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The present work is intended to explore the extent
to which the recently observed, multi-pion resonances
can be accounted for in terms of a self-coupled pion
field, without explicit introduction of a pion-nucleon
interaction. A representation is chosen in which
the state functions are emphasized, and they are
approximated by means of the variational principle.
Thus far, the work is confined to the neutral, spin
zero, boson field, although it is expected that the
same methods will be applied to the pion (unit isospin)
field.

We start with the field Hamiltonian
H = [[47 +3(v$)* + 413> + +ho9*1dr, (1)
and the commutation relations

[o(r, ), 2(t', )] = id(r—1'), 2
which form a covariant system. Units are chosen
such that i = ¢ = 1; y, and 4, are the (unrenormal-
ized) rest mass and coupling constant, respectively.
The integration volume in (1) is chosen at first to be
a rectangular box of volume ¥ with periodic boundary
conditions at the edges; V is later allowed to become
arbitrarily large. Apart from the restricted translation
invariance associated with ¥, Egs. (1) and (2) are also
invariant under the substitution ¢—>—¢, n—>—1;
thus we expect solutions to possess a quantum number
that we shall call amplitude parity.

The field amplitudes are expanded in terms of the
normal modes of the box,

o=V geexp(ik'r), n=V"*Y pexp(—ik1),

from which it follows that [ ¢, p,-] = i, ;- , with other
pairs commuting, and also q; =q_,, py = P—x-
Rather than express the y’s and p’s in terms of the
usual non-Hermitian creation and destruction oper-
ators, we introduce the following Hermitian operators

4 =27 (x +iy), Pe=2"HX—iY)),
[xk 5 Xk/] = [yk s Ykl] =

with other pairs commuting. We can then put

ibk,k’ N

Xy = —i0[0xy, Y= —i0[0yy
and express H in terms of the x's, y's, and their

derivatives. It is slightly more convenient to define
cylindrical coordinates

Xp =z, cos 0, Vi = zg 8in 0y,

and express H in terms of the z's, 0's, and their

derivatives:
1o )
‘izt
Zaak] ok

n=5 )

4
+(Ao/ VZ)J [Z' Z, COS (k‘r+0k):| d’r. (3

Here, the prime on the summation indicates that it
extends over half of the k-space, and o? = k*+pd .

We now apply the variational principle to the
approximate determination of the solutions of the
equation Hy = Ey, where E is the quantized field
energy. For the lowest state, which represents the
physical vacuum, we choose the trial form

!//0 = H,fk(zk ’ Ok) ] (4)

(*) Supported in part by the U.S. Air Force through the Office of Scientific Research.
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where the f’s are normalized :
0 2n
[fidr, = i z;dz, g(d(?k/2n)fk2 =1.

Because of the invariance of H with respect to change
of sign of the field amplitude, or replacement of
each 0, by 0,4n, we expect the f’s to have definite
amplitude parity and the f*'s to be even. Then the
expectation value of the Hamiltonian (3) for the trial
function (4) is

CH) = Z,jkal?fdek"’(S/iO/‘tV)[Zljzlfszdtk]z )

where H, is one-half the curly bracket in Eq. (3). In
obtaining (5), use was made of the fact that each
summation is of order V, and only the leading terms
as V becomes infinite were retained. Thus <{(H)
depends on a particular f; only through [fH,f,dz,,
where

H, = Hl?+(3/10A/2V)2kZ , A= lezszkzdrk (6)

It follows that <(H) is stationary with respect to
variations of the f’s when they satisfy the equations
H.f.=¢f,. Thus the f’s are two-dimensional
harmonic oscillator functions, and the lowest eigen-
values are given by

e = 0 +BhAlV), A=} (1) . (7

These solutions are the best possible of the separable
form (4), which combine modes of equal and opposite
momentum in an arbitrary way. Our treatment is
closely related to the Bogoliubov transformation in
the theory of superconductivity, but it is perhaps
easier to see by the present method that the solutions
obtained are optimal from the point of view of the
variational principle.

Mass renormalization may be introduced by
replacing pu2 by pu*-6u’, where u is seen below to be
the physical particle rest mass and du® = 31,A4/V is
the quadratically divergent mass counter term.

The first excited statss of the Hamiltonian (3) may
be found by using a trial function of the form (4), but
allowing one of the f’s to be the first excited eigen-
function of the operator (6). The only #-dependence
of this ¥ is through a single factor exp (+4i6,). Since
the total field momentum operator is » " ik(0/00,), this
state has momentum FKk; it also has odd amplitude

parity. The variational principle again shows that
this is the optimal state of separable form with this
momentum and parity. The energy of the state is
found to exceed that of the vacuum by ¢, where as
in (7) we have ¢ =k>+u® Thus the first excited
states correspond to single relativistic particles of
momentum k and (renormalized) rest mass .

The second excited states are based on functions
of the form (4) in which two of the f”s are first excited
eigenfunctions of (6). The only 0-dependence is
through a factor exp i(6,—0y.,), so that the state
has total momentum K and even amplitude parity.
It is natural to work with a linear combination of such
product wave functions, which corresponds to a
superposition of states containing particles with
momenta —k and K-+k for all values of k. Each
term in the sum is normalized by itself, and the
coefficient is a,, so that the overall normalization
condition is

Ya?=1. (8)

After some reduction, the expectation value of H for
such a two-particle state is found to exceed the vacuum

energy by
Z/ lakiz(gk +ex 1) +(340/2V) l Zl ak/(8k8K+k)%lz . 9)

At this point it is possible to set K = 0, so that
the rest of the calculation is performed in the centre-
of-mass coordinate system. Variation of the a's
to make (9) stationary subject to the normalization
restriction (8) is carried out by using an undetermined
multiplier E, which subsequently can be shown to
be the energy of the two-particle system. The
equation that determines £ is

1 2V
Z 20 .y 27 7
& (E—2¢) 34

and the &'s are obtained by solving the set
(E—2¢)a, = (340/2Vey) Z,(ak’/gk') .

Each @, may be expanded in spherical harmonics of
the direction of k; then since ¢, is independent of
direction, it can be shown that the non-spherical
parts of a, correspond to £ = 2¢, and hence to no
scattering. The S-wave scattering phase shift  can
be expressed in terms of the energy shift £—2¢, which
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corresponds to the spherically symmetric part of a;;
the result after some calculation is

g 1 k'de’
(nkfe) cot & = —(16m°[34y)—P J,—,——-—— , (10)
e'(e' —e)

where P denotes the principal value and the subscript
has been dropped from ¢, .

The integral in (10) diverges logarithmically, so
we renormalize the coupling constant to absorb the

factor [ kde/e>. In terms of the renormalized cou-

I
pling constant A, Eq. (10) becomes

0
’ !

) 2 k'de
(nkfe) cot 6 = —(16n°/34)— &P |—
€

T—Tg-); (11

u

the last integral is readily evaluated analytically.
Eq. (11) may be rewritten in the form

¢ sin & = nr(e)/D(e), r(e) = —(34/167%)(k]e),

r(e")de'
Die)=1-¢ |7,
e’ —e—in)
1

which is closely related to the first approximation of
Baker and Zachariasen'. The scattering cross-
section is a monotonically decreasing function of the
total energy 2¢, which shows a resonance at zero
kinetic energy when A = 4, = —[32n%/3(n+2)] = — 20.5.
There is also a single bound state (e<p) for A<4,;
the energy of this state decreases monotonically to
Zero as A——oo.

Finally, it can be shown that the vacuum energy is
not only stationary when the f’s in (4) are eigen-
functions of (6), but also that this energy is a minimum
with respect to arbitrary second variations of the
f's if, and only if, the renormalized coupling constant A
1s negative.

Apart from the extension to the pion (unit isospin)
field mentioned at the beginning, it is expected that
the present methods can be applied to the scattering
and bound states of more than two particles.
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DISCUSSION

BLokHINTSEV: There is an essential difference in the physical
interpretation of the field excitations in the linear and non-
linear cases. In the linear case one can consider the n’th cxcited
state of the field ¢ (x) at the point x as representing n identical
non-interacting mesons placed at this point. In the non linear
case we have to consider this same excitation as representing
a single heavy meson placed at x. The energy of this excitation
is finite. The possibility of transfer of the excitation to a neigh-
bouring point (movement of the meson) does not change the
magnitude.

Marx: Would it be possible to repeat this calculation if
13 were negative?

Scuirr:  The value of u? is unimportant, because it is re-
normalized away. It could even be zero. The value of the
renormalized mass is chosen to equal the experimentally observed
mass. It would not be sensible to make this p negative.

Marx: If you have a curve with a double minimum, the
situation is similar to that in a hydrogen molecular ion. You
will have a degeneracy of the ground state. Then there may
or may not be a complete degeneracy. It would be interesting
to see the role of the sign.

ScHIFr: [ can only say that with a dependence more com-
plicated than ¢ the analysis would become very difficult.




