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Abstract: The variational quantum algorithm (VQA) is a hybrid classical–quantum algorithm. It can

actually run in an intermediate-scale quantum device where the number of available qubits is too

limited to perform quantum error correction, so it is one of the most promising quantum algorithms

in the noisy intermediate-scale quantum era. In this paper, two ideas for solving the learning with

errors problem (LWE) using VQA are proposed. First, after reducing the LWE problem into the

bounded distance decoding problem, the quantum approximation optimization algorithm (QAOA)

is introduced to improve classical methods. Second, after the LWE problem is reduced into the

unique shortest vector problem, the variational quantum eigensolver (VQE) is used to solve it, and

the number of qubits required is calculated in detail. Small-scale experiments are carried out for the

two LWE variational quantum algorithms, and the experiments show that VQA improves the quality

of the classical solutions.

Keywords: quantum; LWE; QAOA; VQE; KYBER

1. Introduction

Lattice theory is a classic subject in mathematical research, and it has critical applica-
tions in many fields such as the optimization problem and information coding. In 1996,
Ajtai [1] proved that the worst-case hardness of the shortest vector problem (SVP) can
be reduced to the hardness of SVP in a class of random lattices, thus providing provable
security of lattice-based cryptosystems. Since then, various lattice-based cryptosystems are
proposed, such as Ajtai-Dwork [2] and the Number Theory Research Unit [3].

In 2005, Regev proposed an encryption algorithm based on LWE [4]. Compared with
previous lattice-based cryptosystems, the ciphertext size and key size of LWE-based cryp-
tosystems are greatly reduced. Therefore, LWE began to be applied to many cryptographic
primitives, such as Key-Dependent Message [5], Fully Homomorphic Encryption [6] and so
forth. In July 2022, The National Institute of Standards and Technology completed the third
round of the Post-Quantum Cryptography standardization process, and four candidate
algorithms have been announced. Among them, the public-key encryption algorithm
CRYSTALS-KYBER [7] and the digital signature algorithm CRYSTALS-Dilithium [8] are
constructed based on the module-LWE problem. Therefore, analyzing LWE algorithms is
important to the security of post-quantum cryptography.

The analysis methods of LWE can be classified into combinatorial methods, algebraic
methods, lattice methods and the exhaustive search. The combinatorial method mainly
refers to an extended application of the Gaussian elimination [9], but it requires a large
number of samples. The algebraic method refers to the Arora-Ge algorithm [10], and the
complexity is also exponential in the number of LWE dimensions. There are three main
lattice methods: the dual method is used to attack decision-LWE instances by solving
the short integer solution problem on the dual lattice [1]; the decoding method is used to
directly solve the bounded distance decoding problem (BDD) on the original lattice [11,12];
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the primary method is used to further reduce the BDD problem to the Unique-SVP prob-
lem [13–15]. The exhaustive search is not suitable for practical applications because of its
high time complexity.

At the same time, VQA, such as QAOA [16], VQE [17], and FQE [18], has become the
most suitable technology to achieve quantum advantage using noisy intermediate-scale
quantum (NISQ) devices. Some works have studied how to solve hard lattice problems
by VQA. Paper [19] analyzed the energy gaps between the first three excited states of the
Hamiltonian when solving SVP with low dimension by quantum adiabatic computation.
The conclusion in [19] inspired the use of QAOA to find the ground state. Ref. [20]
calculated the number of qubits for special lattices and concluded that 1.5nlogn + n +
log(det(L)) qubits sufficed to obtain the shortest vector of n-dimensional lattice L. Ref. [21]
proposed to solve SVP by VQE and also pointed out that their algorithm was not limited to
special lattices.

The work in this paper consists of two aspects. Firstly, we use QAOA to optimize
the Nearest Plane algorithm and solve LWE. Secondly, inspired by Ref. [21], we propose a
hybrid algorithm using VQE to attack LWE and calculate the number of qubits required
to attack specific LWE cryptosystems. For the two LWE algorithm ideas, we conduct
small-scale experimental simulations. The experiments show that QAOA improves the
quality of classical solutions, and the quality of solutions obtained by VQE is at least equal
to that of classical solutions when the memory is big enough.

2. Preliminary

2.1. Lattice Theory

Let b1, b2, . . . , bn ∈ R
m be a set of linearly independent vectors, and the lattice gener-

ated by b1, b2, . . . , bn is

Λ = L(b1, b2, . . . , bn) = {α1b1 + α2b2 + . . . + αnbn|α1, α2, . . . , αn ∈ Z}.

In cryptography applications, the lattice dimension is n. Given a matrix A ∈ Z
m∗n
q , the

q-ary lattice refers to

Λq(A
T) = {x ∈ Z

m|∃y ∈ Z
n, s.t.x ≡ yATmodq}.

For a lattice L and its basis matrix B = [b1, b2, . . . , bn], the volume of the lattice is
vol(L) =

√
det(BTB) and the fundamental domain is P1/2(B) = {∑

n
i=1 αibi|αi ∈ [− 1

2 , 1
2 ]}.

The distance between L and vector v ∈ R
m is dist(v,L) = min{‖v − y‖|y ∈ L}. The i-th

successive minima λi(L) is the minimum radius of the ball centered at the origin, which
contains i linearly independent vectors in the lattice. Let L be an n-dimensional lattice;

then, the Gaussian heuristic states that λ1(L) ≈
√

n
2πe vol(L)1/n.

Definition 1. (Shortest vector problem, SVP) For a lattice L, the SVP problem asks to find a
nonzero lattice vector v that minimizes the Euclidean nonzero norm ‖v‖.

Definition 2. (Closest vector problem, CVP) For a lattice L, given a target vector t ∈ R
m that is

not in L, the CVP problem asks to find a lattice vector v that minimizes the Euclidean norm ‖v− t‖.

Definition 3. (Unique shortest vector problem, Unique-SVP) For a lattice L satisfying
λ2(L) > γλ1(L), where γ ≫ 1, the uSVP problem asks to find the shortest nonzero lattice vector.

Definition 4. (Bounded distance decoding, BDD) For a target vector t ∈ R
m that is not in the

given lattice L, which satisfies dist(t,L) < γλ1(L), where γ < 1/2, the BDD problem asks to
find a nonzero lattice vector v that minimizes the Euclidean norm ‖v − t‖.

Algorithms for hard problems on lattices usually perform lattice basis reduction as a
preprocessing module, because a sufficiently good basis improves the algorithms’ success
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probability. The LLL (Lenstra–Lenstra–Lovász) algorithm [22] and the BKZ (block–Korkin–
Zolotarev) algorithm [23] are two famous basis reduction algorithms.

Before introducing the LLL reduction algorithm, we first explain the Gram–Schmidt or-
thogonalization. With a lattice basis B = [b1, b2, . . . , bn], one can calculate its Gram–Schmidt
orthogonalization B∗ = [b∗

1 , b∗
2 , . . . , b∗

n] by the recursion b∗
1 = b1,b∗

i = bi − ∑
i−1
j=1 µi,jb

∗
j

for i = 2, 3, . . . , n, where the Gram–Schmidt coefficients µi,j = 〈bi, b∗
j 〉/〈b∗

j , b∗
j 〉. The LLL

algorithm was proposed in 1982, and the formal description of LLL reduction is detailed as
shown in Algorithm 1.

Algorithm 1 LLL algorithm.

Input: lattice basis B = [b1, b2, . . . , bn] ∈ R
m×n, a reduction parameter δ.

Output: a δ-LLL reduced basis
1: Calculate the Gram–Schmidt orthogonalization B∗ = [b∗

1 , b∗
2 , . . . , b∗

n].
2: for i = 2, 3,. . . , n do
3: for j = i − 1, i − 2,. . . , 1 do
4: bi = bi − ci,jbj, where ci,j = ⌈〈bi, b∗

j 〉/〈b∗
j , b∗

j 〉⌋;

5: end for
6: end for
7: if ∃i, s.t.δ‖b∗

i−1‖2
> ‖µi,i−1b∗

i−1 + b∗
i ‖2 then

8: Swap bi−1 and bi;
9: Go to Step 1.

10: end if
11: return B.

The BKZ algorithm is derived from the KZ (Korkine–Zolotarev) reduction. BKZ uses
the block reduction to improve the LLL algorithm and outputs an (δ, β)-BKZ reduced basis.
To be specific, the BKZ algorithm runs the enumeration algorithm on the sub-lattice with
block size β and obtains its shortest vector. After inserting the shortest vector into the
original basis, LLL reduction with parameter δ is applied on the entire basis to remove
the linear dependency. BKZ performs the above steps iteratively until the basis is no
longer updated.

2.2. The LWE Problem

Definition 5. (Learning with errors distribution) Let n, q > 0 be integers, and α ∈ {0, 1}. Let
s ∈ Z

n
q be a secret vector. The LWE distribution χs,α refers to (a, 〈a, s〉+ e) ∈ Z

n
q × Zq, where

a ∈ Z
n
q is uniformly selected randomly and e is a discrete Gaussian error with standard deviation αq.

Definition 6. (Learning with errors problem) Let n, m, q > 0 be integers, α > 0. Given m samples
(ai, 〈ai, s〉+ ei), i = 1, 2, . . . , m, the search-LWE problem asks to recover the secret vector s ∈ Z

n
q ,

and the decision-LWE problem asks to determine whether the samples are sampled according to χs,α

or the uniform distribution.

Now, we review some lattice-based methods for analyzing the LWE problem. In
general, the decision-LWE can be solved by the short integer solution strategy, and the
search-LWE can be attacked by the BDD strategy or the inhomogeneous short integer
solution strategy. Now, we mainly describe the decoding method and the primal method
in the BDD strategy.

The LWE problem can be written in a matrix form c = As + emodq. Given q ∈ Z,
c ∈ Z

m
q , A = [a1, . . . , am]T ∈ Z

m×n
q , the problem recovers s. The basic idea of the decoding

method is to regard c as the target vector and then use the Nearest Plane algorithm to find
the closest vector in Λq(A). Assuming the basis of Λq(A) is B, before applying the Babai’s
Nearest Plane algorithm, B should be preprocessed to a Gram–Schmidt basis B∗. The
strategy outputs s if and only if e lies in s + P1/2(B

∗), which is determined by the quality
of the basis. Lindner and Peikert improved Babai’s algorithm by admitting a time/success
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trade-off. To be specific, in each iteration, the Lindner–Peikert Nearest Plane algorithm
chooses several close hyperplanes instead of only the closest hyperplane. The idea stretches
P1/2(B

∗) to a cube-like shape and amplifies the success probability.
The primal method is to solve LWE by reducing BDD to the Unique-SVP problem using

an embedding technique. The embedding method is to construct a (m + 1)-dimensional

lattice B′ =
[

B c

0 t

]
. Obviously, the short vector [−e, t] ∈ Z

m+1
q is in B′. Therefore, solving

the Unique-SVP instance recovers the error vector and the secret vector in passing.

2.3. Variational Quantum Algorithm

VQA is a quantum–classical hybrid algorithm that is considered to be implemented
on NISQ devices. Therefore, VQA is expected to demonstrate quantum advantages over
classical computers when solving some specific problems. The workflow of VQA is shown
in Algorithm 2.

Algorithm 2 VQA algorithm.

Input: An optimization problem.
Output: Parameters in the parameterized quantum circuit.

1: Construct the objective function.
2: Construct the parameterized quantum circuit.
3: Prepare the quantum state and measure the expectation value.
4: Use a classical optimizer to determine new parameters.
5: Iterate the procedure in step 3 and 4 until the convergence of the value.
6: return the final parameters.

There are four important modules in VQA [24,25]: the objective function refers to
the cost function that needs to be minimized; the parameterized quantum circuit refers
to a set of unitary operators that manipulate parameters in the optimization process; the
measurement scheme calculates the expectation value; the classical optimizer outputs the
parameters that minimize the objective function.

First, VQA encodes the problem into an objective function O. Let the probability of
measuring qubit q in state |0〉 be pq; then, the objective function of VQA can be expressed
as minθO(θ, {p(θ)}).

Because it is inconvenient to obtain the function value directly by the measurement
probability, the expectation value of a Hamiltonian is introduced, and constructing the objec-
tive function is equivalent to constructing its corresponding Hamiltonian. The Hamiltonian
is a quantum operator that encodes the information of a physical system. Its expectation
value corresponds to the energy of a quantum state. The ground state of the Hamiltonian is
often used as the minimization target of a VQA problem. In practice, the expectation value
of Hamiltonian H

〈H〉U(θ) = 〈0|U†(θ)HU(θ)|0〉
is used to describe the measurement results of the quantum state produced by U(θ).
Therefore, the objective function is

minθO(θ, 〈H〉U(θ)).

If the objective function is defined more compactly, it can be described as minθ〈H〉U(θ).
The objective functions or cost functions constructed in this paper are all in the com-
pact form.

Second, parameterized quantum circuits are a set of unitary operations that depend
on parameters. The parameterized quantum circuit acting on quantum state |ψ0〉 can be
expressed as

|ψ(θ)〉 = U(θ)|ψ0〉,
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where θ are variational parameters.
Most ansatz U can be classified as problem-inspired or hardware-efficient. The con-

struction of problem-inspired ansatz requires the information of specific problems. For
example, the united coupled cluster ansatz in quantum chemistry is constructed by a
parameterized cluster operator T(θ) and acts on the ground state |ψHF〉 in the way of

|ψ(θ)〉 = eT(θ)−T
†
(θ)|ψHF〉. Ansatz in the QAOA algorithm is also problem-inspired, and

its construction is shown in Section 3. Hardware-efficient ansatz is usually expressed as

∏
D
k=1 Uk(θk)Wk, where θ = (θ1, . . . , θD), Uk(θk) = e−iθkVk is a unitary operator derived

from Hamiltonian Vk, and Wk is an unparametrized unitary operator.
Third, in order to obtain the information of quantum state, we need to measure it

in the computational basis and calculate the expectation value of the objective function.
The expectation value of the operator σz can be obtained by 〈σz〉 = 〈ψ|σz|ψ〉 = |α|2 −
|β|2, where |α|2 and |β|2 are the probabilities to measure |ψ〉 in state |0〉 and |1〉. The
measurement defined by σx and σy is first transformed into the basis of σz by σx =
R†

y(π/2)σzRy(π/2), σy = R†
x(π/2)σzRx(π/2) and then measured on a σz basis. Any Pauli

string is measured in the same way, except that it is measured on each qubit separately.
QAOA and VQE are two quantum variational algorithms, so they can be used to solve

optimization problems. Since a quantum circuit is equivalent to a tensor product, it can be
represented on a classical computer, and the expectation value of the cost function can be
calculated, but the memory it consumes grows exponentially with the size of the problem.
For a quantum computer, repeating the preparation of ansatz state and the quantum
measurements, the expectation can be obtained. The quantum resources it consumes
increase polynomially with the scale of the problem, thus showing its superiority over
classical algorithms.

3. The Decoding Method for Solving LWE

This section applies the decoding method to solve LWE. When solving BDD, we use
QAOA to improve Babai’s Nearest Plane algorithm.

First, construct a q-ary lattice Λq(A) = {v ∈ Z
m
q |∃x ∈ Z

n, s.t.v ≡ Axmodq}, whose

lattice basis is equivalent to B = [A|qIm]T ∈ Z
(m+n)×m. Second, perform elementary row

transformations on B and obtain a basis matrix [b′
1, . . . , b′

m]
T ∈ Z

m×m. Third, solve CVP
with the target vector c, and finally output the closest vector w. The last step is to use the
Gaussian elimination to recover s = A−1w.

Now, introduce the application of QAOA when improving Babai’s Nearest Plane
algorithm. Babai’s Nearest Plane algorithm consists of two steps: first, perform the LLL
reduction on the input lattice basis, and then find the linear combination in the reduced
basis so that it forms the closest lattice vector to the given target vector. The formal
description is detailed as Algorithm 3.

In the loop, uj = ⌈〈b, b∗
j 〉/〈b∗

j , b∗
j 〉⌋ only takes one value by the “round to the nearest

integer” function. Through experiments, it is found that when the value range is expanded
to {uj + x|x = 0, 1,−1}, a better solution is often obtained. In a classical algorithm, the pro-
cess requires an exponential increase in computation with respect to the lattice dimension
n. In quantum computing, due to quantum properties, the computing complexity can be
greatly reduced. Therefore, we now introduce the method of encoding the random floating
in uj in two qubits and solving the optimization problem by QAOA.
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Algorithm 3 Babai’s Nearest Plane algorithm.

Input: lattice basis B′ = [b′
1, b′

2, . . . , b′
m] ∈ R

m×m, target vector t ∈ Z
m

Output: vector x ∈ L(B′), which satisfies ‖x − t‖ ≤ 2m/2dist(t,L(B′))
1: Perform the LLL reduction on B′ with parameter δ = 3/4.
2: Use the Gram–Schmidt orthogonalization on the reduced basis and obtain

B∗ = [b∗
1 , b∗

2 , . . . , b∗
m].

3: b = t.
4: for j = m, m − 1,. . . , 1 do
5: b = b − ujb

′
j, where uj = ⌈〈b, b∗

j 〉/〈b∗
j , b∗

j 〉⌋;

6: end for
7: return t − b

First, apply Babai’s Nearest Plane algorithm to calculate the classical optimal solution,
that is, the shortest distance vector bop = (b1

op, b2
op, . . . , bm

op). Then, the result is improved
by QAOA. Let the LLL-reduced basis in Babai’s algorithm be D = [d1, d2, . . . , dm], and
construct the optimization function

F(x1, x2, . . . , xm) = ‖
m

∑
i=1

xidi − bop‖2,

where xi ∈ {−1, 0, 1}, i = 1, 2, . . . , m. It is easy to verify that F(x1, x2, . . . , xm) is a non-

negative function. Let x̂i =
σz

2i−1+σz
2i

2 , which is a quantum operator encoded in the Pauli-Z
basis. The eigenvalues of operator x̂i are −1, 0, 1, which exactly encodes the value of the
variable xi. Therefore, the corresponding problem Hamiltonian is

HC =
m

∑
j=1

|
m

∑
i=1

di,j x̂i − b
j
op I|2.

Obviously, for an m-dimensional lattice, the number of qubits required to optimize Babai’s
algorithm is 2m.

To solve the problem, it is necessary to introduce a mixing Hamiltonian HM = ∑
2m
i=1 σx

i ,
where σx

i is the Pauli-X operator acting on the ith bit. The quantum circuit of QAOA is
defined by the problem Hamiltonian HC, the mixing Hamiltonian HM and parameters
(γ, β). For D-layer QAOA circuits, there are usually 2D variational parameters. The process
of using QAOA to solve the optimization problem is shown in Figure 1, and the algorithm
description is shown in Algorithm 4.

Figure 1. A schematic description of the VQE.
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Algorithm 4 QAOA solving optimization.

Input: the problem Hamiltonian HC, the mixing Hamiltonian HM.
Output: the ground state |ΨC〉 of HC.

1: Prepare the quantum register into |Ψ0〉 = |+〉⊗m.
2: Choose the initial parameters γ, β. Perform HC and HM alternately and obtain

|Ψ(γ, β)〉.
3: Measure the quantum registers and calculate the cost function.
4: Repeat Step 2 and Step 3 several times and calculate the expectation value of the cost

function.
5: Pass the expectation value and parameters (γ, β) to a classical optimizer. Update the

parameters (γ, β).
6: Repeat Steps 2–5 until the result meets a fixed threshold and the parameters are updated

to (γ∗, β∗).
7: return |ΨC〉 = |Ψ(γ∗, β∗)〉

Now, we explain the steps in Algorithm 4. Step 1 performs H⊗m on |0〉⊗m, and we
obtain |+〉⊗m, which is an eigenvector of the Pauli-X operator.

Step 2 applies operators e−iγk HC and e−iβk HM , k = 1, 2, . . . , D, alternately. So, we
generate a variational wave function

|φ(γ, β)〉 = e−iγD HC e−iβD HM . . . e−iγ1 HC e−iβ1 HM |+〉⊗m. (1)

The wave function has 2D parameters {γ1, . . . , γD, β1, . . . , βD}.
The expectation value means

〈Ψ(γ, β)|HC|Ψ(γ, β〉, (2)

which can be obtained by repeatedly preparing |Ψ(γ, β)〉 on the quantum processor and
measuring it on a computational basis. Then, the classical computer performs classical
optimization algorithms to find the optimal parameter. For example, the optimizers use
the gradient descent algorithm to minimize the cost function in an iterative manner. The
method calculates the first-order derivative of the function to compute the gradient. Then,
it moves in the negative direction of the gradient. The termination condition of the gradient
descent method is that the slope of the gradient is below a very small threshold. In the
actual experiment, the algorithm is terminated by setting the empirical number of iterations.

In fact, classical optimization problems are often mapped to a simple Hamiltonian,
which is diagonal in the computational basis. However, it does not mean that the prob-
lem is easy to solve or does not require a quantum solver. First, for example, Max-
Cut is a classical NP-hard problem, and the design of MaxCut problem Hamiltonian is
H = ∑ij

1
2 (I − σz

i σz
j ) [16]. In computational complexity theory, P is a set of relatively

easy problems, and NP indicates hard problems. If MaxCut can be solved by classical
computers easily, then P = NP, which completely overturns the theoretical basis of a range
of fields. Second, processing classical optimization by QAOA usually requires a mixing
Hamiltonian consisting of σx or σy, so quantum computers still work when solving classical
optimization problems.

4. The Primal Method for Solving LWE

In this section, we propose a quantum primal method for solving LWE, where the
Unique-SVP problem is solved by VQE. Although the quantum advantage of solving
classical optimization by VQE is not as obvious as it is in quantum chemistry, understanding
the evolution of the algorithm process is still crucial for improving algorithms running on
classical hardware. We detail the number of qubits required and estimate the quantum
resources when attacking the KYBER cryptosystem. With the development of quantum
computers, resource estimation can also be used as a direction for comparison with pure
classical algorithms.
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4.1. LWE Algorithm

Algotithm 5 shows the procedure of the LWE algorithm.

Algorithm 5 The LWE algorithm.

Input: LWE samples (A, c = As + e) ∈ Z
m×n
q ×Z

m
q

Output: secret vector s ∈ Z
n
q

1: Construct a q-ary lattice Λq(A) = {v ∈ Z
m
q |∃x ∈ Z

n, s.t.v ≡ Axmodq}, whose lattice

basis is equivalent to B = [A|qIm]T ∈ Z
(m+n)×m.

2: Perform elementary row transformations on B and obtain the lattice basis

B1 =

[
In A

′
n×(m−n)

0 qIm−n

]
∈ Z

m×m.

3: Using Kannan’s embedding technique, reduce BDD to Unique-SVP and obtain

B2 =

[
B1 0
c M

]
∈ Z

(m+1)×(m+1).

4: Process B2 with VQE and derive a short vector e.
5: return s = A−1(c − e)

Step 3 expands the q-ary basis by one dimension and embeds the target vector c and
the embedding factor M into matrix B2. When M = ‖e‖, there exists (e,−M) ∈ L(B2) [26].
In this case, proposing the first m bits of the vector recovers e. In the experiment, we
generally take M = 1.

Unique-SVP can be seen as a special case of SVP, and step 4 in Algorithm 5 solves SVP
by VQE. The detailed description is shown in Algorithm 6.

Algorithm 6 VQE solving SVP.

Input: the lattice basis B = [b1, . . . , bm]T ∈ Z
(m+1)×(m+1).

Output: short vector x.
1: Perform BKZ-reduction on B.
2: The SVP problem is encoded to the ground state of the Hamiltonian operator H.
3: Construct parameterized quantum circuits.
4: Repeat preparing an ansatz state |Ψ(θ)〉 from the parameterized quantum circuit and

measuring it in Pauli-Z basis. Calculate the expectation value C(θ).
5: Pass C(θ) and parameters to a classical optimizer. Update the parameter θ and go to

step 4 until the expectation value converges.

The VQE procedure is visualized in Figure 2. Now, we explain the steps in Algorithm 6
in detail. In step 1, the larger the lattice size, the more quantum resources it occupies. In
order to reduce the required qubits, a new basis matrix is first obtained by performing the
BKZ reduction.

Figure 2. A schematic description of the VQE.
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Step 2 constructs the problem Hamiltonian. For Lattice B, SVP is to find a nonzero
vector x satisfying minx∈L(B)‖x‖. Let the row vector of coefficients be z and z 6= 0; then,

we have x = zB. Let G = BBT ; then, we have ‖x‖2 = zBBTzT = zGzT . According to
Algorithm 5, the dimension of the lattice is m′ = m+ 1. So, the SVP problem is equivalent to

minx∈L(B)‖x‖2 = min
z∈Zm′ (

m′

∑
i=1

z2
i Gii + 2 ∑

0≤i<j≤m′
zizjGij). (3)

Before mapping the SVP problem into a Hamiltonian, we first introduce the method
of reducing numbers in the integer interval [−d, d] to a Boolean variable polynomial. Let
t = ⌊logd⌋, introducing t + 1 Boolean variables β0, β1, β2, . . . , βt; the number in the interval
can be expressed as ∑

t−1
i=0 2iβi + (2d + 1 − 2t)βt − d. Therefore, for the coefficient vector z,

if each entry satisfies |zi| ≤ di, i = 1, 2, . . . , m′, it can be expressed by Boolean variables
βi0, . . . , βiti

. Substituting the Boolean variable polynomials into (3), we have

minβ10,...,β1t1
,...,βm′0,...,βm′ t

m′
(h + ∑

ij

hijβ
2
ij + ∑

ij 6=kl

lij,kl βijβkl),

where h, hij, lij,kl are calculated constants. Because βij are Boolean variables, the above
equation is equivalent to

minβ10,...,β1t1
,...,βm′0,...,βm′ t

m′
(h + ∑

ij

hijβij + ∑
ij 6=kl

lij,kl βijβkl). (4)

In the above formula, it is required to find the parameter vector

β = (β10, . . . , β1t1
, . . . , βm′0, . . . , βm′tm′ ) (5)

to minimize the function

∑
ij

hijβij + ∑
ij 6=kl

lij,kl βijβkl .

Encoding the cost function into a Hamiltonian requires a mapping βij → (1 − γij)/2,
where γij ∈ {−1, 1}. Then, substitute γij → σz

ij and 1 → Iij to obtain the problem

Hamiltonian

H = ∑
ij

hij

Iij − σz
ij

2
+ ∑

ij 6=kl

lij,kl

Ii,j − σz
ij

2
⊗ Ikl − σz

kl

2
,

where ij, kl ∈ {10, . . . , 1t1, m′0, . . . , m′tm′} and σz
i is the Pauli-Z operator acting on the ith

bit. The Hamiltonian acts on a Hilbert space spanned by QNum qubits, and it can also be
written as a sum over many local interactions.

To find the ground state of H, step 3 generates a hardware-efficient trial wavefunction,
which is more suitable for available quantum devices [27]. Let |Ψ(θ)〉 = (U(θ)UENT)

D|Ψ0〉
and the reference state is set to |00..0〉. U(θ) are a group of single-qubit rotations deter-
mined by rotation angles θ. UENT are entangling drift operations generating sufficient
entanglement. D defines the level of the quantum circuit. Obviously, with the increase of
D, the convergence speed increases, but the fidelity decreases.

Step 4 calculates C(θ) = 〈Ψ(θ)|H|Ψ(θ)〉. Each iteration requires measuring N times
and the cost obtained for the i-th time is Ci. Then, the expectation value is

C(θ) = 〈Ψ(θ)|H|Ψ(θ)〉 = 1

N

N

∑
i=1

Ci. (6)

If the Hilbert space is too large, because the interaction is local, the Hamiltonian can
be split into a summation over many terms. The expectation calculations for one term
are relatively simple, and we can speed up the computation by parallelizing the quantum
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expectation-value estimation algorithm [28]. After calculating the expectation of each item
on the quantum processor, multiply it by the weight and sum on the classical processor to
obtain the final expectation value.

However, the shortest vector is 0 in this algorithm, so the restriction x 6= 0 needs to
be added. The idea is to increase C when appearing as 0. We assume that among the N
measurements, there are N0 results that are not 0, C = 1

N0
∑

N
i=1 Ci. Obviously, the larger the

N0, the smaller the C.
Step 5 uses the classical optimization algorithm to update θ until the expectation value

converges and the process is similar to QAOA.
We give a toy example to illustrate the process on the quantum processor. For a

more convenient description, the LWE dimension is further limited, and the example also
supports simple experiments on the IBM quantum system. Let q = 3.n = 1, m = 2. The
samples are s + e1 = 1mod3, 2s + e2 = 2mod3. The LLL-reduced matrix after Kannan’s
embedding is 


0 0 1
−1 1 0
1 2 0


.

To simplify the model, suppose zi, i = 1, 2, 3, are already Boolean variables. Then, the
SVP problem can be reduced into finding the minimum value of C = z1 + 2z2 + 5z3 + 2z2z3.
The problem Hamilton is

H = 4.5I1 ⊗ I2 ⊗ I3 − 0.5Z1 ⊗ I2 ⊗ I3 − 1.5I1 ⊗ Z2 ⊗ I3 − 3I1 ⊗ I2 ⊗ Z3 + 0.5I1 ⊗ Z2 ⊗ Z3. (7)

Now, construct a hardware-efficient Ansatz consisting of several parameterized single-
qubit rotation operations and controlled-NOT gates. Using the parameterized circuit shown
in Figure 3, any 3-qubit quantum state |Ψ(θ)〉 can be prepared, and different quantum
states can be output by adjusting the six parameters.

Figure 3. Quantum circuit for 3 qubits.

After preparing the ansatz state and measuring it repeatedly, we calculate the expecta-
tion value. Then, we perform the optimization process on the classical processor. Iterate
the above process, and finally, the parameters corresponding to the optimal result are
(0, π, 0, 0, 0, π) and [z1, z2, z3] = [1, 0, 0]. So, [e1, e2] = [0, 0], s = 1.

4.2. Algorithm Analysis

First, we analyze the range of di in the restriction condition |zi| < di, i = 1, 2, . . . , m′.

Let B̃ = (B−1)T = [b̃1, . . . , b̃m′ ]T ; then, there exists 〈bi, b̃i〉 = {1 i = j

0 i 6= j
. Let the shortest

vector v = ∑
m′
i=1 tibi; then, |〈v, b̃i〉| = |ti| ≤ ‖v‖‖b̃i‖. Due to the Gaussian heuristic,

‖v‖ =
√

m′
2πe vol(L)1/m′

, we have |ti| ≤
√

m′
2πe vol(L)1/m′‖b̃i‖.

For an m′-dimensional matrix B, its orthogonality defect δ(B) = ∏
m′
i=1 ‖bi‖
|det(B)| . Obviously,

for B, there exists δ(B) ≥ 1 and δ(B) = 1 if and only if B is an orthogonal matrix. Therefore,
the total number of qubits can be expressed as

QNum =
m′

∑
i=1

(⌊logdi⌋+ 1) ≤ m′ + log(d1d2 . . . dm′), (8)
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where log(d1d2 . . . dm′) ≤ 0.5m′log( m′
2πe )+ log(vol(L)∏

m′
i=1 ‖b̃i‖) = 0.5m′log( m′

2πe )+ log(δ(B̃)).
For a KZ-reduced matrix B, its orthogonality defect satisfies [29]

δ(B) ≤ (
1

8
m′ +

6

5
)m′/2(

m′

∏
i=1

√
i + 3

2
) ≤ (

1

8
m′ +

6

5
)m′/2(m′ + 3)m′/2(

1

2
)m′

.

So,

log(δ(B̃)) ≤ m′

2
log(

1

8
m′ +

6

5
) +

m′

2
log(m′ + 3)− m′ ≤ m′log(m′ + 3)− m′.

Substituting into Equation (8), we have

QNum ≤ m′ + (
m′

2
log(m′)− m′

2
log(2πe) + m′log(m′ + 3)− m′)

=
m′

2
log(m′)− m′

2
log(2πe) + m′log(m′ + 3)

(9)

Therefore, the maximum number of qubits is O(m′logm′). Now, we review the value of
di, i = 1, 2, . . . , m′ when using VQE for enumeration. In practice, each zi is represented by

QNum/m′ qubits and the range of di is [2(QNum/m′)−1, 2(QNum/m′) − 1], where di ∈ Z.
In Kannan’s embedding, the lattice dimension is m + 1, where m is the sample number.

In most cases, an LWE-based scheme produces only m = poly(n) LWE samples (and
the polynomial bound can be as small as m = Θ(n)). In the LWE-based cryptosystem
proposed in paper [12], m =

√
nlg(q)/lg(δ) and δ here means the root-Hermite factor. The

theoretical worst-case reduction for LWE requires αq ≥ 2
√

n [4], so we set αq = 2
√

n. Now,
we analyze the average number of qubits required, and its LWE parameters are shown in
Table 1.

Table 1. LWE parameters.

meirent

n 10 20 30 40

q 2053 2053 2053 2053

αq 6.3246 8.9444 10.954 12.649

m 34 65 91 127

δ 1.069 1.0365 1.0280 1.0191

There are 4 groups of parameters in the table. For each group, 10 experiments are
performed, and the average value of the cost function C is obtained. Finally, we calculate
the average number of qubits required, and the result is illustrated in Figure 4. The four
curves with different colors represent that the preprocessing method for the lattice basis is
LLL, BKZ-20, BKZ-40 and BKZ-80, respectively. By the regression analysis, taking BKZ-20
as an example, we have

QNum = 92.54nlogn − 612.27n + 1343.8logn − 1234.37.

For example, for a 40-dimensional LWE problem, the maximum number of qubits re-
quired is 1126, which is a scale that is considered achievable in the near future. With the
further development of quantum computers, LWE with larger dimensions can also be
solved successively.
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Figure 4. Average number of qubits required for different LWE dimensions.

4.3. Attacks on Existing Cryptosystems

In this section, we calculate the number of qubits required for a VQE attack on the
KYBER cryptosystem. KYBER is a key encapsulation mechanism based on the module-LWE
problem, which means it is based on Ring R = Z[X]/(X256 + 1). KYBER has three modes
to satisfy 128/192/256-bit security, respectively. The parameters are listed in Table 2.

Table 2. KYBER parameters.

n k q

KYBER512 256 2 3329
KYBER768 256 3 3329

KYBER1024 256 4 3329

In the table, n, k, q represents the maximum degree of polynomial, the number of poly-
nomials in each vector and the modulus. The most famous attack on the MLWE problem
does not utilize the special structure of a lattice, so we still analyze it as an LWE problem.
Paper [7] mentioned that the number of samples is between 0 and (k + 1)n. To analyze
the worst case, let m = (k + 1)n. Therefore, in the primal attack, the lattice dimension
d = m+ 1 = (k+ 1)n+ 1. Using the conclusion in Section 4.2, for the above three parameter
settings, the required maximum qubits are 13,768, 19,538, and 25,482, respectively.

Although the quantum computers made at this stage are all NISQ devices, after IBM
launched the 127-QubitEagle processor in 2021, it plans to launch the 1121-QubitCondor
processor in 2023. At the same time, the IBM team also fully considered the future million-
qubit system when designing the world’s largest dilution refrigerator “Goldeneye”, which
is an important part of the IBM’s roadmap for scaling quantum technology.

5. Algorithm Implementation and Experimental Results

5.1. Using QAOA Algorithm to Improve the Decoding Method

In this section, we discuss the quantum advantage of the algorithm introduced in
Section 3. Since it is difficult to estimate the computing complexity of QAOA, the QAOA
process is regarded as a black box; that is, it is assumed that QAOA returns the solution to
the optimization problem in a limited time. Now, without considering the actual complexity
of QAOA, we only analyze the results of the algorithm through small-scale experiments.

The LWE instance is (A, c = As + e) ∈ Z
m×n
q ×Z

m
q . Thus, after reducing to the BDD

problem, the target vector is c. Algorithm 3 outputs a classical closest vector w, and the
error vector can be obtained by e = c − w. Then, Algorithm 4 updates vectors w and e by
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QAOA. The result quality r = ‖e‖, which means the norm of the error vector. It is obvious
that the smaller the r, the higher the quality.

Taking the dimension of the secret vector as n = 3 and n = 5, the experiment generates
50 groups of random LWE samples, respectively. Each group forms an LWE instance. For
each instance, after obtaining the closest vector by Babai’s algorithm and calculating the
result quality r, we use QAOA for optimization to obtain a new approximate closest
vector and calculate the quality. Figure 5 shows the comparison of r between classical
solutions and solutions after quantum optimization when n = 3, and Figure 6 illustrates
the comparison when n = 5.

Figure 5. Quantum advantage demonstration of 50 random lattice samples when n = 3.

Figure 6. Quantum advantage demonstration of 50 random lattice samples when n = 5.

In Figures 5 and 6, the horizontal axis represents 50 groups of random samples, and
the vertical axis represents the result quality r. The red columns represent the results of
the classical Babai’s algorithm, and the blue columns represent the results after quantum
optimization. According to the definition r = ‖e‖, a smaller r indicates a closer vector
and higher quality. As evident in the figures, quantum results have higher quality than
classical results in many cases, while in other cases, the results are the same. Therefore,
the conclusion that can be drawn from the experiment is that quantum results obtained by
QAOA are no worse than their classical counterparts.
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5.2. Using VQE Algorithm to Realize the Primal Method

In this section, we present the experiments of solving LWE by the primal method.
When quantum simulation is performed in a classical computer, the underlying quantum
simulation uses QuSET [30], and the front-end interface to implement the algorithm uses
C++. In the experiment, better results can be obtained by using the Conditional Vale at Risk
(CVaR) method [31]. Specifically, assuming C1, C2, . . . Cn are sorted in non-decreasing order

and in each loop, C = 1
⌈pN⌉ ∑

⌈pN⌉
i=1 Ci, where 0 < p < 1. Paper [21] proposes that p = 0.175

gives better results.
On the simulation platform, due to memory constraints, the maximum lattice dimen-

sion does not exceed 30, which means the LWE dimension n is much smaller than 30. If
the input lattice matrix already contains the shortest vector, since the initial parameters of
VQE are random and the algorithm still outputs the shortest vector after several iterations,
it verifies the correctness of the algorithm. Therefore, when the VQE input is the reduced
basis or the shortest vector can be obtained by simple vector addition or subtraction of the
input matrix, the solution obtained by VQE is the same as that of the classical algorithm.

When the input is an arbitrary basis, the actual experimental results of the VQE are
of poorer quality. The reason is that the simulation platform occupies classical memory,
and the qubits for representing entries of the coefficient vector are limited. So, the correct
coefficient vector cannot be accurately obtained. As the number of available qubits increases
in the future, its coefficient representation will become more and more accurate, and the
solution quality of the VQE algorithm will be better.

6. Discussion and Conclusions

VQA uses a classical optimizer to train parameterized quantum circuits, and it is
one of the most promising quantum algorithms to achieve quantum supremacy. When
researchers envision applications for quantum computers, it is almost impossible to bypass
VQA algorithms. In this paper, we first present two LWE attacking tools, using QAOA
to improve Babai’s algorithm when solving BDD and utilizing VQE to solve Unique-SVP.
The two algorithms combine classical optimization techniques and variational quantum
techniques, providing ideas for solving LWE when the quantum resources are limited.
Second, we estimate the number of qubits required for both algorithms. Third, for the two
algorithms, experimental simulations are carried out, respectively. The experimental results
show that for the first algorithm, QAOA improves the result quality of classical algorithms,
and for the second algorithm, when the memory is large enough, the quality of quantum
solutions is at least comparable to that of the classical solutions. How to further reduce the
number of qubits by using the structure of the modular lattice is the direction that needs to
be studied in the future.
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