Physics Letters B 809 (2020) 135707

www.elsevier.com/locate/physletb

Contents lists available at ScienceDirect

Physics Letters B

PHYSICS LETTERS B

Quadrupole pressure and shear forces inside baryons in the large N, n

limit

Julia Yu. Panteleeva®P, Maxim V. Polyakov ®%*

Check for
updates

4 Ruhr University Bochum, Faculty of Physics and Astronomy, Institute of Theoretical Physics II, D-44780 Bochum, Germany

b physics Department, Irkutsk State University, Karl Marx str. 1, 664003, Irkutsk, Russia
¢ Petersburg Nuclear Physics Institute, Gatchina, 188300, St. Petersburg, Russia

ARTICLE INFO ABSTRACT

Article history:

Received 14 April 2020

Received in revised form 5 July 2020
Accepted 14 August 2020

Available online 19 August 2020
Editor: J.-P. Blaizot

soliton.

We derive number of relations between quadrupole energy, elastic pressure, and shear force distributions
in baryons using the large N picture of baryons as chiral solitons. The obtained large N, relations are
independent of particular dynamics and should hold in any picture in which the baryon is the chiral

One of remarkable qualitative predictions of the soliton picture is the nullification of the tangential forces

acting on the radial area element for any tensor polarisation of the baryon. The derived relations provide
a powerful tool to check the hypothesis that the baryons are chiral solitons, say using lattice QCD.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The linear response of a hadron to a change of the external
space-time metric is described by the gravitational form factors
(GFFs). For the first time the GFFs for spin 0 and 1/2 were intro-
duced and discussed in details in Refs. [1,2], for spin-1 particles in
Ref. [3] and for arbitrary spin hadrons in recent Ref. [4]. The GFFs
contain rich information about the internal structure of hadrons,
for a detailed review see Ref. [5]. Particular interest for us here
are the energy distributions and mechanical properties - elastic
pressure and shear force distributions inside the hadron. These
fundamental distributions are encoded in the static energy mo-
mentum tensor (EMT) defined in the Breit frame as [6]:

A
————e
(2m)32E
Here (:)ggD(O) is the QCD EMT operator which matrix element is
computed between hadron states with spins projections o, ¢’ and
momenta p® = p¥ = E =,/m2? + A2/4, and p" = —p' = Al/2. The
00 component of the static EMT contains the information about
the energy distribution inside the hadron, 0i components about

the spin distribution, and ik components provide us the distribu-
tion of elastic pressure and shear forces inside the hadron [6].

O (,0',0) = SIAT( o Ok Op.o). (1)
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Various components of the static EMT for arbitrary spin hadron
can be decomposed in multipoles of the hadron’s spin operator.
The expansion to the quadrupole order has the following form
[7-9]:

O%(r) = eo(r) +£2(NQPIYSI + ..., 2)
ik ik ik 1 1 A ik
OF () =po(rs" +so(NY, + <P2(T) + 3P3 r — 553(0) Q
1 1
+ (Sz(r) - Eps(r) + 553 (r)>
x2[ QPP+ Qoyll - s ravLe)
A pq 2 1 ik
+ QPIY;" | | =p3(r) + =s3(1) |8
3 9
e > Yy (3)
5}73(1’)4—653(1‘) 9 |+

Here ellipsis stays for the contribution of 2"-multipoles with n > 2.
The quadrupole operator is the (2] + 1) x (2] + 1) matrix:

! In what follows, we shall suppress the hadron’s spin indices o, o’ when their
position is obvious. Also we introduce here the parametrisation of the static stress
tensor which differs from that in Ref. [8,9] by simple redefinition. The corresponding
relations are given in Appendix. There we also collected some useful formulae.
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which is expressed in terms of the spin operator ] i, The spin
operator can be expressed in terms of the SU(2) Clebsch-Gordan
coefficients (in the spherical basis):

1 =VId+ 1 clg,. (5)
Also we introduce the irreducible (symmetric and traceless) tensor
of n-th rank:

Yl’]l’zi..l’n — (_‘1)11 rTH-lal']' .ainl
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.C. o=—1, 1= 5 2 — Tz 3 ) .

Note that only monopole quantities €o(r), po(r), and so(r) are left
after the spin average. The functions €¢(r) and &, (r) correspond to
the spin averaged energy density and to the quadrupole deforma-
tion of the energy density in the hadron correspondingly. There is
obvious relation fd3r go(r) =m. Also it is obvious that &,(r) =0
for the hadrons of spin 0 and 1/2. That is why such hadrons can
be called spherically symmetric.

From the stability condition for the stress tensor 3;©®*(r) =0
one can easily obtain the equations for the functions p,(r) and

sp(r):

; (pn(r) + 2sn(r)> gsn(r) =0, forn=0,2,3. (7)
These equations? have the form of the equilibrium relation be-
tween the elastic pressure distribution po(r) and the shear force
distribution sg(r) for spherically symmetric systems, see e.g.
Refs. [5,6]. Therefore, we call the functions p,(r), p3(r) as the
quadrupole elastic pressure distributions, and the functions s, (r),
s3(r) as the quadrupole shear force distributions. The functions
po(r), so(r) correspond to the spin averaged pressure and shear
force distributions, they coincide with the distributions for spheri-
cally symmetric hadrons of the spin 0 and 1/2.

The solution of the Eq. (7) can be written in terms of the 3D
Fourier transform of (generalised) D-form factors:

d~ 1
Pa(n) = o5 o rt o D) = —azD n(r),
1 di d ~
sp(r) = ~am a?aDn(r)- (8)

The form (8) of the quadrupole pressure and shear forces also

ensures that all relations for the force distributions discussed in

Sec. IX and App. of Ref. [5] are satisfied automatically. In particular,
(generalised) von Laue conditions are satisfied automatically:

the (
/ drpa(r) =

Note that the dimensionless constants (generalised D-terms):
/d3rD r) = /d3r r% pa(r)

_ 4 3
= 15m/d rris,(r), (10)

1 ~
m/d3r32Dn(r)=0,withn=0,2,3. 9)

2 Such type of the equation can be called “hadron shape formation equation”.
Indeed, the non-trivial shape of the pressure distribution (hadron shape) appears
due to non-trivial shear force distribution s,(r), the latter is also called pressure
anisotropy [10]. Interestingly the pressure anisotropy (shear force distribution) plays
an essential role in astrophysics [10], see the review [11] on the role of pressure
anisotropy for self-gravitating systems in astrophysics and cosmology.

are characteristics of the elastic properties of the hadron which
are as fundamental as other mechanical properties of the hadron
such as the mass and the spin. In principle, they could be listed in
PDG on equal footing with the mass and spin of particles. The first
measurements of Dy in hard QCD processes became available for
the nucleon in Refs. [12,13] and in Ref. [14] for the pion. Profound
studies of all subtleties in extraction of the D-term Dy from hard
exclusive processes can be found in Ref. [15].

The first studies of the quadrupole energy, elastic pressure, and
shear force distributions were performed in Ref. [9] for the case of
p-meson, where, the authors employed the light-cone constituent
quark model. In the present paper we shall derive the relations
between quadrupole energy, elastic pressure, and shear force dis-
tributions for the baryons in the large-N. limit. In the latter limit
the baryons can be viewed as the chiral solitons. Our relations are
independent of the dynamics (effective field theory) describing the
chiral soliton and can be used as a strong criterion to check the
hypothesis that the baryons are chiral solitons.

2. Gravitational form factors of the baryon as chiral soliton

The most striking success of the old Skyrme idea [16] that
baryons can be viewed as solitons of the pion (or chiral) field,
is the classification of light baryons it suggests. This idea implies
that various baryons are quantum excitations of the same classi-
cal object - the chiral soliton and, hence, the properties of baryons
are interrelated. Quantum Chromodynamics has shed some light
into why the chiral soliton picture is correct: we know now that
the spontaneous chiral symmetry breaking in QCD is, probably,
the most important feature of strong interactions, determining to
a great extent their dynamics, while the large N, (= numbers of
colours) argumentation by Witten [17,18] explains why the pion
field inside the nucleon can be considered as a classical one, i.e. as
a “chiral soliton”.

Following Witten [18] we assume the self-consistent pseu-
doscalar field which binds up the N, quarks in the “classical”
baryon (i.e. the soliton field) to be of the hedgehog form>:

Uo(r) = exp (it"n"P (1)), (11)

where the unit vector n® =r%/r, and the spherically-symmetric
profile function P(r) is defined by dynamics. We shall not need
the concrete form of this function in what follows - for us the
particular form of the underlying effective field theory is not rel-
evant. The only hypothesis we do here is that the baryon is the
chiral soliton of the form (11).

In order to provide the “classical” baryon with specific quantum
numbers one has to consider an SU(2)-rotated pseudoscalar field:

U(r,t) = R()Uo(mRT (), (12)

where R(t) is an unitary SU(2) matrix depending only on time and
Uop(r) is the static hedgehog field given by Eq. (11). Due to chiral
symmetry the dynamics can depend only on the angular velocity
of the rotation:

o A
o =t (RatRTr'). (13)

Quantizing this rotation one gets the spectrum of baryons and
relation of the angular velocity to the spin operator of the cor-
responding baryon Qi = Ji/I. Here I ~ N is the soliton moment
of inertia, its particular value is not relevant for us here. We see

3 We consider the case of two flavours and the small violation of the isospin
symmetry is neglected. The generalisation to the three flavour case and inclusion of
the flavour symmetry breaking terms are straightforward.
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that the expansion of any observable in the angular velocity corre-
sponds to the 1/N. expansion.

Looking on Egs. (2), (3) we come to our first conclusion that
all quadrupole quantities appear in the second order of the angu-
lar velocity expansion and, hence, are 1 /N? suppressed relative to
monopole one. Moreover, we make a key observation - the angu-
lar velocity dependence can enter any quantity only through the
zero components of the left and right chiral currents:

Lo=U'(r,H)dU(r,t)

—UT(r,0) (U, t), Q] iU (x, t) [Ez x ﬁ]i T, (14)
Ro=U(r, t)a,U'(r,0)

— U@t [UT(r, t),Q](in(r, 0 [fzxﬁ]ir", (15)

where the last proportionality follows from the hedgehog form of
the chiral field of the soliton (11). It reflects the fact that for the
hedgehog form of the chiral field the isospin rotations can be com-
pensated by the rotation of the coordinate system. From this key
observation we conclude that the static EMT in the soliton pic-
ture can depend on the baryon’s spin operator J' only through

5 S L
the vector product [ J x n], independently of concrete dynam-
ics.

2.1. Energy densities of rotating chiral soliton

Above we observed that the 1/N, corrections to the static EMT

- L7t
can be obtained as the expansion in the vector | 2 x n] . Therefore

we can write general form of the rotational corrections (up to ~
Q? order) to the static ®%(r) as:

- ir= .7
510t @%(r) = [Q x n] [Q x n] F(r). (16)
Here the function of the radial coordinate F(r) depends on the
concrete dynamics and again not relevant for derivations here.
Quantizing the rotations (£ = Ji/I) and comparing the obtained

form to the general parametrisation (2) we obtain the first rela-
tion:

2
Srotsé])(r)=—§](]+1)82(f)- (17)

Here the rotational correction to the monopole energy density
Smteéj ) (r) for the baryon excitation of the spin | has general form
5roteéj)(r) ~ J(J +1) which is shown in Eq. (17). Note that this re-
lation (and the relations derived below) can have corrections of the
order of ~ 1/N?. Using the relation (17), we can relate the energy
densities for A baryon (J =3/2) and the nucleon in the following
way:

eo () +2e2 () =eb ). (18)

This is the first example of relations between mechanical charac-
teristics of different baryons which follows from the soliton nature
of baryons in the large N. limit. To estimate the typical size of the
quadrupole energy density 82A (r) we first use the obvious relation:

/d3r (80A(r)—86\’(r)):mA —my. (19)
Further, with help of Eq. (18), we obtain:

1
/d3r82A(r)=—§(mA —mpy) ~ —146 MeV. (20)

This numerical value is about 10% of the integral [d°r &{'(r) =
ma ~ 1232 MeV, compatible with being the 1/N§ correction.

2.2. Quadrupole pressure and shear forces of rotating chiral soliton

Again using the fact that the dependence of the static EMT of
the chiral soliton can depend on the angular velocity only through

-7l . ..
the vector [Q X n] , we can write the general decomposition of
the angular velocity correction to static stress tensor as:

) o .7ir- L1k
Sroc®* (r) = [sz X n] [sz x n] G1(r)
& =17 T8 o =1P [sik ik
+ [Q x n] [sz x n] [5 Go(r) + Vi G3(r)]. 1)
Here G1,3,3(r) are functions depending on the concrete dynamics.
Quantizing the rotations (2! = Ji/I) and comparing the obtained

form to the general parametrisation (3) we obtain remarkable re-
lation:

2
pa(r) + gsz(r) =0. (22)

The combination p,(r)+ %sz(r) enters the equilibrium equation (7)
which under the condition (22) implies nullification of both p,(r)
and sy (r). Taking into account this nullification we arrive eventu-
ally to the following non-trivial relations:

_ _ Dy 2
p2(r) =s2(r) =0, Srotsy (1) = 31(J+1)53(r),

2
Srotp§ (1) = ~3JU+1 P30, (23)

The first of these relations is very interesting predictions of the
large N, picture of baryons as the chiral solitons. Due to its sim-
plicity it is the easiest to check, say on the lattice or in other QCD
based models. These would be the nice check of the soliton nature
of baryons.

Let us see the physics meaning of p(r) and s,(r) which nul-
lify in the soliton picture of baryons. With the parameterisation
(3) the force acting on the infinitesimal radial area element dS;
(dS =dSye; +dSpeg +dSyey) has the following spherical compo-
nents:

dF; 2
d_Sr =po(r) + §SO(T)
n 2 2

+Q" (pz(r) + gsz(r) + p3(r) + 553(r)> , (24)
dFo Ay, 2
s, Q7 { p2(n) + §Sz(r) ,
dF A 2
d—s‘f =Q” (Pz(r) + §Sz(T)) . (25)

We see that in contrast to the spherically symmetric hadron, the
radial area element experiences not only normal forces, but the
tangential one as well. The size of the tangential forces is governed
by p> and s; as these forces are proportional to %sz (r)+ pa2(r). The
absence of these tangential forces is the remarkable prediction of
the soliton picture of baryons.

With help of Eq. (23) we can relate the fundamental charac-
teristics of the baryon elastic properties (10) (generalised D-terms)
for different baryons:

D =0, D§ +2D5 =D} (26)

The same relations are valid for pressure and shear force distribu-
tions in the nucleon and in A baryon.

The rotational corrections to the monopole (spin averaged)
pressure and shear force distributions were computed in the
framework of the Skyrme model in Ref. [19] and studied in the
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same model in details in Ref. [20]. We refer the reader to these
papers for the numerical values of the rotational corrections in the
Skyrme model. Here we just give the value of the generalised D-
terms (10) for A baryon and the nucleon which we obtain using
the Skyrme model results of Ref. [20]:

DY ~ —3.40, D§ ~ —2.65, D5 =0, D§ ~ —0.38. (27)

The relative numerical values are compatible with the expectation
from the 1/N. counting.

3. Conclusion and outlook

We derive number of relations between quadrupole energy,
elastic pressure, and shear force distributions in baryons using the
large N. picture of baryons as chiral solitons (see Egs. (17), (18),
(23), (26)). The obtained large N, relations are independent of
particular dynamics and should hold in any picture in which the
baryon is the chiral soliton. The relations provide a powerful tool
to check the hypothesis that the baryons are chiral solitons, say
using lattice QCD.

Probably the most remarkable (and the easiest to check) pre-
diction of the soliton picture is the nullification of the generalised
D-term D,. We think it should be rather easy to measure it on
the lattice. Qualitatively this prediction of the soliton picture im-
plies the nullification of the tangential forces acting on the ra-
dial area element for any tensor polarisation of the baryon, see
Egs. (25), (35). It might be that this nullification is more general
requirement, like the nullification of the anomalous gravitomag-
netic moment for spin 1/2 fermions proven in [1]. The proof of the
nullification of the anomalous gravitomagnetic moment for parti-
cles of any spin is given in Ref. [23]. At the moment we are not
able to prove the conjecture that p;(r) and s;(r) are zero beyond
1/N, expansion.

In the consideration here we restrict ourselves to two-flavour
QCD and to the first rotational band of baryons like the nucleon
and A baryon. We think it is pretty straightforward to make the
generalisation to the three-flavour case (see, e.g. Ref. [21]). Also
the generalisation to the case of other rotational bands (excited
resonance) can be performed with help of methods developed in
Ref. [22].
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Appendix A

We give here the conversion of quadrupole elastic pressure and
shear forces used in Refs. [8,9] to those used here, see Eq. (3):

Po(r) = po(r), (28)

so(r) =so(1), (29)
_ 2 - _ 2

2= palt) — o (=330 + 5550+ 5 20

6 550  _53(n)
27 r 2r_2>’ (30)
1 105"
sz<r>=§z(r>+7< 550~ ‘”()+”3(r) 1950
m 3 r
6&) (31)
T
1 (2, _, 5p5() 2055 53()
p3(r)=ﬁ<§sg(r)——p3(r)+ 3 5 3r +4=3 )
(32)
1/, _,, P (r) 22 85(r) 53(r)
s3(r) = - (pg(r) - —sg(r) 3 3 3r -12 3r2 )
(33)

Here the functions p,(r) and 5,(r) correspond to quadrupole pres-
sure and share force distributions from Refs. [8,9], and p,(r) and
sp(r) corresponding quantities from Eq. (3). We remind that p;,(r)
and Sp(r) from Refs. [8,9] also satisfy “hadron shape forming”
(equilibrium) equation (7), one can easily check that the conver-
sion formulae given above preserve the form of the equilibrium
equation.

The physics meaning of the quadrupole elastic pressures (p2
and ps3) and quadrupole shear forces (s; and s3) is illustrated by
Eqgs. (24), (25). Yet another way to show that the equilibrium equa-
tions (7) can be viewed as “hadron shape formation” equation is
given by simple fact that the change of the forces with the dis-
tance from the hadron centre is governed by:

d (dF, 2 -
- (E) =[50 + Q" 200 +5301) . (34)

d (dFg\ _ 25(r) ag, d (dFg 252(T)A
dr(d5r>_ r 4 dr<d5r> — Q" 6y
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