
Physics Letters B 809 (2020) 135707

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Quadrupole pressure and shear forces inside baryons in the large Nc
limit

Julia Yu. Panteleeva a,b, Maxim V. Polyakov a,c,∗
a Ruhr University Bochum, Faculty of Physics and Astronomy, Institute of Theoretical Physics II, D-44780 Bochum, Germany
b Physics Department, Irkutsk State University, Karl Marx str. 1, 664003, Irkutsk, Russia
c Petersburg Nuclear Physics Institute, Gatchina, 188300, St. Petersburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2020
Received in revised form 5 July 2020
Accepted 14 August 2020
Available online 19 August 2020
Editor: J.-P. Blaizot

We derive number of relations between quadrupole energy, elastic pressure, and shear force distributions 
in baryons using the large Nc picture of baryons as chiral solitons. The obtained large Nc relations are 
independent of particular dynamics and should hold in any picture in which the baryon is the chiral 
soliton.
One of remarkable qualitative predictions of the soliton picture is the nullification of the tangential forces 
acting on the radial area element for any tensor polarisation of the baryon. The derived relations provide 
a powerful tool to check the hypothesis that the baryons are chiral solitons, say using lattice QCD.
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1. Introduction

The linear response of a hadron to a change of the external 
space-time metric is described by the gravitational form factors 
(GFFs). For the first time the GFFs for spin 0 and 1/2 were intro-
duced and discussed in details in Refs. [1,2], for spin-1 particles in 
Ref. [3] and for arbitrary spin hadrons in recent Ref. [4]. The GFFs 
contain rich information about the internal structure of hadrons, 
for a detailed review see Ref. [5]. Particular interest for us here 
are the energy distributions and mechanical properties – elastic 
pressure and shear force distributions inside the hadron. These 
fundamental distributions are encoded in the static energy mo-
mentum tensor (EMT) defined in the Breit frame as [6]:

�μν(�r,σ ′,σ ) =
∫

d3�

(2π)32E
e−i ��·�r〈p′,σ ′ |�̂μν

QCD(0)|p,σ 〉. (1)

Here �̂μν
QCD(0) is the QCD EMT operator which matrix element is 

computed between hadron states with spins projections σ , σ ′ and 

momenta p0 = p0′ = E =
√

m2 + ��2/4, and pi′ = −pi = �i/2. The 
00 component of the static EMT contains the information about 
the energy distribution inside the hadron, 0i components about 
the spin distribution, and ik components provide us the distribu-
tion of elastic pressure and shear forces inside the hadron [6].
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Various components of the static EMT for arbitrary spin hadron 
can be decomposed in multipoles of the hadron’s spin operator. 
The expansion to the quadrupole order has the following form 
[7–9]1:

�00(r) = ε0(r) + ε2(r)Q̂ pqY pq
2 + . . . , (2)

�ik(r) = p0(r)δ
ik + s0(r)Y ik

2 +
(

p2(r) + 1

3
p3(r) − 1

9
s3(r)

)
Q̂ ik

+
(

s2(r) − 1

2
p3(r) + 1

6
s3(r)

)

× 2
[

Q̂ ip Y pk
2 + Q̂ kp Y pi

2 − δik Q̂ pqY pq
2

]

+ Q̂ pqY pq
2

[(
2

3
p3(r) + 1

9
s3(r)

)
δik

+
(

1

2
p3(r) + 5

6
s3(r)

)
Y ik

2

]
+ . . . (3)

Here ellipsis stays for the contribution of 2n-multipoles with n > 2. 
The quadrupole operator is the (2 J + 1) × (2 J + 1) matrix:

1 In what follows, we shall suppress the hadron’s spin indices σ , σ ′ when their 
position is obvious. Also we introduce here the parametrisation of the static stress 
tensor which differs from that in Ref. [8,9] by simple redefinition. The corresponding 
relations are given in Appendix. There we also collected some useful formulae.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Q̂ ik = 1

2

(
Ĵ i Ĵ k + Ĵ k Ĵ i − 2

3
J ( J + 1)δik

)
, (4)

which is expressed in terms of the spin operator Ĵ i . The spin 
operator can be expressed in terms of the SU(2) Clebsch-Gordan 
coefficients (in the spherical basis):

Ĵ μ
σ ′σ = √

J ( J + 1) C Jσ ′
Jσ1μ. (5)

Also we introduce the irreducible (symmetric and traceless) tensor 
of n-th rank:

Y i1i2...in
n = (−1)n

(2n − 1)!! rn+1∂ i1 ...∂ in
1

r
,

i.e. Y0 = 1, Y i
1 = ri

r
, Y ik

2 = rirk

r2
− 1

3
δik, etc. (6)

Note that only monopole quantities ε0(r), p0(r), and s0(r) are left 
after the spin average. The functions ε0(r) and ε2(r) correspond to 
the spin averaged energy density and to the quadrupole deforma-
tion of the energy density in the hadron correspondingly. There is 
obvious relation 

∫
d3r ε0(r) = m. Also it is obvious that ε2(r) = 0

for the hadrons of spin 0 and 1/2. That is why such hadrons can 
be called spherically symmetric.

From the stability condition for the stress tensor ∂i�
ik(r) = 0

one can easily obtain the equations for the functions pn(r) and 
sn(r):

d

dr

(
pn(r) + 2

3
sn(r)

)
+ 2

r
sn(r) = 0, for n = 0,2,3. (7)

These equations2 have the form of the equilibrium relation be-
tween the elastic pressure distribution p0(r) and the shear force 
distribution s0(r) for spherically symmetric systems, see e.g. 
Refs. [5,6]. Therefore, we call the functions p2(r), p3(r) as the 
quadrupole elastic pressure distributions, and the functions s2(r), 
s3(r) as the quadrupole shear force distributions. The functions 
p0(r), s0(r) correspond to the spin averaged pressure and shear 
force distributions, they coincide with the distributions for spheri-
cally symmetric hadrons of the spin 0 and 1/2.

The solution of the Eq. (7) can be written in terms of the 3D 
Fourier transform of (generalised) D-form factors:

pn(r) = 1

6m

1

r2

d

dr
r2 d

dr
D̃n(r) = 1

6m
∂2 D̃n(r),

sn(r) = − 1

4m
r

d

dr

1

r

d

dr
D̃n(r). (8)

The form (8) of the quadrupole pressure and shear forces also 
ensures that all relations for the force distributions discussed in 
Sec. IX and App. of Ref. [5] are satisfied automatically. In particular, 
the (generalised) von Laue conditions are satisfied automatically:∫

d3r pn(r) = 1

6m

∫
d3r ∂2 D̃n(r) = 0 ,with n = 0,2,3 . (9)

Note that the dimensionless constants (generalised D-terms):

Dn ≡
∫

d3r D̃n(r) = m

∫
d3r r2 pn(r)

= − 4

15
m

∫
d3r r2sn(r) , (10)

2 Such type of the equation can be called “hadron shape formation equation”. 
Indeed, the non-trivial shape of the pressure distribution (hadron shape) appears 
due to non-trivial shear force distribution sn(r), the latter is also called pressure 
anisotropy [10]. Interestingly the pressure anisotropy (shear force distribution) plays 
an essential role in astrophysics [10], see the review [11] on the role of pressure 
anisotropy for self-gravitating systems in astrophysics and cosmology.
are characteristics of the elastic properties of the hadron which 
are as fundamental as other mechanical properties of the hadron 
such as the mass and the spin. In principle, they could be listed in 
PDG on equal footing with the mass and spin of particles. The first 
measurements of D0 in hard QCD processes became available for 
the nucleon in Refs. [12,13] and in Ref. [14] for the pion. Profound 
studies of all subtleties in extraction of the D-term D0 from hard 
exclusive processes can be found in Ref. [15].

The first studies of the quadrupole energy, elastic pressure, and 
shear force distributions were performed in Ref. [9] for the case of 
ρ-meson, where, the authors employed the light-cone constituent 
quark model. In the present paper we shall derive the relations 
between quadrupole energy, elastic pressure, and shear force dis-
tributions for the baryons in the large-Nc limit. In the latter limit 
the baryons can be viewed as the chiral solitons. Our relations are 
independent of the dynamics (effective field theory) describing the 
chiral soliton and can be used as a strong criterion to check the 
hypothesis that the baryons are chiral solitons.

2. Gravitational form factors of the baryon as chiral soliton

The most striking success of the old Skyrme idea [16] that 
baryons can be viewed as solitons of the pion (or chiral) field, 
is the classification of light baryons it suggests. This idea implies 
that various baryons are quantum excitations of the same classi-
cal object – the chiral soliton and, hence, the properties of baryons 
are interrelated. Quantum Chromodynamics has shed some light 
into why the chiral soliton picture is correct: we know now that 
the spontaneous chiral symmetry breaking in QCD is, probably, 
the most important feature of strong interactions, determining to 
a great extent their dynamics, while the large Nc (= numbers of 
colours) argumentation by Witten [17,18] explains why the pion 
field inside the nucleon can be considered as a classical one, i.e. as 
a “chiral soliton”.

Following Witten [18] we assume the self-consistent pseu-
doscalar field which binds up the Nc quarks in the “classical” 
baryon (i.e. the soliton field) to be of the hedgehog form3:

U0(r) = exp
(
iτ ana P (r)

)
, (11)

where the unit vector na = ra/r, and the spherically-symmetric 
profile function P (r) is defined by dynamics. We shall not need 
the concrete form of this function in what follows – for us the 
particular form of the underlying effective field theory is not rel-
evant. The only hypothesis we do here is that the baryon is the 
chiral soliton of the form (11).

In order to provide the “classical” baryon with specific quantum 
numbers one has to consider an SU (2)-rotated pseudoscalar field:

U (r, t) = R(t)U0(r)R†(t), (12)

where R(t) is an unitary SU (2) matrix depending only on time and 
U0(r) is the static hedgehog field given by Eq. (11). Due to chiral 
symmetry the dynamics can depend only on the angular velocity 
of the rotation:

�i = i

2
tr

(
R∂t R†τ i

)
. (13)

Quantizing this rotation one gets the spectrum of baryons and 
relation of the angular velocity to the spin operator of the cor-

responding baryon �i = Ĵ i/I . Here I ∼ Nc is the soliton moment 
of inertia, its particular value is not relevant for us here. We see 

3 We consider the case of two flavours and the small violation of the isospin 
symmetry is neglected. The generalisation to the three flavour case and inclusion of 
the flavour symmetry breaking terms are straightforward.
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that the expansion of any observable in the angular velocity corre-
sponds to the 1/Nc expansion.

Looking on Eqs. (2), (3) we come to our first conclusion that 
all quadrupole quantities appear in the second order of the angu-
lar velocity expansion and, hence, are 1/N2

c suppressed relative to 
monopole one. Moreover, we make a key observation – the angu-
lar velocity dependence can enter any quantity only through the 
zero components of the left and right chiral currents:

L0 = U †(r, t)∂t U (r, t)

= U †(r, t) [U (r, t),�] ∝ iU †(r, t)
[ �� × �n

]i
τ i, (14)

R0 = U (r, t)∂t U †(r, t)

= U (r, t)
[

U †(r, t),�
]

∝ iU (r, t)
[ �� × �n

]i
τ i, (15)

where the last proportionality follows from the hedgehog form of 
the chiral field of the soliton (11). It reflects the fact that for the 
hedgehog form of the chiral field the isospin rotations can be com-
pensated by the rotation of the coordinate system. From this key 
observation we conclude that the static EMT in the soliton pic-
ture can depend on the baryon’s spin operator Ĵ i only through 

the vector product 
[ �̂J × �n

]i
, independently of concrete dynam-

ics.

2.1. Energy densities of rotating chiral soliton

Above we observed that the 1/Nc corrections to the static EMT 

can be obtained as the expansion in the vector 
[ �� × �n

]i
. Therefore 

we can write general form of the rotational corrections (up to ∼
�2 order) to the static �00(r) as:

δrot�
00(r) =

[ �� × �n
]i [ �� × �n

]i
F (r). (16)

Here the function of the radial coordinate F (r) depends on the 
concrete dynamics and again not relevant for derivations here. 
Quantizing the rotations (�i = Ĵ i/I) and comparing the obtained 
form to the general parametrisation (2) we obtain the first rela-
tion:

δrotε
( J )
0 (r) = −2

3
J ( J + 1) ε2(r). (17)

Here the rotational correction to the monopole energy density 
δrotε

( J )
0 (r) for the baryon excitation of the spin J has general form 

δrotε
( J )
0 (r) ∼ J ( J + 1) which is shown in Eq. (17). Note that this re-

lation (and the relations derived below) can have corrections of the 
order of ∼ 1/N3

c . Using the relation (17), we can relate the energy 
densities for � baryon ( J = 3/2) and the nucleon in the following 
way:

ε�
0 (r) + 2ε�

2 (r) = εN
0 (r). (18)

This is the first example of relations between mechanical charac-
teristics of different baryons which follows from the soliton nature 
of baryons in the large Nc limit. To estimate the typical size of the 
quadrupole energy density ε�

2 (r) we first use the obvious relation:∫
d3r

(
ε�

0 (r) − εN
0 (r)

)
= m� − mN . (19)

Further, with help of Eq. (18), we obtain:∫
d3r ε�

2 (r) = −1

2
(m� − mN) ≈ −146 MeV. (20)

This numerical value is about 10% of the integral 
∫

d3r ε�
0 (r) =

m� ≈ 1232 MeV, compatible with being the 1/N2
c correction.
2.2. Quadrupole pressure and shear forces of rotating chiral soliton

Again using the fact that the dependence of the static EMT of 
the chiral soliton can depend on the angular velocity only through 

the vector 
[ �� × �n

]i
, we can write the general decomposition of 

the angular velocity correction to static stress tensor as:

δrot�
ik(r) =

[ �� × �n
]i [ �� × �n

]k
G1(r)

+
[ �� × �n

]p [ �� × �n
]p [

δikG2(r) + Y ik
2 G3(r)

]
. (21)

Here G1,2,3(r) are functions depending on the concrete dynamics. 
Quantizing the rotations (�i = Ĵ i/I) and comparing the obtained 
form to the general parametrisation (3) we obtain remarkable re-
lation:

p2(r) + 2

3
s2(r) = 0. (22)

The combination p2(r) + 2
3 s2(r) enters the equilibrium equation (7)

which under the condition (22) implies nullification of both p2(r)
and s2(r). Taking into account this nullification we arrive eventu-
ally to the following non-trivial relations:

p2(r) = s2(r) = 0, δrots( J )
0 (r) = −2

3
J ( J + 1) s3(r),

δrot p( J )
0 (r) = −2

3
J ( J + 1) p3(r). (23)

The first of these relations is very interesting predictions of the 
large Nc picture of baryons as the chiral solitons. Due to its sim-
plicity it is the easiest to check, say on the lattice or in other QCD 
based models. These would be the nice check of the soliton nature 
of baryons.

Let us see the physics meaning of p2(r) and s2(r) which nul-
lify in the soliton picture of baryons. With the parameterisation 
(3) the force acting on the infinitesimal radial area element dSr

(dS = dSr er + dSθ eθ + dSφeφ ) has the following spherical compo-
nents:

dFr

dSr
= p0(r) + 2

3
s0(r)

+ Q̂ rr
(

p2(r) + 2

3
s2(r) + p3(r) + 2

3
s3(r)

)
, (24)

dFθ

dSr
= Q̂ θr

(
p2(r) + 2

3
s2(r)

)
,

dFφ

dSr
= Q̂ φr

(
p2(r) + 2

3
s2(r)

)
. (25)

We see that in contrast to the spherically symmetric hadron, the 
radial area element experiences not only normal forces, but the 
tangential one as well. The size of the tangential forces is governed
by p2 and s2 as these forces are proportional to 2

3 s2(r) + p2(r). The 
absence of these tangential forces is the remarkable prediction of 
the soliton picture of baryons.

With help of Eq. (23) we can relate the fundamental charac-
teristics of the baryon elastic properties (10) (generalised D-terms) 
for different baryons:

D�
2 = 0, D�

0 + 2D�
3 = DN

0 . (26)

The same relations are valid for pressure and shear force distribu-
tions in the nucleon and in � baryon.

The rotational corrections to the monopole (spin averaged) 
pressure and shear force distributions were computed in the 
framework of the Skyrme model in Ref. [19] and studied in the 



4 J.Yu. Panteleeva, M.V. Polyakov / Physics Letters B 809 (2020) 135707
same model in details in Ref. [20]. We refer the reader to these 
papers for the numerical values of the rotational corrections in the 
Skyrme model. Here we just give the value of the generalised D-
terms (10) for � baryon and the nucleon which we obtain using 
the Skyrme model results of Ref. [20]:

DN
0 ≈ −3.40, D�

0 ≈ −2.65, D�
2 = 0, D�

3 ≈ −0.38. (27)

The relative numerical values are compatible with the expectation 
from the 1/Nc counting.

3. Conclusion and outlook

We derive number of relations between quadrupole energy, 
elastic pressure, and shear force distributions in baryons using the 
large Nc picture of baryons as chiral solitons (see Eqs. (17), (18), 
(23), (26)). The obtained large Nc relations are independent of 
particular dynamics and should hold in any picture in which the 
baryon is the chiral soliton. The relations provide a powerful tool 
to check the hypothesis that the baryons are chiral solitons, say 
using lattice QCD.

Probably the most remarkable (and the easiest to check) pre-
diction of the soliton picture is the nullification of the generalised 
D-term D2. We think it should be rather easy to measure it on 
the lattice. Qualitatively this prediction of the soliton picture im-
plies the nullification of the tangential forces acting on the ra-
dial area element for any tensor polarisation of the baryon, see 
Eqs. (25), (35). It might be that this nullification is more general 
requirement, like the nullification of the anomalous gravitomag-
netic moment for spin 1/2 fermions proven in [1]. The proof of the 
nullification of the anomalous gravitomagnetic moment for parti-
cles of any spin is given in Ref. [23]. At the moment we are not 
able to prove the conjecture that p2(r) and s2(r) are zero beyond 
1/Nc expansion.

In the consideration here we restrict ourselves to two-flavour 
QCD and to the first rotational band of baryons like the nucleon 
and � baryon. We think it is pretty straightforward to make the 
generalisation to the three-flavour case (see, e.g. Ref. [21]). Also 
the generalisation to the case of other rotational bands (excited 
resonance) can be performed with help of methods developed in 
Ref. [22].
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Appendix A

We give here the conversion of quadrupole elastic pressure and 
shear forces used in Refs. [8,9] to those used here, see Eq. (3):

p0(r) = p̄0(r), (28)

s0(r) = s̄0(r), (29)

p2(r) = p̄2(r) − 1

m2

(
−2

3
p̄′′

3(r) + 2

9
s̄′′

3(r) + 2

3

p̄′
3(r)

r

− 6

27

s̄′
3(r)

r
+ 2

s̄3(r)

r2

)
, (30)

s2(r) = s̄2(r) + 1

m2

(
1

3
s̄′′

3(r) − p̄′′
3(r) + p̄′

3(r)

r
− 10

3

s̄′
3(r)

r

+ 6
s̄3(r)

r2

)
, (31)

p3(r) = 1

m2

(
2

9
s̄′′

3(r) − 5

3
p̄′′

3(r) + 5

3

p̄′
3(r)

r
− 20

9

s̄′
3(r)

r
+ 4

s̄3(r)

r2

)
,

(32)

s3(r) = 1

m2

(
p̄′′

3(r) − 4

3
s̄′′

3(r) − p̄′
3(r)

r
+ 22

3

s̄′
3(r)

r
− 12

s̄3(r)

r2

)
.

(33)

Here the functions p̄n(r) and s̄n(r) correspond to quadrupole pres-
sure and share force distributions from Refs. [8,9], and pn(r) and 
sn(r) corresponding quantities from Eq. (3). We remind that p̄n(r)
and s̄n(r) from Refs. [8,9] also satisfy “hadron shape forming” 
(equilibrium) equation (7), one can easily check that the conver-
sion formulae given above preserve the form of the equilibrium 
equation.

The physics meaning of the quadrupole elastic pressures (p2

and p3) and quadrupole shear forces (s2 and s3) is illustrated by 
Eqs. (24), (25). Yet another way to show that the equilibrium equa-
tions (7) can be viewed as “hadron shape formation” equation is 
given by simple fact that the change of the forces with the dis-
tance from the hadron centre is governed by:

d

dr

(
dFr

dSr

)
= −2

r

[
s0(r)) + Q̂ rr (s2(r) + s3(r))

]
, (34)

d

dr

(
dFθ

dSr

)
= −2s2(r)

r
Q̂ θr,

d

dr

(
dFφ

dSr

)
= −2s2(r)

r
Q̂ φr . (35)
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