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To Nina, who I wish was still with us.



Abstract

In this thesis, I discuss the application of Effective Field Theory (EFT) methods to
a variety of problems across condensed matter and particle physics. Understanding
how symmetries are realized by the system can put strong constraints on the low
energy EFT which then dictates the macroscopic behavior of the system. We begin by
utilizing these techniques to predict the leading order Landau parameter in the normal
state of a strongly interacting cold-atomic fermi gas. We then use methods of coset
construction to study magnon-phonon interactions in magnetic insulators where we are
able to calculate the magnon lifetime as well predict interesting phenomena that can
arise from explicit symmetry breaking effects. We also utilize the EFT in the context
of dark matter detection to calculate one-magnon and multi-magnon emission rates
for dark matter scattering. Finally, we study the dynamical modes of dislocations in
solids and make predictions about the dispersion of these modes based on the lattice
structure.
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To go in the dark with a light is to know the light.
To know the dark, go dark. Go without sight,
and find that the dark, too, blooms and sings,

and is traveled by dark feet and dark wings.

- Wendell Berry, To Know the Dark



Chapter 1

Introduction

The condensed matter community has seen a plenitude of exciting developments over
the last decade. It has allowed us to create, control and manipulate systems involving
novel interactions with great precision. This has not only opened up exciting avenues
for application of quantum field theory techniques, but has also pushed the boundaries
of our understanding of quantum field theories at low energies.

Condensed matter systems are characterized by finite density states and sponta-
neously break Poincare’ invariance. The excitations in such systems usually differ
from the ones commonly found in particle physics and are termed as quasi-particles.
At low energies, these degrees of freedom dominate the dynamics of the system and
determine their macroscopic properties. Hence understanding their interactions is
crucial to predict the behavior of these systems at low temperatures. Also it can help
us engineer novel devices where these modes occupy the role traditionally played by
electrons.

Since the collective behavior of such systems is governed by low-energy quasiparti-
cles and their interactions, Effective field theory (EFT) techniques are ideally suited
to understand their behavior. EFT methods have been notoriously successful in the
context of high-energy physics. They allow us to make robust model independent
predictions about the behavior of the system. Depending on how symmetries are
realized by the system, one is able to construct an effective action for the gapless
modes which allows us to make systematic predictions using the methods of quantum
field theory.

In this thesis, we will execute the above mentioned goal in a variety of condensed
matter settings. Also we will explore an interesting idea of exploiting quasi-particles
in condensed matter systems for dark matter detection. In each of the scenarios,
the ground state of the system will spontaneously break a host of space-time and/or
internal symmetries. After identifying the relevant goldstone modes which result from
the symmetry breaking pattern, one is able to construct an effective Lagrangian that
describes the long-distance physics.



The thesis is organized as follows. In Chapter 1, we discuss the EFT of cold-atomic
Fermions at large scattering length. Understanding strongly correlated materials
has been a long-standing interest of the condensed matter community. The simplest
such systems are homogeneous cold Fermionic systems which can be created and
manipulated in the lab. Understanding these systems is crucial to uncover some of
the physics associated with strongly correlated materials. Here we employed EFT
methods to make predictions about cold atomic systems at large scattering lengths.
At large scattering lengths (unitarity), the system possesses Schrodinger symmetry
which is spontaneously broken by the Fermi-sea and this results in a gapless mode
(dilaton) in the spectrum. As one decreases the scattering length, the Schrodinger
symmetry of the system is broken and the dilaton mode becomes massive. Using
anomaly matching we were able to predict the mass of the dilaton as a function of
the scattering length and the Contact parameter of the cold fermionic system. The
forward scattering interaction mediated by the dilaton exchange is dominant at large
scattering lengths and this allowed us to make interesting predictions in the strongly
interacting regime.

In Chapter 2 of the thesis, we employed EFT techniques to study magnon-phonon
interactions in magnetic insulators. These interactions have shown to play a dominant
role in determining spin and heat transport in magnetic materials. We used the coset
construction as a tool to systematically construct a low energy effective action for
phonons and magnons by utilizing the symmetry breaking pattern of the system. We
predicted the magnon decay rates and also derived the non-linear generalization of
Landau-Lifshitz and the elasticity equations for ferromagnets, accounting for magneto-
elastic effects. In the EFT, we also described a variety of symmetry breaking effects
in the context of magnetic systems which lead to magnon-phonon mixing.

In Chapter 3 of the thesis, the EFT of magnons was implemented to study direct
detection of sub-MeV dark matter (DM) particles. Collective excitations in quantum
materials are a promising avenue to detect light dark matter because of their relatively
low energies. If dark matter with spin-dependent interactions couples to electrons in
magnetically ordered materials, it can excite magnons which can provide a novel way
of detection. An EFT description provides a simple and efficient computational tool
in the context of dark matter detection. We computed the single and multi-magnon
excitation rates due to DM scattering within the EFT. These rates were computed for
some well motivated dark matter models for multiple anti-ferromagnets. Due to higher
magnon velocities in anti-ferromagnetic NiO, we found that it has the best DM mass
reach for single magnon excitations. The reach is further extended by two-magnon
excitations. This is particularly a useful strategy for detecting 1-100 keV mass DM as
compared to ferromagnetic magnons since their reach is constrained due to absence of
multi-magnon excitations.

Finally in Chapter 4 of the thesis, we studied the dynamics of dislocation modes
(dislons) and their interactions with phonons in elastic solids within the context of
EFT. Due to the non-locality associated with the scalar description for phonons in



the presence of a dislocation, one has to employ a gauge description to couple the
phonon modes to the dislocation line. Integrating out the bulk phonon modes leads
to the running of the dislocation worldsheet couplings. Utilizing relaxation conditions
for the dislocation, we were able to show that the dispersion was sensitive to the UV
lattice structure. For the isotropic case, the dislons have a non-analytic dispersion
whereas in the anisotropic case, the non-analytic contribution are subleading in the
long-wavelength limit and the dislon behaves like a type-1 Goldstone.

Conventions : We work with the mostly plus metric (—, +, +, +), greek (space-
time) indices run (0 — 3) while Roman capital letters I = 1 — 3 correspond to the
internal degrees of freedom (or, more precisely, the co-moving coordinate system).
Euclidean spatial indices are represented by small Roman letters. Note that after
symmetry breaking, we can no longer distinguish between the capital and small Roman
indices. Lower case indices a, b, c.. run over 1,2. We work in units where h = ¢ = 1.



Chapter 2

Effective field theory of strongly
interacting cold-atomic fermions

The low energy description of Fermi liquids has been textbook material for many
years now. Above the critical temperature one can make predictions for observables in
terms of a collection of material-dependent Landau parameter(s) f;, to leading order
in an expansion in £/ Er, where Er is the Fermi energy. Whether considering a metal,
or a gas, in general, these couplings are treated as unknown parameters whose values
can be determined by independent measurements. However, one might hope that for
systems with enhanced symmetries, the couplings might be predictable. As such, it
would seem that fermions at unitarity, where the scattering length diverges, would
be a compelling system, as it manifests the maximal Schrodinger group symmetry.
This group has dilatations and special conformal transformations as its symmetries
in addition to Galilean transformations. These systems exhibit universal behavior as
a consequence of the divergent scattering length. Recent experimental progress in
producing such “uniform quantum gases” [2] via boxed traps, has opened the door to
the study of such ideal systems.

However, fermions in the unitary limit can not be described by the canonical
Fermi liquid EFT (as described e.g. in [3]) because there is no way to non-linearly
realize the spontaneously broken conformal and boost invariance and maintain Fermi
liquid behavior, as shown in [4, 5]. At present we do not know how to calculate in a
systematic expansion in the unitary limit. Here we will instead calculate far enough
away from unitarity that we can treat it as a Fermi liquid but close enough to keep
some approximate symmetries. By doing so we will able to predict the aforementioned
Landau parameters in a regime where weak coupling kra calculations fail. Making
any systematic first principle prediction for a strongly coupled theory is an extreme
theoretical challenge, and we manage to do so only in a narrow range of parameter
space.

To understand how to calculate near unitarity we must first ask why Fermi liquid
theory breaks down at unitarity where the atomic underlying theory is invariant under



the full non-relativistic conformal (Schrodinger) group. The existence of the Fermi
sea breaks a subset of symmetries: three boosts, dilatations and special conformal
transformations. While the breaking of global internal symmetries leads to gapless
Goldstone modes, one per broken generator, when spacetime symmetries are broken,
this is no longer true [6, 7]. In such a case, the Ward identities can be saturated by
excitations which can be arbitrarily wide, i.e. they need not be quasi-particles '. At
the level of the action, invariance may be maintained despite the dearth of Goldstones.
The modes for which the corresponding broken generators’ commutator with unbroken
translations yields another broken generator (not in the same multiplet) can be
eliminated from the action. This is called the Inverse Higgs mechanism (IHM) and
one can use the space-time coset construction [6, 7] to determine invariant constraints
which eliminate the extra Goldstones. However, there are cases where there are no
[HM’s at play and yet the Goldstones, which seemingly should be in the spectrum, are
not. The classic example of this is He® where only boosts are broken, and there are
no corresponding Goldstones. In such systems, dubbed “framids” [9], the symmetry is
realized by constraining the form of the interactions [5]. In fact, the famous Landau
conditions on Fermi liquids is the constraint that must be imposed on the action to
ensure boost invariance. Such a condition can be considered a “Dynamical Inverse
Higgs Constraint” (DIHC) [5]. In [4] it was shown that in the unitary limit, in three
spatial dimensions, the symmetries can be realized by either imposing another DIHC or
by the inclusion of a dilaton. In either case the system cannot behave like a canonical
Fermi liquid above T..

Fermi liquid theory starts with the assumption that quasi-particles (in our case
fermionic) exist in the spectrum with widths that scale as T' ~ E?, due to Pauli
blocking. Such systems will have two marginal couplings, the “BCS” and forward
scattering channels, with the former growing strong in the IR leading to breaking of
the particle number U(1) symmetry. However, when interactions in the UV become
strong, the Fermi liquid description can break down at which point there may no
longer be any stable quasi-particles, leading to non-Fermi liquid behavior. Such is the
case for fermion in the unitary limit.

In this paper we explore the approach to this non-Fermi liquid behavior by
calculating how the quasi-particle width begins as a function of the scattering length
(a). The starting point is the effective field theory of Fermi liquids [3] where we
consider small fluctuations around the Fermi surface. We are interested in studying
the normal phase of the theory where 7" > T.. Furthermore, as will be explained
below, to maintain calculational control we will keep the scattering length finite yet
large, where canonical perturbative methods fail [10].

Our approach begins by utilizing the pattern of spontaneous breaking of space
time symmetries. In [4] it was shown that at unitarity, non-Fermi liquid behavior
emerges due to the presence of a non-derivatively coupled gapless Goldstone (the
dilaton) that arises as a consequence of the symmetry breaking pattern. Typically

1For a recent discussion of this issue see [8].



Goldstones are derivatively coupled and therefore decouple in the far IR, however, for
spontaneously broken space-time symmetries, for certain symmetry breaking patterns,
Goldstone bosons, such as the dilaton, couple non-derivatively [11, 5] leading to a
strong coupling in the infra-red.

When we perturb away from unitarity, the dilaton gets gapped, with its mass acting
as a control parameter which can be used to study the cross-over behavior. When the
mass is non-vanishing but sufficiently small, Fermi liquid behavior is expected and
dilaton exchange will dominate the fermion-fermion interaction. Moreover, the dilaton
mass can be determined by matching the conformal anomaly, between the UV theory
(where it is exactly known) and the IR theory. Using this result, along with the fact
that the dilaton coupling is fixed by symmetry, allows us to to predict the s-wave
Landau parameter in terms of the scattering length, the effective mass of the fermion
and the contact parameter. With this result in hand we then predict the value of the
compressibility, spin susceptibility and the quasi-particle lifetime. We will be working
with m = 1 unless otherwise states, where m is the bare quasiparticle mass.

2.1 The EFT

In the normal phase of a gas of cold atoms the only spontaneously broken symmetries
are boosts. Despite this fact, the spectrum has no Goldstone bosons and the broken
boosts are still non-linearly realized via the non-trivial (Landau) relation between the
effective mass and the p-wave Landau parameter.

The unitary limit in the trivial vacuum is a point of enhanced symmetry realizing
the full thirteen parameter Schrodinger group. The Fermi surface spontaneously
breaks boosts (K), dilatations (D) and special conformal transformations(C). The way
these broken symmetries can be realized was discussed in [4, 5] which for completeness
we summarize here. In the case at hand, the Goldstone associated with the breaking
of conformal symmetry can be eliminated using the [HC arising from the relation

[H,C] =D, (2.1)

leaving only the dilaton, the Goldstone associated with the broken scale invariance.
The boost Goldstone called the framon is necessary to write down a Galilean invariant
action for the dilaton. However, it was shown in [5], that one can eliminate the framon
using an operator constraint called the Dynamical Inverse Higgs constraint (DIHC).
In the Fermi liquid theory, the DIHC is nothing but the aforementioned Landau
relation. The logical possibility remains that the action obeys further constraints,
such that there is no dilaton in the action. However, as shown in [5], without a dilaton
in the action the quasi-particle would have to obey a quadratic dispersion relation
(as opposed to linear) and the coupling would have to undergo power law running.
Moreover, independent of the choice of field variables, at unitarity there still must
be a cut in the stress-energy correlation function corresponding to a highly damped
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excitation. Moving away from unitarity towards a quasi-particle description, this
gapped channel will be nothing but the massive dilaton.

Let us explore the consequences of the existence of a light (m, < Ey) dilaton in
the spectrum. We will treat the dilaton mass as the leading order perturbation in the
conformal symmetry breaking, with higher order corrections being down by powers of
mg/Er. We begin by first writing down the action in the conformal/unitary limit.
Since the scattering length diverges in this limit, the only scale in the theory is the
Fermi energy Fr. To write down the action for quasi-particles and the dilaton, we
utilize the technique of spacetime coset constructions [6, 7] which is a systematic way
of non-linearly realizing the symmetries. We present here the results given in [4] and
refer the reader to that paper for details.

At the unitary point, the coset element can be written as

[ — (it g=iP.& ,—iK i ,~iD¢ ,~iCE (2.2)
where 7j(x,t), ¢(x, t) and &(x,t) are the framon, dilaton and Goldstone of the conformal
transformation respectively. In the remainder of the work, we will explicitly drop any
x and t dependence from the fields. Using the Maurer-Cartan (MC) form, one can
extract the covariant derivatives for the Goldstones which transform linearly under

the broken group. The coupling of the dilaton ¢ in the quasi-particle action is given
by

fo

Sy = / dtd3z V1 (10, — et e(eXid)y) + 5 Whe)?),

(2.3)

We have kept only the [ = 0 Landau parameter. The addition of higher {’s will not
change our predictions as we shall see.

We have introduced a scale A to normalize the dilaton field in the exponential.
Under dilatations, the dilaton shifts by a constant ¢ — ¢+cA whereas the coordinates
transform as t — e*t and © — e‘xz. The quasi-particle fields and their covariant
derivatives have to transform as a linear representation of the unbroken group v (x,t) —
e’%cw(x, t). One is free to add an invariant term of the form Vy; = Ce2?/M to the
dilaton Lagrangian. Thus maintaining a light dilaton implies C' must be fine tuned
to be small, as its natural value is of order of the cut-off. This is analogous to the
cosmological constant problem, the most egregious fine tuning in nature. However,
in the context of fermions at unitarity, the appropriate fine tuning is achieved by
choosing the magnetic field such that the scattering length diverges. At this point,
the atoms form a zero-energy bound state, also known as Feshbach resonance.

Expanding around the Fermi surface to leading order in the dilaton field ¢ in the
quasi-particle action,

Sy = /d?’xdt %¢lwg(2e(kp) — Oe(kp) - k) + ... (2.4)



where we have dropped terms sub-leading in the power expansion, since momenta
normal to the Fermi surface scale as A. It is convenient to re-express this coupling in
terms the Fermi velocity vr = 0,€(kp) then
| Boar Ly
Sw = d’x dt Kwawa (QE(kF) — ’UF]CF) + ... (25)

Notice that in the free limit, ¢(kr) = k%/2m, this coupling vanishes. For notational
convenience we define

which quantifies deviation from the canonical dispersion relation. For systems near
unitarity 0F/Er < 1.

Power counting dictates that the dilaton momenta must scale homogeneously under
an RG transformation in all directions (p'— Ap) and thus will only scatter nearby
points on the Fermi surface. Any other choice of scalings would lead to a power
suppression. The quasi-particle and the dilaton energies scale in the same way as we
move towards the Fermi surface (w ~ Aw). From the kinetic terms in the dilaton and
quasi-particle actions, we can read off the scaling of the momentum space dilaton and
quasi-particle fields

p,t) ~ ATV p(p,t) ~ AT (2.7)

The scaling of the dilaton-quasi-particle interaction is marginal as can be seen by going
to momentum space and noting that, as in the four point quasi-particle interaction,
the delta function enforcing the three-momentum conservation scales as 1/ while the
momentum space measure will scale as

EprdPped®lk ~ N2, (2.8)

as all three momentum components of the dilaton, as well as the quasiparticle momenta
along the direction normal to the Fermi surface, scale as \.

2.2 The approach to Non-Fermi Liquid Behavior

As we move away from the unitary point, the scattering length becomes finite and
scale invariance becomes an approximate symmetry of the effective theory. Hence the
dilaton becomes a gapped pseudo-goldstone. As we will see, we can determine the
mass of dilaton in terms of the scattering length and the contact parameter. We are
working in the units where the fermion mass is one and A = 1, the length dimensions

will be ] 5
1 Gl=—5 [=-3 (29)
Away from unitarity, the conformal symmetry is explicitly broken, however if we

keep the scale of explicit symmetry breaking (the inverse scattering length) small

9



compared to the scale of spontaneous symmetry breaking (the Fermi wave number)
we may still treat the dilaton as a pseudo-Goldstone boson. The smallness of the
dilaton mass follows from the fact that the scattering length is tuned to be large. The
mass of the dilaton is treated as a spurion such that the action is invariant if we scale
it according to its dimensions.

1
§L = §m§¢2 (2.10)

We now use a matching procedure to calculate mg. In the effective theory away from
unitarity, the scale current is not conserved.

Oust =miA\ ¢ (2.11)

We will use current algebra to extract the mass by matching it onto the full theory
result. From the Noether construction the dilatation charge is given by

D°(0) = A/de (%, 0) (2.12)
where 7(x) is the conjugate momentum to ¢. Hence using (9) we have

/[DO(O),ﬁus“(f, 0)] :/d3x miA\? (2.13)

We match this commutator to the full theory, which is a microscopic description of
the theory, in terms of fermions with action

_ 1
S = /dt/d% ix Oy + §XTV2X + g(p) (xx)? (2.14)

where x is two-spinor. The Van der Waals scale(Ay pw ), which describes the range
of the interaction provides the upper cutoff in the theory that suppresses higher
dimensional operators. In the renormalized coupling can be written in terms of the
scattering length as [12]

4

— 2.15
EPP (2.15)

9(u) =

The four-fermion interaction defined in (5.34) explicitly breaks scale invariance.

One can verify that the dilatation charge, the divergence of the scale current and their
commutators are given respectively by

DY) = [ (N E0(,0) + (@0} x(7,0))
(2.16)
Ous" = (g() + B(9)) (x"x)? (2.17)

10



/ dPemgh® = 3 / @z (9(1) + B(9)) (X'x)*.
(2.18)

Where in (2.18) we have matched the commutators in the full and the effective
theory using (2.13). Note that the RHS of (2.18), is an RG invariant, and the dilaton
mass is independent of the scale y. The coupling and the four-fermion operator
both depend on the scale p but the dependence cancels exactly in (2.18) to give a
scale independent mass as required. Evaluating the beta function and taking the
expectation value, we have

3 3
miA? = —(¢* xIxixlx) = — C(a) (2.19)

4d1a dTa
where we have now made the spin state explicit and C(a) is the contact density [13]
whose vacuum expectation value is a measure of the local pair density of the fermions
and is independent of the RG scale pu. For any system consisting of fermions with
two spin states and large scattering length, one can define universal relations which
depend on the contact. Note that A is still an undetermined free parameter. However,
we will see that it will cancel in the calculation of the Landau parameter fj.

If the dilaton mass is sufficiently small it will dominate the quasi-particles inter-
actions, as other contributions to the interaction, arising from integrating out other
modes, will be parametrically suppressed by powers of my/Er, where Ep = % We
integrate out the dilaton to generate net interaction

Ama S E?

1
Lit = = (fo+ ———
' 2(f° 3C(a)k%

) Wlo) @) (2:20)
JF is defined in eq.(2.6). The corrections to this expression are suppressed by powers

of (E?,T?%)maz/ M}, = %kFa% and we have taken A ~ k;/z as the symmetry
a)Ep
5 C(a)

breaking scale. C(a) = =5 is the dimensionless contact parameter [14].
P
Thus if we are in the regime

é(a) (ﬁf > akp > C(a) (5—5)2 ke fo (2.21)

then the dilaton exchange dominates so that we have an effective coupling

4da SE* m

fo =
3C(a)py

where we have re-introduced the factors of A and the atomic mass m. It is important

to keep in mind that dE as defined in (2.6) depends upon a itself in non-perturbative
way that can be determined from experiment or possibly simulations. We will make

, (2.22)
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some estimates for this dependence below to get a handle on the region of validity of
the prediction.

Note that since the coupling to the dilaton is scalar in nature, higher angular
momentum interactions will be sub-leading in our expansion. Since we are working in
the unbroken phase T,,;, = T., where T is the superfluid transition temperature.

2.3 Compressibility and Spin Susceptibility

We can now make a prediction for the compressibility (k) in terms of fp, again, as
this contribution dominates in the strongly interacting region. We may extract « from
a canonical calculation in the effective theory of the number density response function
and it is given by

Ko Ko

 1-mNpfp 1- %%—’E{?Zfb’g
F

K (2.23)

where Np = % is the density of states at the Fermi surface and kg is the com-

pressibility of the free Fermi gas. One can obtain m* from the measurement of the
specific heat of the Fermi gas via the relation C, = m;ng k%T. From (2.23) we find an
additional limit of our EFT if we assume the compressibility must be positive

EF 2 m =

Since the compressibility is a zero frequency observable, this is the appropriate bound
on the validity of this particular prediction, as opposed to the upper bound stemming
from the LHS? of (2.21).

One can also consider the response of the Fermi liquid to an external magnetic
field and calculate the spin susceptibility x. This can be computed straightforwardly
in the effective theory and is given by

X0 X0
X = 2 - 1 m* krpa §E2 (225)
L+ PNefp 1+ g5 des

where yg is the susceptibility of the free Fermi gas. Note that the validity bound
in (2.24) need not hold for the above prediction. The regime of validity for the spin
susceptibility can only be clarified from experiments.

2.4 Quasi-particle width

We may also calculate the quasi-particle width using our result for fp. The self-energy
only gets contributions from the forward scattering coupling, as the other marginal

2Note that there is no thermal mass for the dilaton, due to quasi-particle loops, in the large T
limit [15], though the width will scale with *£7.
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coupling (BCS) is restricted to back-to-back interactions. The imaginary part of
the self energy of a fermi-liquid due to S-wave interaction is T'rr(E,T) = f2I1(E,T),

where I(E,T) = %(Lﬂ + (7kT)?) is the imaginary part of the two-loop self energy

diagram at finite temperature[15]. Using our result (2.22) we can then calculate the
quasi-particle width

[(E,T)= fpI(E,T). (2.26)

such that,
(E,T) =

m* <m* adFE?
187 (,:'(oz)2 m AhE%

This prediction is valid in the range defined by eq.(2.21).
The theoretical errors in this predictions are of order

o) ole(®) e

2.5 Conclusions

)2 (E* + (nkT)?) (2.27)

It is known that degenerate fermionic systems cross over from Fermi to non-Fermi
liquids as unitarity is approached. Symmetry requires that Fermi gases at unitarity
manifest a gapless excitation in response to external stress. This “dilaton” mode will
look like an over damped sound mode, but it might be hoped to be isolated since we
are working in the attractive regime where there is no zero sound. Furthermore, by
working below the hydrodynamic limit, there will be no contamination from second
sound.

Perturbing away from the unitary limit gaps this mode. For energy scales large
compared to the gap, the quasiparticle excitations are expected to behave as in a
non-Fermi liquid with a width that scales linearly with the energy. However, as the
energy of the quasi-particle drops below the gap the dilaton mediated interaction
localizes and Fermi liquid behavior with the width scaling quadratically with energy
is expected. The behavior of the system as a function of energy and scattering length
is depicted in figure one.

The key insight noted here is that the mass of the dilaton can be fixed by matching
the effective theory current algebra to that of the full theory, the result of which leads
to a prediction for the mass in terms of the scattering length and contact parameter,
which in turn allows us to make a prediction for the quasi-particle lifetime including
the normalization. The width is predicted to scale quadratically with the ratio of
scattering length to the contact parameter. Note also that the dilaton, because its not
derivatively coupled, will only generate the [ = 0 Landau parameter. Thus we have
the additional prediction that the [ = 0 Landau parameter will dominate all other
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Figure 2.1: The plot shows the phase diagram as a function of the energy and the
scattering length. Our prediction for the self-energy is valid below the dilaton mass
curve (orange) and above the T, curve (green). One obtains a Non-Fermi Liquid
(NFL) above the dilaton mass curve for large scattering lengths. As the scattering
length decreases, the dilaton starts to decouple and one obtains a conventional Fermi
Liquid (FL).

channels. We also calculate the compressibility and the spin susceptibilty of the Fermi
liquid as a function of the scattering length. These predictions have a limited range
of validity. The energy must be small enough that the dilaton exchange can still be
treated as a local interaction. This limitation also implies our EFT breaks down when
the scattering length, which is inversely proportional to the dilaton mass, becomes
large i.e. in the NFL region. However, our method/prediction is non-perturbative in
the sense that it is valid up to scattering lengths of order kra ~ 1 where perturbative
EFT techniques [10] fail. Figure one summarizes the bounds on the range of validity
of the EFT. For typical, model, values of C' and T, [16, 17], this gives kpa < 5 for the
prediction for the width to be valid.
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Chapter 3

Effective field theories of
Magneto-Elasticity

In this chapter we utilize effective field theory (EFT) techniques to investigate magneto-
elastic phenomena in insulators in the long wavelength limit. The interaction between
phonons and magnons is a well developed subject. For earlier theoretical work on
phonon-magnon interactions, see for instance [18, 19, 20, 21, 22, 23, 24, 25, 26] and for
experimental work, see [27, 28, 29]. Here, we will be utilizing the coset construction
(30, 31, 32, 33] which, to the best of our knowledge, has yet to be applied to magneto-
elastic systems. A primary, but not limited, goal of this paper is to set the stage for
understanding the interactions of Skyrmionic with magnons and phonons [34].

Within our EF'T approach, the action is completely dictated by the spontaneous
symmetry breaking pattern. In the absence of gapless modes which carry conserved
quantum numbers (e.g. itinerant electrons), the relevant degrees of freedom at
sufficiently low energies are the Goldstone bosons associated with the spontaneously
broken global symmetries. The latter act non-linearly on the Goldstone fields, and
therefore are not always manifest. The coset construction [31, 30, 32, 33] is a powerful
algorithmic tool to generate an effective action for the Goldstone modes which is
invariant under all the symmetries, including the ones that are realized non-linearly.
The action will be organized as a derivative expansion valid up to a cutoff energy of
the order of the spontaneous symmetry breaking scale. We also use this formalism
to capture systematically the consequences of a small explicit breaking of certain
symmetries—e.g. due to an external magnetic field, or the presence of Dzyaloshinsky-
Moriya (DM) interactions among spins.

Solids break a multitude of space-time symmetries, including translations, rotations
and boosts. Moreover, homogeneous and isotropic solids possess emergent internal
translational and rotational symmetries (see e.g. [35, 36, 37]), which are also sponta-
neously broken in the ground state, as will be discussed below. We should stress that
the assumption of isotropy is convenient but by no means necessary. It is straightfor-
ward to relax this assumption and consider instead a finite subgroup of rotations (for
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a relativistic solid, this was done for instance in [38]). The relevant symmetries and
the associated generators are given in Table 3.1. The resulting symmetry breaking
pattern is summarized in Eq. (3.2).

Magneto-elastic interactions are characterized by a multitude of scales, and the
derivative expansion can be implemented in different ways depending upon whether
or not there are hierarchies among them. We will refer to these possible choices as
different power counting schemes. For simplicity of presentation we will make a simple
choice of scales. Exploring other hierarchies can be achieved by minor variations. Our
EFT approach can in principle predict a large number of effects from first principles.
Here, we will only focus on a set of illustrative observables calculated in a particular
power counting scheme.

3.1 Relevant symmetries

Given the non-relativistic nature of the system we are considering, the appropriate
space-time symmetry group is the Galilean group, which is comprised of time and
spatial translations, spatial rotations, Galilean boosts, and total mass (or, equivalently,
particle number). As we will discuss at length below, the spontaneous breaking of
Galilean invariance, places non-trivial constraints on the dynamics of the system,
which in turn enhances predictive power.

Our system also admits a number of internal symmetries including spin rotations
and, if we restrict ourselves to homogeneous and isotropic systems, an emergent
internal 7SO(d) symmetry [37] (in d spatial dimensions) whose implementation will
be discussed in the next section.

All these continuous symmetries and their corresponding generators are summarized
in Table 3.1. The generators satisfy an algebra whose only non-vanishing commutators
are

(L, K| = i€;: Ky, [Li, P;] = i€ P,
[K;, H| = —iP; (K, Pj] = —iM;j,
Qi Tj] = ieijn Ty, [Qi, Q5] = i€ijiQx

[Sa,SB| = ieapcSc - [Li, Lj] = i€;j, Ly,

(3.1)

Notice in particular that the internal symmetry generators ();, S4 and T}, commute
with all the generators of the Galilei group, as befits the generators of internal
symmetries.
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Symmetries Generators

Time translations: H
Spatial translations: P
Spatial rotations: L;
Galilean boosts: K;
Total mass: M
Spin rotations: Sa
Homogeneity: T;
Isotropy: Qi

Table 3.1: Relevant symmetries of lattice of spins in three spatial dimensions in the
continuum limit. Some of these symmetries may be spontaneously and/or explicitly
broken.
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Generators | Parity | Time-reversal
H + —
B - +
L; - +
K; — —
M + —
Sa + +
T - +
Qi + +

Table 3.2: Transformation properties of various symmetry generators under parity
and time-reversal. Each generator X in the first column transforms as X — +iX
with the appropriate sign shown in the second and third column.

Discrete symmetries such as parity and time-reversal will also play an important
role in what follows. The transformation properties of the above generators under these
symmetries are listed in Table 3.2. Under parity and time-reversal, each generator X
in the first column transforms as X — +iX with the appropriate sign shown in the
second and third column. A factor of “4” was included in these transformation rules for
later convenience, to more easily account for the fact that time-reversal is implemented
in a way that is anti-linear and anti-unitary (as opposed to parity, which is linear and
unitary). Notice however that our transformation rules are equivalent to the ones
that some readers may already be familiar with. For instance, the transformation rule
of the spin S, under time reversal, which we write as iS4 — 5S4, is equivalent to
Sa — —S4 owing to the anti-linear nature of time-reversal.

3.2 Effective actions

In this section, we will discuss the way in which the symmetries are realized in (anti-
)ferromagnets and ferrimagnets. We first address how some of these symmetries are
spontaneously broken, and derive the effective action for the ensuing Goldstone modes.
A discussion of explicit symmetry breaking is postponed until Section 3.6.
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Figure 3.1: Schematic representation of the ground state spin configuration of (a)
ferromagnets, (b) antiferromagnets, and (¢ ) ferrimagnets.
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3.2.1 Spontaneous symmetry breaking pattern

The full symmetry group will be denoted by G with elements g, while the unbroken
subgroup will be denoted by H with elements h. The vacuum manifold corresponds
to the coset G/H. (Anti-)ferromagnets and ferrimagnets have the same symmetry
breaking pattern save for time reversal, as depicted in Figure 3.1. Including lattice
effects, all three cases possess the following spontaneous breaking pattern:

(

H o
_ K;

P4T, =P

T;
unbroken = L, +Q;,=1L; , broken= , (3.2)

Qi

S3
Sl7 ‘92 = Sa

M \

\

where we have assumed the spins to be oriented along the “3” direction. This pattern
describes all the spin configurations in Figure 3.1. The distinction between these
cases can be understood by recalling that S4 — —S4 under time-reversal. Thus,
the first configuration (ferromagnets) maximally breaks time-reversal invariance, the
second one (antiferromagnets) preserves it, and the last one (ferrimagnets) once again
breaks it, but in a more “gentle way”, as the amount of breaking is controlled by the
difference between the magnitude of the spins pointing upward and those pointing
downwards. In other words, time-reversal gets restored in the limit where these spins
have the same magnitude. As is well known, the fate of time-reversal invariance turns
out to have a significant effect on the spectrum of gapless modes (see e.g. [39]), which
will be discussed in Section 3.4.2.

At this stage, it is worth pointing out that, since T; and @); are spontaneously
broken, P, and L; must be as well in order for the linear combinations P, and L; to
remain unbroken. In fact, broken generators are always defined only up to the addition
of unbroken ones. The broken generators listed above are just one particular choice
of bases for the coset space of broken symmetries. Moreover, since some of these are
space-time symmetries, not all the broken generators in our basis will give rise to
Goldstone modes [40]. As we will see, phonons and magnons are the only Goldstone
modes associated with the symmetry breaking pattern in Eq. (3.2).

3.2.2 Coset construction for phonons and magnons

Starting from the symmetry breaking pattern (3.2), there exists a systematic procedure,
known as the coset construction, [31, 30, 33, 32] to write down a low energy effective
action for the Goldstone modes. A modern and concise review of this technique can
be found for instance in Sec. 2 of [41]. We will now apply it to the problem at hand
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to write down an effective action for phonons and magnons.!
The starting point of a coset construction is a choice of parametrization of the
vacuum manifold. The parametrization that we will work with is

_ Ci D il K. ST 500). A O
O=¢ thez:v Pzezn Klemr Tzezﬁ Qlezx Sa' (33)

There is a considerable amount of freedom involved in choosing this parameteri-
zation, as the order of the exponentials and the basis of broken generators are to a
large extent arbitrary. However, different choices are connected to each other by a
field redefinition and thus generate identical predictions for physical quantities. One
can think of €2 as the most general broken symmetry transformation, supplemented
by an unbroken spatial and time translation.

The fields n’, 7%, 0" and x* in Eq. (3.3) are the Goldstone modes associated with
the spontaneous breaking of K;,T;, (); and S, respectively and their transformation
rules under the action of G is defined by the equation [33]

gQt,z, @) = Q(t', 2/, ") h(D, g), (3.4)

where ® = {5, 7,0, x*}, and h is some element of the unbroken subgroup that
generically depends on the Goldstone fields as well as the group element g.

As previously mentioned, not all of these modes are physically independent of each
other. In fact, we will see in a moment that the fields 1’ and 6 can be removed while
preserving all the symmetries by imposing certain “inverse Higgs” constraints [47]. The
remaining fields, 7¢ and ¢, will respectively describe phonon and magnon excitations.
The transformation properties of coordinates, phonon fields, and magnon fields are
summarized in Table 3.3.

Starting from the coset parametrization €2, one can calculate the Maurer-Cartan

form defined as Q~1d:

Qa0 = @{ — Hdt + P'(n'dt + dz') — M(n'da’ + 377 - 77dt) + Q'3¢”* [R71(0)dR(0)] ,,
+ Kidif + T [(da' + dn' )R (0) — dt — da] + 5°Le*BC [0~ (x)dO(x)]*¢ }
(3.5)

where we have introduced the matrices R;; = (eim@i> ~and Oup = (eixasa) .5 Note
ij

that this result follows using only the algebra in Eq. (3.1), and as such, can be obtained
without committing to any particular representation for the group generators.

IFor separate discussions of magnons and (relativistic) phonons based on the coset construction,
see respectively [39, 42] and [37]. The low-energy effective theory of (anti-)ferromagnets was also
discussed in [43, 44, 45, 46].
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t 7 mi(t', a) XLt @)
H|t+c T i (t, ) Xa(t, T)
Pt r+d mi(t, T) Xa(t, T)

Li| t |R;'O)x; | R;'(0)m Xa(t, )

Sy |t T mi(t, T) R, (05)xs(t, T)
M t T mi(t, X) Xa(t, X)

K; t T — Ut T 4 vit Xa(t, X)

Q| t i R (0)¢; — Xa(t, T)

T, | t i i + ¢ Xa(l, T)

Sa | t z mi(t, T) Xa(t, ) + wq + ...
P| ¢ —z —mi(t, ) Xa(t, )

T | —t 7 mi(t, ©) Xa(t, T)

Table 3.3: Action of the symmetries on the coordinates, the phonon fields 7¢, and the
magnon fields y®.
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Even though we are considering a non-relativistic system, it is convenient to use
the relativistic notation where 2# = (¢,2%), and define P, = —H. We should stress
that this is just a matter of notational convenience, and we are not imposing Lorentz
invariance. With this notation, we can rewrite the Maurer-Cartan form as follows:

Q'dQ = ida"e, (P, + V,m'T; + V,0' Q; + V'K,
+Vux"Sa + AuM + A, Ss). (3.6)

This equation defines the “covariant derivatives” of the Goldstones V7",V 0",V 1
and V,x?, as well as the “connections” A, and A}, and vierbein e,*, which read:

e’ =1, e’ = 5;, el =0, e'=n' (3.7a)
Vir' = (01’ — 0" 0cd’ )R, (0) (3.7b)
V' = 0;6" R (0) — 0 (3.7¢)
Vit = 1™ [R710)(0, — W 0;)R(0)] (3.7d)
V0" = 1™ [R71(0)0;R(9)], (3.7e)
V' = om' — njajni (3.7f)
vin' =o' (3.7g)
Vix® = 3P (07 ()0 — 1 9;)0(0)] oo (3.7h)
Vix* = 3" 107 (0)0,0(X)] g (3.71)

Ay = 4ip? (3.7))

Aj=—ni (3.7k)

Ap = 5 [0 () (0 — 7 8;)0(X)] (3.71)

A =1 [0 ()9,0(0)],, (3.7m)

where we have defined ¢ = 2% 4+ 7 to streamline the notation. ¢'’s are the comoving
coordinates of the solid, which at equilibrium (i.e. when 7* = 0), can be chosen to be
aligned with the physical coordinates z* [35].

The fields 1’ and €' can now be removed from the theory in a way that is compatible
with all the symmetries by solving the inverse Higgs constraints [47]

Vtﬂ'i = O, V[ﬂl’j] =0. (38)

The first constraint can be solved immediately for n* and yields n* = 9,77 (D~1),*, with
D;; = 0,¢;. The second constraint can instead be solved for R;;(#) using the same
strategy employed for instance in Sec. V of [37]. After substituting both solutions
back into the remaining covariant derivatives, the low-energy effective action will only
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depend on the phonon field 7' and the magnon field x® through the combinations:?

V(iﬂ'j) = (D\/ DTDD_I)Z‘j - 5@‘ (39&)
1 ,
Vi = 5e {070, — 0 (D7) 10} (3.9h)
1
Vixa = §€aBC(O_13iO)BC s (39C)

where D;; = 0;¢; = 0, + O;m; and, once again, Oap = (eiXaS“)AB.

Covariant derivatives of n’s and #’s, once expressed solely in terms of the fields
7t and x%, turn out to have a higher number of derivatives per field compared to the
ones in Egs. (3.9). Thus, these quantities can be neglected at lowest order in the
derivative expansion. Moreover, the coset connections A, and Aj, are needed only
if one is interested in higher covariant derivatives of the 7w’s and x’s, or in couplings
with additional fields. In this paper we won’t be interested in either, and therefore
these connections won’t play any role for our purposes.

By combining the building blocks (3.9) in a way that preserves the unbroken
symmetries in Eq. (3.2), one can write down all the terms in the low-energy effective
action that are ezractly invariant under all the symmetries, including the ones that are
broken spontaneously. However, the latter are realized non-linearly and thus are not
manifest. Therein lies the power of the coset construction.

There are also some terms that we can write down that are invariant only up to a
total derivative. Following the high-energy physics terminology (see e.g. [48]), we will
generically refer to these terms as Wess-Zumino-Witten (WZW) terms, even though
they do not have a topological origin and their coefficient is not quantized. These
kind of terms can be obtained systematically by combining the 1-forms that appear
in front of the various generators in Eq. (3.5) to build 5-forms « that are exact, i.e.
a = df3, and manifestly invariant under all unbroken transformations.®> Once again,
the coset construction ensures that any « built this way is actually invariant under all
the symmetries—including the broken ones. Therefore, the 4-form [ is in principle
allowed to shift by a total derivative under a symmetry transformation [49, 48, 50],
and its integral is in general a WZW term.* Using the solutions to the inverse Higgs
constraints (3.8), we can always express these WZW terms solely in terms of 7’s and
X’s.

For the system under consideration, there are two WZW terms that we should
include in our effective Lagrangian. In particular, note that if we were restricted to
our building blocks (3.9) our action would not have time derivatives acting on the

2Notice that, although it’s not obvious, the tensor (DvV DTDD™!) that appears in (3.9a) is
actually symmetric. This can be checked explicitly by working perturbatively in the fields 7°.

3More generally, in d space-time dimensions one would need to consider a (d + 1)—form « that is
exact.

4More precisely, not all the terms built this way will be WZW terms, since they could turn out to
be accidentally exactly invariant. However, all WZW terms can be built this way [49].
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phonon field. In order to write down WZW terms, it is convenient to denote with wx
the 1-form associated with the generator X in the Maurer-Cartan form (3.5) up to an
over all factor of “2”. Hence, with this notation we have for instance wy = —dt, and
so on. The two exact 5-forms that we we can write down are then

Ur = €10mWK,, Nwp, N (Wp, +wr,) A (ij +wry) A (wp, +wry)

= d [(neda’ + Li?dt) Adg’ A dd? A doeij] (3.10a)
ay = €k ws, Nws, A (Wp, +wr) A (wp, +wr,) A (wp, +wr,)
=d [2e°(07'dO) gy A dd' N de? A dg¥eij] - (3.10b)

The derivation of the RHS of Eq. (3.10b) is summarized in Appendix 6.1. Once again,
notice that the 5-forms above are fully invariant under all the symmetries, even though
they are manifestly invariant only under the unbroken ones. The 4-forms that give
rise to the relevant WZW terms are the ones in square brackets on the RHS of Egs.
(3.10). Using the solutions to the inverse Higgs constraints, we can then write down
the WZW terms explicitly as follows:

C . .
oo = det(D) [0’ (D7), (3.11a)

LY = % det(D) € [(0710,0)a — O (D) (07'0;0) ] (3.11b)

with ¢, ¢o arbitrary coefficients.

Up until now we have only concerned ourselves with invariance under continuous
symmetries. However, time-reversal plays a crucial role in determining the spectrum
of low-energy excitations in magnetic systems. It is straightforward to derive how
space-time coordinates and Goldstone fields transform under parity and time-reversal.
To this end, we require that the coset parametrization ) remains invariant when the
broken generators transform according to the rules summarized in Table 3.2. This
leads to the transformation rules shown in Table 3.3.

Using these results, we infer that V), Vix®, Ly zw, Ly zw (Vix®) are even
(odd) under parity, whereas V7, Vix®, Ly zw, (Vex®, Ly 2w ) are even (odd) under
time-reversal.

Finally, we should point out that, although the quantities in Eqs. (3.9) and (3.11)
have been derived in three dimensions, they can be used in any number of spatial
dimensions d, provided one lets the lowercase indices 7, 7, k, ... run from 1 to d. In the
remainder of this paper we will mostly restrict ourselves to the d = 3 case, unless
otherwise stated.

3.2.3 Effective action for phonons and magnons

At low-energies and large distances, the most relevant terms in the Lagrangian will
be those with the least number of derivatives. In practice, this requirement means
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something slightly different for the phonon field 7 and the magnon field ¢, i.e. the
derivative expansion is implemented differently on the two fields. This can be easily
seen from the fact that, unlike the x’s, each 7 in Eqgs. (3.9) and (3.11) appears with
a derivative.® Therefore at lowest order in the derivative expansion, anharmonic
corrections to the free Lagrangian for phonons and magnons are suppressed by higher
powers of 9;m/ and x* (which, with our conventions, are both dimensionless). When
these quantities are small, one can safely expand the terms in Egs. (3.9) and (3.11) in
powers of O and x and keep only the first few terms. This is certainly the appropriate
thing to do if we are interested in studying small fluctuations around a particular
ground state of the system—as we will do for instance in Secs. 3.3.2 and 3.4.2.

It is however not necessary to perform such an expansion at this stage. In fact,
by keeping intact the non-linear structures in (3.9) and (3.11) we will be able to also
describe non-trivial field configurations where the first derivative of the phonon field
is of order one, with second derivatives being suppressed. A similar approach is taken
in General Relativity where the Einstein-Hilbert action can be derived starting from
spin-2 perturbations around a particular ground state—the Minkowski vacuum—and
then resumming all non-linear interactions that are dictated by symmetry, locality,
and self-consistency [51]. This action can then be used to describe spacetimes other
than Minkowski as long as higher derivative curvature invariants for these solutions
remain small in units of the cutoff.

Since magnons do not carry one derivative per field, we allow the field itself to vary
at the order one level, but its first derivatives must remain small in units of the cutoff.
We can systematically include higher derivative corrections at the cost of introducing
additional unknown Wilson coefficients.

Thus, we are going to use the full expression for our Goldstone covariant derivatives
and WZW terms, and write down the most general effective Lagrangian that contains
one derivative on each 7, and the least possible number of derivatives on the x’s. For
ferromagnets, this requirement leads to the following effective Lagrangian:

‘Cferromagnets == ‘C%ZW + ‘C%/(VZW - Fl (U) - %FSJ(U’) vz’Xavaa, (312)

where we have defined u;; = V;7;) for notational convenience, F; and FQU admit an a
priori arbitrary series expansion in powers of u;;. Notice that the i-type indices and
a-type indices cannot be contracted with each other, because the former transform
under L;, whereas the latter under S;. Moreover, we have not included a term
of the form V;x,V;x* which would contain a term quadratic in xy with two time
derivatives, because for ferromagnets it is subleading compared to L3,y which
contains a quadratic term with only one time derivative. The latter, in turn, is allowed
only because time-reversal is broken. Hence, this term cannot appear in the effective
Lagrangian for anti-ferromagnets, which reads:

Eantiferromagnets = ‘C%ZW - Fl(u) - %F§j<U)viXanXa + %Fg,(u)vtxavtx“. (313)

5The reason for this is that the phonons are associated with a broken Abelian group.
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The leading kinetic term for the y’s now comes from the last term in Eq. (3.13) rather
than from L3, ,,;, and this leads to a different dispersion relation for magnons [39], as
we will see in a moment.

Finally, the low-energy excitations in ferrimagnets derive their kinetic term from
an interplay between the term Vix,Vix® and Ly, - The coefficient ¢y in L3,y is
much smaller than in ferromagnets since its size is determined by the scale at which
time reversal is spontaneously broken, which in ferrimagnets is parametrically smaller
than the scale at which all other symmetries are broken. Thus, the effective action for
ferrimagnets is:

‘Cferrimagnets = ‘CTI;VZW + ['ﬁ/ZW - Fl (U) - %ng(u)viXavaa + %FB(U)VtXatha'
(3.14)

3.3 Phonons

Let us start by turning off the magnon field and focusing on the phonons. Then, our
effective Lagrangian reduces to

L %det(D) 0,7 (DY), 72 — Fy(u), (3.15)

where, as the reader may remember, we have previously defined D;; = 0;¢; and

U5 = (D V DTDDil)Z‘j — 51]

3.3.1 The Elasticity equations

It is convenient to exploit the fact that, in an isotropic system, the function F; depends
only on the SO(3)-invariant contraction of the tensor u;;. In any such contraction,
the outermost tensors D and D~! drop out. This means that I can also be regarded
as an arbitrary function of v DT D or, equivalently, (DT D);; = 0,.¢,0"¢; = B;, which
is the metric in the co-moving coordinate system. Therefore, we can work with the
Lagrangian

L— %det(D) 0,/ (D), 72 — Fy(B), (3.16)

where, with a slight abuse of notation, we have replaced Fy(u) — Fi(B).
This action admits a simple physical interpretation if we think of the ¢'s as
comoving coordinates—meaning that ¢’(x) labels the volume element at position .

Denoting by p(¢") the mass density in the comoving frame, the mass density in the
lab frame is [35]

p(z) = p(¢") det(0ig;). (3.17)
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This quantity is actually the zero component of the identically conserved current®
p(¢)
3!

From this current, we can deduce the velocity at which volume elements move around
in the lab frame:

JH = "7 0, ¢'0,0" 0y P ek (3.18)

7
v = jo —(0:¢")(D71);". (3.19)
With this identification, the equation d,J* = 0 reproduces the standard continuity
equation, 9;p + 0;(pv’) = 0. Notice that this result for v* is consistent with the
covariant derivative in eq. (3.9b), where the time derivative becomes the “fisherman
derivative”.

Moreover, homogeneity implies that the comoving mass density must be a constant,
i.e. p(¢') = p. This can be deduced more formally by noting that the symmetry
generators T; act on the fields ¢ as constant shifts: ¢ — ¢ + ¢'. As a result, we see
that the first term in the Lagrangian (3.16) is just the usual kinetic energy pv? with
the identification ¢; = p; the second term can be thought of as a potential energy
contribution.

The equations of motion can be obtained as usual from the Euler-Lagrange
equations for 7', or equivalently ¢, that follow from the Lagrangian (3.16). However,
as is usually the case for Goldstone fields, their equation of motion are also equivalent
to the conservation equations for the associated broken generators. In our case, the
equations for the phonons follow from the conservation equations for the “homogeneity
generators” T;. Equivalently, we can also consider the equations for momentum
conservation, since the momentum generators P; and the T;’s are equivalent up to an
unbroken generator: T; = P, — P,. We therefore consider

9,T" =0, (3.20)
with
) oL )
T = ——_9'¢) — L. (3.21)
9(0u )
An explicit calculation of T yields
T% = p(det D)(9,¢F(D71)i) = —pv' (3.22a)
ij oL ij i j ij
TV = aDz‘kDJ — 0L = —pv'v) + oY, (3.22b)
where we have identified the stress tensor
-~ a 1
Oi5 = Fléij Bkﬁ ¢k6j¢z (323)

6By identically conserved we mean that this is not a Noether current that follows from a symmetry
of the Lagrangian (3.16).
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Then, leveraging the conservation of the current (3.18), Eq. (3.20) reduces to the
familiar elasticity equations:

p(0, + V700" = 9,07, 3.24
j j

3.3.2 Phonon Spectrum

Let us now expand the Lagrangian (3.16) up to quadratic order in the 7 fields to derive
the existence of phonon excitations in the static unstressed ground state (¢') = x.
Expanding B;; in the phonon fields 7’s, we find

Byj = bij + 0imj + Ojymi + Oymid*m (3.25)

At quadratic order in the 7 fields the Lagrangian is then given by

£(2) _ %atﬂ-iatﬂ-i _ cates (aiﬂ.’i>2 __ cstcs 81'7Tjaiﬂ'j (326)

™ 2 2

where the coefficients c3, ¢4 and c5 are defined by the relations:

oF,

C3

62F1 O Cx

where we have utilized the isotropy of the background. Given the assumption of
isotropy, we can decompose the strains into their irreducible components

Oy = (Sijw + Aijia + Tijia) O (3.29)

where S, Aij and T, are the projectors onto the symmetric-traceless, anti-
symmetric and the trace parts.

1 1

Sijkl = 5(52‘/&5]‘1 + 0udjk) — gfsijfskl
1

Aiji = 5(5¢k5ﬂ — 0idjk) (3.30)
1

Tiju = §5ij5kz

It is easy to see that the anti-symmetric part is just the 6 goldstone and can be set to
zero since we have integrated it out. The irreducible components of the strains are
orthogonal to each other. The decomposition in (3.29) allows us to re-write the action
in (3.26) as

2_C5+03

2

405 + 3C4 +c3

(Sijrd ')’ 5

£ =5 @) (Td*n)? (331
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This puts constraints on the coefficients of the Lagrangian
G=cs+c3>0 3K=2c5+3c4—c3>0 (3.32)

where we have identified the coefficients with the shear G and bulk modulus K. This
is straightforward to see since the trace part only contributes to pure compression
whereas the traceless symmetric part contributes to pure shear of the material. It
is now convenient to decompose 7’ into the sum of a longitudinal part 7% and a
transverse part 7, such that

V- 7p =0, V x 7, = 0. (3.33)

It follows from the Lagrangian (3.31) that these two components satisfy two different
wave equations, which admit solutions—the sound waves, or phonons—with linear
dispersion relations w? = ’U%’Tk2, and longitudinal and transverse speeds given by

4G + 3K
v? = %ﬁ va = (3.34)

=1 Q

From (3.32), this implies that v} > 307.7

3.3.3 Power Counting

The effective Lagrangian (3.16) is the leading term in a suitably defined derivative
expansion. This means that the elasticity equations we derived from it are only valid
to the extent that higher derivative corrections are negligible. Similarly, the quadratic
Lagrangian (3.26) can be trusted only if it is safe to neglect the non-linear corrections
that arise by expanding (3.16) to higher orders in 7*. Under what circumstances are
these good approximations?

To address this question, we will make the simplifying assumption that v, and vy
are of the same order, which we will schematically denote with v,. Then, the effective
action (3.16) can be written as

S 2
§ = /dtd?’?n & ,C(#/Uﬂ—, @Wj), (335)
h h
where we have momentarily reintroduced an explicit factor of i to make dimensional
analysis more transparent. On naturalness grounds, we will assume that the Lagrangian
density £—which is a dimensionless function of dimensionless arguments—only con-
tains coefficients of order one. This implies immediately that quadratic Lagrangian
(3.26) is a good approximation for field configurations such that /v., 0;m; < 1.

It is convenient to introduce a new time variable ¢ = v,t. This is equivalent to
introducing new units such that time is measured in the same units as lengths, and

"See however [52] for an interesting UV model that violates this bound.
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the sound speeds are dimensionless numbers of O(1). In these new units, the action
above becomes

% — /dt’d3r % ﬁ(atnr, (9i7rj). (3-36)

This action now depends on a single length scale, L, = (pv,/h)~*, which therefore

should be identified with the length cutoff of our effective theory. This means that
higher derivative corrections to (3.36) must appear in the combinations L,0; and
L0y = (L;/vr)0;. Hence, our effective action can reliably describe phonon excitations
with frequencies w < v, /L, and wave-numbers |k| < 1/L,.

3.4 Magnons

In the incompressible limit one can neglect the phonon field, and the effective La-

grangian for the magnon fields reduces to
Cr

L — %Eab(O_latO)ab + %(VtXa)Q - 5<ViXa)27 (3.37)

where we have defined Fy(u = 0) = ¢ and Fi? (u = 0) = ¢769. The coefficient
cy is ~ (cger)®/* for ferromagnets, < (cge7)?/* for ferrimagnets, and vanishes for
antiferromagnets.

3.4.1 Nonlinear Equations of Motion

As we did for the phonons in the previous section, we can easily derive the non-linear
equations of motion for the magnons. This will allow us to make contact with the
standard literature on magnetism. To this end, it is convenient to perform the following
field redefinition:

X1 = 0sin ¢, X2 = —fcoso, (3.38)

and to introduce the unit-norm vector
n = O(x)&3 = (sind cos ¢, sin O sin ¢, cos ). (3.39)
In terms of these new fields, after some algebra, the Lagrangian (3.37) becomes
L— —cypeosh+ L(0n)? — <(0in) (3.40)

Note that the first term doesn’t admit a simple expression in terms of n because,
unlike the other ones, it is only invariant up to a total derivative. This can be easily
checked using the fact that n transform linearly under spin rotations, and hence that
its change under infinitesimal spin rotations is 0n = & x n. This implies that

00 = wycos¢p —w,sing
d¢p = w, — wycothcosp— w,cothsin g, (3.41)
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or, equivalently, that the x fields must transform as

w.
6 — T 2 2 \/ 2 2 t \/ 2 2
X1 T/ (X1/x2 + /X5 + x5 cot \/xT + X3)

ox2 = (1+xf/><§\/x?+x%cot \/X%ﬂLX%)'

o Y
1+ x3/x3
(3.42)

It is then easy to check that the Lagrangian (3.40) changes by a total time derivative
under a spin rotation:

d

[ﬁ (wy sin ¢ + w,, cos qb)} . (3.43)

Once again, rather than deriving the equations of motion by varying the Lagrangian
(3.37) with respect to our fields, we will resort to the conservation of the Noether
currents associated with spin rotations. In order to calculate the currents, we must
account for the fact that the WZ term is only invariant up to a total time derivative.
Including this contribution leads to

T = (=ng, (VN X 1)) (3.44)

The equations of motion, for # and ¢ can now be written in a very compact form
in terms of n by imposing 9, J¥ = 0 to find:

o Oyt = —(cgOPh — ey V*R) x 1. (3.45)

When cg0; < ¢, the first term on the righthand side can be neglected, and our result
reduces to the well-known Landau-Lifshitz equation for ferromagnets [53, 39].

The informed reader will notice that these equations are missing the so-called
“Gilbert damping” term, induced by the magnon finite lifetime. As is well known, an
action formalism, from which we have derived our equations of motion, is inherently
time symmetric. To account for damping one should work within the so-called “in-
in” formalism. In section (3.5.4) we will calculate the magnon damping using our
formalism. To generate the Gilbert damping would entail using these results in
conjunction with the in-in formalism [54].

3.4.2 Magnon Spectrum

Let us now turn our attention to the spectrum of long-wavelength excitations around
the ground state. For simplicity, we will work with the Lagrangian (3.37), which
strictly speaking is appropriate for ferrimagnets; (anti-)ferromagnets can be easily
recovered by taking appropriate limits. These limits will in turn affect the power
counting, as we will discuss in the next section.
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Expanding (3.37) up to quadratic order in the x’s, we find

C C C .
L = feabxa&xb + f&xa@tx“ — 570»@0’ ‘ (3.46)
The dispersion relations for the magnon modes then follow by demanding that the
determinant of the quadratic kernel vanishes in Fourier space. If the coefficient ¢,
doesn’t vanish, as is the case for ferri- and ferro-magnets, then one finds that, in the
small £ limit,

B m

2\ 2
wr ~ A* + O(k?), w? ~ (;—) + O(k®), (3.47)

where we have introduced the gap A = ¢y/cg and the effective mass m = ¢y/(2¢7). The
gapped modes with dispersion relation wi are physical provided c; is small enough
that the energy gap A falls below the cutoff of the effective theory. This is the case for
ferrimagnets, but not ferromagnets, as we discuss in the following section and further
elaborate on in Appendix 6.2.

When c; = 0, one instead finds two modes with identical linear dispersion relation:
wi = vik?, (3.48)

with the phase velocity equal to vi = ¢7/cg. Note that the three parameters that appear
in the dispersion relations above are not all independent: they are related to each
other by A = 2mv>2(. The mechanism by which a term with a single time derivatives
can turn a pair of gapless modes with linear dispersion relation into a gapped mode
and a mode with quadratic dispersion relation has been studied extensively in the
literature—see e.g. [55, 56, 57| and references therein.

3.4.3 Power counting

Let us first consider anti-ferromagnets, where co = 0; in this case, the low-energy
effective Lagrangian (3.37) acquires an accidental symmetry. Although Galilean boosts
appear to be explicitly broken in the incompressible limit, when the phonon fields are
neglected, the Lagrangian for antiferromagnets is formally invariant under Lorentz
transformations with “speed of light” vi = ¢7/cg; indeed, it has the same form as the
Lagrangian for a relativistic nonlinear sigma model SO(3)/SO(2). This additional
symmetry ensures that the coefficients c¢g 7 get renormalized by nonlinearities in (3.37)
in such a way that their ratio remains constant. Higher derivative corrections to
(3.37) won’t generically preserve this accidental symmetry—even though it would be
technically natural for them to do so—and can therefore affect the ratio c7/cs.
Because of this accidental symmetry, the power counting scheme for anti-ferromagnets

is virtually identical to that for a relativistic theory, with the speed of light replaced
by v,. Keeping length and time scales separate, we find that the only length scale
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that can be built out of ¢g and ¢; is L, = (cger)~1/4, and the only time scale is L, /v, .

In the absence of fine-tunings, these must be the scales that suppress higher derivative
corrections to the effective Lagrangian (3.37) (as usual, up to loop factors of 47 and
coefficients of order one).® In other words, observables in the effective theory can be
calculated in an expansion in powers of wL, /v, and kL,. Furthermore, non-linearities
in (3.37) are suppressed compared to the quadratic terms as long as y* < 1.

Let us now turn our attention to the case of ferromagnets, where ¢y ~ L 3. The
gap A becomes comparable to the energy cutoff of the effective theory, i.e. A ~ v, /L,
9 and therefore the corresponding mode exits the regime of validity of the effective
theory. An equivalent viewpoint is that the second term in the quadratic Lagrangian
(3.46) becomes negligible compared to the first one for w <« v, /L,. By themselves,
the first and third term describe a single propagating mode with a non-relativistic
dispersion relation—the second mode in Eq. (3.47). In fact, combining the x* in
a single complex field ¥ = x; + ix», the Lagrangian (3.46) with ¢ = 0 reduces to
the standard Lagrangian for a non-relativistic field W. Thus, in this case the power
counting is implemented exactly like in a theory for non-relativistic point particles
(see e.g. [58, 41]).1°

Finally, let us discuss the case of ferrimagnets, where ¢y is non-zero but small
in units of the cutoff, i.e. chi < 1. This ratio introduces an additional expansion
parameter that controls the soft breaking of time reversal [42]. The low-energy
excitations are akin to a light relativistic particle and a heavy non-relativistic particle
interacting with each other (of course, the interactions that are not invariant under
Galilei nor Lorentz boosts). At energies A < w < v, /L,, the gap is negligible and
one is left with an essentially gapless mode interacting with a heavy non-relativistic
particle; explicit power counting can then be implemented as in non-relativistic QED
and QCD [59, 58, 41]. At energies w < A, one can treat also the gapped mode as
non-relativistic, and switch to a new effective theory with cutoff A that describes soft
interactions of two non-relativistic particles with widely separated masses A and m.
Note that there is no distinction between the various cases

As in the case of the solid we may relate the cut-off to the UV parameters of the
theory. There is one fundamental energy scale J, the exchange energy (see section
3.6 ) and one length scale, the lattice spacing a. Therefore, these must be the length
(Ly = a) and time (L, /v, = h/J) scales which suppress higher dimensional operators.

80f course, one can always engineer materials where this assumption fails, i.e. higher derivative
terms are suppressed by unnaturally small coefficients. In this case, the power counting must be
adjusted accordingly.

9Here we have used the relation ca ~ (cger)3/* valid for ferromagnets.

00ne technical difference compared to ordinary non-relativistic particles is that all magnon
self-interactions are suppressed by at least two derivatives.

3/4
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3.5 Magnon-Phonon interactions

We will finally turn our attention to the coupled system of phonons and magnons.
Magnetoelastic effects have already been studied in ferromagnets [60, 61, 26, 62, 63],
ferrimagnets [64], and antiferromagnets [65, 66]. However, the focus has been on
particular effects (e.g. Spin Seebeck effect [67, 68, 69]) or particular materials (e.g.
Yttrium Iron Garnet [28, 63]). In contrast, we are interested in universal low-energy
phenomena that follow directly from symmetries. In this section we will derive a few
such results.

3.5.1 Generalized equations of motion

We will start by deriving the coupled equations of motion for magnon and phonon fields,
which generalize the elasticity and Landau-Lifshitz equations discuss previously. In
order to obtain the most general form of these equations, we work with the Lagrangian
for ferrimagnets. Using the definition for 7, p and ¥ we can rewrite Eq. (3.14) as

L= 500" + Ly gy — F1(B) = 3F5)(B) Oyt - yiv + 5pF3(B)Dyiv - Dy (3.49)

where in the last term we have used eq. (3.9b) and defined D; = (0; + v'0;) and
redefined F3 = pFj. Varying this Lagrangian with respect to the magnon fields, we
obtain

p2Dyiv — piv x Dy(FsDiit) + pFsdivii x Dyt + i x 8i(F0,m) =0, (3.50)
&1

while varying with respect to the phonon fields yields:

th [Ui + %e“b(O_l&-O)ab + Fthﬁ : &ﬁ} = Gj(aji + 5']'2‘ + 5’j,‘), (351)
1
where
_ . |0 oOF,"®
. . |0 = OF
G;i = —p(Di)- (D) | 2LEy — Z=20,0,0;0% |- (3.53)
2 OBlk

These equations are a generalization of previous works on magneto-elastic equations
[70, 71, 72, 73]. Notice that we have used the continuity equation d;p + 9;(pv’) = 0
to simplify Eqgs. (3.50) and (3.51). We can recover the equations for ferromagnets
(anti-ferromagnets) by setting Fy = 0 (c; = 0). Interestingly, when the stresses on
the right-hand side of Eq. (3.51) are negligible, the quantity that is conserved in a
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comoving sense is no longer the local velocity of the solid, but in fact a combination
that also involves the magnons. To the best of our knowledge the results for the fully
non-linear equations of motion, to leading order in derivatives, (3.50) and (3.51) are
novel.

3.5.2 Power Counting in the Mixed Theory

Once we consider both magnons and phonons at the same time, the power counting
becomes much more complex. Consider, for instance, the case of antiferromagnets, for
which L3, = 0. We now have two characteristic length scales, L, and L, (which
need not be of the same order as their ratio is dictated by the micro-physics), and at
least two independent speeds, v, and v, (assuming that longitudinal and transverse
speeds are of the same order, which need not be the case). Based on our previous
discussions on power counting, the natural expectation is that the functions appearing
in the Lagrangian (3.49) scale like

v y v ~ v, L
Fl ~ —W, FQZJ ~ —X, F3 ~ T ﬂ—, (354)
L Li UXLf<

and that higher powers of 7 are suppressed by v,. Observables should now be
calculated in an expansion in powers of wlL./vs, kL., L./L~, and v /v, where L
(L<) is the largest (smallest) between L, and L,, and similarly for the speeds.

Unfortunately, one cannot associate a prior: a definite scaling to each term in
the Lagrangian (3.49). This is because, when vertices are combined into Feynman
diagrams, internal lines can be off-shell but an amount that is controlled by one or
more of the expansion parameters listed above. A similar problem occurs in non-
relativistic QED and QCD, and it’s handled by resorting to the method of regions (see
e.g. [T4, 59, 58, 41]). Ferro- and ferri-magnets'! presents a similar challenge, except
that the relevant kinematical regions are different compared to those of ferromagnets.

Ultimately, these subtleties related to power counting become relevant only if one
wants to calculate higher order corrections in a systematic way. At lowest order, it
is usually straightforward to drop subleading corrections and zero in on the leading
contribution to whatever process one is interested in. To illustrate this, in what follows
we will consider the leading corrections to the propagation of magnons due to couplings
with the phonons. At leading order, these effects are captured by interactions in the
Lagrangian (3.49) that are quadratic in y and linear in 7

Line %@rz’%mxb - %eabxaaﬁa@-xb - 02—8(9k7rk0¢><“<9ix“ — codhx "0} 0l

C ) . .
+ =5 (O (0x")? ~ coXar" DX, (3.55)

I As we discussed in the previous section, ferrimagnets feature yet another expansion parameter,
02L§’<7 controlling the amount of time reversal breaking.
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where we have defined
SFy

C C
5Bkl = 585@6/?1 + 59(62166]1 —+ (5il(5jk); (356&)
OF:
= %5@-. (3.56D)
)

It is straightforward to estimate the natural size of the coefficients in (3.55) in terms
of L, and v, ;.

3.5.3 Magnons in a stressed sample

Consider now a magnetic material under the application of a constant stress (normal
and shear). This causes the atoms to displace from their equilibrium positions, which
is captured by a non-zero expectation value for the phonon fields. We will denote
the linear strain tensor in the sample by ~;; = (9(7;)). In the limit where the strain
is small (note that +;; is dimensionless), the leading corrections to the quadratic
Lagrangian for magnons in Eq. (3.46) will come from the interactions shown in Eq.
(3.55) with the phonon fields replaced by their expectation value:

Lint %?eabx“@xb - %&-x“@ix“ — cor X9, + %(@X‘L)?? (3.57)
where we used the fact that the shear is by assumption time-independent, and we
defined v = §~;;.

Assuming moreover that the stress is homogeneous, i.e. that ;; is just a constant
tensor, we can easily derive the corresponding modification to the dispersion relations
of magnons. Once again, the case of ferro- and ferri-magnets need to be treated
separately from the case of antiferromagnets, for which ¢; = 0. The final outcome
is that the magnon dispersion relations retain the same qualitative form, but the
parameters A, m and Ui get modified as follows:

A—>A’:A[1+v(l—%)], (3.58a)
6
m—m =m [1 + (1 — §> - 26—97“/%/%;} ) (3.58b)
Cr Cr
2 2 2 Cs  Ci10 ST
o oy = o2 [1 . (0—7 - C—G) T 20—7711@@]. (3.58¢)

Interestingly, it remains true that A" = 2m’v?’. We should also emphasize that
the full action (3.49) can also be used to calculate the magnon dispersion relations in
regimes where 7;; ~ O(1). In that case, however, one needs to take into account the
full non-linear structure of the functions F;(B). The advantage of focusing on small
strains is that the coefficients appearing in (3.57) will also control other phenomena,
such as the magnetic damping we are about to discuss. The effect of straining the

lattice on anti-ferromagnetic magnons has also been studied in [75].
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3.5.4 Magnetic Damping

As previously mentioned our analysis has not included the Gilbert damping, which is
typically added as a phenomenological term, but for magnetic insulators the damping
arises due to magnon decay mediated by the interaction Lagrangian in Eq. (3.55). The
decay width can be calculated from the cut diagram, which is the square of the ampli-
tude shown in Fig. 3.2. This process induces a torque on the lattice that contributes
to the Einstein-de Haas effect [76]. The converse process, where a phonon emits a
magnon, is not allowed unless some of the symmetries are explicitly broken, as will be
discussed in the next section. For simplicity, in what follows we are going to focus
on (anti-)ferromagnets. Our analysis can be easily extended to the case of ferrimagnets.

Ferromagnets. On general grounds, we would expect interactions with the lowest
number of derivatives to give the dominant low-energy contribution to the process
shown in Fig. (3.2). In ferromagnets, where ¢, # 0, this suggests that we focus on
the term in the first line of Eq. (3.55). In fact, when the derivatives are estimated
on-shell using the dispersion relation appropriate for ferromagnets, we find that

%2 ﬂTZGGbXaatXb k3/m . k
= ‘ = )
ZeupXx?0mOX®  vok? mu,

(3.59)

This means that the second interaction in (3.55) is actually the leading one, i.e.
C2 a 1 b
»Cint — —EEQbX 8t7r aZX . (360)

The corresponding amplitude is given by

i
2./c1

where wy (k) and €,(k) are respectively the dispersion relation and the polarization
vector associated with a phonon of polarization A. Notice also that the amplitude
associated with the interaction (3.60) includes a factor of (1/,/c1)(1/,/c2)? that
accounts for the non-canonical normalization of the phonon and magnon fields.

The total decay rate can be obtained as usual by integrating the amplitude
squared over all possible final states that conserve momentum, with a relativistic

iM=— wr(R)E(k) - (P +P) (3.61)

Figure 3.2: Feynman diagram describing the emission of a phonon from a magnon
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(nonrelativistic) normalization for the phonon (magnon) states. The explicit results
for longitudinal and transverse phonons are:

1 a3y’ d*k 2[(154‘17)];]2 A3/ > o 7 /
No=ie [ G R = el — ) )

2m31}% 3
=35 (p — muL)°0(p — moyr),
(3.62)
and
BE 2 f o e LD R
T'r —E/(gw)szmk)(zﬂ)smk) {(p“’) _T}
< )~ 3 — F)Sw(p) — o) — wrlh) (305
L ot o)

where in final results we have used the fact that ¢, is equal to the background density p.

Anti-Ferromagnets. In the antiferromagnetic case, co = 0 and the power counting

is such that the momentum and energy scale in the same way. This is because

both phonons and magnons now have linear dispersion relations: w? ;. = v? k? and

w? = v2p?, respectively. Thus all the terms in (3.55) contribute at the same order,

and the expressions for the decay rates become more complicated:

2p°(1 — o7 )op (03 + 602 + 1407 + 14) (¢ + co)? .
[y = o1 — 3.64
r 1057e (07 4+ 1)° (1=or),  (3.64)

p5

2107cy 20 (0, + 1)°
2 .2

+ 86608UL + 806091)L + 400609UL + 720609UL + 400669UL 486609UL + 14ciy01

'y = (4CG"UL + 20¢20% + 32c207 — 56¢sc1007 + Scecsdy + 40ccsds

35010UL + 35010 + 2801008’UL 7001008'UL -+ 14610C8 — 14061009UL + 8401069
+ 1808vL — 15¢50;, + 1lc8 + SCgcng + 4008091)L + 7208092)L — 100c¢gcyvy, 4+ 36¢5c9
4+ 4c208 + 20307 4 40ca07 + 40ca0} + 12c202 — 120c30;, + 60c3)O(1 — o)

(3.65)
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where 0,7 = vy /vy

The purpose of this calculation is only illustrative. For one thing the result is a
function of the unknown quantities (v, 7, vy, ¢, s, Cg, ¢10), all of which would have
to be fit from data. Furthermore, phenomenologically, one would typically be more
interested in the finite temperature decay rate as as well as the transport lifetime.
This analysis was performed for the special case of Yttrium Iron Garnet in [63]. It is
straightforward exercise to calculate these quantities in the effective field theory.

3.6 Explicit symmetry breaking

Explicitly breaking internal spin rotations leads to a broad range of interesting
phenomena. To gain some physical intuition for how explicit symmetry breaking can
arise, we shall begin by recalling the microscopic origin of the symmetric Lagrangian
in the incompressible limit, Eq. (3.37).

3.6.1 Continuum limit of the Heisenberg model

The strong coupling expansion of the half filled Hubbard model reduces to the
Heisenberg model,

H=-7Y S-S, (3.66)

Since the Hubbard model only involves spin independent nearest neighbor interactions,
this Hamiltonian is independent of the magnetic moment. i.e. J only depends upon the
matrix element of the Coulomb interaction between electrons centered on neighboring
atoms. In this way we can think of the Heisenberg model as an effective theory of the
Hubbard model where we have integrated out the atomic orbits. At higher orders in
the strong coupling expansion, the Hamiltonian (3.66) gets corrected by the so-called
“bi-quadratic” terms of the form

AH=-JY (S-S (3.67)
(i5)

While such terms, if numerically significant, can have considerable effects on the
phase transition [77] the low energy theory of Goldstones below the critical point is
unchanged by their presence.

Starting from the Heisenberg Hamiltonian (3.66), we can obtain (minus) the static
limit of the Lagrangian density (3.40) by taking to the continuum limit. This is
accomplished by parameterizing the spins as S = Sn;, where the magnitude S is
constant and replacing i — 7, — 7+ 5, where 7" is the position of the i¢th spin with
some choice of origin. The sum over nearest neighbors becomes an integral over 7. We
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then coarse grain by averaging over the 5 ’s,'2 and take the limit 5 — 0,8 — oo with
5282 fixed.
The final result is

L(8;n)?, (3.68)

and c; ~ J§%S2.

3.6.2 Explicit symmetry breaking and spurions

To properly capture the long distance physics of explicit symmetry breaking we utilize
a spurion analysis (see e.g. [78]). We will assume that the associated length and time
scales are much longer than those at which spontaneous symmetry breaking occurs,
so that explicit breaking can be treated perturbatively using spurion fields. The
symmetry breaking parameter (in cut-off units) is treated as an additional expansion
parameter, whose relative size compared to other corrections will depend upon the
energy/length scale of interest.

Zeeman Interactions

Arguably the simplest source of explicit symmetry breaking is the Zeeman coupling
between spins and a constant external magnetic field. At the microscopic level, this is
described by supplementing the microscopic Hamiltonian with a term

AH=—pY B-S, (3.69)

This interaction explicitly breaks the spin SO(3) down to the SO(2) subgroup that
leaves B invariant

The spurion technique amounts to treating the explicit symmetry breaking as if it
were a spontaneous breaking due to an operator U the spurion field—that develops a
small expectation value (\fl) = ug. The advantage of this approach is that the spurion
can be treated like any other matter field and coupled to the Goldstone modes following
the standard rules of the coset construction [79, 33]. The spurion transforms in a linear
representation of the full symmetry group (G), U — ¢ 0. However, to form invariant
using the coset construction we are interested in objects which transform under the
unbroken subgroup H. The field U = Q1 is such an object as it transforms as
T h(®, g)\f/’ , where @ stands for all the Goldstone fields. However, ¥’ transforms
reducibly under H so we decompose U’ into irreducible representations of the unbroken
group, i.e. ¥/ and V5. Finally we add to the effective action terms that depend on
these irreps and are manifestly invariant under the unbroken group. To this end it is

2By isotropy, we must have (§;0;) ~ 625;;.
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helpful to notice that the microscopic interaction preserves time reversal if the spurion
is assumed to be odd, i.e. to transform as U — —,

In a ferromagnet, where time reversal is spontaneously broken, we are allowed
to write terms involving the spurion that are not invariant under time reversal.
Consequently, at leading order in uBBL, /v, we have

Lopuion = F(B) Uy = F(B) O34 (x)¥* = F(B)ir- ¥ — F(B)un - B, (3.70)

where in the last step we have replaced the spurion with its expectation value. Since, in
the continuum limit, an external magnetic field couples to the Noether density of spin
[39], the function F(B) is constrained '3. More precisely, since the Ferromagnetic spin
density is given by § = codet(D)n for a ferromagnet, this fixes F(B) = codet(D). The
operator in (3.70) introduces mixing between magnons and longitudinal phonons when
B is not aligned with the unbroken spin direction (the 3 direction, in our notation)™ .
Of course, the incompressible limit (F/(B) = constant) of this result could have also
been obtained more easily by taking the continuum limit of the microscopic interaction
(3.69).

In the case of an antiferromagnet, the leading interaction with the spurion must
be invariant under time reversal, and therefore we have

Lopusion = F(B) W, Vix" = F(B) Oz (x) B Vix“. (3.71)

Of course, the interaction (3.71) is also allowed for ferromagnets. But in the incompress-
ible limit, this is not the leading correction to the effective action for ferro-magnons.
The functional form of F'(B) is also constrained in this case from the anti-ferromagnetic
spin density to be pE3(B). As in (3.70), this also results in phonon-magnon mixing
when B is not aligned with the unbroken spin direction. Interestingly, Zeeman interac-
tions cannot introduce mixing between magnons and transverse phonons—a result
that follows straightforwardly from our spurion analysis.

The Dzyaloshinsky-Moriya (DM) interactions

At the microscopic level the Dzyaloshinsky-Moriya (DM) interaction [80, 81] takes
the form:

H=> (8 x8))- Dy, (3.72)
(ig)

where the vector li»j depends on two neighboring lattice points, and in perturbation
theory can be expressed as a linear combination of matrix elements of the orbital
angular momentum operator [82]. This interaction occurs when the inversion symmetry
is broken in a material, and leads to the canting of the spins in the ground state. It

13We thank Tomas Brauner for pointing this out to us.
4 When B is not aligned with the magnetization, the system will precess around the field. Damping
will eventually lead to alignment on longer time scales.
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explicitly breaks spin and spatial rotations down to the diagonal subgroup, generated
by J=S+L.

At the microscopic level, one can distinguish between two types of DM interac-
tions depending on whether ﬁij is parallel or perpendicular to the lattice vector 77;
connecting the sites ¢ and j. In the continuum limit, the first case yields the so-called
Bloch-type DM interactions, which arise for instance in non-centrosymmetric bulk
materials [83]. In the second case, the resulting DM interaction is dubbed Néel-type.
This interaction is anisotropic, and it occurs for example when a thin film ferromagnet
is placed on top of a non-magnetic material with a large spin-orbit interaction (in-
terfacial DM interaction) [84]. Significant theoretical and experimental attention has
been recently devoted to DM interactions, as they provide a mechanism to stabilize
magnetic Skyrmions [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98].

Instead of taking the continuum limit of the microscopic interactions (3.72), we
are going to use the spurion technique to infer the corresponding terms in the effective
action for magnons and phonons. In order to break spatial and spin rotations
down to the diagonal subgroup, we need a spurion field that transforms in a non-
trivial representations of both symmetries, which we will take to be the fundamental
representations for simplicity, i.e. we will use a field ¥#. There are two distinct ways
of implementing the desired explicit breaking by giving a vev to the spurion, and they
correspond to the two types of DM interactions mentioned above:

Bloch: (¥#) =46Dy, (3.73a)

Néel: (U =4, D7 (3.73b)

In order to couple the spurion to phonon and magnons, we will follow the blueprint
outlined for the Zeeman interaction: we first introduce a new field ¥/ = Q1. then
break it up into its irreducible representations under the (spontaneously) unbroken

group, ¥ and ¥/, The leading symmetry breaking term in the effective Lagrangian
is then

Lepurion = F(B) VV'ix, — F(B) O™ (x)* AT V'ix,. (3.74)

It is easy to show that, after replacing the spurion with the appropriate expectation
values in (3.73) and taking the incompressible limit (F/(B) = constant), this spurion
action reproduces the familiar expressions for the Bloch and Néel DM interactions:

Bloch:  Dje;jp' &7 n”, (3.75a)

Néel: D7 (0" — a'dind). (3.75h)

Away from the incompressible limit, the coupling (3.74) gives rise to a kinetic
mixing between the longitudinal phonon and either 9,x* (Bloch) or %9,y (Néel).

This however is not the only source of kinetic mixing, since one should also consider
the operator

! = F'(B) VIV 1)V i x4. (3.76)

spurion
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which additionally generates a kinetic mixing between magnons and the transverse
phonons. See e.g. [99, 100, 101, 102] for recent work on phonon-magnon mixing.

3.7 Conclusions

We have demonstrated how to build an effective field theory for magneto-elastic
interactions using the space-time coset construction. The action non-linearly realizes
all of the broken symmetries in a long wavelength approximation. The action includes
all orders in the fields with a fixed number of derivatives, which makes the theory valid
for any background where 9?y/ Ai < 1. We have also shown how to systematically
include the effects of explicit symmetry breaking due to Zeeman and DM interactions.
Other symmetry breaking terms can be included using the same line of reasoning as
presented in the last section. We have presented several new results most important
of which are egs. (3.50) and (3.51) that generalized the Landau-Lifshitz equations to
allow for incompressibility. Applications of our formalism to Skyrmionic physics will
follow in a subsequent publication.

44



Chapter 4

Optimal anti-ferromagnets for dark
matter detection

There is today overwhelming evidence that most of the matter in the Universe is dark.
Despite that, the question about its nature arguably remains among the biggest ones
in fundamental physics. In particular, the possible dark matter mass spans a range of
several orders of magnitude. In light of stringent constraints on heavy WIMPs [103,
104, 105, 106, 107, 108], recent years have witnessed an increasing interest in models
for sub-GeV dark matter [109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120],
also motivating new detection ideas. In particular, dark matter candidates in the keV
to GeV range, while still heavy enough to be considered as particles, cannot release
appreciable energy via standard nuclear recoil. They therefore require detectors with
low energy thresholds, such as semiconductors [121, 122, 123, 124, 125, 126, 127, 128|,
superconductors [129, 130, 131, 132, 133], Dirac materials [134, 135, 136], lower
dimensional materials [137, 138, 139, 140], and so on (see also [141, 142, 143]).

Among these, the proposals based on superfluid *He [144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156] and solid crystals [157, 158, 159, 160, 161] aim
at detecting the collective excitations (phonons) produced by the spin-independent
interaction of dark matter with the nuclei in the material—for an overview see [162,
163, 164]. These collective modes have typical energies below O(100 meV), and are
therefore sensitive to particles as light as m, ~ O(keV). Different proposals for the
detection of single phonons have been recently put forth [165, 166, 167, 168].

The targets above are, however, not the most suitable ones to probe possible
scenarios where spin-dependent interactions of dark matter with the Standard Model
are dominant over the spin-independent ones. In this regard, it has been proposed to
use ferromagnets [169, 170, 171], i.e. materials that exhibit a non-zero macroscopic
magnetization in their ground state.! The dark matter can interact with the individual
spins in the target, exciting their local precession: a propagating collective mode

!The materials presented in [169, 170] are actually insulating ferrimagnets. This makes no
difference in our discussion [172]. We refer to ferromagnets, which are conceptually simpler.
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called magnon. The proposals to detect single magnons involve either calorimetric
readout [169], using TES or MKID, or quantum sensors, which instead couple the
magnon mode to a superconducting qubit [173, 174, 175]. A generic ferromagnet
features several magnon types (branches). However, for sufficiently light dark matter
(m, < 10 MeV, for the typical material [169]), the momentum transfer becomes
smaller than the inverse separation between the spins. In this regime the event
rate is dominated by the emission of gapless magnons which, for ferromagnets, are
characterized by a quadratic dispersion relation, w(q) = ¢*/(2myg), with my a mass
scale set by the properties of the material under consideration. Moreover, as we argue
below, conservation of total magnetization implies that, when only gapless magnons
are allowed, no more than one can be produced in each event. Thus, for m, < 10 MeV,
the maximum energy that can be released to a ferromagnet is Wy = 4T 2 /(1 + )2,
with 7, the dark matter kinetic energy and x = mgy/m,. Typically, my ~ O(MeV)
(e.g., my ~ 3.5 MeV for Y3Fe;015 [169], see also [176, 177]), and a sub-MeV dark
matter will not deposit all its energy to the target.

In this work, we show that, instead, anti-ferromagnets are optimal materials to
probe the spin-dependent interactions of light dark matter. Similarly to ferromagnets,
they also exhibit magnetic order in the ground state, but the spins are anti-aligned,
leading to a vanishing macroscopic magnetization. This leads to two crucial differ-
ences: (1) gapless magnons have a linear dispersion relation, w(q) = veq, and (2) the
interaction with the dark matter can excite any number of them. If only one magnon
is emitted, the maximum energy that can be transferred to the anti-ferromagnet is
Wimax = 4T y(1 — y), with y = vg/v,. One of the anti-ferromagnets we consider here,
nickel oxide, features magnons with a propagation speed surprisingly close to the
typical dark matter velocity, which allows it to absorb most of the kinetic energy
even through a single magnon mode. This is a well-known and well-studied material,
which makes it a particularly ideal target. Moreover, the possibility of exciting sev-
eral magnons in a single event relaxes the kinematic constraints above, allowing any
anti-ferromagnet to absorb the totality of the dark matter kinetic energy, hence being
sensitive to masses down to m, ~ O(keV).

In what follows, we describe anti-ferromagnets and their interaction with dark
matter via an effective field theory (EFT) [39, 178, 172]. This elucidates the role played
by conservation laws in allowing multi-magnon emission and allows the computation
of the corresponding event rates in a simple way, bypassing the difficulties encountered
with more traditional methods [179, 180, 181].
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4.1 The EFT

4.1.1 Magnons alone

One can often picture an atom in a magnetic material as having a net spin coming
from the angular momentum of the electrons localized around it. The Coulomb
interaction between electrons pertaining to different atoms induces a coupling between
different spins which, in turns, causes magnetic order in the ground state [182]. In
an anti-ferromagnet these interactions are such that the spins are anti-aligned along
one direction (Figure 3.1), which from now on we take as the z-axis. One can then
define an order parameter, the so-called Néel vector, as N' = > .(—1)'S;, where S; is
the i-th spin and (—1)" is positive for those sites pointing ‘up’ in the ordered phase,
and negative for those pointing ‘down’. In the ground state the Néel vector acquires a
non-zero expectation value, (N') # 0 [39].

In the non-relativistic limit, a system of 3-dimensional spins enjoys an internal
SO(3) symmetry. The ground state described above breaks it spontaneously down to
only the rotations around the z-axis, SO(3) — SO(2), and the gapless magnons are
nothing but the associated Goldstone bosons. As such, at sufficiently low energies,
they are described by a universal EFT, very much analogous to the chiral Lagrangian
in QCD. A convenient way of parametrizing the magnons is as fluctuations of the
order parameter around its equilibrium value, n = "% . 2, with a = 1,2. Here 6%(z)
is the magnon field and S, are the broken SO(3) generators.

The EFT Lagrangian is derived purely from symmetry considerations. First of all,
one notes that under time reversal each spin changes sign, §; - —&;. If combined
with a translation by one lattice site, which swaps spin ‘up’ with spin ‘down’, this leaves
the ground state unchanged. The effective Lagrangian for anti-ferromagnets must
then be invariant under the joint action of these two symmetries. At large distances,
translations by one lattice site do not affect the system, and the only requirement is
time reversal: the Lagrangian must feature an even number of time derivatives [39].
Moreover, the underlying crystal lattice spontaneously breaks boosts. Assuming, for
simplicity, that the material is homogeneous and isotropic at long distances, this
implies that there must be explicit invariance under spatial translations and rotations,
but that space and time derivatives can be treated separately.? Since || = 1, the
most general low-energy Lagrangian for the gapless magnons in an anti-ferromagnet is
then [39, 172],

Lo=
(4.1)

2We treat the underlying solid as a background which spontaneously breaks some spacetime
symmetries. The corresponding Goldstone bosons, the phonons, realize these symmetries non-linearly
and can be included in the description if necessary [172].
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where in the second equality we expanded in small fluctuations around equilibrium.
The coefficients c¢; 2 depend on the details of the anti-ferromagnet under consideration,
and cannot be determined purely from symmetry.

One recognizes Eq. (4.1) as the real representation of the Lagrangian of a complex
scalar, corresponding to two magnons with linear dispersion relation, w(q) = vgq,
and propagation speed v; = cy/c;. The two magnons are completely analogous
to relativistic particle and anti-particle, and they carry opposite charge under the
unbroken SO(2). As shown in [39, 172], the action for a ferromagnet, instead, contains
only one time derivative and it is analogous to that of a non-relativistic particle,
which does not feature excitations with opposite charge. This is the reason why,
when coupled to light dark matter, anti-ferromagnets allow for the emission of more
than one magnon in each event, while ferromagnets do not. We discuss this more in
Section 4.1.2.

As far as our application is concerned, a central role is played by the spin density,
which is the time-component of the Noether current associated to the original SO(3)
symmetry [39, 172]. This rotates the n vector (i.e., n;, — R;;n;), and the current can
be computed with standard procedures, giving the spin density:

S; = C1 (’fL X 8{&)1 =C1 <5Z‘aéa —f- 5136(1;,9“9.” + .. ) . (42)
From the equation above we also deduce that, while the ratio ¢a/c¢; can be determined
from the magnon speed, the coefficient ¢; can be found from an observable sensitive to
the spin density of the anti-ferromagnet. One such quantity is the neutron scattering
cross section, which we discuss in detail in Appendix 6.3.

Finally, our EFT breaks down at short wavelengths, when the dark matter is able
to probe the microscopic details of the material. In other words, it loses validity for
momenta larger than a certain strong coupling scale, Ayy. The latter can be estimated,
for example, as the momentum for which the dispersion relation sensibly deviates
from linearity, which indicates that higher derivative terms in the Lagrangian (4.1)
become relevant. In this work we consider three anti-ferromagnets: nickel oxide (NiO),
manganese oxide (MnO) and chromium oxide (CryO3). In Table 4.1 we report their
values of vy, ¢1, Ayy, and of their density, pr.

4.1.2 Dark matter—-magnon interaction

We now study how a dark matter particle couples to the magnon modes introduced in
the previous section. To do that, one starts from a specific model for the interaction of
dark matter with the Standard Model. This is then computed in the non-relativistic
limit, and matched with low-energy quantities, as we now show. For concreteness,
we focus on two well motivated models, which serve as benchmarks to our general
point. These were also studied in the context of ferromagnets [169, 183]. They are the
magnetic dipole (m.d.) and the pseudo-mediated (p.m.) dark matter, which interact
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Vg ci [MeV/A]  Auy [keV]  pr [g/cm?]
NiO [193] 1.3x1074 0.5 0.6 6.6
MnO[194] || 2.5x107° 4.2 0.5 5.2
Cr03[195] || 3.5x107° 0.3 0.9 4.9

Table 4.1: Coefficients for the anti-ferromagnets considered here. vy is taken from the
dispersion relation, ¢; is matched from neutron scattering data (Appendix 6.3), and
Ayv is estimated as the momentum for which the dispersion relation deviates from
linear by 10%. The densities, pr, are taken from [1].

with the Standard Model electron respectively as [184, 185, 186, 187, 188, 189, 190,
191, 192],

E?‘d‘ = /g\—XVWXJ"”X + g.V,.er'e, (4.3a)
X
LO™ = g @ XX + gepier’e, (4.3b)

where ¢ and V), are ultra-light vector and pseudo-scalar mediators, x and e are the
dark matter and electron fields, and A, is a UV scale pertaining to the dark sector.
Moreover, V,,, = d,V, — 0,V,, and " = [y*,~7"].

To compute the dark matter—-magnon interaction one can integrate out the mediator
and perform the non-relativistic limit for both the dark matter and electron fields.
This can be done either at the level of the matrix elements or integrating out anti-
particles, similarly to the Heavy Quark Effective Theory procedure [196]. For the
interested reader, we review this in Appendix 6.4. After this, the dark matter-magnon
interaction in the two instances is,

4g.9 o P VA V) o’
Em.d. — xJe T2 o S5 } o
e Ayme (an g X V2 Cnr o€

IR NGe [+ 0 y .
Ry Pxde Z v | (69 — i
o () (75
Ef)ntrin = - %Xlrxan72V : (elrgenr) i _%Xlrxljrv72v * 8, (44b)

where x,, and e,, are non-relativistic fields, and o are Pauli matrices. We also used
the fact that el e, /2 is the electron spin density operator. When running towards
low-energies, it will remain such, except that it must be expressed in terms of the
correct low-energy degrees of freedom: the magnons rather than the single electrons.

One can now understand why anti-ferromagnets allow for multi-magnon emission
while ferromagnets do not. As shown in Egs. (4.4), dark matter interacts with magnons
via the spin density, whose components, (s, £1s,, s.), have at most charge 1 under the
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unbroken SO(2). In a ferromagnet this charge can be carried only by a single magnon
mode. In an anti-ferromagnet, instead, there are two magnon modes carrying opposite
charges. Hence any coupling to the spin density operator will allow multi-magnon
emission.

Given the Lagrangians in Eqgs. (4.4) and the spin density in Eq. (4.2), one derives
Feynman rules for the dark matter-magnon interaction, obtaining,

aho gxge./—clw y Aixa- (g)o’ m.d.
A - )
s L 4 Me q"/q* p.m.
;A1 b A i
a \: o > GG () — ipi (@)o" m.d.
A, = 1 w2)6ab X > 9 .
S, 455 Me q /q p.1m.

Solid lines represent a dark matter with polarization s), and dashed ones represent
magnons with momenta g o, energies wy 2, polarizations A 2, and carrying an index
a,b = 1,2. The total momentum and energy carried by the magnons are q and w,
with P,;(q) = d;; — ¢iqj/q*. External dark matter lines come with standard non-
relativistic bi-spinors, while external magnon lines come with a polarization vector,
éx = (1,+1)/v2 [172].

With this at hand, one can compute matrix elements for the emission rate of any
number of gapless magnons with simple diagrammatic methods, exactly as one would
do for relativistic particles. In particular, the matrix element for the emission of
any number of low energy magnons is completely fixed by symmetry and by a single
effective coefficient, ¢;. In a more traditional formulation, the computation of multi-
magnon scattering is substantially complicated by the failure of the Holstein—Primakoff
approach, which mandates for a more involved treatment [?, e.g.,]|dyson1956general.

4.2 Event rates

We now have everything we need to compute the expected event rates for the emission
of one and two magnons by a dark matter particle. For a target material with density
pr, the total event rate per unit target mass can be evaluated by averaging the magnon
emission rate over the dark matter velocity distribution, f(v, + ve):

R= P / B f(vy + ve)T (). (4.5)
PTMy
The local dark matter density is taken to be p, = 0.4 GeV/cm? [197]. The velocity
distribution in the Milky Way is instead considered as a truncated Maxwellian given
by the standard halo model, with dispersion vy = 230 km/s, escape velocity ves. =
600 km/s and boosted with respect to the galactic rest frame by the Earth velocity,
ve = 240 km/s [197, 198]. In the following, we present the projected reach for the case
of single and two-magnon emission for the anti-ferromagnets NiO, MnO and Cr,Os3.
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4.2.1 One magnon

Using the Feynman rules presented in Section 4.1.2, we compute the rates for the
emission of a single gapless magnon. For the two benchmark models they read,

COS2
dl  ¢2g%c —p;iz,\gmwQ m.d.
L Ao , (4.6)
dw  mu,m?2 (sin’7)

1 p.m.

where 7 is the angle between the Néel vector, A, and the magnon momentum, q, and
(---) represents an average over the direction of the latter. The decay rate is then
a function of the relative angle between the magnetization and the direction of the
incoming dark matter. Moreover, the magnon is emitted at fixed Cherenkov angle
with respect to the incoming dark matter, cosd = q/(2m,v,) + vp/v,. The final event
rate, Eq. (4.5), depends on the relative angle between v, and A'. This leads to a daily
modulation, which can possibly be used for background discrimination. To reduce
the computational burden, we fix the two vectors to be parallel. More details can be
found in Appendix 6.5.

To obtain the decay rate, one integrates Eq. (4.6) over magnon energies between
Wiin and wyax. The first one is set by the detector energy threshold. For the case of
calometric readout, the best sensitivities that have been envisioned are of O(meV) [199].
We thus set wy;, = 1 meV. The maximum magnon energy is instead set by either
the cutoff of the EFT or by kinematics. Specifically, cosf < 1 limits the possible
momentum transfer, implying wpax = min(vpAvy, 2m,ve(vy, — vg)).

Our projected reach for the three target materials are shown in Figure 4.1, as
compared to the following dark matter—electron cross sections, obtained from the

interactions in Eqs. (4.3) in vacuum evaluated at the reference momentum ¢y =
am, [169]:

1 6m2+m?
2 2 L T e m.d
_ 9.9 A2 (my+me)2 B
T = 2275 x XA ) ) (4.7)
v 1 my

12m? (myrme? P

Moreover, to avoid white dwarf cooling and self-interacting dark matter constraints,
we impose y to be a 5% sub-component of dark matter for the pseudo-mediated
model [169]. Following convention, and for a simpler comparison with other proposals,
we also assume zero background.

Importantly, NiO is sensitive to masses down to m, ~ 5 keV, even in the single
magnon channel. This, as mentioned in the Introduction, is due to the good matching
between the magnon and dark matter velocities. For m, 2 1 MeV, the rate starts re-
ceiving contributions from momenta above the cutoff, indicating that gapped magnons,
not captured by the EFT, become relevant.
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Figure 4.1: Projected reach at 95% C.L. for a kilogram of material and a year of
exposure assuming zero background, for the magnetic dipole (upper panel) and
pseudo-mediated (lower panel) models. For the latter we assume 2, /Qpy = 0.05.
The lowest mass region is reached via the two-magnon channel. The gray region
corresponds to masses for which gapped magnons are expected to play an important
role. The magnetization is taken to be parallel to the Earth’s velocity.
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4.2.2 Two magnons

We consider now the emission of two magnons of energies and momenta w; o and
q12, and total energy and momentum w and g, by a dark matter of initial and final
momentum k and k’. Using conservation of energy and momentum, the decay rate
can be written as

F_/k’zdk”dcoswdqll |2_/ dwdgdq, M2
B 4(2m)3v5 q ) 4@2r)3viu,

7 (4.8)

were 1 denotes the angle between k and k’. In the second equality we also used
k?dk' d cos = (q/vy)dgqdw. Conservation of energy and momentum further implies
@1 < (w+ v9q)/(2vg). Thus, including also the EFT cutoff, the integral above is
performed over wyi, < w < min (ngUV, %mxvi), 0 < ¢ < min (AUV,2vaX), and
0 < ¢ < min (Auy, (w + vpq)/(2v9)). Again, we assume ideal calorimetric readout
and set wyi, = 1 meV.

The projected reach for the two-magnon case is again shown in Figure 4.1. This
process allows to explore an even larger parameter space, by going down to masses
as low as m, ~ 1 keV. Due to improved kinematic matching, the mass reach is
now almost independent of the target material. For the lightest dark matter, the
momentum transfer is much smaller than the energy transfer, and the two magnons
are emitted almost back-to-back, with possible interesting implications for background
rejection [152]. Similar to the one magnon case, the EFT predictions are unreliable
for masses above 1 MeV.

4.3 Conclusion

We have shown how well-assessed anti-ferromagnets can be used as optimal probes
for sub-MeV dark matter with spin-dependent interactions. At low energies, these
materials feature gapless magnons with two different polarizations, hence allowing
for the emission of an arbitrary number of excitations. This, in turns, extends the
potential reach down to m, ~ O(keV). As compared to ferromagnets [169], they have
similar sensitivites on the dark matter couplings, but they probe masses more than an
order of magnitude lighter. Interestingly, one of these anti-ferromagnets, nickel oxide,
sustains magnon modes with a propagation speed accidentally close to the typical
dark matter velocity, which allows it to absorb most of the dark matter energy already
via the (dominant) one-magnon channel. These results complements what already
proposed for dark matter with spin-independent interactions [145, 146, 148, 157, 159],
allowing to cover the same mass region.

Moreover, the introduction of an EFT treatment to the problem opens the possi-
bility for the evaluation of more involved observables as, for example, multi-magnon
events with strong directionality and the potential for background discrimination [152].
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Finally, a simple extension of our EFT would allow the description of the magnon—
phonon coupling [172]. This could be used to probe both spin-dependent and spin-
independent interactions with a single target. Finally, it is interesting to study
the prospect of our materials for axion absorption, and compare with the proposal
in [200, 201, 170, 171, 178] (see also, [202, 203, 204]). We leave these and other

questions for future work.
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Chapter 5

Dynamical modes of Dislocations
and their sensitivity to the UV
lattice structure

In this work, we explore the dynamics of dislocations in solids using an effective field
theory approach. The physics of dislocations is obviously quite mature (see e.g.[205])
but it is perhaps fair to say that highly relevant pieces of the puzzle have yet to
be explored. In particular, the dynamics of the excitations of the dislocation itself
has only more recently begun to be investigated [206], though we believe that a first
principles theoretical underpinning is still lacking, which is a hole we wish to fill herein.

The excitations of dislocations, which were termed “dislons” in [206], are Goldstone
bosons for systems with spontaneously broken space-time symmetries. When space-
time symmetries are broken, the Goldstone bosons will have either a linear or quadratic
dispersion relations, corresponding what what are called type I and type II respectively
1. For broken internal symmetries, the number of type I and II Goldstones obeys
ny + 2n;; = npg [207, 208, 209], where npg is the number of broken generators.
However, at the moment there is no such equality known for the Goldstones arising
from the breaking of space-time symmetries 2.

One would expect that the excitations of dislocations would correspond to canonical
phonons which are type 1. However, it turns out that, for embedded solids, the
dispersion for these modes becomes non-analytic in the momenta. This non-analyticity
results from integrating out gapless bulk phonon modes, analogous to what happens in
the case of kelvin waves in (super)-fluids. In addition to this, the dispersion turns out
to be sensitive to the boundary conditions of the solid. In particular, if we consider
a one dimensional solid in vacuum, then if the ends are open, the tension will relax
to zero, which leads to the vanishing of the quadratic spatial gradient term for the

!More generally type I/II correspond to odd/even powers of the momentum. Furthermore, when
rotational invariance is broken one can generate dispersion relations of the form £ = />, ¢; k2.
2For a derivation of the inequality in the context of translational symmetry breaking see [210].
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transverse modes in the action. This well known fact, can be understood from the
point of view of effective field theory as an example of a generic relaxation mechanism
of a Wilson coefficients when the target space is bounded [211]. What we will show
here is that the dispersion relation for the transverse modes of a one dimensional
defect, will depend upon the nature of the symmetry of the underlying crystal lattice.
This distinction will lead to phenomenological differences.

To study the phenomenology of dislocations we need to understand the interaction
with bulk phonons ®. However such interactions are non-local * when the phonon is
described by 7! (x), defined as the displacement of an atom away from its equilibrium
position, becomes multi-valued in the presence of a dislocation. This leads to an
ambiguity as it is no longer clear which atom “belongs” to which position in the
lattice. However, whichever choice is made to fix this ambiguity, the physics should
remain unchanged, which is nothing more than a gauge theory description of the
physics [212]. For three dimensional solids, which we focus upon, dislocations are
co-dimension two objects and, as such, couple topologically to anti-symmetric two
form fields. Furthermore, it is known that derivatively coupled scalars, such as ¢’,
have a dual description in terms of an anti-symmetric two form gauge field [213],
which couples locally to the dislocation. This dual description of elasticity theory in
three dimensions has been explored in [214], which concentrated on the nature of the
melting phase transition. Here we will only be interested in the solid phase, though
excitations of the dislocations modes we study here should be expected to play a roll
in the transition as well.

The goal of this paper is to develop a first principles theory for the dynamics of
dislocations in solids. In particular we will write down an effective field theory of the
dislocation excitations which interact with the bulk phonons. A complete analysis of
the non-linearities will be left for future work.

5.1 The String Action

To determine the action for the dislocation excitations we will build an effective field
theory for an embedded solid. Dislocations share commonalities with fundamental
strings as well as with vortices in superfluids, with the important distinctions being
the space-time and, in the case of vortices, internal symmetry breaking patterns.
The effective field theory of vortices and their interactions in superfluids was worked
out in the elegant paper [215], upon which we have leaned. There are some crucial
distinctions however, as one might expect, between such vortices and dislocations,
that distinguishes our analysis from [215].

3Tt is also known that electron quasi-particle interactions with dislocations can play an important
role in determining the superconducting temperature. This topic goes beyond the scope of this paper.

“4In [206] this non-locality is manifest. It is not clear to the authors how to power count in such a
circumstance.
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We begin by considering the action of a physical /matter string in vacuum, and
then will embed the string into a solid. The two scenarios will be distinguished by
their space-time symmetry breaking patterns. A physical string is distinguished from
a fundamental string in that they lack reparameterization invariance (RPI) along the
world sheet since we can now label the matter elements along the string. Put another
way, the matter string breaks boost invariance along the directions of the string, and as
such, the system includes an additional dynamical degree of freedom corresponding to
a longitudinal mode. We choose to work in a covariant language, despite our eventual
goal of calculating in the non-relativistic limit, for ease of notation. Thus we will
retain RPI and add an additional mode to the action which is given by

S = /d%\@ F(B) (5.1)
where ¢ is the induced metric
Gap = nuuaaX'uaﬂXy (52)

and

B = 0,656, (5.3)

This action contains three physical degrees of freedom, which by appropriate choice of
gauge corresponds to the transverse modes X* and ¢.

A dislocation is a string embedded in a solid. It is a topological defect which is
characterized by a “Burgers vector” which is analogous to the vorticity of a line defect
in a superfluid and describes the holonomy of the embedding. We will return to this
point when we discuss the coupling of the dislocation to the phononic bulk modes, to
which we now turn.

5.2 Effective field theory of solids

A solid breaks space-time symmetries but simultaneous non-linearly realizes emergent
internal symmetries. The details of the symmetry breaking pattern are discussed in
216, 37]. For our purposes it will suffice to recall that all of the Ward identities can be
saturated with just the three Goldstone bosons 7! associated with broken translations.
The action for these Goldstones can be fixed in a derivative expansion using a coset
construction [172] or via a Landau-Ginsburg construction [217], which we follow here.

A solid is defined as a system for which the action is invariant under shifts of the
co-moving coordinates, ¢! — ¢’ + al. These shifts may be taken to be continuous in
the long distance limit. Invariance under SO(3) rotations, which act on the capital
Roman letters of these coordinates, will not however, be manifest for crystals, but only
for “Jelly like” objects. The action is then given by some arbitrary function of the
quantity B'7 = 9,¢'0"¢’. In the ground state we may align the comoving coordinates
with the space-time coordinates, i.e. {(¢') = 2. Thus our power counting will be such
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that the first derivatives of the field ¢! can be of order one, and subsequent derivatives
will be suppressed. This vev breaks both the space-time and internal translations
but preserves the diagonal subgroup. For crystalline systems, there will be unbroken
discrete rotations which will play an important role below.

With an eye on the fact that we will eventually be interested in taking the non-
relativistic limit, we will follow [218] and write the action in the following form

S—— / P n(m + U(B)), (5.4)

where n = (/Det(B!”) is the number density, m is interpreted as the mass of the
atoms sitting at the lattice sights and U is the internal energy functional.

The number density n can be defined via the current J* for the comoving coordi-
nates

n

JH = gewme[ 1x0,9' 0,07 0,0" (5.5)
where 7 is the ground state number density in the rest frame. The current obeys
dxJ =0, (5.6)

i.e. it is algebraically conserved (off-shell) and expresses the matter conservation. We
can write an invariant expression for the number density which reduces to det(B!7) in

the local rest frame
n=/—J"J,. (5.7)

The corresponding velocity field is given by
ut = JH [V —J2. (5.8)

such that u?2 = —1 and in the local rest frame u® = 1. We can thus rewrite the action
in (5.4) as

S = /d4m — J°V1 — @ (m + U(B")) (5.9)

In the NR limit, one can expand the above action in # and take the ¢ — oo to obtain
mii?
S=J° / d'x - - U(B') (5.10)

In the above action we have dropped the contributions from the term J%n since it
does not contribute to the equations of motion, which can be seen from the fact that
the current J* can be written as a total derivative J* = 0, (Jz").

We may now consider excitations around the ground state via

ol (Z,1) = 2! +71(Z,1) (5.11)



where 7/(Z,t) are the phonons. To obtain the action for the phonons, one can expand
the function eq.(5.4) around the background B!/ = §7/. Expanding to quadratic order
leaves

S = / diz %m{?? — A1y (20' 77 + 9w 0Ty — 2 CHEL (9T ) (0K 7Y + ... (5.12)

We have Taylor expanded the functional U(B'’) = U(81;) + g5~ (B" = (B")) + ...
U(B") =X,(20" 7" + 0,7 orn’) + 2" 5E (9 ) (0% o) + .. (5.13)
We have defined a%% = A7 and the elastic moduli tensor

ou

9B1,0Brs” (5.14)

Crkr =

The form of A\;; and C!/K% depends upon the lattice symmetries. For a cubic lattice
A1y ~ 017, but to achieve isotropy at rank four we need icosohedral symmetry [219],
in which case we would write

OIJKL — Cg(SIJ(SKL 4 Cg((SIK(SJL + 5IL5JK). (515)

For a general crystal one would need to decompose CT/%% into the proper invariant
tensors for the crystal group of interest. Nonetheless one may have completely isotropic
solids if they embody many crystalline domains or are glassy [220], in which case
dislocations may no longer be relevant. However, no matter the crystal structure it
will always be true that A;; will be symmetric and C}; x; will be symmetric in I.J
and KL as well as in the interchange of the pair.

Notice that at this point the action depends upon both the symmetric as well
as the anti-symmetric pieces of the phonon gradients 0;7w; at quadratic order and
above. For a finite sample, under the assumption that any external applied stresses are
isotropic, the anti-symmetric part can be set to zero at the cost of adding boundary
terms [211]. This is equivalent to setting A’/ = 0 in the above action, which we will
assume throughout this work since we will be working with open boundary conditions.

5.3 Coupling of the Dislocation to bulk Phonons

It is interesting to contemplate the phenomenological distinctions between the type I
and type II realizations. In addition to changing the thermodynamics, interactions
between bulk phonons and dislocations will affect the phonon lifetime in the solid since
the phonon will scatter off of the dislocation and will be dissipated into dislocation
excitations.
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Until now we have discussed the effective field theory for solids in terms of the
co-moving coordinates ¢’ (Z,t) of the individual particles. However, as previously
mentioned, the coupling of ¢!(Z,t) to these defects is non-local in this canonical
description. Something similar happens in the case of superfluids, where it was
shown that the non-locality can be eliminated by going to a dual (gauged) description
[213, 215]. In 341 solids, one may introduce an anti-symmetric two-form fields bf“,
with I = 1,2,3 to describe the low energy dynamics [214] in such as way as to leave
local couplings to the dislocation.

The idea [213] is that when the theory is derivatively coupled we may change
variables from 8,¢" to F }f via a Legendre transformation. Given an action F(B!”) we
may write

SF(B')

Q(YU) - 8“¢IW - F(B[J), (516)
where Y17/ = FJFNJ and
SF(BY
F, = 53(u¢J)’ (5.17)
and the inverse is given by
5g YIJ
F(B") = —5<FM ) put Gg(y'") (5.18)
5g YIJ
90" = %. (5.19)

The equations of motion for ¢’ leads to the condition 9,F* = (0, which can be solved
by defining
Fl = €4,00"b"" (5.20)

and b7°! is the anti-symmetric vector valued two form field. F lf is invariant under the
gauge transformation

It can be shown [213] that the Hamiltonian involves only one conjugate pair of variables
as required to describe a scalar theory.

Now using our action F in (5.12) in the presence of open boundaries, we find that
at linear order

FIJ — —47_LCIJKL8K7TL
F' = max! (5.22)
Thus to leading order we have
ok L — _ic(—l)KLIJFIJ
4n
1
= —F", (5.23)
nm
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Notice that at this order the action G will be insensitive to the anti-symmetry part of
Ormy, which will only arise once we include non-linearities.
Using the above relations, we may now write (5.16) at leading order as

GLO — %(FOI)Q _ Lﬁc(l)IJKLFIJFKL _ FLO(puty, (5.24)
where
]_—LO(FD _ ﬁ< 1)2 %C(—l)IJKLFIJFKL
(5.25)
which gives the leading order dual action
GLO — ﬁ(lym)z _ %C(—l)IJKLFIJFKL. (5.26)
We have the action in terms of 6F) = $€,,,00"0”", but we can clarify the physics
[215] by decomposing the two form in terms of two vector fields A? and B{* via
bl =Bl bl = AL (5.27)
We then find
SEl = 9B’
SFL = —BL4+(Vx AL

(5.28)

Since the action is written in terms of gauge invariant variables it is invariant under
the transformations b}, — b}, + 9, A} — 9,A]. The gauge transformation parameter
itself has a further redundancy A\, — A, + 9,n. We will gauge fix by choosing
the Coulomb gauge, which is not covariant, but since we will be interested in the
non-relativistic case, this is of no consequence. To do this we include a term in the
action

Ser = % / Az (] )2 (5.29)

the limit ¢ — 0 the fields A and B become longitudinal and transverse respectively
obeying V-AT=0and Vx BT =0 respectively. These correspond to nine conditions
that reduces the number of degrees of freedom down to three.

The leading order Lagrangian in terms of these fields is then given by

1o = %[(@A{ 2 + (8.BL) — (,B1)(0:B1)]
1 T
%(@sz)z — %CK}JJ(BIJBKL

—,

(6 X ff)[](ﬁ X A')KL — QB]J(ﬁ X A)KL)
(5.30)
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Similarly one can derive the interactions in the bulk using the legendre transform.

As we have emphasized the central point of using the dual description is to
construct a local effective action which captures the coupling of the phonons to the
dislocation fields, which is encoded in the Kalb-Ramond action. The Kalb-Ramond
action describes the leading coupling between the dislocation and the phonon gauge
fields. The current associated with a p-dimensional defect is a p + 1 form and hence a
dislocation current in 341 dimensions is a two-form given by

JH(x) = ng / dp dr 0. X119, X" 6" (x — X (1, p)) (5.31)

where v* = 9, X* is the velocity of the dislocation line.

As was shown in [221] the form of this current along with the particle number
conservation leads to the glide constraint, which states the the dislocation is limited
to motion in the direction parallel to the Burgers vector. The Kalb-Ramond action
takes the form

Skr=n' / dr dp 9,X"0. X"V, (5.32)

which is manifestly gauge invariant and unique. One can notice that this term has no
derivatives acting on the two-form bfw which leads to a long range field. This should
be contrasted with the scalar field theory for phonons where ¢! always comes with a
derivative acting on it, and the long range field can then only arise if the couplings
are non-local as previously mentioned.

5.4 The Dislocation Action

Let us return to the action for a dislocation embedded in a solid. In this context, we
now have at our disposal some bulk metric G, in place of the minkowski metric.
Thus we may define the world-sheet metric as

Jap = GuvaaXHaﬁXy~ (533)

To determine the dispersion relation for the transverse modes X, we choose the
defect to lie on the z-axis and work in the gauge X° = ¢;, and X? = 0y = 2. The
solid string coordinate will then be expanded around this configuration, that is ¢ = z.
Expanding out to quadratic order in the fluctuations we have

SO0 — / dtdzA/G..

Gzz Gzz GZZ
(5.34)

L 1 G, 1, /Ga: 2
%GabX“Xb -5 ( fo— 21 )—"(azxa)(asz) = fg( 8ZX“> ] :

where f; are the coefficients of the taylor expansion of F(B) and we have taken

Gtt - —]_
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It would seem that this is the end of the story in the sense that these modes will
be of type I. However, the dislon modes mix with the bulk modes as can be seen from
re-writing the Kalb-Ramond action in terms of the stress photon and phonon fields in
the gauge X' =7 =t and X3 = p = 2,

Sir =n' / dt dz 0. X" Af + 0,X*0. X ey B] (5.35)

Integrating out the bulk modes leads to a correction to the effective action in
(5.34). Since we are essentially interested in the behavior of transverse dislon modes,
let us compute these corrections using the above action. In doing so, we will expand
the propagators in small frequencies and hence neglect the frequency dependence.
Though this may seem a bit cavalier, we will see that it leads to a self-consistent
solution.

d3k:
S0 — i / / X leacra (Cr(R))L P + (Ga(k) K212, (5.36)

where G 4(k) and Gg(k) are the propagators for the A and B fields evaluated at
zero frequency. Integrating over the transverse momenta will induce a logarithmic
running of the coefficients in (5.34). Let us consider the isotropic case for simplicity.
The propagators for the A and the B field in the zero frequency limit are then given
by

80263

2
Cr i i j ij i ]
(Galp) = —p—[2 (2P PY — Py Py + (PP} — PPN (5.37)

2c3 + ¢

(GB(p))fj] = 203]);—12]5” (5.38)

where P%j are the transverse projectors. Using these propagators, the integrals over
the A and B propagators turn out to be

/ %(GB(k))ab - —5a,,5” E +1n (Zz > + In(4r) — 7}

2

dsz_ 1J C3(Cg—|—02) 9 13 <J3 m 3
/ (QW)Q(GA(k))ab = chéab(s ) [ +1In (k > + In(47) — = -7

z

c3 2 2 3
+167TD [ +ln(kz)+ln(47r) 2}

(5.39)

where

DIV = (36,1041 + 0a2042) 0" 671 + (8010p1 + 3042052)07 2672 (5.40)
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We have performed these integrals using dimensional regularization with p acting
as the renormalization scale. Also, we have assumed that the dislocations are either
screw or edge type and there are no mixed ones.

Let us consider screw dislocations as an illustration. The burgers vector points in
the 3-direction and hence 77 = (0,0,n). The one-loop effective action re-normalizes the
effective couplings in (5.34). In the M S, one can cancel the poles and the constant
terms using counter-terms. Thus we are left with

LIS GO

i TR
(5.41)

Note that we have considered this for an isotropic solid where G;; = C’(Sij and hence
the last term in (5.34) vanishes. We see that the effect of the effective action is to
make the world-sheet couplings run with the scale pu.

folp) = GnTz/leﬂ (%) 2
el {fn(2) e 2)

where 1y and p; are some reference UV scales, typically of the order of the inverse
dislocation radius 1/r. This leads us with the following effective action.

1 2(c3 + ¢
o 2 [ [ () () e (2]
(5.43)
However, for a physical, finite solid, we must choose a set of boundary conditions.
In particular, we must specify whether not the sample is stressed. For an unstressed
sample we may take the boundary conditions to be be open such that in the ground

state (7T,,) = 0, which imposes conditions on the Wilson coefficient of the gradient
term in (5.43) via the relation

(5.42)

2
= =—h(L) = fo(L) =0 (5.44)
which implies
1 Ho 9 203 + 2¢2 !
—In|— ——In(— ) =0 5.45
Gn(ﬂl)+CT203+CQ H(L ( )
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Imposing the above condition, one obtains the following dislon action in the
isotropic case.

dw dk Mo 2 c3 + Co 2
eff = — X |1 — 47— 1In(kL) k 4
Sers = n’ 27r or | on “s k{ n<k)w CT203—|—62 (kL) Wk (5:46)

One can see that the dislon has a non-analytic dispersion as opposed to the phonons.
One can see that for long-wavelength modes k ~ 1/L, the second term in the above
action is suppressed. Thus for on-shell modes, one obtains w < k, which is why the
assumption of expanding the bulk propagators in small frequencies is consistent. One
can calculate the group velocity of the dislons from the above action.

v(k) =

C3 —+ Co 10g ]CL [ (547)

1
2¢3 + o \| log(uo/k) log(po/k) * 210g(kL)]

For long wavelength modes, the last term dominates which results in a velocity
v ~ & log(1/uoL) which is much smaller than the bulk phonon velocity.

Until now, we have restricted our attention to the isotropic case. Let us briefly
discuss what happens in an non-isotropic lattice. Analogous to the isotropic case,
the exchange of bulk modes renormalizes the couplings in (5.34) and thus leads to a
logarithm running of the Wilson coefficients. The relaxation condition (5.44) involves
a relation between fy and f; but in the non-isotropic case, one has additional Wilson
coefficient fy which is unaffected by the presence of the boundary. At long-wavelengths,
this term dominates since fy scales a log(ug/k) > log(kL). Since the coefficient of
the kinetic term also scales as log(uo/k), one obtains a linear dispersion for the dislon

log(kL)
Tog o/ k) CT K-

mode with corrections scaling as

5.5 Conclusion

In this work, we have presented an effective field theory of dislocations in solids. We
have emphasized the interesting fact that the dispersion relation for the excitations
of dislocations, called “dislons”, depends upon the UV physics through the discrete
symmetries of the lattice. For lattices with at least cubic symmetry the dispersion
is non-local in the momenta while less symmetric lattices lead to a linear dispersion
relation. The boundary conditions play a crucial roll in leading to this effect, which
disappears when the solid is stressed. The distinction between these two cases will
show up, among other experiments, in the phonon lifetime.
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Chapter 6

Appendix

6.1 WZW term for magnons

In this short appendix, we provide a few more details about the derivation of the RHS
of Eq. (3.10b). To this end, we'll focus our attention on the 2-form ws = €4, wg, A ws,,
which can be written more explicitly as

wy = 2e*PC107'dO] 3 A [071dO e (6.1)

Using the fact that O~ = O, and writing explicitly the sums over the indices B = b, 3
and C' = ¢, 3, we find
Wy = EabOAaOBb dO a3 N\ dOps. (62)

At this point, it is convenient to think of the matrix elements O4p5 as a triplet of
mutually orthogonal unit vectors defined by

Ml = 0,9, fia = Oz (6.3)

Then,
04,08 = (MM —m @) = e 1pen’. (6.4)

The result on the RHS follows from the fact that the expression in the intermediate
step must be antisymmetric, orthogonal to 7 and #”, and its contraction with
B must be equal to 2. Thus, the 2-form in Eq. (6.2) can be written as

way = eapc N dn® A dnC. (6.5)

Now, if we parametrize the unit vector as in Eq. (3.39), we can calculate ws explicitly
to obtain

wy = 2sinfdf A dp = d[—2cos b dg). (6.6)
However, the discussion in Sec. 3.4.1 shows that this is also equivalent to
wy = d[e®(071dO) ). (6.7)
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6.2 Magnons in ferromagnets

In the ferromagnetic case, the term in the action with one time derivative is the leading
order kinetic term. Therefore, we may eliminate the term with two time derivatives
via a field redefinition such that

OrXaOi X" — (82Xa)2 + ... (6.8)

where the remaining terms involves sub-leading operators (see e.g. [58]). Recall that
our power counting for the FM case dictates that time derivatives scale like two spatial
derivatives, based on the dispersion relation w = k%/2m. Then, the effective action for
a ferromagnet describes a single propagating degree of freedom. This can be traced
back to the existence of a primary (second class) constraint

Py — %eabxb =0, (6.9)
where the p}’s are the momenta conjugate to the x,’s. The canonical quantization of
this constrained theory has been discussed in detail in [222, 42]. One must use care in
defining the external states, by proceeding through the Dirac procedure for constrained
systems. The Dirac bracket algebra will be satisfied via the field expansions for y and
its conjugate momentum p,,

d3k , ’
Xa _ / (_(akeae—zk-ac + a;;ea*ezkﬂ:)

273)
a 1 d?’k a_—ik-x ax tk-x
Pl = _5/ (27r3)(ak€ e kT _ aLe ek

(6.10)

—

where k -z = —wit + k-7 and [ag, a;] = (27T)353(E — k'), and
e = (1,—1)/V2. (6.11)

This is equivalent to the statement that the complex field ¥ = \%(Xl + ix2) only
contains annihilation operators, as is the case for an ordinary non-relativistic field:

Pk .
fo:/(%S) are ™" (6.12)
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6.3 Magnon neutron scattering cross-section and
EFT matching

To determine the coefficients ¢; reported in Table 4.1, one has to perform a matching
calculation between the EFT and a short distance theory. To do this, we compute
the one-magnon neutron scattering cross section both within the EFT and within the
microscopic theory, which we take to be the Heisenberg model (see for, example, [223]
for a pedagogical discussion). This will allow us to extract ¢; in terms of the exchange
constants in the Heisenberg model and of the magnon velocities, both of which have
been measured in neutron scattering experiments.

We begin with the calculation in the EFT. In a neutron scattering experiment, the
interaction between the neutron and the spins of the magnetic material is mediated
by an off-shell photon. This is because both the neutron, n, and the spins, &;, couple
to the magnetic field via the Zeeman coupling [39], corresponding to an interaction
Lagrangian given by

Lns= —ypnion-B—guz Y B-S;

(6.13)

B —panfon-B—gupB - s,

where pup = e/(2m,) is the Bohr magneton, p,, = (m./m,)ug is the neutron magnetic
moment, and the two g-factors are given by v ~ 1.9 and ¢ ~ 2. In going to the
second line, we have taken the IR limit where the effective coupling of the magnetic
field to the spins is via the spin density. Integrating out the gauge field results in
an effective interaction between the neutron and the magnons appearing in the spin
density operator. This interaction is given by

Los = gupypn (nfon) - V73(V x (V x 5)) . (6.14)

We are interested in the one-magnon cross section due to neutron scattering. The Feyn-
man rule for this interaction can be computed straightforwardly using the expression
form the spin-density in Eq. (4.2):

a,)\l .
x = —Vaghsy/C1wPi(q)o",
s ' g

where the solid lines represent the neutron with polarization s(s’) and the dashed
ones represent the magnon carrying an index a, with momenta q and polarization \;.
Taking the incoming and outgoing neutron energy-momenta to be (F, k) and (E', k')
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respectively, one can calculate the differential cross section to be

d*c V mnk’( 2 1+ ¢ (@)
= n c w
dQdE ~ (2m)2 v, | HmdHmaTT e
X 6(E' — E —w(q)) (6.15)
Eo1+¢2
= V(ym)* zer—=w(q)d(E' - B - w(g))
where we have rewritten the couplings in terms of the classical electron radius,
ro = ﬁ;—i Also, V' is the volume of the sample and v, represents the velocity of

the incoming neutron. Since the energy of the outgoing neutron is the one that is
measured, the differential rate has been calculated with respect to E.

Let us now compute this same cross section in the the Heisenberg model which
describes the interaction between spins on a lattice, and which is typically employed
to report experimental data. We will mostly follow the derivation and notation
reported in [180]. The Heisenberg model can be thought of as an effective theory of
the Hubbard model which describes the interplay of electrons on a lattice [223]. For
an anti-ferromagnet, one can think of the dynamics being described by two sublattices,
where the spins belonging to the same sublattice point in the same direction, and the
spins belonging to different sublattices point in opposite directions. The Heisenberg
Hamiltonian for an anti-ferromagnet can then be written as,

H=Y J(R) Sy Surr
R

i (6.16)
+Y J(r) Sa St

Here x is any position on the lattice, R is a vector connecting two sites on opposite
sublattices, and r is a vector connecting two sites on the same sublattice. Hence, J(J')
describes the exchange interaction between the spins on opposite (same) sublattices.
From henceforth, we will work with a cubic lattice, which is sufficient for our discussion
and often represents a good approximation of a realistic material. We can define the
Fourier space analogs of these couplings as

2

J(q) = ER: J(R)e "R ~ Fio) — %\7(2) ; (6.17a)
2
T(g)= T (r)e e = Jpy — %.7(’2) , (6.17b)

where we have expanded in ¢ since we will be interested only in the long wavelength
excitations. We also define Ji,) = > 5 J(R)R" and similarly for J’. Notice that the
odd powers vanish due to the symmetry of the cubic lattice, which implies that the
sum of every subset of sublattice vectors with fixed magnitude vanishes, Y ,_. R = 0.
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Neglecting lattice vibrations, the differential cross section for inelastic neutron
scattering in the Heisenberg model at zero temperature is given by [180]

d*o
dQ dE’
where ¢ = k' — k and w = E' — FE are respectively the momentum and energy transfer.
Moreover, F(q) is the neutron form factor, normalized such that F'(0) = 1. The

van-Hove scattering function, S¥(w,q), is the Fourier transform of the spin—spin
correlator:

= ()X | P(@) (6, — 4d)SV (. a). (6.18)

S(w, q) = / ;—;Zeiq'Ti“t<Si(r,t)Sj(0,0)>. (6.19)

For case where the Néel vector of the anti-ferromagnet points in the z-direction, the
only relevant spin correlators are the diagonal ones in the transverse directions. For a
two-sublattice anti-ferromagnet, one can obtain the scattering function [180] to be

ab 2 N

S®w,q) = %5@1 — w(q))iTg(J(g) — Joy)w, (6.20)

where N is the number of unit cells in the sample and § is the magnitude of the
spins. Now we are in position to compare the cross section computed within the EF'T,
Eq. (6.15), and within the Heisenberg model, Eq. (6.18), using the above result. Since
we are interested in the long-wavelength limit, we can set the neutron form factor to
be unity. Matching the two computations, ¢; reads

=S (=) (6.21)

= Vv (2) 2)) > .

where Vy = V/N is the volume of a unit cell. For a cubic lattice Vy = a3, where aq is
the lattice spacing of the crystal.

We now only need to specify J(2) and \7(/2) for a given material. We will show
how to do that explicitly for NiO. The other anti-ferromagnets considered in this
work follow similar procedures, albeit more tedious. The crystal structure of NiO is
shown in Figure ??. The corresponding couplings and crystal parameters have been
measured in [193, 224]. From the definitions in Eqs. (6.17), the Fourier space moments
are found to be

Jizy = 6R2J(Ry) + 6R2J(Ry) + 12R2J(Rs) + .. . ,
u7(/2) =6r7J (r1) + 12r5.J (ro) + 12050 (r3) + . ... |

where the numerical factors in front of each term correspond to the number of vectors
with the same magnitude, as reported in [224].} From Figure ?? we also deduce the

"We point out that, in our notation of Eq. (6.16) each coupling J) is counted twice in the sum,
while in the notation of [193, 224] only once. For a proper matching, therefore, one needs to recall
that our couplings are half of those measured in [193, 224].
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length of the different vectors, i.e.?

Qo 3
Ri=—, Ry=aqy, R:\/ja,
1 NG 2 0 3 50
Qo 3
Tn=——, To=1/=qg, ry =V 2ag.
1 /2 2 \/;0 3 0

For the case of NiO, the next-to-nearest neighbor coupling J(R2) ~ 9.5 meV is
much larger than the other exchange constants [193, 224], and hence dominates the
expressions above. We then have,

(6.22)

~ ——J(Ry). 6.23
G aovg (R2) ( )

2The NiO crystal presents a small anisotropy [224], which makes it deviate from a perfect cubic
crystal. This also gives a tiny gap to lowest lying magnon modes. All these effects are negligible for
our purposes.
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6.4 Non-relativistic limit of the dark matter inter-
actions

To perform the non-relativistic limit at the level of the Lagrangian, one can follow
a procedure analogous to what done in Heavy Quark Effective Theory [196], and
essentially amounting to integrating out the anti-particles and expanding in small
velocities.

Let us consider the electron field as an example; the same procedure applies to
any spin-1/2 field. Firstly, one starts from the relativistic 4-component Dirac field
and performs the following splitting,

€, = ¢
ey = emtile

imet 14+79°
5 e

e=e " (e, +ey), with { (6.24)

where the y-matrices are written in the Dirac basis. The projectors in the equation
above are such that, in the non-relativistic limit, ey, only contains the two upper
components (associated to the electron), while ey only the two lower ones (associated
to the positron). The overall phase ensures that ey, has only support on small energies,
w ~ k?/(2m.) < m,, while ey contains large energies, w ~ 2m,. Indeed, by plugging
Eq. (6.24) in the Dirac Lagrangian one gets,

£e ~ —eg (Z@t + 2me) eg + eL i@teL

6.25

+éHi’7-V€L+éLi’Y'V€H, ( )
where we already expanded in the non-relativistic limit.> From the Lagrangian above
we see that, as anticipated, the particle field ey, is massless, while the anti-particle
field ey is massive, with mass 2m.. As such, it can be integrated out at low-energies.
At tree level, the equations of motion give

i
2m,

en ~ - Vey,. (6.26)

We can now use this to take the non-relativistic limit of the interaction between dark
matter and the Standard Model electron. We will work in the simplest case of pseudo-
mediated dark matter. The magnetic dipole dark matter follows the same procedure,
albeit slightly more tedious. The initial relativistic Lagrangian is the one in Eq. (4.3b).
Using the fact that, due to the projectors in Eq. (6.24), eger, = egy’en = epy°er, = 0,
it is simple to show that,

XX~ XLxL, eiy’e 5V (evy’er) - (6.27)

3At lowest order, this corresponds to taking the standard Heavy Quark Effective Theory La-
grangian [196] and set the 4-velocity to v, = (1,0).
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Moreover, one also has

1+4° o 0
5 — —
Vg = (0 0) =3, (6.28)

which is precisely the spin operator. It then follow that, including the ultra-light
mediator, the non-relativistic Lagrangian reads,

m 1 2 _ Je - by
LY = 5(‘%) + 9@ XuxL + E;bv' (‘BLEGL)
g

oGy B Y
gXXLXLD 'v . (GL—€L>
m 2

o0y _ _ Yy
~ Y gXXLXLV V- <€L§6L)

%

(6.29)

e

= — %XT anv_QV . (6111‘26111-) ,
m 2

rm
€

where we first integrated out the mediator and then performed the non-relativistic

limit again. In the last line we switched to the two-component fields, related to the
light field by e, = (en, 0)".
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6.5 Computation of dark matter event rates

To compute the event rates, one calculates the convolution of the dark matter velocity
distribution function and the decay rates as in Eq. (4.5). The velocity distribution
function boosted to the Earth’s rest frame is given by

_ (Ux+’ve)2
floy +ve) = Noe % O(Vege — vy +ve|) (6.30)
0
where Ny = T0d[v/Tvgerf(Vese/v0) — 2vescexp(—vZ./vg)]. Shifting the velocity to v, —
v, — Ve, one finds the total event rate,

_ Px / 3, —v2/vd /
R=—"F"— d’vye” X (v, — v, 0'), 6.31
meXNO ; X (| X | ) ( )

XSUesc

where ¢ is the relative angle between the direction of the incoming dark matter,
¥y, and the magnetization . This is related to the angle between the momentum
transfer and the magnetization, 7, appearing in Eq. (4.6) by [152],

cosn = cosfcosl + sinfsind sin(¢p — ¢'), (6.32)

with (¢',¢') denoting the angle between the incoming dark matter and the mag-
netization vector and (6, ¢) denoting the angle between the momentum transfer
and the incoming dark matter. From momentum conservation, one obtains cosf =
q/(2m,vy) + w/(vyq). When considered for single magnon emission (i.e., w = vyq)
this returns the usual Cherenkov condition.

After integrating over the direction of v, in Eq. (6.31), the final event rate depends
only on the relative angle between the Earth’s velocity and the magnetization. Our
results of Figure 4.1 are computed in the simplified case where v, N = 1. The
integral in Eq. (6.31) is evaluated numerically.
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