpose.

In a datacenter scenario, DQC may exploit already existing
low-latency communication technologies, such as Omni-Path
and InfiniBand, for high-speed classical messaging between
quantum processors. Also entanglement distribution, which is
highly relevant to DQC, can be achieved over standard telecom
fibers connecting the QPUs [2]. DQC at geographical scale
is also expected further into the future, leveraging the Quan-
tum Internet, i.e., metropolitan-area and wide-area quantum
networks that work in synergy with the existing Internet [3],
[4]. In this context, long-distance entanglement is enabled by
quantum repeaters [5].

A distributed quantum computation can be represented as
a set of quantum programs that run in parallel and have fre-
quent interactions, either communicating by means of quantum
messages or establishing quantum entanglement between their
qubits. In particular, entanglement plays a major role in the
implementation of non-local gates (Figure 1).

A set of quantum programs composing a distributed quan-
tum computation can be denoted as a DQC job. In the

979-8-3315-4137-8/24/$31.00 ©2024 IEEE
DOI 10.1109/QCE60285.2024.10269

150

\flo)—@ TeleGate
QPUI{ la)

[o*) :
OPU, |90)

lq7)

Fig. 1: Example of distributed quantum computation per-
formed on two QPUs. The TeleGate primitive is used to
implement a non-local gate (a CNOT between the second data
qubit of the first QPU and the first data qubit of the second

QPU).

envisioned scenario, multiple DQC jobs can be concurrently
submitted to several networked QPUs. Incoming DQC jobs are
queued and handled by a specialized execution management
service, which will be denoted as Execution Manager from
now on.

In a previous work [6], we perfomed a preliminary investi-
gation of the DQC job scheduling problem considering random
circuits and approximating the length of each DQC job with
the number of layers (i.e., the depth) of the circuit. In this
way, it was possible to perform a preliminary assessment of
two job scheduling strategies, using the makespan and two
DQC-specific utilization metrics — one concerning the QPUs,
the other concerning the network. One conclusion was that
the makespan alone is not sufficient to compare DQC job
scheduling strategies, as makespan optimality needs almost
deterministic entanglement routing between QPUs, which is
very hard to achieve. Another conclusion was that novel DQC-
specific job scheduling algorithms are absolutely necessary.

In this work, we get further insights on this research
problem by introducing a more realistic model for estimat-
ing DQC job lengths and by performing evaluations with
circuits of practical interest. In particular, we consider jobs
that correspond to the distributed version of GHZ circuits,

which are generalizations of the well-known Bell state that
involve three or more qubits. Due to their extremely non-
classical properties, GHZ states serve as the central resource
for a number of important applications in quantum information
science, including secret sharing, sensing, and fusion-based
quantum computing [7].

The paper is organized as follows. In Section II, the refer-
ence DQC workflow model is illustrated in terms of modules
and exchanged data. In Section III, the Execution Manager
is described in detail, with particular emphasis on DQC job
length estimation. In Section 1V, a few relevant examples are
considered for assessing the considered job scheduling poli-
cies. Finally, Section V concludes the paper with a discussion
of open problems and future research directions.

II. DQC WORKFLOW MODEL

In DQC, the workflow includes multiple components that
work together and sequentially, as illustrated in Figure 2.
First of all, a monolithic circuit to be executed is sent to the
Quantum Compiler [8], which will use the information about
the topology of the network and the high-level QPU features
to correctly and optimally distribute the circuit between mul-
tiple QPUs. The output of the compiler is a DQC job that
contains the information about which quantum operations are
executed by which node and inter-node quantum and classical
communications.

Each of these jobs enters a queue to be overseen by the
Execution Manager, which knows in great detail both the
network and the QPU features, and schedules the jobs based on
current QPU and network workloads. The queue can be dealt
with either on a first-in first-out basis, by simply executing the
jobs as they arrive, or with more sophisticated algorithms, like
the one that will be described in Section III-C.

The last part of the proposed model is the one where
the performance is analyzed. Several different aspects are
evaluated, starting from the correctness of a compiled circuit.
The other performance indicators are described in Section IV.

III. EXECUTION MANAGER

In this section, the Execution Manager is described in detail,
considering the characterization of its input, the estimation of
incoming jobs’ length, and the job scheduling algorithms.

A. Input Characterization

The jobs in the queue are made of different programs, one
for each QPU, that have been obtained from the compilation
for distributed execution. Each job descends from a monolithic
circuit, which is split into subcircuits including non-local gates
whose execution relies on shared entangled pairs and classical
communication.

Aside from the queue, the Execution Manager also needs
to know the network topology and hardware parameters for
each QPU. These parameters may include the time needed
to perform qubit initialization, one-qubit and two-qubit gate
execution, readout operations, classical messaging and entan-
glement generation.

151

Given these inputs, the Execution Manager will take into
account - at least - the number of required QPUs, the number
of qubits for each QPU, and the job length, in order to schedule
jobs over the network, according to a specific scheduling
algorithm.

B. DQC Job Length

Given the hardware characteristics mentioned in Sec-
tion III-A, the Execution Manager can estimate the time
required for each job to complete. To do this, it analyzes
the programs that make up a job and obtains directed acyclic
graphs, one graph for each program.

In such graphs, the vertices correspond to the tasks that
an individual program must perform. These tasks can be of
different types: single qubit operations, two qubit operations,
entanglement generation, readout operations, waiting for an-
other program.

The edges instead correspond to the qubits involved in the
aforementioned tasks. Depending on the type of task, each
edge is assigned a weight, which corresponds to the time
needed to perform the task, estimated based on the input
parameters. The length of a DQC job (intended as execution
time) corresponds to the length of the longest weighted path
within the graphs of the programs that compose the job.

Carbon initialization time 300 ps

Electron initialization time 2 us

Carbon one-qubit gate duration 20 pus

Electron one-qubit gate duration 5ns
Electron two-qubits gate duration 500 ps
Electron readout time 3.7 us
Entanglement generation time (fidelity of 0.8 [9]) 0.35s

TABLE I: Hardware parameters for color-centers based QPUs,
taken from [9], [10].

For example, let us consider the parameters in Table I,
which pertain QPUs based on color centers, as described in [9],
[10]. The graphs that are necessary to estimate the execution
time of a CatEnt operation (shown in Fig. 1) are depicted in
Fig. 3. There is one graph for each QPU and each edge carries
information about the involved qubit and the duration of the
next task.

C. Job Scheduling

DQC jobs, with respect to classical jobs, possess a larger
number of static properties which can be exploited by the
scheduling policy. For instance, every job has fixed values
of width (the number of data qubits), length, computation-to-
communication ratio [6] (i.e., the ratio between the number
of local gates and the number of non-local gates), and more.
The Execution Manager can then accordingly make clever
decisions on the order of execution of the jobs.

The parallel job scheduling optimization problem, which
the Execution Manager deals with, has been extensively in-
vestigated [11]-[14]. It consists of a set of jobs with different
processing times which need to be scheduled on m machines,
while minimizing the makespan: that is, the length of the

Monolithic Circuit

—

QPU Features [_D
(low-level)

L 4

Detailed D
Network %

Description

Queue

:

Execution Manager = Analytics | — -

T
/ DQC Job | Results

/ D /\
/ \
L / \
/ N\

Performance
Indicators

Dpac Job L
Network) Quantum aclo LIy Lt \
etwor a . N
Topology — | Compiler E 4-QPU O\
1 ”I ””” Quantum N\ 11‘1111
N Processor AN
TITTTT TTTTTT N T Quantum
QPU Features Processor
(high-level)
2-QPU TTITTTT
Quantum
Processor
NNEEN]
“'
T ITITTTITIT! 2-QPU
"' i
E Quantum
TTITTTT T T | Processor

Fig. 2: The proposed DQC workflow model, whose main modules are the Quantum Compiler and the Execution Manager. The
quantum network includes different quantum computing nodes connected by means of a hub, which means that the network
is local (datacenter) or metropolitan. Each node is equipped with multiple QPUs.

Fig. 3: Directed acyclic graph representing the tasks needed
to perform a CatEnt operation across two QPUs.

schedule. Each job has a processing time p; and requires the
concurrent use of g; machines. In general, the problem is NP-
hard.

List-scheduling (LS) [11] is an efficient greedy algorithm
that guarantees a makespan that is always at most 2 — 1/m
times the optimal makespan. List-scheduling also works in the
online setting where jobs arrive over time and the length of a
job becomes known only when it completes [13].

In this work, LS is compared to the first-in first-out (FIFO)
algorithm, for scheduling the execution of distributed quantum
computations.

The LS algorithm is illustrated by Algorithm 1. The queue
is explored backward, starting from the first element arrived,

Algorithm 1 List-Scheduling
Input: job queue J, idle QPU set Q

Output:
1: function SCHEDULE
2 10
3 while Q # () do
4: next « J[i]
5: if 3¢ C @ : ¢ = next.q then
6 schedule next
7 Q<+ Q\q
8 J J\next
9 else

10: 1—1+1

11: end if

12: end while

13: end function

until all available QPUs are assigned a job. The algorithm is
executed every time a job completes. The FIFO algorithm is
much more simple, as it assumes that the first job entering the
queue is the first job scheduled for execution.

IV. PERFORMANCE EVALUATION

We evaluated the performance of different scheduling al-
gorithms for a queue of five different jobs, to be scheduled
on a network of six QPUs, each with two qubits. Jobs are
characterized by different lengths and number of required
QPUs ¢, as shown in Fig. 4.

152

(@ J1

©—

©—t

E
D—1

(b) J2

=]

o—

(© J3
Qm'.[i T R
QI’('.‘ H l é T
T
QPU; [_@ T T
(d) J.
QPU, { - ¢ '
;H I .
QPL‘Z{ i
©) Js

Fig. 4: DQC jobs with varying length and number of required
QPUs. Jy, Jo and J5 are circuits used to generate GHZ states
[15].

The length of each DQC job, in terms of execution time,
was estimated as explained in Section III-B. For the required
hardware parameters, we adopted color-centers based QPUs
and took values from [9], [10], as reported in Table 1.

Given the parameters in Table I, the estimated lengths of
the jobs in Fig. 4 are reported in Table II.

[Job][Length [s] | q]
J1 1.055 4
Ja 0.708 3
J3 0.706 2
Ja 1.406 3
Js 0.357 2

TABLE 1II: For each job, its length and number of required
QPUs is reported.

The FIFO and LS algorithm were tested against three
different job queues, as reported in Table III. With queue 1, the

LS algorithm produces a schedule noticeably shorter than the
one produced by FIFO. This can be visualized in Fig. 5a and
Fig. 5b, where the different schedules that result from FIFO
and LS are depicted. It should be noticed that with LS the
QPUs are rarely unutilized, in contrast with FIFO. Another
example worth of notice is illustrated in Fig. 5S¢ and Fig. 5d,
where LS exploits non adjacent QPUs for Js, thus optimizing
the total makespan.

Makespan [s]

l Queue [FIFO | LS
1 [{Js,Ja,J3,J2,J1} || 3.167 | 2.470

{J1,J4, J2, J5,J3 2.827 | 2.461

3 [{Js,J1,J4,J2,J3 2469 | 2.461

TABLE III: Total makespan of schedules produced by FIFO
and LS with different queues.

]

] I I
&
N
L

Ja Ja

[

|
|

J QPUs

k! A

<
S

2
1
IS
{‘E v)
P A U U S
1

(©) (@

Fig. 5: Scheduling output examples: (a) FIFO scheduling of
queue 1; (b) FIFO scheduling of queue 3; (c) List scheduling
of queue 1; (d) List scheduling of queue 3.

To get quantitative results that go beyond the traditional
concept of makespan, in the previous work [6] we introduced
two metrics denoted as QPU utilization and the quantum
network utilization. Those metrics assumed that the length of
the jobs and the makespan could be approximated in terms
number of quantum computation layers. In the following, we
improve the definitions, considering estimated execution times
instead.

QPU utilization is defined as the ratio between the actual
workload and the potential workload given the makespan M,

namely: >
i Diqi

D
M ’I’LQpU (

UQPU = S [07 1],
where p; is the estimated execution time of the ¢-th job,

q; is the number of required QPUs of the ¢-th job, M is the

153

makespan of the schedule, and ngpy is the number of the
system’s QPUs. The shorter the makespan, the higher the QPU
utilization.

Quantum network utilization is defined as the ratio be-
tween the total number of scheduled non-local gates and the
maximum number of non-local gates given the makespan M,
namely:

— 2. Nri —
T (ngu—1)M

T‘Zi NRi

U
N (nQpU - 1)M

€[0,1], 2

where r is the estimated execution time of a single non-
local gate, Ng; is number of non-local gates in the i-th job,
ngpy — 1 is the maximum number of non-local gates in a layer
that spans all the system’s QPUs, and M is the makespan of
the schedule. From Fig. 3, it is clear that the execution time of
a non-local gate can be approximated with the entanglement
generation time (= 0.35 s), as it is at least three order of
magnitude greater than any other operation involved. Also in
this case, the shorter the makespan, the higher the quantum
network utilization.

Ugpru Ugn
[Queue | FIFO [LS FIFO | LS
1 0.668 | 0.856 0.465 | 0.597
2 0.748 | 0.859 0.521 | 0.599
3 0.856 | 0.859 0.597 | 0.599

TABLE IV: QPU and quantum network utilization resulting
from different queues, scheduled with FIFO and LS.

The results provided in Table IV show that, in most cases
(queue 1, queue 2), both QPU and Quantum network utiliza-
tion are higher when LS is used. It may happen though that
LS and FIFO are equivalent (queue 3). High QPU utilization
is generally a good feature. High quantum network utilization
could instead be an issue, as it may have a bad impact on the
quality of the result. For this reason, it would better to have
a job scheduling strategy that is aware of quantum network
characteristics.

V. CONCLUSION

Distributed quantum computing is getting attention as a
viable path towards large scale quantum computing. This work
focused on execution management of DQC jobs, introducing
a reasonable approach for estimating DQC job lengths. A
few job scheduling examples were illustrated, using quantum
circuits of practical interest, such as GHZ ones, and two very
different algorithms (FIFO and List-Scheduling). By means of
QPU and quantum network utilization metrics, it was possible
to observe that, in most cases, both QPU and quantum network
utilization are higher when List-Scheduling is used, rather than
FIFO. Moreover, the paper shows that the QPU and quantum
network utilization metrics proposed in a previous work for
discrete parameters [6], remain valid even when more realistic
continuous parameters are used.

Regarding future work, we plan to design novel job schedul-
ing techniques that take into account also some specific

154

quantum network features, such as entanglement rate and
fidelity.

ACKNOWLEDGMENT

The authors acknowledge financial support from the EU
Flagship on Quantum Technologies through the project Quan-
tum Internet Alliance (EU Horizon Europe, grant agreement
no. 101102140).

REFERENCES

M. Caleffi, M. Amoretti, D. Ferrari, J. Illiano, A. Manzalini, and A. S.
Cacciapuoti, “Distributed Quantum Computing: a Survey,” Computer
Networks, 2024.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Ried-
matten, “Telecom-heralded entanglement between multimode solid-state
quantum memories,” Nature, vol. 594, no. 7861, pp. 3740, 2021.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for
the road ahead,” Science, vol. 362, no. 6412, 2018.

S. L. N. Hermans et al., “Qubit teleportation between non-neighbouring
nodes in a quantum network,” Nature, vol. 605, no. 7911, pp. 663668,
2022.

J. V. Rakonjac, S. Grandi, S. Wengerowsky, D. Lago-Rivera, F. Appas,
and H. de Riedmatten, “Transmission of light—matter entanglement over
a metropolitan network,” Optica Quantum, vol. 1, no. 2, pp. 94-102,
Dec 2023.

D. Ferrari and M. Amoretti, “A Design Framework for the Simulation of
Distributed Quantum Computing,” in HPQCI Workshop, in conjunction
with the 33rd ACM International Symposium on High-Performance
Parallel and Distributed Computing, 2024.

R. Frantzeskakis, C. Liu, Z. Raissi, E. Barnes, and S. E. Economou,
“Extracting perfect ghz states from imperfect weighted graph states via
entanglement concentration,” Phys. Rev. Res., vol. 5, p. 023124, May
2023.

D. Ferrari, S. Carretta, and M. Amoretti, “A modular quantum compila-
tion framework for distributed quantum computing,” IEEE Transactions
on Quantum Engineering, vol. 4, pp. 1-13, 2023.

M. Pompili, C. Delle Donne, L. te Raa, B. van der Vecht, M. Skrzypczyk,
G. Ferreira, L. de Kluijver, A. J. Stolk, S. L. N. Hermans, P. Pawelczak,
W. Kozlowski, R. Hanson, and S. Wehner, “Experimental demonstration
of entanglement delivery using a quantum network stack,” npj Quantum
Information, vol. 8, no. 1, p. 121, Oct 2022.

G. Avis, E Ferreira da Silva, T. Coopmans, A. Dahlberg, H. Jirovska,
D. Maier, J. Rabbie, A. Torres-Knoop, and S. Wehner, “Requirements
for a processing-node quantum repeater on a real-world fiber grid,” npj
Quantum Information, vol. 9, no. 1, p. 100, Oct 2023.

B. Johannes, “Scheduling parallel jobs to minimize the makespan,”
Journal of Scheduling, vol. 9, no. 5, pp. 433452, 2006.

R. A. Dutton, W. Mao, J. Chen, and W. Watson, “Parallel job scheduling
with overhead: A benchmark study,” in 2008 International Conference
on Networking, Architecture, and Storage, 2008, pp. 326-333.

J. Sgall and G. J. Woeginger, “Multiprocessor jobs, preemptive sched-
ules, and one-competitive online algorithms,” Operations Research Let-
ters, vol. 51, no. 6, pp. 583-590, 2023.

D. Olliaro, M. Ajmone Marsan, S. Balsamo, and A. Marin, “The
saturated multiserver job queuing model with two classes of jobs: Exact
and approximate results,” SIGMETRICS Perform. Eval. Rev., vol. 51,
no. 4, p. 28-29, feb 2024.

J. de Jong, F. Hahn, N. Tcholtchev, M. Hauswirth, and A. Pappa,
“Extracting GHZ states from linear cluster states,” Phys. Rev. Res., vol. 6,
p. 013330, Mar 2024.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

(12]

[13]

[14]

[15]

