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Abstract. The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of
Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form
of Bethe vectors. Their relation to N-component models is used to prove conjecture about their
form in general. Some remarks on inhomogeneous XXX-spin chain are included.

1. Introduction
Algebraic Bethe ansatz has turned out as remarkably sufficient tool in the theory of quantum
integrable systems. Its origins come up to the 80’s and are connected mainly with Leningrad
shool. Since that time, it was used successfuly to solve an amount of models.

In this text we are going to discuss some features of well-known model solved by this method,
the so called XXX-spin chain.

In section 2, we repeat some properties of XXX-spin chain in terms of algebraic Bethe ansatz.
In sections 3, we introduce free fermions and use them in section 4 to express generators of
Yang-Baxter algebra. The aim of this text is to calculate an explicit form of Bethe vectors for
XXX-spin chain in fermionic basis which is discussed in sections 5. To prove our conjectures
about their form, we are forced to use N-component model in section 6. At the end of this text,
in section 7, we mention some results for inhomogeneous case.

2. Algebraic Bethe ansatz for XXX-spin chain
Suppose we have a chain of L nodes. A local Hilbert space h; = C? corresponds to the j-th
node. The total Hilbert space of the chain is

L L
A =[] oh =[] ec (1)
j=1 j=1

Let A be an operator acting on h = C?. We use the following notation for operator A acting
nontrivially only in the space h; C J and trivially in others throughout the text

. ®U-1) ®(L—j)
Aj=1 RARI : (2)
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The basic tool of algebraic Bethe ansatz is Lax operator which is an parameter depending
object acting on the tensor product V, ® h;

La,i()\) : Va & hz - Va & hz (3)
explicitly defined as

3
1 a Qo
Lai(A) = (A + )l + ; oS, (4)

where of are usual Pauli matrices acting in V,, S§* = %af‘ are spin operators on the i-th node

and I,; is identity matrix in ~ V, ® h;. Lgi(\) can be expressed as a matrix in the auxiliary
space V,

()

Its matrix elements form an associative algebra of local operators acting in the quantum space
h;. Introducing permutation operator P

3
1 (0% (0%
P:2<]I®I[—l—§_1a ®a> (6)

(here I denotes 2 x 2 unit matrix), we can rewrite it as

A+ 3487 S5

(2

Loi(A) = Mg + P (7)

Assume two Lax operators Lg ; () resp. Ly (i) in the same quantum space h; but in different
auxiliary spaces Vg resp. V4. The product of Lg ;(\) and Ly, ; (1) makes sense in the tensor product
Vo ® Vi ® hy. Tt turns out that there is an operator Rg,(A — i) acting nontrivially in V, ® V},
which intertwines Lax operators in the following way

Ray(N — 1) Lai(N) Ly i (1) = L i (1) Lai(A) Rap(A — ). (8)

Relation (8) describes the so called fundamental commutation relation. The explicit expression
for Rap(A — ) is
Rap(A = p) = (A = wlap + Pap (9)

where I, ; resp. P, is identity resp. permutation operator in V; ® V3. In matrix form

A—p+1 0 0 0
Roi-m=| o 7ML (10)
0 0 0 A—p+1
The operator Rqp(A — p) is called R-matrix and satisfies Yang-Baxter equation
Rap(A — p) Rac(N) Roc(1) = Roe(p) Rac(A) Rap(A — 1) (11)

in V, ® V}, ® V.. Comparing (7) and (9), we see that Lax operator and R-matrix have exactly
the same form.

Yang-Baxter algebra of global operators acting on the Hilbert space 7 of the full chain is
defined via a monodromy matrix

To(N) = Laai(M) a2\ . .. Lar(\) (12)



XXII International Conference on Integrable Systems and Quantum Symmetries (ISQS-22) IOP Publishing
Journal of Physics: Conference Series 563 (2014) 012011 doi:10.1088/1742-6596/563/1/012011

which is a product of Lax operators along the chain, i.e. over all quantum spaces h;. Matrix
elements of T,()\) in the auxiliary space V,

0= o) b ) -

provide generators of Yang-Baxter algebra.
Equation (8) provides the following relation for monodromy matrix

Rap(A — 1) To (M) Ty (1) = Ty(1) Ta(N) Rap (A — 1) (14)

which describes commutation relations for generators of Yang-Baxter algebra A(\), B(A),C()\)
and D(A). We call it global fundamental commutation relation. Equation (14) implies
commutativity of transfer matrices

(A7 (k) = 7(k)7 () (15)
where transfer matrix 7(\) is defined as the trace of monodromy matrix over auxiliary space V,
T(A) = TrgTa(N) = A(X) + D(N). (16)

Obviously, transfer matrix 7(A) is a polynomial of degree L in A

A=
NM:QQ+§>+§:ﬁQk (17)

k=0

Due to commutativity (15) of transfer matrices, we see that operators @ mutually commute
[Qj,Qk] = 0. (18)
Hamiltonian of the chain is expresed in terms of Pauli matrices resp. permutation operators
L 3 o 1 L I

H= ;azl SESkn =3 ; Pigs1 = 5 (19)

where we impose cyclic condition Sr41 = S1 resp. Pp 41 = Pp1. It can be expressed as a
function of transfer matrix

1d L
H =S nr() S 20
2dA n( ),\:—1/2 4 (20)
This is the reason why we can say that transfer matrix 7(\) is a generating function for
commuting conserved charges.

2.1. Global fundamental commutation relations
Let us express global commutation relations (14) for generators of Yang-Baxter algebra. After
a simple factorization, R-matrix (10) can be written as

fA) 0 0 0
Rap(A) = 8 g(l)\) g(f\) 8 (21)
0 0 0 f(N
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where f(\) = % and g(A) = ;. The matrices T,()) resp. Tj(p) take the form

LN =1 cn D(N) vesp- - Ti(p) = A A(n) B(p)
C(A) D(A) C(p) D(n)
(22)
Comparing matrix elements of (14) on the positions (1, 1), (1,4), (4,1), (4,4) we obtain
[A(A), A(w)] = [B(A), B(w)] = [C(A), C(n)] = [D(A), D(p)] = 0 (23)
Comparing (2, 3) resp. (2,2)
[BOA), C(1)] = g(As 1) (D()A(X) = D(A)A(p)) (24)
[A(A), D()] = g(A; 1) (C () B(A) — C(A)B(n)) (25)
From comparison of matrix elements (1,3), (3,4), (2,1) resp. (4,3) we obtain
A(p)BA) = A ) BOVA(p) + (1, A)B(1) A(N), (26)
D(u)B(A) = f(p, ) BA)D(p) + g(A, ) B(p) D(N), (27)
A(p)CA) = £, NCNA(w) + g(A, ) C (1) A(N), (28)
D(p)CN) = fF(A m)CN)D() + g(1 NC () D(A), (29)
[ O C LS S (30)
) = W= YA =g =

We see that g(u, A) = —g(\, ).

2.2. Figenstates of transfer matriz
Commutation relations (23)-(30) for Yang-Baxter algebra together with an assumption that the
Hilbert space ¢ has structure of a Fock space are sufficient to encover spectrum of the transfer
matrix 7(\).

There is a pseudovacuum vector |0) € # such that C(\)|0) = 0 which is an eigenvector of
operators A(A) and D(\)

A(X)10) = a(A)|0), D(A)[0) = 6(A) [0). (31)
It is a tensor product of local pseudovacua
0) =10); ®]0), ®---®[0), (32)

where [0}, = (§). It can be easily seen that a(\) = (A + 1)L, d(\) = AL.
Other eigenstates of transfer matrix (16) are of the form

AL, Au) = BOw)B(A) ... B(Ar) |0) (33)
with eigenvalue
M M
AN = aW) TTFO62) + 60 TT A M) (34)

i=1 i=1
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They are called Bethe vectors. For M € N, we refer to Bethe vector |A1,..., A\yr) as M-magnon
state. To get eigenstates of the transfer matrix, parameters {A\} = {A1,..., Ay} have to satisfy
Bethe equations for all i € 1,..., M

=

M
a(Ai)g A) [T £ A) + 8(Ai)g(h, A)

k=1
k#i

F(is Ax) = 0. (35)

o
o
o

Explicit form of Bethe equations (35) is

N+AIVE X SN+
< + ) B k+ (36)

A N Ni— M\ —1°
k=1
ki

3. Free Fermions

Our first aim is to express Bethe vectors in fermionic basis. We start with definition of free
fermions. For tensor product of L copies of C? we define free fermions as

k—1 k—1
WPy = (Haj)a,j, Y = (Haj)ak_. (37)
j=1 j=1
Commutation relations for the fermions (37) are of the form

It is a straightforward task to check the following identities

Vkr1Vk + Vethrst + Vethpgr + VeV = 05071, (39)
Vs 1Vk + Urbrgr — Urlha1 — Vkp1¥r = 0pop, 1, (40)
[Yr, 1] = of, (41)
(1 = 2¢0p) (1 = 20 10k11) = O0F41- (42)

4. Fermionic realization of monodromy matrix
Equation (7) provides us an easy expression for Lax operator. Identity operator I is a member of
algebra of fermions. Therefore, it remains to know a fermionic realization only for permutation
operator Py ;.

Let us start with permutation operator P ;41 permuting just the neighboring vector spaces
hi and hgii. Due to identities (39)-(42) and definition of permutation operator (6), it is
straightforward to check that

Pijr1 = L+ Yp1thn + Uit — Ythr — Vi1 ¥rs1 + 2050501k (43)

Permutation operator P;j in non-neighboring vector spaces h;, hj, where j < k — 1, becomes a
non-local in terms of fermions. Using properties of Pauli matrices, it can be rewritten as

1 _ _
Pjr = 5(]1 +0j0}) + (0] oy +0507]). (44)

The first part is local even in the terms of fermions

%(H + 0507) =1 — hpthe — ¥jihj + 20rribjnby, (45)
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but the second part is nonlocal

k-1 k-1
otop + o5 of = Wtk +din) [] of = (Wde + 5e0) T[T — 2¢000). (46)
I=j l=j

The nonlocality of P;j, resp. R;()) is a serious problem. There appear difficulties when we
attempt to express monodromy matrix (12) in terms of such nonlocal operators. We need to
avoid the nonlocality.

Let us remind that L, ;(\) = R,;(A). For R-matrix Rq, () satisfying Yang-Baxter equation
(11) we can define the matrix Rab()\) = R (A) Py, which satisfies

Rap(A) Roc(A + 1) Rap (1) = Rab(M)RbCO‘ + N)RabO‘)‘ (47)

Substituting L, ;(\) = }?a,i()\)PM in monodromy matrix (12), we obtain very convenient
expression

Tu(N) = La1(N) La2(N) ... Loz (A) = Ra1(\) PaiRaa(N)Pas ... Ry, (N Pag =

) ) )

= Ra1(MR12(\) ... R, 1 (N Pp_1.1... PioPay. (48)

)

It contains operators R;@kH resp. Py 41 acting only in the neighboring spaces hj ® hjy.
Fermionic realization of R-matrix Ry g41(A) is

Rips1(N) = APy 1= A+ DI+ Mgt + Orthrar — Prtde — Prr1¥rr1 + 206 0pte1vn41).

(49)

To get fermionic represenation of Yang-Baxter algebra means to express monodromy matrix
(48) as 2 x 2 matrix in the auxiliary space V, = C2. For this purpose, we rewrite (48) as

A~

Ta(>\) = R, 1()‘)X(/\)Pa,1 (50)

)

where the operator X (\)
X(A\)=Rio(\)...RL_1.(NPp_1p... Pro (51)

acts nontrivially only in the quantum spaces 57 = h1 ® --- ® h, and is a scalar in the auxiliary
space V,. Moreover, we know due to equations (43) and (49) how to express X (A) in the terms
of fermions.

Permutation matrix (6) can be rewritten as

1
Pa,l:§<H®H+UI®Ux+Uy®O'y+O'Z®JZ> =

1 I 0 0 o° 0 —i0Y o* 0
IQKO ]I>+<J‘T 0)+<wy 0 >+<0 —aZﬂ:
s[[+0°)  5(0" —ioY) ) _ < Y1 1 > _ ( I[-Ni ¥ )
1 N Y1 o ) 1 My (52)

where we have used (37), (41), and Ni = ¢1¢;. Hence, we get

(53)

T . A+ DI=AN; My
Ral(A)_HW+APa,1_< v AN AT )
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Using (52) and (53), monodromy matrix (50) can be written in the following form

T, = < A+DI-AN; My )X(A) < I-N ) _ ( A(\) B(\) ) (54)

Ay ANy +1 Y1 Ny C(A) D)
where
AN = A+ 1= AN)X(A)(1 = N1) + M1 X (N, (55)
B(\) = (A 4+ 1= AN1)X (A1 + Mo X (M) Ny, (56)
C(A) = M1 X(A)(1 = N1) + (AN + 1) X (M), (57)
D) = A X (A1 4+ (AN + DX (A)Ny. (58)

5. Fermionic realization of Bethe vectors
The goal of our text is to find expression for Bethe vectors (33). For this purpose,
fermionic realization (56) of the creation operator B(\) is convenient. The operator X (\) =
ng()\) .. RL_LL(/\)PL_LL ... P13 can be written in terms of fermions due to equations (43) and
(49). It can be easily seen that

Vi [0) =0 (59)
forallk=1,... L.

If we are able to write B(\) in normal form our work would be simple. Unfortunately, it
seems as a rather difficult task. Instead, we have to use the “weak approach,” i.e. to apply
B(A) on the pseudovacuum |0) and try to commute the fermions v to the right and see what
remains.

For our purposes, we need the following set of useful identities, which follow from equations
(52) and (53)

Py k1 Uk = VY1 — Vi1 Nk + Vi Ng1, (60)
Ry ot N Wki1 = Yrs1 + Mg+ M1 Ny, — ¥ N1 (61)

where Nj, = 91y, again. We can see that

P19k [0) = 941 0) (62)
Ry o1 (10)Vr41 10) = Pg1 |0) + ptd [0) (63)
and
Ry jey1(p) 0) = (n+1)]0), (64)
P, k4110) = 10) . (65)

For higher magnons, we need also

Rkt (N1 = (A + D)t (66)
and
. . - B k—1 k-l J_
R (N Rcas OB 0) = 15100+ 3 3 (25 ) s ), (67)
j=1

Rigpa(N) - Rt NPk [0) = Rigpr(A) - Ree 1 k(W) ¥e [0) + A+ 1)F 441 |0) . (68)
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5.1. 1-magnon

It is obvious that the second term in (56) annihilates the pseudovacuum state. Then, using (67),
we get for 1-magnon state

) = B(p)0) = (u+1— puN1)Ria(p) ... Ry, p(w)Provp, - Prathr [0) =
= (p+1—pNy)Ra(p) . .. Rp—1,0 ()1, [0) =
[ L—-1 L=1

L— 1¢1‘0> 54—1;(”:1) @bffl} |0) =

L L

L k
_ M pALINT .
_u+1;< L) 0e10) = ) 30 0) (69)

k=1

= (p+1—phN)

where we introduce concise notation

5.2. 2-magnon
Using (67) and (68) we obtain

B\, [0) = (A + 1)A? Z "™ P19k [0) +

A+ 1 T;) 2 N 19845 10) + )\ ~ -\ AR Z Tktry s 10) - (71)

We get for 2-magnon state using (71)

L
A ) = BO)B() [0) = n() Y _[u]* Bk [0) = n(p)n() [ DI ™ 2 1t
1 L-1k-2 L—k L-1L—k

+m A [ F AT D e + Z Z[M]k[)\]kﬂ_lﬂ;kﬂ_)kJrj] 0) =

k=2 m=0 j=1 k=1 j=1

1<r<s<L

Zn(u)n(k){ > [[M]S[A]’"“HW[A]S1]¢rws!0>+

L s—2 s—1

NI DI L i } _

s=3 r=1 k=r+1
1 s—1

[ N+ [ N+ D) > [u]k[/\}s”’“] s [0). (T2)

k=r+1

—n(n() Y

1<r<s<L

The finite sum in (72) can be calculated explicitly by means of geometric progression

1 s—1

A+ 1) k:Z [ AP F =
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Substitution of (73) into (72) gives formula for 2-magnon

B(A)B(n) [0) = n(w)n(A) [{H]S[A]T“Jr[u]r[)\]s_lJr

1<r<s<L
T L i N 2 )]wrws 0) =

A—p+1

= n(wn() Y [[A]’"[M]SHHMJ ppi 2t

Uribs [0) -

5.8. 3-magnon
For 3-magnon we need at first

BW)yrips [0) = (v + 1 — vN1) Xvo. (V) h191hs =

r—2 s—r—1 r—2
= VL_3(7/ + 1)2 Z[ ] ¢m+1¢ﬂ/)s ‘O L ’ Z Z l+ ¢m+1¢r+l¢s ’0>
m=0 =1 m=0
L—s r—2 . B o
‘|‘I/L_3 Z Z [V]]ermerlwr"l}erj |0> +
j=1m=0

L—ss—r—1r—2

B )Y T W 1t ither [0) +

j=1 =1 m=0
L—s r—
+v L=str=1 V+1 T 22 ]+m¢m+1¢s¢s+j ’0>
j=1lm :O

s—r—1

L—s
2 (1 1) S PG [0) + P 0+ 1) S ) e [0) +

=1

j=1
L—ss—r—1 o B
T+ 1S ST P s 10)
j=1 I=1

3-magnon state is obtained from 2-magnon state (74)

v, 1, A) = B(v)B(w)B(A) [0) = n(p)n(x) > Ka(s,r)B(v)drs |0)
1<r<s<L
where we denote for more comfort
A—p+1 w—A+1
' T )\ S .
R Dt

doi:10.1088/1742-6596/563/1/012011

(74)

(76)
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Using(75), we get

1 r—q—1
lv, 1, A) = n(v)n(p)n(X) Z [[ 1972 Ky (s,7) ﬁ Z W)UKy (s, — 1)+
1<g<r<s<L =1
1 s—r—1 —r—1r—q—1
j+ : 1+
+— ; WP Ky (s — j,r) + V+1 Z:: Z: VPR (s — 4,r — 1)+
1
+— ) Z S l+qK2(?” l) [ ]572K2(7’, q) + [V]TK2<S,Q)+
OESVER
q+1
1 S r—
3 Z K (1, q) | Pathrids [0) = n(v)n(p)n(X) ¥
(V+1) I=r+1
y—u—i—l v-A+1l p—A+1
> > o e W = )babilo)  (78)
1<g<r<s<L oc€Ss

where S3 denotes symmetric group.

5.4. M-magnon
From results (69), (74) and (78) we can conjecture that general M-magnon state is of the form

[As - Au) = B(A1) - B(Aw) 0) =

S[w) | S5 (P I

=1 1<ki1<..<ky <L o xESM 1<J =1

where o) is a permutation of the parameters {\1,..., Ay} and > is the sum over all such
oxESM
permutations. We are going to provide a proof of this conjecture in more general form below.

6. N-component model

In the literature, cf. [2, 5], the so-called two-component model appears. It was introduced to
avoid problems with computation of correlation functions for local operators attached to some
node x of the chain in the Yang-Baxter algebra generated by (13).

The chain [1,...,L] is divided into two components [1,...,z| and [z + 1,...,L]. Then,
the Hilbert space is splitted into two parts ¢ = 54 ® ¢ where 54 = h1 ® --- ® h, and
I = hyy1 @ -+ ® hy. The pseudovacuum [0) € 7 is of the form |0) = |0); ® |0), where
|0), € A4 and |0), € s%. We define on V, ® 74 ® % a monodromy matrix for each component

1) = La) - L) = (1) DY) (0

resp.

T2 = Lo+ Laa) = (20 2V 1)

Each of these monodromy matrices satisfies exactly the same commutation relations (14) as
original undivided monodromy matrix (12). Moreover, we have

AN 10); = (M) 0}, D;j(A)[0); = 8;(A)[0);, Ci(A)10); =0, (82)
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and operators corresponding to different components mutually commute. From construction,
we see that

a(A) = ar(MNaz(A),  d(A) = d1(A)d2(A). (83)
The full monodromy matrix T'(\) for the complete chain [1,..., L] is

) A NAN) + BuNG(Y) AN Ba(N) + B () Da(N)
T0) =BT = (G TN St Doy

and the M-magnon state is represented in the form

At ) =TT BOWI0) = TT (A1) Ba(v) + Br ) Da(w) ) 100, @ 10)y - (85)
k=1 k=1

Izergin and Korepin [5] state that Bethe vectors of the full model can be expressed in terms
of Bethe vectors of its components. To obtain this expression we should commute in (85) all
operators Aj(A\;) and Da(Ag) to the right with the help of (26) and (27) and then use (82).

Proposition 1. An arbitrary Bethe vector corresponding to the full system can be expressed in
terms of the Bethe vectors of the first and second component. Let I = {\1,..., Ay} be a finite
set of spectral parameters. To concise notation below we will consider the set I as a finite set of
indices I = {1,..., M}, then

[IBOw [0) =

kel
> 1 (52(/\k1)31(>\k1)> 1T (al(/\kz)BQ()‘kQ ) v @100y TT T FOkrs ) (86)
LUl ki€l ko€ls k1€l ko€ls

where f(Ag,, Ak,) is defined in (30) and the summation is performed over all divisions of index
set I into two disjoint subsets I1 and Iy where I = 11 U I5.

For detailed proof, please, see e.g. [2]. This result can be straightforwardly generalized to
arbitrary number of components N < L.

Proposition 2. An arbitrary Bethe vector of the full system can be expressed in terms of the
Bethe vectors of its components. For N < L components the Bethe vector is of the form

[Ieowim= > TL I IT TI (eu)stesOn i)

kel LUIU---Uln k1€17 ko€l kn€EIn 1<i<j<N
X Bi(Ak,) [0); @ Ba(Aky) [0)y ® -+ @ By (Aey) [0) (87)
where summation is performed over all divisions of the set I into its N mutually disjoint subsets
Li, I, ... IN.

The proof is simply performed using (86) by induction on number of components N. More
details will be included in [3] where more general inhomogeneous XXZ-chain is concerned.

6.1. Bethe vectors explicitly
By assumption we have a chain of length L. Let us divide it in L components, i.e. into L
1-chains. Using proposition 2 we get for M-magnon (Bethe vector) with M < L:

ﬁ Bxoy= > IT II -~ 11 1I (az Ak; )0 )\k:)f()\kp)\kj))

k=1 LUlU---Uly, k1 €17 ko€l kpelr, 1<i<j<L
X B1(Ak,) [0} @ B2(Agy) [0)y ® - ® Br(Ak,) [0}, - (88)
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It holdsd for 1-chain, which is a chain with Hilbert space h = C2, that
B(A)B(p)[0) = 0. (89)

Therefore, the sum over all divisions of {1,..., M} into L subsets contains just divisions into
subsets containing at most one element, i.e. |I;| = 0,1. Moreover, only M of them is nonempty,
let us denote them 1,,,, I,,, ..., I,,,. We have to sum over all possible combinations of such sets,
i.e. over all M-tuples n1 < ne < --- < nyy; and then, to sum over all distributions of parameters
A1, A2, ..., Ayr into the sets Iy, ..., Ip,,.

After all, we get

7j—1

M M n;—1 L
[T BOw I0) = > > m(H(H ai(y) ] 5i()\j)Hf()‘ia)‘j)>
k=1

1<ni<ng<--<npy <L o €Spy j=1 =1 1=n;+1 i=1
Bny (A1) Bny (A2) - 'BnM(/\M)> 0); @[0)y ® -+~ ®10), - (90)

Moreover, it holds for 1-chain that B(A) = B is parameter independent and eigenvalues
a;(A) = a(A), §;(A) = d(N) are still the same for all components i = 1,..., L, where a(A) = A+1
and d(A) = A. We get

M M
Mswo- ¥ % A(Ha g T )
k=1 1<ni<no<--<npy <L o€Sps j=1 =1

X Bnan2 T BHM ‘0> ® ‘O> ‘® ‘0>L =

M M .
d(x)" a(Aj)\"™

= )\’L’ )\

1 a(A;) 2 Il H d(A;)

1<ni<ng<--<npy <L UES]V[ 1<i<j<M 7j=1

X Bp,Bpy -+ By, [0); ®0), -®10), (91)
Again, the reader is refered for more details to [3]. o -

Let us return to (79). To prove its validity, it is sufficient to realize that ¢y, ¥y, ... 9k, |0) =
Blekz . --BkM ‘0> for k1 < ko < -+- < kpp.

7. Some remarks on inhomogeneous XXX-chain
We start from inhomogeneous monodromy matrix

TE(N) = Lag(A + &) Laa(A+ &) -+ Lo (A + €1) (92)

where L, j(A) are Lax operators defined in (4) and €= (&...,€) is an inhomogenity vector.

Expressing T; f()\) in the auxiliary space V,, we get
- 3 3
TEN) = (AJA) B W) (93)

where, again, operators Ag()\), BE()\)7 Cg()\) and Dg()\) are acting in ¢ = h1 ®---®@hr. Acting
on pseudovacuum vector |0) € J# we get

AE(N)[0) = af(N) 0), (94)
DN [0) = 65() [0), (95)
CEN)[0) =0 (96)

12
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where
as(A) = a(A+&)a(A +&2) - a(A+&L), (97)
N =dN+&)dN+ &) - d(N+EL). (98)

Here, functions a(A) = A+ 1 and d(\) = A.
For inhomogeneous version, we can introduce N-component model as well as for homogeneous
Bethe ansatz. For 2-compotent model, for example, we have

TEN) = Laa(A+€1) - LaaA+ &) Lagi1A+ Epp1) - Lap (A +€0) = TSHATE2(N) - (99)

-~
1st component 2nd component

where & = (&1,..., &) resp. & = (€x415---,€1). We have

A [0) = a§ (Ve [0), DS [0) = 65 (A (M) [0). (100)

The very important property of inhomogeneous chain is, that its operators A (M), B (N, o (A)

and D¢ () satisfy the same fundamental commutation relations as homogeneous chain (23)-(30).
Therefore, analogy of propositions 1 and 2 can be easily formulated.

Proposition 3. Let N < L. An arbitrary Bethe vector of the full system can be expressed in
terms of Bethe vectors of its N components

[IEwo= > T IT TI (o508 (e)fOn M)

kel LU-Uly k1€l knely 1<i<j<N
X B (A )BS (Aky) -+ BRY Oy ) [0) (101)

To get explicit formula for Bethe vectors we have to divide the chain into L components of
length 1 as we did in the last section. We get for M-magnon

M —
[T B 10) =
k=1
M nj—1 7j—1
SID YD SR (1 (§ IR | ) | FE)
1<ni<-<npy<L o) €Sp Jj=1 =1 i=n;+1 i=1

x Bt (Ar) -+ Bt (A M>> 0) =

M nj—1 L j—1
- Z Z U’\<H<H algl H 51 H (Ai’)\j)>>Bnl"'BnM ‘0>:

1<ni<--<ny<L o €Sy j=1 =1 IZTL]+1
M L M )\ +§ ] 1
=[IITan+& > > ol H 5g 1 ELGURY)
- L L oa(); —|—§n — d(Aj + &)
j=1i=1 1I<ni<-<npy<Lox€Sym Jj=1 37 =1 =1
x By, - Bp,, |0). (102)

where, again, B-operators bejj (A\) = By, are parameter independent for 1-chains. For more
details, see [3].
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8. Final remarks

We showed in this text explicit expressions for Bethe vectors of XXX-spin chain, both in
fermionic and usual representation. We discussed also inhomogeneous version. We refer the
reader for more details to [3] where we plan to discuss Bethe vectors for XXZ-chain in more
detailed form.
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