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The present work is intended to explore the extent 
to which the recently observed, multi-pion resonances 
can be accounted for in terms of a self-coupled pion 
field, without explicit introduction of a pion-nucleon 
interaction. A representation is chosen in which 
the state functions are emphasized, and they are 
approximated by means of the variational principle. 
Thus far, the work is confined to the neutral, spin 
zero, boson field, although it is expected that the 
same methods will be applied to the pion (unit isospin) 
field. 

We start with the field Hamiltonian 

which form a covariant system. Units are chosen 
such that h = c = 1 ; / i 0 and X0 are the ( u n f o r m a l ­
ized) rest mass and coupling constant, respectively. 
The integration volume in (1) is chosen at first to be 
a rectangular box of volume V with periodic boundary 
conditions at the edges; V is later allowed to become 
arbitrarily large. Apart from the restricted translation 
invariance associated with V, Eqs. (1) and (2) are also 
invariant under the substitution 7 i - > - - 7 i ; 

thus we expect solutions to possess a quantum number 
that we shall call amplitude parity. 

The field amplitudes are expanded in terms of the 
normal modes of the box, 

from which it follows that [ qk9 pk,] = iôK r , with other 
pairs commuting, and also q* = q_k, p* = p_k. 
Rather than express the y's and p's in terms of the 
usual non-Hermitian creation and destruction oper­
ators, we introduce the following Hermitian operators 

Here, the prime on the summation indicates that it 
extends over half of the k-space, and a>l = k2 + nl. 

We now apply the variational principle to the 
approximate determination of the solutions of the 
equation Hi]/ = E\fi, where E is the quantized field 
energy. For the lowest state, which represents the 
physical vacuum, we choose the trial form 

(*) Supported in par t by the U.S. Air Force through the Office of Scientific Research. 

and the commutation relations 

with other pairs commuting. We can then put 

and express H in terms of the x's, j ' s , and their 
derivatives. It is slightly more convenient to define 
cylindrical coordinates 

and express H in terms of the z's, fl's, and their 
derivatives : 
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where the f's are normalized : 

It follows that <//> is stationary with respect to 

variations of the f's when they satisfy the equations 

Hkfk = ekfk. Thus the f's are two-dimensional 

harmonic oscillator functions, and the lowest eigen­

values are given by 

These solutions are the best possible of the separable 
form (4), which combine modes of equal and opposite 
momentum in an arbitrary way. Our treatment is 
closely related to the Bogoliubov transformation in 
the theory of superconductivity, but it is perhaps 
easier to see by the present method that the solutions 
obtained are optimal from the point of view of the 
variational principle. 

Mass renormalization may be introduced by 

replacing nl by fi2-ôjnz, where ji is seen below to be 

the physical particle rest mass and ÔJJL2 = 3À0A/V is 

the quadratically divergent mass counter term. 

The first excited states of the Hamiltonian (3) may 
be found by using a trial function of the form (4), but 
allowing one of the f's to be the first excited eigen-
function of the operator (6). The only ^-dependence 
of this \j/ is through a single factor exp (±i9k). Since 
t h e t o t a l field m o m e n t u m o p e r a t o r is ik(djdOk), this 
state has momentum + k ; it also has odd amplitude 

parity. The variational principle again shows that 
this is the optimal state of separable form with this 
momentum and parity. The energy of the state is 
found to exceed that of the vacuum by ek, where as 
in (7) we have e£ = k 2 + / i 2 . Thus the first excited 
states correspond to single relativistic particles of 
momentum k and (renormalized) rest mass /.i. 

The second excited states are based on functions 
of the form (4) in which two of the f's are first excited 
eigenfunctions of (6). The only ^-dependence is 
through a factor exp i(0k—9K+k), so that the state 
has total momentum K and even amplitude parity. 
It is natural to work with a linear combination of such 
product wave functions, which corresponds to a 
superposition of states containing particles with 
momenta — k and K + k for all values of k. Each 
term in the sum is normalized by itself, and the 
coefficient is ak, so that the overall normalization 
condition is 

At this point it is possible to set K = 0, so that 
the rest of the calculation is performed in the centre-
of-mass coordinate system. Variation of the a's 

to make (9) stationary subject to the normalization 
restriction (8) is carried out by using an undetermined 
multiplier E, which subsequently can be shown to 
be the energy of the two-particle system. The 
equation that determines E is 

Each ak may be expanded in spherical harmonics of 
the direction of k ; then since sk is independent of 
direction, it can be shown that the non-spherical 
parts of ak correspond to E = 2sk and hence to no 
scattering. The iS-wave scattering phase shift Ô can 
be expressed in terms of the energy shift E—2sk which 

Because of the invariance of H with respect to change 
of sign of the field amplitude, or replacement of 
each Qk by 6k+n, we expect the / ' s to have definite 
amplitude parity and the f2f% to be even. Then the 
expectation value of the Hamiltonian (3) for the trial 
function (4) is 

where Hk is one-half the curly bracket in Eq. (3). In 
obtaining (5), use was made of the fact that each 
summation is of order V, and only the leading terms 
as V becomes infinite were retained. Thus <//> 
depends on a particular fk only through lfkHkfkàxk, 

where 

After some reduction, the expectation value of / / for 

such a two-particle state is found to exceed the vacuum 

energy by 

and the a's are obtained by solving the set 
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corresponds to the spherically symmetric part of ak; 
the result after some calculation is 

where P denotes the principal value and the subscript 
has been dropped from zk. 

The integral in (10) diverges logarithmically, so 
we renormalize the coupling constant to absorb the 

00 

factor jfcde/e 2. In terms of the renormalized cou-

pling constant X, Eq. (10) becomes 

the last integral is readily evaluated analytically. 
Eq. (11) may be rewritten in the form 

which is closely related to the first approximation of 
Baker and Zachariasen 1 } . The scattering cross-
section is a monotonically decreasing function of the 
total energy 2a9 which shows a resonance at zero 
kinetic energy when 
There is also a single bound state (e</i) for X<Xr; 
the energy of this state decreases monotonically to 
zero as X->—oo. 

Finally, it can be shown that the vacuum energy is 
not only stationary when the / ' s in (4) are eigen-
functions of (6), but also that this energy is a minimum 
with respect to arbitrary second variations of the 
f's if, and only if, the renormalized coupling constant X 
is negative. 

Apart from the extension to the pion (unit isospin) 
field mentioned at the beginning, it is expected that 
the present methods can be applied to the scattering 
and bound states of more than two particles. 
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DISCUSSION 

BLOKHINTSEV: There is an essential difference in the physical 
interpretation of the field excitations in the linear and non­
linear cases. In the linear case one can consider the n ' th excited 
state of the field <p (x) at the point x as representing n identical 
non-interacting mesons placed at this point. In the non linear 
case we have to consider this same excitation as representing 
a single heavy meson placed at x. The energy of this excitation 
is finite. The possibility of transfer of the excitation to a neigh­
bouring point (movement of the meson) does no t change the 
magnitude. 

MARX: Would it be possible to repeat this calculation if 
jul were negative? 

SCHIFF: The value of pi is unimportant , because it is re­
normalized away. It could even be zero. The value of the 
renormalized mass is chosen to equal the experimentally observed 
mass. I t would not be sensible to make this /ul negative. 

MARX: If you have a curve with a double minimum, the 
situation is similar to that in a hydrogen molecular ion. You 
will have a degeneracy of the ground state. Then there may 
or may no t be a complete degeneracy. It would be interesting 
to see the role of the sign. 

SCHIFF: I can only say that with a dependence more com­
plicated than f4 the analysis would become very difficult. 


