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Quantum quench dynamics of geometrically
frustrated Ising models

Ammar Ali 1,6, Hanjing Xu 2,6, William Bernoudy3, Alberto Nocera 4,5,
Andrew D. King 3 & Arnab Banerjee 1

Geometric frustration in two-dimensional Ising models allows for a wealth of
exotic universal behavior, both Ising and non-Ising, in the presence of quan-
tum fluctuations. In particular, the triangular antiferromagnet and Villain
model in a transverse field can be understood through distinct XY pseudos-
pins, but have qualitatively similar phase diagrams including a quantum phase
transition in the (2+1)-dimensional XY universality class. While the quantum
dynamics of modestly-sized systems can be simulated classically using tensor-
based methods, these methods become infeasible for larger lattices. Here we
performboth classical and quantum simulations of these dynamics, where our
quantum simulator is a superconducting quantum annealer. Our observations
on the triangular lattice suggest that the dominant quench dynamics are not
described by the quantum Kibble-Zurek scaling of the quantum phase transi-
tion, but rather a faster coarsening dynamics in an effective two-dimensional
XY model in the ordered phase. Similarly, on the Villain model, the scaling
exponent does not match the Kibble-Zurek expectation. These results
demonstrate the ability of quantum annealers to perform coherent quantum
dynamics simulations that are hard to classically scale beyond small systems,
and open the avenue to predictive simulations of the dynamics of Ising mag-
netic materials on quantum simulators.

Frustrated systems are systems in which it is impossible to simulta-
neously minimize all Hamiltonian terms, either due to the non-
commutativity of the terms or the lattice geometry (geometric frus-
tration). Such models are of great interest in both classical and quan-
tum spin systems due to their ability to maintain topological order, by
giving rise to topologically protected quasi-particle excitations, and
host topological defects, such as 1D kinks, 2D vortices, domain
walls, etc.1–6.

Focusing on geometric frustration and its defects, two closely
related models of particular relevance to quantum systems are clas-
sical stacked frustrated magnets: the 3D antiferromagnetic (AFM) tri-
angular Ising model7, and the 3D frustrated Ising simple cubic lattice8,

both of which are known to undergo thermal phase transition that
belongs to the 3D XY universality class7,8. By virtue of the classical-
quantum duality9, the 2D quantum versions of these systems are
expected to have quantum phase transitions belonging to the same
universality class10. Indeed, the 2D Transverse Field IsingModel (TFIM)
on an AFM triangular lattice turned out to have a quantum critical
point in the 3DXY universality class (Fig. 1a)3,11,12. Similarly, the TFIM on
a fully frustrated square lattice, known as the Villain model13, was
shown to share the same critical behavior3.

Simulation of a frustrated systemon a quantumannealer (QA)was
realized in14 where the thermal Kosterlitz–Thouless (KT) phase
transition15 was observed. Correlations between the topological
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defects—vortices and antivortices—were shown to have an exponential
decay above the critical temperature and a power-law decay below it,
showcasing the binding of defects into vortex-antivortex pairs and
establishing their quasi-long-range order. In ref. 16, it was shown that
simulating finite-temperature frustrated quantum systems on QAs
greatly accelerates the computational performance where a speedup
up to 106 was reported over Path-Integral Monte Carlo simulation
(PIMC), a leading classical method16. In the same vein, it was lately
shown in17 that approximate optimization on QAs has a scaling
advantage over the classical heuristic algorithm parallel tempering
with isoenergetic cluster moves (PT-ICM). The frustrated Kagome lat-
tice was also studied where its equilibrium phase diagram was
simulated18. More recently, coherent quantum annealing has been
demonstrated in superconducting processors, allowing quantum
simulation of programmable geometries on thousands of qubits with
negligible coupling to the thermal environment.

Coherent quantum annealing was first realized in ref. 19 where
they studied the quenching of a 1D TFIM chain. It was shown that the
defect density ρ resulting from the equilibration of the chain into
alternating Z2 ordered domains follows the Kibble–Zurek mechanism
(KZM) scaling20,21

ρ / t
�dν
1 + zν
a , ð1Þ

where ta is the annealing time, d is the space dimensionality, z and ν are
the dynamical and correlation length critical exponents of the 2D Ising
universality class, respectively. For later use, we also introduce the
critical exponent β, which quantifies the vanishing of the order para-
meter upon approaching the critical point from the ordered phase.

KZM was also observed on a 1D Rydberg atom array in ref. 22, where
also Z3 and Z4 broken-order phases were explored, and on a 2D
Rydberg atom square array in ref. 23. Further coherent quantum
dynamics were observed in a 3D spin glass system where a scaling
advantage of quantum annealing over both simulated annealing and
simulated quantum annealing was reported24. More recently, this was
expanded to 2D and infinite-dimensional spin glasses, and intract-
ability of classical simulation approaches was explored25.

In this work, we explore the quenching of 2D frustrated systems,
namely the AFM TFIM triangular and Villain models. Figure 1b and c
shows the considered lattice, a square lattice of size L × Lwith periodic
boundary conditions along the vertical direction. Our results indicate
that a coarsening mechanism governs the scaling laws of the systems
when quenched to a final state deep into the ordered phase, as
opposed to the expected KZM. During the course of the review pro-
cess, the authors became aware of two related works that study the
coarsening dynamics of similar models on an analog26 and an analog-
digital27 quantum devices.

Results and discussion
The D-Wave Advantage QA realizes the TFIM Hamiltonian

HðsÞ= � ΓðsÞ
X
i

σx
i +J ðsÞ

X
hiji

Jijσ
z
i σ

z
j , ð2Þ

where s is the normalized time t/ta going from 0 to 1. The parameters
Γ(s) and J ðsÞ evolve monotonically such that Γð0Þ=J ð1Þ= 1 and
Γð1Þ=J ð0Þ=0. We denote by the triangular lattice the choice of cou-
plers J1 = + 0.9, J2 = − 2, andby the Villainmodel the choice J1 = − J2 = 0.9,
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Fig. 1 | Phase diagram and lattice definition. a Qualitative phase diagram of the
triangular and Villain TFIMs (adapted from3). The orange arrow shows the KTphase
transition explored in14, while the cyan arrow depicts the path considered in this
work, passing through the 3DXY quantum critical point.b Embedded lattice on the
quantum annealer (QA) corresponds to a square lattice with periodic boundary

conditions along one direction giving a cylinder. c Shown is the choice of couplings
and the contraction to an AFM triangular lattice when taking the magnitude of the
FM couplers (J2) to be much larger than the AFM ones (J1). Nodes sharing the same
border color are identified.
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where we will be presenting, to our knowledge, its first experimental
realization. Figure 1c shows how such a choice approximates the
square lattice as a triangular one by contracting every other pair of
physical qubits into one logical qubit.

Initially, all qubits are prepared in the superposition state

∣ !i= 1ffiffiffi
2

p ∣ "�+ 1ffiffiffi
2

p ∣ #�, ð3Þ

which is the ground state of the initial Hamiltonian Hð0Þ. Evolving
slowly enough from this ground state, the adiabatic theorem guaran-
tees that we always stay at the instantaneous ground state. However,
by quenching the system we generally end up in an excited state,
whose scaling with quenching time depends on the underlying
mechanism governing the dynamics, e.g. KZM or coarsening dynam-
ics. We aim to characterize the scaling of these frustrated systems by
quantifying the scaling of the order parameters (OPs) (Fig. 2a), defect
density (Fig. 2b), and correlation lengths.

Gauge

AFM OP

Vortex Antivortex

Triangular OP Villain OP

Transform

m1 m2 m3 m4 FMAFMa

b

Fig. 2 | Order parameters (OPs) definitions and topological defects. a Pictorial
representationof the threedifferentOPs, given in Eqs. (4)–(6).bA triangular lattice
QA output instance for L = 36, and ta = 6.3 ns. The pseudospin of each plaquette is

indicated giving rise to the topological defects (polarized plaquettes, i.e. all spins
pointing along the same direction) represented by the vortices (white) and anti-
vortices (black).
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The three OPs mAFM, mTri, and mVil are defined by dividing the
lattice into two, three, and four sublattices, respectively, as depicted in
Fig. 2a. They are given by (11,28)

mAFM =
1
2
ðm1 �m2Þ, ð4Þ

mTri =
1ffiffiffi
3

p ðm1 + e
2πi=3m2 + e

4πi=3m3Þ, ð5Þ

mVil =
1
2
ðeπi=8m1 + e

3πi=8m2 + e
5πi=8m3 + e

7πi=8m4Þ, ð6Þ

where mi, i ∈ 1, 2, 3, 4, is the magnetization of the ith sublattice. We
note that due to their sublattice structure, triangular (Villain) OPs are
only defined for lattice dimensions multiple of three (four).

Figure 3 probes the evolution of the three OPs on a 12 × 12 lattice
in which we fix the J1 couplers to + 0.9 and allow J2 to go from J2 = J1, i.e.
square AFM lattice, to J2 = − 2J1, which is the triangular approximation
as shown in Fig. 1c. We perform this for increasing values of annealing
times 8 ns, 20 ns, 100 ns, and 1 μs, and measure the OPs of the final
evolved state. We identify different regions in the parameter space in
which each OP is maximum, highlighting the phase of the system. Due
to the hardware constraints, we were not able to extend the para-
meters to the region in which the triangular OPmTri is maximized, as it
is still seen to increase at the limiting ratio J2/J1 = − 2.

As annealing time is increased, the magnitudes of the AFM and
triangular OPs are observed to increase, which indicates that the sys-
tems are approaching their respective ground states (classical ground
state formAFM and perturbative one formTri). However, we notice that

this is not the case for Villain OP mVil as it appears to be maximally
ordered for an intermediate annealing time which means that this
phase is quantum-ordered. In other words, this phase ismore sensitive
to noise and its thermal state is less ordered than its quantum-
quenched state, warranting further study such as the recent28. Now,we
would like to quantify the scaling of the OPs with annealing time.

In Fig. 4a, c, we compute the scaling of mTri, and mVil w.r.t.
annealing time for different lattice sizes where we find consistent
power-law behavior. The OPs are still seen to increase towards the end
of the interval indicating that the systems are yet to reach their
respective ground states (for a longer interval plot see Supplementary
Fig. 8, wherewe explain the deviation from the scaling behavior at long
annealing times beyond coherence time). Crucially, in Fig. 4a, we
compare the QA results with matrix product states (MPSs) simulation
using the time-dependent variational principle (TDVP) algorithm for
time evolution on the 6 × 6 lattice size. We observe quantitative
agreement in this comparison, verifying coherent quantum dynamics
(For more details about the MPS-TDVP simulations and convergence
analysis, seeMethods Section 10). We also observe in Fig. 4b and d the
collapse of the OPs for the different sizes when scaled by the linear
system size L. While the collapse appears to be better for the larger
system sizes due to the saturation of small systems’ OPs, it indicates
universal physics independent of the system size for the
collapsed instances. Nonetheless, although the MPS simulations are
known to be computationally expensive and non-scalable in two
dimensions (exponential scaling in the size of the cylinder cir-
cumference length29,30), scaling on the QA comes with no noticeable
overhead, proving the advantage of using QAs as coherent quantum
simulators.

We report the scaling exponents for the OPs on the largest size
L = 36 (1296 qubits equivalent to 648 logical qubits in the triangular
lattice):

mTri / t0:35ð4Þa ,mVil / t0:46ð2Þa : ð7Þ

The triangular and Villain models belong to the 3D XY universality
class3 for which ν = 0.67175(10), β = 0.34869(7)31,32, and z = 1 for an
isotropic Lorentz-invariant theory33; therefore KZM predicts the
critical scaling exponent

m / t
1�β=ν
z + 1=ν
a = t0:19a , ð8Þ

which does not agree with the observed exponents. To explain this
discrepancy, we perform a Monte Carlo (MC) simulation (details in
Methods) on the six-state clock model

HXY = �
X
hi, ji

cosðθi � θjÞ, ð9Þ

where θi =
2πq
6 , and q = 0, 1, 2, 3, 4, 5. The six-state clock model on a

honeycomb lattice (dual triangular lattice) offers an approximate
description of the triangular TFIM atweakfield3, i.e. towards the end of
the anneal. We find the slope

mMC / t0:37a , ð10Þ

which is in close agreement with the observed slope on the QA. This
leads us to hypothesize that a coarsening scenario past the quantum
critical point dominates the KZM and governs the scaling behavior of
the system.

To investigate this, we look at the scaling of the topological
defects (Fig. 2b) on the triangular lattice (Fig. 4e) where we
benchmark the lattice size 6 × 6 using MPS. The topological
defects in this model correspond to polarized plaquettes where
all the spins belonging to a plaquette point along the same
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Fig. 3 | OPs as a functionof the ratio J2/J1. Evolution of the different OPs evaluated
on a 12 × 12 lattice while fixing J1 to be + 0.9 and varying J2 to span the ratio range
from + 1 (AFM square lattice) to − 2 (triangular lattice approximation). We observe
different regimes in which each OP is maximum. We also observe how the OPs
changewith changing total annealing timewherewe note that generally, increasing
annealing time leads to increased order, i.e. approaching the classical ground state.
But interestingly, this is not the case for the Villain OP indicating the influence of
quantum fluctuations on its ordering. Source data are provided as a Source
Data file.
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direction. Our results indicate a scaling exponent

ρ / t�1:08ð5Þ
a , ð11Þ

again, in disagreement with the KZM prediction

ρ / t
� dν

1 + zν
a = t�0:8

a , ð12Þ

However, Eq. (11) is in close agreement with the coarsening expecta-
tion in an XY model34 which predicts a scaling with an exponent equal
to 1, up to logarithmic corrections. This supports our hypothesis that a
coarsening mechanism dominates the system towards the end of the
anneal.

Despite this, looking at Fig. 4f, we find a collapse of the topolo-
gical defects at different sizes. The behavior of the collapse changes
from a power-law for larger system sizes to exponential for the smal-
lest system size 6 × 6. This indicates a change in the underlying
mechanism governing the system dynamics, namely a crossover from
KZM to a Landau-Zener regime as the correlation length approaches
the system size. This crossover was also identified in QA results in one-
dimensional chains19. The power-law fit, which can be seen to increase
in the inset of Fig. 4f for larger systems sizes, suggests a volume-law
scaling of defects. In 2D, volume-law corresponds to a scaling expo-
nent equal to 2.We understand the correction to this scaling exponent
as stemming from finite-size effects; for smaller systems, defects cre-
ated near the boundaries come at a smaller energy cost.

Finally, we look at the magnetic correlations through the static
structure factor (SF)

SðqÞ= 1

N2

XN
i = 1

XN
j = 1

hsisjie�iq:ðri�rj Þ, ð13Þ

for the triangular lattice, where si denotes the final spin output for site
i. The SF offers a direct connection between the computational results
and experiments on triangular TFIM magnets, such as the rare-earth
(RE) heptatantalates (RETa7O19) using neutron diffraction and neutron
Laue measurements35. Notably, the 2D XY-KT transition was observed

in TFIMcompoundTmMgGaO4,where the investigation of themelting
of the magnetic order was performed as a function of thermal
fluctuations (Fig. 5 in36).

Figure 5 a shows the SF evaluated for the 36×36 lattice at different
annealing times up to 20 ns. We distinguish the six-peak hexagon
typical of triangular order. We also observe how the peaks became
sharper as the annealing time increased indicating higher order. We
obtain the correlation lengths ξ as the inverse FWHM of the peaks and
showcase how they scale with annealing time in Fig. 5b for the vertical
(periodic, effective length L/2) and horizontal (open, length L) direc-
tions. We observe consistent behavior for the sizes L = 24 and 36 for
both directions with the scaling exponent

ξ / t0:62ð3Þa , ð14Þ

as opposed to the KZM expectation

ξ / t
ν

1 + zν
a = t0:4a : ð15Þ

But again, our observed scaling is in agreement with the MC result
(details in Methods)

ξMC / t0:55, ð16Þ

further solidifying the coarsening argument.
Therefore, we conclude that a coarsening mechanism dominates

KZM at later stages in the anneal and controls the post-critical
dynamics of the systems, as seen through the scaling of the OPs
(Eq. (7)), topological defects (Eq. (11)), and correlation lengths
(Eq. (14)). While the quantum phase transition and its associated uni-
versality class govern the KZM scaling close to the critical regime,
we find that the following coarsening dynamics are well-explained by
the relaxation dynamics of the six-state clock model. Nonetheless,
programmable QAs continue to prove their advantage as scalable
coherent simulators for quantum systems.

Our experiment, when extended to finite temperature, can
describe the BKT phase transition which is observed in many systems
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Fig. 4 | Scaling and collapse of order parameters and defect count.
a, b Triangular OP scaling with annealing time, and its collapse upon scaling the
y-axis by the system size L. c, d Same as a, b for the Villain OP. e Scaling of the
number of topological defects (vortices and anti-vortices) in the triangular lattice
with annealing time. f Horizontal collapse of the topological defects number,
where the transition from linear to non-linear indicates a change in the underlying

mechanism, as explained in the main text. Inset shows the fitting exponent for the
data collapse. The fitting is plotted against 1/Lwhere L is the smallest size included
in thedata collapse. It approaches a value close to 2 as 1/L→0which, as explained in
themain text, indicates a volume-law scalingof the number ofdefects (grey line is a
guide to the eye). Error bars represent 1 − R2 for the collapse fit. Source data are
provided as a Source Data file.
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such as Helium films37, Bose gases38, and polariton systems39. Our
experimental platform is also well-suited to study and simulate the 1D
quantum axial-next-nearest-neighbors-Ising (ANNNI) model40,41 (for a
comprehensive discussion see42) which has received recent interest in
its quench dynamics43,44. QAs can offer a new lens to investigate the
existence and extent of the controversial ANNNI floating phase. In the
future, our results could be tested on real experiments, for example
with triangular Ising magnets such as TmMgGaO4

36, subjected to the
application of a transverse field close to the critical value Γc, with anAC
field Γ(ω) where scaling laws would emerge as a function of ω (the
quench time τ ∝ 1/ω). After all, predicting the behavior of materials
using quantum simulators, and benchmarking the quantum simulators
against materials is the inevitable cycle for large-scale simulations, as
classical methods will always have a hard time competing with the
exponentially growing Hilbert space.

Methods
Quantum annealing
All quantum annealing data were taken from D-Wave Advantage 4.1
QA. The annealing schedule is depicted in Supplementary Fig. 2. We
performed an iterative calibration refinement method, called shim-
ming, to calibrate the qubits. The detailed shimming routines are
explained in the next subsection. Each shimming iteration took
100 samples whichmay consist of multiple disjoint lattices depending
on the lattice size (Supplementary Table 1). We performed 1500 shim-
ming iterations for each lattice size at every anneal time and collected
several samples at the end after the shimming parameters stabilized.
The specific numbers of disjoint lattices per sample and samples col-
lected for computations are shown in Supplementary Table 1.

Shimming
Frustrated systems are extremely sensitive to noise perturbations
stemming from the fact that these perturbations break their vast
degeneracy. For this reason, following19,45 we perform three hardware
calibration measures:

• Flux Bias Shim
• Couplers’ Strength Shim
• Anneal Offset Shim

which we now explain. For shimming plots refer to Supplementary
Figs. 3 and 4. For lattice sizes with multiple copies of disjoint lattices,
shimming is performed based on their combined statistics.

Flux bias shim. The Hamiltonian, Eq. (2), has zero longitudinal mag-
netic field. Therefore, the expected magnetization of each qubit
should be zero after measuring a statistical number of samples. We
iteratively adjust the flux bias for each qubit where at the k-th iteration,
with the average magnetization for qubit i of the previous iteration
being hmiki , we set the flux bias to

ϕk
i =ϕ

k�1
i � δϕhmiki , ð17Þ

δϕ = 2e − 6. This flux bias corrects the behavior of the qubits and gets
rid of any internal bias to point in a specific direction.

Couplers’ strength shim. Given a coupler Jij, its probability to be fru-
strated is

f ij = ðsignðJijÞhmimji+ 1Þ=2: ð18Þ

The symmetries present in the problemwill give some expectations of
what the average frustration should be for the different couplers. For
example, a 1D FM ring is rotationally invariant, thus all the couplers
should have the same frustration probability and are said to be in the
same orbit. For our problem, the couplers are arranged in a cylinder
with alternating FM and AFM bonds along the periodic direction
(Fig. 1c). Therefore, everyother coupler in the samecolumnbelongs to
the same orbit.

The orbit that contains fij has the average frustration probability:

f Oij
=
X
i0 j02Oij

f i0 j0

jOijj
, ð19Þ

whereOij is the orbit containing the coupler fij, and ∣Oij∣ is its size. At the
k-th iteration, we adjust the coupler strength as

Jkij = J
k�1
ij + signðJijÞδf ðf ij � f Oij

Þ, ð20Þ
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Fig. 5 | Static structure factor (SF) and correlation lengths. aThe evolutionof the
SF S(q) intensity for different annealing times evaluated on a 36 × 36 triangular
lattice. qx(y) is themomentumalong thehorizontal (vertical) directionwhich is open
(periodic) with length L (L/2). b Horizontal and vertical Log-Log scaling of the

correlation lengths evaluated on the two largest triangular lattice systems L = 24
and 36. Dashed lines correspond to best fits. Source data are provided as a Source
Data file.
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δf = 2.5e − 3. This procedure ensures that all symmetrically equivalent
couplers are acting with the same effective strength.

Anneal offset shim. The qubits and couplers of Advantage 4.1 QA are
arranged on 8 different annealing lines that perform the annealing
independently from s = 0 to s = 1. For the extremely fast anneals we are
performing, the 8 annealing lines may not be in sync with dis-
crepancies ranging from a fraction of a nanosecond to one nanose-
cond. To correct for this, we obtain the annealing offsets from a 1D FM
ring where we enforce the average frustration per annealing line to be
equal, as was done in ref. 19.

MPS simulation
In this work, MPS simulations were performed using the ITensor Julia
library46,47. The triangular lattice was simulated using open-ended
cylinders, with the axis along the x direction and one of the three
bond directions aligned along the y axis, realizing a YC-6 cylinder48

(see Fig. 1a). Time evolution was performed using the time-
dependent variational principle (TDVP) algorithm49 with a two-site
update where a convergence for the computed physical quantities
was observed at a bond dimension χ = 150. Care was taken (by playing
with the size of the time step dt) to ensure that the bond dimension
grows with time since the algorithm starts from the product stateQ

i∣ !ii. We also compared different methods to simulate the anneal
dynamics. Supplementary Fig. 5 shows comparison analysis as a
function of the time step size dt for the TDVP method against theWI

and WII approximations introduced in ref. 50. Clearly, the ability to
use large time steps makes TDVP the best choice in terms of speed
and accuracy. The initial state is the Bell state (Eq. (3)), and the
Hamiltonian parameters Γ(s) and J ðsÞ followed the exact annealing
schedule of Advantage 4.1. The relationship between the simulation
time tsim and the annealing time in ns ta is tsim = πta, and a time step of
dt = 0.05 was used. The relevant physical quantities studied in the
main text (OPs and structure factors) are then computed by sampling
the wave-function at the end of the annealing process which col-
lapses it into the computational basis51. We do not simply obtain
expectation valueswhich could be deceptive for symmetry unbroken
superposition states obtained in simulations as opposed to sym-
metry broken states defining our OPs. For example, a quantum fer-
romagnetic ground state ∣ """ ::

�
+ ∣ ### ::

�
has m=

P
ihσz

i i=0, but
measuring and collapsing the state correctly yields ∣m∣ = 1.

Statistical methods
Error bars from Fig. 4 are generated through a bootstrap method
where we first average the observables from each QPU call of
100 samples, and then compute the standard deviation out of these
averages. To compute confidence intervals for correlation lengths in
Fig. 5,weused lmfit’s52 conf_intervalmethod. It employs F-test in Eq. (21)
to compare χ2 statistics of the null model with our best-found fitting
parameters to an alternatemodel where one of the parameters is fixed.

FðPf ix ,N � PÞ=
χ2f
χ20

� 1

 !
N � P
Pf ix

ð21Þ

HereN is the number of data points and P is the number of parameters
of the null model. Pfix is the number of fixed parameters.

To obtain the best-fit slopes, we bootstrap by resampling the data
points of the largest system size (36 × 36) 200 times. We then report
the mean and the 95% confidence interval of the bootstrap.

Monte Carlo coarsening simulation
Here we compare dynamic scaling of the order parameter and corre-
lation length with a quasi-classical coarsening scenario, as hypothe-
sized to dominate scaling due to postcritical dynamics. In the
perturbative regime (Γ≪J ), the effective model is a two-dimensional

six-state “clock”XYmodel12,14. The XY spins lie on the plaquettes of the
triangular lattice, i.e., on the sites of the dual honeycomb lattice.

To simulate a coarsening dynamics we proceed with an absorbing
Markov-chain Monte Carlo (MCMC) process with both two-site and
one-site updates, to avoid local minima. The energy of the state
θ = {θ1, …, θN} is calculated as

HXY = �
X
hi, ji

cosðθi � θjÞ: ð22Þ

At each time step, we first process all edges of the model in random
order, proposing new angles uniformly at random for both endpoints,
and accepting if and only if the energy is not increased. We then pro-
cess all individual spins in random order, proposing new angles one
at a time.

This was performed on a honeycomb lattice with L = 120 and fully
periodic boundary conditions, constructed from a square lattice by
deletion of edges. 100 independent replicas were run for 1000 time
steps. We computed 〈m〉 as the average rotor value (unit vectors with
angle θi) and computed the correlation between two spins as cosðθi �
θjÞ (Supplementary Fig. 6). Correlation lengths were computed based
on distances 5 to 20.

Correlation length extraction
Correlation lengths were extracted from the peaks of the structure
factor (Eq. (13)) by fitting to the Pseudo–Voigt function

V ðxÞ=ηGðxÞ+ ð1� ηÞLðxÞ, 0≤ η≤ 1, ð23Þ

where G(x) is the Gaussian function 1ffiffiffiffiffi
2π

p
σ
e�

ðx�x0 Þ2
2σ2 ,σ = Γ

2
ffiffiffiffiffiffiffiffi
2 ln 2

p and L(x) is

the Lorenzian function 1
π :

Γ=2
ðx�x0Þ2 + ðΓ=2Þ2

. Here x0 is the maximum

momentum position and Γ is the full-width at half maximum (FWHM)
from which the correlation length follows as ξ = 1/Γ.

Data availability
The data generated in this study have been deposited in the GitHub
repository53 https://github.com/jxsoortha/Quantum-Quench-Dynamics-
of-Geometrically-Frustrated-Ising-Models. Source data are provided
with this paper.
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