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Introduction and summary

The study of critical phenomena is crucial for the theoretical understanding of quantum

field theories and the experimental measurements [1]. It is well known that many critical

points are strongly coupled quantum field theories ruled by conformal symmetry. In two

space-time dimensions, the conformal group is enhanced to an infinite symmetry algebra,

namely the Virasoro algebra [2].

Among the irreducible representations of the Virasoro algebra, it is natural to consider

the minimal models M (p, ¢), which give rise to an infinite class of two-dimensional conformal

field theories. Those models are labelled by two coprime positive integers p and ¢ and

have central charge

(p—q)?
pqg

c=1-—6

(1.1)



Among the minimal models, the only theories which are unitary are those in the sequence
M(24n,34n) n=1,2,.... Inall other cases, unitarity is lost due to a real but non-positive
spectrum of conformal weights which leads to states of negative norm.

Based on the concept of universality, one might expect that some features of strongly
coupled conformal models can be captured through a weakly coupled description. Indeed,
what matters is the symmetry of the problem: a weakly coupled theory respecting the same
symmetry can also describe certain aspects of the same fixed point. This approach is known
as Ginzburg-Landau description [3], and it is well realised by the Ising model, which is the
Wilson-Fisher fixed point in d < 4 [4].

The idea has been further extended to unitary multicritical points in two dimensions.
Indeed, in [5] Zamolodchikov proposed the Ginzburg-Landau description of unitary minimal
models with diagonal modular invariants in terms of bosonic Lagrangians:

1 n
Lp24n,34n) = 5(390)2 + gp?n ) (1.2)

Besides the above sequence, the general Ginzburg-Landau description of minimal models is
not presently known, despite a handful of exceptions, which are the following:

* The minimal model M(2,5), also known as Yang-Lee model, can be described by the
Ginzburg-Landau lagrangian [6]

1 .
Lams) = 5(00) +ige’, (1.3)

* The minimal model M (3,8), also known as the supersymmetric version of the Yang-Lee
model, can be described by the Ginzburg-Landau lagrangian [7]

1 1 . )
L) = 5(‘980)2 + 5(80)2 +igio¢® +igao” (1.4)
in terms of the two bosonic fields ¢(z) and o(x).

* A suggestion for the Ginzburg-Landau description of the minimal model M(3,10) was
also given in [8] and [7] as two copies of (1.3) i.e. the Yang-Lee theory.

Recently we proposed that the sequence of the non-unitary minimal models M(2,2n + 3)
generalizes the Yang-Lee edge singularity to its multicritical versions [9, 10]. Moreover, we
suggested the existence, and provided numerical evidence in several cases, of the following
RG flows from unitary multicritical points to the non-unitary Yang-Lee multicritical CFTs
as well as flows between non-unitary the multicritical points:

M2 +n,34+n) = M(2,2m + 3) m<n, (1.5)
M(2,2n + 3) - M(2,2m + 3), m<n. (1.6)

This paper focuses on the Ginzburg-Landau description of the series of non-unitary
minimal models M(2,2n + 3). The central charge ¢ and the effective central ceqg of these
models are

(14 2n)? 2n

; Ceff = C — 24Amin = on +3 . (17>



The n + 1 Virasoro primary fields ¢, k = 1,...,n + 1 have conformal weights

(2n +3 —2k)? — (2n +1)?

k = 1 corresponds to the identity, while the other n fields are the nontrivial relevant fields

of these classes of universality. Motivated by the a combination of the above spectrum of
conformal fields, Fisher’s argument to the Yang-Lee model and Zamolodchikov’s proposal
for the unitary case, in this paper we propose that the Ginzburg-Landau Lagrangian for
the universality classes of this series is given by

n—2

1 . . . \n
Lrm2,2n43) = 5(390)2 +igio+ Y Gria’ (ip)* + @ (i)™ (1.9)
k=0

This model has n + 1 relevant fields, given by the powers of the elementary scalar field

0, 0% . ot
same counting as in M (2,2n + 3). As we show in the sequel, the proposed Lagrangian (1.9)

. The equation of motion makes one of these fields redundant, leading to the

identifies the class of universality, whose nth multicritical point can be reached by tuning the
couplings g; of the subleading powers. The full phase diagram also contains submanifolds
of lower multicriticality, and the k + 1th multicritical points are conjectured to form the
boundary of the manifold of kth multicritical points.

The flows (1.5) and (1.6), when expressed in terms of the highest power in the field
potential, schematically correspond to the flows

" = o (i)™, (1.10)
P i) = P2 (i)™ (1.11)
We provide arguments supporting this proposal and numerically check it for the first two cases:
the Yang-Lee fixed point and its tricritical version. It is important to notice that the above
Lagrangians are explicit PT symmetric, and this important feature is the key point which
guarantees the reality of the conformal spectra of the associated fixed points. In addition, the
Lagrangians in (1.9) are the field theory generalization of the quantum mechanical models
initially studied in [11], which were the first examples of non-Hermitian, but PT symmetric
model with real spectrum. In this perspective, our proposal is a field-theoretic generalization
of those theories. Even if the spectrum of PT symmetric models is real, there can be negative
norm states. In the quantum mechanical setting, the negativity of the norm of those states
is cured by defining a new inner product (called the CPT inner product, see discussion in
section B of [12] and references therein). Defining the equivalent of the C operator in this
field theory framework is a very interesting problem, which is not the goal of this paper;
nevertheless, we make some short comments in this regard. In the CFT context, the natural
inner product is defined by the Virasoro algebra [1, 2], and the negativity of the norm is
treated as an expected feature of the models. The inner product defined in the CFT naturally
extends to the off-critical theory. Consequently, the residues of the poles of the S-matrix are
not positive, and the completeness relation has to be dressed with negative signs. This is
easily demonstrated using the scaling region of the Yang-Lee model, where negative signs
must be considered in front of the form factor contributions corresponding to an odd number
of particles [13, 14]. Hence, concerning the correlation functions, it seems more important to
define the completeness relation rather than pursuing a definition of a positive scalar product.



The paper is structured as follows: in section 2, we revisit and extend Fisher’s argument [6],
in favour of our proposal (1.9), then we elaborate on the role of PT symmetry. In section 3
we set up the Hamiltonian truncation for the Ginzburg-Landau models, and test its correct
implementation using known results regarding the massive free boson and the Wilson-Fisher
fixed point. We locate the latter fixed point in the Chang dual channel and compared the
ratio between critical couplings with the expected value, finding good agreement with the
expected results. We then study the scaling region of the first two cases, which correspond
to the leading interaction terms igy® and gp?(ip)?, and we numerically confirm the validity
of our proposal involving the Ginzburg-Landau lagrangians presented in equation (1.9) for
n =1 and n = 2. We discuss the results and our conclusions in section 6.

2 Proposal and arguments

Our proposal (1.9) is the natural generalization of the well-established Yang-Lee result (1.3) [6,
15, 16]: notice that it contains the necessary number of relevant degrees of freedom, it respects
PT symmetry and is compatible with the RG flows found in [9, 10].

In this section, we revisit and extend Fisher’s argument to support our proposal. Then
we present further arguments in line with the expectations from the bootstrap description of
integrable massive deformations. Finally, we elaborate on the role of PT symmetry and the
general expectation for the phase diagram related to its spontaneous breaking.

2.1 Fisher’s argument revisited

The Ginzburg-Landau description of the Yang-Lee edge singularity is given by

1 . .
Lyang-Lee = 5(&0)2 +igro + @2 (ip) . (2.1)

Fisher obtained this result in [6], which was later used by Cardy to argue that the Yang-Lee
edge singularity corresponds to the conformal minimal model M(2,5) [15]. Here we review
and generalise Fisher’s method. This was already attempted in [17], but our recent results
obtained in [9, 10] on the non-unitary models guide us to get the correct generalisation.

Fisher’s idea is to start from the Ginzburg-Landau description of Ising, which is just
a ¢* theory

1
Lpy3,4) = 5(&?)2 + 910+ ga9” + ¢ (2.2)

The 3 term is absent in this Lagrangian due to an appropriate field shift. Following the
argument of Zamolodchikov [5] based on the OPE structure of the Ising fixed point, it is
clear that ¢ is mapped to the magnetic field o of the minimal model M (3,4), while ¢? is
mapped to the energy operator €. This is further supported by a simple symmetry argument:
o is a Zo odd field while € is Zy even.

In [18, 19] Lee and Yang showed that a new critical point, the Yang-Lee edge singularity,
arises when the Ising model is deformed with an imaginary magnetic field setting g; to
ig1. As Fisher showed in [6], this can be implemented in the Ginzburg-Landau description
by the following steps:



1. shifting the field as
© — @ +ivo, (2.3)

2. setting go — 63 in order to set the 2 term equal to zero;

3. neglecting the constant terms and the ¢* term since this operator becomes irrelevant
in the infrared theory. In this way, we end up with the Lagrangian in (2.1).

4. In particular, the theory of the new critical point is defined by tuning the coupling in
front of ¢ to set the mass gap to zero. This can be achieved by setting ig; — —8¢p.
The resulting Lagrangian is a ¢® theory with an imaginary coupling (equal to 4igg).

Now we demonstrate that the same procedure can also be performed starting from the
GL Lagrangian of the tricritical Ising model:

1
L) = 5(00)" + 910 + 920" + 950" + ga” + ¢ (2.4)
We should follow steps similar to the Yang-Lee case:

1. shifting the field as
P = @ +ipo, (2.5)

we arrive at the following Lagrangian:

1 . . )
Ezjwﬁ+ww+wﬁ+wwﬂﬂw“H%f+ﬁ, (2.6)

where the 7, depend on the original couplings g,,, when we consider imaginary couplings
in front of the odd powers of ¢, and the shift of the field ¢q.

2. setting g1 — —6p] — 2092 + 392gs + 4p3gs we can implement the condition 1 = 0.

3. setting ga — —3 (508 — pogs — 2¢2g4) we can enforce the condition v = 0, reach in
this way the first universality class. This corresponds to the universality class of the
Yang-Lee edge singularity universality since, once we neglect the constant terms and
the higher powers of ¢, the Lagrangian has a ¢? potential with an imaginary coupling
in front (specifically i(—20¢3 + g3 + 4¢0g4)). So, the first conclusion is that there is a
fixed point of the Yang-Lee type in the tricritical Ising model as well; as a matter of
fact, these fixed points form a line.

4. Since the tricritical Ising model has more relevant degrees of freedom than the Ising
model, this circumstance allows us to tune one more coupling. We can adjust g3 —
4 (503 — ©0g4) to set the 3 term equal to zero and reach in this way the second
universality class. The resulting Ginzburg-Landau Lagrangian takes the form

1
L= 5(6@2 T (2.7)

where v4 = —15¢3 + g4.



The naive expectation is that the latter Langragian should describe the tricritical version
of the Yang-Lee fixed point at the end of the line of ordinary Yang-Lee fixed points. It was
shown in [9] that in the PT symmetric sector of the scaling region of the tricritical Ising,
a manifold of conformal points of the Yang-Lee type ends in a fixed point of a different
universality class, which is a tricritical point proposed to be the tricritical version of the
Yang-Lee edge singularity. The Lagrangian in (2.7) seems naively unitary and to coincide
with the Ginzburg-Landau theory of Ising, at least when 4 > 0. However, it is known that
there is a PT invariant version of this theory which is obtained for 74 < 0. Although at first
sight this seems to correspond to an unstable potential, if one adopts a different quantization
condition corresponding to an analytical continuation to complex contours in the ¢ plane,
the Lagrangian which was written above can be considered as the n = 2 case of (1.9), as
shown to be the case for its 0 + 1-dimensional (quantum mechanical) counterpart [11]. We
return to this line of thought in more detail in section 2.3.

One might think that implementing one more tuning of the parameters will lead us to
another critical point whose Ginzburg-Landau potential is governed by ¢ with an imaginary
coupling in front. However this is not the case, as it was argued in [9]; indeed, tuning
more parameters to get other critical points is impossible if the ultraviolet fixed point is
the tricritical Ising, i.e. the minimal model M(2,9) according to [9, 10]. The argument is
as follows: to reach a critical surface (which in this case is expected to be a line of ordinary
critical points) from the tricritical Ising, it is necessary to tune the mass gap to zero, i.e. to
make the ground state and the first excited state meet. The ends of this critical line are
then expected to correspond to a different universality class corresponding to the non-unitary
tricritical point, where the ground state meets simultaneously with both the first and the
second excited states. It is then clear that to stay on the (one-dimensional) critical line,
the field shift g, and the couplings g1, g2, g3 and g4 cannot be varied independently, which
prevents the tuning necessary to obtain a critical point governed by an i@® Lagrangian. The
latter can only be obtained by starting from a Lagrangian with more parameters that can
be tuned. This the case if we start from the Lagrangian corresponding to the tetracritical
Ising, i.e. with the higher power given by the monomial ¢8: in this case, by shifting the field
¢ as before, it is possible to tune ¢g and the couplings in front of ¢ and ¢? to reach the first
critical point, corresponding to the Ginzburg-Landau form of the Yang-Lee singularity with
the highest relevant power ip®. Tuning the coupling in front of ¢? term, one can then reach
the Ginzburg-Landau theory with the highest term ?(ip)?, corresponding to the tricritical
version of Yang-Lee, expected to be M(2,7). Notice that, in this case, there are enough free
parameters that can be tuned to reach the Ginzburg-Landau theory governed by i¢@®, which
is expected to be the Ginzburg-Landau description of the tetracritical Yang-Lee model.

The above argument can be straightforwardly generalised to all higher multicritical
Yang-Lee CFTs M(2,2n + 3).

2.2 Argument from integrable massive deformations

A heuristic argument that supports the proposed Ginzburg-Landau description arises by
considering the integrable deformations of the minimal model M(2,2n + 3). Firstly, the
primary field ¢j satisfy the fusion rules

P2 X Ok = Pp—1 + Pry1 (2.8)



with ¢,19 identified with ¢,,41. This suggests that ¢y corresponds to (the renormalised
version of) the elementary GL field ¢, while the ¢ to k. Tt makes full sense that ¢, o is

not an independent field since the power " +!

can be expressed in terms of the lower powers
from the renormalised equation of motion. Secondly, the above identification becomes even
more plausible by noting that the naive scaling dimensions of all powers ¢ is zero, and the
exact dimensions (1.8) originate purely as anomalous dimensions from the renormalisation
of the corresponding quantum field theory. Compared to the GL description of unitary
minimal models [5], it is natural to assume that the size of renormalisation corrections grows
with the exponent k. The only difference of this case, compared with to the unitary series,
is that for the models M(2,2n + 3), all these scaling dimensions are negative, reflecting
the model’s non-unitarity.

Perturbing by ¢3 introduces a mass term ¢? and leads to a massive integrable field
theory, with an S-matrix exactly determined by bootstrap [20]. Importantly, the spectrum
supports exactly n particles Ay, which can be obtained as the bound states of the fundamental
particle A;. This fundamental particle can be associated with the elementary excitation of
the fundamental field ¢, and fusing it n 4 1 times leads back to itself, which is consistent with
the presence of the defining ?(i)" term in the Lagrangian (1.9). The form factor bootstrap
built upon this S-matrix is also fully consistent with the spectrum of primary fields ¢y [21].

2.3 The role of PT symmetry

Crucially, the GL Lagrangians written above, as well as the minimal models M (2,2n + 3)
and their perturbations studied in [9, 10] are all explicitly PT symmetric, i.e. the associated
Hamiltonians satisfy

[H,PT]=0. (2.9)
In the context of Ginzburg-Landau theory, the PT transformations are the following:
x— -, i — —i 0= —p, (2.10)

implying that Lagrangians of the form

L= @0+ )" (211)

are invariant under PT-transformations for all n € R. In fact, the Lagrangian written
above are the field-theory generalisations of the well-known PT-symmetric quantum me-
chanical systems

Hqy = p* + 22 (ix)* ccR, (2.12)

proposed by Bender and Boettcher [11]. For the quantum mechanical case it was shown
that for e > 0, the spectrum of the Hamiltonian in (2.12) is real because of PT symmetry.
Arguments and rigorous proofs for the reality of the spectrum of the theory defined by the
Hamiltonian in (2.12) (when € > 0) are given in [22-24]. This finding demonstrates that
by relaxing the assumption of Hermiticity, one can still end up in quantum field theories
potentially interesting from a physical point of view.



A notable feature of the PT symmetric quantum mechanical systems is that it cannot be
quantized by requiring the wavefunction to vanish as |z| — oo, in contrast to the Hermitian
case. This observation has important consequences for the field theory extension. In fact,
such a condition is only adequate for the regime 1 < e < 2 (including, therefore, the Yang-Lee
case), but not for € > 2. To obtain a real spectrum, it is necessary to replace the real z-axis
in a contour in the complex plane [11]. For this reason, the theories with potentials gz*
and gz?(iz)? (and therefore their field theory counterparts) are intrinsically different. For
a deeper understanding, we refer to [11, 25, 26] and references therein.

Recently, there has been renewed interest in extending the results of PT-symmetric
quantum mechanics to field theories with PT-invariant interaction terms, especially those
of the form ¢?(ip)™ in various space-time dimensions, using diverse approaches such as
perturbation theory, expansion in the exponent n and functional renormalisation group
methods [26-31].

Intriguingly, PT-symmetry can be spontaneously broken; in fact, the reality of the
spectrum is only guaranteed when

PT |U) = ¢ |0) | a€R, (2.13)

where |U) is an eigenvector of the Hamiltonian. Observe that the condition in equation (2.9)
does not imply (2.13): if both the conditions hold, the theory is in an PT-symmetric phase
and the spectrum is real. When the Hamiltonian commutes with the PT operators but its
eigenstates are not eigenstates of the PT-operators, then the theory is in a spontaneously
broken PT-phase. In the latter phase, the spectrum is generally complex, containing complex
conjugate pairs of energy levels. In the quantum mechanical case PT-breaking happens
when e becomes negative, and the two phases are separated by the Hermitian harmonic
oscillator € = 0 [11].

Recently, PT breaking has attracted attention in the framework of two-dimensional
quantum field theories. In [9], it was proposed that the Yang-Lee edge singularity can be
understood as the critical point separating the PT symmetric phase from the spontaneously
broken PT phase in the PT symmetric deformation of the critical Ising model. This concept
was extended for the tricritical Ising and beyond for the general multicritical case. Breaking
of PT symmetry was also discussed in scaling regions of the minimal models M (2,5) and
M(2,7) [10], where evidence of non-critical PT' breaking was also found. Additionally,
PT-symmetric scaling regions of the minimal models M(3,5) and M(3,7) were studied
in [32], and two-dimensional QCD also presents similar behaviours and PT breaking (see
discussion in 6.3.1 of [33]).

In this paper, we propose that the two-dimensional field theories corresponding to the
quantum mechanical Hamiltonians in equation (2.12) with n € N, play the role of Ginzburg-
Landau descriptions for the non-unitary multicritical models which are related to transitions
between PT symmetric and PT breaking phases.

Irreversibility of PT-symmetric RG flows. The similarities between Hermitian and PT
symmetric models do not stop in the reality of the spectrum. The irreversibility of RG flows in
two spacetime dimensions can be understood as the monotonicity of the c-function along the



RG flows [34]. This crucial result was generalized for flows with (unbroken) PT-symmetry [35]
by replacing the c-function with effective c-function, ceg, defined in the critical points as

Ceff = € — 24 A i (2.14)

where Apin is the lowest among the conformal dimensions of the theory.!
In conclusion, the irreversibility of two-dimensional RG flows in the PT symmetric
phase can be understood as the condition

Y > B (2.15)

This condition puts stringent restrictions on potential RG flows linking different fixed
points [7, 9, 10, 32]. For the purposes of this paper, the constraints given by the monotonic
behavior of the ceg function are automatically satisfied since the effective central charge of the
free boson is 1 and all the minimal models have an effective central charge of less than one.

Expectations for the phase diagram. We are now ready to consider the proposed GL
description (1.9) in light of PT' symmetry.

Firstly, we expect to find a critical point in the scaling region of the i3 theory corre-
sponding to the Yang-Lee edge singularity. Since the Lagrangian is explicitly PT symmetric,
PT symmetry can be either an actual symmetry of the spectrum or spontaneously broken.
In analogy with [9, 10, 32], it is natural to expect that the critical point separating the two
phases corresponds to the Yang-Lee model.

In the case of the ¢?(ip)? theory, we expect to find a critical line of the Yang-Lee
universality class, i.e. ruled by the conformal minimal model M(2,5). This line is expected to
separate between a PT-symmetric phase and a spontaneously broken PT-phase. In particular,
we know that in the ip? theory, there is a critical point of the Yang-Lee universality class.
Therefore we expect the critical line described above to extend this Yang-Lee criticality
to nonzero ¢* coupling.

This critical line must end at a critical point corresponding to the tricritical version of
Yang-Lee, i.e., the universality class M(2,7) [9]. Finally, it is also possible that beyond the
M(2,7) tricritical endpoint, the PT symmetry is broken without passing through a critical
point, as explained for the case of the scaling region of the minimal model M (2,9) in [10].
This picture can be straightforwardly generalized to n > 2.

In the following sections, we confirm the scenario described above using a numerical
method, starting our analysis with the n = 1 case to warm up and then turning our attention

to the n = 2 case.

3 Hamiltonian truncation for Ginzburg-Landau theories

To check the validity of our proposal, we implemented a non-perturbative variational approach
known as the Hamiltonian truncation method. This method is particularly suited for

'Note that the monotonic behaviour of the c.q function generalizes the c-function in unitary cases. In fact,
unitarity implies that Anin = 0, and therefore the ceq is identical to c. However, in the non-unitary case,
conformal dimensions are generally negative.



Figure 1. Space-time cylinder of circumference L.

studying theories with discrete energy spectrum. First introduced in the context of perturbed
minimal models [36-39], variants of this method were then extended to more general field
theories [40-43] including Ginzburg-Landau models in two [44-47] and higher dimensions [48],
and situations with boundaries [49] and defects [50]. Besides the computation of energy
spectra, truncated Hamiltonian methods are also an efficient tool to study non-equilibrium
dynamics [51-55].

When applying Hamiltonian truncation to the non-Hermitian Ginzburg-Landau La-
grangians (1.9), there is no a priori guarantee that it works. Fortunately, the method proves
stability; more details can be found at the end of appendix B.

3.1 Implementation and identification of critical points

We start with the Hamiltonian of free massive theory in a finite volume L with periodic
boundary conditions, i.e., on a space-time cylinder of circumference L as shown in figure 1.
The massive field ¢ can be expanded in momentum modes as
1 ikx T _—ikx
T) = age”™” +a.e 3.1
where wy, = vVm? + k? is the energy of a free particle of mass m with momentum k € 27Z/L.
The annihilation and creation operators obey the usual commutation rules

lay, ay] = [a],al,] =0, ax, al,] = 6, (3.2)

and generate a Fock space from the vacuum state |0) which satisfies as ay, |0) = 0:
1,... k) = al ...a} |0). (3.3)
The free Hamiltonian H, can be written as:

H() = Zwkaiak . (3.4)
k

The interaction term is a polynomial of the field ¢ expressed as a linear combination of
the operators

L
Vn:/ s da, (3.5)
0

and for our purposes, we limit ourselves to n < 4. In appendix A, all these terms are explicitly

written in terms of the creation/annihilation operators (3.1).

,10,



The most general Hamiltonian we construct is therefore
H=Hy+ig1V1+gVa2+igsVi+gVat..., (3.6)

where g, € R, and the ... indicate finite volume corrections discussed later. The choice of
purely imaginary couplings in front of odd powers of ¢ and purely real couplings in front
of the even powers of ¢ ensures the PT symmetry of the Hamiltonian in (3.6), since PT
acts as ¢ - —p and i — —1.

The key idea of the truncation approach is to construct the Fock space up to a certain
energy cutoff A in terms of the eigenvalue of the free field Hamiltonian Hy. This corresponds
to splitting the Hilbert space (the Fock space) into a low-energy and a high-energy sector:

H="H;DH, (3.7)

and only generate the states in the low-energy sector H;, defined as:
n
ki,... ky) €H, > wy, <AL (3.8)
i=1

In particular, this automatically implies that we only have to consider only a finite number
of momentum modes which satisfy

472n?

7 = k2 <A?—m?, (3.9)

and so we can identify a maximum ky,yx and/or a maximum momentum quantum number
Nmax. Since we perform our calculations in the zero-momentum subspace, the value of kpax
resp. Nmax can be taken as half the value required by (3.9), since the lowest energy level
with zero total momentum and non-zero occupation number for momentum k. corresponds
to the state |—kmax, Fmax)-

In the following calculations, we define our Hilbert space by fixing nmax, which has the
advantage that the dimensionality of the space does not grow with the volume L. However,
note that this implies that the energy cutoff A decreases when the volume increases. As we
explain later, to locate critical points and determine the conformal dimensions of primary
fields, we need the large-L behaviour of the lowest-lying energy levels. Therefore, the idea
is to maximize precision via the number of states retained after truncation in the case of
large volumes. We then choose our cutoff for lower volumes so that the dimension of the
truncated space is approximately the same for all volumes. In our following calculations, we
use nmax = 10, corresponding to retaining thousands of states when mL = 10. The matrix
elements of the Hamiltonian (3.6) can be obtained utilising the algebra of annihilation and
creation operators, from which the energy levels are extracted by numerical diagonalisation.
The generation of the Fock space and the numerical evaluation of the matrix elements is
conceptually very easy; in appendix B we briefly describe our implementation. The interested
reader is referred to [44] and [45] for further detailed discussion of the truncation approach.

Since the Hamiltonian (3.6) is not Hermitian, its spectrum can be complex in principle.
Nevertheless, the spectrum is real in the case of unbroken PT' symmetry. However, truncation
effects alter the spectrum and eigenvectors, so the truncation procedure is not guaranteed
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to keep the spectrum real in the PT unbroken phase. Nevertheless, it turns out that the
truncation procedure is safe: for reasonable cutoff values, the low-lying energy levels turn
out to be real in the unbroken phase, and only become complex when PT symmetry is
spontaneously broken. More details on the truncation procedure are given in appendix B.

Finite volume corrections. When writing the Hamiltonian (3.6), we have not accounted
for the mismatch between infinite volume and finite volume normal ordering. It is easy to
compute the effect of normal ordering both in infinite and finite volume:

c@?i=? — 7, c? =t — 71, (3.10)
where .

Z = Zp = . 3.11
/47r k2 VE2Z +m2’ L Zn: 2Lwy,, (3:11)

Although both Z and Zp, are ultraviolet divergent, their difference is finite [45]:

1 [ dz Ny e -1

L)=Z-Z=~| ——m—(e¥™Er 1) | 3.12
A =z-2=— " = (e ) (3.12)

This implies that due to the presence of g2V in the Hamiltonian (3.6), in finite volume
there is an additional term

goLz(L)1. (3.13)
Similarly, the free Hamiltonian contributes with a constant vacuum energy shift [45]

dz VP _ )7
= m 1 . 3.14
7L / Vm?L? + 22 (e ) (3:14)

Similar contributions appear for the interaction terms. For the cubic potential V3:
L p® = ° —3Z0p, 9% i= 9" =371, (3.15)
leading to
cpd =P = —3(Z - Z1)p = 32(L)p. (3.16)
For the quartic term, the finite size correction is [45]:
st — ot p=62(L) : ©® i +32(L)2. (3.17)

Putting everything together, we have that the Hamiltonian (3.6) must be corrected by the
additive terms

(EO(L) + goL2(L) + 3g4Lz(L)2) 1+ 3igs2(L)V1 + 6g42(L) V5. (3.18)

Besides finite volume effects, another general issue of Hamiltonian truncation is dependence on
the cutoff, which can be improved using renormalisation group methods [45, 56, 57]; however,
this turns out to be unneeded for our purposes here and so we do not go into further detail.
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Critical points and conformal dimensions. The vicinity of a critical point can be
identified from the finite volume spectrum by searching for a point in the parameter space
where the ground state meets the first excited state. However, at the eventual critical point,
the two levels should approach each other for L — oo. This requires a fine-tuning of the
coupling; however, due to the presence of truncation, the critical point can only be located
approximately by pushing the point in which the ground state meets the first excited state
to as large a volume as possible; details of this procedure are provided in [58] and in [9].
Then at sufficiently large values of L we expect to obtain the energy spectrum of the infrared
fixed point CFT, which has the form

2m ir ir cir
By & <2A +2n 12) + FL, (3.19)

where ir stands for infrared and F is the bulk energy term. Therefore, we consider
the quantities
E;, — E ~ - .

Ci= L= = ~ AT — AR, 40, (3.20)
as a function of the volume, which must approach constant values characteristic of the
infrared CFT.

The inevitable deviation from the critical prediction can be accounted for using an
effective field theory (EFT) constructed out of the least irrelevant deformations of the
expected infrared CFT fixed point [16, 58]; however, this turned out to be unnecessary in

our present investigations.

3.2 Testing the implementation
3.2.1 Quadratic perturbation

The first non-trivial test for the Hamiltonian truncation implemented as described in the
previous section is provided by including a purely quadratic interaction:

Hjy; = Ho+ g2V + (Eo(L) + g2L2(L)) 1, (3.21)
leading to a free theory with mass
M? =m? 4 2g5, (3.22)

where m is the mass of the unperturbed theory described by Hy. We can compare the
energies resulting from the Hamiltonian truncation applied to (3.21) to the energies of the
free theory with mass M. For a full comparison, it is necessary to include a ground-state
energy shift. In fact, the expected ground-state energy is

_ _ 1 2 M2 2

where Eg(L, M) is given in equation (3.14), which can be computed using a Bogoliubov
transformation [45]. We present results for the parameters m = 1, M = /2, g = 1/2 in
figure 2, where we plot the ground state at different values of the volumes compared to
the analytical prediction in (3.23), as well as the energies of a few excited states. Clearly,
truncation errors increase with volume L. To better gauge the quality of the approximation,
we include a numerical comparison L = 1 and L = 5 in table 1.
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(a) Ground state energy. (b) Excited state energies.

Figure 2. (a) The ground state energy computed with Hamiltonian truncation (red dots) at different
volumes compared to the analytical expression (dashed line). (b) Excited state energy levels from
Hamiltonian truncation (red dots) compared to exact results (dashed line).

Volume | Energy level | Hamiltonian Truncation Exact
1 Ey -0.16959. .. -0.16961. ..
Ey 1.24462. .. 1.24460. . .
Ey 2.65883. .. 2.65882. ..
Es 4.07304. .. 4.07303. ..
Ey 5.48726. .. 5.48724. ..
I Ey -0.07647. .. -0.07704. ..
Ey 1.33792. .. 1.33717. ..
Es 2.75215. .. 2.75139...
Es 3.70771... 3.70668. . .
Ey 4.16662. . . 4.16560. . .

Table 1. Numerical comparison of the energy levels obtained from the Hamiltonian truncation to the
exact values.

3.2.2 The Ising transition and Chang duality

The Ginzburg-Landau Lagrangian corresponding to the Ising fixed point is given by
1
L= 5(c‘9<p)2 + At (3.24)

The existence of an Ising fixed point was verified using Hamiltonian truncation in [45, 46].
We revisit this case to test our numerical implementation of the Hamiltonian truncation.
We implemented the Hamiltonian

Hy=Hy+ (92 +6942(L))Va + g4Vy + (Eo(L) + g2 Lz(L) + 3g4L2(L)*)1. (3.25)

Since the only effect of go is to shift the mass, we can choose go = 0, so a single coupling
parameterises the scaling region. It is known that a direct search for the critical point is
hard to perform directly [45, 46]. Therefore, we make use of the Chang duality of the ¢*
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theory in two dimensions, which is a weak-strong duality of the theory allowing us to check
the presence of the Ising fixed point for weak coupling; the price to pay is the appearance
of a negative mass for the field ¢.

Chang duality. As proposed in [59] and numerically verified by Hamiltonian truncation
n [46], the following two Lagrangians

1 1
L= 5(a<p)2 + §m2<p2 + g9t (3.26)
and 1 1
L= 5(8<p)2 - 1M2<,02 + gt + Ay (3.27)
are physically equivalent provided
1 o5 6g m? 1.5
- “log — = —-M 2
5™ —1-47r 8 372 M (3.28)
and ) ) )
1 m m 39 m
A= —(M?*—m?)+ —log — log? — . 3.29
g (M7 —m®) + golog 3 + o5 108" 3 (3:29)
Here : ... :, and : ... :j; indicate the normal ordering with respect to mass m and mass

M, respectively. The proof can be found in [59] and reviewed in detail in [46], presenting a
detailed numerical check of the duality itself. As a result, for some value of g and a negative
value of the squared mass, there is a critical point corresponding to the Ising universality
class, i.e. ruled by the minimal model M(3,4).

Since the Ising model is characterized by three Virasoro primaries o, € and 1 of conformal

weights (%6, % , %, %) and (0,0), we expect to have the following values for the C; defined
in (3.20) for the first three excited energy levels:
1
o: C) = Tt (3.30)
1
e: Cy= 3 (3.31)
— 17
L L jo: C3= 6 (3.32)
We found that the critical point is located at
go ~ —0.79, gs ~ 0.3, , (3.33)

where we used units in which m = 1.

Figure 3 shows the energy levels resulting from Hamiltonian truncation close to the
critical point (figure 3(a)), while the corresponding C; are shown in figure 3(b). It is clear that
the Hamiltonian truncation results are compatible with the expectation from the Ising model.

To our knowledge, the Ising fixed point in the Chang dual description (3.27) has never been
directly tested before. However, the existence of critical point in the m? > 0 region (3.26)
was tested with different methods [45, 60-64]. The critical values of the coupling was
determined by various method (see table 1 of [45]): the best value was obtained using
RG-improved Hamiltonian method as g4/m? ~ 2.97. Using Chang duality, this predicts a
critical point for the Chang dual description (3.27) at g4/M? ~ 0.26 [46]. The value we
found is g4/M? ~ 0.258 which is in excellent agreement with the expected value. We note
that a more precise analysis would be required to examine the cutoff dependence of the
critical coupling. We leave this to further studies since our aim here is restricted to verifying

the correctness of our implementation.
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(a) Energy levels close to the critical point. (b) Determining the conformal spectrum.

Figure 3. (a) Energy levels close to the critical point from Hamiltonian truncation. (b) differences
between conformal dimensions defined in (3.20) near the fixed point compared to the prediction from
the minimal model M (3,4), i.e. the Ising fixed point.

4 Scaling region of the i3 theory

4.1 General considerations

The i@ theory is the Ginzburg-Landau description of the Yang-Lee fixed point [6, 15], and it
corresponds to the n = 1 case of the family (1.9). The upper critical dimension of the potential
¢ is 6, and the critical exponents be studied using e-expansion in d = 6 — ¢ [6, 65, 66]. While
d =2 (i.e. € = 4) is outside of the range of validity of the e-expansion itself, resummation
techniques give a reasonable agreement with the CFT results for d = 2 (i.e. € = 4) using [67].
This approach also proves successful for the supersymmetric extension M(3,8) [7].

Our approach, based on Hamiltonian truncation, does not rely on the e-expansion and
works directly in d = 2 by implementing the theory in a finite volume L with the Hamiltonian

H=Hy+i(g91+3932(L)) V1+ g2V +ig3V3 + (Eo(L) + g2Lz(L)) 1, (4.1)

as discussed in the previous section. The explicit PT symmetry or this Hamiltonian can
be either realised by the eigenstates leading to a real spectrum is real, or spontaneously
broken, in which case complex conjugate pairs of energies appear in the spectrum. These
two cases are shown in figures 4(a) and 4(b), respectively.

The two phases are expected to be separated by a critical point controlled by the minimal
model M(2,5). In principle, the relevant parameter space is one-dimensional. Once the
quadratic coupling go is eliminated by a suitable shift of the field ¢, the scaling region is
expected to be parameterised by a single relevant coupling. However, when searching for a
critical point, it is best to consider both couplings g; and g3 due to quantum effects that
result in operator mixing.

4.2 The fixed point: Yang-Lee theory

The fixed point can be found by finding the line in the space of (g1, g3) where the ground
state and the first excited state degenerate into a complex conjugate pair. This results in a
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(a) PT symmetric phase. (b) PT symmetry breaking phase.

Figure 4. (a) Spectrum of the theory described by the Hamiltonian in (4.1) in the PT symmetric
phase (g1 ~ —0.3, go =0, g3 ~ 0.3) the spectrum is real. (b) The spectrum of the theory described
by the Hamiltonian in (4.1) in the spontaneously broken PT phase (g1 ~ —0.45, go = 0, g3 ~ 0.3),
where complex conjugate pairs of energies appear. Solid lines correspond to the real, while dashed
ones display the imaginary parts. In both cases, units are specified by setting m = 1.

line, along which further tuning must be made to push the meeting point to a large enough
volume (in our case mL > 10) to extract the asymptotic large volume behaviour of the
energies, or more precisely, the C; coefficients defined in (3.20).

This procedure resulted in the following estimate of the critical point:

g1 ~ —0.405, g2 =0, g3~ 0.4, (initial mass : m =1). (4.2)

The finite volume at this point is shown (up to volume mZL = 10) in figure 5(a), while the C;s
computed from the spectrum are compared to the predictions ofthe minimal model M(2,5)
In figure 5(b). This CFT has a single Virasoro primary field (beyond the identity), whose
conformal weights are (—%, —%), leading to the predictions:

1 1
1: =0—-(—=) ==
Ci=0 <5> 3

_ 1 1
L 1L q1¢: Co= —5 +1-— <—5) =1. (43)

The prediction for C agrees well with the TCSA results of figure 5(b). However, the
result for Cy seems to deviate significantly from the predicted value. This is due to an
artefact of the truncation, which results in the second and the third excited states becoming
a complex conjugate pair close to the Yang-Lee critical point. The two levels split into two
real energy levels only at a very high cutoff. We refer the interested reader to appendix B
of [9] for a description of the phenomena and also for a comparison.

As expected, the fixed point separating between the PT symmetric phase and the
spontaneously broken PT phase is in the Yang-Lee universality class, confirming that i¢? is
the correct Ginzburg-Landau description for the Yang-Lee fixed point. The correspondence
between the primary fields of the Yang-Lee model and the fields of the Ginzburg-Landau
description are given in table 2.
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(a) Lowest energy levels at the critical point. (b) Determining the conformal spectrum.

Figure 5. (a) Spectrum of the theory described by the Hamiltonian in (4.1) near the fixed point.
The spectrum is real in the presented volume range. (b) Differences between conformal dimensions
defined in (3.20) near the fixed point compared to the M(2,5) prediction.

Primary = Weights  GL field PT
1 (0,0) 1 even
o (1/5-1/5) o odd

Table 2. Primary fields in the Lee-Yang CFT M(2,5) with their conformal weights, identification in
the Ginzburg-Landau description and parity under PT symmetry.

It is possible to improve the present results by applying an effective field theory (EFT)
description to match the EFT, constructed by deforming the Yang-Lee fixed point by irrelevant
operators [16, 58]. However, to have reliable results on the Wilson coefficients of the EFT,
it is necessary to improve and optimise the Hamiltonian truncation implemented in this
work further, which is left for future studies.

5 Scaling region of the ¢?(ip)? theory

5.1 A first look at the spectrum

Turning now to the n = 2 case of (1.9), the corresponding finite volume Hamiltonian is

H = Hy+i(g1 +3932(L))V1+ (92 + 6942(L)) Vo +igsV3 + g4V 4+
+ (Bo(L) + goL2(L) + 3gaLz(L)?) 1, (5.1)

with ¢g; € R.

Similarly to the i3 case discussed in section 4, we expect phases with unbroken and
spontaneously broken PT symmetry, separated by a critical line in the universality class
of the Yang-Lee model. According to the main proposal of this paper, the critical line is
expected to end in the tricritical version of Yang-Lee singularity, which was found to be
the minimal model M(2,7) [10]. Moreover, in analogy with [10], we expect non-critical PT
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(a) PT symmetric phase. (b) PT symmetry breaking phase.

Figure 6. (a) Spectrum of the theory described by the Hamiltonian in (5.1) in the PT symmetric
phase (g1 ~ —0.1, go ~ —0.4, g3 = 0, g4 ~ 0.3 where the initial mass is m = 1): the spectrum is real.
(b) Spectrum of the theory described by the Hamiltonian in (4.1) in the spontaneously broken PT
phase (g1 ~ —0.1, go ~ —0.52, g5 = 0, g4 ~ 0.3 where the initial mass is m = 1): in the spectrum
complex conjugate pairs of energies appear, the real parts are denoted by solid and the imaginary
parts with dashed lines.

symmetry breaking beyond the critical line’s tricritical Yang-Lee endpoint. Figure 6 presents
examples of the spectrum in the two phases.

In contrast to the i@? case, the ¢?(ip)? case has not been studied with e-expansion. In
principle, this requires an expansion for d = 4 — €, extending the classical work of Wilson
and Fisher [4] to the non-Hermitian case. However, this is a rather non-trivial task since the
non-Hermitian theory requires drastically different quantization conditions for the scalar field
are different, as discussed in section 2.3. Additionally, getting to € = 2 requires reaching a
sufficiently high order in the expansion to make a sufficiently accurate resummation possible.
As a result, the Hamiltonian truncation approach used here is much more efficient, and
it is possible to establish the existence and the class of universality of the critical points
as we proceed to demonstrate.

Generalising the ¢3 case where a single coupling parameterised the scaling region, the
scaling region of ?(ip)? is spanned by two couplings. However, to reduce the problem to
two independent couplings requires a shift in the field ¢, which is nontrivial to parameterise
since the appropriate shift depends on the couplings and the operators’ mixing plays a
crucial role. Therefore it is hard to construct explicit phase diagrams in a two-dimensional
space. Nonetheless, the scaling region is expected to be analogous to figure 2 of [10], and
we present in figure 7 a cartoon illustrating the expected scaling region in the space of the
two independent couplings.

5.2 The Yang-Lee critical line

It is eventually rather easy to hit the line of Yang-Lee critical points by looking for the
critical point separating the PT symmetric phase from the spontaneously broken PT phase.
Alternatively, one can start from the case g4 = 0 and (4.2), then by varying g4 and accordingly
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Figure 7. A cartoon of the scaling region in the physical couplings §; and go (where the tilde refers
to the couplings obtained after a proper shift the field ¢ that eliminates the coupling in front 3 for a
suitably fixed value of g4). The red line is the line of critical points of the Yang-Lee type (an example
of which is shown in figure 8), which ends in a tricritical version of the Yang-Lee singularity (shown in
figure 9). The dashed line corresponds to non-critical PT breaking (an example of which is shown in
figure 10).
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(a) Energy levels near a critical fixed point. (b) Determining the conformal spectrum.

Figure 8. (a) Spectrum of the theory described by the Hamiltonian in (5.1) near a critical fixed point.
(b) Differences between conformal dimensions defined in (3.20) near the same fixed point compared to
the M(2,5) prediction.

adjusting the other couplings, one can find the critical line. The predictions for the conformal
spectrum are provided in equations (4.3).

The analysis of the spectrum of low-lying levels is presented in figure 8, where the actual
point on the critical line corresponds to the couplings

g1 ~ —0.1, go ~ —0.48, g3 =0, gs ~ 0.3 (initial mass : m =1).
(5.2)
The truncation approach’s numerical results clearly match the minimal model’s conformal
spectrum M (2,5).

5.3 The endpoint: tricritical version of Yang-Lee singularity

Once a point on the critical line is found, it can be followed by tuning the couplings to find
its boundary where a new critical point of a different class of universality must appear, which
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(a) Energy levels near the tricritical fixed point. (b) Determining the conformal spectrum.

Figure 9. (a) Spectrum of the theory described by the Hamiltonian in (5.1) near the non-unitary
tricritical fixed point. (b) Differences between conformal dimensions defined in (3.20) near the non-
unitary tricritical fixed point compared to the M(2,7) prediction.

is expected to correspond to the minimal model M(2,7). Performing this procedure leads
to the following estimate for the position of the endpoint of the critical line:

g1 ~—0.115, go~ —0.528, g3=-024, gs~0.29, (5.3)

where we use units in which m = 1.

It may seem surprising that the critical point is at a positive value of the quartic coupling
g4. However, since the other couplings are nonzero, to determine the effective quartic coupling,
one must apply the generalisation of Fisher’s argument from subsection 2.1. Even though
the couplings in the Lagrangian (2.7) and the one in (5.3) are not on the same footing since
the Lagrangian couplings are bare (classical), while the couplings computed numerically
are the renormalised ones, one can nevertheless insert the values (5.3) into the argument
of subsection 2.1 to estimate ~4 in (2.7). First, we extract g from the numerical value of
the critical couplings (5.3) obtaining® g ~ —0.3. Using the relation v4 = —15¢3 + g4 gives
~v4 ~ —1.15. This is consistent with the fact that the universality class of this fixed point
is different from the critical Ising (which corresponds to a positive quartic coupling), and
it also confirms that the fixed point corresponds to a PT invariant theory as discussed in
subsection 2.3, with the negative sign accounting for its non-unitarity. We also comment
that the positive quartic coupling in (5.3) is important to keep the truncated Hamiltonian
spectrum stable; the presence of the imaginary linear and cubic term can be interpreted
as the manifestation of the nontrivial PT-symmetric quantisation condition known from
the quantum mechanical studies.

To identify the fixed point, recall that the minimal model M(2,7) has three primary
fields: the identity 1 of weights (0,0), and two nontrivial fields ¢; and ¢2 whose conformal

20ne must discard possible complex solution since it was assumed that ¢ is a real number.
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Primary ~ Weights  GL field PT
1 (0,0) 1 even
b (12T ¢ odd
02 (-3/7-3/7)  :¢%:  even

Table 3. Primary fields in the Lee Yang model M(2,7), listing their conformal weights, their identifi-
cation in the Ginzburg-Landau description and their transformation property under PT symmetry.

weights are (—%, —%) and (—%, —%) Therefore we expect to find

ni a=-2-(-3)=1, (5.4)
1: Cy=0- <§> % (5.5)
LT 1éo: Cy— —% 41— (—3) ~1. (5.6)

Those predictions can be compared with numerical results obtained from the Hamiltonian
truncation at the point (5.3). In figure 9, we compare these predictions with the numerical
values resulting from the Hamiltonian truncation. The resulting match confirms the presence
of a critical point in the universality class of the minimal model M(2,7).

The identification between the primary fields of M(2,7) and the Ginzburg-Landau
fields can be fixed using their transformation properties under the PT symmetry and is
presented in table 3.

5.4 Non-critical PT breaking

As pointed out in [10], the absence of an order parameter for the PT symmetry breaking
opens the possibility for a non-critical symmetry breaking [10]. The possible options for the
phenomenology of PT symmetry breaking are the following;:

* The ground state meets the first excited state, forming a complex conjugate pair, which
is just the critical PT breaking scenario.

* The second possibility is that the ground state simultaneously meets the first and
second excited states, which happens at the tricritical point. Note that, in principle,
it is possible to have more lines meeting simultaneously with the ground state, which
corresponds to higher multicritical points, but the ¢?(i¢)? model does not have enough
tunable parameters to tune to reach a tetracritical point.>

* The last possibility is that the first excited state meets the second excited state forming
a complex conjugate pair before meeting the ground state. Since PT is spontaneously
broken without closing the gap, this corresponds to a non-critical transition.

Indeed, continuing beyond the endpoint of the critical line, we find a non-critical transition
separating the PT symmetric and symmetry-breaking regimes. An example of such a

3To reach such a tetracritical point it is necessary to add a term of the form ?(ip)® in accordance with
the proposal (1.9).
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Figure 10. An example of a point in the parameter space (g1 ~ —0.13, go ~ —0.54, g3 = —0.25,
g4 ~ 0.2 where the initial mass is m = 1) in which PT symmetry is broken non-critically.

transition point in the scaling region defined by the Hamiltonian (5.1) is shown in figure 10.
It is an interesting open problem to understand this phenomenon that recently appeared
in other models as well [32, 33].

6 Conclusions and outlook

In this work, we proposed a Ginzburg-Landau description for the non-unitary sequence of
minimal models M(2,2n + 3). The corresponding GL Lagrangians are the field-theoretic
generalisations of the PT symmetric quantum mechanical Hamiltonians proposed originally
in [11], which have real spectra despite their non-Hermitian nature.

According to our proposal, the Ginzburg-Landau description for the minimal model
M(2,2n+3) is a single-scalar boson Lagrangian where potential has the leading term ¢?(ip)™.
We supported our conjecture by adopting Fisher’s construction for the Yang-Lee model [6]
and using information from integrable off-critical deformations, plus known facts related
to PT symmetry.

We also performed a numerical analysis based on Hamiltonian truncation for the simplest
cases n = 1 and n = 2, which correspond to the minimal models M(2,5) and M(2,7).
After testing the implementation, which included a non-trivial identification of the Ising
fixed point in the Chang dual channel, we located the critical points with the appropriate
universality classes in the i¢@® and ¢?(ip)? theories, confirming their nature by a numerical
analysis of their spectra.

Note that PT symmetry was central to our discussion. In fact, the critical points
we found always separate a PT symmetric phase from a spontaneously broken PT phase.
Furthermore, we provided numerical evidence for non-critical PT breaking in the scaling
region of ¢?(ip)? theory. Interestingly the same type of phenomenology emerges in other
two-dimensional models [9, 32, 33|, which makes it interesting to understand the underlying
physics in more detail.
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In fact, PT symmetric models have been proposed to describe actual physical phenom-
ena [68], and experimental measurements of the Yang-Lee zeros were also proposed [69-72].

As we discussed, the theories described by Lagrangians of the form of equation (1.9)
require specific quantisation conditions [11], which restrict the usefulness of mean-field
approaches and e-expansions, in contrast to the unitary case. A notable exception is the iy?
case, where the quantisation conditions of the theory coincide with the usual ones, and indeed
our results are in perfect agreement with e-expansions. On the contrary, in the p?(ip)? case,
where the quantisation conditions are expected to differ from the usual, we can still establish
the existence of critical points to which the usual e-expansion is completely blind.

To avoid the problem of the quantisation condition, an expansion of the potential (?(ip)™
in n was proposed in [22, 25, 27]. It would be interesting to understand if there is a way to
modify the usual procedure of the e-expansion to recover the critical behaviour found here.

The Yang-Lee universality class was also extended to higher dimensions, and similar
attempts were made in the case of the universality class of the minimal model M(3,8) [7, 73].
A natural question is whether the multi-critical Yang-Lee universality classes, described
by the minimal models M(2,2n + 3) (for n > 1) in two dimensions, can be extended to
higher dimensions.

Another interesting direction is to generalise the numerical approach of this paper to
the case of multi-field Hamiltonians, which is in principle, possible. This is interesting in
the light of related results [7, 74], and may also lead to new Ginzburg-Landau theories for
other non-unitary minimal models.

An open question is to find a proper generalisation of Zamolodchikov’s OPE-based
argument for the Ginzburg-Landau descriptions of unitary minimal models [5] to the case
of non-unitary models, which is not clear at this time, despite an attempt given in ap-
pendix A of [9].

Acknowledgments

It is a pleasure to thank D. Szasz-Schagrin for very useful discussions. AM have benefited
from the German Research Foundation DFG under Germany’s Excellence Strategy — EXC
2121 Quantum Universe — 390833306. GM acknowledges the grants PNRR MUR Project
PE0000023- NQSTI and PRO3 Quantum Pathfinder. GT was partially supported by the
Ministry of Culture and Innovation and the National Research, Development and Innovation
Office (NKFIH) through the OTKA Grant K 138606 and also under Grant Nr. TKP2021-
NVA-02. This collaboration was partly supported by the CNR/MTA Italy-Hungary 2023-2025
Joint Project “Effects of strong correlations in interacting many-body systems and quantum
circuits”. ML was partially supported by the Ministry of Culture and Innovation and the
National Research, Development and Innovation Office (NKFIH) through the OTKA Grant
K 134946 and the New National Excellence Program under the Grant Nr. UNKP-23-5-BME-
456. ML was also supported by the Bolyai Janos Research Scholarship of the Hungarian
Academy of Sciences.

— 24 —



A Explicit interaction terms for Hamiltonian truncation

To implement the Hamiltonian truncation, it is necessary to write explicit expressions for
the terms in the potential in terms of the annihilation and creation operators of the field ¢,
given in equation (3.1). Since we are interested in powers of the field ¢ up to ¢*, we write
below explicitly the terms that define the Hamiltonian in (3.6).

L L i
V1:/0 <pdx_zk:,/2%(ak+ak), (A1)
L
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B Implementation of the Hamiltonian truncation

Here, we give some details on the implementation with suggestions for its optimisation.

Basis generation. The first step is to generate the basis of the truncated Fock space of the
free massive theory. We first generate all the possible single-particle states below the chosen
energy cutoff and then construct all the combinations of those single-particle states with
only positive momenta, which satisfy the energy cutoff, providing a basis for right-movers;
left movers can be obtained by flipping all particle momenta negative. Then we construct a
zero-momentum subspace by taking all possible combinations of the right-mover states below
the imposed energy cutoff. Finally, the full basis is constructed by adding zero momentum
particles so that the resulting states stay below the energy cutoff.

Matrix element computation. Due to the creation/annihilation operators’ action, the
interaction terms V,, matrices are very sparse. The generation of the matrix elements can be
optimised by running over all the states in a single loop and determining the list of vectors in
the truncated basis produced from each basis vector by the action of V,,. Then we compute
the matrix element with the initial basis vector for each such vector, thereby obtaining the
matrix elements in a form suitable for sparse matrix storage.
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Eo 1.15627
E 4.10923
E, | 6.08481 + 2409.48i
E5 | 6.08481 — 2409.48i

100 states

Ey 1.15627
5000 states B, 410993
Es5 7.56227

Es | 11.3144 + 107195

Table 4. Lower energy levels of the quantum mechanical model described by the Hamiltonian (B.1)
for different cutoffs. The imaginary part is omitted when it is of order O(10711).

Hamiltonian construction. note that the generation of the truncated basis and the matrix
elements of the interaction operators V,, must be run only once for each volume value since
these data are independent of the coupling. Therefore, the eventual Hamiltonian can be
computed by a linear combination of these matrices weighted with the desired values of
the couplings.

Non-hermiticity, PT symmetry and stability of truncation. For the PT symmetric
non-Hermitian Hamiltonians considered in this paper, the reality of the spectrum is guaranteed
in PT symmetric phase. However, Hamiltonian truncation generally spoils the reality of the
spectrum. Indeed, preliminary studies of the quantum mechanical Hamiltonian

H =p* +i2? (B.1)

using a simple Hamiltonian truncation explained in chapter 25 of [1], show that while the
first few eigenvalues are real, to extend the reality of the spectrum for higher eigenstates
requires a relatively high energy cutoff and, therefore, a large number of states. To show this,
we implemented the Hamiltonian truncation keeping 100 states and 5000 states (the latter
is the order of magnitude of the number of states used in the field theoretical counterpart
implemented in this paper), and we only show the first four energy levels (see table 4).
Note that the third and fourth states are complex when the number of states is 100 but
become real when the cutoff increases.

Fortunately, it turns out that the field-theoretic version does not suffer additional
problems. We tested that the reality of the spectrum is stable under the truncation by
explicitly computing the imaginary part of the energies. We give the relative imaginary
parts of the energies, i.e.

SE; = ,
B

(B.2)

in table 5 for the choice of the couplings of figure 4(a) and figure 6(a), where the exact
spectrum is expected to be real. Since §F; depends on the volume, we give its maximum
value for the volume range considered. It is clear that the reality of the spectrum holds
with a very high numerical precision.
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5 6Ep | 3-1071

SEy | 1-10710

0Ey | —2-10710
5Ey | 6-10714

2( 2

¥ (ZSO) 5E1 9. 10715

SEy | 1-10714

Table 5. Imaginary part of the energy divided by its absolute value for PT unbroken phases of the @3
and ¢?(i¢)? GL models. The choice of the couplings is the same as in figures 4(a) and 6(a), respectively.
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