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Indices o, 3 are flat spacetime ranging from O to d.
Indices 1, j are space indices ranging from 1 to d.
Indices a, b are internal.

Trivial de Rham cohomology is always assumed, meaning all
closed differential forms are exact, dax =0 < « = df3.

By “group” we always mean a Lie group, unless explicitly said
otherwise. By the same token, a “finite group” means a Lie
group of finite dimension, not a group with a finite number
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concepts explained in the text can freely skip these.






PUBLICATIONS

Ideas and figures of this thesis have appeared previously in the
following publications:

* Bernardo Finelli. “Inequivalent Goldstone hierarchies for spon-
taneously broken spacetime symmetries.” In: Journal of High
Energy Physics 2020.75 (March 2020). arXiv: 1909.11077, p. 25.
ISSN: 1475-7516. DOI: https:/ /doi.org/10.1007/JHEP03(2020)075.
URL: https://arxiv.org/abs/1909.11077

— Section 4.3 of Chapter 4, Chapter 5 and Chapter 7 are
based on this article.

* Bernardo Finelli, Garrett Goon, Enrico Pajer and Luca San-
toni. “The Effective Theory of Shift-Symmetric Cosmologies.”
In: Journal of Cosmology and Astroparticle Physics 2018.05 (May
2018). arXiv: 1802.01580, p. 060. ISSN: 1475-7516. DOL: 10.1088/ 1475-
7516/2018/05/060. URL: https://arxiv.org/abs/1802.01580

— Chapter 6 is based on this article.

* Bernardo Finelli, Garrett Goon, Enrico Pajer and Luca Santoni.
“Soft Theorems for Shift-Symmetric Cosmologies.” In: Physical
Review D g97.06 (March 2018). arXiv: 1711.03737, p. 3531. ISSN:
2470-0029. DOL: 10.1103/physrevd.97.063531. URL: https://
arxiv.org/abs/1711.03737

— Chapter 6, predominantly Section 6.4, is based on this
article.

xi


https://doi.org/10.1007/JHEP03(2020)075
https://arxiv.org/abs/1909.11077
http://dx.doi.org/10.1088/1475-7516/2018/05/060
http://dx.doi.org/10.1088/1475-7516/2018/05/060
https://arxiv.org/abs/1802.01580
http://dx.doi.org/10.1103/PhysRevD.97.063531
https://arxiv.org/abs/1711.03737
https://arxiv.org/abs/1711.03737




Part 1

PRELIMINARIES






PREFACE

1.1 INTRODUCTION

Mathematics is famously successful at describing the physical laws
that govern nature. This is somewhat surprising, for not everything
in the universe can be encoded in math—love, art and the repro-
ductive behavior of the anglerfish being some of many examples.
It seems almost random that physics can.

Much has been written on the subject, but one of the reasons at
the heart of this is symmetry, the idea two things that look nothing
alike are actually intrinsically linked to each other. Physical symme-
tries link different states of the universe, and as such the universe’s
evolution must preserve this link. In other words, symmetries ren-
der physical laws structured. And mathematics is nothing but the
study of structure.

It’s thus no wonder that the more symmetrical a system is, the
simpler its study is. Indeed, all fundamental theories we have
discovered so far—general relativity and the Standard Model of
particle physics—are inexorably built from the underlying symme-
tries of physics.

And yet, symmetry renders things incredibly boring. The laws
of physics treat all moments of time and locations in space the
same—therefore the universe should look the same everywhere at
all times? No, of course not. That would be a rather uninteresting
universe! We need symmetries to make physics orderly, but too
much order prevents any kind of complexity.

Spontaneous symmetry breaking is how nature gets to eat its
cake and have it too: it keeps the order and simplicity of the
laws of physics, while allowing our system to dynamically evolve
from a symmetric configuration to an asymmetric one. It's an
essential feature of our universe, connecting a myriad of disparate
phenomenon such as the formation of ice crystals [1], the mass
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Figure 1.1: Left: Some consider Euler’s identity the most beautiful equa-
tion in math. Right: The anglerfish isn’t math, but it’s not any
less beautiful. (photo by D. Shale [6])

o4 =0

of electrons [2, 3], the expansion of the universe [4], and cancer
metastasis [5].

1.2 SYMMETRY BREAKING AND EFFECTIVE THEORIES

The phenomenon of spontaneous symmetry breaking in physics
occurs whenever the dynamic laws of a system display invariance
under a certain transformation, yet the system’s ground state (state
of lowest energy) does not. Classically, this means the action S is
invariant, but the ground state solution to our fields ) isn’t:

8S =0 but & #0, (1.1)

where & denotes the infinitesimal variation. The statement is
similar quantum mechanically. Instead of a background solution
P, we have a vacuum state |0), which can be acted upon by the
symmetry generator Q. Then:

52 = 0 but Q|0) # 0, (1.2)

where Z = [ Dpe'V is the path integral. Of course, not all sym-
metries have to be broken; typically there will still be some left for
which 6 = 0.

In view of this, broken symmetry is somewhat of a misnomer.
The laws of physics are still invariant, just the vacuum that isn’t.
At the perturbative level—where the system is described as fluctu-
ations on top of the background—the broken symmetry manifests
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itself in a deeper, less obvious manner. We will discuss this later.
Right now, the most important thing to remember is that, if the
perturbative degrees of freedom are ¢ = 1 —1, then ¢ behaves
differently under the symmetry depending on whether { = 0 or
P # 0. Breaking the symmetry changes the nature of these degrees
of freedom, that is to say, they describe different objects. Further-
more, even if all old objects were massive, some of these new objects
might be massless. They are called Nambu-Goldstone particles, or
just Goldstones for short. Under usual circumstances, there is one
massless Goldstone for each broken symmetry.

Now, this is all very well and good, but the reason why sponta-
neous symmetry breaking is of such importance in physics is due
to its role as an organizational principle for effective field theo-
ries (EFTs). The nature of the degrees of freedom that describe a
system’s dynamics never remain unscathed under renormalization
flow, that is to say, the very particles of the field theory itself change
at different scales.

The basic example is quantum chromodynamics (QCD). In the
deep UV, the theory is perturbative and we can happily work with
the fundamental quarks. As we move towards the IR, the coupling
becomes stronger and stronger until it eventually blows up—the
famous Landau pole. Obviously, this doesn’t mean physics literally
ceases to exist at that point, merely that the theory is no longer
perturbative. At the same time, this can be taken to suggest that,
for most intents and purposes, it flat out doesn’t make sense to talk
about quarks at length scales larger than a nucleon.

Indeed, the "good" degrees of freedom at nuclear scales aren’t
really quarks, but hadrons. And if we build our field theory with
these good hadrons, then the theory is perturbative as well! Of
course, this theory is merely an effective theory, not a fundamental
one. Quantities such as the masses of pions can’t be calculated
but must be measured. To compute them, we would need to solve
nonperturbative QCD.

Breaking a symmetry reshuffles the degrees of freedom in a
theory. So too does flowing over a Landau pole. Are the two related?
Yes, of course. Perturbativity restoration in a field theory is typically
accompanied by symmetry breaking. At short lengths or high
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temperatures, the symmetry is unbroken and we work with the
more fundamental degrees of freedom. At long lengths or low
temperatures, the symmetry is broken and we shift to the effective
ones. Some examples:

* Quarks into hadrons. This is the chiral symmetry breaking,
with pions' as Goldstones. [7]

* Molecular description of fluids into continuum fluid dynamics.
This involves breaking Lorentz symmetry, and the Goldstones
are phonons. [8]

¢ The splitting of the electroweak interaction into electromag-
netism and weak force. This is the electroweak breaking or
Higgs mechanism; there are no Goldstone in this case. [2, 3]

The pattern is then a repetitive one: more fundamental theories
morph into effective ones at the moment they lose perturbativity;,
or unitarity of the S-matrix. Unitarity is restored by rearranging
the degrees of freedom as dictated by the associated symmetry
breaking pattern. Conversely, each EFT has a maximum energy
scale called a cutoff before they lose unitarity, at which point the
symmetry is restored and the more fundamental theory must be
reintroduced as a UV completion. To study symmetry breaking is
then of paramount importance in physics, as it sheds light on how
all theories organize themselves at all energy scales.

One uses the language of mathematics to discuss symmetries,
and broken symmetries are no exception. Group theory, in par-
ticular Lie group theory, is what governs all this discussion. The
machinery for such was first employed for physics in 1969 [9, 10].
Indeed, with only knowledge of the symmetry breaking pattern,
one can build the most general action that displays a symmetry
in the “less obvious manner” we discussed before, because there
aren’t that many possibilities to realize symmetries in these special
ways. Thus, with a single general EFT, we can write down every
possible model capable of describing the system. This is very well
understood for internal symmetries, but physics display another

Strictly not massless, as the chiral symmetry is merely approximate, but good
enough for our purposes here.
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kind of symmetry whose breaking is the central theme of this thesis:
spacetime symimetries.

1.3 SPACETIME AND GRAVITY

For most of the history of physics, space and time were seen as
just the stage where the actors of physics performed their play. On
occasion, things were shaken up a bit—first in the 19th century
when Bernhard Riemann showed space needn’t be flat, then in
the early 2o0th century when Hendrik Lorentz and Albert Einstein
fused the two into just spacetime—but the essential paradigm was
unaltered: spacetime is merely an ambient, an environment.

Then all changed about 100 years ago, when Einstein linked
spacetime and matter through the phenomenon of gravity:

Gpv + /\Q}W = Tuv/ (13)

2ME,

where G,y and g,y encode information about the geometry of the
curved spacetime, while T, is the stress-energy tensor containing
information about the matter within the spacetime. The constants
Mp; ~ 10'8 GeV and A ~ 10~ %¢V? (strictly nonzero) are the free
constants of general relativity.

The Einstein field equations encode the dynamics of spacetime:
it’s no longer just an ambient supplied for the physical objects of a
theory to live in, but a physical object in and of itself. It evolves and
changes as determined by the matter within. We call the coupling
of the two gravity.

The EFTs of particle physics are governed by the breaking of
internal symmetries. As for gravitational systems, the connection
between spacetime and gravity then logically establishes their rela-
tion with the breaking of spacetime symmetries. Several gravita-
tional systems can be understood under this lens, allowing us to
construct model-independent EFTs for them. Examples include:

1. The Big Bang breaks time translation symmetry. Cosmological
perturbations can be seen as the degrees of freedom of the
associated EFT. [4]
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2. A black hole breaks spatial translation (and rotations, if it
has angular momentum). Quasinormal modes are then the
degree of freedom of this EFT, being of immense importance
for gravitational wave astronomy. [11]

3. String theory is a gravitational theory living in a higher di-
mensional spacetime. String-inspired EFTs of gravitational
systems are often governed by the breaking of symmetries of
the higher dimensional space. [12]

The interplay between broken internal symmetries and EFTs is
well-understood, but for broken spacetime ones, research is still
ongoing. This is because many of the theorems establishing the
basic properties of such EFTs find their core assumptions violated
when spacetime symmetries are broken. Perhaps the most infamous
example is the disappearance of Goldstone bosons, that is, we no
longer have one boson for each broken symmetry. We call the
missing bosons inessential [13-15].

Much work has been done in the past years to understand the
structure of broken spacetime symmetries as well as the properties
and uniqueness of the associated EFTs, specially when some bosons
are seemingly inessential. We will look this issue more deeply in
Chapter 7.

1.4 INFLATION

If we look at the night sky, the universe appears to be homogeneous.
The large scale structure (LSS) of matter stars becoming uniform
at around 10 Mpc [16], and the largest known structures, galactic
filaments, end at around 100 Mpc [17]. Meanwhile, the temperature
of the cosmic microwave background (CMB) is the same, up to one
part in 10°, no matter in which direction we look [18].

Yet this homogeneity isn’t perfect. Small fluctuations exist on
top of this uniform background. Several probes, the most recent
being Planck, have measured the power spectrum (i. e., distribution
of perturbations in momentum space) of the CMB fluctuations.
Furthermore, these fluctuations are small and, for most of the
universe’s history, everything in it is described by two theories we



1.4 INFLATION 9
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Figure 1.2: The temperature of the CMB is nearly homogeneous. (image
by [19])

know well, general relativity and the Standard Model, plus some
dark matter and dark energy?. This means we can simply evolve
the CMB backwards in time, as far back as we can rely on these
theories. This outputs the primordial power spectrum, the ultimate
seed of all cosmological fluctuations, from hot spots in the CMB to
galaxy clusters.

The CMB and primordial power spectra reveal two crucial fea-
tures:

* The CMB power spectrum has the adiabatic pattern for its
acoustic peaks (see Figure 1.3). These peaks deal with the
gravitational interplay between the radiation-baryon fluid
(coupled via Compton scattering) and the pressureless dark
matter fluid [20]. If the peaks are adiabatic, then the fluctu-
ations of photons, baryons and dark matter don’t constitute
independent random variables; rather, they all have the same
common source.

2 We might not known what they are, but for large scale cosmology it’s sufficient
to treat the former as just a pressureless fluid and the latter as a cosmological
constant.
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Figure 1.3: The peaks in the CMB power spectrum have the pattern of
acoustic oscillations with adiabatic initial conditions. (image

by [19])

* The primordial power spectrum P(k) is P(k) ~ k3, which
implies the correlations of primordial fluctuations are nearly
scale invariant.

Now, we could simply declare that primordial fluctuations are
produced during the quantum gravitational era of the universe
that we can’t hope to explain in the present, and that’s it, the story
ends. However, if we wish to be a bit more ambitious, we can try
to explain them by a dynamical process below the Planck scale,
without invoking the nonperturbative quantum gravity black box.

One such process is inflation, a period in the past when the
universe underwent accelerated expansion. To explain adiabaticity
(single source of perturbations), inflation is typically constructed in
terms of a single scalar field, the inflaton— whether it’s composite
or elementary doesn’t matter. And to explain near scale invariance,
this field should source a period of quasi-de Sitter acceleration, as
rescalings of space are an isometry of de Sitter (see Appendix B).

Inflation’s success at explaining these two properties have re-
sulted in its wide acceptance in cosmology [21]. As we don’t know
the fundamental theory of inflation, an effective theory approach,
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built out of the breaking of time translations [4], is essential lest
we get drowned in an infinitude of putative inflationary models.
Furthermore, concerns arise when trying to embed inflation in a
more fundamental theory, typically string theory, and additional
broken symmetries are often invoked to tame the issues. We will
see this in more detail in Chapter 6.

1.5 THESIS OUTLINE

This thesis is structured as follows:

e Part i continues our presentation of preliminary and back-
ground material relevant to Lie group theory, symmetry break-
ing, and effective field theories.

— In Chapter 2, we define the central concept of this thesis,
spacetime symmetry groups, and discuss aspects of group
theory we will use, in particular the Levi decomposition.

— In Chapter 3, we introduce the theorems that form the
basis of symmetry and symmetry breaking in physics:
Noether’s theorem leading to local (and sometimes global)
charge conservation, Goldstone’s theorem dealing with
the nature of Goldstone bosons, and the Fabri-Picasso
theorem indicating the existence of superselection sectors
when symmetries are broken.

* Part ii introduces tools, methodologies and algorithms for
building effective field theories out of a symmetry breaking
pattern.

— In Chapter 4, we present the coset construction, which
deals with global groups or global groups that have been
gauged. We introduce a novel way to perform this con-
struction via normalization of invariants and relate it
to the usual one in the literature via the Maurer-Cartan
form.

— In Chapter 5, we discuss diffeomorphism groups which
are a different kind of gauge group. We outline how to

11
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employ the normalization procedure in this case, and do
so for the example of cosmology.

¢ Part iii applies the tools of the previous part in specific and
extended examples.

— In Chapter 6, we employ the tools of broken diffeomor-
phisms and broken internal symmetries to construct the
effective field theory of shift-symmetry cosmology.

— In Chapter 7, we discuss the Goldstone hierarchies dis-
played by certain theories, and carefully analyze various
theories in flat and curved spacetimes.

* Part iv closes this thesis with a synthesis of this work and
discussion of future prospects.

* Part v, the appendix, collects supplementary material referred
through the main body of this work.

— In Appendix A, we list all groups used in this work. This
includes global groups, with their algebra and matrix
representation of the algebra, as well as their Levi de-
compositions. Relevant diffeomorphism groups are also
listed.

— In Appendix B, we give the explicit expression for the
finite isometries of de Sitter space. This is used in Chapter
7, but would take too much space there.



SYMMETRY AND GROUPS

2.1 SPACETIME SYMMETRIES

Since spacetime symmetries are the central concept of this thesis, it
might be worth investigating what they even are to begin with.

2.1.1  Physical definition

If we are willing to refer to a physical spacetime and its isometry
group, then a natural classification of symmetries follows.

First, we have symmetries under which the spacetime coordinates
themselves transform, 6x # 0. Moreover, we demand spacetime
be homogeneous and symmetric, which means these symmetries
include some notion of time shift, space shift, boosts mixing time
and space and rotations mixing space. We require this as otherwise
the symmetry group lacks sufficient structure to construct a usable
effective field from a symmetry breaking pattern.

Homogeneous and isotropic symmetries are also called kine-
matic and the complete classification of kinematic algebras is
known [22, 23]. However, for physics, kinematic symmetries must
be compatible with a metric structure, that is to say, they must
contain the isometries of some spacetime metric. For instance, the
group SO(2,4) contains the Poincaré ISO(1,4) which is the isom-
etry of Minkowski space: this is valid. On the other hand, if the
group isn’t compatible with a metric, then it’s not immediately
clear if it’s of any use in describing gravitational systems, so they
aren’t of interest to us in this work.

The kinematic generators, together with all others with whom
they nontrivially commute, are spacetime symmetries. The lat-
ter type of generator includes those of nonuniform symmetries.
These are transformations purely of the fields that are spacetime-
dependent, i.e., 3 = f(; x). It can also include closure generators

13
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that transform the fields uniformly, 6 = f(1), and so naively don’t
look like spacetime symmetries, but still have to be added to the
bunch for group closure.

Meanwhile, a generator that doesn’t fall into the description
above is internal.

To distinguish these categories, compare these two examples and
in particular how the nature of the Q generator changes.

EXAMPLE: STANDARD SHIFTS. Consider this algebra containing
translations P, Lorentz generators M, together with a scalar Q.
Besides the usual Poincaré algebra, we have:

[P, Q] =0. (2.1)

An action for a single field displaying this symmetry is:

S = Jd“x P(X), (2.2)

for X = (0)?%/2, where ¢ is some scalar field and P(X) a free
function. The symmetry transformations are:

x —> Ax+a bd—d+c, (2.3)

where A is a Lorentz matrix, a a translation vector and c the
shift induced by Q.

There’s no deep mystery here. Obviously the Poincaré generators
are kinematical, and correspond directly to the isometries of the
underlying flat spacetime metric. Meanwhile, Q commutes with
everything; it’s merely a simple field shift.

EXAMPLE: GALILEON SHIFTS. Now take the shift algebra from
the previous example and enlarge it by adding a vector generator
of the form By,. Since it’s a vector, its commutation with M,y is
given by its tensorial structure. The nontrivial commutators are
given by:

[Pp./ By] = T]p,vQ [PH/ Q] =0 [Q, BH] =0. (2.4)
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An example (not the most general one) of an action with this
symmetry is:

s [a'x | 3000 + 01002, 25)

with the group transformation law:

X — Ax+a é—=>d+c+b-x, (2.6)

where b, is a vector serving as the parameter of B*.

Now the situation is more interesting. Of course, P, and M, are
still kinematical generators. But B, doesn’t commute with either,
so now it constitutes a nonuniform symmetry. Indeed, we can see
from how it effects a spacetime-dependent shift on the field ¢, i.e,,
B*$ = x*. What about the Q? It still looks like the same uniform
shift as before, Q¢ = 1, and it commutes with everything. Yet it’s
required for closure of the algebra of the P, and B, which are
spacetime generators. So Q is spacetime, too.

2.1.2  Abstract definition

Alternatively, we can define spacetime and internal symmetries in
a purely abstract manner, without reference to an actual spacetime
manifold. This is perhaps more economical, but less physically
transparent. Any Lie group can be decomposed into compact and
noncompact pieces:

G=Sx1, (2.7)

where §S is noncompact, I is compact. We don’t further specify
the structure of S and I—they can be simple or semisimple or not
simple at all. The elements of S are then spacetime symmetries
while those of I are internal.

To understand why this definition has anything to do with the
previous one, recall what we demand that some of the spacetime
symmetries be kinematic. This means some notion of boosts exist.

15
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Furthermore, we require the kinematic symmetries be compatible
to a metric with signature (—+ + +...). The boosts mix time
and space together, which have different signatures—their group
is noncompact.® All other spacetime symmetry generators don't
commute with boosts, or don’t commute with generators that
don’t commute with boosts, and so on, so they all collect in the
noncompact factor S; none go in I.

Meanwhile, internal symmetries must be compact in order for
the Hamiltonian to be bounded from below. So they all go in I and
not S.

Of course, this abstract definition will not work for a spacetime
that is not maximally symmetric. For example, the isometry group
of the Schwarzschild metric is SO(3), which is compact. It will also
not work with diffeomorphism groups, as such groups aren’t even
abstract to begin with, which we discuss in Section 5.1.

2.2 GROUPS AND THEIR LEVI DECOMPOSITION

Symmetries are naturally described in the language of Lie groups.
What we're really interested in in this section is the classification of
groups, but first let’s quickly refresh what a Lie group is.

A Lie group consists of a differential manifold equipped with a
product for the objects within the manifold. By axiom, the product
must be smooth, associative (no need for parentheses), closed
(the output lives on the manifold), and invertible. A symmetry
transformation is what we call a group action: a realization of this
group on any kind of object while preserving these axioms.

Smoothness and invertibility imply the Lie group contains an
identity element for its product. Much in the same way we can
approximate a Riemann manifold around a point by a vector space
(the tangent plane), we can approximate the group manifold around
the identity by a vector space too: the Lie algebra.

If the reader prefers a brute force argument: homogeneity, isotropy and metric
structure imply a maximally symmetric metric, so either Minkowski, de Sitter
or anti-de Sitter. The three isometry groups are ISO(1,d),SO(1,D) and SO(2,d),
respectively. The three are noncompact.



2.2 GROUPS AND THEIR LEVI DECOMPOSITION

With that out of the way, let’s talk about how to classify Lie
groups. The classification of simple Lie groups is famous and well
understood. That of nonsimple ones is not simple, however. A
powerful tool for this task is the Levi decomposition which states
that any finite Lie group G can be decomposed as:

G=RxL, (2.8)

where L is a (semi)simple group called the simple factor (or Levi

factor) and R a nonsimple but “nice” Lie group called the radical.

Both R and L are unique.? The niceness of the radical is due to its
three defining properties:

1. It’s an ideal, meaning its algebra v is invariant under the
algebra g of the group:

[t,g] Ct. (2.9)

2. It’s solvable, meaning the algebra telescopes to zero upon
repeated commutations:

[t,x] =11 Cr, (2.10)
[t1,t1) =t C 1y, (2.11)
[tr,t2] =13 C 1y, (2.12)

: (2.13)
[tn,tn]l =0, (2.14)

for finite n.

3. It’s maximal, meaning it’s the largest subalgebra v C g with
the above properties.

Radicals admit no complete classification the way simple groups
do. Through this work, if we encounter a radical that we don't

2 Strictly speaking, the decomposition is unique for the Lie algebra, not the
group, as the latter can have additional discrete group factors encoding topology.
Furthermore, the simple factor is only unique up to adjoint conjugation by the
group’s nilradical. These are technicalities of little import for our purposes here.
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believe is immediately recognizable as a familiar group, we will
simply denote it by the exponential of the span of its generators S,
i.e, R=-exp(S).

The quintessential Levi decomposition in physics is the one for
the Poincaré group ISO(1, d):

1SO(1,d) = RP x SO(1, d). (2.15)

Extensions of the Poincaré group are governed by this decom-
position through O’Raifeartaigh’s theorem [24]. Any enlargement
of the Poincaré group must necessarily meet one of the following
three conditions:

1. Trivially enlarge the simple factor: SO(1,d) — SO(1,d) x I for
an internal group I. (Coleman-Mandula theorem)

2. Enlarge the radical: RP — R, for a larger radical R.

3. Destroy the decomposition: ISO(1,d) — L, for L a larger sim-
ple group.

2.2.1  Supergroups

We won't study supersymmetry in this work, but let us briefly
outline how the Levi decomposition applies to it. This is important
if one wishes to apply the techniques discussed here for broken
supergroups displaying Goldstone fermions.

Typically, supersymmetries are presented in terms of a graded
Lie algebra, e. g., with commutators and anticommutators. So it’s
not clear if a superalgebra exponentiates to a supergroup that can
be Levi decomposed. Yet, supergroups are still formally defined
as just any group: a manifold with a morphism satisfying certain
axioms; the only difference is that the manifold can have both
real /complex (bosonic) coordinates and Grassmannian (fermionic)
coordinates [25]. As such, any superalgebra can be represented as
a standard Lie algebra of commutators. The procedure for this is
described in [26, 27]. Then, one can simply Levi decompose the

group.
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For example, in the language of superfields, all quantities are
functions of the bosonic coordinates x* and the fermionic coor-
dinates 0%, 0P. For the super-Poincaré group, much in the same
way that P, generates translations of x*, the supercharges Q, QB

generate supertranslations of 6%, 0P [28]. Applying the Levi decom-
position theorem, one then sees that the super-Poincaré group can
be written as:

SISO(1,d) = exp (P,Q, Q) x SO(1, d). (2.16)

We notice that supersymmetries are contained within option 2 of
O’Raifeartaigh’s theorem: they enlarge the radical of the Poincaré
group [28].
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THEOREMS

This chapter concerns itself with the basic theorems that govern
the structure of physical symmetries:

* For any symmetry, broken and unbroken

— Noether’s theorem, which relate a locally conserved cur-
rent to each symmetry.

— Global charge conservation, which integrate the locally
conserved current into a global charge.
* For broken symmetries

— Goldstone’s theorem, which relate degenerate vacua un-
der the broken symmetry to massless bosons.

— The Fabri-Picasso theorem, which stipulates the degener-
ate vacua live in different sectors of the S-matrix.

These theorems are presented for internal symmetries, as they
were traditionally first formulated. Then, for each one, we discuss
whether or not they apply to spacetime symmetries.

3.1 FOR ANY SYMMETRY

3.1.1  Noether’s theorem

Among all theorems related to symmetry we will recall in this chap-
ter, Noether’s (first) theorem is the most important one [29]. It fa-

mously describes the local conservation of charge. Proofs of Noether’s
theorem are legion; in what follows is a simple one.
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We assume active language where only fields transform, so o =
ef(; x) infinitesimally under the symmetry, where € is constant.
Under an arbitrary e(; x), the action changes as:

dS :JeKere/\], (3.1)

where K is a D-form and ] a (D — 1)-form. If the above is a
symmetry transformation, the € is constant (by definition) and
the variation of the action must equal a total derivative [d (eA).
Hence:

K =dA. (3.2)

Meanwhile, if the equations of motion are satisfied, then the
variation of the action is zero for any e (by definition), which
means:

e [K—dJ] =0. (3-3)

If the transformation is a symmetry transformation performed
while the equations of motion are satisfied, the two conclusions
hold together, and we derive:

dj =0 (3-4)
j=J]-A (35)

The j is therefore the locally conserved current. In practice, to
compute it, one writes down the variation (3.1) in terms of the
Lagrangian £(1). If the Lagrangian contains higher derivatives,
integrations by parts are necessary to put the variation in the form
of (3.1). The result is:

oL 2L
oV b AV, Vb

where the structure function A* must be determined manually
by solving 8L = V AF.

Vy+...| 5p— A", (3.6)

gt =
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SPACETIME SYMMETRIES. None of the assumptions behind
Noether’s theorem make any mention as to whether the symme-
try is internal or spacetime. Its conclusion applies to spacetime
symmetries unadulterated.

3.1.2  Global charge conservation

By Noether’s theorem, each internal symmetry of the action leads
to a current 3-form ] that is conserved, d] = 0. The corresponding
charge is by definition the integral of this current over some Cauchy
surface ~ whose normal is future-pointing;:

Q:LL (3-7)

Let us now integrate dJ. This is a 4-form, so it ought to be
integrated over some spacetime volume M. Let this be the volume
contained by two Cauchy surfaces X, (future-pointing) and X
(past-pointing), so that the boundary of M is:

OM=2X,UX;US, (3.8)

where S are the timelike walls of the container, located at spatial
infinity; see Figure 3.1. Now we integrate d]J and apply Stokes’
theorem:

O:Lvtd]:JaM] (3.9)
=LJ+LJ+LJ (3.10)
= Q(t2) — Q1) + @ (t2, ty), (3.11)

where the minus sign for Q(t;) comes because the normal of
21 points towards the past rather than future, and we just named
the integral over S as the flux ®. This equation is really just global
conservation of charge:

AQ(t2, 1) + O(ty, t1) = 0. (3.12)
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AL
<&

Figure 3.1: The boundary of the spacetime manifold M consists of two
spacelike Cauchy surfaces ¥; and X; with a timelike surface S
located at infinity enclosing the two.

Classically, we would say the universe is a closed system, hence
the flux @ at infinity vanishes and Q is constant. Quantum me-
chanically, a similar conclusion applies. The following commutator
must vanish:

(0I[AQ(t2, t1) + (2, t1), A(y)]I0) =0 (3-13)

for some operator A(y) evaluated inside M. But ® is a bound-
ary integral at spatial infinity; thus [®, A] = 0 due to the causal
properties of operators in a quantum field theory. Hence we have
(0[[AQ, AJ|0) = 0. So the quantum mechanical equivalent of charge
conservation is:

(OIQ(t), Ay)llo) = C, (3.14)

for constant C.

SPACETIME SYMMETRIES. Notice that crucial for this proof was
that the conserved current had the structure of a 3-form, so that we
could apply Stokes’ theorem. In (14 3)D, this means the conserved
current must be a vector. However, spacetime symmetries don’t
necessarily admit this structure; for example, stress-energy is a
symmetric tensor, so in general V,,TH" = 0 doesn’t imply energy-
momentum P* is globally conserved. An exception is if a Killing



3.2 FOR BROKEN SYMMETRIES

vector &, exists, in which case we can define the stress-energy vector

i =3 & THY. This vector is conserved because of Killing’s equation,

so energy-momentum is globally conserved in, e. g., Minkowski
spacetime, but not in an arbitrary one.

3.2 FOR BROKEN SYMMETRIES
3.2.1  Goldstone’s theorem

Goldstone’s theorem refers to the existence of massless excitations
on top of a vacuum that breaks global symmetries [30]. Noether’s
theorem still applies; the action is still symmetric, just the vacuum
|0) that isn’t. So the previous result for global charge conserva-
tion must still hold. However, the requirement Q|0) # 0 implies
(0[[Q(t), All0) should not vanish in general. Hence the constant C
must be strictly nonzero.

Now let us expand the charge in terms of its density, i.e., Q(t) =
| d3x jo (t,X). Furthermore, for internal exact symmetries, it must be
the case that the current has no explicit dependence on spacetime,
in which case the usual Heisenberg relations,

dj®

- -0]
dx™

- i[Pw] ’ (315)

are solved by i%(x) = e*"Puj%(0)e~™"Pu. For convenience of no-
tation we are denoting the Hamiltonian } by Py. Using this, we
can expand the matrix element:

(OI[Q(t), All0) = Jd3x<0|ei><“'”u i2(0) e ™ PrAj0) —h.c.. (3.16)

Let us now insert the identity via,
1= | & ing) (ngl, (3.17)
n

where [nz) is an eigenstate of P (and thus also of Py since they
commute) and n represents any remaining labels of the state. Then:
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|| xpio0) e ™ g (A0} ~ e, Ga8)

= Z ” d3xd®p(0}°(0) e*iEn(ﬁ)t*“'ﬁln@ (n5lA[0) —h.c.,

(3.19)
- 111112 e*iE“(ﬁ)t(Ob'o(O) Ings)(nslAl0) —h.c., (3.20)

P—0

where for the last line we performed the X-integral, which con-
verts e *P into d(p), then performed the p-integral. The result
has to be constant, which requires En(6) = 0 so that all time-
dependence drops from the expression. At the same time, it can’t

be zero. In particular, the following matrix element,

(0i*(P)ng) # 0, (3.21)

which represents our Goldstone state and justifies the assertion
that the current creates a Goldstone out of the vacuum. Of course,
if there are multiple broken internal symmetries, parametrized by
some quantum numbers, the argument can be repeated for each
broken charge, giving massless Goldstones with the same quantum
numbers [31].

SPACETIME SYMMETRIES. Goldstone’s theorem requires that
the vacuum be invariant under translations and the charge have
no explicit spacetime-dependence. Breaking the Poincaré group
violates either the first assumption (for broken translations) or
the second (for broken boosts/rotations), so Goldstone’s theorem
always fails.

3.2.2  Fabri-Picasso theorem

This final theorem refers to the phenomenon of superselection [32].
That is to say, not only are the vacua degenerate, but they live in
different sectors of the S-matrix, and no physical process can map
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one vacuum into the other. Because of this, there’s no sense in
which one can build a superposition of all the vacua, such that the
superposition doesn’t break the symmetry.

First, it’s useful to express the charge as a surface integral. For a
spacetime of trivial de Rham cohomology, charge conservation can
be directly solved:

d] =0 = J=dF, (3.22)

for some 2-form F. The charge is the integral of the current over
some Cauchy surface :

using Stoke’s theorem. Now, consider the norm of the state Q|0):

(01Q%0) = i (AP (x1QL110), (3.24)
—§_dben (0TI 0)e QLo o),

(3-25)

- <0|r-°i(0)Q(0)yo> iz d%xmn;, (3.26)

_ <0|F°*‘(0)Q(0)yo> x 47R?, (327)

where n, is a vector normal to 0%, FO is the time-radial compo-
nent of the 2-form F in spherical coordinates, R is the characteristic
length of the system, and again we assumed the charge had no
explicit spacetime-dependence in order to expand Q(t). Unless
Q|0) = 0—in which case the above is zero—the norm of Q|0) di-
verges as the system’s size tends to infinity. Thus, the state Q|0)
can’t be part of the Hilbert space where |0) lives. More generally, for
D spacetime dimensions, the result diverges as RP—2. Notice that
for D = 2, no superselection occurs, thus there is no true symmetry
breaking.
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SPACETIME SYMMETRIES. Since the Fabri-Picasso required no
explicit time-dependence for Q(t), it too can fail for spacetime
symmetries. A counterexample to the theorem is the DBI action
[33] in D = 2 dimensions: as it’s constructed by embedding a 2D
flat brane in 3D flat bulk, some of the boosts of the bulk—whose
charges depend on time—will be broken. But according to the
theorem there should be no spontaneous symmetry breaking in
D =2.
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COSET CONSTRUCTION

4.1 INTRODUCTION

If a symmetry is unbroken, its presence in the action is manifest, but
it doesn’t inform us much about the degrees of freedom in the the-
ory. For example, simply knowing our theory contains fields trans-
forming under unbroken SU(N) doesn'’t tell their representation.
On the other hand, broken symmetries aren’t manifest—meaning
it’s not immediately obvious the action displays them—but can
constrain the nature of the degrees of freedom simply because
there aren’t that many different ways the action can exhibit this
symmetry.

Thus the basic recipe we want is to take the symmetry pattern of
unbroken and broken symmetries, process it through an algorithm,
and output the most general effective field theory displaying that
pattern. The machinery for this was first developed for internal
symmetries in 1969 [9, 10].

This procedure—which goes by the name of coset construction
for reasons we will see momentarily—is thus an essential tool for
any physicist interested in constructing effective field theories. It
allows one to build the most general action from merely from
knowledge of the abstract group-theoretical symmetry breaking
pattern.

Outline

This chapter is structured as:

* In Section 4.2 we explain how symmetry breaking patterns
and Goldstone bosons are intimately related to homogeneous
spaces which lack a preferred choice of origin. These concepts
converge towards coset spaces from group theory, so that
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Goldstones inherit the powerfully binding group structure
which constrains the form their action can take.

* In Section 4.3 we present a novel manner to complete the coset
construction and derive the invariant action in a theory by
normalization of transformed quantities.

¢ In Section 4.4 we review the usual manner in the literature
through which the coset construction is completed, by com-
putation of the distinguished Maurer-Cartan form, and relate
this method to the normalization procedure.

* In Section 4.5 we discuss quasi-symmetries that shift the action
by a boundary term and how to construct operators that
display this property.

4.2 HOMOGENEOUS SPACES

Arguably, the most important property of a Goldstone boson 7
is that the action of the broken symmetry transforms one state
without bosons into one with them:

n=0—m#0. (4.1)

This property of the group action is called transitivity. We are
familiar with transitive group actions from maximally symmetric
sacetimes. For instance, in Minkowski space, translations can move
the origin to any point. In de Sitter space under the usual flat
slicing coordinates,

ds? = —dt? + 2Mtdx?, (4.2)

translations of space together with spacetime dilation t — t +
A/H,X — eX can freely move the origin as well. Intuitively, all
the points of a maximally symmetric spacetime are identical; it
does not matter what one calls the origin. Such spacetimes are
homogeneous."

But not all homogeneous spacetimes are maximally symmetric, as they may lack
isotropy.
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Objects transforming transitively are not in a representation,
since representations are linear: a matrix acting on the zero vector
returns the zero vector. In other words, they can’t move the origin.
Because of this, these kinds of transformations are often said to be
nonlinear.?

Let S denote the spacetime generators that can move the space-
time origin, that is, for which the coordinates x transform nonlin-
early. Let A be broken generators, with corresponding Goldstone
bosons 7 also transforming nonlinearly. If there is no intersection
between the S§’s and the A’s, we can collect the corresponding x’s
and the 7’s into a single space Q {x, 7t} for which the symmetry
group G still acts transitively. Such a space is called a homogeneous
space.

Note that, in the space Q, the 7t is just an additional coordinate
on the same footing as x, not a field with spacetime dependence.
Solving the equations of motion consists of finding the subspace
embedded by 7(x) that minimizes the action.

Now, this seems to be mostly nomenclature, but homogeneous
spaces are actually very constraining when building a theory, be-
cause they are mostly unique. To construct a homogeneous G-space,
it suffices to know all symmetries that do not move the origin of Q,
meaning that leave the spacetime origin and the vacuum invariants.
These symmetries form the stability subgroup S of Q. Then the
orbit-stabilizer theorem establishes that Q corresponds to a coset
space:

G
Q ~ gl (43)
where ~ means equivalence in the sense that it preserves the

group product (i.e., homeomorphism), but not necessarily any
additional structure Q might have. Concretely, this means that any

Care must be taken with the term “nonlinear transformation”. Take the example

of de Sitter space above but in conformal coordinates, T = —e Ht/H. The time ©
now transforms as T — e~ 1. This is linear in the functional sense, but not in
the group action one since it moves the origin of time T9 = —1/H. Whenever we

say nonlinear transformation in this thesis, we always mean the latter, group-
theoretical meaning.
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q € Q can be written in terms of some group element {s € G acting
on the origin of Q, where { € G is called a lift (or coset space
representative) and s € S is an arbitrary stability element.

So for each element in Q we can associate an element in G, up
to some S-ambiguity, so informally Q ~ G/S. But a left coset space
comes equipped with a group action by left multiplication of g € G:

(S — 7S = gts. (4-4)

Thus, if one specifies the full symmetry group G and the stability
subgroup S, then the transformation laws of all coordinates and
tields follow automatically, which by extension fixes all invariants
that can be used to build an action, as we will see shortly. This
construction—connecting physical entities in Q to a coset space in
order to derive invariants—goes by the name of coset construction.

Notice the lack of overlap between the S’s and the A’s is crucial
for the space to be homogeneous. For example, say we have a time
translation Py, broken with corresponding boson 7. To move the
origin of time t, we must apply Py, yet to shift 7 out of its vacuum,
we must also apply Py. We are thus not free to move both t and 7 as
we wish. The group action is no longer transitive, and the space Q
is no longer homogeneous. Its structure, transformation laws, and
uniqueness are no longer guaranteed simply from the symmetries.
This is why these kinds of symmetry breaking patterns are much
harder to handle and lead to less constrained theories.

4.3 NORMALIZATION PROCEDURE

Representing our objects as the lift of a coset space endows them
with canonical transformation laws directly from the symmetry
breaking pattern. It remains to see how one construct invariants
out of these laws.

The basic idea is intuitive: any quantity that can be transformed
away by the symmetry group clearly can’t be an invariant. But the
group is finite, so there is a finite number of quantities that can
be transformed this way. Anything that remains afterwards is an
invariant. This method is based on [34, 35]; readers interested in
formal proofs of these results can check those references.
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As a quick example, consider the position X of a particle with
Galilean relativity, with time coordinate t. Time translation can
always set t to zero, and so too can space translation with X. Then
there’s the velocity X, but it too can be transformed away through
Galilean boosts. This leaves us with the acceleration X and the
rotations. But no amount of rotating can set X to zero; at most, we
can align it with one axis. Then the component along this axis is
IX|; all others are zero. This is final invariant of the particle: the
magnitude of its acceleration.

In this example, notice the appearance of velocities and accelera-
tions. This is natural. The coset space is a homogeneous space and
thus by transitivity anything in it can be eliminated. So if we want
more transforming quantities than there are group parameters, we
necessarily must extend the coset space with additional objects,
the derivatives of our fields. We know how coordinates and fields
transform, so we know how derivatives transform by chain rule.

Hence, the logic is as follows. We take our original homogeneous
space Q = {x, } and extend it with a finite amount of derivatives
0T, 6)2(7[, and so on. We then transform those quantities under
some special g, € G to be determined later. These transformed
objects are denoted with capital letters rather than tildes (e.g., X
instead of X) due to their special status as putative invariants.

Transforming (x, 7, 0x7t ...) under the g., we schematically have:

x B X, (4.5)

T BT, (4.6)
ot gx drt

>  ax’ (4.7)
o%m g, d2TT

a_x2 - m/ (4.8)

(4-9)

1. We start by normalizing X and IT to zero,? which allows us to
solve for some of the parameters of g.. If this completely fixes

3 We can set it to any constant without affecting the result. For clarity of notation,
we set it to zero.
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g«, then dIT/dX are the invariants of the theory,* and we're
done.

2. If not, we then attempt to normalize as many of the dIT/dX
to zero as possible, which lets us fix more of the g.. If g, is
completely fixed by now, then the remaining dIT/dX are the
invariants we’re after. If none remain, then the dzﬂ/ dX? are
the invariants.

3. If g, still hasn’t been fixed, we repeat the procedure, setting
as many of the d’TT/dX? to zero as possible, and so on. In
the end, when g, is completely determined (which can al-
ways be done since the group is finite-dimensional, so a finite
number of normalizations fixes all parameters), the lowest
order in derivatives d"IT/dX™ that survived the process are
the invariants.

Next, in order to build an integration measure, we also need
invariant 1-forms. This is straightforward: we take dx, evaluate it
under the g. found above, then use multiple exterior products to
build a volume form dV:

dx &8 dX, (4.10)
dV = det(dX), (4.11)
E Dl!dxO AdXT AL AAXP. (4.12)

The invariants together with the measure give the complete set of
objects needed to build a strictly invariant action for the Goldstones
of some symmetry breaking pattern.

Notice that in this procedure, we had to fix all parameters of g.,
including those of the stability subgroup S. This can end up being
laborious. However, when the lift is properly parametrized, all
coordinates and fields will transform in a linear representation of
S. Therefore, invariance under S is achieved just by writing objects
in a manifestly S-invariant manner. What this means concretely
is that we don’t need to fix these parameters of g, coming from S.

4 Notice that setting IT = 0 doesn’t imply dIT = 0.
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Refraining from doing so means that all objects we derive during
this procedure are covariant under S, and will be fully G-invariant
when taking proper contractions of indices.

THE GALILEAN PARTICLE, I. To make the example quicker,
let’s consider the dimension one case. Upon transforming time
t, position x and velocity v = x we get the putative invariant
o-forms and 1-forms:

T=t+s, X =x+d+bt, V=v+b, (4.13)
dT =dt, dX =dx+ bdt, dV =dv, (4.14)

where s,d and b are group parameters we need to eliminate
by normalizing invariants. We start with the o-forms. Setting
T =X =V =0 kills everyone:

s=—t d=—x+vt b=—v. (4.15)

Inserting the solution into the 1-forms and recalling x = x(t),v =
x(t) results in the invariant forms:

dT=dt dXx=0 dV =xdt. (4.16)

We see now that the invariant derivative is given by the linear
dependence between dT and dV:

at _arz _ ~© 7
The exactly invariant action for the Galilean particle then is:
S — Jdt/\F (%) ) (4.18)

for some energy scale A and arbitrary function F.
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4.4 MAURER-CARTAN PROCEDURE

Say we parametrize the coset lift as,

0 = e¥Se™A, (4.19)

By the normalization procedure, we must apply g. to {S to
compute the transformed lift, then normalize its components to
zero in order to fix g,. So:

(S %5 LS = g,L8, (4.20)
des B 4L s = g.des, (4.21)

Normalizing £S = S means (4.20) is solved by g, = st~1, where
s € S. Assuming x and § are in an S-representation, we can sup-
press the s-part of g, so that all derived quantities are covariant
rather than invariant.

We have now finished fixing g., so (4.21) collects all covariants:

dLS = ¢~ 'd¢sS. (4.22)

The 1-form Q = ¢~'d¢ is distinguished and receives a special
name: the Maurer-Cartan form. It’s algebra-valued, so let us de-
compose it in terms of generators S, A and V:

OS =(ws-SH+wa-A+wy-V)S=(ws-S+wa-A)S. (4.23)

Thus, after we project out wv, the other two forms ws and wp are
our remaining covariant 1-forms. We must now extract covariant
o-forms out of these. Let us decompose them into the spacetime
and field bases dx and dé&;:
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wh = (w)Ldx + (wh)lde)
= [(WR)L + (@§)]oue] dx

g
foue!| [(w

&
A
= | (@R + (wi

(4.24)
(4-25)
(4.26)
(4.27)
D5+ (@hrou] e
(4.28)

This establishes a linear dependence between the w?, forms and
the w¢ forms. Since these forms are covariant, so too are the linear
coefficients. We thus get the following covariant quantities:

—1
KL = (L + (@3)foue] ] [(wh)g+ (whgoueX]

(4.29)

Meanwhile, ws can be used directly to build an invariant volume

form:

dV = det(ws)
1
D!

THE GALILEAN PARTICLE, II.

= e [(WDF+ (0L dxt A

(4.30)
(4.31)

The generator of time transla-

tions Py, space shifts Q and boosts By admit the matrix represen-

tation:
0 0 1 000
Po=1{0 0 0 Q=10 0 1
0 00 000

- (4.32)

&
|
©c = o
©c o o
©c o o
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Setting the coset lift ¢ = e'PoeXQe"Bo and computing the Maurer-
Cartan form Q = ¢~'d¢ yields:

0 0 dt
Q= |dv 0 dx—vdt|, (4.33)
0 0 0

or, decomposing in terms of the algebra generators,

wl = dt wq = dx —vdt w$ = dv. (4-34)

These are precisely the same invariant 1-forms we found before.

4.4.1  Goldstone’s theorem, revisited

If all broken symmetries are internal, there can’t be any mixing
between spacetime and field sectors:

(4-35)

0
=0 (4.36)

~

while (wg){; depends explicitly only on x and (wf)} only on &.

The covariants then simplify to

—1

KL = ()] [(w)d] ™ 0,8 (4-37)

For a metric spacetime?, the «xf3-indices are contracted with the

flat spacetime metric nyp, which means (wg)}; has the interpretation
of a tetrad of the world metric g,.:

Nop (W) H(wWFE = gpv (%), (4-38)

5 Meaning the spacetime symmetries correspond to the isometries of some metric.
A counterexample would be the Galileo group, which isn’t the isometry group
of any metric spacetime.



4.4 MAURER-CARTAN PROCEDURE

Similarly, since all broken symmetries are internal, the IJ-indices
are contracted with the flat internal metric 615, and (w/‘i)} is a tetrad
of the field space metric Gyj:

Sj(wi)k(w)] = Grr(&). (4-39)

Hence, the lowest order invariant of the constructions is:

K2 = 8im™PKKL = Gy(€)g" (x)9,8'0vE). (4.40)

Higher order invariants are built out of K(Ix and the metrics, plus
possibly permutation symbols if we tolerate parity-odd operators.
This means the Goldstones always appear carrying at least one
derivative, and so all operators vanish at zero momentum. Further-
more, since they are all massless, no Goldstone can be integrated in
favor of the other and all appear in the low energy theory. That is to
say, there’s no notion of inessential boson; we have one Goldstone
for each broken generator, exactly.

This gives Goldstone’s theorem in classical form. In fact, since
¢ is a spacetime scalar, the final expression for KL is already dif-
teomorphic invariant and valid in curved spacetimes, where the
spacetime metric g, is arbitrary or even dynamical, while the
computation of the field metric Gyj via the Maurer-Cartan form
remains unchanged.

Note that since the final invariant is purely geometrical, requiring
simply knowledge of the metrics g,v and Gyj, one can often be
a bit clever and skip the entire procedure. If we know a metric
space that is equivalent to the same coset space as our symmetry
breaking pattern, we automatically know Gyj. For instance suppose
an antiferromagnet breaks SO(3) to SO(2). But notice that the
symmetry group of the sphere is SO(3) and its origin, the north
pole, has stabilizer subgroup SO(2); thus the sphere is equivalent to
SO(3)/S0O(2), at least locally.6 So Gy must necessarily be the metric

It’s actually equivalent globally, but we don’t need to prove this here, as we just
need the metric Gij which is a local object.
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of the sphere! The fundamental invariant of the antiferromagnet
(in flat spacetime) then is automatically fixed to be:

K* = (20)* + (sin0)*(d¢)?, (4-41)

for the Goldstones (or magnons) 6 and ¢ [36]. Notice these are
relativistic magnons (their propagation speed is 1), as the spacetime
symmetry group is Poincaré.

4.5 QUASI-INVARIANTS

So far, we have discussed only strict invariants, meaning quantities
that are exactly invariant under the symmetry. But for the purposes
of constructing an action, that might be a bit too strict: we can
tolerate a Lagrangian that changes by a total derivative. Operators
with this property are then quasi-invariants, or Wess-Zumino terms.

The basic idea is to take the various strictly invariant 1-forms that
are produced by the coset construction and wedge them together
to form a (D + 1)-form « that is exact, that is, « = df3. Then the
invariance of o implies:

da=0 = dép =0 = Op =dy, (4-42)

for y a (D — 1)-form (trivial de Rham cohomology assumed).
Now, if v = 0, then 3 is exactly invariant and doesn’t constitute
anything original; it should follow directly as a product of the coset
construction by wedging D invariant 1-forms. But if y # 0, then
we have something genuinely new. And since 3 is a D-form, the
following term can be added to the exactly invariant action:

Swz = J B. (4-43)
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THE GALILEAN PARTICLE, III. Recall we obtained three in-
variant 1-forms for the Galilean particle in one dimension, from
transforming time t, position x and velocity v:

dT =dt dX = dx —vdt dV = dv. (4-44)

Let’s try to wedge them into 2-forms and check if they are exact:

dX AdT = dxdt = d(xdt), (4-45)
dV AdT = dvdt = d(vdt), (4-46)
dV AdX = dvdx —vdvdt =d (vdx — %vzdt) . (4-47)

Indeed, all are exact. So, the first one gives the tadpole xdt,
indicating a potential of constant gradient in the action doesn’t
break Galilean symmetry. The second is simply xdt; this is merely
a total derivative and doesn’t constitute anything new. The final
one, upon inserting dx = xdt, gives the kinetic energy x*/2dt.
These supplement the exactly symmetric action, to form the
ultimate action for the Galilean particle:

S = Jdt Bmxz —mgx + Af (;(—\ﬂ : (4.48)

Now, to find all Wess-Zumino terms, one can certainly just wedge
forms mindlessly in all possible combinations and check which
ones are exact, but it would be useful to know a priori which
wedges will be successful. For this, we must study the Lie algebra
cohomology [37]. One can take the Maurer-Cartan form O and
compute the structure equation:

dQ =—-[QANQ]. (4-49)

We then decompose O = ws - S+ wa - A+ wy -V and wedge the
ws’s and wa’s together in a manner that is invariant under the V’s
(e.g., if V are the Lorentz generators, then Lorentz indices must
properly contracted). Upon using the structure equation, some
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of these wedge products may vanish, o« = 0, which thus implies
o« = df3. We can then restrict our explicit computation to these 3
only.

THE GALILEAN PARTICLE, Iv. Computing dQ) gives:

00 0
dO =10 0 —dtdv|, (4.50)
00 0

which implies the structure equations, upon decomposing in
terms of the algebra, are:

dwd =0 dwq = —wS AWl w$ = 0. (4.51)
Looking at the following two 2-forms,
o1 = wg A\ w$ 0 = wqg A\ w$, (4.52)

we see that for both of them da = 0 when using the structure
equations, so « = df3. The 3’s then are our quasi-invariant 1-
forms.

Quasi-invariants are intimately related to powerfully predictive
effective field theories, in the sense of having few free parameters.
The fact an operator shifts by a total derivatives means it must
appear exactly as-is in the action, not inside a free function. Because
there are, at most, D quasi-invariants, an action constructed only
from them (typically because the exact invariants carry undesirable
higher derivatives) has a very limited number of allowed operators.

Note that once a symmetry is realized only up to total derivatives
at the level of the Lagrangian, some of the results we have derived
so far may no longer apply, necessarily. In particular, the conserved
current of an internal quasi-symmetry may carry explicit spacetime
dependence. To see this, suppose the Lagrangian is quasi-invariant
under infinitesimal symmetry variation of fields &\:

0L =V, K. (4-53)
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Noether’s conserved current is:

Y
~Av,ye

" o — K, (4-54)

As long as £ and & have no spacetime dependence, the first
term in the current is spacetime-free as well. However, even for
internal symmetries, the structure function K* can depend on
spacetime. For example, consider a single scalar field ¢ enjoying a
shift symmetry 6¢ = c. The tadpole ¢ is quasi-invariant:

5 =, (%x“) , (4-55)

yet the structure function K¥* ~ x* depends on the coordinates
explicitly. Once a current has such explicit dependence, the Heisen-
berg picture evolution j(x) = e*"Prj(0)e ™"Pu fails and the quan-
tum mechanical proof of Goldstone’s theorem in Section 3.2.1 col-
lapses.

46 GAUGE SYMMETRIES

For completeness, let us now briefly outline how the coset con-
struction functions when the global group is gauged, that is to say,
fibered over a base spacetime manifold. It is sufficient to show the
usual gauge prescription in terms of covariant derivatives continues
to work.

Recall that in the normalization procedure, we take all the quan-
tities q in the coset space, whether coordinates and field, and
transform them under some g. € G into Q. Normalizing Q to con-
venient values allows us to fix part of g.; if is insufficient, we simply
take the transformed 1-forms dQ. Unfortunately, when dg # 0 as
in a gauge group, this will fail, because dQ will introduce the
derivatives of g. that now also need to be fixed.

Thus we simply the solution is exactly the same as the usual
gauge prescription: promote the exterior derivative d into the co-

45



COSET CONSTRUCTION

variant exterior derivative D such that Dg = 0. This is achieved by
adding the connection 1-form A to d:

(d+A)Ju=0, (4.56)

u € G. From this definition plus the fact u transforms via the
group product u — gu, it follows that the transformation rule for
A is:

1 1

A — gAg  —dgg . (4.57)

Performing the normalization construction with this D then
follows the same recipe. Obviously, one can also use the Maurer-
Cartan form, in which case it’'s now computed via:

Q=D (4.58)

for the coset space lift {.



4.7 DISCUSSION

4.7 DISCUSSION

The coset construction is a powerful suite of tools to construct the
most general EFT associated with a given symmetry breaking pat-
tern. Here we returned to first principles of the theory, presenting
its connection to coset spaces and homogeneous spaces, which are
essential for it to inherit the group-theoretical structure necessary
for the machine to work.

We presented a novel way of performing the construction through
normalization of the invariants. That is, we simply transform the
objects living in the associated coset space, then normalize them
and their derivatives to convenient values in order to fix the group
parameter of this transformation. The remaining quantities are in-
variants. We then related this procedure to the usual one involving
the Maurer-Cartan form.

Finally, we covered some extra remarks of importance in the coset
construction. One was the construction of quasi-invariants which
aren’t exactly symmetric but shift by a total derivative—hence, they
are still permitted in the action. The second one was the issue of
performing the construction when the global groups have been
gauge. In this latter case, it was sufficient to show the usual gauge
prescription of promoting derivatives to covariant derivatives are
still the basic procedure one needs to do.
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5.1 INTRODUCTION

In Section 4.6, we discussed one type of gauge symmetry, which
are global symmetries gauged in the fiber bundle sense. The uni-
verse displays one other type of gauge symmetry, diffeomorphisms,
which is a refined way of saying the mathematical structure of
the laws of physics should be the same in all coordinate systems.
General relativity in particular displays the largest possible set of
diffeomorphisms:

xM — fH(x), (5.1)

which we denote by Diff(4). Note a diffeomorphism group is not
a fiber gauge group, that is, it’s not a global (or finite) group that
has been gauged. This is because the symmetry acts on the base
space of the fiber bundle. The rules of the game are therefore a bit
different. When Sophus Lie first studied the subject of symmetry,
he viewed the group as the same thing as transformations on some
chosen space. That is, something like ISO(3) was defined by how
it acts on Euclidean space. Nowadays, we see groups as abstract
manifolds that don’t need to refer to any other sort of space or
construct. This is what allows us to define coset spaces solely from
the abstract group product.

The problem is that, to the best of our current mathematical
knowledge, diffeomorphism groups can’t be defined as abstract
entities [38]. They must always be represented by how they act on
spacetime. This is why sometimes they are called pseudogroups,
to distinguish them from true abstract groups. There’s no sense in
which we can “break” a diffeomorphism group into a subgroup
and perform a coset construction because there are no cosets to
begin with!
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But remember, the point of writing a coset element was simply
to derive the transformation for the relevant objects in our theory.
If we already have them from some other source—for instance,
diff groups that are defined by how the coordinates transform—
then we can simply apply the normalization procedure. Any group
parameter that we fail to fix through the procedure can simply be
declared to be a field. This is permitted because the group elements
are spacetime-dependent functions, not abstract entities and they
have a transformation rule inherited from the group product. We
will see this in more detail momentarily.

Outline

We structure this chapter in the following way:

* In Section 5.2, we outline how to derive invariant objects for
diffeomorphism groups in an algorithmically manner through
the normalization procedure first described in Section 4.3.

* In Section 5.3, we explain how the description of a broken
gauge symmetry requires introduction of new fields known
as Stiickelberg bosons.

* In Section 5.4, we apply these concepts to derive the effec-
tive field of cosmology through group theory rather than
differential geometry, as it’s usually done.

5.2 NORMALIZATION PROCEDURE, REVISITED

In Section 4.3, we introduced the normalization procedure for
global groups (or global groups that have been gauged). It consisted
of taking all objects q that are transforming under the group G
(typically the transformation law is found by noticing these objects
live in a coset space), and applying some g, € G to transform the
q into putative invariants:

q5Q, (5.2)
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where Q are tentative invariants. Normalizing the Q’s to zero
(or some other convenient value) allows us to fix some of the
parameters of g, and we can always continue the normalization
by deriving dQ, exploiting the fact dg = 0.

Of course, now the problem is that dg # 0, so computing dQ
gives us derivatives of g, that still need to be fixed. Performing
the usual normalization construction should, fix g, in terms of q
and its derivatives, as before, but also in terms of derivatives of g,
itself.

If the symmetry breaking pattern is “large”, i.e., there are ad-
ditional broken global symmetries, then typically we can fix the
derivatives of g, in terms of the Goldstone bosons of the global
breaking pattern. But if that’s not the case, then we have no choice
but to promote the derivatives of g, to fields whose transforma-

tion is inherited from the group product. In this case it’s typically

. . def
convenient to rewrite 9,9% = ey.

In this sense the problem is similar to that of gauging a global
group in which we introduce Lie algebra-valued connection 1-
forms, that is to say, we are taking previously abstract objects and
then using the fact they are now spacetime-dependent to promote
then to fields. However, the transformation of a connection isn’t
inherited directly from the group product, but rather from the
group parallel transport. This means the object ey is typically not a
connection.

Here we give a simple example involving the geometry of planar
curves with reparametrization invariance. For a more extended
example, see Section 5.4 for the effective field theory of cosmology.

CURVE GEOMETRY. Consider the Diff(1) group. It is defined
by reparametrization of some A:
A — f(A). (5-3)

By the normalization procedure, we simply declare the above to
be putative invariants:

51



52

CONSTRUCTION FOR DIFFEOMORPHISMS

A =f(\) (5-4)
dA = f/(A)dA. (5-5)

We can certainly normalize A = 0 to fix f(A), but f/(A) remains
unfixed and there’s nothing more we can do. We must simply
declare f' = e to be a field, the “einbein”, and that’s it. The
Diff(1)-invariant form is just [ edA.

Suppose now the problem is joined with that of the breaking
of ISO(2) — SO(2), which describes planar curves, but now
with diff invariance. These groups are global and usual coset
techniques apply. We won't show it explicitly here for expediency,
but the invariants associated with a curve (x(A),y(A)) are:

dX x'cos®—y’sin6

dA — oy 5:6)
dY  y’cosO+x'sin® (5.7)
dA — 1) ' 2

Putting dX/dA = 0 fixes tan6 = y’/x’. With this solution to-
gether with the normalization dY/dA = 1 we fix what we previ-

ously couldn’t, f'(A) = v/(x/)? + (y’)%. The Diff(1)-invariant line
element is therefore:
dA = /()2 + (y")2d\. (5.8)

Of course, we could also proceed to derive the diffeomorphically
invariant expression for the extrinsic curvature k.
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5.3 STUCKELBERG PROCEDURE

One can wonder if there’s any sense in which gauge symmetries
can be broken. However, as we saw in Section 3.2.2, the associated
conserved charge can be rewritten as a boundary integral:

Q= 3@52 F, (5.9)

for £ a Cauchy surface and F some 2-form. For small gauge
transformations that vanish at infinity, the above is zero. Since the
charge is also the symmetry generator, Q = 0 implies the vacuum is
always invariant, Q|0) = 0. These symmetries can’t ever be broken,
which makes sense since we interpret them as merely ambiguities
in the mathematical formulation of the theory.

So there are no broken (small) gauge symmetries in the sense of
a degenerate vacuum. But maybe there might still be some notion
of Goldstone field. That is, if we “break” the gauge group § — I,
we search for some 7t that transforms homogeneously under J but
not under G:

n=0%n=0 (5.10)

Tt:OEMI;&O. (5.11)

Naively, we would then want to say 7 live in some coset space
G/H.If G and H can be represented by global groups that have been
gauged, then we can just take the global (and therefore abstract)
versions of the groups, G and H, and say that 7 lives in G/H. Then
we perform the coset construction on G/H and gauge the resulting
theory afterwards. For example, local U(1) isn’t an abstract group,
but obviously we can simply break global U(1) then gauge the
result. But when the groups are diffeomorphism groups, they
admit no representation as abstract groups. In particular, there are
no such thing as a coset!

To our present understanding, the way one introduces Goldstone
tields for broken diffs is via the Stiickelberg procedure. Suppose
we have constructed a theory invariant under 3, by using the
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techniques explained in this section. Diffeomorphism groups are
defined by their action on the spacetime coordinates, so the ac-
tion of § on x" is necessarily known and we can transform the
action accordingly. Obviously, it changes, since it wasn’t built to
be G-invariant to begin with. But since the group parameters & are
spacetime-dependent, not abstract group elements, we can simply
promote them to spacetime fields: § = —m (the minus sign is a
convention). This new action, with this new degree of freedom T,
is now invariant under G, trivially so because 7t has a transforma-
tion rule inherited from the group product that makes the action
invariant.

The reason this works mathematically is because setting 7w = 0 cor-
responds precisely to the action being just H{-invariant; hence, the
condition 7t = 0 is invariant under H but not under §. The 7t thus
has the required transformation rule for a Goldstone nonlinearly
realizing G — J.

The reason this works physically is because gauge symmetries
are just ambiguities in our description. Yes, we “created” a new
degree of freedom by adding 7, but we also introduced more gauge
ambiguity that precisely eliminates these degrees of freedom. The
Stiickelberg procedure doesn’t really do anything besides rewriting
things in a different manner that is more convenient for low energy
phenomenology.

One final disclaimer is about the uniqueness of this procedure.
The coset construction guarantees that the Goldstones living in
G/H are the unique way to nonlinearly realize G — H, up to field
redefinitions. This is because of the orbit-stabilizer theorem. How-
ever, there are no cosets for diffeomorphism groups, nor is it there
a version of the orbit-stabilizer theorem. So we don’t know if the
Stiickelberg procedure is the unique way, up to field redefinitions,
of nonlinearly realizing broken diffeomorphisms. Nevertheless, we
don’t know of any counterexample.

FROM PROCA TO MAXWELL. The Proca mass term isn’t invari-
ant under local U(1):

Ay — Ap+0,0. (5.12)
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Declaring © = —m to be a field now, we see its transformation
follows from the U(1) group product: d7t = —A. Since dA, = 9,A,
the Proca mass is now invariant, and the Proca vector has become
a Maxwell gauge vector.

5.4 EXAMPLE: EFFECTIVE THEORY OF COSMOLOGY

Cosmology is the study of the universe’s evolution at the largest
scales. By the Copernican principle, no location or direction in space
is privileged, but there is a notion of absolute time. Concretely, this
means that instead of displaying the full Diff(4) group, cosmology
has a reduced diffeomorphism group defined by its action on
spacetime:

t—t (5.13)
X — f(t,%). (5.14)

For notational purposes, we will call this group CDiff(3), the
cosmology diffeomorphism group. One way to derive the invariants
of such a group is to recognize that it induces a preferring slicing of
the spacetime manifold and then use differential geometry to list by
exhaustion all the objects associated with the embedding of these
slices in the bulk [4]. Let’s perform an alternative, group-theoretical
derivation.

By the normalization procedure, we transformt — T =t and
x — X. The invariant 1-forms then are:

dXH = JEdx" (5.15)
Jh = 0,1, (5.16)

where of course f° = t. We can’t set T to anything, as it doesn’t

transform (giving an algebraic invariant), and setting X = 0 is

insufficient to fix the Jacobian J',. Since J", def e jsn’t an abstract

group element but actually spacetime-dependent, we can simply
use it as a brand new field. Our objects now transform:

55



56 CONSTRUCTION FOR DIFFEOMORPHISMS

t—t (5.17)
X — f(t,X) (5.18)
el — Jhef,. (5.19)

Actually, it’s more convenient to put two e’s together and define
a new object with corresponding transformation rule:

g =ehen™ (5.20)
9" = JiJ5 9" (5.21)
As should surprise nobody, this definition implies g"” is sym-

metric. Now, for the normalization procedure, we are interested
in transforming dt, dx' and g* under CDiff(3) to obtain putative

invariants:
dT =dt (5.22)
dXt =7t dx” (5.23)
GH =]5T5 9. (5.24)

Normalization. The idea is that we normalize as many of the
GHY as possible to fix the Jacobian. Once that is fixed, we obtain
four invariant derivatives by inverting the 1-forms dX*:

dX* = JhdxY = Du =["0.. (5.25)

It proves convenient to parametrize the Jacobian in the following

manner:
1 0 1 0 1 0

Jh = [i i] - [ i i i]’ (5-26)
0 Ij 0 Rj B 6]-

where Rij is a rotation matrix and Ui]- upper triangular. We choose
the following normalization of GH":

00
w_ |9 0

1 0
ou*~j




5.4 EXAMPLE: EFFECTIVE THEORY OF COSMOLOGY

which is sufficient to fix Llij and B'. Nothing can transform g%, so

it’s invariant. The rotation Rt remains unfixed. Nonetheless, since
all objects under consideration transform linearly under SO(3), we
can refrain from fixing it by performing manifestly SO(3)-invariant
contractions. In other words, the indices 1i,j are covariant.

Derivatives. With the above normalization, we insert the solution
for the Jacobian back into our derivative operators, with the caveat
that D; is now covariant, so must be contracted with 5Y:

Dy = g%, (5.28)
(D)? = (979% — g°g") a1 050> (5-29)
Each is invariant by itself, so any combination is also invari-

ant. Using the fact g% is also invariant, we can take the Lorentz
combination:

g% (Dep)? + (Dxh)* = g*v2,bd V). (5.30)

Hence, instead of using D¢ and Dy, we can use D¢ and 0,; the
latter must be contracted in a manifestly Lorentz manner." The
Lagrangian then is:

L(guv;au/ Dt/t)/ (531)

where Lorentz indices must be properly contracted using gh¥
and the derivative operators can only act on CDiff(3) scalars (e. g.,
Dig"’ is forbidden). Since t is the only such scalar, let’s see what
its derivatives are:

Dt = g% (5.32)
Out =8y, (5.33)

In terms of differential geometry, using Dy instead of d,, means constructing
objects that live on the equal-time slices, instead of the spacetime bulk. The fact
either choice is sufficient is a manifestation of the Gauss-Codazzi relations.
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The first line, Dt = gOO, justifies our omission of gOO in the
Lagrangian, as it was already included implicitly. Another quantity
that is also implicit but nevertheless noteworthy is:

ot o,
[ e Nar (5-34)

where the normalization factor sets the magnitude of n to -1.
Remember the rules: 9,, must be contracted in a manifestly Diff(4)
manner to preserve the CDiff(3) invariance of the scalar it acts on.
This means that we must still contract n,, as if it were a four-vector,
even though the end result will not be Lorentz invariant.

Notice that by using n,, we are free to replace D¢ by the Lie
derivative L, along n*. The advantage of doing this is that the
Lie derivative preserves tensorial structure, so now we can take
derivatives of the metric via Lng,v. Actually, n* isn’t a true vec-
tor, so Lorentz contractions of L, g,y will end up being merely
CDiff(3)-invariant. Similarly, we can also take Lie derivatives of
n, along itself.

A special combination of Lie derivatives of g,y and n, receives
the name of extrinsic curvature:

1

K;w = an(gu\/ +nunv)/ (535)

but it’s not a new object, of course. It was already included given
g"’, Dt and t.

Measure. We still need a volume element. That’s simple: just
wedge the four dX"’s and insert the solution to the Jacobian. The
result is:

dV = d*x /g% detg, (5.36)

but since g% is already invariant, we might as well just remove
it from the volume element.

Connection. There’s one final consideration. Recall we decom-
posed the Jacobian in (5.26) in terms of a rotation Rij and an upper-

triangular matrix Ul] We fixed only Uij in terms of the metric,
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arguing that we just needed to make SO(3) contractions to deal
with R; This is true. However, remember that Rij is a spacetime-
dependent matrix, not an abstract group element, so we could’ve
added it as additional fields for the procedure! In turns out these
act as a 3D connection I“].ik for the 3D covariant derivative V?).
(3)

Using t and L,,, we can rewrite V" in terms of the 4D covariant
derivative V.
Output. Therefore, the final end result of the construction are

the following elements:

g},L\// d4X _9/ t/ v},L/ LTL' (537)
5.4.1 In terms of the Stiickelberg field

We can follow the Stiickelberg procedure to endow the cosmology
EFT with the full Diff(4) group. In this way, cosmology can then
be seen as a spontaneous symmetry breaking of general relativity.
A diffeomorphism in Diff(4) but not in CDiff(3) takes the form:

t— t+&0(t, %), (5.38)
X=X, (5-39)

and then we promote £° = 7. Of the elements we derived in the
previous section, g,y and V,, are already Diff(4)-covariant, and dV
is invariant. Meanwhile, the normal vector n,, (and by extension,
the Lie derivate) changes:

Ny — Uy = Oult + ) (5.40)
T gLttt ) '
Therefore the following elements,
Juv, d4X —9, t+m, Vu/ Ly, (541)

are complete and sufficient for building an action that non-
linearly realizes Diff(4) — CDiff(3).
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Let’s make this more concrete by studying what the action looks
like. For simplicity, let’s restrict ourselves to only first derivatives
of 7t in the action. Then the Lagrangian is:

c=y w [a(t v n)z]n (5.42)
n>0

Now we can understand why this form is more convenient
for phenomenology. Remember we want the vacuum 7 = 0 to
be a valid solution to the equations of motion, which means the
Lagrangian cannot contain terms linear in 7t (tadpoles). In view of
this, it’s convenient to rewrite the Lagrangian as:

L =bo(t+m) + by (t+m)[—1— 27+ (dm)?]

+y W 3t +m+ 1]“, (5.43)

n>2

which follows from reshuffling the sum and redefining b, for
n > 2 to extract all tadpoles; the remaining sum starts quadratic in
7t since 9(t + )% 4+ 1 = (97)2 — 27t. So the terms linear in 7 are:

7 (bg — by) — 27tby. (5-44)

This has to be zero. Recall the metric determinant is y/—g; since
the above tadpole is first order in perturbation, we are only inter-
ested right now in the background determinant, so a(t)? for any
homogeneous and isotropic cosmology. Now we can integrate by
parts the above tadpole to mutate 7t into 7, yielding:

7t (bo + by +6Hby), (5-45)

where H is the Hubble parameter, H = d/a. Setting the above to
zero then constrains the first coefficient of the EFT, “for free”! This
is called tadpole cancellation, and its far more transparent here
in terms of the Stiickelberg field than with just the metric. Note
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that tadpole cancellation is model-independent, that is, we haven'’t
invoked the Friedmann equations (or something else if general
relativity has been modified).

If we insert this constraint back into the Lagrangian of (5.43), we
obtain after some algebra an expression that starts manifestly at
quadratic order in 7t

£=Vo(t)+ ) % [An(t)ﬂ“ +dn(t+ ) ((87{)2 —zﬁ)“} , (5.46)

n>2
where
1
Volt) = 6J ds [H(s) — H(t)] by (s), (5.47)
dn—] dn—]
M(t) = 63— (b1) — 65— (Hby). (5.48)

Imposing the FLRW evolution of the vacuum 7t = 0 allows us to
fix the vacuum energy Vj(t). That is, the first Friedmann equation
reads:

3MEH? = V. (5.49)

Taking the time derivative of the above yields the integral equa-
tion:

t
M12°1H = —J ds by(s), (5.50)

the solution of which is by = —MI%IH.
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5.5 DISCUSSION

In this chapter we outlined how to derive the invariants for a
diffeomorphism group. Such a group isn’t abstract and its elements
are spacetime-dependent. Such qualities fundamentally change the
problem, though the normalization procedure we introduced can
still be used. The key is precisely to employ the fact the elements are
spacetime-dependent to promote them to fields where necessary.

We also discussed the role of Stiickelberg bosons as the equiv-
alent of a Goldstone boson for broken diffs, that is, as the fields
that transform inhomogeneously (or nonlinearly) under the bro-
ken diffs. Introducing these degrees of freedom is, to our present
knowledge, how broken diffeomorphism are realized.

As a concrete example, we re-derived the effective field theory of
cosmology. This theory is the one built out of space reparametriza-
tions that can depend on space and time together with an absolute
notion of time. That is to say, it’s the central symmetry group of
cosmology, as the expansion of the universe provides a notion of
absolute time direction. This theory has been constructed before us-
ing differential geometry, but here we provided a group-theoretical
algorithm to do so.
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SHIFT-SYMMETRIC COSMOLOGIES

6.1 INTRODUCTION

Inflation is a period of near de Sitter acceleration and is currently
the favored model to describe the origin of primordial fluctuations
in the early universe [21]. These are responsible for seeding all
perturbations in cosmology we see today, such as the cosmic mi-
crowave background and the large scale structure of matter. In
particular, inflation is adept at explaining two key features of these
primordial fluctuations: its near scale invariance and adiabaticity.

The field that sources this accelerated expansion is a scalar known
as the inflaton. The most common type of inflaton theory is one
that generates slow roll inflation, meaning the scalar background
evolves slowly across its potential. But scalar fields are typically
vulnerable to naturalness issues, as displayed also by the Higgs field
[39]. If the cutoff of the inflaton theory is A, with Mp; > A > H,
its mass receives quantum corrections of order A. Furthermore,
degrees of freedom with mass higher than A manifest themselves
as higher dimensional operators that further modity the shape of
the potential. These corrections then ruin the slow roll potential
necessary for inflation to persist for a sufficient period of time, the
so-called n problem [40].

Of course, pragmatically, there is no issue whatsoever with this.
One simply tunes the bare parameters of the potential against the
quantum corrections in order to match observations. However, if
we need to retune the bare parameters at each order in perturbation
theory, then it would seem to suggest that UV physics is being
constrained by IR physics, which, while not forbidden in principle,
is still quite vexing [41].

A relative simple way of taming these quantum corrections is
through a mere shift symmetry which the corrections themselves
have to satisfy all the way to the quantum gravitational scale Mp;.

65



66

SHIFT-SYMMETRIC COSMOLOGIES

Concretely, this means flattening the potential. Unfortunately, this
rises more questions that it answers. It’s generally believed that
no quantum gravitational theory can have global symmetries (e.g.,
throw global charge carriers into a hairless black hole and you
destroy the charge forever). This means any model with global
symmetries would then live in the swampland of theories that
aren’t UV-completable [42—44]

Tackling the problem from an effective field theory (EFT) point
of view allows us to determine, concretely, what the consequences
of a shift symmetry for inflation are, while dodging all the issues
discussed above. This lets us to consider all models of single scalar
inflation together, without any bias or preselection. The structure of
the additional shift symmetry then lets us make predictions for all
these theories. In short, we can derive observational consequences
that must be satisfied if a shift symmetry has anything to do
with inflation, in any form. One of they main tools for this is
the interplay between spontaneously broken symmetries and the
infrared structure of theories, which leads to various theorems the
primordial spectrum of fluctuations must satisfy.

Formalizing the nature of shift symmetries in inflation also lets
us scrutinize some statements found in the literature. For example,
in the standard slow roll EFT [4], the parameters of the theory,
which in principle can be time-dependent, are taken to be roughly
constant by invoking an approximate shift symmetry. As we will
see, these arguments are less robust than at first glance.

Cosmology is a gravitational theory and as such diffeomorphisms
are its key symmetries, so we will invoke many of the tools we
discussed in Chapter 5. Even the shift symmetry must be treated
in this manner—it may be global, but it nontrivially mixes with
the pseudogroup of diffeomorphisms. Actually, since much of
the discussion uses these generic symmetry tools, it can also be
applied to other subjects of cosmology that might also involve
a shift symmetry, such as superfluid dark matter [45] and dark

energy [46, 47].
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Outline

This chapter follows this structure:

¢ In Section 6.2, we introduce the idea of broken time trans-
lation mixed with broken internal symmetries, in particular
shifts. In flat spacetime, this breaking pattern governs various
condensed matter systems. We then move on to apply the
same principle for curved spacetimes, but now in terms of
broken diffeomorphisms.

* In Section 6.3, we reintroduce the effective field theory of
cosmology, first discussed in Section 5.4, then use the concept
of the broken time diffeomorphism mixed with the broken
shift to derive recursive constraints for the EFT parameters.

* In Section 6.4, we discuss the consequences of the infrared
structure of the EFT of cosmology in the presence of the shift
symmetry. This includes the presence of additional adiabatic
modes, classical solutions produced by the broken diffeomor-
phism that are genuinely physical despite looking like mere
gauge modes, as well as soft theorems, which constrain corre-
lators where one mode is of much lower momentum than the
others.

* In Section 6.5, we conclude the EFT of shift-symmetric cos-
mology by studying some phenomenology of a certain class
of models included in the EFT. In the inflation literature, these
models are part of the so-called ultra slow inflation class of
models.

6.2 BROKEN TIME TRANSLATIONS
6.2.1 Non-gravitational systems

Condensed matter systems, being nonrelativistic, can be seen as
possessing Galilean symmetry. Yet the universe is fundamentally
Lorentzian, so a more accurate statement is that these systems
do possess Lorentz boosts as a symmetry, but it’s spontaneously
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broken. After all, a condensed substance selects a preferred frame
of reference: its own rest frame.

In practice, all known condensed matter systems also break
additional Poincaré symmetries. In particular, time translations
are broken, because of the rest mass of a system’s constituents.
For example, consider the air in a room. The excited states of
this system are described by sound waves (or phonons) on top of
a "vacuum" state, which is not a literal vacuum but merely the
absence of sound. But air molecules still have mass in this vacuum;
the total air in the room still has a total energy given by mN where
m is the average mass of a molecule and N the number of them.
This seems immaterial, but remember that energy sources gravity,
so the absolute energy of the vacuum does matter!

To make things more complicated, the air molecules still undergo
thermal fluctuations, so that the vacuum also has a nonzero thermal
energy. Worse, sound waves can’t propagate without dissipative
effects, so we can’t even talk about energy being conserved. Let’s
then go the world of superfluids at zero temperature, where things
propagate losslessly and no thermal excitations arise. This means
we could define a new Hamiltonian:

H =H—mN, (6.1)

subtracting the inaccessible mass-energy stored in the molecules.
Since } is conserved and N too (assuming no chemistry that can
convert air molecules into other things), H is conserved as well.
And while 7 and N are broken, the overall combination H is not
[31, 48]. The existence of the conserved H then allows us to see the
system as being in equilibrium: if time evolution is now defined by
H, then the vacuum is static.

This forms the most basic symmetry breaking pattern for con-
densed matter, the superfluid. More generically, one has a chemical
potential p and an internal charge Q so that H = H — uQ is un-
broken [31]. The biggest advantage is that working in terms of K
instead of J{ is really just a basis change at the level of the abstract
Lie algebra of the symmetry. That is to say, we can describe the su-
perfluid symmetry breaking pattern uniquely in group-theoretical
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terms. This allows the coset construction described in Chapter 4
to be immediately applied to them without issue, and the most
generic superfluid EFT can be readily constructed [49].

Other breaking patterns are possible as well. Solids for example
break space translations P together with additional internal sym-

metries Q, such that P=P— nQ is unbroken. We won’t discuss
them here, but the important insight is that broken internal sym-
metries mix with broken spacetime symmetries, from which the
bulk properties of condensed matter systems can be classified [50].
This also neatly explains why condensed matter systems violate
Goldstone’s theorem. After all, the theorem only applies to internal
symmetries [51].

Trouble arises when both Py and Q are conserved but broken, yet
no spacetime-independent combination between them that leaves
the vacuum invariant exists. For example, consider the driven
superfluid:

£ =P(X)+ A, (6.2)

where X = —(d¢)?/2. Notice this Lagrangian has a shift quasi-
symmetry, 8¢ = Qd = 1. The equation of motion is:

G (P x +2XP xx) = A. (6.3)

For A = 0, it is always solved by ¢ = ut regardless of the choice
of P(X). This then implies

ued = = (Po—uQ)d =0, (6.4)

as required, so the system is in equilibrium. As soon as A #
0, however, the above won’t be true anymore and the system
will be out of equilibrium, which makes sense since the exter-
nal source term A¢ drives the system. The problem is now no
group-theoretical description of this symmetry breaking pattern
exists. Of course, it is true that

(Po—$(1)Q)P =0, (6.5)



70

SHIFT-SYMMETRIC COSMOLOGIES

but this statement makes reference to spacetime. Defining a new
symmetry generator Py = Py — (T)(t)Q is nonsensical at the level of
the abstract Lie algebra. No coset can be constructed from this, so
the coset construction can’t be applied.

In some cases, additional symmetries may help us tame the
problem. For example, suppose now that P(X) = X, that is:

L=—=(3d)+Ad. (6.6)

1
2

Then the theory enjoys an additional shift quasi-symmetry 8¢ =
B¢ = x*. The equation of motion is now solved by ¢ = At2/2 + ut,
which means the following holds:

(Po—1Q —AB%)d =0, (6.7)

allowing us to define the new generator Py = Py — uQ — ABC in
an abstract manner. Of course, in this case, B® isn’t an internal
symmetry, so the system isn’t quite a superfluid. And, in general,
we won't have any such additional symmetry.

6.2.2 EFT of cosmology

We have broken time translations and broken shifts, but without
any spacetime-independent combination between them that is un-
broken. If the problem is we can’t denote the symmetry breaking
pattern in an abstract manner, then let us work with groups that
aren’t abstract: diffeomorphism groups. In particular, we are in-
terested in broken time diffs, which leads us to the effective field
theory of cosmology we saw in Section 5.4.

Let us recall the EFT of cosmology. If general relativity is the
theory enjoying the full group Diff(4) of spacetime diffeomor-
phisms, cosmology is the theory with merely the CDiff(3) group
of absolute time diffeomorphisms:

t—t, (6.8)
X — f(t,X). (6.9)
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The most general toolbox for building an action with this sym-
metry was found in (5.37) and consists of the objects:

Iy, d*x V=g, t, Vw L., (6.10)

where n,, =8 /1/—¢%. All Lorentz indices must be contracted
properly. Now, of course we could consider arbitrary applications
of the derivatives, such as Lff‘gw, but in fact we are only interest
in two:

Lot = g%, (6.11)
Ln(guv +nuny) = 2Ky, (6.12)

because too many derivatives of the metric renders the action
pathological. In addition to an Einstein-Hilbert term, we can build
a Lagrangian £ expanded in terms of g°° and the K.

bﬁluwm(t) 00\n m
L= Z W(g )" (Kuv) ™, (6.13)
n,m=>0

where to avoid overcrowding the expression with indices, we are
denoting;:

bilm/)m _ b%] celm V] Vim

’ (614)
(Kuv) ™ = Kygvy -+ - Kipovin - (6.15)

For the purposes of phenomenology, it's more appropriate to
expand the Lagrangian in terms of perturbations of geometrical
objects around some background. So we rewrite the Lagrangian as:

b(l'n/>m

00 %
L=y S =T+ )™ (K + Kpn)™, (6.16)
n,m>=0

or, expanding the binomial product,
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-y sy S

nm>0psngsm

X (=1)™P ()™ (59%)P (5K} T (6.17)

Notice that the following is true for the n, p summations:

YY-yy-y, 9

n>0psn  p=0n<sp  pl>0

where we defined a new dummy index { = n —p. A similar ar-
gument holds for the m, ¢ summations, defining the new index
k = m — g. Taking the Lagrangian and expanding the binomial
coefficients and shuffling summations as described yields:

b<PW>k+q

1 0 =k
C= D o | 2 o D (R | (%07 (8K
pg=0 " ek>0 T
(6.19)
déqu 00
= Z W(ég )P (8Kuv) 9. (6.20)
pq=0

That is precisely the series expansion in terms of the fluctuations,
with the d’s the new coefficients. They are related to the original

b’s via:
() b<PW>k+q
uv 0+ e k
k>0

For completeness, we note that the extrinsic curvature of the
FLRW background is given in terms of the scale factor and Hubble
parameter by:

Ky = a?H(gyy + 8589). (6.22)
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Before we move on to the next step, it proves convenient to
rewrite some of these EFT coefficients in terms of parameters
describing the cosmological background. Let us focus on the linear
action:

L = do(t) + dy (t)59% + do(t) 5Kk, (6.23)

This is the only part of the EFT that contributes towards the
background stress-energy tensor:

_ -2 6(\/—gL)1
T = . (6.24)
" lv—g OGHY | 5400=5K,, =0

Sourcing the FLRW background through this stress-energy, we
impose the two Friedmann equations in order to fix:

A

do

MEH%e = —dj — >

3MEH? = —do — 2d; + 3Hdo, (6.25)

with & % _F /HZ. Lastly, there’s the speed of sound c; of scalar

fluctuations. Once we impose the above conditions, we look at the
corresponding Lagrangian for the Stiickelberg field 7. It starts at
second order in 7, as it has to if we want to interpret 7t as a fluctu-
ation around a background rather than sourcing the background.
The quadratic terms are:

. 1., 1

L =MiH (‘?g”z + E(am)z + 5H2> (6.26)
1 2d,

— =1 6.

C% + SMlez ( 27)

Now we have all the pieces on the board to actually tackle the
shift symmetry, which we do in the next section.
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6.3 CONSTRAINTS ON EFT PARAMETERS
6.3.1 Procedure

One issue in building a field theory using only the metric as our
degrees of freedom is that it’s not immediately clear how to in-
troduce internal symmetries. These are symmetries of the matter
field ¢ which doesn’t appear at all in the action, so how should the
symmetry be realized?

6.3.1.1 Cosmic time

The key is that any field transformation looks like a diffeomor-
phism. Generically, a scalar transforms under an internal symmetry
as:

5 = f(). (6.28)

In fact, through a field redefinition ¢ — [ f(¢), we can always
recast the symmetry as a shift 0¢ = c, so we can set f($p) = ¢
without loss of generality. Now, any background ¢ breaks the shift
symmetry Q, but suppose it also breaks time translations (but
not spatial ones), so & = ¢(t). A covariant theory has an infinite
diffeomorphism group of coordinate transformations, generated
by the Lie derivative. For the scalar, the Lie derivative acts as:

Led = £40u0. (6.29)

We see then that the combination of a specific diffeomorphism
&M = 68 /$ together with the charge Q leaves the vacuum invariant:

(Le—=Q)$ =0. (6.30)

This defines a notion of nonuniform time translation that is still
a symmetry. Note that for this to make sense, ¢ must be monotonic

or the argument breaks down at b = 0. So we can always take ¢ to
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be invertible. It is then easy to see that the finite time transformation
that represents this symmetry is:

t— & (P(t) +c) (6.31)

Of course, there is a price to pay. This diffeomorphism is not an
isometry of the metric, so the latter does change under it:

89y = (Lg — Q)guv = £°0p gy + 295,01 E", (6.32)

1, —

where we used the charge is internal, so it’s impossible for the
metric to transform under it, Qg,v = 0. At this level, it doesn’t seem
we have accomplished much other than shuffling the symmetry
around. The key is that the effective theory is constructed precisely
out of geometric objects satisfying all symmetries of the background
¢.

While we want the effective field theory of cosmology to break ar-
bitrary time diffeomorphisms, we want to impose that it should still
be symmetric under this specific one. This means the Lagrangian
should transform as a scalar under this diffeomorphism:

c (0L 0L 0L
L: L=, L=—|—+—0¢ —— 0,0 } }
3 & 0y (at + agwguv + 30,9y pQLW) (6.34)

At the same time, the Lagrangian should also transform accord-
ing to the imposed metric transformation (6.33):

oL 0L
8L = ——8guv + s—0p8guv (6.35)

Oguv 00p Gy
Equating L; £ = 6L then imposes a constraint on the coefficients
of the Lagrangian. For clarity, it proves useful to first compute these
constraints assuming no extrinsic curvature before performing the
more complex computation with it.
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6.3.1.2 Clock time

As the inflaton background ¢(t) evolves monotonically in time, it
selects a time coordinate T in which its rate of change is constant:
0:$ = 1. We relate this coordinate to the usual cosmic time t via:

udt = cT)dt, (6.36)

which is a pure time diffeomorphism, t — 1(t). Now, the effec-
tive theory of cosmology isn’t built to be invariant under these
diffeomorphisms, so its mathematical form, including relations be-
tween coefficients once the internal shift is imposed, do change. In
any case, the Lagrangian can still be constructed in this coordinate:

C§1Pw>m(ft) 00yn m
L= Z Tm!(g ) (K) ™ (6.37)
n,m=>0

We can repeat the same argument as in the previous section: find
the diffeomorphism L; that leaves the background invariant:

(Le = Q)d(1) =0, (6.38)
except now the answer is trivial: £* = c8j since the background’s
evolution is constant. In short, the special diffeomorphism that cor-
responds to the shift symmetry in clock time is a uniform time
translation. So imposing the shift symmetry is simply the require-
ment that all the ¢’s be constant in time. The downside is that these
coordinates aren’t the usual ones for computing observables in
cosmology; in particular, 3:g% # 0 is inconvenient.

6.3.2 Relations for £(g*)

Let’s first start with the simpler case where the Lagrangian only
contains g°° terms. We work in cosmic time where the Lagrangian
is:

L=y b“—(t)(goo)“, (6.39)

n!
n=0
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and insert it in L; L:

1

L L ==L (6.40)
¢
L nby . n—
= —Z l —g%(g" (6.41)
n!
n>0

In the sum, the term proportional to §° vanishes for n = 0, so
we can shift the dummy index n — n +1:

= Z [ ““ OO] (g% (6.42)

n>0

Meanwhile, we compute the variation of the Lagrangian 6.,

using the transformation rule for g%

nb _
5L=) (g 5g™ (6.43)
n=>0
nb 2dnb
=+ Z [ =% (g0)n T 4 %4)—,“(900)“] (6.44)
n>0 Cl) n:

Again, the term proportional to g% can have its dummy index
shifted, n - n+1:

_ _Z [ 1 400 Zfl_D b_n] (g2, (6.45)

[
n>0 d) n

Setting L¢ £ = 5L order by order in powers of (g%)™ enforces the
relation:

.20
¢

We also need the relation for the d(t), the coefficients of the
expansion in terms of 5g%. We start with the relation between the
dn and by, take a time derivative and insert (6.46):
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. bm n m
dn=) =) (6.47)
m=0 )
2(]) bm+n(m+n)
¢ _ym 6.48
3 mZ>O — (—1) (6.48)
2 D 1)+ (nt1), 1vmei bmin, 1ym
_ Sy el 1
d mZ%) (m—T1)! (=1) +an>o m! (=1)
(6.49)
2
29 (dn— ). (6.50)

Importantly, these relations are perturbatively invariant under
renormalization group flow. Should we wish to compute quantum
corrections to the various coefficients in the EFT, the relations must
be preserved, as they follow from symmetry.*

We can also recast these relations in a different form to make its
dependence on the FLRW background clearer. Recall that dy and
d; are fixed by the FLRW background:

M3 H%?e = —d;,  3M{H? = —dy—2d;. (6.51)
At the same time, we have the n = 0 relation that connects these
two d’s:
. 2¢
do = ——d1 (6.52)
¢

Recognizing n def /€H then lets us solve for the ¢ term:

%" =2H((3—2e+m), (6.53)

1 We don’t expect the symmetry to become anomalous at the quantum level, but
it can be broken by nonperturbative effects.
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so that the recursive relations of the EFT coefficients become:

dn =2H (3 —2¢ +1) (ndn — dn41) . (6.54)

In the literature, it’s not uncommon to assume the near constancy
of the EFT parameters during slow roll inflation by evoking an
approximate shift symmetry. Here we see this isn’t well justified.
The slow roll conditions ¢ < 1 and n| < 1 are incompatible with

dn = 0! We will have more to say about this in section Section 6.5.

6.3.3 Relations for £(goo, Kuv)

We are now ready to tackle an action contain both the g% and
K,v terms. To avoid repeating most of the same arguments from
the previous section, we perform the computation in a different
mannet, this time in clock time. For the clock time Lagrangian,
imposing the shift symmetry simply means all coefficients in the
theory must be constant in time:

(HV)m
_ Cn 00yn m
L= Z W(g )™ (Ku) ™, (6.55)
n,m=>0
dcim g (6.56)

This was easy. The hard part is transforming it to cosmic time,
which is a more commonly used time parametrization. Recall we
need to remap T — 1(t), defined by:

dt -
hyp = (6.57)

Transforming g% under this coordinate change is straightfor-
ward: g% — cT)ZgOO /u?. The extrinsic curvature Kuv, however, is
more complicated. It’s not a tensor under time diffeomorphisms,
so we must go back to its definition:
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—

Km/ = Ln(gu\/ + nunv) (6.58)

Y

Nl

Q

After some calculation, one can check the extrinsic curvature
doesn’t transform under purely time diffeomorphisms, K,y — K.
This is expected, since K,,, measures the curvature that a constant-
time slice of spacetime is endowed with due to this embedding.
But purely time diffeomorphisms don’t change the embedding or
how we slice spacetime, merely the threading of the slices, that is,
how we stack them together.

Therefore, the Lagrangian in usual cosmic time is:

(T)Zn Cgﬂ/) 00
L= F n!m! (g7)™ (Kun)™, (6.60)
n,m>=0 T
_y n,m, (9™ (Kpw)™, (6.61)
n,m=>0

that is to say, the b’s of the theory in cosmic time are related to
the c’s of the clock time theory by:

bIm — ‘bZn . (6.62)
L

The requirement that 6Tc§1}w>m =0 = Cﬁw

following relation for the b’s:

™ then forces the

pivim 28 i (6.63)

- n

Rewriting in terms of the d’s using (6.21) leads to:

.%W) - g (ndnuv diﬂ-]) ) + d§1 Y ]L(Hm+1vm+1 : (6'64)
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In the previous section, we were able to recast dy and d; in terms

of the FLRW background metric by using the Friedmann equations.

Unfortunately, this won’t work here as we have three d’s but still
only two equations:

M H?e = —dy — =,  3MjH?* = —dy—2d; + 3Hdy. (6.65)

If we now try to solve for the ¢ term, the best we manage to do
is eliminate dy and dy:

20 gng2d (6.66)
¢ ds

The recursive relations then aren’t fully specified purely in terms
of the background as d; acts as a free function:

Hm+1Ym+1°

(6.67)

PRqiaY d v v v %
A _ (6H+2d—1) (ndit™m — ) gk

6.4 INFRARED STRUCTURE
6.4.1 Adiabatic modes

For the purposes of computing observables in cosmology, we aren’t
particularly interested in working with the metric directly, but
rather the scalar and tensor modes it contains. For instance, the
scalar curvature fluctuations ( generated by inflation in the early
universe ultimately source temperature perturbations we observe
in the CMB today. Similarly, tensor fluctuations hy; are expected to
act as a primordial source of gravitational waves. These degrees of
freedom are extracted from the metric via its ADM decomposition:

ds? = —(1 + «)2dt?
+ (a(t)e®)?(8; + hy) (dx' + pidt) (dx¥ + pIdt), (6.68)
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where o and B! are called shift and lapse, respectively. For sim-
plicity, we will set tensor fluctuations to zero, hi; = 0, and also
assume the lapse is a scalar mode, 3; = 9;1. Spatial indices are
lowered and raised via &y;.

The shift and the lapse don’t actually appear with time deriva-
tives in the Einstein field equations. This means they aren’t prop-
agating degrees of freedom, but rather Lagrange multipliers, so
that their equations of motions represent constraints for the theory.
Inserting the solution to these constraints back in the action then
produces a pure ( action. To first order in perturbations, these
constraints are:

9; (Bx—¢) =0, (6.69)
99, (a2¢ +32HY + o+ c) —0, (6.70)
(6.71)
and are solved by:
1,

x = @C, (6.72)

FX) 1 (*
o= [ avan e + e, ©73)

for F(X) some arbitrary function and ©® a model-dependent pa-
rameter, equal to H if the scalar field action contains only first
derivatives.?

Now, the difficulty is that the symmetries of the action with the
Lagrange multipliers won’t necessarily be inherited by the pure
¢ action. Only those that leave the constraints invariant will. This
is a problem for our shift symmetry. The transformation for «, B*
and ¢ are found by applying a diffeomorphism &" on the metric.
Infinitesimally, they are:

2 For instance, if £ = P(X)+ G(X)O¢ for X = —(04)2/2, then © = H +

$3G x/2Mpy.



64 INFRARED STRUCTURE

So = &9, (6.74)
1 .
58 =HEC + 30iE) (6.75)
. 1
5B; = &' — gaia‘). (6.76)

We can then check that the shift diff £, = ¢/ cT)éfL will not leave the
constraint equations invariant, unless we are in the zero-momentum
limit where all fields have no space dependence.

There’s still hope. The shift diff failed to be a symmetry of ¢
despite being a symmetry of the metric. There’s the possibility that
other diffs in CDiff(3) might also display the same issue. Then
perhaps two wrongs can make a right, that is, we combine the two
bad diffs into a good diff that is a symmetry of both the metric
action and the C action.

Since ¢ measures scalar fluctuations of the expansion of space,
we will make the ansatz that the CDiff(3) diff we look for is a
time-dependent dilation of space:

M = (%,c%(t)xi> . (6.77)

Inserting this diff into d«, 8Bt and &, then demanding that the
constraint equations be left invariant even at nonzero momentum
yields the solution:

¢ . .
Alt) = AO—J dt’ <E+ (@—H)i). (6.78)
¢ $?

In what follows next, whenever we mention the shift symmetry
acting on ¢, we mean the above diff, not the original diff of the
metric action.

One of the crucial aspects of symmetries is that, given one solu-
tion to the equations of motion, one can produce new solutions by
acting with the symmetry. And if the symmetry is nonlinearly real-
ized, then even the trivial { = 0 solution can be transformed into
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something nontrivial. Since { measures adiabatic fluctuations of the
expansion of space, we call these new solutions adiabatic modes
[52]. At first order, the shifty adiabatic mode (SAM) is obtained
from the expression of 3¢, setting ¢ = 0 before the transformation:

(sAM = C (% + 7\(t)> : (6.79)

Note that, because this gauge transformation is large (it’s homo-
geneous in space, therefore it doesn’t vanish at the boundaries of
spacetime), it constitutes a genuine physical transformation. Hence,
even though (sav is a gauge profile, it’s a physical mode.

The choice of free parameter A, in (6.78) represents an additional
choice of a homogeneous dilation of space. Indeed, once can check
that such dilation is immediately a symmetry, in the sense of being
a CDiff(3) transformation that preserves the constraints, without
any other diff to compensate. The corresponding mode is then
the adiabatic dilation mode, or Weinberg mode after its discoverer
[52]. In what follows, we will set Ay = 0 but keep in mind the
homogeneous dilation exists as a permitted symmetry.

Once we start talking of dilations, one may ask about the rest
of the Euclidean conformal group, namely the special conformal
transformations (SCT) corresponding to X = x’b. Indeed, it’s a
symmetry as well, but this one requires a correction to preserve
the constraints. The SCT diff vector turns out to be [53]:

. . . St ae’
a:z(b-z)z—xzb—ZbJ %. (6.80)

6.4.2 Soft theorems

We are used to the implication of unbroken symmetries on quan-
tum correlators. The linear realization of a symmetry reduces the
amount of information needed to fully described the correlator. For
instance, if the vacuum is unbroken under the Euclidean group,
then (0|¢p(X)d(1)|0) must be a function of |X — 4. For broken sym-
metries, the conclusion is more complicated, but arguably more
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interesting as well: it takes the form of a soft theorem, describing
the infrared structure of correlators.

To demonstrate the procedure, we will first start with two hard
modes (with large momentum) and one soft (with small momen-
tum).

6.4.2.1  Two hard modes

We take as an axiom of our QFT in the FLRW background to be the
existence of a momentum space operator product expansion (OPE)

[54, 55]:

230 - .
CivaaCia = (21383 (G)P(K) + (k) (g + g(k) g +0O(q), (6.81)
where we have assumed Euclidean symmetry is unbroken and
taken the operators to be equal time. The first term in the OPE is
defined so that, when q = 0 exactly, the ensemble average of the
LHS is the power spectrum:

<C1zc_1z> = 2m)3P(k). (6.82)

Note that in attractor models of inflation, for which the mode Ci
becomes constant the moment aH > k, are characterized by C not
being an independent operator in the OPE (6.81) [54]. In our case,
we don’t want to exclude non-attractor inflation, so we keep l.

Broken symmetries can be used to fix the functions f(k) and
g(k). We use that the action of a conserved charge Q generates
the infinitesimal transformation under the symmetry. For instance,
consider dilations of space 6X = —X. This is a large diffeomorphism,
so it’s a genuine symmetry, and it respects the constraint equations.
Let’s denote its generator by D. The transformation 6((X) in posi-
tion space under this diff can be computed as usual, then converted
to momentum space:

5z =D, ¢g] = (2m)°8° (k) — 3+ K- 0g) g (6.83)

Let us now apply the dilation charge on the OPE. For ease of
notation, we call k; =k+ q/2 and k; = —k—q/2
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(1Q, ¢, G, ) = 1Q, G ko + 0 [Q G (6:84)
= (34K -0, +k2-0 <Ck] &, > (6.85)

where any other contribution drops because ({;) = 0. Since in
3P(k

terms of the power spectrum, <C121 CE2> = (271)3P (k)83 (K1 + K3),

we have that:

(1Q ¢, ;) = (1 =g )Pkn) (278 (K +Ka), (6.86)

where the spectral index ng is simply defined by the above
expression.
Meanwhile, acting with D on the RHS merely yields:

[f(k) + g(k)ad ([Q, ¢gl) = (2m)*f(k)5>(q). (6.87)

Comparing the LHS to the RHS and recalling k; +k; = §, we
thus conclude that:

f(k) = (1 —ng)P(k). (6.88)

The same argument can be repeated with the diffeomorphism
L; corresponding to the shift symmetry. In momentum space, we
have:

= = 1
5¢r = [Lg, Cd = A()((2m)°83 (k) — (3+K-935) (e + 5 = (H(2m)?8% (k) + &p).
(6.89)
Again, applying it to the OPE yields:

1

g(k) ey

e[ B

[(T—ng)P(K)H—P(K)]. (6.90)
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We now wish to take the OPE and add an additional soft mode
(g on both sides. Actually, there’s a slight ambiguity as to whether
we add (g by left or right multiplication. It turns out that to obtain
a well-defined real value for our correlators, we must treat both
options the same so that imaginary parts cancel out. We can denote
this by anticommutation. For example, in the LHS of the OPE,

1
E{Cq, Ci_q/2Cksq/2) (6.91)

accounts for both left and right multiplication. Furthermore, we
denote by a prime ' the bare correlator:

(AgBy ) = 2P (ER) (A B ...) (6.92)

to avoid carrying along factors of (27)3 and momentum-conserving

83(K). So, by attaching the soft mode to our OPE and averaging on
both sides, we derive the following soft theorem:

1 / /
> (184 Ge_galonrqra) =100 (Caeq)' +

k) . .
% (CqC—q+ Cql—q) +0(q), (6.93)
which simplifies to:
/ P )

(1 —ng)P(k)P(q) +0O(q). (6.94)

Actually, an additional large diff that also satisfies the constraint
equations is the special conformal transformation 86X = —|x|*d along
a unit vector 1. Repeating the entire argument with this symmetry
then sets that the first correction to the above relation starts at
O(q?/k?) rather than O(q/k) [54, 56]. This is called an enhanced
soft limit, a telltale sign there are multiple broken symmetries.
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Note that these relations are model-dependent. The function ©
is simply H if the Lagrangian of the scalar field contains only first
derivatives, but can be more complicated otherwise. Similarly, the
various appearances of ¢ require knowledge of the scalar back-
ground. The spectral index ngs and the power spectrum P(k) can
be directly measured from the present-day CMB just fine, but the
time derivative P(k) would require us to observe the CMB at differ-
ent points in time, which is incompatible with how observational
cosmology is performed.

As we said before, a certain collection of models dubbed attractor
models display the feature that C freezes outside the horizon, that
is, (i = 0 the moment that aH > k. Thus the mode ceases to evolve
during inflation.3 Assuming we evaluate the soft theorem at the
moment when the hard modes freeze, then P(k) = 0, and the result
simplifies:

(Cale_glign) = (0 —nIPP() +O(q?). (6.95)

This theorem is now model-independent (other than the mild
assumption of the attractor) and can be directly tested with CMB
information. It is the famous Maldacena consistency relation for
single field inflation. It is often proclaimed that observing its viola-
tion would rule out all models of single field inflation, though in
reality only attractor models can be falsified in this manner.

6.4.2.2 Multiple hard modes

The technique follows identically even if we wish to consider corre-
lators of n hard modes, that is, modes with large momentum. The
n-hard OPE now takes the form [57]:

[T am = (270%Ba(Ka)8* (@) + i (Ka) Lg + gn (Ka) Egq + O(q).

a=1

Of course, after inflation is done and we enter the later eras of cosmology, the
mode unfreezes as the horizon grows. But then we are in the realm of well
understood physics, so we know how everything should evolve.
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(6.96)

Again, the first term in the OPE is fixed by the definition of the
polyspectrum:

<H C]ga> L (27)3Bn (Ka)8(ZKo). (6.97)

a=1

As illustrated in the previous section, applying the dilation and
shift symmetries let us fix the f;, and gn functions, such that:

fn(]za) = _ﬂ(n)Bn(Ea)/ (6.98)

gn(]za) = _&;i@ {—HD(TL)B“(QQ) — Bn(]za)] ’ (6.99)

Dmy def [3(n1) + lea . a]za] . (6.100)
a=1

The n-hard soft theorem then is:

] n ' ,
7 <{Cq, H Cﬁad/n}> = fn (Cql—q)
a=1

1 - N
T 59 (Cqlg+ CqC—gq) , (6.101)

A L $p(a) N

z - =——— |HD,\Bn(kq) + Bn(k

— <cqa||] ckaq/n> o DimBnlka) + BalK)]
_P(q)g(n)Bn(Ea)‘Fo(q)-

(6.102)

Again, usage of the special conformal symmetry enhances this
soft theorem so that the corrections actually start at O(q?).

6.5 SOME PHENOMENOLOGY FOR £(g%)

We will now discuss some phenomenology for the EFT of inflation.

For the sake of expediency, we will disregard extrinsic curvature
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terms and work with only 5g° At the level of the scalar field
action, this corresponds to a shift-symmetric theory without higher
derivatives, namely:

S = Jd“x\/—_gP(X), X = —%guvapq)avq). (6.103)

6.5.1  Ultra slow roll inflation

First, let’s examine the background inflationary dynamics. We have
already seen the various FLRW parameters in the previous sections,
but let’s discuss them more explicitly. Recall that given the FLRW
scale factor a and Hubble parameter H = 9 log a, we define the
first two slow roll parameters as:

def H def &
T "o

Slow roll (SR) inflation is defined by a near de Sitter background,
meaning H nearly constant so ¢ < 1, and that evolves slowly in
time, so n| < 1. Ultra slow roll inflation (USR), on the other hand,
is a a near de Sitter state that is allowed to evolve quickly, that is,
n can be large [58]. Typically the system evolves towards de Sitter,
i.e., pushing ¢ to zero, so thatn < 0.4

It turns a shift-symmetric EFT without extrinsic curvature terms
supports only USR, not SR. Recall the recursive relation:

(6.104)

dn =2H(3—2e+n) (ndn — dn41), (6.105)
as well as the speed of sound:

1 2d,

£M—Pl]—lz. (6106)

The names for these conditions make more sense when working with the scalar
field Lagrangian, in which case they follow from the nature of the field’s evo-
lution through a potential. In the spirit of the EFT, we wish to avoid using the
more fundamental scalar.



6.5 SOME PHENOMENOLOGY FOR £(g%)

We can now rearrange the d = 1 relation as:

e(3+3c2—2e+m) =0. (6.107)

Imposing the slow roll conditions ¢ ~ 0 and n ~ 0, the above can
only be true if cZ ~ —1—indicating the background isn’t stable—
or ¢ = 0 exactly, which corresponds to models of ghost inflation
[59]. Thus, in general, we expect only ultra slow roll in this case,
corresponding to ¢ ~ 0 and 1 ~ —3(1 +c2).

Thus the argument that an approximate shift symmetry leads to
the near constancy of the EFT parameters in slow roll inflation is a
bit dubious: shift symmetry and slow roll are incompatible! Indeed,
armed with (6.107), we can now write the recursive relation in the
more compact form:

dn = 2Hc2 (ndn — dnt1) - (6.108)

Unless we are in Minkowski space, the coefficients can only
be constant if ¢ = 0 which is well outside the EFT’s domain of
validity.

So far we have worked only at the level of the EFT, utilizing only
our recursive relations imposed by the broken shift symmetry. For
completeness’s sake, one may wonder how this argument works
at the level of the more fundamental scalar field. Given the P(X)
action in (6.103), its background stress-energy is that of a perfect
fluid:

- —2 &S
Tpv = vV—9g gy = (p+p)nuny +pguy (6.109)
p=—P+2XPx, p=P, Uy = 63- (6.110)

The first two Friedmann equations depend on the density p and
pressure p; they can be used to solve P and Py in terms of the
FLRW parameters H and ¢. The speed of sound is defined by:

0
o2 &f P _Px (6.111)

S0 px
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which let’s us recast P xx. Lastly, a time derivative of either Fried-
mann equation lets us replace X in terms of the other FLRW back-
ground parameters at the cost of introducing n. All put together,
we have:

P = M%IHZ(Ze —3) (6.112)
XPx = M§H?%e (6.113)
X2P o = My HE (158 6
XX = Mp 72 € (6.114)
S
X  6ci(n—2e+2)
X~ 1132 (6-115)

Now it’s time to compute the equation of motion for the scalar
background ¢(t) and unpack it in terms of the above:

% [a3\/YP,X] —0 (6.116)
— ¢(3+3c2—2e+m) =0. (6.117)

6.5.2 Consistency relation

The soft theorem for two hard modes serves as consistency relation
between the power spectrum (which we have already measured)
and the bispectrum (which we hope to measure in the future).
Recall that our soft theorem (6.123) depended on (T) / (T) as well as
O. The former we can solve in terms of the background (6.53),
while the latter is just H when the action is devoid of extrinsic
curvature terms. For simplicity of computation, we will focus on
the canonical USR case, P(X) = X +V,, which leads to cg =1,
though the argument can be generalized to more complicated
actions.

Following the usual mode function methods for computing the
¢ correlators leads to:
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' H? 1
<C]‘<’C_]‘<'> = m X @ (6.118)
= P(k), (6.119)
3H? ik
<CE1 Clzz CE3> - 16M?,1€2 X niki3 (6.120)
=3 P(k)P(k). (6.121)
1>j

Writing Ky = q, K, =k— q/2 and —kK— q/2, the squeezed bispec-
trum is the soft limit § — O:

(Cale_gati_qz) = SP(@)P(K) +O(q), (6.122)

using the permutation symmetry k; ~ —k; in the sum. This is
a direct derivation of the consistency relation between squeezed
bispectrum and power spectrum by explicitly computing the corre-
lators [60].

Let’s check the same result at the level of the soft theorem. We still
compute the power spectrum as above, but refrain from computing
the bispectrum. Using the scalar’s equation of motion, b+3Hd =0,
together with the Friedmann equations, one finds ¢ ~ a®, so
¢ = —6He. Since P(k) ~ ¢! it follows P(k) ~ 6HP(k). Furthermore,
the power spectrum satisfies P(k) ~ k™3, hence scale invariant:
ns = 0. Inserting these facts about P and n, into the soft theorem

we derived from symmetry principles,

(Gl qliqn) —%@?m ) HP(K) + P(k)
£ (1 )POP(g), (6.123)

together with ® = H for EFTs without higher derivatives, yields
the consistency relation we derived explicitly.
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6.5.3 Non-Gaussianities

We will now discuss interactions in the pure 5g%. In particular,
we’re interested in contributions to the non-Gaussian parameter
fnr of primordial fluctuations. Without the higher derivative terms
included in the extrinsic curvature 6K, all coefficients in the EFT
are uniquely determined in terms of the background evolution
and associated derivatives. The interpretation of this is that the
fluctuations are adiabatic: each region of space is evolving exactly
like the background, it’s just that some regions are lagging behind
and others blazing ahead in this evolution.

We want to study interactions in the shift-symmetric EFT and
check if any interaction term normally neglected in the usual slow
roll analysis might be relevant here. Let’s write the action for 5g°
up to cubic order. Remember, dy, d; and d; are fixed by the two
Friedmann equations and the speed of sound definition, respec-
tively. For the cubic interactions, we need d3, found via the n =2
relation:

d, = 2Hc§ (2d; — d3); (6.124)

the price we pay is the introduction of the sound speed rate of

change, s =3 ¢s/csH. We now unpack the Lagrangian up to (5g°°)3:

. . M2 Hc2 1
L=—M} (3H2 +2H) + MEFI5g® 4 — P55 (56002
4 cs
M2 H 1 2s+(1—c)(2e—n)
Pl 2 S 0043
—1 . (6.
6c? l s— 1+ 32 2 (6g7)°. (6.125)

In the literature (e.g., [19, 61]), it’s customary to describe the
cubic interaction in terms of a parameter ¢3. For the reader more
accustomed with this notation, we provide a conversion between
¢3 and the parameter d3 in our EFT. By direct comparison, we see:

&2 —1) = —(30?—44—052)4—%. (6.126)
S
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As we discussed before, for low energy phenomenology, it is
more transparent to work with the Stiickelberg scalar perturbation
7 rather than the metric perturbation 5g%

5g%° = g% +1 - g"vo, monum+ 1. (6.127)

After some computation, we see there are no terms linear in 7t
(so 7 describes fluctuations around the background, but doesn’t
govern the background’s dynamics), while its quadratic action is:

M2 H2 2
s Jd4x i — B it —cf (6;7;) — 3c2H?ert?

(6.128)

For ease of notation when we compute the cubic action, it’s con-
venient to make a rescaling of space x' — x'/cs, which might be
time-dependent if c; is. This is merely to render the expressions
more compact by writing it as if Lorentz invariance were a symme-
try. Furthermore, we wish to canonically normalize the field so it’s
a proper scalar of mass dimension 1. So perform the redefinitions:

1 .
gt def L oi (6.129)
Cs

fef \/2csME H2em = def 27, (6.130)

from which it follows that

sifg = %Jdt d3x% [(6u7fc)2 —mzﬂ% , (6.131)

with the time-dependent mass

2
m?2 = %[—5324—882—#3(64—68—4@+ﬂ(6+ﬂ)

—2¢(6+6¢2 —I—Sn)—i-ZT (6.132)
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Using this notation, the cubic action can now be computed in a
slightly more convenient way. It reads:

2 A . 2 A2 ~ 2
57({? zJ'dtd‘%)”clcs ]T't (0571c) n (1 CS)(2C3+3CS)7_,[3

2A2 ¢ a2 6/\2 ¢
L 0=es—(1=3e)2e —m) - (Bie)?
4N2 a?
c2 [(3c2—7)s+(1—3c2)(2e —m)] —2&3(1 — c2)(s —2e +7)
+ S S S S HT[C7:[2
4A2 c
H3
+ﬁCo3oni . (6.133)
*

Here, we have defined the scale A,:

Ay = csfr, (6‘134)

which acts as a coupling constant. For the EFT to be valid, weak
coupling must apply, hence Asior > H. The coefficient Cp3p is a
complicated combination of slow roll parameters; we omit it for
expediency since we won't study this interaction term.

We want to focus on the 7. (977t )? operator. The reason is that
an approximate shift symmetry is often involved in discussions of
slow roll inflation to suppress any operator containing 7t without
derivatives. But here we have precisely the consequences of a shift
symmetry on the EFT coefficients, and it’s not true in general that
it is suppressed. For example, take its contribution to the non-
Gaussian parameter fy, and compare it against that of 7t (0my7te )%
we can estimate this ratio as:

7.Tc(aw‘ﬂrc)z
N [l : (6.135)
fﬁﬁfamdz (1—c2)s—(1—3c2)(2¢e —m)

The denominator is not suppressed in general for a shift-symmetric
theory, since as we saw in (6.107) some strong time dependence in
the necessary to solve the background equations of motion. This
leads ton ~ 1 and possibly s ~ 1 as well.
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6.5.4 Cutoff scale

In the previous section, we saw how in an exactly shift-symmetric
model of inflation, some contributions to fyr normally taken to
be negligible in slow roll inflation might not be so. Can similar
arguments lead to a modification of the EFT strong coupling scale?
That’s the energy at which one or more operators are no longer
perturbatively unitary, indicating the breakdown of the EFT and the
requirement for a new theory to UV-complete it. Let’s perform the
same analysis as in [61], but now for our EFT. From dimensional
analysis, any operator in the EFT can denoted as:

HTT‘L

A4

where Cpnx is a dimensionless coefficient depending on the
slow roll parameters. Now, if we take the usual approach of the
EFT of inflation where 7.’s without derivatives are ignored, then
essentially m = 0 and the only scale is A,. In our case, though, we
are permitting m # 0. Because of this, there’s a collection of energy
scales associated with the operator above:

Chmk X T ™ 2K (§7, ) 2K, (6.136)

E _ ! A o AR (6.137)
nmk — Cnmk H . 137

Now, E,mk typically increases with m, which is good, as these
higher energy scales are above the cutoff we already have for our
theory. There is one exception, of course, when 2n —m —4 < 0. But
the only such operator is the cubic 73 for which n = m = 3 and
k = 0. But this operator isn’t important for our discussion here. So
indeed there’s no modification in the discussion of the cutoff scale:
it remains A,, as in the standard slow roll EFT, assuming all the
Chmk are of the same order of magnitude.

For the cubic terms, we can be more explicit about the form of the
Cnmk.- From [61], we have the scales associated with the following
two operators:

A (3 A A A
me(Oime)? T (7 c2)1/2” T (1 —c2)1/2(c2 +365/3)127
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(6.138)

to which we add the scale of the 7t.(9;7t.)? calculated in the same
manner:

/\-* /\*
Ao (Bime)2 ™ =, 6.
e (9171 )2 (1 —C%)S —(1 _302)(25_71) H (6.139)

Indeed, in slow roll with ¢,1,s < 1, it’s true the scale (6.139)
will be magnified compared to (6.138) and thus doesn’t modify the
overall cutoff scale of the theory; strong coupling is still determined
by (6.138). But for exact shift symmetry,  and possibly s are of
order unity, so the prefactor isn’t necessarily greatly enhanced. That
being said, it is still true that A, > H, so again this scale might get
pushed upwards.

Nonetheless, notice that if c; ~ 1 can greatly magnify the scales
(6.138). So it seems these scales might get pushed above (6.139), in
particular if cs is sufficiently close to unity:

H
\/1—c2> A (6.140)

This means the cutoff will then be given by the lower scale
(6.139), a change from the standard EFT. This is quite significant,
as it represents the energy at which new physics joins the game.

If this happens we say the theory is fine-tuned, as from dimen-
sional analysis grounds an operator such as 7. (0;71¢ )% cannot be
strongly coupled at scales lower than one with more derivatives
like 7t.(d.)? and 7c2. While this isn’t required, if one wishes the EFT
to be technically natural, then its cutoff scale can’t be changed in
this way. Alternatively, if the UV scale is observed to be lower than

expected, the naturalness principle has failed for this theory.
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6.6 DISCUSSION

In this chapter we discussed the theory of shift-symmetric cos-
mologies. It unifies two concepts: the EFT of cosmology (or, more
specifically, of inflation) built out of broken diffeomorphism to-
gether with a scalar field displaying an internal shit symmetry
invoked to deal with UV considerations of the inflaton potential.

The primary product of this study is the constraint on the EFT
of inflation parameters. In the presence of the shift symmetry, all
coefficients cascade into each other through nontrivial recurrence
relations that are background-dependent. Hence, the shift sym-
metry drastically increases the predictive power of the EFT by
eliminating a great number of free parameters.

We also examined the infrared structure of a shift-symmetric
cosmology, which is affected by its broken symmetries, large diffs
and shifts included. From this we were able to derive the shift-
symmetric adiabatic, a seemingly trivial solution (by virtue of look-
ing like a gauge profile) but that is a genuinely physical mode, then
used it to derive soft theorems for the correlation functions. These
constraints can be directly through observations of the primordial
bispectrum (or higher polyspectra) in the squeezed limit.

Finally, we studied some phenomenology of ultra slow infla-
tion, a subtype of shift-symmetric inflation, for the purposes of
displaying how to employ these tools in a more concrete manner.

A natural extension of this work would be to consider more
complex symmetry breaking patterns for inflation other than just
the simple shift. As discuss in the opening Section 6.2, in flat space-
time the bulk (i. e., gravitational) properties of a condensed matter
system can be classified in terms of its mixed spacetime-internal
symmetry breaking pattern. The same idea applied to curved space-
time would let us classify different kinds of inflationary substances,
and derive the associated EFTs.

Another important continuation is the issue of approximate sym-
metries being broken. In reality, inflation displays merely an approx-
imate shift symmetry, so we would still need to derive the precise
effects that this small explicit symmetry breaking introduces in all
the results of this chapter.
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7.1 INTRODUCTION

Broken spacetime symmetries violate Goldstone’s theorem in that
the Goldstone operators don’t necessarily have to vanish at zero
momentum—in other words, spacetime Goldstones can appear
completely without derivatives in the action. That is already pe-
culiar, but much more mysterious is the theorem’s failure to even
count the number of Goldstone bosons. No longer are they in an
one-to-one correspondence with the number of broken generators;
rather, some bosons might end up inessential and simply don’t
appear in the theory.

Typically in the literature, such a phenomenon is presented in
terms of the so-called inverse Higgs constrains (IHC) [62, 63]. The
Maurer-Cartan procedure for the coset construction can produce
invariant or covariant objects in which one of the bosons appears
algebraically while the other appears with derivatives. Setting such
object to zero then let us solve for the former in terms of the
latter. This is often reframed in terms of equations of motion: the
inessential Goldstone has a mass that is parametrically higher than
the essential’s, and thus gets integrated out at low energies [48, 64].
Solving its equation of motion and inserting the solution back into
the action is precisely equivalent to imposing the IHC. However,
as we will see in Section 7.3.1, this isn’t the full story: some IHCs
apply even to massless fields!

In the normalization procedure, this phenomenon manifests as
hierarchies in the transformation rules. We define an inessential
Goldstone boson in the following way. Suppose we have the space-
time coordinates x together with two kinds of bosons, 7t and &.
They might be scalars, vectors or tensors; we're suppressing indices
for simplicity. Then 7t is essential and ¢ inessential if the following
two conditions hold:
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1. The x and 7 are in a multiplet of G, in the sense they trans-
form (nonlinearly) among themselves, without reference to

&

2. The group action on x and 7 is faithful. This means the two
tully realize the group: their transformations depend on all
group parameters.

Schematically, we can denote these properties in the following
way. If we write as g, the following group parameters contained
in a group element g € G, then the transformations of x, 7w and &
must take the following form:

x — X(x, 7 g), (7.1)
T — 7(x, 7 g), (7.2)
£E—E&x,mE;g), (7.3)
oX 07t
20. # 0 or 30, #0, (7.4)

for all a (as is standard, the “or” here is inclusive).

If these conditions are satisfied, then we can simply discard & and
forget it exists. The normalization procedure will still be consistent
(because of property 1) and we will still be able to fix all group
parameters through normalizations (because of property 2).

Studying these kinds of hierarchies that can arise in the coset
construction is important if one wishes to understand questions
of uniqueness and classification of EFTs. In particular, we must
determine if a certain hierarchy between Goldstone bosons is a
property intrinsic to the symmetry breaking pattern itself or if it’s
merely a product of the way we chose to order the coset space lift.

Outline

This chapter is organized as follows:

* In Section 7.2, we discuss the issue of ordering the group
elements in the coset space parametrization and whether or
not it can affect the result. We show that for nonsimple groups,
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preferred orderings are given by the Levi decomposition and
use this idea to derive two notions of planar geometry.

* In Section 7.3, we study the hierarchies of Goldstone bosons
in flat spacetimes for two kinds of theories involving inessen-
tial vectors (breaking the conformal group to Poincaré) and
tensors (breaking the special Galileo group to Poincaré). We
apply the techniques for coset ordering we discussed in the
previous section to complete the analysis.

¢ In Section 7.4, we extend the discussion of Goldstone hierar-
chies to curved spacetimes, constructing an explicit example
living in de Sitter spacetime and containing both a scalar and
a vector with neither being inessential.

7.2 COSET ORDERING

When all Goldstones are essential, there can be no question that
any parametrization of the coset lift is equivalent. After all, by
the orbit-stabilizer theorem, all homogeneous spaces representing
the same coset space are isomorphic to each other, and so the S-
matrix will be automatically unchanged under these isomorphisms.
Indeed, for internal symmetries where all Goldstones are essential,
it is known that the coset construction is unique [63].

For inessential Goldstones, the situation is more complicated,
because there’s an additional structure ascribed to the coset space,
that of the Goldstone hierarchy. The orbit-stabilizer theorem only
guarantees the isomorphism is a group homomorphism, that is,
that it preserves the group product. It says nothing about addi-
tional structure such as topology or hierarchy. We therefore aren’t
immediately capable of deducing the S-matrix is always invariant
under changes of the coset coordinates.

To understand this issue properly, we must know how to order
the group elements properly in order to reveal the different hierar-
chies that can be induced on the elements of the coset construction.
For a nonsimple group, at least two preferred orderings arise, based
on the Levi decomposition discussed in Section 2.2.
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7.2.1 Levi orderings

Suppose we wish to parametrize the coset space G/U, where G
is nonsimple but U is simple or semisimple. Denote by P the
generators in the radical of G and by T those of the simple factor.
Furthermore, if a T is broken (i.e., T ¢ S) denote it by A; conversely,
denote it by V if it’'s unbroken (i.e., T € S). Then there are two
orderings that follow naturally from the Levi decomposition:

(g def pzPpiA (z transforms by itself), (7.5)

& def oA 2P (& transforms by itself). (7.6)

To show this, we require the following braiding identities:

eaPeuT — euTeMuaP, (7.7)
eaPevV _ evVeMvaP’ (78)
et = et VBV eMeaP (7.9)

where M, and M, are linear maps, so for example M, aP =
[Mu]ﬂaTPq where g, r are indices living in the radical. These identi-
ties follow from the Baker-Campbell-Hausdorff formula by apply-
ing the ideal property of the radical, [T,P] ~ T and closure of the
T’s and of the V’s.

We don’t really need the form of the M,, matrix, but it can be
computed explicitly from group theory. For example,

ual:Ta, PT] :uangPq —— [Mu]?.

exp(u®fd,), (7.10)

where a is an index living in the simple algebra.

RADICAL FIRST. As usual, the transformation of {y is given by
acting with some g = e“Te®" on {yS:
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RS = e"Te®e*etAs (7.11)
_ uTeilzaPeiAg (7.12)
— eMui(Z,‘a)PeuTeE,AS (713)
— eMuZ(za)PE(EWAS (7.14)

where we used closure of (P), then braiding, then closure of
(T), respectively. We denote by an underline where we inserted
each property. To sum up, we have the following hierarchy for the
transformation rules:

z— Myi(z;a), &— &(&u). (7.15)

As we can see, the z’s transform completely by themselves and
and they fully realize the group, that is, their transformation de-
pends on the two group parameters a and u. The &’s are therefore
inessential.

SIMPLE FIRST. Same argument, but for clarity of notation we
flip the order of the group element, g = e*e"T, and have it act on
QLSZ

IS = et eFA P (7.16)
_ e@PLEEWA ST(WE)V 2P g (7.17)
_ P LE(EWA MazPg (7.18)
_ EEWA V(EWV M aP JMazPg (7.19)
_ (EEWAZ(zELa)Pg (7.20)

where we used closure of (T), then braiding, then braiding again,
then closure of (P, V). The group action hierarchy is:

£ E(&u), z—2(z, &y, a). (7.21)
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We see the &’s transform by themselves. However, they don't
fully realize the group, as their transformation depends on a. This
means some of the z’s (but not necessarily all) are essential; the
details depends on the specific group. In the following section, we
investigate a simple toy example involving equivalences with these
two orderings.

7.2.2  Example: Curve geometry

In this example, Rachel and Leo are interested in drawing plane
curves. For this, they are given the coset space ISO(2)/{1}, where by
{1} we mean the trivial group with just the identity. They agree to
employ diffeomorphism invariance and to eliminate any inessential
degree of freedom. For simplicity, they will limit their actions to
at most second order in derivatives, but as we will see later, this
restriction can be relaxed. The conclusion will be that Rachel and
Leo will find two different, inequivalent actions.

RACHEL’S THEORY . The group ISO(2) = R? % SO(2) is semisim-
ple, so Rachel employs the Levi ordering, in particular the radical
one. She parametrizes the coset space by the lift (g = e**1e¥"2¢%;
the three elements {x, y, 0} are functions of some diff parameter A.
Under action of an Euclidean element (a}, ¢), she computes the
transformation rules:

1

x — xcos(@) —ysin(p)+a’, (7.22)
y — ycos() +xsin(¢) + a?, (7.23)
0 — 0+ . (7.24)

Rachel sees that 0 is inessential, because x and y transform
among themselves and fully realize it. So she discards 0. If she had
used the Maurer-Cartan procedure, she would’ve found the inverse
Higgs constraint tan(0)d,x = 0,y. In any case, she computes the
action:

B / / —y'x" +xy"
se= |/ + )2P<((x’)2+(y’)z)3/2)’ 725
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for an arbitrary function P. Of course, we recognize this: it’s the
usual action for planar curves, with the extrinsic curvature,

—y'x" +x"Ny"
— , .26
MRNTFOREN AR 7:20)

being the diffeomorphic invariant intrinsic to the embedding.
This action is really a procedure for drawing curves on paper.

Rachel slides a ruler against the paper in a fixed direction. With
the other hand, she holds a pen next to the ruler, allowing the pen
to be pushed by it. Reparametrization invariance arises because
the speed of the ruler can be removed as a degree of freedom; the
only thing that changes the drawing is Rachel moving the pen up
or down as its pushed across the paper left to right. For linear
equations of motion obtained from P(k) = 1, she doesn’t move
the pen at all, only letting it be pushed by the ruler, and draws a
straight line.

LEO’S THEORY . Leo also recognizes the nonsimplicity of ISO(2),
but opts for the simple-first Levi ordering ¢; = e¥eP2¢™1. His
transformation laws are:

06— 6+, (7-27)
7 — m+a' cos(8) + a’sin(0), (7.28)
0 — 04 a’cos(0) — a' sin(0), (7.29)

He notices 0 is essential, as it appears in all transformation rules.
But it’s not sufficient to fully realize the group, so he must add
either 7 or o to complete the problem. Either option leads to the
same result, so he picks 6,7 as his pair of essential bosons and
throws away o, which would be equivalent to the inverse Higgs
constraint 00,0 = 0,7. He derives the action:

(7.30)

0" 1+ '
SL:JdAG’F<7T+ mo ﬂ>,

(0)3
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Figure 7.1: Leo’s notion of curve drawing is to slide a ruler without
slipping around a fixed circle, pushing the pen with the ruler.
Here, Leo has kept the pen still with respect to the ruler. We
draw a full rotation cycle, though we have included only five
positions of the ruler to simplify the image.

for arbitrary F. This action is less known that the previous one;
the diffeomorphic invariant is:

_7.(/9//_|_ 6/7.[//

This is also a prescription for drawing curves. Leo places a wheel
together with a ruler on the paper. He then rotates the ruler without
slipping around the fixed wheel. Again, the ruler’s angular speed
can be removed as a degree of freedom; only the pen’s motion
with respect to the ruler matters. For linear equations of motion
obtained from F(t) = T2, Leo simply lets the pen be pushed by
the ruler and draws an involute of the wheel. See Figure 7.1 for
visualization.”

The invariant T is a notion of torsion as it’s measures the winding
of the pen around the wheel and thus to the displacement of the
pen from its original position after one rotation cycle. A curve that
doesn’t close after one cycle must necessarily have nonzero torsion.
Note this torsion is different from the one of curves in 3D space.

1 This is a drawing toy know as a spirograph.
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Rachel’s and Leo’s action are inequivalent and represent two
distinct procedures for drawing curves on paper. Rachel and Leo
started from the same coset space and employed the same pre-
scription of removing inessential degrees of freedom, but arrived
at inequivalent results.

Let’s us verify this inequivalence. Notice that Rachel’s y simply
displays a constant shift under Py, thatis, y — y + a!, but Leo’s
corresponding 7 has a 6-dependent transformation:

T — i+ a cosH, (7.32)

and 0 doesn’t transform under P;. Two try and match the two,
we must redefine m = (¢, 0) so that ¢ simply shifts under P; as
well. We still have the diffeomorphism symmetry, so the definition
of 0 is ultimately irrelevant. To find the 7 redefinition, we take the
infinitesimal variation 67t(¢, 0) and impose the requirements we
just presented, 5¢ = a' and 80 = 0, leading to the equations,

0¢7t = cos 0, (7.33)

which are solved by m = ¢ cos 0 + f(0) where f is a free function.
Now take Leo’s torsion invariant and use the above solution for
mi(d,0) to get:

_7.(/9// + 6/7.[//

_cos®  , 2(0')?sin®+ 0" cos

St ey OO

(7.35)

We still have the gauge freedom behind 6(A) plus the free f(0)
which must be used so that Leo’s torsion has the same mathematical
form as Rachel’s curvature:

(7.36)
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where we picked the x(A) = A gauge for Rachel to simplify the
expression. At the same time, Rachel’s and Leo’s line elements also
need to have the same mathematical form:

dsg = 1/1+ (y/)2dA (7.37)

ds; = 0’dA (7.38)

This is impossible; if we match the line elements then imposes
0 = [[dA\/1+ (y’)? but this condition then leads to Leo’s torsion
becoming nonlocal, since 0 appears explicitly without derivatives
for him, and no choice of f(0) can remove this nonlocality. This
conclusion holds even if Rachel and Leo use higher derivatives in
their theories, since it’s based merely on the incompatibility of their
line elements and fundamental invariants.

7.3 HIERARCHIES IN FLAT SPACETIMES

Here we discuss some issues with properly ordering the parametriza-
tion of a coset space in flat spacetime. That is, we study examples
where some group is broken down to merely Poincaré, the isometry
group of Minkowski space. Typically such breakdown will produce
both scalar and vector Goldstones; in more exotic circumstances,
even tensors can arise.

7.3.1  Vectors: Conformal to Poincaré

It’s known that no vector Goldstone can exist in flat spacetime
[65], that is to say, any potential vector Goldstone ends up being
inessential. Let’s us consider the hierarchy of one such example
to understand what happens. A well studied symmetry breaking
pattern in flat spacetime is that of the conformal group SO(2,4)
down to Poincaré ISO(1, 3), meaning the breaking of dilations D
and the special conformal transformation (SCT) K,,. Typically, the
literature employs the coset ordering [63, 66],

{ = e¥Pem™ebK, (7.39)
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From this, one can derive that 7t transforms without reference to
&M, but EH does with reference to 7. Therefore, &M is inessential and
can be removed; the resulting theory is given purely in terms of
the dilaton 7.

We will show this is not the preferred parametrization in the
sense of Section 7.2.1. That is, there is a different one in which
neither boson transforms with respect to the other. Unfortunately,
the conformal group is simple and therefore we cannot employ the
Levi decomposition to guide the coset ordering. At this juncture, we
simply employ an educated guess. It turns out the ideal ordering
is the following:

0 = ePetKe™, (7.40)

In this parametrization, x* and 7t still transform as before. As for
&Y, it transforms linearly under dilations (it didn’t before); under
the SCT, its transformation is a long expression. For simplicity we
write down only the infinitesimal version:

Op & = b + 2(EFxYDP + bHxVEP — xMEVDP Iy . (7.41)

The important thing is that, overall, neither T nor &# transform
with respect to the other; this parametrization has no hierarchy.
Let’s construct the EFT using the Maurer-Cartan procedure. We
determine its elements to be:

wp = e"o; dx*, (7.42)
wp = (ap.T[ + Zau) dx*, (7.43)
W = e (aua“ 28N, — 52555) dxt, (7.44)
wo‘]\/{3 =—4 (E,“éﬁ — E,Béff) dx™. (7.45)

For starters, we have the measure,

1
dVv = Ieaﬁvé wiwbwlwd = e d*x. (7.46)

111



112 GOLDSTONE HIERARCHIES

Now, by writing dx* = e""wg and inserting it into wp and w¥,

we get:
wp = Vamwyp, (7-47)
[wklg = Vaép wp, (7.48)
Vart d:ef e "(0ar+ 28y), (7.49)
def _
Vaép =e Zﬂ(aoca(s +2&8x&p — E»znocﬁ)- (7.50)

The Vymand V&g are covariant under SO(1, 3)—contract the
«, 3 indices properly, and the result is SO(2, 4)-invariant. Further-
more, any constraint that is covariant or invariant might be appli-
cable as an inverse Higgs constraint. In particular,

1
Vanr =0 = & = Eapn (7.51)

So indeed, it seems we have the same conclusion as before: the £é*
is inessential and can be removed. Not so fast. We also know that &*
transforms without reference to 7, so it should also be possible to
remove the dilaton. Indeed, this is so. Let us first anti-symmetrize
V«&p; this is a Lorentz-covariant procedure, so it’s allowed, and it
protects us from ghost degrees of freedom in the vector:

_ def _
Viebp = € 7 alp = € “Fap. (7.52)
The following normalization then acts as an inverse Higgs con-
straint:
V[aémv[“&m = A4 (7.53)
P
=>e”:K@ (7.54)

for A some arbitrary scale. This removes 7, but now the only
healthy term to use in the action is the measure A%e*"d*x, and the
action takes the highly suspicious form:

S = Jd“ F2. (7.55)
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The coset construction seems to have glitched here, because
it returned as output Maxwell’s theory, whose vacuum doesn’t
break conformal symmetry! This is because of gauge invariance:
the vacuum is completely and unambiguously specified merely by
Fv = 0, without reference to &,. The coset construction guaranteed
that &, transformed non-linearly, but gauge invariance makes &,
physically irrelevant. Another way to look at this, the action has an
accidental U(1) symmetry that wasn’t accounted for in the original
coset parametrization. So the Maurer-Cartan form has no way of
“knowing” what it’s supposed to do with this symmetry.

In any case, we wouldn’t really call &, a Goldstone, merely a
standard matter field. The dilaton 7t is still the only genuine Gold-
stone that arises from this symmetry breaking pattern. However,
employing the ideal coset ordering helped us understand what
really went wrong with the vector Goldstone. In the literature, it’s
often said that the vector is inessential because it’s massive and this
is independent of coset parametrization. The argument holds even
in a different coset parametrization for which the IHC is diffferen-
tial, rather than algebraic, in " (and thus not readily solvable): the
fact £F is massive but 7 isn’t means the former gets integrated out
at low energies. But this isn’t quite true; our vector here is massless.
On the other hand, the IHC &, = 0,71/2 still exists, yet the removal
of &M can’t be interpreted as it being integrated out.

The vector mass is an artifact of the parametrization; more funda-
mentally, the vector failed to be a Goldstone because its nonlinear
symmetry was drowned by the gauge symmetry.

Here, we can’t find a way to rescue the nonlinear vector symme-
try. It’s impossible to break U(1) while preserving SO(2,4) and still
having a healthy theory, even when considering quasi-invariants.
But, as we will later see in Section 7.4, the situation is different in
curved spacetimes.

7.3.2 Tensors: Special galileon

We now discuss an example involving both inessential vectors and
2-tensors Goldstones, together with an essential scalar. Again, fo-
cusing on finding a preferred parametrization of the associated
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coset space will render the hierarchy between the bosons mani-
test. This will also be an opportunity to employ the various Levi
decomposition techniques we presented in Section 2.2.

First, recall the flat spacetime galileon theory. This is a scalar
tield ¢ enjoying an extended shift symmetry ¢ — & + ¢ + b xt.
We describe the Galileo group Gal(D, 1) in greater detail in Section
A.1.2, but essentially it consists of enlarging the Poincaré algebra by
a scalar Q and vector B, such that the only nontrivial additional
commutator is:

[Pp/ B.] = Tth- (7-56)

All other additional commutators are either zero or follow from
tensorial structure. The scalar field realizes the breaking pattern
Gal(D, 1) — ISO(1, d); together with the fact the origin of spacetime
breaks translations yields the coset space Gal(D, 1)/SO(1, d), with
lift:

0 = eXPefBedQ (7.57)

One then readily checks that ¢ transforms without reference to
&, so that the latter is readily eliminated as an inessential field.

The theory we want to consider, however, is the special galileon
[67]. It turns out the above algebra can be further expanded into
that of the SGal(D, 1) group by adding a new symmetric tensor
generator S,y. The additional commutators, besides those that
vanish or are given by tensorial structure, are [67, 68]:

2
[PW Svp] = T]uva + nuva - BnupBw (7.58)
2
(B (s Svp] = of <Tl uvPp +MNupPv — Bnpppu> , (7.59)

[Spv/ Spcr] = (XZ (T]pvacr + Tthvp + T]vapo ‘f‘nchup) ’
(7.60)
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where o is a free constant. In the literature, one then performs
the construction by writing the SGal(D, 1)/SO(1, d) lift:

{ = eXPebQetBe3oS, (7.61)

One can then check that under action of S,.y, the coordinates x*
and vector " mix with each other. Naively we would conclude
this means the vector is now essential, since now the measure and
any spacetime derivative will pick up factors involving &" when
acting with S,;y. But that feels absurd, because when the group was
just Gal(1, D), we could write an action purely in terms of ¢. Then,
we could’ve eliminated operators that break SGal(D, 1) in order to
enhance the symmetry group of the action, without introducing
the vector.

This intuition is correct. The action of the special galileon scalar
in (14 3)D for example is given by:

(g (T Az O a2 2 2
S = | d' (—5(00)2+ 5(09) [ (091~ (2,0+0)?] ), (7:62)

with the additional nonlinear symmetry (here we give it in active
form, as it’s easier to check the above action is invariant this way):

5 = sy x"x¥ + sV, by b, (7.63)

where s,y is a traceless symmetric matrix of constant transforma-
tion parameters. So what went wrong? In terms of transformations,
we declared &" to be essential, but clearly that’s not true. The issue
is the following. Finding a coset parametrization in which x* and ¢
transform by themselves is sufficient to show these are the essential
objects of the action, but the converse is not true! Just because you
found one in which x*, ¢ and & mix among themselves doesn’t
mean all three are essential. Just like in the previous section, we
must alter the parametrization typically found in literature in order
to find the preferred one in which the Goldstone hierarchy is made
manifest.
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To begin with, what is the group SGal(D, 1), really? Well, when-
ever we find a mysterious new group, our first instinct should be to
Levi decompose it. The standard Galileo group decomposes into:

Gal(D, 1) =exp (P,Q, B) xSO(1,d), (7.64)

where () denotes span. The question then is, where does S,
tit into? Does it enlarge the radical or the simple factor? Or does
it destroy the decomposition altogether, turning the group from
nonsimple to simple?

First, we see that (P,Q,B) continues to be an ideal, because
[P,S] ~B, [Q,S] =0and [B,S] ~ P, so that

[(P,Q,B),SI = (P,B) C(P,Q,B), (7.65)

and of course it continues to be solvable. Thus it’s still part of
the radical; the addition of S,y doesn’t convert the group into a
simple one without a radical.

Meanwhile, S,y has a nontrivial commutation with itself: [S, S] ~
M, for a Lorentz generator M. This means it can’t be part of the
radical as it would destroy the solvability condition. So it has
to go into the simple factor. And since it commutes nontrivially
with My, it must genuinely enlarge SO(1, d), instead of being
just an additional semisimple factor. Classifying simple groups
is easy, and we quickly notice this new enlarged simple factor is
the special linear group SL(D). One way to intuit this is that the
Suv transformations are parametrized by a traceless symmetric
sy matrix [67] and those of M,y by antisymmetric n,y—the two
together form any traceless matrix.

Ergo, the special Galileo group Levi decomposes as:

SGal(D, 1) =exp (P, Q,B) x SL(D). (7.66)

Now, there should be a choice of algebra basis (or, equivalently,
a coset space parametrization) in which the radical transforms
linearly under the simple factor, that is, the elements in eXPedQet B
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transform in a representation. This already happens for ¢, of course,
but for x* and &V it requires that (P) and (B) be each individually
an ideal. This follows from the discussion in Section 7.2.1 involving
the braiding identity for the product of exponentials:

[P,S]~P — es-Sex-P _ e(exp s)x-Pes-S’ (7.67)
[B,S] ~B = e¥SetB = e(®Ps)EBesS, (7.68)
The special Galileo algebra in (7.58) doesn’t display the properties

above; rather, we have [P, S] ~ B and [B, S] ~ P. So the basis isn’t the
preferred one. Perform the following change:

~ 1
P, = ﬁ (O(Pu + Bu) ’ (7.69)
~ 1
By = ﬁ (By—aPy), (7.70)
Q = aQ, (7.71)
Suv = S/ (7.72)

The algebra now is:

USW Ev] = nu\/Qr (7.73)
- - - 2 -

[Pu/ Svp] = NuvPp +NupPv — Bnuppu/ (7.74)
A - - 2 -
[Bw Svpl = —MuvBp —MppBy + ﬁnupBu/ (7.75)

[Sw, gpc] = MNup Mys + ﬂuGMvp + nvauG + Tlvchup- (7.76)

This now has the required ideal property for the braiding identity
to be applied. That is, writing the coset lift as

N

{ = ¥ PedQetBelos (7.77)

guarantees that x", ¢ and &" each transform linearly as a mul-
tiplet by itself under S, without mixing. The transformations
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under the radical (P, Q, B) and the Lorentz group SO(1, d) remain
unchanged. In terms of a group parameter

N

g= ea-ﬁe%ﬂMeCer'ge1 S-gl (778)

the dependencies of the transformation rules are found to be:

Xt = % (x; a,m, ), (7.79)
b — b(x, b;c,b), (7.80)
& — EMEm, b, ), (7.81)
oY — " (o;m, s). (7.82)

Therefore we see that the minimal set of objects required to fully
realize the group—meaning they have closed transformation rules
and depend on all group parameters a*, b*, c,n*’ and s*'—is the
pair x* and ¢. Thus, the &* and oY are inessential. This is precisely
the preferred parametrization that renders the Goldstone hierarchy
manifest.

We learn from this example that if the group admits a Levi
decomposition, we must first parametrize the coset lift by one
of the Levi-preferred orderings before we can conclude anything
about the hierarchy between Goldstone bosons.

7.4 HIERARCHIES IN CURVED SPACETIMES

So far, we have only analyzed the Goldstone hierarchy of theo-
ries living in flat spacetime. It’s time now to consider a curved
spacetime. The situation of course is far more complicated, but the
following example illustrates many of the features of such theories.

7.4.1  Vectors: Poincaré to de Sitter

We wish to consider a theory living in de Sitter spacetime, which
means the unbroken subgroup ought to be SO(1,D). A straightfor-
ward example of a larger group containing this subgroup is the
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Poincaré group ISO(1, D). Hence, we will focus on the symmetry
breaking pattern:

ISO(1,D) — SO(1, D). (7.83)

This is not sufficient information for the coset construction. Recall
we must specify not simply the unbroken subgroup that leaves the
vacuum invariant, but also the stability subgroup that leaves the
origin of spacetime invariant. But the origin of which spacetime?

1. The Poincaré group ISO(1, D) is the isometry group of Minkowski

spacetime MP+1. Thus, we choose the origin of MP+!. Its sta-
bility subgroup is SO(1, D).

2. The de Sitter group SO(1, D) is the isometry group of de Sitter
spacetime dSP. Thus, we choose the origin of dSP. Its stability
subgroup is SO(1,d).?

The first choice means the coset construction for ISO(1,D)/SO(1,D)

while the second for ISO(1,D)/SO(1,d). The choices therefore
aren’t a priori equivalent.

This equivalence isn’t actually a new thing. It could happen in
flat spacetime as well, e. g., when breaking the conformal group to
Poincaré: SO(2, D) — ISO(1, d). One could either pick the origin
of Minkowski space or of anti-de Sitter space, by recalling that
SO(2,D) is the isometry group of AdS. This represents the so-
called choice of basis for this symmetry breaking pattern: the first
is the conformal basis while the second is the AdS basis [63]. The
actions, as output of the coset construction, are inequivalent in
the sense there’s no invertible field redefinition from one to the
other. Nontrivially, however, the physics of the two are equivalent
at the S-matrix level [69], which isn’t surprising considering the
AdS/CFT duality.

Back to de Sitter space. The first theory ISO(1, D)/SO(1,D) cor-
responds to the usual embedding of the dS hyperboloid in a higher

See A.1.5 for the full description of the de Sitter group; space translations and
spacetime dilations move the origin.
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dimensional Minkowski spacetime, which is familiar in the liter-
ature [33]. The only degree of freedom are the scalar (transverse)
fluctuations of the brane. Concretely, the action is of DBI type at
lowest order in derivatives:

S = Jde\/—_g 2 + (0m)2, (7.84)

where the metric g, is a dSP metric.

The second theory ISO(1,D)/SO(1, d) we will now build. The
full group ISO(1,D) isn’t simple, so preferred orderings for the
coset lift are given by the Levi decomposition. We denote by a
superscript M the translation and Lorentz generators of ISO(1, D).
The first Levi ordering is the one with the radical going first:

wpM ™M ua M
tg = e"Pi ™D " Mup (7.85)

This, however, also outputs a familiar theory. It consists of a
Minkowski brane embedded in a Minkowski bulk [33]. Again, only
the scalar fluctuations of the brane survive as degrees of freedom
and the action is of DBI-type. At lowest derivative order, it is:

S = Jd“x,/ 1+ (dm)?, (7.86)

using the 1,y metric of MP.

There’s another possibility. Let us denote by P4, D45 and Mﬂ%
the dS translations, dilations and boost/rotations, respectively; see
Section A.1.5 to see how these can be written in terms of the Lorentz
transformations MM, and M%. Then the simple-first Levi ordering
is:

ipdS sdS rupM , _pM
EL — eX P! etD eE, P+TPR ) (787)

This will give a different theory. Moreover, as we will see, it
preserves both the vector and the scalar as degrees of freedom.
Therefore, it follows by direct counting of degrees of freedom its
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S-matrix isn’t equivalent to the previous two DBI theories we have
considered so far, hence representing a genuine ambiguity of the
coset construction.

To better look at the underlying hierarchy, we will complete the
coset construction of this theory via the normalization procedure.
We thus need the explicit transformation laws of all elements in
the lift 1, which follow by action of a group element g through the
group product:

¢ -SO(1,d) — {; -SO(1,d) = g-£-SO(1, d). (7.88)

Representing the lift as a matrix, the computation is straightfor-
ward if a bit laborious; to simplify this step, we switch to conformal
time t = —log(—1) where we set the Hubble constant to 1, H = 1.
We encounter a slight hiccup in the result: &, doesn’t transform at
all under a dilation. This is annoying, since we would like all objects
to transform covariantly under the unbroken subgroup SO(1,D).
It’s not unsurmountable; the normalization procedure doesn’t de-
mand covariance, though it significantly simplify the computation
if there. But with an educated (if ad hoc) guess, we notice that

redefining &, def &/ T gives the correct covariant transformation
law for a vector under a dilation.

So the result is that, under the simple part of the group, the
unbroken SO(1, D), the coordinates x* = (7, x!) transform as in the
isometries of (flat slicing) de Sitter space—full expressions for these
are provided in Appendix B—while 7t behaves as a scalar and A,
as a vector.

On the other hand, under the radical part of the group, the
broken translations RP!, we have:

Xt —xH, (7-89)
mT— 1m—0, (7.90)
Ap— Ap+040, (7.91)

dof 1 . 1
0= ;(c + b by + Eax”xvnw), (7.92)
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with a,b! and c the D + 1 translation parameters. The attentive
reader will immediately notice the similarity between transforma-
tions (7.90) and (7.91) and those of the U(1) gauge connection and
Stiickelberg field we saw in Section 5.3. Indeed our 7 here looks
suspiciously like the longitudinal (Stiickelberg) mode of the vec-
tor A,.. But remember, we don’t want to impose invariance under
gauged U(1), that is to say, for any choice of 6, but only under the
0 described above. In fact, inspired by what we saw in Section 7.3.1,
we have to be particularly careful to avoid endowing the action
with an accidental U(1) gauge symmetry, or the coset construction
might glitch again and convert the A,, from a Goldstone vector
with a genuine nonlinear symmetry into a boring gauge vector.

As a remark, it proves convenient to notice the following identity:

ViV + 96 =0, (7.93)

for V,, and guv the usual Levi-Civita covariant derivative and
the dS metric in flat slicing, conformal time coordinates, with ©
being treated as a scalar in this context.

Notice the lack of hierarchy in this problem! Either 7 or A, trans-
forms by itself and they both fully realize the group. In principle
we could keep either; removing the vector while keeping the scalar
would give some sort of Galileon in dS [37, 66]. For this example,
we will try to keep both.

Following the recipe, putative invariants are obtained by taking
x#, mand A, and transforming them under some group element
g« that we will fix momentarily:

x* &5 X, (7.94)
&, (7.95)
AB % ‘AB‘ (7.96)

As usual, we want to set these objects to the origin of spacetime
(which, in conformal time, is (—1,0)) and of fieldspace (the vac-
uum). Thus, we choose to set X0=—-1,Xt=0,TT=0and Au =0.
These normalizations then fix the Minkowski translations a, b' and
c together with the de Sitter dilations A and translations d*:
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di; = —x\. (7.98)

We still haven’t fully fixed g, because the group parameters of the
stability subgroup SO(1, d) consisting of de Sitter boosts/rotations
remain. However, all objects transform covariantly under this group,
so we needn’t fix those parameters as long as we treat the flat «, 3
indices covariantly.

The X°, X!, TT and A, consist of the zeroth order invariants. We
have exhausted them by using their normalizations to fix g, so
now we move on to invariants first order in derivatives. We simply
take 0,7 and 0yA, and transform them under g;:

g dIT

dqmt 23 X (7.99)
. dA
0aAp % dXE' (7.100)

Similarly, we need an invariant one-form for the purposes of a
measure. We take dxu and transform it:

dx* &5 dx=. (7.101)

Taking dX%, dIT/dX* and dAg/dX* and plugging in the g, we
found previously yields:

1

dX* = ;éffdx”, (7.102)
dr
X = TOL (A + 0ym), (7.103)
dA

P Tzégég(VHAy — Tty )- (7.104)

dXx
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These objects, with the «, 3 indices, live in flat spacetimes and
thus we must contract them with the flat metric n*? or the permu-
tation symbol e*1*2. Indeed, we see the invariant volume is:

_ X AdX AL = DX

= ﬁﬁoq ... e — T_D (7105)
For ease of notation, it’'s convenient to recast the remaining

objects in terms of objects living in the curved de Sitter spacetime.

For this, we recall that the prefactor of dX* acts as a tetrad, the

“square root” of the metric:

1 1
(;5&) (;6€> Nap = Guv, (7.106)

where g,y is the de Sitter metric in flat slicing, conformal time
coordinates, g,y = Nuv/ 2. This lets us rewrite the things in a more
familiar manner:

dv

dVv = dPxv/—g, (7.107)
Vi =A,+ 0,7, (7.108)
Fuv = Ay, (7.109)
Suv = V(i Ay) — TiGpv, (7.110)

where we have split (7.104) into its antisymmetric part F,, and
its symmetric part, while (7.103) we have renamed as V,,. Now the
indices u, v are world indices; they must be contracted with g"¥
or €12+, We also notice that V,, and F, display a U(1) gauge
invariance, which wasn’t part of the constructions, but S, does
not.

Notice that, by symmetrizing VVy, we can rewrite S, without
any explicit reference to A:

SHV - V(

Since S,y and V(,,V,) are covariant, the last term in the equation
above must be covariant as well:

uVy) — [V Vi) + gpvlm (7.111)

Hyv = [V Vy) + gl (7.112)



7-4 HIERARCHIES IN CURVED SPACETIMES

Thus, to fully capture all operators in the EFT, we can use either
the triplet (V},, Suv) or (Vy, Hyuy), together with V.. Notice F, is
implicitly included given V, and V.

We choose the latter option, (V,, H,v). But Hyy contains second
derivatives of the scalar m and therefore must appear in special
combinations that prevent the propagation of ghosts [37, 70]. For
simplicity, we will restrict the action to only leading order in deriva-
tives, thus discarding H,..

Similarly, V|, can only appear in special combinations that pre-
vent the propagation of ghosts, that is to say, a vector should have
only d degrees of freedom, not D. These combinations correspond
to the so-called generalized Proca theories, derived for curved
spacetimes in [71, 72]. Here, we merely need to specialize to the de
Sitter case.

So due to these considerations, the Lagrangian is given by:

Lgen.Proca(vw' Vi), (7.113)

the mathematical structure of which is described in [71, 72]. Since
Vi = Ay + 9,1, we decompose the action in the usual Stiickelberg

procedure. We simply have to define the generalized Stiickelberg

Lagrangian, £ gen.Stﬁck(Au/ auﬂ) déf £ gen.Proca(Au + auﬂ)/ so that the

strictly invariant action then is:

S= JdDXV -9 Lgen.Stﬁck(Aw 0uT; V). (7.114)

Unfortunately, we are back to the same issue as in Section 7.3.1:
this action has an accident U(1) gauge symmetry that was never
accounted for in the original coset construction. While it’s certainly
ISO(1, D) invariant, this global group has been drowned by the
infinite U(1) group. The vector A,, doesn’t physically realize any
nonlinear symmetry; it’s merely a gauge vector. But differently
from the outcome in flat spacetime, here we can rescue the vector,
by using quasi-invariants that break U(1) but not ISO(1, D).
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7.4.1.1 Adding quasi-invariants

As discussed in 4.5, quasi-invariants are the operators that, while
not symmetric, shift by merely a total derivative and are thus still
permitted in the action. Following the tools described there, we can
derive the ones for this theory. There are D such objects; for the sake
of expediency we will simply write down the first three, as their
derivations and expressions quickly become laborious. Restoring
the Hubble constant H, they are:

Wy =m, (7.115)
W, = (d71)? — DH?7?, (7.116)

W; = (On) [(an)z _(D—1H22| — %D(D CDHYS. (7.117)

Of these, W, is a tadpole we would rather avoid in the action, so
we can interpret 7 merely as a background fluctuation rather than
sourcing the background itself. The W3 and higher Wess-Zumino
terms are second order in derivatives, which we are avoiding in
this example. Notice they look very much like the usual galileon
Wess-Zumino terms of flat spacetime, and indeed become them in
the group contraction H — 0 [37, 73]

We are thus left to work with merely W,. It seems like a sick
term, for its kinetic term has the wrong sign compared to the mass
term. But this need not be a problem; after all, (37t)? also appears in
the generalized Stiickelberg Lagrangian we built before. We merely
have to combine the two into something with the proper sign. So,
we extract the mass term —(m?/2)(A,, + d,m)? from Lgenstiick and
add to it qm?W,, for q some arbitrary dimensionless constant. It
also proves convenient to perform the canonical normalization:

def

T = My/ 1 —qr. (7.118)

With this these considerations, we take the action,

S= JdDXV -9 [Lgen.Stiick + quWZ ’ (7.119)
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and expand it:

1 1 m i
S= Jde\/—g l— A_IFZ — zmzAz VT (A-0)me + ngn.smck
1 1
— z(aﬂc)z — Z (ﬁ) DHZT[g, (7.120)
where ngn.Stﬁ «k collects all interaction terms of the generalized

Stiickelberg Lagrangian. For the mass term to be healthy, we require
0 < q < 1. At the same time, if q = 0, then the crucial quasi-
invariant that is breaking U(1) vanishes. Therefore, 0 < q < 1.

What he have achieved here is that, merely by changing the coset
space parametrization from one Levi-preferred ordering to the
other, we have changed the physics. One theory was a Minkowski
brane in Minkowski bulk, while the other consists of a vector and
scalar in de Sitter space enjoying a form of extended shift symmetry.
Furthermore, the vector is indeed a Goldstone with a nonlinear
symmetry, as the theory displays no gauge invariance—this latter
point is important as it’s unique to curved spacetimes and can’t be
achieved in Minkowski. And, of course, the number of degrees of
freedom in the two theories don’t match, so their S-matrices are
automatically inequivalent.

7.4.1.2  No inessential Goldstones

This problem lacks any hierarchy between Goldstones: either 7
or A, can be eliminated in favor of derivatives of the other. In
terms of the normalization procedure, we could’ve return to the
transformations (7.90) and (7.91) and recalled that the 7t doesn’t mix
with the A, and vice-versa, and either fully realize the group. We
could’ve eliminated either and straightforwardly derived invariants
using only one of them. We can also look at this phenomenon from
the inverse Higgs constraint (IHC) point of view. The IHCs here
are not equivalent to integrating out the field through its equation
of motion.

To remove A, we choose the following covariant normalization:

Vi=0 = Ay=-0,m (7.121)
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Alternatively, we can eliminate 7 through invariant normaliza-
tion of g"VSyy:

1
S$=0 = n= EVHA“. (7.122)

Pure scalar theories with shift symmetries in de Sitter are dis-
cussed in [70], while [74] discusses similar ideas with vectors. Our
conclusion here is that, differently from the situation in flat space-
time, an EFT with both scalar and vector Goldstones, with neither
being removed in favor of the other, is possible. Inverse Higgs con-
straints exist as a mathematical possibility, but aren’t demanded by
physics. The problem thus has no Goldstone hierarchy.
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7.5 DISCUSSION

While the breaking of internal symmetries is well understood,
that of spacetime ones leads to more peculiar phenomena. Chief
among them are the so-called inessential Goldstone bosons which
are associated with broken generators yet fail to appear in the
low energy action altogether. In this chapter, we presented various
techniques to study this hierarchy between essential and inessential
bosons and constructed various examples to highlight key features.

Goldstone bosons live in coset spaces, so how one parametrizes
this space, that is to say, chooses to order the group elements, is
significant. We discussed how a nontrivial Levi decomposition
for a group leads to two preferred parametrization, based on the
orderings of the radical and semisimple elements, each of the two
lead to a different hierarchical structure for the bosons. It would be
interesting to see if other preferred orderings besides the Levi ones
exist, or prove that they don’t.

We used these techniques to re-examine two examples found
in the literature. The first concerns breaking conformal symmetry
down to Poincaré. In this case, we showed that with a different
parametrization both bosons transform independently of each other,
so a priori there is no hierarchy, but the massless vector fails to
be a Goldstone due to its gauge symmetry. We also considered an
example with tensor Goldstones, breaking the special Galileo to
Poincaré, to highlight how to make hierarchies manifest through
the Levi decomposition of a group extension.

Finally, we constructed an example living in de Sitter spacetime
where both a scalar and a vector Goldstones were permitted to
co-exist, this time because the gauge symmetry can be removed.
This is a unique feature of curved spacetime and has no analogue
in the H — 0 limit. This theory is directly inequivalent to others
displaying the same symmetry breaking pattern by simple counting
of the number of degrees of freedom, highlight the richness of
structure for the EFT of broken curved spacetime symmetries. It
would be interesting in the future to look at UV completions of
such scalar-vector theories in de Sitter, which appear to be low
energy limit of massive gravity theories.
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The spontaneous breaking of spacetime symmetries is a fecund
ingredient for the construction of effective field theories for gravita-
tional systems. In this thesis, we discussed the tools, both group-
and field-theoretical, used in analyzing and constructing these
EFTs, employing them to better understand the structure of Gold-
stones bosons for these symmetry breaking patterns and to better
understand a specific example of cosmic inflationary theories.

In Part ii, we introduced the tools that we used in this thesis.
In addition to the usual Maurer-Cartan formalism, we adapted a
protocol from the mathematics literature and presented the normal-
ization procedure as a novel way of constructing EFTs from their
symmetry breaking pattern. We also extended this for theories with
diffeomorphism symmetries, an essential component for gravity.

In Part iii, we employed these tools for more specific cases. Bro-
ken shift symmetries are often invoked to explain aspects of the
embedding of inflation in string theory, yet inflation itself is the the-
ory of broken time diffeomorphisms. The interplay between these
two forms the basis of our study in shift-symmetric cosmologies.
We analyzed the precise consequences of these broken theories in
the associated EFT, from the more fundamental aspects down to
phenomenological consequences.

Continuing in the same Part, another case we studied was the
notion of inessential Goldstone bosons for broken spacetime sym-
metries. These are bosons that are not present in the low energy
spectrum of the EFT. We scrutinized this phenomenon in flat space-
time, where scalars are the only essential bosons known to exist,
then moved to curved spacetime, where we showed vectors can
also be essential, with no equivalent in the flat limit. Along the way,
we examined issues with uniqueness of the construction of EFTs.

Spontaneous symmetry breaking is a flexible and robust subject
in physics, and effective field theory even more so. In this thesis,
we expanded the knowledge of the field with new techniques and
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considerations for the discipline, as a complete understanding of
broken spacetime symmetries is still an ongoing subject of research.
Besides further work in the aspects presented in this thesis’s case
studies, these tools could be applied to completely unrelated gravi-
tational systems that we haven’t discussed here, such as dark matter
and dark energy, as is natural for general methodologies in physics.
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A.1 FINITE GROUPS

By Ado’s theorem, the identity-connected component of any fi-
nite Lie group is some subgroup of the general linear group. As
such, any Lie algebra admits a matrix representation. Utilizing this
dramatically simplifies most group-theoretical computations, as
computer algebra software can readily work with matrices.

Simple and compact Lie groups are completely classified and
their matrix representations are well known. Spacetime groups
also admit such matrices for their generators. Here we provide
the commutation relations defining various algebras used in this
work as well as the matrices that realize these commutators. If
no commutation relation is provided between two generators, the
trivial one is assumed.

For each group, we also provide its Levi decomposition. When
the radical isn’t immediately recognizeable as a known group, we
simply denote it in terms of the span () of its generators.

We remind the reader D denotes the number of spacetime di-
mensions, while d =D — 1.

A.1.1  Poincaré group
Perhaps the most important spacetime symmetry group, the Poincaré
group ISO(1, d) is the isometry group of flat space. Its generators

consist of spacetime translations P, and boosts/rotations M.

Algebra
[PH/ Myp] = np[vpp] [Mm,, Mpg] = Mp[va]G — MG[uMV]p' (AI)
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Matrices

(A.2)

1 eV My )& at
where eV is an antisymmetric matrix and (Mw)% the usual

matrix representation of SO(1, d).

Levi decomposition

1SO(1,d) = RP x SO(1, d). (A.3)

A.1.2  Galileo group

The Galiliean group Gal(1,D) is a contraction of ISO(1, D). Con-
sidering Minkowski spacetime in (D 4+ 1) dimensions, we rescale
the first D coordinates x* — cpx* and rewrite all the dimension-
less rapidites and angles for the Lorentz transformations involving
the Dth dimension as ¢ = v/cp. In the limit of infinite “speed”
cp — 0o, the Poincaré group contracts to Galileo [75].

It inherits the Poincaré generators P, and M,y for the x* coordi-
nates, while Pp and M ,;p become Q and B, respectively after the
contraction.

Algebra
P, and M,y are those of ISO(1,d) (A.4)
By is covariant under My, (A.5)
[Pu/ By] = T]m/Q (A.6)
(A7)
Matrices
: e¥ (Mw)‘é‘ 0 a*
a'P, + Ze“vl\/leLcQer“BLL = by 0 c¢|, (A8
0 0 0



A.1 FINITE GROUPS

where eV is an antisymmetric matrix and (I\/lm,)%C the usual
matrix representation of SO(1, d).

Levi decomposition

Gal(1,D) = exp((P,Q, B)) x SO(T, d). (A.9)

A.1.3  Carroll group

The Carroll group Car(1, D) is also contraction of ISO(1,D). The
procedure is identical to the Galilean contraction, but taking the
limit cp — 0 instead [76].

Once again, the Poincaré generators P, and M, for the x"
coordinates remain unchanged, while Pp and M,,p become Q and
B, after contracting.

Algebra
P, and M, are those of ISO(1, d) (A.10)
V. is covariant under My, (A.11)
[QI Vil = T]pr- (A.12)
Matrices
: (—:W(Mw)g b* at
aupu‘i‘zem’Muv‘*’CQ"i_buv = 0 0 c |, (A13)

0 0 O

where eV is an antisymmetric matrix and (Mw)[‘gC the usual
matrix representation of SO(1, d).

Levi decomposition

Car(1,D) = exp((P,Q,V)) x SO(1,d). (A.14)
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A.1.4 Conformal group

The Minkowski conformal group, SO(2,d), is the group of all
transformations that leave angles in Minkowski space invariant.® It
is also the isometry group of anti-de Sitter space, the spacetime of
negative cosmological constant.

The conformal generators are the Poincaré generators P, and
M, together with spacetime dilations D and special conformal
generator K.

Algebra
P, and M,,, are those of ISO(1, d), (A.15)
Ky is covariant under My, (A.16)
[Pp/ D] = Pp (A17)
[Ky, D] = =K, (A.18)
[P, Kyl =2Myy — 21D (A.19)
Matrices

As the conformal group is SO(2, d), one can use the usual matrix
representations for Lorentz generators. The group SO(2,d) acts
on a (D + 2)-dimensional spacetime; we index with p the usual
D coordinates, the additional time coordinate with — and the
additional space coordinate with +.

Po=M_,+My,y (A.20)
D=M_, (A.21)
Kp=M_,—M,, (A.22)
M, unchanged (A.23)

Levi decomposition

SO(2,D) is already simple.

More formally, it’s the set of transformations that map the Minkowski metric
Nuv — f(x)Nuv, for f(x) some function.
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A.1.5 de Sitter group

The de Sitter group SO(1, D) is the isometry group of a spacetime
with positive cosmological constant. It is thus of immense impor-
tance to both early and late cosmology, due to inflation and dark
energy, respectively.

Its generators consist of space (not spacetime) translations P;,
spacetime dilation D, rotations Ji; and boosts W;.

Algebra
P; and Jj; are those of ISO(d), (A.24)
W, is covariant under Jj;, (A.25)
[Pi, D] = Py, (A.26)
[Pi, Wj] = Ji — 8yD. (A.27)
Matrices

As the de Sitter group is SO(1,D), one can use the usual matrix
representations for Lorentz generators My, with p =0,1,...,D.

Py = Moi — Mip, (A.28)
D = Myp, (A.29)
Jii = Mij, (A.30)
Wi = My;. (A.31)

Levi decomposition

SO(1,D) is already simple.

A.2 GAUGE GROUPS

Gauge groups are, roughly speaking, groups of uncountably infi-
nite dimension. Differently from finite groups, they can’t be defined
abstractly, without reference to any other object. We distinguish
two types of gauge groups:
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1. Gauged finite groups, which are the result of taking a proto-
type abstract group and fibering it over a base spacetime. We
can represent them by the prototype group.

2. Diffeomorphism groups, which act directly on the base space-
time. They must be represented by the corresponding space-
time transformations.>

Only the diffeomorphism groups need to be listed; for gauged
finite groups, we simply classify them by the corresponding abstract
group. Neither Ado’s theorem nor the Levi decomposition theorem
apply to diffeomorphism groups.

A.2.1  Full diffeomorphism group

The full diffeomorphism group Diff(D) is the group of complete
coordinate covariance:

XM — 4 (x), (A.32)

where fH are smooth invertible functions. The group product is
function composition.

Diffeomorphisms are generated by the Lie derivative L;, where
&M is a spacetime vector field.

Algebra

[Le,, Leyl = Ley, (A.33)
£y = &10,8) — &50.&]. (A.34)

A.2.2  Cosmology diffeomorphism group

The cosmology diffeomorphism group CDiff(d) is the group of
spatial transformations with absolute time:

2 Some physicists would not use the term “gauge group” for diffeomorphism

groups; others would be even stricter and reserve the term only for gauged finite
groups that are internal and compact (i. e., Yang-Mills).



A.2 GAUGE GROUPS

t —t, (A.35)

% — f(t, %) (A.36)

where f are smooth invertible functions. The group product is
function composition.

Diffeomorphisms are generated by the Lg, where &' is a spatial
vector field with spacetime dependence.

Algebra

[Le,, Le,] = Lg, (A.37)
£y = &,9;85 — £),9;&]. (A.38)
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ISOMETRIES OF DE SITTER

In Section 7.4.1, we mentioned the isometries of de Sitter spacetime
in D dimenions. Here we provide their full expression in flat slicing,
conformal time coordinates.

Under space translations d!, dilation A and rotations 0;;, the
coordinates x* = (1, x') transform as:

T — AT, (B.1)
X' — AR(0)} (X + ). (B.2)

where R(0)}! is a rotation matrix. More complicated are the dS
boosts. We decompose the spatial position vector X into one parallel
to the direction of the boost, %”, and one orthogonal, X, . Then a
boost with rapidity —oco < 3 < oo along the direction i is:

27
T 1= HB) + (1 + H2Z) cosh(B) + 2H(t - %) sinh ()’
(B.3)
. 2X) cosh(B) + i sinh(B)(1 + H*x?)/H
I T=HZ2) + (1 + HAX2) cosh(B) + 2H(1 - X)) sinh(B)’
(B.4)
S 2X |
LT THEE) + (14 H2) cosh(B) + 2H( - %) sinh(B)’
(B.5)

def _
where x2 = —1? + [X]2.
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Upon switching to physical time, T = —e !, and taking the flat
spacetime limit H — 0O, the boost reduces to the usual Lorentz one:

T— cosh([S)t—sinh([S)(ﬁ-%H), (B.6)
%H — cosh(B)i’” —sinh(B)tu, (B.7)
X, — X]. (B.8)
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SUMMARY

Symmetry has always been at the heart of physical theories de-
scribing nature, perfectly captured by Noether’s theorem. Yet sym-
metries are arguably at their most interesting when they are spon-
taneously broken by nature itself. In this thesis, we looked at the
structure and consequences of broken spacetime symmetries, mean-
ing that they involve the transformation of spacetime coordinates.
Because spacetime and gravity are interlinked, such symmetry
breaking patterns often give birth to effective theories of gravita-
tional systems.

Remarkably, in the case of broken spacetime symmetries, famous
results encoded by Goldstone’s theorem no longer apply. That is
to say, there isn’t necessarily one bosonic particle for each broken
symmetry, and the particles that do exist need not be massless.

To better understand the structure of broken spacetime symme-
tries, we study methods for constructing effective field theories
out of the symmetry breaking pattern. In particular, we present a
novel protocol to do this which is better suited for broken diffeo-
morphisms, which are the symmetries associated with changes in
coordinates. Such tools prove useful when studying the effective
theory of cosmology, as the expansion of the universe over time
breaks changes in the time coordinate.

Indeed, the role of broken symmetries in the effective theory of
cosmology is rich. Frequently, to address several issues with the
inflationary paradigm (a supposed period of accelerated expansion
in the very early universe), a scalar shift symmetry is invoked,
which is a kind of internal (not spacetime) symmetry. We study
the interplay between the broken time diffeomorphism and this
shift, allowing us to constrain the free parameters of the effective
theory of cosmology and derive observational checks the theory
must satisty, the so-called soft theorems.

Finally, we also look at the failure of some of the Goldstone par-
ticles to exist. By looking at the group-theoretical structure of the
symmetries and by examining various examples in flat Minkowski
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spacetime, we are able to better understand why this happens.
Armed with this knowledge, we proceed to curved de Sitter space-
time and manage at producing an effective theory with both Gold-
stone scalars and vectors, a novel result.



SAMENVATTING

Symmetrie heeft altijd in het midden van fysische theorieén ges-
taan die de natuur beschrijven, perfect gevangen door de stelling
van Noether. Echter zijn symmetrieén het interessantst wanneer
deze spontaan gebroken worden door de natuur zelf. In deze the-
sis hebben we gekeken naar de structuur en consequenties van
gebroken ruimtetijdssymmetrieén, wat betekent dat ze betrekking
hebben op de transformatie van ruimtetijdcodrdinaten. Omdat
de ruimtetijd en zwaartekracht verbonden zijn, leiden zulke sym-
metriebrekingspatronen vaak tot effectieve theorieén van gravita-
tionele systemen.

Opmerkelijkerwijs gelden beroemde resultaten uit de stelling van
Goldstone niet langer in het geval van gebroken ruimtetijdssym-
metrieén. Met andere woorden, er is niet noodzakelijkerwijs één
bosonisch deeltje voor elke gebroken symmetrie, en de deeltjes die
wel bestaan hoeven niet massaloos te zijn.

Om de structuur van gebroken ruimtetijdssymmetrieén beter te
begrijpen, bestuderen we methoden om effectieve veldentheorieén
te construeren uit het symmetriebrekingspatroon. In het bijzonder
presenteren we een nieuw protocol om dit te doen wat beter werkt
voor gebroken diffeomorfismes, wat symmetrieén zijn die geasso-
cieerd zijn met veranderingen in codrdinaten. Zulk gereedschap
blijkt handig voor het bestuderen van de effectieve theorie van
kosmologie, aangezien de expansie van het universum over tijd
veranderingen in de tijdscodrdinaat breekt.

Inderdaad is de rol van gebroken symmetrieén in de effectieve
theorie van kosmologie groot. Vaak wordt, om verscheidene moeil-
ijkheden met het inflationaire paradigma (een veronderstelde pe-
riode van versnelde expansie in het zeer vroege universum) te
addresseren, een beroep gedaan op een scalaire verschuivingssym-
metrie, wat een soort van interne (geen ruimtetijd) symmetrie is.
We bestuderen de wisselwerking tussen de gebroken tijdsdiffeo-
morfismes en deze verschuiving, wat ons in staat stelt om de vrije
parameters van de effectieve theorie van de kosmologie te beperken,
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en observationele controles af te leiden waar de theorie aan moet
voldoen, de zogenaamde zachte stellingen.

Tenslotte kijken we ook naar het niet bestaan van sommige van
de Goldstonedeeltjes. Door te kijken naar de groepentheoretische
structuur van de symmetrieén en door verscheidene voorbeelden
in vlakke Minkowskiruimtetijd te analyseren, zijn we in staat om
beter te begrijpen waarom dit gebeurt. Met deze kennis gaan we
door naar gekromde de Sitter ruimtetijd en produceren we een
effectieve theorie met zowel Goldstonescalairen en vectoren, een
nieuw resultaat.
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