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ABSTRACT

Understanding the time-scales for diffusive processes and their degree of anisotropy is essential for modelling cosmic ray
transport in turbulent magnetic fields. We show that the diffusion time-scales are isotropic over a large range of energy and
turbulence levels, notwithstanding the high degree of anisotropy exhibited by the components of the diffusion tensor for cases
with an ordered magnetic field component. The predictive power of the classical scattering relation as a description for the
relation between the parallel and perpendicular diffusion coefficients is discussed and compared to numerical simulations. Very
good agreement for a large parameter space is found, transforming classical scattering relation predictions into a computational
prescription for the perpendicular component. We discuss and compare these findings, in particular, the time-scales to become
diffusive with the time-scales that particles reside in astronomical environments, the so-called escape time-scales. The results
show that, especially at high energies, the escape times obtained from diffusion coefficients may exceed the time-scales required

for diffusion. In these cases, the escape time cannot be determined by the diffusion coefficients.
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1 INTRODUCTION

Scattering by magnetic field inhomogeneities is a fundamental

process in cosmic ray transport, whether it be dominated by diffusion

(Strong & Moskalenko 1998; Evoli et al. 2008; Kissmann 2014;

Merten et al. 2017) or includes a component of self-regulated stream-

ing along the background magnetic field (Kulsrud & Pearce 1969).
Spatial diffusion is described via the tensor
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within a magnetic field By, = B + b, whereb is the turbulent
component and the z-axis of the coordinate system is aligned with
the background magnetic field B. Here, we define the perpendicular
and parallel diffusion with respect to the mean magnetic field, hence
k.. =k and Ky = Ky, = k for B = Be.. Spatial diffusion enters
the Parker transport equation
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Here, u denotes advection speed, p is momentum, k p, is the scalar
momentum diffusion coefficient, and n is the phase-space cosmic
ray density averaged over the direction of particle momentum. In
most systems, the transport is anisotropic for weak turbulence levels
b < B, where the parallel diffusion coefficient x| is larger than
the perpendicular diffusion coefficient x| . Due to the geometry of
many pertinent astrophysical objects, however, the perpendicular
component often plays a decisive role in the escape times Ty of
particles from the system. Examples include those objects where the
perpendicular spatial structures have distinctly smaller scales than
the structures parallel to the ordered background field. For instance,
in flux tubes in the lobes of radio galaxies (Bell et al. 2019) or in
elongated jets of active galactic nuclei (AGN), the large-scale field
structure is believed to be helical. Thus, the transport perpendicular
to the mean-field of the jet is associated with shorter escape times
than those associated with particles leaving along the magnetic field
lines of the jet. The orientation of AGN jets with respect to the
observer determines the escape process relevant for observation, and
objects with all jet orientations, even precessing jets, are subject of
investigation. The viewing angle toward the Earth, then, determines
what signatures can be seen (see e.g. de Bruijn et al. 2020). Blazars
are AGN seen along the jet axis, where parallel diffusion is relevant,
while the perpendicular escape process can dominate over the parallel
one in inclined blazars or Fanaroff-Riley galaxies (see e.g. Becker,
Biermann & Rhode 2005; Merten et al. 2021; Tavecchio 2021).
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There also exist regions in the Milky Way for which the escape
time of charged particles perpendicular to the Galactic plane is more
efficient than the time of escape along the radial direction, despite the
much smaller perpendicular diffusion, due to the small-scale height
of the Galactic disc (Effenberger et al. 2012; Gaggero et al. 2015;
Evoli et al. 2017; Reichherzer et al. 2022).

The often complex links between magnetic field geometry and
anisotropy of cosmic ray diffusion must be taken into account
when simulating cosmic ray transport, as they also affect observable
quantities such as the energy spectra of cosmic ray primaries
(protons, heavier nuclei) and secondaries (electrons, gamma-rays,
neutrinos). As the diffusion tensor changes depending on the
propagation regime (set by the energy, turbulence level, turbulence
spectrum, intermittency, etc.), these dependencies enter the transport
equation, and therefore, the final characteristics of the observed
multi-messenger signatures. In particular, the leaky-box model of the
Milky Way predicts that the cosmic ray energy spectrum observed at
the Earth is steepened by diffusion. In this model, it is assumed that
the particle transport is dominated by scalar diffusion and that the
system is in steady-state, i.e. dn/dt ~ 0. Assuming propagation in a
fixed scale height, the spectrum is given by the ratio of the source
spectrum Q(E) o E~* and the diffusion coefficient «;(E) ox EYi,
ie. N(E) o E~*77 (Jokipii 1966; Berezinskii et al. 1990; Becker
Tjus & Merten 2020), where i represents the perpendicular or the
parallel component, depending on the geometry of the system and
the dominating component of the diffusion tensor. If we better
understand the relationships between the perpendicular and parallel
components of the diffusion tensor, observations of one of these
components can be used to determine the other one.

This paper is organized as follows. A discussion of the theoretical
background of the relation between the diagonal diffusion tensor
components is presented in Section 2. Section 3 covers the simu-
lation set-up for diffusion coefficient and time-scale calculations.
In Section 4, the parameter space in energy and turbulence levels
is examined with respect to the validity of the classical scattering
relation (CSR), finding that it provides a good description of
numerical results. The paper is concluded by a discussion of the
results in the context of perpendicular diffusion and its consequences
for the escape time-scales of charged particles.

2 COMPONENTS OF THE DIFFUSION TENSOR

The understanding of purely parallel cosmic ray transport has been
advanced significantly over time (Jokipii 1966; Jokipii & Parker
1969; Giacalone & Jokipii 1999; Casse, Lemoine & Pelletier 2002;
Shalchi 2009; Buffie, Heesen & Shalchi 2013; Snodin et al. 2016;
Reichherzer et al. 2020; Deligny 2021), but, there still are several
open questions, such as what turbulence levels allow for the applica-
tion of quasi-linear theory (QLT) and how the turbulence spectrum
and intermittency influence particle transport (Shukurov et al. 2017;
Friedrich et al. 2018). Several studies were dedicated to perpen-
dicular diffusion coefficients and their relationship to the parallel
diffusion coefficient (Giacalone & Jokipii 1999; Mace, Matthaeus &
Bieber 2000; Casse et al. 2002; Matthaeus et al. 2003; Candia &
Roulet 2004; Marco, Blasi & Stanev 2007; Minnie et al. 2007;
Fatuzzo et al. 2010; Plotnikov, Pelletier & Lemoine 2011; Harari,
Mollerach & Roulet 2014, 2015; Snodin et al. 2016; Subedi et al.
2017; Giacinti, Kachelriess & Semikoz 2018; Dundovic et al. 2020;
Reichherzer et al. 2020). Knowledge of the relationships between
the perpendicular and parallel components of the diffusion tensor
are important in determining one component with the knowledge
of the other. When measuring diffusion coefficients of cosmic rays
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in e.g. galaxies (Heesen 2021), the orientation of the galaxy plays
an important role, because geometrical arguments often allow the
measurement of only one of the components of the diffusion tensor.

Analytical theories must describe the components of the diffusion
coefficients over a wide range of turbulence levels and energies.
A strong turbulence level (b/B >> 1), for example, results in equal
perpendicular and parallel components of the diffusion coefficient,
as the charged particles propagate through isotropic turbulence
(Jokipii & Parker 1969; Bieber & Matthaeus 1997; Giacalone &
Jokipii 1999).

Test particle simulations for two-dimensional, slab, or composite
(two-dimensional & slab) turbulence can be adequately described
using analytical models such as QLT (in some domains), non-linear
guiding centre theory, and unified non-linear theory (see e.g. Shalchi
2020 for a review). Despite the successes of these turbulence
models, for isotropic three-dimensional turbulence, tension with
these theories was found at small reduced rigidities (Dundovic et al.
2020; Reichherzer et al. 2020). So far, no encompassing theory
exists capturing the relation between the parallel and perpendicular
components that agrees with simulation results over the whole range
of turbulence levels b/B for isotropic three-dimensional turbulence.

Instead of considering diffusion models, which, due to their under-
lying assumptions, only apply to certain parameter ranges or exhibit
significant limitations (see e.g. Mertsch 2020), one may employ a
more general, non-linear theory, such as the Bieber and Matthaeus
(BAM) theory (Bieber & Matthaeus 1997). Therein, fluctuations
cause particles to deviate from the ideal helices assumed in QLT,
because of continuous change of the pitch angle. Therefore, particle
velocities cannot be treated as being correlated over the complete
trajectory, as assumed in QLT. Instead, the general, physically mo-
tivated assumption of exponentially decaying velocity correlations
applies. Consequently, the velocity correlations that are crucial for
determining the running diffusion coefficients «;; () = (xiz) /(2t) read

2
vy (. (0) = % cos(Q)e ", 3)

2
<v”(t)v”(0)> = L eft/r” i @
3

with (-) being the ensemble average, while 2 = v/r, denotes the
angular frequency of the unperturbed orbit, and the effective time-
scales for the decorrelation of the trajectories along and perpendicular
to the background field are written as 7| and 7, respectively. Note
that the gyroradius r, of the unperturbed trajectory is calculated
only with respect to the ordered background field B. In contrast
to the BAM model, we make no assumptions regarding the time-
scales for perpendicular diffusion and, in particular, do not use the
field-line random walk (FLRW) coefficient as a measure of the
perpendicular mean-free path. Avoiding restrictive assumptions is
important, since the description of perpendicular transport as FLRW
is based on large parallel mean-free paths and requires the absence
of resonant scattering, neither of which criterion is fulfilled in all
key astrophysical environments for the particle energies considered
in the present work (the effects of FLRW (Sonsrettee et al. 2016;
Shalchi 2021) are unlikely to be completely negligible, however, a
point to which we return in the discussion of Fig. 1). Gyroresonant
scattering is defined in QLT as cos ® = l/(27r,), where ® denotes
the pitch angle, [ is the wavelength of a turbulent fluctuation. In
an approach to generalize this criteria for strong turbulence levels,
we employ cos® =1[/(2npl.) for defining the different transport
regimes, where the unitless reduced rigidity yields p = ro/l. -
B/B = El(qcBol.). Note that this expression coincides with the
QLT expression for b < B, where B & By holds. As —1 < cos ©®
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Figure 1. Comparison between simulation results and theoretical predic-
tions from the CSR for « /i for all investigated simulation parameter
combinations of the turbulence level b/B and the energy E. The colour-
code indicates the deviation according to equation (11). The theoretical
predictions underestimate the ratios « | /i ||, as shown in Figs 2 and 3. Each
point comprises the results of 20-50 test particle simulations for the indicated
parameter combination as described in Section 3. The magnetic field strength
is B = 1 uG and the maximal fluctuation wavelengths are [, 2~ 82 pc. Using
scaling laws, this plot can be applied to other astrophysical environments, e.g.
to AGN jet plasmoids, as illustrated with the upper x-axis labels and described
in the text.

< 1, the maximum p for which gyroresonance occur is p = 5/27w.
This is the upper boundary of the resonant-scattering regime (RSR).
For larger particle energies, and thus larger gyroradii, the resonant-
scattering criterion is only sustained for a fraction of possible pitch
angles. This fraction decreases with increasing gyroradius. Beyond
the RSR, the system enters the transition regime (TR), followed by
the quasi-ballistic regime (QBR) as soon as the ratio 1/p becomes
negligible. The energy dependence of the diffusion coefficients
differs significantly in these regimes (Reichherzer et al. 2022).
The description of perpendicular transport in the RSR also has to
account for the cross-field diffusion caused by resonant scattering
(see Desiati & Zweibel 2014, for a discussion).

The diffusion coefficients can be computed according to the
Taylor—Green—Kubo (TGK) formalism (Shalchi 2009),

i /r q v? @ ey vrg Qg
K = lhm; T — -cos(Q7) - e — & L
) s 3 3 1+Q22
oo V2T v A
=i N dr — - —1/7) — 7\\ — Il ) 5
K 1my oov/0 T 3 e 3 3 ( )

The relation between the parallel mean-free path and the parallel
diffusion coefficient k|| = vA|/3 establishes the relation 7| = A)/v,
which defines 7 as the diffusion time-scale in parallel direction.
Similarly, we define 7, as the diffusion time-scale in the perpen-
dicular direction. The relation between the perpendicular and the
parallel components of the spatial diffusion coefficient thus reads
K1 T Qrg 1 T, 1

. = (©)

K oTov 1+Q27? ?Hl—l—v%f/rg'

Note that there are different assumptions made by several studies
about the time-scales v, and 7 to further exploit equation (6).
In the hard-sphere model introduced by Gleeson (1969), which is
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also known as the CSR within standard kinetic theory, only one
isotropic scattering process is present. The assumption that these
two time-scales coincide as the decorrelations are caused by a single
scattering process is also present in Isenberg & Jokipii (1979),
Balescu, Wang & Misguich (1994), Casse et al. (2002). Without
knowledge of the exact contribution of different processes to the
decay of the velocity correlation functions, we also employ 7 ~
7. We justify this assumption by the isotropic character of the
FLRW in isotropic three-dimensional turbulence. Consequently, the
diffusion time-scales for this process are isotropic. We remark that the
influence of resonant scattering, which dominates for lower energies,
may contradict this assumption. For equal diffusion time-scales, the
CSR prediction yields
K 1
K| B 1+)\ﬁ/r§ (7)
Consequently, whenever the time-scales in the perpendicular and
parallel directions are identical, the perpendicular diffusion can be
expressed as

— K|
1+ Bky)?/(cry)?’

Note that for the highly relativistic particles (Lorentz factor y > 1)
considered throughout the study, we approximate the velocity by the
speed of light. Previous investigations (Giacalone & Jokipii 1999)
have already shown that equation (8) will not hold everywhere. In
this paper, we will systematically investigate the parameter space
spanned by particle energy and turbulence level to deduce in which
this expression and the underlying assumption t;, = 7 hold.

®)

KL

3 NUMERICAL SIMULATION SET-UP

Test-particle propagation of highly relativistic protons is simulated
with the software CRPROPA,' a publicly available tool for simulations
of cosmic ray transport (Alves Batista et al. 2016; Merten et al.
2017; Alves Batista et al. 2021). We performed simulations of highly
relativistic protons of at least several PeV, but many conclusions
apply to the general case as well, because only the ratio of gyroradius
to the correlation length [, ~ [;ax/5 is relevant for the diffusion-
coefficient scaling, which extends over more than two orders of
magnitude. Specifically, reducing both By, and the particle energy
by the same factor results in the same diffusion tensor.

Magnetohydrodynamic turbulence can be simulated numerically,
where the spectrum of turbulence is the result of a turbulent energy
cascade (Stone, Ostriker & Gammie 1998; Cho, Lazarian & Vishniac
2003; Cohet & Marcowith 2016). In contrast, simplified synthetic
turbulence allows for a larger inertial range (Mertsch 2020) and
can be constructed in such a way that the turbulence properties
exactly match the assumptions on turbulence underlying the theories
investigated in this paper (Schlegel et al. 2020).

We follow the synthetic turbulence generation described in
Reichherzer et al. (2022). For the isotropic three-dimensional
turbulent component, we employ a Kolmogorov-like spectrum
G(k) o< (klkmin) =" fOr kmin < k < kmax> With kinin = 277 /lnax and kpax =
277 /i, and G(k) = 0 otherwise. We choose /iy, = 1.7 pc and /i, =
82 pc to span a large inertial range of the turbulence and we store the
turbulent field on a grid with 10242 grid points and a spacing of /;n/2.
‘We note that this adopted inertial-range Kolmogorov scaling for the
turbulence is an idealization, as interstellar turbulence is driven on

The specific version used for the simulations is CRPropa 3.1-f6f818d36a64.
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many scales, from as much as 100 pc by superbubbles to kinetic
scales by cosmic rays themselves (Beresnyak & Lazarian 2015).
Moreover, the Alfvénic turbulence assumed here, unlike hydrody-
namic Kolmogorov turbulence, is known to be highly anisotropic,
even when considering compressibility effects that can generate
an isotropic component (Beresnyak & Lazarian 2015). Note that
anisotropy causes inefficient scattering, leading to increased parallel
diffusion coefficients (Chandran 2000; Yan & Lazarian 2002).

Our simulations of particle transport in a combined turbulent field
b and mean field B = 1 4G are based on the well-established TGK
formalism (Shalchi 2009), (see e.g. Giacalone & Jokipii (1999),
Casse et al. (2002), Globus, Allard & Parizot (2008), Marco et al.
(2007), Minnie et al. (2007), Snodin et al. (2016), Giacinti et al.
(2018), Dundovic et al. (2020), Reichherzer et al. (2022)). We inject
2000 particles at time ¢ = 0 and position x; = é(x; o), and integrate
the particle trajectories in the magnetic field by numerically solving
the Lorentz—Newton equation via the energy-conserving Boris-push
method (Boris & Shanny 1972). The step-size of the particles in our
integrator is Syep = mMin(7y/5, Inax/20) in order to sufficiently resolve
the gyrations and the turbulent fluctuations.

The running diffusion coefficients are determined according to
Kii(t) = (Axl?) /(2t) by averaging over the particles. After «;(7)
converges to a constant value, we calculate the diffusion coefficient
Kk ; by averaging the final running diffusion coefficients over time to
reduce statistical fluctuations. In order to ensure representative results
for isotropic turbulence, we perform 20-50 simulations for each
parameter combination, which are only distinguished by randomly
changing phases of the turbulent fluctuations with the same statistical
and spectral properties.

We perform simulations only for particles in the RSR, TR, and
QBR. The latter is characterized by good agreement between nu-
merical simulation results and theoretical predictions. For example,
an energy scaling of x oc E” is obtained here, independent of the
turbulence level. This is to be expected since diffusion is no longer
dominated by resonant scattering. However, the situation is different
for the RSR, where resonant scattering becomes dominant according
to the resonance criterion.

Further reducing of the gyroradii results into two effects:

(i) The magnitude of the fluctuations decreases according to the
relation b oc (G(k) k)'/? o k~'/3, given by the Kolmogorov-type
spectrum for smaller fluctuation wavelengths. As the resonance
criterion connects the gyroradii with the fluctuations wavelengths,
reducing particle gyroradii results in decreasing magnitude of fluc-
tuations that are relevant for resonant scatterings for these particles.
In addition to the decrease in the magnitude of the fluctuations, the
scales of the changes of the turbulent magnetic field are considerably
larger for small gyration radii, so that an effective directed magnetic
field is established on the relevant scales. Thus, an effective b/B <
1 exists on small scales.

(i) According to the resonant-scattering criterion and the limited
resolution of the turbulence (/,,;, > spacing/2), the range of pitch
angles capable of resonant interactions decreases. As the needed
RAM to store the turbulence on the grid is very large, the resolution
is severely constrained and limits the range of fluctuations to a few
orders of magnitude. The missing resonant-interaction possibilities
due to the constrained fluctuation wavelength range lead to a
numerically increased diffusion coefficient.

Whereas effect (i) establishes the prerequisites for weak turbulence,
missing resonant-scattering possibilities must be taken into account
due to effect (ii). Since we are both interested in the influence of
the turbulence level and want to keep the numerical effort tractable,
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we omit the low energies. This also justifies neglecting the effect of
cosmic ray self-confinement, which is deemed ineffective at energies
above ~100-200 GeV (Zweibel 2017).

4 RELATION BETWEEN PERPENDICULAR
AND PARALLEL COMPONENTS

In this section, we carry out a comprehensive parameter study
to substantially expand on the results obtained in the different
investigations (Jokipii & Parker 1969; Giacalone & Jokipii 1999)
and extract relevant insights on the validity of the application of the
equations (7) and (8). For this purpose, a parameter space over three
orders of magnitude in particle energy and two orders of magnitude in
turbulence level is examined; thus, covering different energy regimes,
such as the RSR, QBR, and TR.

The calculation of the diffusion coefficients via the TGK mech-
anism described in Section 3 (see equation (5)), using the temporal
convergence of the running diffusion coefficient, facilitates the
determination of the parallel mean-free paths. Therefore, instead
of determining A| directly, we determine it by means of equation (5)
via the diffusion coefficient « | as

3
= 9 ©)

This approach simplifies the analytical prediction for the ratio of the
diffusion coefficient components in the CSR, see equation (7), to

Kl / csr I+ )‘ﬁ.sim/rgz 1+ Gy sim)?/(cre)?

The deviation between simulation results (labelled sim) and the CSR
prediction (labelled CSR) for the ratio « | /x| yields

=), () (), av
K/ sim K/ csr K/ csr

K1 1 (3K\|‘sim)2>
=l(=) - (1 ST (12
’(xu)sim 1+ 3k am/(C g 2 <+ (12)

(crg)?
Fig. 1 presents this deviation ¢ with different colours between
simulated and CSR-predicted ratios of the perpendicular and par-
allel diffusion coefficients. The displayed data points represent all
parameter combinations considered in the present study.

Since only the ratio ry/l. is relevant for the diffusion coefficients,
this plot is universally applicable as indicated by the axis labels
below and above the figure. The labels of the lower x-axis of Fig. 1
correspond precisely to the simulation parameters. With an arbitrary
factor, the range of particle energy can be scaled if, at the same time,
the product of magnetic field strength and the correlation length is
scaled in the same way. For illustration, the upper x-axis labels are
obtained with a magnetic field 10° times larger than that on the lower
x-axis labels. At the same time, the correlation length is scaled down
by a factor of 5 - 107. Effectively, therefore, the energy range has
decreased by a factor of 50 and represents the particle energies in
the set-up of an exemplary AGN jet plasmoid (Hoerbe et al. 2020;
Reichherzer et al. 2021). Accordingly, the CSR relation describes the
transport of PeV protons, which are a relevant contributor to multi-
messenger processes in hadronic blazar models (Bottcher 2019).

As no encompassing theory currently exists capturing the relation
between the parallel and perpendicular components that agrees
with simulation results over the whole range of turbulence levels
b/B and energies for isotropic three-dimensional turbulence (see
Dundovic et al. 2020), it is not surprising that the CSR fails for some
parameter combinations. Fig. 1 demonstrates only poor agreement
(deviations between 10% per cent < & < 103 per cent) between CSR
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Figure 2. Ratios of the perpendicular to the parallel diffusion coefficient
from test particle simulations as functions of the ratio of the parallel mean-free
paths and the gyroradii of the particles (top), defined in equation (13). Each
point comprises the results of 20-50 test particle simulations and indicates,
via its colour-code, the fixed particle energy used in these simulations. The
simulation set-up and parameters are described in Section 3. Theoretical
predictions obtained from equation (7) are shown as the grey line that is
labelled theory. In the lower panel, the deviation ¢ between simulation and
theory is shown in per cent and is determined via the definition presented in
equation (11).

and numerical simulations for small energies and weak turbulence
levels. Particles in the zone of poor agreement satisfy ry < Inax S
A, which suggests that although these particles are scattered by
resonant waves, a significant part of the perpendicular displacement
is due to FLRW, a point to which we return in the discussion
of Figs 2 and 4. A precise characterization of FLRW for our
turbulence model is currently in progress and will be described
in future publication. Fig. 1 shows that a large parameter space is
well-described by this simple theoretical prediction from the CSR.
As we have shown here, an all-encompassing theory must also
describe the anisotropic diffusion time-scales in the RSR for weak
turbulence levels, with otherwise isotropic diffusion time-scales even
for strongly anisotropic diffusion coefficients at high energies. Note
that in many astrophysical environments (e.g. galaxies; Jansson &
Farrar 2012; Kleimann et al. 2019; Shukurov et al. 2019), similar
orders of magnitude of b and B are present at the injection scales of
the turbulence. However, scaling of the turbulent spectra according to
Kolmogorov or Kraichnan leads to b < B on the smaller fluctuation
scales relevant to lower-energy particles. In the following, we discuss
the reasons for the good agreement between simulations and CSR
predictions toward high energies (see Section 4.1) and toward strong
turbulence levels (see Section 2) that were identified in the overview
plot.

4.1 Range of validity in particle energy

Fig. 2 shows simulation results for the ratios of the diffusion
coefficient components « | /k | as functions of the ratio between the
parallel mean-free paths and the gyroradii Aj/ry. Note that, from
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equation (9),

M_A (13)
Ty Cly

The particle energy used for each simulation is colour-coded. Each
data point in Fig. 2 comprises the results of 20-50 test particle
simulations and indicates, via its colour-code, the fixed particle
energy used in these simulations. Theoretical predictions obtained by
equation (7) are shown as the grey line labelled theory. The deviation
¢ between theory and simulation results, defined in equation (11), is
presented in the lower panel.

It should be noted that there is no straightforward relationship
between A|/r, and energy, since the dependence of A on energy
depends on the transport regime. For this reason, the colour of the
points, according to the particle energy, is essential to visualize
the energy dependence. This figure, especially in the lower panel,
as well as Fig. 1, shows better agreement between theory and
simulation results for higher particle energies. Particles that show
large deviations (2100 per cent) between simulation results and CSR
predictions satisfy 7, S Inix S Aj, as demonstrated in the lower
panel of Fig. 2. These low-energy particles (purple) correspond to
small gyroradii, while the parallel mean-free paths are large due to
the weak turbulence level. Fig. 4 visualizes this claim by showing
the simulation results for the parallel mean-free paths versus the
unperturbed gyroradii normalized to [, respectively. The colour-
coding provides the deviation between QBR and simulation results
according to equation (11). The grey area shows the parameter space
spanned by r, S Inx S Aj. The large deviations lie primarily
in this parameter space. The scaling with energy and r, follows
the predictions from the high-energy theory proposed in Subedi
et al. (2017) as discussed in more detail in Reichherzer et al.
(2022).

Other definitive general statements based on these results alone
are not possible because the turbulence level varies in addition to
the particle energy. This will be discussed in more detail in the
following subsection, where we investigate the agreement between
theory and simulations for fixed turbulence levels, and thus, separate
the influence of the turbulence level and the energy.

4.2 Range of applicable turbulence levels

In order to simplify the investigation at A|/r, >> 1, where deviations
between theory and simulations are apparent in the lower panel of
Fig. 2, the same data are shown in log—log representation in Fig. 3.
To enable investigation of the turbulence-level dependence of the
deviation ¢ between theory and simulation, the simulation points are
colour-coded according to b/B.

The differences between the diagonal elements of the diffusion
tensor diminish with increasing b/B, so that k | /i ~ 1 in the limit b
> B. Here, the ratios A /r, are expected to be small, as A decreases
with increasing turbulence level. Since the CSR predicts exactly this,
the agreement with the simulation results for this parameter range,
which is characterized by strong turbulence levels, is good.

To further investigate the turbulence-level dependence of the
agreement between theory and simulations, we parametrize the CSR
as

K| _ aj )‘Hz’g aj ()L”>—a3 (14)
K| 1 —|—a2()u‘|/rg)“3 ay \ Iy ’

where the latter expression yields as a good approximation in the
limit of large A, and fit the simulation data for turbulence levels.
The best-fitting results for the parameters a;, a, and az for all
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Figure 3. Same data as in Fig. 2, except that the colour-coding indicates the
turbulence level in each simulation. In contrast to Fig. 2, here the deviations for
large A /ry are visible in the log—log scaling. In the lower panel, the deviation
& between simulation and theory is shown in percent and is determined via
the definition presented in equation (11). Good agreement between theory
and simulations for strong turbulence levels is found.

turbulence levels presented in this study are shown as functions
of b/B in Fig. 5. The CSR predictions are a; = 1, a, = 1, and
a3 = 2 as indicated by the horizontal solid lines in the plot. As it
is apparent in Fig. 3, the approximation presented in equation (14)
for large A is used for the fits for weak turbulence levels, where
all simulation points approximately obey « /i o< (A /rg)®. The-
oretically, this criterion is justified by the fact that the parallel
diffusion coefficients scale with (b/B)* (with « = —2 for QLT).
This scaling is directly transferable to the parallel mean-free paths,
since A| = 3k /c. Weaker turbulence levels, thus, lead to larger
Ay Tests have shown the value of 2 for the turbulence level to
be practical as a switch between both expressions presented in
equation (14).

For strong turbulence levels, the fits agree well with these CSR
predictions. A difficulty arises at weak turbulence levels, where,
due to the dependence of the parallel diffusion on the turbulence
level, simulation data only exist for A >> r,. This leads to large
uncertainties in the fits. As we commented below equation (11), in
these cases, there may also be a contribution from FLRW.

Furthermore, we examine the predictive power of the CSR for the
perpendicular component computed from « || according to the expres-
sion from equation (8). The perpendicular diffusion coefficients (cir-
cles) obtained from the CSR description and the numerical simulation
results for k|, are directly compared with « | from the numerical sim-
ulations. For this purpose, Fig. 6 shows the perpendicular diffusion
coefficients as functions of the reduced rigidity. Note that here the gy-
ration radius is calculated with respect to the total magnetic field and
differs from the definition of the gyration radius of the unperturbed
orbit 7y, since the latter depends only on the ordered magnetic field
component B.

The energy-independent perpendicular diffusion coefficient char-
acteristic of FLRW diffusion in QBR is apparent in Fig. 6. The lower
panel provides the deviations between our numerical simulations and
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Imax, respectively. The same colour-coding from Fig. 1 indicates the deviation
between numerical simulations and CSR predictions. The parameter space
for which rg < Inax < A holds, is highlighted in grey. The upper x-axis
provides the corresponding energies of particles in AGN jet plasmoids with
the given parameters. The dotted, straight, and dashed lines represent the
predicted scalings for fixed turbulence levels in the limits for QLT (RSR),
Bohm (RSR), and high energies (QBR), respectively.
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As follows from the discussion above, there is poor predictive power
for the perpendicular diffusion coefficients in the RSR for weak
turbulence levels. In contrast, there is good agreement in QBR that
improves with energy, where the parallel mean-free path increases
as A o¢ E? and suppresses perpendicular diffusion according to

the CSR predictions

K1 sim — K1,CSR

g:

K1,CSR

et oy »
1 + )L / T 3)»“

The A > r, approximation holds for a large parameter space

according to Fig. 4.

Note that a related set-up involves the spatial diffusion of beam-
injected ions and alpha particles in fusion plasmas, where energy-
independent diffusion due to magnetic fluctuations is predicted by
decorrelation theory (Hauff et al. 2009; Pueschel 2012; Pueschel et al.
2012). Future work, accounting for pitch-angle-dependence, will
assess to which degree this theory can be seen as a (non-relativistic)
extension of the present results.

4.3 Implications for time-scales of diffusion

In the previous subsections, we found that the CSR describes the
diffusion coefficients accurately for a wide range of parameters.
We emphasize that this covers important astrophysical environments
involving relativistic plasmoids in blazar jets. In Figs 1 and 4, we have
shown that the transport of PeV protons can be described well across
turbulence levels using the CSR theory. Furthermore, this finding is
complemented by our results on the isotropy of the diffusion time-
scales. We have shown that the diffusion time-scales coincide in
both parallel and perpendicular directions over a very large parameter
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Figure 5. Fit parameters a3 and the ratio aj/a; as functions of the turbulence
level b/B. For strong turbulence levels, where Al > g holds, we fit the
approximation in equation (14). However, for unified representation, we also
show only the ratios of a; and a, for weaker turbulence levels, although
individual values of the parameters are available. The dash—dotted horizontal
line indicates the prediction of the CSR for the ratio a/ay, whereas the
solid grey horizontal line illustrates the theoretical prediction of the CSR
for az according to equation (5). The fits were performed to the subset of
simulations shown in Fig. 3 that match the turbulence level b/B to which the
points correspond in the present plot.

E il F10?
1031 L _=
1030 ;_ e 5] @ 5] -
n : wé‘?@@ cl B ] @ 7
f\l& 29 i twﬁgfﬁﬁﬁf Birkeale) ] B ] ]
g 107¢ e 5 o s s Il 100
= i ﬁ’i‘ﬁ'ﬁ‘*@ @ B = @©
o 10% L « RSR PR 0 8 B @
t o+ TR ey 2 B8
1027 L P 9 @ 8 o
E o QBR f" o o 9 @ g 3
26 [ ’ ] 101
_ 1o*f .
o\o ]_03_ @
" e
W 00% == e sl Q
S 10! - T
B [S————
o o
'S 1071 A -
107! 100 10! 102
o

Figure 6. Perpendicular diffusion coefficient as functions of reduced rigidity
p. The markers show the association of the data points of the numerical
simulations in the respective transport regimes. The circles indicate the
values expected from the CSR for the perpendicular diffusion coefficients.
These are calculated using the numerical simulation results for « | according
to equation (8). The lower panel shows the relative deviation according to
equation (15) between simulations and RSR predictions.

space, even if the diffusion coefficients are anisotropic (k | < «) due
to strong coherent background fields. Two effects cause the isotropy
in the diffusion time-scales:

(1) Increasing the turbulence level isotropizes the diffusion process
and, therefore also the time-scales needed to correctly describe
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transport diffusively in the parallel and perpendicular directions. This
manifests itself in the fact that the CSR is able to describe the data
more accurately with increasing turbulence level, independent of
energy, as this theory applies 7| ~ 7.

(ii) Isotropization of the diffusion time-scales also arises for
increased particle energy, especially for r, 2 I, as the con-
tribution from resonant scattering decreases. It is important to
emphasize that equal parallel and perpendicular time-scales for
diffusion do not lead to equal diffusion coefficient components
for this case. The finding of isotropic diffusion time-scales in
combination with energy-independent perpendicular diffusion in-
dicates that high-energy particles follow field lines, a behaviour
commonly seen for low-energy particles with small gyroradii. The
identification of field-line random walk as the cause for diffu-
sion of high-energy particles is in agreement with Minnie et al.
(2009).

Furthermore, we want to emphasize that our comparisons reveal poor
agreement of the numerical simulation results with the predictions
of the CSR for the parameter range r, < lnax < . The reasons for
this can be manifold:

(1) The isotropization of diffusion time-scales assumed to derive
equation (7) may fail in RSR. In the RSR, resonant scattering dom-
inates the diffusion behaviour. It is known that resonant scattering
depends on the pitch angle and consequently on the orientation of the
ordered background magnetic field. This may lead to different dif-
fusion time-scales, along and perpendicular to the ordered magnetic
field.

(i) The simplistic BAM model may fail to model physical
processes that become relevant in the aforementioned parameter
range that also describes the Galactic CR transport. Therefore, more
refined theories, such as the non-linear guiding centre theory and
the unified non-linear theory (see e.g. Shalchi 2020 for a review),
have been developed recently. As noted before, these theories apply
to numerous turbulence models, except for isotropic Kolmogorov
turbulence, where deviations between predictions and numerical
simulations are apparent.

When diffusion times are shorter than acceleration times and good
agreement between CSR and numerical simulation results is appar-
ent, important consequences for the escape times perpendicular to the
ordered field arise. Here, it should be noted that the presented findings
are only valid for acceleration times smaller than the escape times
of the particles; otherwise, particles would already become diffusive
during acceleration. Assuming transport to be in the diffusive limit,
the escape time of charged particles to reach distance d yields

d2 )‘Hzrg Sdz)n”
2k, 2cr? '

an

Tese, L ™~

Here, we use the A| > r, approximation, which, according to Fig. 4,
applies to a large parameter space spanning all transport regimes
and encompassing many turbulence levels in the RSR as well. In
QBR, with 1 « rg2 for high-energy particles, the scaling of the
perpendicular escape time is again energy-independent. Assuming
equal diffusion time-scales yields

o
TN C. (18)

For [ < rg, the diffusive assumption used to derive the perpendicular
escape time can be seen to break down when computing the ratio of
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2
T2 (19)
Tesc,J_ 3d2
For the diffusive approach to be applicable, this ratio must be
less than 1, from which the condition r, < /3/2d follows. This
condition for r, should only be understood as an upper limit, since in
perpendicular diffusion, there is the peculiarity that the maximum of
the perpendicular running diffusion coefficient in weak turbulence
is already reached in the first gyration (max(x(¢)) = cry/m) and
does not coincide with the final converged « . Using the temporal
maximum of the perpendicular diffusion coefficient as a more
realistic approach in equation (17) for the goal of deriving a realistic
condition for the validity of the perpendicular escape time results in

d? - d*n

el N — A , 20
Tesc, L ZKJ_ zcrg ( )
and therefore,

T o 2r, g)‘ I (2 1 )

e 3md?

Interpreting requirements more strictly, the diffusive limit should

only be applied under the condition
3nd?

re S iy

(22)

The practicality of this criterion is attributed to the fact that it
depends only on well-studied parallel diffusion, making it easy to
evaluate. Especially as high-energy particles in weak turbulence have
large parallel mean-free paths X, equation (22) poses a restrictive
criterion for the usage of the perpendicular escape times based on
the perpendicular diffusion coefficient.

This criterion can be used to check if cosmic rays have enough time
to become diffusive in astrophysical environments. The condition
becomes particularly useful and, at the same time, restrictive for high
energy particles (in the QBR), which are in compact structures with
small values for d. In this context, examples include perpendicular
diffusion in elongated jets with relatively small cross-sectional scales
with respect to the extent along the jet axis.

5 CONCLUSION

Diffusive propagation and its degree of anisotropy is essential for
modelling cosmic ray transport in turbulence. In this study, we
examine the ratios of perpendicular to parallel diffusion coefficients
in isotropic three-dimensional Kolmogorov turbulence superimposed
on a uniform background field over a parameter space spanning from
the resonant scattering transport regime to the quasi-ballistic regime,
for weak (QLT limit) and strong turbulence levels (b/B 2 1). Test-
particle simulations in synthetic magnetic fields and analysis, as
defined by the Taylor—Green—Kubo formalism, are the basis of this
study. We show that a simple analytical approach, the CSR, yields a
very good description of the simulation results throughout a large por-
tion of parameter space, which covers several transport regimes and
turbulence levels. This includes high-energy particles in the quasi-
ballistic regime with large mean-free paths that follow field lines
and exhibit energy-independent perpendicular diffusion coefficients
that are characteristic of FLRW diffusion. Where resonant scattering
is dominant over diffusive transport and the influence of FLRW
is subordinate, however, significant discrepancies between CSR
predictions and our simulation results arise. These discrepancies are
only apparent in the resonant scattering regime for weak turbulence
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levels. For all other parameter regimes, good agreement between
CSR and simulations is found, from which the following findings
emerge:

(i) The perpendicular diffusion coefficients follow directly from
the parallel component via

_ l
1+ Bky)?/(c ,.g)z'

The description of perpendicular diffusion via the CSR relation is
beneficial, in that one may recover the difficult-to-evaluate perpen-
dicular diffusion from the better-understood and more accessible
parallel diffusion using only a few physically well-motivated as-
sumptions.

(ii) Furthermore, the diffusion time-scales for parallel and perpen-
dicular diffusion are identical and can be obtained directly from the
parallel diffusion coefficients via T, =~ 7| & 3k /c%.

K1 (23)

Since the denominator in equation (23) is greater than or equal
to 1 for all parameter combinations (and much greater for weak
turbulence levels), the parallel diffusion coefficients are greater than
the perpendicular counterparts. Viewed in the context of finding (ii),
equation (23) provides crucial insights into when particles may be
considered diffusive. Whereas the time-scales of parallel diffusion
are proportional to the parallel diffusion coefficient, the time-scales
of perpendicular diffusion increase as the perpendicular diffusion
coefficient decreases. In exploring this behaviour, we present a
condition (see equation (22)) on the time-scale of perpendicular
diffusion, permitting estimation of whether diffusion perpendicular
to the directed magnetic field can occur in given astrophysical
environments. We anticipate that this criterion will be especially
useful in describing the propagation of high energy cosmic rays,
which interact primarily with large-scale isotropic turbulence in the
Galactic disc and beyond.
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The simulation data presented in this paper are available to
interested researchers upon reasonable request.
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