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Abstract

Superconducting magnet technology is one of the foun-
dations of large particle accelerator facilities. A challenge
with operating these systems is the possibility for the mag-
nets to quench. The ability to predict quenches and take
precautionary action in advance would reduce the likelihood
of a catastrophic failure and increase the lifetime operabil-
ity of particle accelerators. We are developing a machine
learning workflow for prediction and detection of supercon-
ducting magnet quenches. In collaboration with Brookhaven
National Laboratory (BNL), our methods for algorithm de-
velopment will utilize magnet data from test stands and the
Relativistic Heavy Ion Collider (RHIC) ring magnets to al-
low for a robust identification of magnet quenches. Our
methods divide the problem into two different aspects. First,
we are developing machine learning algorithms for binary
and multi-classification of the various types of quench events.
Second, our prototype machine learning model will be used
to predict a quench event using precursor identification. We
plan to integrate and test our monitoring system at the BNL
facility to perform quench identification and prediction.

BACKGROUND

Quench protection systems [1-4] are used to prevent po-
tentially catastrophic failures in superconducting magnet
systems. There is an extensive protection system in place at
BNL for the superconducting magnets in RHIC. The con-
ventional systems have two primary mechanisms, actively
monitoring the resistance of the superconducting cable and
providing a relief system for the cryogenic system. The
conventional quench protection system constantly monitors
the voltages and currents of the power supplies (PS) on the
ring to insure the resistances are below a threshold. When
a quench occurs the quench protection system ensures the
magnets’ safety while the beam abort system extracts the
beam to prevent damage to the accelerator. Due to the la-
tency between these systems however, the beam extraction
from a quench can still result in potential damage to the
accelerator. Our aim is to detect the onset of a quench before
it happens and trigger the abort accordingly to avoid further
issues. We are developing our algorithms on quench data
from magnets in the RHIC.

DATA PREPARATION

We have acquired upwards of a decade of abort data from
operational magnets at RHIC. Each of these years has nu-
merous triggered events which could be a quench or other
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possible aborts caused by RF, beam loss, etc. When an abort
occurs the data logger records a snapshot of the machine state
leading up to and immediately following the abort. From
each of these readouts, we have PS and beam position moni-
toring (BPM) data from the magnets in the yellow and blue
rings of the accelerator. Once a quench event is triggered,
the beam position, difference in position, and coherence are
readout from the BPM at a rate of 10 kHz. At the same time,
the reference currents, measured currents, voltages, and er-
ror of the voltage are readout from the PS at a rate of 720
Hz. It should be noted that the PS of the rings are connected
to varying magnets along the ring of the accelerator which
causes an inherent uncertainty in the location of the quench.

Our current methods combine all of these files into a
HDFS5 [5] format, such that the data is easily parsed, contains
metadata, and can have a multitude of different selections for
a variety of parameter training and classification schemes.
We have developed a python interface to read the HDF5
data files and return useful formats for input into machine
learning pipelines.

CLASSIFICATION

First we developed classifiers to label new data based his-
torical training data. Here we consider binary classifiers that
label if a quench occurred or not and classifiers that can label
the type of abort. Additionally we consider classifiers that an-
alyze data for the entire ring and device level classifiers that
look at single magnets or sequences of magnets. With our
data parser described above, we have a multi-classification of
the datasets which is used as a label for input into a boosted
decision tree (BDT) [6] and a custom multilevel perceptron
(MLP) [7].

In figures 1 and 2, we see that both methods are able to
distinguish a quench from all other labels using the entire
time sequence of PS data. The BDT method, which defines
a set of nodes and leaves to split data with the goal of maxi-
mizing the information gained from the data or minimizing
entropy shows the best area under the curve of 0.88.

UNSUPERVISED LEARNING

We have developed vanilla autoencoders (AE), see fig. 3,
and a Long Short-term Memory (LSTM) [8] autoencoders
for the identification of quench precursors within the PS
datasets. For the purposes of this proceeding, we will con-
centrate on the LSTM autoencoder which is trained and
validated with PS data from RHIC. To identify quench pre-
cursors and the dynamic structure of a quench event the PS
data is split into a pre-quench and quench category. Each
PS dataset contains data for three seconds leading up to the
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Figure 1: The ROC curve for the quench vs. rest using a
BDT with PS data from BNL.
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Figure 2: The ROC curve for the quench vs. rest using a
MLP with PS data from BNL.

abort and one second afterwards. The abort event occurs at
approximately time step 2172 in each dataset.

For training, the data were split in time using a 2:1 ratio
while removing the last 100 ms leading up to the abort trigger.
The autoencoder is trained and validated on the first two-
thirds of the data and tested on the last third. The 100ms
buffer allows time for our precursor identification tool to
trigger an abort before the quench occurs. Once the data
were split into training, validation, test, we further segmented
the data by sequence length. This sets the number of clock
cycles that will be seen by the autoencoder at a given time
and is referred to as the precursor window. Initial scans
were performed to optimize the precursor window, which
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Figure 3: Architecture for an autoencoder which shows the
decrease in dimensionality to a latent space along with a
decoding architecture back to the original input size.

Latent Space

trained multiple models on a range of data slices from 14
to 700 clock cycles. A metric to maximize the difference in
the reconstruction accuracy of pre-quench and quench data
determined the optimal window size to be 660 clock cycles
for PS data.
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Figure 4: The reconstruction and ground truth of a pre-
quench slice of a PS that was classified as a quench.

Now we have an optimized precursor window that should
have a maximized difference in reconstruction accuracy for
pre-quench and quench events. In figures 4 and 5, the recon-
struction of a magnet pre-quench and magnet quench show
the large difference in accuracy.

Examining the LSTM latent space, see fig. 6 and 7, we
see a transform of the 10 dimensional latent space to a 2D
representation with TSNE [9] and principle component anal-
ysis [10], respectively. These dimensionality reduction tech-
niques show a promising methods to identify quench events
for future runs within RHIC. The latent space representations
show a separation of pre-quench, quench, and no-quench (a
validation dataset). We are investigating methods of cluster-
ing on these representations to accurately identify features
of quench precursors.
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Figure 5: The reconstruction and ground truth of a quench
slice of a PS that was classified as a quench.
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Figure 6: The LSTM latent space after transforming to a 2D
manifold with TSNE.
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Figure 7: The LSTM latent space after transforming to 2
components with a PCA.

SUMMARY

We have developed a machine learning framework for
quench classification and precursor identification. Our re-
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sults on classification show that there are distinguishing
features for PS data that allow for automatic methods for
operators to classify events. We demonstrated that a LSTM
autoencoder can be trained on pre-quench PS data and can
identify quench precursors due to predicted reconstruction
inaccuracies. From these models, the latent space shows
potential for clustering algorithms to identify regions for a
further ability to distinguish quenches from non-quenches.
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