
Quantum Machine Intelligence            (2024) 6:60 
https://doi.org/10.1007/s42484-024-00193-w

RESEARCH ART ICLE

Large scale structure-aware pronoun resolution using quantum
natural language processing

Hadi Wazni1 · Kin Ian Lo1 · Lachlan McPheat1 ·Mehrnoosh Sadrzadeh1

Received: 30 June 2023 / Accepted: 19 August 2024
© The Author(s) 2024

Abstract
Natural language consists of words, sentences, and larger units. Guided by grammatical structure, words compose with each
other to form sentences. Similarly, guided by discourse structure, sentences compose with each other to form dialogues and
documents. Classical machine learning algorithms have achieved significant success in learning the meanings of words.When
it comes to meanings of sentences and discourse units, they however fall short of being compositional. The DisCoCat model
of meaning, introduced by Clark, Coecke, and Sadrzadeh in 2010, provides a solution—at the sentence level—using higher-
order tensors, the learning of which has been a challenge. A recent initiative known as Quantum Natural Language Processing
(QNLP) introduces a translation between the DisCoCat tensors and Variational Quantum Circuits (VQC). This offers the
potential of learning these higher-order tensors more efficiently when the circuits are executed on quantum computers. In
previous work, we lifted the DisCoCat framework from the sentence level to the discourse level using a Fock space semantics.
In this paper, we extend the DisCoCat-VQC translation to this semantics and experiment with it in a discourse task. We
develop a massive dataset with 16,400 entries inspired by a major coreference resolution task, known as the Winograd
Schema Challenge, proposed as a test of machine intelligence. Noisy and noiseless simulations were executed on IBMQ
software, and the parameters of the discourse VQCs were learnt. The model converged to 77.5% accuracy, surpassing a Bag-
of-Words model that neglects any structure. It also outperformed 2 out of 3 state-of-the-art classical coreference resolution
architectures. These findings highlight the significant potential of quantum machine learning in advancing discourse analysis
and structured natural language processing.

Keywords Coreference resolution · Quantum natural language processing · Hybrid quantum-classical methods ·
Variational quantum circuits · Quantum machine learning · Categorial grammars · Modal Lambek calculus ·
Tensor space semantics · Diagrammatic calculi · Fock spaces

1 Introduction

The seminalwork ofLambek in 1958 (Lambek1958) showed
that the simple logic of concatenation and its residuals form
a Syntactic Calculus. This calculus, referred to as the Lam-
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bek Calculus, could model and reason about grammatical
structures of sentences of natural language. The atomic for-
mulae of the logic model basic grammatical types, e.g. noun
phrases n and declarative sentences s. Concatenations of for-
mulae model compositions of types.

Subsequent work of Moortgat in 1996 (Moortgat 1996),
Jaeger in 1998 (Jäger 1998), Morrill in 2015, 2016 (Mor-
rill and Valentín 2015, 2016), and Kanovich et al. in 2016,
2020 (Kanovich et al. 2016, 2020) have expanded the expres-
sive power of the Lambek Calculus by adding modalities.
Moortgat used these modalities to restrict associativity, Mor-
rill was in favour of using them for island types and iterative
conjunctives, and Kanovitch et al. focused on parasitic gaps.
While thesemodels primarily focusedon sentence-level anal-
ysis, Jaeger’s work extended the application of the Lambek
Calculus to the discourse level, enabling the modelling of
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relationships between multiple sentences. An example of
such a relationship is coreference, that is, when two or more
expressions in a text or discourse refer to the same entity or
concept. This can include cases where a pronoun refers back
to a previously mentioned noun phrase (pronoun coreference
or anaphora), as well as cases where an expression is omitted
but understood based on the context (ellipsis).

In previous work (McPheat et al. 2020), we com-
bined Jaeger’s idea with Lambek Calculus with Soft Sub-
Exponentials introduced by Kanovitch et al. in Kanovich
et al. (2020), since it had better meta logical properties,
i.e. finite rules, cut elimination, strong normalisation, and
decidability. We showed how it can model and reason about
coreference relations such as pronoun resolution and ellip-
sis and developed a finite-dimensional vector spaces for it.
This development was in the style of the vector space seman-
tics of Lambek calculus (Sadrzadeh et al. 2013), but with
a novel feature. The soft sub-exponentiated formulae were
interpreted as truncated Fock spaces. A Fock space is the
direct sum of all tensor powers of a vector space. Fixing the
field to be F, the Fock space over a vector space V is

F ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ · · ·

A truncated version of this space is obtained restricting
the Fock space to its k0’th tensor power, for k0 a fixed bound,
defined as follows:

F⊕V ⊕(V ⊗V )⊕(V ⊗V ⊗V )⊕· · ·⊕(V ⊗ V ⊗ · · · ⊗ V )
︸ ︷︷ ︸

k0

.

The bound k0 is fixed by the logic. The soft sub-
exponentiated formulae of the logic !A can be thought of
as storages of formulae, which only contain k0 copies of a
formula A. Access to these copies is obtained by a ! elimi-
nation rule in the logic and by projection to the desired level
of a truncated Fock space in the semantics. When modelling
coreference relations such as pronoun resolution, only a fixed
number of pronouns refer to a noun phrase in any given dis-
course. An upper bound can easily be determined from these
fixed numbers, e.g. by averaging.

Historically, Lambek Calculus has relied on relational
semantics and a question arises that ‘what is the benefit
of working with a vector space semantics?’. The answer
comes from recent advances in Natural Language Pro-
cessing, where vector semantics are learnable via machine
learning algorithms such as neural networks. Having a vec-
tor space semantics for Lambek Calculus and its modal
extensions enables us to work with machine-learned vector
representations of words, sentences, and discourse units in a
structured manner. However, these semantics often rely on
computationally expensive higher-order tensors. In response,

Quantum Natural Language Processing (QNLP) research
proposes leveraging quantum computers, which can handle
tensors more efficiently. It computes word embeddings as
parameterised quantum circuits that can solve NLP tasks
faster than any classical computer (Zeng and Coecke 2016;
Wiebe2019). It is inspired by categorical quantummechanics
and the DisCoCat framework, making use of string diagrams
to translate from grammatical structure to quantum processes
(Coecke et al. 2020). The studies in Ma and Tresp (2021);
Ma et al. (2019) also explore learning higher-order tensors
derived from knowledge graphs via variational quantum cir-
cuits.

In order to take advantage of QNLP, we develop a
string-diagrammatic calculus for the truncated Fock space
semantics of our logic and use the open source libraries Dis-
CoPy (de Felice et al. 2021) and Lambeq (Kartsaklis et al.
2021) to generate corresponding quantum circuits. We learn
the parameters of these circuits on a definite pronoun res-
olution task inspired by the Winograd Schema Challenge
(Levesque et al. 2012; Rahman and Ng 2012). This chal-
lenge was designed to assess the ability of natural language
processing systems to comprehend ambiguous pronouns and
resolve referential dependencies. It consists of a set of care-
fully crafted sentences designed to be difficult for AI systems
that rely solely on statistical patterns or syntactic analysis.

Achieving high accuracy necessitates training the vari-
ational circuits on a massive dataset. To generate this
dataset, we adopted a few-shot prompting technique using
the GPT−3.5 large language model (Brown et al. 2020). We
expanded an initial set of sentence pairs from Rahman and
Ng (2012) to include a total of 16,400 pairs. These pairs
were then divided into training, validation, and test subsets
according to a 60-20-20 split. We treated the problem as
a classification task and ran the variational quantum cir-
cuits on the IBMQ simulators. The circuits derived from
our logic take the full grammatical and discourse structures
into account. For comparison, we also generated quantum
circuits for a Bag-of-Words model, where neither gram-
matical nor discourse structures are accounted for. Both
models convergedduring training,with themodel incorporat-
ing discourse and grammatical structures achieving a higher
accuracy.

We benchmarked our model against three classical coref-
erence resolution architectures—CoreNLP, Neural Coref-
erence, and SpanBERT—none of which explicitly encode
sentence grammatical structure. Our model outperformed
CoreNLP and Neural Coreference with an average accuracy
improvement of 37.2%. However, SpanBERT surpassed the
performance of our model by a margin of 7.00%.

The paper is organised around four core sections. Section2
presents the type-logical grammar SLLM which allows ref-
erencing. Section3 introduces a vector-space semantics of
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SLLM that makes use of Fock spaces. Section4 introduces
a diagrammatic calculus to reason about SLLM using string
diagrams. Section5 describes how string diagrams can be
converted to parametrised quantum circuits using quantum
ansätze. Experiments and concluding remarks are presented
in Sects. 6 and 7.

2 Lambek calculus with soft subexponentials
(SLLM) and its applications tomodelling
discourse structure

The formulae of Lambek calculus with soft Subexponentials,
SLLM, are generated using the following BNF:

A, B ::= A ∈ At | A · B | A\B | A/B |!A | ∇ A

The set of atoms can be any set of indices. For the lin-
guistic application purposes of this paper, we set the atoms
to be {s, n} with s representing the grammatical ‘declarative
sentence’ and n the ‘noun phrase’. With the above BNF over
this set of atoms, we can generate the usual set of complex
types, including the formula for an adjective n/n, the formula
for an intransitive verb n\s, and the formula for a transitive
verb n\s/n.

Given the types of the calculus, we define its sequents to
be pairs, written� −→ A, where� is a finite list of formulas,
� = A1, A2, . . . , An and A is a formula. Given this notion of
sequents, we define the logical and structural rules of SLLM
in a Gentzen calculus style below.

In linguistic applications, � often represents the gram-
matical types of a string of words, and A is the result of the
composition of these types. An example of a grammatical
rule of English is that a noun phrase, such as John, composes
with an intransitive verb such as sleeps to form a sentence,
that is John sleeps. This is modelled in SLLM via sequent
n, n\s −→ s, and its proof:

n −→ n s −→ s
n, n\s −→ s

\L (1)

The modality ! is known as a soft sub-exponential.
The banged formulae are thought of as storages and the
!-modality itself as a projection operation. Reading !L -
structural rule from bottom to top, we are projecting from
the storage !A which contains k0 formulae A, to n copies of
A, for 1 ≤ n ≤ k0. This allows for the existence of a con-
trolled implicit notion of copying in the syntax, which is not
the same as the usual on-the-nose notion of copying: we are
not replacing !Awith copies of !A nor arewe replacingAwith
copies of A. We are just projecting from a storage containing
many copies of A to a smaller number of those copies. This
implicit notion of copying comes from Soft Linear Logic

(Lafont 2004) has a neat interpretation in the vector space
semantics as we show in 3. The second modality, ∇, is the
one that allows its formulas to be permuted. This is seen in
the rules perm and perm’ in Table 1.

The bounding of n is strictly necessary, as having an
unbounded number of copiesmakes the calculus’ derivability
problem undecidable. This bound is not a problem in terms of
modelling language, as the bound corresponds to the number
of times one may refer to something in a discourse. A bad
but symbolic bound then would be the number of words in
the discourse you want to analyse.

The way wemodel discourse phenomena such as pronoun
resolution and ellipsis is similar to that of Jäger (1998, 2006).
In Jäger’s work, the word that is being referred to is explicitly
copied and moved to the site of the referring word, where it
gets applied. In our framework, however, we do not have
explicit copying and use a storage type for the word that
is being referred to. For example, if we wish to model the
discourse John sleeps. He snores., we need to first assign a
storage type to John, then project two copies from it, and
move one to the site of the type of He. Then apply the type of
He to the moved copy of John. So we assign the type !∇n to
John, and assign the type∇n\n to the pronounHe. This latter
represents a function which takes a projected-from-a-storage
noun as its (left)input and returns a noun as its outputs. This
assignment is summarised below:

{(John : !∇n), (sleeps : n\s), (He : ∇n\n), (snores : n\s)}.

The discourse structure of John sleeps. He snores. is mod-
elled by the following SLLM proof tree:

n −→ n

n −→ n
∇n −→ ∇n

n −→ n
s −→ s s −→ s

s, s −→ s, s ·R

s, n, n\s −→ s, s
\L

s, ∇n, ∇n\n, n\s −→ s, s
\L

n, n\s, ∇n, ∇n\n, n\s −→ s, s
\L

∇n, n\s, ∇n, ∇n\n, n\s −→ s, s
∇L

∇n, ∇n, n\s, ∇n\n, n\s −→ s, s
perm

!∇n, n\s, ∇n\n, n\s −→ s, s
!L

Table 1 Sequent presentation of SLLM

A−→A I
�−→A �1,B,�2−→C

�1,�,A\B,�2−→C \L
A,�−→B
�−→A\B \R

�−→A�1,B,�2−→C
�1,B/A,�,�2−→C /L

�,A−→B
�−→B/A /R

�1,A,B,�2−→C
�1,A·B,�2−→C ·L

�1−→A �2−→B
�1,�2−→A·B ·R

�1,

n times
︷ ︸︸ ︷

A, A, . . . , A,�2−→B
�1,!A,�2−→B !L A−→B

!A−→!B !R

�1,A,�2−→B
�1,∇ A,�2−→B ∇L

A−→B
∇ A−→∇B ∇R

�1,�2,∇ A,�3−→B
�1,∇ A,�2,�3−→B perm �1,∇ A,�2,�3−→B

�1,�2,∇ A,�3−→B perm′
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Reading the proof from bottom to top, we see that the appli-
cation of !L replaces the type of John (!∇n)with two copies of
John (∇n). The application of perm moves one of the copies
next to He. The following \L application identifies He with
John, and the application of ∇L ‘forgets’ that the other copy
of John is a copy. The sequent above the application of ∇L

corresponds to the typing of John sleeps. John snores., and
the proof of it shows that this is indeed two sentences.

In order to show that the system can model more complex
example, we consider the anaphoric reference: The ball hit
the window and Bill caught it, directly from the pronoun
resolution dataset (Rahman and Ng 2012). Here, it refers to
The ball. For brevity, we may type the whole noun phrase
The ball as !∇n, and the noun phrase the window as n1, and
as usual, we type and as s\s/s and both verbs hit and caught
as n\s/n. Finally, we type the pronoun it as ∇n\n.

Note that this example consists of only one sentence. Proof
trees for two-sentence examples are shown in 3 and 4.

n −→ n
∇n −→ ∇n

n −→ n
n −→ n

s −→ s
n −→ n

n −→ n
s −→ s s −→ s

s/s, s −→ s
/L

s/s, s/n, n −→ s
/L

s/s, n, n\s/n, n −→ s
\L

s, s\s/s, n, n\s/n, n −→ s
\L

s/n, n, s\s/s, n, n\s/n, n −→ s
/L

n, n\s/n, n, s\s/s, n, n\s/n, n −→ s
\L

∇n, n\s/n, n, s\s/s, n, n\s/n, n −→ s
∇L

∇n, n\s/n, n, s\s/s, n, n\s/n,∇n,∇n\n −→ s
\L

∇n, n\s/n, n, s\s/s, n,∇n, n\s/n,∇n\n −→ s
perm

∇n, n\s/n, n, s\s/s,∇n, n, n\s/n,∇n\n −→ s
perm

∇n, n\s/n, n,∇n, s\s/s, n, n\s/n,∇n\n −→ s
perm

∇n, n\s/n,∇n, n, s\s/s, n, n\s/n,∇n\n −→ s
perm

∇n,∇n, n\s/n, n, s\s/s, n, n\s/n,∇n\n −→ s
perm

!∇n, n\s/n, n, s\s/s, n, n\s/n,∇n\n −→ s
!L (2)

The dog broke the vase. It was clumsy, which naturally
has type s · s in the following proof:

the dog :!∇n, broke : n\s/n, the vase : n, It : ∇n\n,

was : n\s/(n/n), clumsy : n/n,

n −→ n
∇n −→ ∇n

∇R

n −→ n
n −→ n

n −→ n

n −→ n n −→ n
n/n, n −→ n

/L

n/n −→ n/n
/R

s −→ s s −→ s
s, s −→ s · s ·R

s, s/(n/n), n/n −→ s · s
s, n, n\s/(n/n), n/n −→ s · s

\L

s/n, n, n, n\s/(n/n), n/n −→ s · s
/L

n, n\s/n, n, n, n\s/(n/n), n/n −→ s · s
\L

∇n, n\s/n, n, n, n\s/(n/n), n/n −→ s · s
∇L

∇n, n\s/n, n,∇n,∇n\n, n\s/(n/n), n/n −→ s · s
\L

∇n, n\s/n,∇n, n,∇n\n, n\s/(n/n), n/n −→ s · s
perm

∇n,∇n, n\s/n, n,∇n\n, n\s/(n/n), n/n −→ s · s
perm

!∇n, n\s/n, n,∇n\n, n\s/(n/n), n/n −→ s · s
!L (3)

1 The modelling can me made be more precise by typing all instances
of the to n/n and typing ball to !∇n and window to n.
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We can resolve object anaphora, as in the example: The
cat broke the glass. It was fragile.
the cat : n, broke : n\s/n, the glass :!∇n, It : ∇n\n,

was : n\s/(n/n), fragile : n/n,

n −→ n
∇n −→ ∇n

∇R

n −→ n
n −→ n

n −→ n

n −→ n n −→ n
n/n, n −→ n

/L

n/n −→ n/n
/R

s −→ s s −→ s
s, s −→ s · s ·R

s, s/(n/n), n/n −→ s · s
/L

s, n, n\s/(n/n), n/n −→ s · s
\L

s/n, n, n, n\s/(n/n), n/n −→ s · s
/L

n, n\s/n, n, n, n\s/(n/n), n/n −→ s · s
\L

n, n\s/n,∇n, n, n\s/(n/n), n/n −→ s · s
∇L

n, n\s/n,∇n,∇n,∇n\n, n\s/(n/n), n/n −→ s · s
\L

n, n\s/n, !∇n,∇n\n, n\s/(n/n), n/n −→ s · s
!L (4)

Ellipsis is modelled similarly. Since we have only exper-
imented with anaphoric reference in the current paper, we
refer the reader for the typing and proof tree of an exam-
ple, e.g. John plays guitar. Mary does too. to previous work
(McPheat et al. 2020).

3 Truncated Fock space semantics of SLLM

In this section, we recall the definition of the vector space
semantics of SLLM, first defined in McPheat et al. (2020).
We define the semantics inductively on formulas, which are
interpreted as vector spaces and proofs, which are interpreted
as linear maps. We will use a semantic bracket notation [[ ]] :
SLLM → FdVect to denote the semantics of formulas [[A]]
and the semantics of proofs [[π ]], where if π is a proof of a
sequent �−→ A, then [[π ]] is a linear map from [[�]] to [[A]].

1. For the atomic formulas n, s we interpret them as some
fixed vector spaces N := [[n]] and S := [[s]].

2. Formulas of the form A·B are interpreted using the tensor
product [[A · B]] := [[A]] ⊗ [[B]].

3. Formulas of the form A\B are interpreted using the vec-
tor space dual [[A\B]] := [[A]]∗ ⊗ [[B]]. Similarly, we
have [[B/A]] := [[B]] ⊗ [[A]]∗.

4. ∇-formulas are interpreted trivially [[∇ A]] := [[A]].
5. !-formulas are interpreted using truncated Fock-spaces

[[!A]] := Tk0 [[A]], where

Tk0 [[A]] =
k0

⊕

i=0

[[A]]⊗i = k ⊕ [[A]] ⊕ ([[A]]⊗

[[A]]) ⊕ ([[A]] ⊗ [[A]] ⊗ [[A]]) ⊕ · · · ⊕ [[A]]⊗k0 .

As a notational convenience, we will write [[�]] for [[A1]] ⊗
[[A2]] ⊗ · · · ⊗ [[An]] for � = A1, . . . , An . The vector space
semantics of proofs is as follows:

1. The axiom A −→ A is simply interpreted as the identity
matrix I[[A]] : [[A]] → [[A]].

2. The ·L rule is trivially interpreted, as the semantics does
not distinguish between the , and the ·.

3. The ·R rule is interpreted as the tensor product of linear
maps. That is, given proofs of the hypotheses of the ·R-
rule π1 of �1 −→ A and π2 of �2 −→ B, we have the
semantics of the new proof, ending with the ·R rule as
[[π1]] ⊗ [[π2]].

4. The \L and /L -rules are interpreted as application. That
is, givenproofsπ of� −→ A and τ of�1, B, �2 −→ C ,
we have the semantics of the proof ending with the \L -
rule being

[[τ ]]◦(I[[�1]]⊗evl[[A]],[[B]]⊗ I[[�2]])◦(I[[�1]]⊗[[π]]⊗ I[[A\B]]⊗ I[[�2]]).

Similarly, for the /L -rulewith the sameπ and τ as above,
we have that the semantics of the new proof, now ending
with /L is

[[τ ]]◦(I[[�1]]⊗evr[[A]],[[B]]⊗ I[[�2]])◦(I[[�1]]⊗ I[[B/A]]⊗[[π]]⊗ I[[�2]]).

5. The \R and /R-rules are interpreted as currying. That is,
given a proof π of A, � −→ B, the semantics of the
proof beginning with π and ending with \R is the curried
version of [[π ]], which we denote as

�l [[π ]] : [[�]] → [[A]] ⊗ [[B]].

Fig. 1 Standard graphical calculus for vector spaces
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Fig. 2 Linear maps

Similarly for the /R-rule, if we assume the sequent
�, A −→ B has proof τ , the new proof ending in /R

has semantics

�r [[τ ]] : � → [[B]] ⊗ [[A]].

6. Both the ∇L and ∇R-rules are trivial, since we interpret
∇ trivially in the vector space semantics.

7. The perm and perm′-rules are interpreted using the sym-
metry, σ , of the tensor product. Recall that for any two
vector spaces V , W , we have that σV ,W : V ⊗ W ∼=
W ⊗ V . Using this symmetry, we can interpret a proof π

followed by the perm-rule as [[π ]]◦ (I[[�1]] ⊗σ[[A]],[[�2]] ⊗
I[[�3]])

8. The !L -rule, the one that lets us copy, is interpreted using
the projections from the truncated Fock space. Recall
that whenever you have a direct sum V ⊕ W of vector
spaces V , W , we have two canonical projections, namely
pV : V ⊕ W → V and pW : V ⊕ W → W defined
as pV (v,w) = v and pW (v,w) = w. These projec-
tions extend to any number of summands, which in our
case is k0. Thus, if we consider a proof π of a sequent
�1, A, A, . . . , A, �2 −→ B (with n instances of A, say)
which is followed by an application of the !L -rule, the
semantics of the whole proof becomes

[[π ]] ◦ (I[[�1]] ⊗ pn ⊗ I[[�2]])

where pn : Tk0 [[A]] → [[A]]⊗n , is the nth projectionmap.
9. The !R-rule is interpreted as the application of Tk0 . That

is, given a proof π of the sequent A −→ B, which is

Fig. 3 Vectors and linear functionals

followed by an application of !R to give !A −→!B, the
semantics of the whole proof is Tk0 [[π ]]. By this notation,
we mean the following map:

(Tk0 [[π ]])(
j

⊗

i=0

a j
i )

k0
j=0(

j
⊗

i=0

[[π ]]a j
i )

k0
j=0

where a0 is some element in the ground field, and a j
i ∈

[[A]] for all 1 ≤ i ≤ j ≤ k0. That Tk0 [[π ]] yields a linear
map is not obvious, but it is a well-known fact proven
in any text on universal enveloping algebras, for instance
(Humphreys 1972).

4 Diagrammatic computations

4.1 Existing string diagrammatic calculus

We recall the standard graphical language for finite dimen-
sional vector spaces. Vector spaces are denoted by labelled
strings, as in Fig. 1a, where we have drawn a vector space V .
By convention, the 1-dimensional vector space is not drawn
at all. The tensor product of two vector spaces is denoted by
placing the corresponding strings side-by-side as in Fig. 1b,
where we have drawn V ⊗ W .

Linear maps f : V → W are denoted as boxes on strings,
with their domain feeding into the box from above, and the
codomain coming out from below, as in Fig. 2a. The compo-
sition of linear maps is denoted by vertical superposition of
boxes, as in Fig. 2b, where we have drawn the composition

Fig. 4 Symmetry of tensor
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Fig. 5 Cups and caps

of maps f : V → W and g : W → U . The tensor product
of linear maps is depicted by horizontal juxtaposition, as in
Fig. 2c.

Vectors v ∈ V are in bijection with linear maps k →
V , so we may think of vectors as a special kind of linear
functions. Since we do not draw the ground field at all, we
may draw vectors as boxes with no output, as in Fig. 3a. We
orient these boxes as we will need to manipulate diagrams
with element-boxes, and in doing so, it is useful to keep track
of which way round your diagram is drawn. Note that a linear
functional, i.e. a linear map V → k, is a box with no output,
and so we may draw it as in Fig. 3b. We draw it with the
opposite orientation to illustrate the self-duality of FdVect,
where every vector v ∈ V defines a functional via the inner
product (v,−) : V → k which maps w �→ (v,w).

The symmetry of the tensor product, i.e. V ⊗W ∼= W ⊗V
for any vector spaces V , W , is drawn by crossing wires as in
Fig. 4.

Inner products are depicted by cups, as drawn in Fig. 5.
Dually, we have caps, which are maps k → V ⊗ V corre-
sponding to the unit map 1 �→ ∑n

i=1 vi ⊗ vi where we take
V to have basis {vi }i=1,...,n .

These diagrams satisfy the usual string diagrammatic
equations, e.g. the most important of which is the follow-
ing known as yanking in Fig. 6.

4.2 New diagrams for Fock spaces

Next, we introduce diagrams for our Fock spaces. We depict
Fock spaces, i.e. vector spaces of the form Tk0V by bold
strings, labelled with a V , see Fig. 7. The special diagram-
matic structure we have on Fock spaces is the projection to
the n-th layer, which is denoted by the usual linear map nota-
tion, which in this case we label by pn , and call a pn-box, as
in Fig. 7.

Similar to vectors from vector spaces, vectors from Fock
spaces Tk0V are depicted with linear maps v : k → Tk0V ,
see Fig. 8.

Fig. 6 Yanking

Fig. 7 Fock spaces and projections from them

A series of operations often performed on Fock spaces is
accessing an element via the above linear map, followed by
a projection to the n-th layer, see Fig. 9.
When modelling discourse phenomena that span multiple
sentences, we need Fock spaces. Unfortunately, Fock spaces
do not have direct counterparts in the standardmodel of quan-
tum computation. To address this limitation, we observe that
string diagrams involving Fock spaces can be only manip-
ulated using a sequence of two operations: accessing an
element of a Fock space followed by a projection to an n-th
layer. To incorporate this into our quantum circuit represen-
tation, we replace this sequence of operations with an order n
tensor, as depicted in Fig. 10. We refer to this replacement as
a Fock Space Projection step. Formally speaking, by doing
so, we are restricting ourselves to only the n-th layer of a
Fock space, which is nothing but an order n tensor, for which
we have a quantum circuit counterpart in IBMQ.

5 From string diagrams to quantum circuits

In Lorenz et al. (2021), a four-step process is described to
represent a sentence as a parameterised quantum circuit. We
adapt these steps to represent a discourse as a quantumcircuit,
which are as follows:

1. Discourse parsing: The first step involves parsing the
given discourse into a proof in SLLM, using the Bob-
CatParser (Clark 2021;Yeung andKartsaklis 2021). This
process involves analysing the grammatical structure of
the text and extracting relevant linguistic components.

Fig. 8 Elements of Fock spaces
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Fig. 9 Accessing an element of Fock spaces followed by a projection

2. String diagram generation: After parsing the discourse,
we transform the resulting proof tree into a string
diagram, which visually depicts the relationships and
connections between the linguistic elements in the text.
We employ DisCoPy (de Felice et al. 2021) as a backend
for generating and processing these diagrams.

3. String diagram simplification: The generated string dia-
gram is subjected to simplification using a built-in rewrite
rule in Lambeq (Kartsaklis et al. 2021), which substi-
tutes every determiner with a cap (see Fig. 5), effectively
removing it from the diagram after wire stretching.
The diagram then undergoes the Fock Space Projection
simplification, described above and depicted in Fig. 10,
which is new to this paper and specific to Fock spaces.
These simplifications are preformed to reduce the com-
plexity of the variational quantum circuits.

4. Diagram normalisation: Following the simplification
step, the simplified string diagram undergoes normalisa-
tion. This process involves removing cups (representing
interactions), stretching wires (indicating connections),
and rearranging boxes (depicting linguistic elements).
These transformations are performed to optimise the dia-
gram for efficient execution on quantum computers.

5. Quantum circuit transformation: The resulting simplified
and normalised diagrams are transformed into a quantum
circuit. This conversion is based on a parameterization
scheme, i.e. an ansatz.2 In this work, we chose to use
the Instantaneous Quantum Polynomial (IQP) ansatz,
which consists of interleaving layers of Hadamard quan-
tumgateswith diagonal unitaries (Shepherd andBremner
2009; Havlíček et al. 2019).

We elaborate on the Quantum Circuit Transformation
step above. To do so, we follow the standard diagrammatic
notation used in categorical quantum mechanics to depict
quantum circuits. In this notation, a triangle labelled with 0
represents a qubit state in the zero computational basis. A box
labelled with H stands for a Hadamard gate. A CNOT gate

2 A map that is determined by choices such as the number of qubits
associated with each wire in the string diagram and the specific
parameterized quantum states corresponding to each word. For our
experiments, we represented the noun wires and sentence wires by one-
qubit spaces.

Fig. 10 Simplification step to encode the Fock space as an IBMQquan-
tum circuit

is depicted with a dot connected to an ⊕. The other one is a
controlled-Z-rotation on an angle, depicted as a box labelled
with Rα(θi ) connected to a control qubit, where α can be x , y
or z, and θ any angle from 0 to 2π . An upside-down triangle
labelled with 0 is a measurement in the computational basis,
post-selected to be zero.

The 1-layer IQP ansatz is depicted in Fig. 11. More layers
can be used to increase the expressiveness of the ansatz. In
our experiments, we used 3 layers of the IQP ansatz. A cap
is mapped to a Bell state, while a single-legged ket vector is
parametrised as a series of X, Z, and X single qubit rotations,
which span the entire 1 qubit space. Any ket vector withmore
than one leg is initially prepared as an equal superposition
of all computational basis states with Hadamard gates, fol-
lowed by a series of controlled Z-rotations. The instances of
2-legged and 3-legged ket vectors are depicted in Fig. 11 as
examples. A spider, or Frobenius multiplication, is mapped
to a CNOT gate, supplied with an ancilla qubit in the zero
state. The bra versions of these mappings are simply the
adjoints, appearing as inverted versions of their respective
kets (Figs. 12, 13, 14, 15, 16, 17, 18, and 19).

6 Experimentation

We train binary classification models to predict which noun
phrase from the first sentence is the one the pronoun in
the second sentence refers to. This training is a classical-
quantum hybrid training scheme where a quantum computer
is responsible for computing the meaning of the sentence
by connecting the quantum states in a quantum circuit. A
classical computer is used to compute the loss function of
the training. In each iteration, a new set of quantum states is
computed based on the loss function of the previous iteration.

6.1 Task

One common discourse structure involves a pronoun and its
corresponding referent. Referents can occur before or after
the pronoun, and the phenomenon is called anaphora or cat-
aphora, respectively. Pronouns can be definite or indefinite.
Definite pronouns refer to a specific person or object; exam-
ples of them are I, you, he/she. it, us, we. These are contrary
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Fig. 11 Translation from string
diagrams to parameterised
quantum circuits using the
single-layer IQP ansatz, where
each grammatical type is
mapped to a 1-qubit space

to indefinite pronouns, which do not refer to a specific person
or object, e.g. everyone and everything. The overall task of
finding a referent for a pronoun is called pronoun resolution,
and depending on the type of the pronoun, the adjective def-
inite or indefinite is used. Pronoun resolution is a specific
case of a broader challenge known as coreference resolution
(CR). This process involves identifying and grouping all text
expressions, referred to as mentions, in a text that refer to the
same entity or event. It is a critical task for achieving natural
language understanding, as misidentifying or mismatching
references can introduce biases and hinder accurate com-
prehension. CR involves three main sub-tasks: (1) mention

detection, (2) determining coreference between two men-
tions, and (3) clustering mentions based on their coreference
relationships. While all three sub-tasks are important, a sig-
nificant focus of coreference resolution research lies in the
second part—predicting whether two mentions are corefer-
ent or not. In this experiment, we train models with true or
false categories as explained below.

Given a discourse of two sentences S1 and S2, where S2
includes a pronoun and S1 a few noun phrases, the classifier
will return ‘true’ if the pronoun in S2 refers to the correct can-
didate referent in S1, and ‘false’ if it does not. As examples,
consider the following discourse:

Fig. 12 Diagram representing
the discourse: ‘The students
read the books. They were
learning.’ For the sake of clarity,
we treat the determiner-noun
phrases The students and The
books as single units. Since
determiners are eventually
discarded in the rewriting
process, this simplification will
not affect the end result. The
phrase The students is a Fock
state which is projected to the
2-copies subspace by the
projection map p2
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Fig. 13 Diagram after the Fock
Space Projection simplification
step. Now the phrase The
students is a state in the 2-copies
subspace of the Fock space

‘The trophy doesn’t fit into the brown suitcase.’ (S1).
‘It is too large.’ (S2).

This discourse is labelled as true if the pronoun ‘It’ refers
to ‘The trophy’ and false if it refers to ‘the brown suitcase’.
Compare the above discourse to the following, which has the
opposite classification:

‘The trophy doesn’t fit into the brown suitcase.’ (S1).
‘It is too small.’ (S2).

It is labelled true if ‘It’ refers to ‘the brown suitcase’ and
false if it refers to ‘The trophy’.

The traditional linguistic method of resolving a pronoun
is by checking its binding constraints, i.e. different types of
agreements between a pronoun and its candidate referents.
What makes our task challenging is that its pronouns are
already in all linguistic agreements with all of their candidate
referents and thus binding constraints method is not useful
in solving it. This task is known as the Winograd Schema
Challenge and was introduced in Levesque et al. (2012) as

Fig. 14 Diagram is simplified by removing excessive cups and stretch-
ing wires

a test of intelligence and an alternative to Turing’s test. It is
designed in such away that solving it requires extra-linguistic
(or world) knowledge. For instance, in the example discourse
units above, this extra knowledge is that if an object does
not fit into another object, the first object is probably too big
and/or the second one too small. TheQNLP pipeline, capable
of encoding both syntactic and semantic linguistic structures,
is well suited for training on this task.

6.2 Dataset

The process of training variational quantum circuits (VQC)
in QNLP involves the optimisation of multiple parameters
associated with each word in a given dataset, with the objec-
tive of minimising the loss value on the training set. When
it comes to predicting the output of a test sample, a VQC
is constructed based on the input sentence. Each word in the
sentence is associatedwith a specific set of parameters,which
are learnt during the training process. However, a significant
challenge arises when we encounter a word in the test set that
is absent in the training set. Since this word does not have a
readily available parameter assignment, we refer to this prob-
lem as the out-of-vocabulary (OOV) problem. To tackle the
OOV problem, we define a fixed set of words with grammati-
cal relations between them and prompt the GPT−3.5 (Brown
et al. 2020) model to generate pairs of sentences that exhibit
a substantial overlap in vocabulary.

We start by selecting a pair of sentences from the def-
inite pronoun resolution dataset developed in Rahman and
Ng (2012), which itself was generated as an extension of
the Winograd Schema Challenge dataset (Levesque et al.
2012). Each pair consists of a sentence that contains two
referents, followed by a subsequent sentence that incorpo-
rates a pronoun. The pronoun is carefully constructed to align
with respect to gender, number, and semantic class to each
of the candidate referents mentioned in the first sentence.
For instance, consider the following example taken from the
dataset (Rahman and Ng 2012):
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Fig. 15 The final optimised
diagram is transformed into
parameterised quantum circuit,
using the IQP ansatz shown in
Fig. 14

– The students read the books. They were learning.
– The students read the books. They were interesting.

We build on this example by expanding the range of sen-
tence structures that can have the same vocabulary. We do so
by systematically creating a variety of grammatical combi-
nations using the following templates:

– The students (verb, phrasal verb, verb phrase) the books.
They were (adjective, gerund phrase).

– The (adjective) students (verb, phrasal verb, verb phrase)
the books.
They were (adjective, gerund phrase).

– The students (verb, phrasal verb, verb phrase) the (adjec-
tive) books.
They were (adjective, gerund phrase).

– The (adjective) students (verb, phrasal verb, verb phrase)
the (adjective) books.
They were (adjective, gerund phrase).

Here, the verb read can be replaced by another verb,
phrasal verb, or a verb phrase. Similarly, the adjectives

learning/interesting can be replaced by another adjective or
gerund phrase. We list all combinations for different exam-
ples in the Appendix section.
Next, we utilise the prompt provided below in GPT−3.5
along with the previously mentioned sentence structures.
This technique is called few-shot prompting, where we pro-
vide examples in the prompt to steer the model to better
performance. This enables us to generate coherent sen-
tenceswhilemaintaining grammatical accuracy and ensuring
semantic consistency. Note that the red tokens should be
modified for each example.

Provide alternative sentences by replacing the words or
phrases inside the brackets for each statement. Utilize
different verbs, phrasal verbs, verb phrases, adjectives,
or gerund phrases to create new sentences based on the
given structure. Ensure that the pronoun ‘they’ in the
second sentence refers to ‘students’ / Ensure that the
pronoun ‘they’ in the second sentence refers to ‘books’

Below is a sample output on the ‘student’ example:

Fig. 16 Example in which the
referent of the pronoun is the
object: ‘The students read the
books. They were interesting.’
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Fig. 17 Diagram after the Fock
Space Projection simplification
step

– The students researched the books. They were seeking
new insights.

– The curious students devoured the books. They were
gaining knowledge.

– The students reviewed the complex books.
They were helping them to understand new concepts.

– Themotivated students explored the recommended books.
They were containing valuable information.

This methodology provided us with a large scale dataset
of 16,400 sentence pairs, comprising approximately 200,000
words, with 1214 unique words. This dataset is the largest
to date in comparison to previous experiments in QNLP.
The dataset was subsequently split into three subsets: 10,496
pairs (∼60%) for training, 2624 pairs (∼20%) for validation,
and 3280 pairs (∼20%) for testing. The training and testing
datasets share a common vocabulary of 95%, while none of
the sentence pairs in the testing set appears in the training
or validation sets. This careful partitioning allows for robust
evaluation and ensures that the models are tested on unseen
data during the testing phase.

Due to the large size and structural complexity of the
dataset, as well as limitations in conducting noisy simula-
tions at scale, we faced challenges in running simulations on
the complete dataset.As a result,weopted to sample a smaller
set of 144 sentence pairs from the larger dataset. This smaller
subset had a reduced vocabulary size of only 18 uniquewords
and simpler grammatical structures. This downscaled dataset

Fig. 18 Diagram is simplified by removing excessive cups and stretch-
ing wires

served as the basis for our noisy simulations, allowing us to
conduct our analysis within the computational constraints.

The code and datasets can be accessed through the fol-
lowing link: https://github.com/hwazni/quantumcoref.

6.3 Models

We conducted experiments using both large and small
datasets. For the larger dataset, we simulated the param-
eterised circuits with the NumPyModel from the Lambeq
package, implementing a noiseless non-shot-based simula-
tion. This involved representing quantum gates as tensors
and performing computations through tensor contraction. By
using this simulationmethod,wewere able to obtain the ideal
probability distribution that would be achieved on a noise-
free quantum computer.

For the smaller dataset, we experimented with a noisy
shot-based simulation. The noisy shot-based simulation takes
into account the impact of real-world quantum hardware
imperfections, such as quantum gate errors, decoherence,
and shot noise, thereby providing amore realistic assessment
of the model’s performance on an actual quantum computer.
Here, we execute the circuit multiple times (8192 shots), with
the outcomes averaged to approximate the ideal probability
distribution. We used the TketModel from the Lambeq pack-
age andAerBackend simulator, which serves as a backend for
running simulations on the Qiskit Aer QASM simulator. We
employed a backend noise model based on the IBMQ Lagos
device. This allows us to mimic the effects of noise, errors,
and environmental interference that would be encountered
on a real quantum device.

To compare the performance of our models, we also
implemented and experimented with a Bag-of-Words model,
where there is no grammatical structure present and the sen-
tences of each entry are represented as multi-sets of words.
Word order and any other syntactic structure is forgotten and
not taken into account. Figures20 and 21 present the Bag-of-
Words string diagrams and quantum circuits of the ‘students’
example.

6.4 Training

The two sentences (S1, S2) of each entry of the dataset are
combined to create a single output quantum state. This sin-

123

https://github.com/hwazni/quantumcoref


Quantum Machine Intelligence             (2024) 6:60 Page 13 of 19    60 

Fig. 19 The final optimised
diagram of Fig. 18 is
transformed into parameterised
quantum circuit, using the IQP
ansatz

gle state will be used as the input to our binary classifier.
In principle, this can be any quantum map that takes two
sentences as inputs and gives a sentence as the output. We
used a CNOT gate, since it encodes a commutative Frobenius
multiplication, acting in some ways similar to a logical con-
junction. The resulting combined quantum circuit is denoted
by S1 
 S2.

We use a hybrid training scheme that combines classical
and quantum computing to learn the parameters of this com-
bined circuit. The procedure is as follows: First, we randomly
initialise a set of parameters 
 = (θ1, θ2, ..., θk), such that
every parameter used in every ansatz of every word in the
vocabulary is included.

Every combined circuit from the test dataset is then eval-
uated against 
. That means if the same word appears in

two different circuits, it is represented as the same quantum
state in both circuits. We denote the output state from the
circuit S1 
 S2 as |S1 
 S2 (
)〉. The expected prediction of
the binary class of each entry of the dataset is then given by
the Born rule, i.e. as follows:

li

(S1 
 S2) := |〈i |S1 
 S2 (
)|〉|2 + ε

In the above, i ∈ {0, 1}, ε = 10−9 and l
(S1 
 S2) is a
probability distribution defined as follows:

l
(S1 
 S2) := (l0
(S1 
 S2), l1
(S1 
 S2))/
∑

i

li

(S1 
 S2)

Note that the sum
∑

i |〈i |S1 
 S2 (
)|〉|2 need not equal
to 1 as there can be post-selections in the circuits, rendering
some circuit runs discarded. In some extreme cases, almost

Fig. 20 A Bag-of-Words diagram representing the discourse: ‘The students read the books. They were learning.’ along with its transformation into
a parametrised quantum circuit
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Fig. 21 A Bag-of-Words diagram representing the discourse: ‘The students read the books. They were interesting.’ along with its transformation
into a parametrised quantum circuit

all circuit runs could be discarded. To avoid the possibility
of dividing by zero, the small constant ε = 10−9 is added.
The predicted binary class from the model is then obtained
by rounding to the nearest integer �l
(S1 
 S2)�.

The class labels are represented as one-hot encoding [0,1]
and [1,0], corresponding to incorrect referent and correct
referent, respectively. The model is trained by comparing the
predicted label with the training label using a binary cross-
entropy loss function and minimised using a non-gradient-
based optimisation algorithm known as SPSA (Simultaneous
Perturbation Stochastic Approximation) (Spall 1998). As a
result, the system learns to classify the sentences by adjusting
the parameters.

For the hyper-parameters, we used an initial learning rate
a = 0.05, 0.1, an initial parameter shift scaling factor c = 0.06,
and a stability constant A = 10, 20 and 1000, 2000 training
steps.

Algorithms 1 and 2 outline the training and evaluation pro-
cesses of themodel. The input sentences, represented by pairs
S1 andS2 alongwith the candidate referent R andpronoun P ,
undergo a transformation into SLLM diagrams, followed by
optimization and conversion into quantum circuits. For each
word in Vtrain , random parameter vectors are initialised and
then concatenated into a single vector θ 0, which serves as
the parameter initialisation for the training phase. Through
multiple epochs, the optimizer refines the parameters, which
are stored for later use during model evaluation.

During evaluation, the trained model is deployed on a test
dataset, where the input sentences are converted into quan-
tum circuits. Leveraging the parameter assignments obtained
from the training phase, these parameters are utilised to
configure the parameters in the Variational Quantum Cir-
cuits (VQCs). The resulting concrete circuits are contracted,
enabling the calculation of the model’s predictions. To assess

the model’s performance on the test dataset, the accuracy
and loss are computed by comparing the model’s predictions
against the expected output values.

Algorithm 1 Training
Input: Training data xtrain and corresponding labels ytrain
Output: Learned parameter values for each word in the training vocab-

ulary

1: SLLM-diagrams ← [TEXT-TO-SLLM-DIAGRAM(xi ) for each xi
in xtrain ; x : S1, S2, R, P]

2: rewritten-SLLM-diagrams← [REWRITE(di ) for each di in SLLM-
diagrams]

3: circuits ← [ANSATZ(di ) for each di in rewritten-SLLM-diagrams]
4: for each wordi ∈ Vtrain
5: �θ 0

i ← INITIALIZE()
6: end for
7: θ 0 ← 〈 �θ 0

1 , �θ 0
2 , ..., �θ 0|Vtrain |〉

8: for t in range(1, epochs)
9: θ t ← SPSA-ITERATION(circui ts, ytrain , L, θ t−1)
10: end for
11: return parameters ← {wordi : �θ epochs

i for each wordi ∈ Vtrain
}

7 Results and analysis

Figures 22 and 23 illustrate the convergence of the SLLM
and Bag-of-Words models over various training scenarios.
In the noiseless simulations, which were done on the large-
scale dataset, the SLLMmodel shows a consistent reduction
in training loss, culminating at a final value of 0.44564
after 2000 iterations. On the other hand, the Bag-of-Words
model demonstrates a slower rate of convergence, settling at
0.65976. Furthermore, the SLLM model surpasses in accu-
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Fig. 22 Performance of
noiseless simulation: average
training loss and accuracy
across 5 runs on the large
dataset. The shaded regions
represent the ± 2 standard
deviation around the mean

Algorithm 2 Evaluation
Input: Testing data xtest , labels ytest , learned parameter values

parameters
Output: Test accuracy and loss

1: Do steps 1, 2, 3 of Algorithm 1 with xtest
2: for each wordi ∈ Vtest
3: �θ i ← parameters [wordi ]
4: end for
5: θtest ← 〈 �θ1, �θ2, ..., �θ|Vtest |〉
6: ypred ← PREDICT(circuits, θtest )
7: accuracy ← MEASURE-ACCURACY(ytest , ypred )
8: loss ← MEASURE-LOSS(ytest , ypred , L)
9: return accuracy, loss

racy, achieving 0.78046 versus the Bag-of-Words model’s
0.63046 at the 2000th iteration.

In the noisy simulations conducted on the small-scale
dataset, the SLLM model demonstrates a gradual decrease
in training loss, reaching 0.6628, while the Bag-of-Words
modelmaintains a relatively consistent loss of approximately
0.68542. The SLLM model shows incremental improve-
ment in accuracy, reaching 0.5597, while the Bag-of-Words
model’s accuracy remains stable at around 0.5.

We also did noiseless simulations on the small-scale
experiments. Here, both models experienced a decrease in

training loss. However, the SLLM model achieves a lower
minimum loss of 0.2718 at iteration 1000, while the Bag-
of-Words model plateaus at 0.12572. The SLLM model also
exhibits a steady increase in accuracy, reaching 0.90556 com-
pared to the Bag-of-Words model’s accuracy of 0.95832 at
the same iteration. These results highlight the superior per-
formance of the SLLMmodel compared to theBag-of-Words
model in terms of both loss reduction and accuracy improve-
ment across different training scenarios.

Table 2 presents the test accuracy results for the noise-
less simulations. The SLLM model achieves an average test
accuracy of 72.65%, indicating its ability to accurately clas-
sify and predict outcomes on the test dataset. On the other
hand, the Bag-of-Words model achieves a lower average test
accuracy of 55.99%. Across the five runs, the SLLM model
exhibits higher accuracy, ranging from 67.48 to 77.23%,
while the Bag-of-Words model’s accuracy varies from 55.57
to 56.79%.

Table 3 displays the test accuracy results for the noisy sim-
ulations, conducted on both the SLLM and Bag-of-Words
models. The SLLMmodel achieves an average test accuracy
of 55.27%, while the Bag-of-Words model has a slightly
lower average test accuracy of 50.27%. This suggests that
bothmodels struggle to performwell in the presence of noise,

Fig. 23 Performance of
noiseless and noisy simulations:
average training loss and
accuracy across 5 runs on the
small dataset. The shaded
regions represent the ± 2
standard deviation around the
mean
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Table 2 Noiseless test accuracy
across 5 runs—the large scale
experiment

Noiseless Noiseless
SLLM Bag-of-Words

75.64% 55.70%

67.48% 56.21%

72.76% 55.70%

77.23% 56.79%

70.18% 55.57%

72.65% 55.99%

with the SLLM model demonstrating a slightly higher accu-
racy.

When comparing the noisy and noiseless simulations,
it is evident that the presence of noise has a detrimental
effect on the performance of both models. The test accuracy
decreases for both models in the noisy simulation compared
to the noiseless simulation. However, the SLLM model still
exhibits better performance compared to the Bag-of-Words
model in both scenarios.

The analysis of the provided results highlights the influ-
ence of dataset characteristics on the performance of the
SLLM and Bag-of-Words models. Recall that the large
dataset consisted of a substantial number of sentence pairs
(16,400) and a larger vocabulary of 1214 unique words. In
contrast, the small dataset comprised a limited number of
sentence pairs (144) with a smaller vocabulary of 18 unique
words. The SLLM model demonstrated its effectiveness in
handling the complexity of grammatical combinations and
achieved superior results on the large dataset. However, the
Bag-of-Words model showcased its strength in simpler lin-
guistic patterns where little structure was present, yielding
comparable performance on the small dataset.

To assess the performance of our QNLP pipeline in
comparison to classical pipelines, we evaluated different
pronoun resolution architectures, namely CoreNLP (Man-
ning et al. 2014), Neural Coreference (Clark and Manning
2016,b), and SpanBERT (Lee et al. 2018). CoreNLP com-
bines rule-based methods with statistical models to resolve
coreferences. By analysing linguistic features and contextual
information, it identifies and links expressions that refer to the

Table 3 Noisy test accuracy
across 5 runs—the small scale
experiment

Noisy Noisy
SLLM Bag-of-Words

51.38% 50%

59.72% 50%

50% 50%

63.88% 50%

51.38% 51.38%

55.27% 50.27%

Table 4 Test accuracy of classical coreference models compared with
quantum one

CoreNLP SpanBERT Neural
Coreference

Quantum
Coreference

39.3% 84.5% 41.3% 77.5%

same entity. Neural Coreference, as its name implies, utilizes
neural network architectures to model coreference relation-
ships. Through deep learning techniques, it captures patterns
and dependencies in textual data, enhancing the accuracy
of coreference resolution. In contrast, SpanBERT is a spe-
cialised variant of the BERT (Devlin et al. (2019)) model
(Bidirectional Encoder Representations from Transformers)
fine-tuned specifically for coreference resolution tasks. It
employs a transformer-based architecture to learn contex-
tual representations of words and phrases, enabling robust
and effective coreference resolution.

Our own proposed method is labelled as Quantum Coref-
erence in Table 4. Quantum Coreference is made of two
sub-modules: (1) a mentions-detection module which uses
SpaCy’s part-of-speech parser to identify a set of poten-
tial coreference mentions, and (2) our trained SLLM hybrid
quantum-classical classifier which computes a coreference
score for each pair of potential mentions. The results
showed varying levels of performance among thesemethods.
CoreNLP achieved the lowest accuracy score of 39.3%, indi-
cating limitations in accurately resolving coreferences in the
given dataset. SpanBERT demonstrated the highest accuracy
of 84.5%, showcasing its superior ability to capture con-
textual information and successfully resolve coreferences.
Neural Coreference achieved a moderate accuracy of 41.3%,
falling behind SpanBERT but outperforming CoreNLP. Our
Quantum Coreference method showed promising results
with an accuracy of 77.5%, suggesting the potential of
quantum NLP techniques in coreference resolution. Wazni
and Sadrzadeh (2023) merged the quantum and classical
approaches and noticed further improvements.

8 Summary, conclusions, and future work

This paper had two main parts. The first part was on the
theory of a specific modal Lambek calculus and its applica-
tions tomodelling discourse relations such as the coreference
between a pronoun and a noun phrase. In this part, we focused
on the calculus of Kanovich et al. (2020), which we denote
by SLLM. The modalities of this calculus are in the style of
the soft modalities of Linear Logic (Lafont 2004). They have
the advantage that the logic containing them remains decid-
able, despite allowing for an implicit form of copying—via
the notion of storage and projections from it. A vector space
semantics for this calculus was developed in previous work
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(McPheat et al. 2020), where the modal formulae were inter-
preted as truncated Fock spaces, i.e. direct sums of tensor
powers, but only up to a fixed given order k0. We end the first
part by introducing a novel string diagrammatic semantics
for this truncated Fock space semantics.

In the second part, we followed the line ofwork initiated in
Meichanetzidis et al. (2020); Lorenz et al. (2021) and trans-
lated our string diagrams to quantum circuits. Here, vector
spaces are translated to quantum states and the operations on
them to quantumgates.We translate our truncated Fock space
semantics into quantum circuits by extending the existing
translation. We then applied our setting to a definite pronoun
resolution task and (1) developed a much larger version of
the original dataset of Levesque et al. (2012), elaborated on
in Rahman andNg (2012), (2) modelled the coreference rela-
tions with modal formulae, (3) built the corresponding Fock
space semantics of them, (4) depicted the reasoning in novel
string diagrams, and (4) translated these latter to variational
quantum circuits. We learnt the parameters of the resulting
circuits by simulating them in the noiseless and noisy sim-
ulators of IBMQ (Qiskit 2021). In order to make accurate
comparisons, we also implemented and experimented with
a model containing no notion of structure in it. The highest
accuracies were recorded for the structured model.

In conclusion, our studyhighlights the potential of quantum-
inspired NLP techniques in enhancing coreference resolution.
Our quantum model demonstrated superior performance
compared to traditional approaches, indicating the effective-
ness of quantum methods in handling linguistic complexities.
However, further research and advancements are needed
to narrow the gap with state-of-the-art transformer-based
models like SpanBERT. Integrating quantum-inspired NLP
(QNLP) with transformer architectures could unlock further
improvements in coreference resolution tasks. Exploring the
use of real quantum computers for training circuit parameters
instead of relying solely on simulations is another avenue for
future work. Finally, efforts to develop Fock space quantum
computers anddevelopNLPpackages for themare underway
(Clément et al. 2022; de Felice andCoecke 2022). Employing
these developments could providemore natural and powerful
means for our semantics.

Appendix

• Example 1:

– The sniper {verb, phrasal verb} the terrorist. He was
a {adjective} {noun, compound noun}

– The {adjective} sniper {verb, phrasal verb} the ter-
rorist. He was a {adjective} {noun, compound noun}

– The sniper {verb, phrasal verb} the {adjective} ter-
rorist. He was a {adjective} {noun, compound noun}

– The {adjective} sniper {verb, phrasal verb} the
{adjective} terrorist. He was a {adjective} {noun,
compound noun}

• Example 2:

– The heart {verb} blood {adverb, adverbial phrase}.
It was a {adjective} {noun}

– The {adjective} heart {verb} blood {adverb, adver-
bial phrase}. It was a {adjective} {noun}

– The heart {verb} {adjective} blood {adverb, adver-
bial phrase}. It was a {adjective} {noun}

– The {adjective} heart {verb} {adjective} blood {ad-
verb, adverbial phrase}. It was a {adjective} {noun}

• Example 3:

– The people {verb, phrasal verb, verb phrase} against
the government. They were {gerund phrase}

– The{adjective} people {verb, phrasalverb, verbphrase}
against the government. They were {gerund phrase}

– The people {verb, phrasal verb, verb phrase} against
the {adjective} government. They were {gerund
phrase}

– The {adjective} people {verb, phrasal verb, verb
phrase} against the {adjective} government. They
were {gerund phrase}

• Example 4:

– The birds {verb, phrasal verb, verb phrase} the seeds.
They were {adjective, gerund phrase, prepositional
phrase}

– The {adjective} birds {verb, phrasal verb, verb
phrase} the seeds. They were {adjective, gerund
phrase, prepositional phrase}

– The birds {verb, phrasal verb, verb phrase} the
{adjective} seeds. They were {adjective, gerund
phrase, prepositional phrase}

– The {adjective} birds {verb, phrasal verb, verb
phrase} the {adjective} seeds. They were {adjective,
gerund phrase, prepositional phrase}

• Example 5:

– The bee {verb, phrasal verb, verb phrase} the flower.
It was {adjective, noun phrase, prepositional phrase,
gerund phrase}

– The {adjective} bee {verb, phrasal verb, verb phrase}
the flower. It was {adjective, noun phrase, preposi-
tional phrase, gerund phrase}

– The bee {verb, phrasal verb, verb phrase} the {adjec-
tive} flower. It was {adjective, noun phrase, preposi-
tional phrase, gerund phrase}

– The {adjective} bee {verb, phrasal verb, verb phrase}
the {adjective} flower. It was {adjective, noun phrase,
prepositional phrase, gerund phrase}
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• Example 6:

– The storm {verb, verb phrase} the flight. It was
{gerund phrase}

– The {adjective} storm {verb, verb phrase} the flight.
It was {gerund phrase}

– The storm {verb, verb phrase} the {adjective} flight.
It was {gerund phrase}

– The {adjective} storm {verb, verb phrase} the {adjec-
tive} flight. It was {gerund phrase}

• Example 7:

– The sailors {verb, phrasal verb, verb phrase} the
boats. They were {adjective, gerund phrase}

– The {adjective} sailors {verb, phrasal verb, verb
phrase} the boats. They were {adjective, gerund
phrase}

– The sailors {verb, phrasal verb, verb phrase} the
{adjective} boats. They were {adjective, gerund
phrase}

– The {adjective} sailors {verb, phrasal verb, verb
phrase} the {adjective} boats. They were {adjective,
gerund phrase}

• Example 8:

– The students {verb, phrasal verb, verb phrase} the
books. They were {adjective, gerund phrase}

– The {adjective} students {verb, phrasal verb, verb
phrase} the books. They were {adjective, gerund
phrase}

– The students {verb, phrasal verb, verb phrase} the
{adjective} books. They were {adjective, gerund
phrase}

– The {adjective} students {verb, phrasal verb, verb
phrase} the {adjective} books. They were {adjective,
gerund phrase}

• Example 9:

– Thepolice {verb} the criminals {prepositional phrase}.
They were {noun phrase, prepositional phrase}

• Example 10:

– The knife {verb, phrasal verb} the fence {adverb,
prepositional phrase}. It was {noun phrase}

– The {adjective} knife {verb, phrasal verb} the fence
{adverb, prepositional phrase}. It was {noun phrase}

– The knife {verb, phrasal verb} the {adjective} fence
{adverb, prepositional phrase}. It was {noun phrase}

– The {adjective} knife {verb, phrasal verb} the {adjec-
tive} fence {adverb, prepositional phrase}. It was
{noun phrase}
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