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Abstract
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Department of Physics

PhD

Static spherically symmetric solutions in higher derivative gravity

by Alun Perkins

We consider the four-derivative modification to the Einstein-Hilbert action of general rel-

ativity, without a cosmological constant. Higher derivative terms are interesting because they

make the theory renormalisable (but non-unitary) and because they appear generically in

quantum gravity theories.

We consider the classical, static, spherically symmetric solutions, and try to enumerate all

solution families. We find three families in expansions around the origin: one corresponding

to the vacuum, another which contains the Schwarzschild family, and another which does

not appear in generic theories with other number of derivatives but seems to be the correct

description of solutions coupled to positive matter in the four-derivative theory. We find three

special families in expansions around a non-zero radius, corresponding to normal horizons,

wormholes and exotic horizons. We study many examples of matter-coupled solutions to the

theory linearised around flat space, which corroborate our arguments.

We are assisted by use of a "no-hair" theorem that certain conditions imply that R = 0,

which is applicable in many cases including asymptotically flat space-times with horizons.

The Schwarzschild black hole still exists in the theory, but a second branch of black hole

solutions is found that can have both positive and negative mass, and that coincide with the

Schwarzschild black holes at a single mass.

The space of asymptotically flat solutions is probed numerically by shooting inwards from

a weak-field solution at large radius, and the behaviour at small radius is classified into the

families of series solutions (most of which make an appearance). The results are inconclusive

but show several interesting features for further study.
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18 Chapter 1. Introduction

1.1 Introduction to higher derivative gravity theories

General relativity is one of the most successful physical theories to exist. It provides the most

accurate predictions of the movements of planets and stars and it predicted experimentally

testable phenomena that did not appear in Newtonian gravity, including light bending, gravi-

tational redshift, the precession of the perihelion of Mercury and gravitational waves. General

relativity also provides us with the only example of an exact description of macroscopic ob-

jects: black holes. A stationary, isolated black hole in general relativity is highly constrained

by powerful uniqueness theorems and is described exactly by known solutions expressible in

terms of standard functions, and in fact a good deal is understood about how this idealised

situation (isolated and stationary) relates to the more realistic setting of the final state after

gravitational collapse of stellar objects. Stationary, isolated black holes in general relativity

are described by just three parameters: their mass, angular momentum and electric charge.

Unlike all other macroscopic objects, black holes are not interpreted as approximations or ag-

gregates of smaller objects, but are exact. General relativity has been a very great success, but

physicists are still led to seek a superseding theory because general relativity turns out to be

fundamentally incompatible with quantum mechanics.

We now give a heuristic explanation of the incompatibility using power counting, follow-

ing [3]. The Einstein-Hilbert action for general relativity is

S [gµν ] =
1

16πG

∫ √
−g R d4x . (1.1.1)

The path integral of the quantum field theory for gravity would be∫
D gµν exp(iS[gµν ]) . (1.1.2)

We formulate the problem as the QFT of a graviton on a flat background, so let us write the

expansion

gµν =ηµν + hµν

gµν =ηµν − hµν + hµρh
ρν + . . .

so that the Lagrangian
√
−g R has terms going as (∂h)2, h(∂h)2, h2(∂h)2, h3(∂h)2, etc. From

this one can see that for momentum k the graviton propagator goes as k−2 and each vertex

goes as either k2, k.p, or p2 where k is an internal momentum and p is the momentum of an

external leg. The amplitude for a diagram goes as the integral
∫ |k|<Λ

(. . .)d4k over each loop,

and this goes as ∼ ΛD with the momentum cutoff scale Λ, where D is called the degree of di-

vergence. The maximal divergence of a graviton diagram therefore goes asD = 4(# of loops)−
2(# of propagators)+2(# of vertices). Using the topological relation (# of vertices) = (# of propagators)−
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(# of loops) + 1, we see that D = 2 + 2(# of loops) which is always positive.

FIGURE 1.1: Example tree level and one-loop diagrams of graviton-graviton scat-
tering

Consider the one-loop diagram in figure 1.1. If we consider the contribution to the one-

loop diagram’s amplitude from the k2 contribution to the vertices, with the loop integral and

the loop’s two propagators, we get
∫ Λ

k0p0d4k ∼ Λ4 p0. If we add a cosmological term to the

Lagrangian
(
+(const.)

∫ √
g d4x

)
, which has no derivatives of h, it modifies the amplitude of

the (no-loop) four-point vertex by a factor ∼ p0 and can cancel the leading divergence of the

one-loop diagram. If we next consider the contribution to the one-loop diagram’s amplitude

from the k.p contribution to the vertices, with the loop integral and the loop’s two propaga-

tors, we get
∫ Λ

k−2p2d4k ∼ Λ2 p2. This can be cancelled out with the (no-loop) four-point

vertex diagram, which also goes as p2, so this can be absorbed with an adjustment to the cou-

pling G → G(Λ). If we finally consider the contribution to the one-loop diagram’s amplitude

from the p2 contribution to the vertices, with the loop integral and the loop’s two propaga-

tors, we get
∫ Λ

k−4p4d4k ∼ ln(Λ) p4. For this to be cancelled out by the (no-loop) four-point

vertex the Lagrangian must be modified to include a term with four-derivatives of the metric,

schematically, a curvature squared term.

We then repeat the whole process for the two-loop diagram. At two loops the maximal

divergence is ∼ Λ6p0, and the sub-leading divergences are ∼ Λ4p2,Λ2p4, ln(Λ)p6, so we make

another adjustment to the cosmological term and another adjustment to the coupling, and we

adjust the coupling of the four-derivative term, but to cancel all the divergences we need a

six-derivative term in the Lagrangian, schematically, curvature cubed. This continues, and

to remove divergences at higher and higher loop orders we would need higher and higher

derivative terms, and ultimately we would need an infinite number of counterterms.

The forms of the one-loop counterterms were found rigorously by ’t Hooft and Veltman in

[4] to be

R2 and Rµν Rµν . (1.1.3)

This relies on the four-dimensional Gauss-Bonnet identity that the integral

IGB =

∫
d4x
√
−g(RµνρσR

µνρσ − 4RµνR
µν +R2) (1.1.4)
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is an integral of a total derivative, giving the Euler number of the space (a topological invari-

ant), so that the quantity RµνρσRµνρσ is not independent of RµνRµν and R2. The counterterms

for higher orders can also be found [5] but for the theory to be valid at all energy scales an

infinite number of counterterms would be needed so the theory would not be predictive - this

is the essence of the problem of non-renormalizability.

The form of the one-loop counterterms motivates the study of the quantum theory of the

action

I =

∫
d4x
√
−g
(
γ (R− 2Λ)− 2αRµνR

µν +

(
β +

2α

3

)
R2

)
(1.1.5)

where α and β are dimensionless coupling constants. This Lagrangian has four derivatives of

the metric, and is the most general four-derivative metric in four dimensions due to the Gauss-

Bonnet identity. In [6] Stelle studied this theory, for Λ = 0 1, and it was found to have linearised

dynamical degrees of freedom corresponding to the massless graviton from general relativity

and corresponding to two new massive particles, one with spin-two
(
m 2

2 = γ
2α

)
and one scalar(

m 2
0 = γ

6β

)
. Unfortunately, the spin-two particle was found to be a ghost. In [7] Stelle showed

that this theory is renormalizable, which can be seen from its graviton propagator which he

showed to be

Dµνρσ(k) =
1

(2π)4i

(
2P

(2)
µνρσ(k)

k2(2αk2 + γ)
− 4P

(0−s)
µνρσ (k)

k2(6βk2 + γ)
+ (gauge fixing terms)

)

=
1

γ(2π)4i

(
2P

(2)
µνρσ − 4P

(0−s)
µνρσ

k2
− 2P

(2)
µνρσ

k2 +m 2
2

+
4P

(0−s)
µνρσ

k2 +m 2
0

+ (gauge fixing terms)

)
,

where the Pµνρσ(k) are the projectors for symmetric rank-two tensors. For α 6= 0, β 6= 0 the

large-k behaviour is modified from the k−2 of general relativity to k−4, controlling the diver-

gences. The second line shows the negative sign for the particle with mass m2, and thus its

ghost nature. The ghost causes the vacuum to be an unstable solution and the theory to be

non-unitary, which are significant barriers to adopting the theory as a physical model. In fact

all higher derivative theories, whether gravitational or any other theory with more than two

time derivatives in the Lagrangian, generically suffer from Ostrogradsky’s instability [8], of

having energy unbounded from below. Though the higher derivative terms may appear to be

perturbations of the lower-derivative theory, in fact they not only make the solutions unstable

but also introduce additional degrees of freedom to the theory.

Various authors have discussed theories with ghosts, and not all are convinced that theories

with ghosts are beyond saving. It was argued by Simon in [9] that a method of perturbative

1 If reading [7] note that his couplings had the same names but were defined differently: (their β) = (our β+ 2
3
α)

and (their α) = (our 2α). Our convention will prove more convenient for this study. They also use the opposite
convention for the Riemann tensor, so that for the same ordering of indices their Riemann/Ricci tensor/scalar is
minus our Riemann/Ricci tensor/scalar.
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constraints should be applied at each stage of series of higher derivatives terms that are as-

sociated with a small expansion parameter, that exclude solutions that cannot be expressed

as Taylor series in that small parameter. It has also been suggested by Smilga in [10] that

certain theories can have ghosts of a sort that do not cause instabilities of the vacuum nor non-

unitary scattering matrices, and further research in this direction may be applicable to higher

derivative gravity. Another way to possibly save the theory of higher derivative gravity was

presented by Hawking and Hertog in [11], where a toy model of a scalar field was used as an

analogy for higher-derivative gravity and a prescription for calculating amplitudes was pre-

sented. The prescription removes the ghost’s negative norm states, negative probabilities and

instability, trading them for acausality and non-unitarity. An example of an electron showed

that it responded to an interaction early but only by a time of order (its classical radius) 1
c .

The non-unitarity was shown to become measurable only at high energies and so its presence

could be tolerated in the theory. The higher-derivative theory was then well-defined as a per-

turbation of the lower-derivative theory. Alternatively Salvio and Strumia [12] suggest casting

the higher-derivative quantum theory as unitary but with negative norm states and building

a useable theory of mixed-norm states, however they conclude by saying that a probabilistic

interpretation of a theory with such states has yet to be found. Yet more ideas for naturally

avoiding the problems caused by the ghost will appear below.

We shall use the Gauss-Bonnet theorem to write the action (1.1.5) in a form that shall prove

more natural 2. The theory we will study in this paper is defined by the action

I ′ = I − αIGB =

∫
d4x
√
−g
(
γ(R− 2Λ)− αCµνρσCµνρσ + βR2

)
, (1.1.7)

where we shall always take Λ = 0 unless specified, and by correspondence with general rel-

ativity we use γ = 1
16πG . In the research we present we do not deal with the problems of its

corresponding quantum theory, but treat it as an effective theory appropriate over some range

of energies and we shall seek to enumerate all or most of the classical solution families. The

variation of the action (1.1.7) with respect to the metric, δI
δgµν , is a symmetric, divergenceless

tensor [6]. In more than four dimensions the Gauss-Bonnet term (1.1.4) is not a total derivative,

so must be included in the action of a general four-derivative theory, where it is a Lovelock

term [13], meaning that it also has the special property that its variation with respect to the

metric is symmetric and divergenceless, and further that it features only two derivatives of the

metric. The metric equations of motion of the term (1.1.4) would, however, not be solved by

2 We use the identity

CµνρσCµνρσ =
(
RµνρσRµνρσ − 4RµνRµν +R2) + 4

d− 3

d− 2
RµνRµν −

d(d− 3)

(d− 2)(d− 1)
R2 (1.1.6)

in d = 4 dimensions
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Rµν = 0, the well-understood solution to general relativity, so the theory would be more diffi-

cult to study. One can use Lovelock terms to construct gravity theories with higher curvature

terms but entirely without ghosts, and in [14] Feng and Lu construct solutions to such gravity

theories coupled to Maxwell fields and p-form field strengths, using non-minimal coupling

schemes designed to avoid ghosts in the matter sector as well.

Quadratic curvature terms appear in a variety of contexts and there are a number of rea-

sons to be interested in them. One appearance is in the low-energy effective theory of the 10

dimensional E8 × E8 heterotic superstring, where a term RµνρσR
µνρσ appears, multiplied by

a function of the dilaton. The corresponding quantum theory has ghost modes, but one can

add Ricci squared terms to the Riemann squared term to become the term (1.1.4) we have al-

ready mentioned. This removes the ghost modes from its quantum theory for D > 4 [15].

The Einstein-Gauss-Bonnet theory was also studied by Boulware and Deser in [16] where it

was found that both flat space and anti-de-Sitter space are solutions. The AdS solution, how-

ever, has ghost excitations and thus the flat solution is naturally preferred for this theory. The

cosmological Einstein-Gauss-Bonnet theory was also considered and it was found that it has

an effective cosmological constant with two possible values, but only was ghost-free for the

smaller value, which is interesting with regards to the cosmological constant problem.

The classical theory with Lagrangian R − 2Λ + α′R2 was found by Stelle [6] and Whitt

[17] to be equivalent to a general relativity coupled to a massive scalar field and Whitt [17]

and Starobinksy [18] found it to have solutions that describe Planck-era inflation. It was also

shown to admit a limited no-hair theorem proving that stationary, axisymmetric, asymptoti-

cally flat solutions with a horizon, for Λ = 0, α > 0, must have R = 0 3. In [19] Mignemi

and Wiltshire pointed out that after using Whitt’s results to show that R = 0 then the field

equations become equivalent to those of GR with R = 0, and the uniqueness theorems of GR

can be invoked to show that all static spherically symmetric asymptotically flat vacuum black

hole solutions must be Schwarzschild. They further show that in all f(R) theories of the form

f(R) =
∑

n=1 anR
n, a2 > 0 it is still true that all static spherically symmetric black hole so-

lutions are Schwarzschild. The matter coupling of the R + R2 theory without a cosmological

term was considered by Pechlaner and Sexl in [20] where they note that Schwarzschild is not

the only asymptotically flat solution, and in fact it is not the exterior solution of a positive

definite mass distribution with normal minimal coupling. Solutions of this theory coupled to

a perfect fluid were considered by Michel in [21] and the total mass of the fluid matter was

related to the pressure at its core (r = 0). It was found that the mass of a star has a maximum

value, appearing at some finite central pressure. They also note that even for non-zero mass,

there are non-trivial non-Schwarzschild non-singular solutions in this theory, and in all f(R)

theories 4. The energy of the R + βR2 theory was studied by Boulware, Deser and Stelle [23]

3 we remark here that later on we shall present similar theorems for more general quadratic Lagrangians using
the additional assumption of staticity

4 comments on f(R) theories are outside the scope of this work but for a review see for example [22]
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[24] and they found that (assuming β > 0) if the quantity 1 + βR is non-negative on an initial

spatial slice then the energy of the space-time is non-negative. This implies that such solutions

near to flat space, which has zero energy, have greater energy, and thus that flat space is stable.

The scale-invariant theory with Lagrangian R2 + C2 has a "zero energy theorem", shown

by Boulware, Horowitz and Strominger in [25], that all asymptotically flat vacuum solutions

have zero ADM mass. The linearised solutions can have non-zero mass, however, so this

implies that the linearised solutions are not limits of the exact solutions. This motivates the

study of this theory because it may save it from the quantum instabilities caused by the ghost

mode. On the other hand, non-asymptotically flat vacuum solutions include all Einstein spaces

Rµν = λgµν , for λ the effective cosmological constant of the space (c.f. our presentation of the

equations of motion for an Einstein space in eq (1.3.7) for γ = 0), and Deser and Tekin [26] [27]

found an expression for the energy E = mλ4
3(α + 6β) where m is the mass parameter of the

solution. Conformal gravity, with Lagrangian C2, was found by Riegert [28] to have a Birkhoff

theorem, that all spherically symmetric solutions are static and described by a 3-parameter

solution family (including the charge of a Maxwell field). The ghost-free scale invariant the-

ory, with only the R2 term in the Lagrangian (the C2 term being responsible for the ghost),

has vacuum Einstein solutions, which are equivalent to solutions of general relativity with

a cosmological term and coupled to a scalar field, and also a range of other solutions with

R = 0, Rµν 6= 0 described by Kehagias et al. in [29]. Solutions of this theory coupled to

matter cannot be asymptotically flat, and even small masses result in strong curvature [20].

Vacuum solutions can be asymptotically flat, and static spherically symmetric solutions in-

clude asymptotically Reissner-Nordstrom solutions with non-singular black holes and with

traversable wormholes [30]. The issue of matter coupling in the general four-derivative La-

grangian will be one of our key interests and will be discussed in sections 2.3 and 3.1.

Our main consideration will be the theory of the most general four-derivative Lagrangian

(1.1.7) without a cosmological constant, but including a cosmological constant leads to a num-

ber of differences. Deser and Tekin [26] [27] found that Schwarzschild-de-Sitter solutions in

this theory have energy E = m(1 + 4
3Λ(α+ 6β)). In [31] Lu and Pope considered the linearisa-

tion around the AdS background (Λ < 0) of the β = 0 case, i.e. with Lagrangian R− 2Λ−αC2.

The equations of motion then show a massless graviton and a massive spin-2 mode that is

stable for 0 < α ≤ − 3
4Λ . The theory where this is saturated (α = − 3

4Λ ) they call critical gravity,

because the mass of the spin-2 is reduced to zero. In critical gravity the energies of the now-

massless spin-2 mode and the graviton are both zero, while new logarithmic modes appear,

and the mass of the space-time (given by the formula above) vanishes. This was followed-up

in [32] where instead an inequality for α is given so that theory’s spin-2 modes can still be non-

tachyonic, even while still having their usual problem of negative energy, but in fact they can

then be truncated from the theory with a suitable boundary condition, leaving a unitary theory.

Our consideration of the theory that includes a cosmological constant is limited to appendix A
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where we present a limited "no-hair" theorem that static solutions of this theory, with a hori-

zon and whose scalar curvature is asymptotically constant, must have R = 4Λ throughout the

space.

In the present work we consider four dimensions and Λ = 0, using the most general such

four-derivative theory (1.1.7). The classical solutions were first studied in detail in [6], which

focused on static spherically symmetric solutions. Such solutions will always have one free

parameter due to the static symmetry allowing scaling of gtt, but the radial coordinate is fixed.

We shall give the number of free parameters in the form n+1 to avoid confusion over whether

the time-scaling parameter is included or not. Linearised solutions around Minkowski space

were found to have 5+1 free parameters, one of which is the ADM mass, two of which are co-

efficients of Yukawa potentials e−mr/r (for r the radius, using Schwarzschild coordinates) for

the two new massive particles, and the final two are coefficients of rising Yukawa potentials

emr/r. Applying a boundary condition of asymptotic flatness removes the rising exponentials

in the metric and also require that m0 and m2 are real, or equivalently that α > 0, β > 0, or

equivalently that the two massive modes are non-tachyonic. An asymptotically flat linearised

solution coupled to a static, spherically symmetric perfect fluid existing for radius r < l was

found and it was apparent that the solution depended on the size and pressure of the source

as well as its mass, in contrast to general relativity where Birkhoff’s theorem finds spherically

symmetric solutions to have 1+1 free parameters. Stelle recalled that the Schwarzschild solu-

tion is not the solution that couples to positive matter in theR+R2 theory [20], and the Yukawa

terms present in the matter-coupled linearised solutions in the general four-derivative theory

imply that the Schwarzschild solution is not the exterior solution of positive matter in the more

general theory either. We will review and develop the linearised solutions in section 2.3. A

Frobenius analysis for asymptotic solutions around the origin, of the form grr ∼ rs +O
(
rs+1

)
and gtt ∼ rt +O

(
rt+1

)
, yielded three solution families (s, t) = (0, 0)0, (1,−1)0 or (2, 2)0 (where

we put the subscript to avoid confusion with other pairs of numbers with other meanings

elsewhere in this work). The (0, 0)0 family is the only one of the three that does not have a

curvature singularity at r = 0, the (1,−1)0 family contains the 1+1 parameter Schwarzschild

family, and the (2, 2)0 family was not well understood. At the time computer algebra was

not available so further properties of these solution families were not very clear, but we shall

review and considerably develop this approach in section 2.2.

Static spherically symmetric solutions were later also considered in detail by Holdom in

[33]. Now using computer algebra, Holdom was able to find the (0, 0)0 family to many orders

and determine that it has 2+1 free parameters. This family is interesting because it also appears

in theories with 6, 8 and 10 derivatives (with the same number of free parameters), which

makes it seem more physically relevant than the (1,−1)0 and (2, 2)0 families which do not. In

fact Holdom searched for solutions of the form grr ∼ rs+O
(
rs+1

)
, gtt ∼ rt+O

(
rt+1

)
, assuming

(unlike Stelle) that s, t ∈ Z and found that the (0, 0)0 family is the only such family present in
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6, 8 and 10 derivative theories with generic couplings. This can be understood from the fact

that the (0, 0)0 family does not have strong curvature at the origin, so is not very sensitive

to the presence of higher-order curvature terms in the gravity Lagrangian being considered.

In this family the metric component grr goes as 1 + O(r2), which is positive at the origin, so

asymptotically flat solutions in this family must have an even number of horizons and seem to

lack singularities, in contrast to general relativity. The question of whether this family might

replace Schwarzschild as the family that couples to matter was considered. It was observed

that matter-coupled solutions of the (0, 0) form still had 2+1 free parameters, contrary to the

expectation that they would be fixed by the properties of the source. We will observe later

in section 2.3.6 that we believe the two non-trivial free parameters of this family (in vacuum

and for the 4-derivative theory) both parameterise asymptotic non-flatness, which seems to

correspond with this result.

Holdom found the (2, 2)0 family in the four-derivative theory to have 5+1 free parameters,

the same number as the linearised solution, which suggested that it was the best candidate

for constructing a solution that interpolates between weak gravity at large radius and a region

of strong gravity near the origin. He found a numerical solution of an asymptotically flat

(2, 2)0 solution for α = 3β = 1
32π = 1

2γG. It approximated the Schwarzschild solution outside

the Schwarzschild radius, but instead of a horizon it had a region of strong curvature with

radius of the same order as the Schwarzschild radius. This solution is classically physically

reasonable, but the region of strong curvature suggests that including higher-derivative terms

in the action might change the solution in the "interior", possibly making it non-singular.

Holdom also studied the matter coupling of the four-derivative theory. An incompressible

source with density ρ(r) = ρ0e
−r2/R2

(and a pressure p(r) fixed relative to it) was coupled to

an asymptotically flat horizonless non-vacuum (0, 0) solution, and a numerical solution found

for a single value of R and a range of densities ρ0. In general relativity the central pressure

p(0) increases with increasing mass (M :=
∫
ρ(r)4πr2dr) and becomes infinite at a finite mass,

causing gravitational collapse. In the higher derivative solution, in contrast, the integrated

density is not the same as the ADM mass. The relation between mass and pressureM(p(0)) has

a positive correlation for small pressures, but the mass reaches a maximum at finite pressure

and then starts to decrease as the pressure increases (this picture is the same considering either

kind of mass). It was argued that this is still true even with more realistic sources, and therefore

that gravitational collapse may not occur. This is a rather strange picture of matter coupling,

because only sources lighter than some maximum can exist. It may be that another solution

family describes the more massive sources. The issue of matter coupling will be one of our key

interests and in section 3.1 we shall argue that (2, 2)0 families are the correct description for

positive minimally-coupled matter.

Nelson [34] considered static solutions (not requiring spherical symmetry) and proved that
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the Ricci scalar must vanish in static asymptotically flat space-times with a horizon 5. This

contrasts with the various matter-coupled solutions that have been found by various authors,

which do not generically have vanishing Ricci scalar. Roughly speaking, the implication is

then that matter-coupled solutions must either be non-asymptotically-flat or must not have

a horizon. To make a less rough, more solid argument of this point will require a lot more

evidence and rigour, but still it is a striking statement that was a significant motivation for the

current work. We review the proof and generalise it to space-times without horizons in section

2.1 and to theories with cosmological constants in appendix A. The theorem will enable us to

make many comments connecting asymptotic solutions about finite radii with their behaviour

at infinity, which was not possible before. Note that using this theorem, where applicable, to

constrain solutions to have R = 0 reduces the theory’s set of solutions to those of the R + C2

theory.

This thesis primarily includes work presented in [1] and [2] and its structure is as follows:

In section 1.2 we present some background material that will be useful for understanding some

parts of the thesis. In section 1.3 we present the covariant and the static, spherically symmetric

equations of motion which are this thesis’s primary focus. In chapter 2 we try to find all the

solution families of the theory and their basic properties, using expansions around the origin

(section 2.2), around a non-zero radius (section 2.4), perturbative expansions around flat space

(section 2.3), and inform the analysis with a theorem constraining the Ricci scalar (section 2.1).

In chapter 3 we shift focus to firstly considering a physical property of a realistic solution, and

then going from that property to see what solutions families can have it. In section 3.1 we

use our knowledge of solution families to present arguments that coupling to positive matter

is described by a solution family quite different to any in general relativity, and we present a

sketch of some of the calculations that would be involved in constructing explicit solutions. In

section 3.2 we discuss black hole solutions, and present a proof that the Schwarzschild solution

above a certain mass is isolated, and then we find numerical examples of a second type of

asymptotically flat black hole that coincides with the Schwarzschild solution below that mass.

In section 3.3 we explore the space of asymptotically flat solutions numerically to see which

finite-radius solution families connect to them. Most of the solutions families we found will

appear but there will be some unexpected features and the results will be inconclusive.

1.1.1 Conventions and notation

We use the "mostly plus" convention for the metric, so its signature is

(−,+,+,+)

5 Unfortunately the paper’s further argument that certain conditions imply the entire Ricci tensor must vanish
was found to contain errors.
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We use the following convention for the Riemann tensor

[∇µ,∇ν ]V ρ = R ρ
µν σV

σ (1.1.8a)

and the following convention for the Ricci tensor and scalar

Rµν =R σ
µ νσ (1.1.8b)

R =R µ
µ . (1.1.8c)

By correspondence with general relativity our Lagriangian parameter γ has value

γ =
1

16πG
. (1.1.9)

When doing numerical work we shall often set γ = 1 and leave it out of our equations, but

when describing mass we shall still write GM instead of M
16π , for clarity.

We sometimes use the abbreviation "LO" for "leading-order" of a perturbative series, and

"NLO" for the next-to-leading order.
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1.2 Background material

1.2.1 Junction conditions

The problem of finding solutions of higher derivative gravity naturally has a lot in common

with the problem of finding solutions of general relativity. Many of the same tools can be

used, including all the differential geometry, but some important theorems cannot be used,

in particular the uniqueness theorems. In this section we discuss the theory of coupling to a

codimension 1 hypersurface using the formalism developed by Israel [35] and we shall fol-

low the pedagogical discussion of it from [36]. The formalism for this is not covered in most

undergraduate courses on general relativity but will be needed by us when we derive prop-

erties of solutions coupled to matter. We will wish to consider vacuum solutions, so we shall

couple to concentrated matter sources. Matter sources with dimensions 0+1 or 1+1 are not

well-defined [37] so we will consider only the examples of a thin or filled spherical shell with

vacuum outside.

In four dimensions hypersurfaces with dimension 2+1 have codimension 1 and partition

space-time into two regions. For example, we shall be particularly interested in static time-like

hypersurfaces, which are extent in time and have normal vectors that are space-like, which

partition space-time into interior and exterior regions. We shall consider examples where the

hypersurface is a boundary surface, representing a jump discontinuity in the stress-energy

density, or a surface layer where a stress-energy density is infinite and concentrated at the

surface. In general relativity dealing with such surfaces is made difficult by the fact that not

only may the line element be different on either side of the surface, the coordinates may also

differ.

Let the time-like hypersurface Σ partition space into two regions,M+ andM−, with dif-

ferent metrics g+
αβ and g−α′β′ . Consider the M+ region, and describe the hypersurface with

coordinates ya. The induced metric on the surface Σ is h+
ab = g+

αβ
∂Xα

∂ya
∂Xβ

∂yb
. The first junction

condition is simply that the two manifoldsM± are joined at the boundary Σ in a geometrical

sense. More formally, it is that the hypersurface has a well-defined geometry, so the induced

metric calculated from the location of Σ inM+ must be equivalent to the induced metric cal-

culated from its location in M−, i.e. related by a coordinate transformation. We shall use

such a coordinate transformation to write h+
ab = h−ab = hab. For the remaining coordinate

we use geodesic distance from Σ. Imagine that Σ is pierced orthogonally by a congruence of

geodesics, and that points not on Σ are labelled by l, defined as the proper time/proper dis-

tance from Σ along a geodesic, such that l is positive inM+, negative inM−, and 0 on Σ. In

this way we define a set of continuous coordinates that we may use on both sides of the hy-

persurface. This is an example of what Israel called "natural coordinates" and they will make

calculations much easier. Next we consider requiring the space-time to be a solution to some

gravitational equations of motion. In the literature the equations of motion are usually the
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Einstein equation, but the discussion can be adapted to other equations such as the equations

of higher derivative gravity.

We allow the stress-energy tensor to be distribution-valued, that is featuring Heaviside step

functions Θ and Dirac delta functions δ. 6 So we will solve for stress-energy tensors of the form

Tαβ = Θ(l)T+
αβ + Θ(−l)T−αβ + δ(l)Sαβ (1.2.1)

where to write this we implicitly needed a coordinate basis that exists in bothM+ andM−,

such as the one we constructed. The quantity Sαβ can be shown to be tangent to the hyper-

surface and it has the interpretation of the stress-energy of the hypersurface Σ. If we use

the Einstein equation then we have Rαβ = 8πG
(
Tαβ − 1

2gαβ(Tγδg
γδ)
)
. So Rαβ must also be

distribution-valued. Schematically, R is two derivatives of the metric. We make an ansatz that

in general relativity a distribution-valued R will arise from a metric of the form

gαβ = Θ(l)g+
αβ + Θ(−l)g−αβ . (1.2.2)

Let us define a notation for the difference of a tensor Aν...µ... across the hypersurface

[
Aν...µ...

]
:= Aν...µ...(M+)

∣∣
Σ
− Aν...µ...(M−)

∣∣
Σ
. (1.2.3)

Computing the Christoffel symbols gives us terms like g..∂.g.. where therefore ∂.g.. is of the

form

∂γgαβ = Θ(l)∂γg
+
αβ + Θ(−l)∂γg−αβ + εδ(l)[gαβ]nγ (1.2.4)

but we recall that the value of g on Σ is given by the pull-back, h, and that h is continuous

across Σ. This means that the δ(l) term vanishes and the Christoffel symbols are of the form

Γγαβ = Θ(l)Γ
(+)γ

αβ + Θ(−l)Γ(−)γ
αβ , (1.2.5)

where Γ(±) are calculated with g±, respectively. Computing the Riemann tensor gives us terms

like ∂.Γ... + Γ...Γ
.
.. and it is of the form

R α
γδ β = Θ(l)R

(+)α
γδ β + Θ(−l)R(−)α

γδ β + δ(l)
(
nγ [Γαβδ]− nδ[Γαβγ ]

)
, (1.2.6)

where we used that ∂αl = nα (since the hypersurface is time-like), and where R(±) are calcu-

lated with Γ±, respectively. Note that [Γαβδ] is the difference of two Christoffel symbols in the

same coordinate system, so is a tensor. From these results we can calculate the stress-energy,

and we do indeed find it to be of the form (1.2.1). One can derive that Sαβ is tangent to the

6 Recall the properties Θ(l)2 = Θ(l) and Θ(l)Θ(−l) = 0
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hypersurface Σ, and that its components are related to the discontinuities of the extrinsic cur-

vature across Σ:

Sab = − 1

8πG
([Kab]− [K]hab) . (1.2.7)

In section 3.1 we discuss coupling and in section 3.1.2.1 we find it useful to work through an

explicit example of coupling to a source in general relativity.

The higher derivative equations of motion, which we shall see later, have equations of mo-

tion of a different form. They go as 8πGTαβ ∼ R +∇∇R + R2. This significantly changes the

construction because the right-hand side is schematically four derivatives of the metric. We

still need the stress-energy tensor to be of the form (1.2.1), so we must calculate what form the

metric should take. We shall not calculate the general form of such a metric here, but later on

when we deal with junction conditions (section 3.1) we shall consider a specific example. There

we shall find that the metric is continuous across the hypersurface, but it has discontinuities

in the second derivative of the normal component and in the third derivative of the tangential

component. There is another case, the Einstein-Weyl theory, whose linearised solutions are

considered in section 2.3.4.1, where the metric has discontinuities in the normal component

and in the first derivative of the tangential component. Interestingly, this Einstein-Weyl ex-

ample therefore seems to have the same junction conditions as general relativity, despite the

higher differential order, but a general discussion of this is beyond the scope of the present

work.
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1.2.2 Uniqueness theorems in general relativity

Black holes in general relativity are tightly constrained by powerful uniqueness theorems. The

simplest is Birkhoff’s theorem, which proves that there is a single spherically symmetric vac-

uum solution to Einstein’s equations, which must be static, and the total mass of the gravitating

object is its only free parameter.

Birkhoff’s theorem can be shown as follows. Consider the most general four-dimensional

spherically symmetric metric. The requirement of spherical symmetry means that it must have

at least the isometries and Killing vectors of the metric on a sphere dΩ2 = dθ2 + sin2(θ)dφ2,

where θ and φ are the usual spherical polar coordinates. One can show that a spherically

symmetric metric must be of this form

ds2 = f1(τ, ρ)dτ2 + f2(τ, ρ)dρ2 + f3(τ, ρ)dτdρ+ r2dΩ2 (1.2.8)

and a coordinate transformation to t(τ, ρ) , r(τ, ρ) can always bring it into this form

ds2 = −B(t, r)dt2 +A(t, r)dr2 + r2dΩ2 (1.2.9)

which is therefore the most general spherically symmetric metric. The Einstein tensor of this

metric in four dimensions has non-zero components:

Gtt =
B

r2A2

(
rA′ +A(A− 1)

)
Gtr =

Ȧ

rA

Grr =
1

Br2

(
rB′ +B(1−A)

)
Gθθ =

r

4A2B2

(
r
[
AȦḂ +BȦ2 − 2BAÄ−BA′B′ −AB′2

]
− 2B2A′ + 2AB

[
B′ + rB′′

])
Gφφ = sin2(θ)Gθθ ,

where dots denote derivatives with respect to t, and primes denote derivatives with respect to

r. Note that by the Bianchi identity Gθθ is not independent of Gtt and Grr. We assume that

outside some radius r0 there is a vacuum. The Gtr = 0 component immediately tells us then

that (in that region) A has no time-dependence. The combination Gtt
A
B r

2 + Grrr
2 is equal to

A′

A + B′

B . The vanishing of this implies that B′

B = −A′

A , and therefore that the ratio B′

B is time

independent, and therefore that B is of the form B = Bt(t)× Br(r). Therefore B(t, r) = C′(t)2

A(r)

where we have chosen to write the time-dependent function as C ′(t)2 instead of Bt(t), but

it is still true that C(t) is simply a constant of integration for integration with respect to r.

Simplifying the metric using what we have derived, the metric is:

ds2 = −C
′(t)2

A(r)
dt2 +A(r)dr2 + r2dΩ2 (1.2.10)
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and changing to a different time coordinate t2 = t2(t) = C(t) makes the metric

ds2 = − 1

A(r)
dt 2

2 +A(r)dr2 + r2dΩ2 . (1.2.11)

So starting from the Einstein equation of a spherically symmetric metric we need nearly no

calculation to show that all spherically symmetric metrics are also static. If we stop being shy

about calculation then we can solve the first-order non-linear ordinary differential equation

Gtt = 0 to yield the Schwarzschild solution

grr = A(r) =
1

1− 2GM
r

(1.2.12)

(where the constant of integration has been related to the mass by correspondence with New-

tonian gravity). Birkhoff’s theorem is that all spherically symmetric vacuum solutions to GR

are also static, and that the unique solution is the Schwarzschild solution. Remarkably, the

solution outside a spherically symmetric source is independent of the details of the source and

of its evolution.

The proof of the converse, that static vacuum solutions must be spherically symmetric, is

much more difficult. It was originally proven by Israel in [38] for pure gravity and in [39]

for gravity coupled to a electric field, subject to some assumptions. A space-time is static if

it admits a hypersurface-orthogonal Killing field which is time-like over some domain. The

metric of a static space-time can always be written in the form

ds2 = gab(x
c)dxadxb − V 2(xc)dt2 , (1.2.13)

where t is the time-like (in the exterior region) coordinate, roman indices run over the other co-

ordinates 1, 2, 3, and greek indices run over all four coordinates 1, 2, 3, 4. Spatial hypersurfaces

Σ of constant t are considered. Israel’s proofs are subject to the following assumptions

• Everywhere outside the horizon there is vacuum, or if considering EM fields there is an

"electrovacuum" meaning there are no charges but there is the energy density of the EM

fields.

• There is an infinite red-shift surface, i.e. a surface where gtt = 0 and the Killing vector

becomes null, that bounds Σ (this will also be the horizon, but infinite red-shift surfaces

are not always the same as horizons).

• Σ is asymptotically Euclidean, i.e. the space-time is asymptotically flat

• The curvature invariant RµνρσRµνρσ is bounded on Σ.

• (If considering EM fields) The EM fields are either purely electric, or purely magnetic,

and admit a scalar potential that is asymptotically that of a monopole.
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• The equipotential surfaces V = c = const. > 0 within Σ, are 2-spaces that are simply

connected. This condition can be expressed alternatively as the condition that magnitude

of the Killing vector must have non-zero gradient everywhere outside the horizon, or as

the condition that there is no point outside the horizon where a non-accelerating particle

can remain at rest.

• If the lower bound of V on Σ is zero, then as c → 0+ the limiting 2-space is closed and

has a finite area (the case where the lower bound is positive need not be considered since

this implies that the space-time is everywhere flat).

If these are given, then it is proven that the only solution is the Reissner-Nordstrom solution, or

if there are no EM fields, its special case, the Schwarzschild solution. The last three conditions

are technical restrictions that mean the proof cannot be used in the case of a horizon with dif-

ferent topology (other than spherical), and cannot rule out solutions with equilibrium points,

where a test particle would experience no force. Hawking [40] later showed that a space-time

that is asymptotically flat and asymptotically predictable (meaning that from a Cauchy surface

one can determine what happens at future null infinity) and has a time-like Killing vector (i.e.

that is stationary), and where the matter satisfies the weak energy condition 7, must also have

a second Killing vector, that near infinity corresponds to a Poincare transformation, so it must

correspond to a rotation. Thus stationary black holes must be either static (if not rotating) or

axisymmetric (if rotating). He then uses this to prove that in such stationary space-times with

sources obeying the dominant energy condition 8, the connected components of the horizon

must have topology S2, i.e. that black holes are spherical but there may be multiple black

holes. This addresses the last condition of Israel’s proof by deriving it from a more physical

statement. The last three, technical restrictions of Israel’s proof were removed later by long

proofs by Muller Zum Hagen, Robinson and Seifert in [41] for pure gravity and in [42] for

gravity coupled to EM fields, and later again by simple proofs by Robinson in [43]. Thus the

final result is that it can be proved that static solutions must be spherically symmetric Reissner-

Nordstrom solutions using only intuitive, physically reasonable assumptions.

The similar result for stationary black holes is a lot harder to prove. In 1971 [44] Carter

showed that black holes that are stationary, asymptotically flat, vacuum, with spherical topol-

ogy, have only two free parameters - the mass M and angular momentum J . Solutions were

shown to fall into discrete (M,J) families - that is, perturbations of solutions could only shift

M and J but not deform it into a different family. The Kerr black hole solution is of course one

such family. Its zero-angular-momentum limit, Schwarzschild, has been proven to be unique,

7 The weak energy condition is a constraint on the stress-energy tensor requiring that Tµνvµvν ≥ 0 for vµ

an arbitrary future-directed time-like vector, meaning that any observer would measure the energy density to be
non-negative.

8 The dominant energy condition is a constraint on the stress-energy tensor requiring that −Tµνvν should be a
future-directed time-like or null vector field, for vµ an arbitrary future-directed time-like vector, meaning that any
observer would measure the momentum density to be time-like or null.
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so the other families cannot have zero-angular-momentum limits (at least not ones that satisfy

the assumptions) and are thus argued to be unlikely to be physically realistic solutions. Soon

afterwards Hawking’s paper removed the need to assume spherical topology. The further

step of proving that the Kerr black hole is indeed the only stationary solution was made by

Robinson in 1975 [45]. The question of a charged stationary black hole is harder again. Robin-

son [46] was also able to show that charged rotating black holes fall into discrete (M,J,Q)

solution families, which include the Kerr-Newman solution. Since the above theorems prove

that there are unique solutions in the zero charge and/or zero angular momentum limits, and

that the Kerr-Newman solution limits to those, then solutions discretely different from Kerr-

Newman cannot have admissable limits of zero charge and/or zero angular momentum, and

are therefore physically unappealing. The full proof was completed by Mazur [47] and Bunting

[unpublished] , who showed that in fact there are no such other solutions, i.e. that the Kerr-

Newman solution is the only such black hole solution. For reviews of uniqueness theorems in

general relativity see, for example, [48], [49], [50] and [51], which were useful to the author.

The theory of higher derivative gravity treated in this thesis, in contrast, has no such

uniqueness theorems. Comparison to the uniqueness theorems available in general relativ-

ity highlights how much more difficult it will be to make physical statements about higher

derivative gravity. The uniqueness theorems in general relativity assumed at various places

throughout the literature that there are no naked singularities. There is no proof that there

cannot be naked singularities in general relativity, it is called the "cosmic censorship conjec-

ture". One example of a way in which the higher derivative theory is less clear is that later

on we shall actually find static spherically symmetric solutions with naked singularities, and

even argue that they may be in some respects more physical than black holes. We also have

no proof that black hole solutions must have spherical topology, nor that static solutions must

be spherically symmetric, nor that spherically symmetric solutions must be static. This means

that restricting consideration to the static spherically symmetric solutions constitutes a con-

siderable assumption, even though it seems physically reasonable. We also note that in the

higher derivative theory an important unresolved matter is whether charged solutions or ro-

tating solutions can limit to any of the static spherically symmetric solutions that we will find,

and if so, which ones. There is only a single no-hair theorem that we are aware of in the higher

derivative theory, which is that black holes that are static and asymptotically flat must have

R = 0. We shall present this proof later in section 2.1.1 and we shall also modify it to find

constraints on a variety of solution families that do not (or may not) have horizons. Generally

though the higher derivative theory has few proofs that certain important symmetries must

exist, and lacks knowledge of the full range of solutions, so when we find solutions with both

properties that make them seem unphysical and properties that make them seem physically

plausible we will keenly feel the absence of uniqueness theorems and their clarifying power.
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1.2.3 Frobenius’ method for finding series solutions to differential equations

The focus of this work is to find the static spherically symmetric solutions of higher derivative

gravity. By definition in such solutions the metric does not depend on time or angle, so de-

pends only on a single radial coordinate. The problem, therefore, amounts to solving coupled

non-linear ordinary differential equations for the metric components in terms of the radial

coordinate. We shall see the equations later in section 1.3, and find that they are extremely

large and extremely non-linear. There is no general procedure for finding solutions to such

differential equations. One method we shall use to tackle the equations is to study solutions

perturbatively close to the solutions to GR. But we also wish to learn about solutions not per-

turbatively close to the solutions of GR. We shall use another method, which is borrowed from

the study of linear second-order ordinary differential equations, Frobenius’ method. In this

section we discuss some definitions and theorems for linear second-order ordinary differential

equations, but do not delve into too much detail since our goal is only to justify the way we

will use the same approach to solve unrelated non-linear differential equations. When writing

this explanation of Frobenius’ method [52] and [53] were useful to the author.

Define a second-order linear ordinary differential equation as

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (1.2.14)

for general functions p(x) and q(x). For convenience of notation let us define the differential

operator

Ly := y′′(x) + p(x)y′(x) + q(x)y(x) . (1.2.15)

This definition of a general second-order linear ODE is invariant under shifts of the dependent

variable x→ x−x0, so without loss of generality let us consider the solutions around the point

x = 0.

1.2.3.1 Ordinary points of the differential equation

If the functions p(x) and q(x) are analytic about the point x = 0, then this is an ordinary point

of the differential equation. It can be shown that if x = 0 is an ordinary point then every

solution y(x) is analytic about x = 0, and its solutions can be written as

y(x) =
∞∑
n=0

anx
n , (1.2.16)
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where the series expansion for y converges in all of the region where the series expansions for

p and q converge. This solution can be substituted into the differential equation (1.2.14) to get

Ly = (a1p(0) + a0q(0) + 2a2)

+ x
(
a1p
′(0) + 2a2p(0) + a0q

′(0) + a1q(0) + 6a3

)
+

1

2
x2
(
a1p
′′(0) + 4a2p

′(0) + 6a3p(0) + a0q
′′(0) + 2a1q

′(0) + 2a2q(0) + 24a4

)
+O(x3) .

So we see that by solving order-by-order in x we fix the coefficients an. The differential equa-

tion is of second order, so the solution must have two arbitrary constants, so two of the an
remain free. Rather than having some undetermined an it is more usual to write the general

solution as the sum of two completely determined functions, y1 and y2,

y(x) = c1y1(x) + c2y2(x) , (1.2.17)

where c1 and c2 are arbitrary constants.

1.2.3.2 Regular singular points of the differential equation

If the functions p(x) and/or q(x) diverge at x = 0 then it is a singular point of the differen-

tial equation. A necessary and sufficient condition that the solution y(x) is finite is that the

functions P (x) := xp(x) and Q(x) := x2q(x) are analytic at x = 0. We shall use the following

re-writing of the differential equation

0 = x2 Ly = x2 y′′(x) + xP (x) y′(x) +Q(x) y(x) , (1.2.18)

where we have simply multiplied to remove a denominator. For analytic P (x), Q(x), this

point is called a regular singular point (if either of these is not analytic then then it is called an

irregular singular point). Frobenius’ method for finding series solutions of differential equations

is designed to find the solutions around a regular singular point. There is at least one solution

to the differential equation of the form

y = xs
∞∑
n=0

anx
n , a0 6= 0 , (1.2.19)
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where this series converges in all of the region where P (x) and Q(x) converge, as stated by

Fuch’s theorem. Substituting this into the differential equation we get

x2 Ly = xs

(
a0(s(P (0) + s− 1) +Q(0))

+ x
(
a0

(
sP ′(0) +Q′(0)

)
+ a1((s+ 1)(P (0) + s) +Q(0))

)
+O(x2)

)
.

Since the differential equation is linear, the lowest-order term is a0(s(P (0) + s− 1) +Q(0)), so

making this vanish leaves a0 arbitrary but gives us a quadratic equation for s. This is called the

indicial equation. The two roots of this equation are s = α and s = β, and let us say W.L.O.G.

that α ≤ β. The proposed solutions of the differential equation corresponding to each root are

yα = xα
∑

a(α)
n xn and yβ = xβ

∑
a(β)
n xn .

If the two roots differ by a non-integer amount, then the full solution is a simple sum of these

two functions

y = c1yα + c2yβ , α− β /∈ Z . (1.2.20)

However, if the roots are the same or differ by an integer then things are more complicated; let

us consider it now.

Consider the series expansion of the equation (1.2.18). Write P (x) =
∑
pmx

m and Q(x) =∑
qmx

m, and substitute the ansatz (1.2.19) into (1.2.18). This gives:

x2Ly = xs

((∑
n

(s+ n)(s+ n− 1)anx
n

)

+

(∑
m

pmx
m

)(∑
n

(s+ n)anx
n

)
+

(∑
m

qmx
m

)(∑
n

anx
n

))
=: xs

∑
n

gnx
n ,

where we define the gn as a series expansion of the differential equation. To write the gn
explicitly define a convenient notation

f(n) := (s+ n)(s+ n− 1) + p0(s+ n) + q0

h(n,m) := pm(s+ n) + qm



38 Chapter 1. Introduction

so that the series coefficients of the differential equation are

g0 = a0f(0)

g1 = a1f(1) + a0h(0, 1)

g2 = a2f(2) + a1h(1, 1) + a0h(0, 2)

...

gn = anf(n) +
n∑
k=1

an−k h(n− k, k) .

The solution method is to solve the equation order by order, setting each gn = 0 to fix each an,

respectively, and this completely fixes the series for the s we are using (up to a0). However,

this is not possible if one of the f(n) is zero. What is the condition for this to happen? Consider

the indicial equation and use it to re-express f(n) in terms of the roots

f(0) = s(s− 1) + p0s+ q0

= (s− α)(s− β)

∴ q0 = αβ

p0 = 1− α− β

∴ f(n) = (s+ n− α)(s+ n− β)

f(n)|s=α = n (n− (β − α)) .

If β − α /∈ Z then f(n) 6= 0 and the method can determine all the a(α)
n and there is no problem,

but if not then we can now see the complication: if β − α = i ∈ Z+ then f(i)|s=α = 0. Let us

say that we solve the equations gn≤i−1 = 0 for the variables s, a1≤n≤i−1 (remember that it is a

linear ODE so a0 must be arbitrary), and then consider the equation gi = 0. If f(i) = 0 then

the equation gi = 0 is a function only of s, a1≤n≤i−1 and there are two possibilities. The first

possibility is that the equation gi = 0 is identically satisfied, and then the system is consistent

but ai is free. In the yα solution ai is the coefficient of xα+i = xβ , and it is free simply because

we can always add a multiple of yβ to yα and have it still be a solution. In this case the full

solution is again simply

y = c1yα + c2yβ , (1.2.21)

where, unlike equation (1.2.20), these series mingle together for the terms xn≥β 9. The second

possibility is the generic one, it is that the equation gi = 0 makes the system overconstrained,

and yα is not a solution. We see that in the case where β − α = i ∈ Z+ then generically yα is

not the second solution. In the case of equal roots α = β then yα = yβ is not independent, and

again, the second solution is not yα. We therefore say that there is always one solution of the

9 this is what happens if one applies this method to an ordinary point of the ODE
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form (1.2.19), for the larger root, β ≥ α. But if the second solution is not also of the form (1.2.19)

then what form does it have? We now search for the second solution.

Consider the case of equal roots α = β. Apply the differential operator L to y to get

x2Ly = xs
∑
n

gnx
n , gn = anf(n) +

n∑
k=1

an−k h(n− k, k) .

For now let us not solve the equation g0 = 0 for s, but let us solve the other equations gn>0 = 0

for the an = an(a0, s). We now have

x2Ly
∣∣
gn>0=0

= xs g0 x
0 = xsa0f(0) = xsa0(s− α)2 .

We already know that the first solution to this is yα, because we can see that x2Lyα = x2Ly
∣∣
s=α

=

0. We find a second solution using differentiation to exploit the second zero of the (s−α)2 term

thus:

x2L (∂sy(x, s))
∣∣
gn>0=0

= ∂s

(
x2Ly

∣∣
gn>0=0

)
= ∂s

(
xsa0(s− α)2

)
= xsa0 [ln(x)(s− α) + 2] (s− α) ,

which vanishes when s = α. So we see that the function y2(x) := ∂sy(x, s)|s=α also satisfies

Ly2 = 0. Inspection of the form of this solution makes it clear that it is independent, and is

therefore the only other solution:

y2 := ∂sy(x, s)|s=α = ∂s

(
xs
∑

an(s)xn
)∣∣∣
s=α

= ln(x) xα
∑

anx
n + xs

∑
a′n(α)xn

= ln(x) yα + xα
∑

a′n x
n .

The full solution is

y = c1yα + c2

[
ln(x)yα + xα

∑
a′n x

n
]
. (1.2.22)

Written out this is of the form

y = xα
((

a0 + k0 ln(x)
)

+
(
a1 + k1 ln(x)

)
x1 +

(
a2 + k2 ln(x)

)
x2 + . . .

)
. (1.2.23)

We note that there is a logarithm in the leading order term xα(a0 + k0 ln(x)).

Consider the case of roots that differ by an integer, β − α = i ∈ Z+. Recall that solving

the differential equation order by order, x2Ly = xs
∑

n gnx
n, where gn = anf(n) + . . . , where

f(n) = (s+n−α)(s+n−β), could not give all the an of the s = α solution, because of a zero of

f(n)|s=α. Let us now look at the problem in a different way. Expand the differential equation,

order by order and let us not solve g0 = 0 for s, but solve the other gn>0 = 0 for the an = an(s).
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We now have

x2Ly
∣∣
gn>0=0

= xsa0f(0) = xsa0(s− α)(s− β)

an(s) = − 1

f(n)

n∑
k=1

an−k h(n− k, k) .

By inspection, the general solution for the coefficients an = an(a0, s) is of the form

an(a0, s) = a0

∑
{pj}

h(. . . ) . . . h(. . . )

f(1)p1f(2)p2 . . . f(n− 1)pn−1

1

f(n)
, pj = {0, 1}

= a0

F
(
h(. . . ), . . . , h(. . . ), f(1), f(2), . . . , f(n− 1)

)
f(1)f(2) . . . f(n)

,

where the first line is a sum of many terms with products of f(1 < k < n − 1) in the denom-

inator and products of h(k, l) in the numerator, and the second line has been rearranged to a

single fraction with unspecified function F being a polynomial function of its arguments that

the reader can work out exactly if desired. The problem with determining ai now manifests

as the factor 1
f(i) ∼

1
s+i−β = 1

s−α in its solution, which blows up when one tries to set s = α

while keeping a0 finite. By inspection of the solution we can see that such a factor will also be

present in every term an≥i. We are therefore led to define a function

yb(x, s) = (s− α)xs
∑

an(s)xn

=: xs
∑

bn(s)xn .

This, where the an(a0, s) are the same as above, is straightforwardly also a solution of the

differential equation when either s = β or s = α

x2Lyb
∣∣
gn>0=0

= xsa0f(0) = xsa0(s− α)2(s− β) .

The factor (s − α) in yb means that the coefficients of xn are bn := (s − α)an. The factors
1
f(i) ∼

1
s+i−β = 1

s−α , which are present in all an≥i, are therefore cancelled in the bn which

remain finite when we set s = α. However, for the lower-order terms bn<i there is no 1
f(i) factor,

and the (s−α) makes these vanish. The first non-zero term in yb is therefore (s−α)xsai(s)x
i =

...
f(1) ... f(i−1)x

s+i ∼ xβ . This means that we have simply found the s = β solution again:

yb(x, s = α) = (s− α)xs
∑

an(s)xn
∣∣∣
s=α

= y(x , s = β ) = yβ . (1.2.24)
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As in the case of equal roots, in the case of roots differing by an integer we find the only way

to generate a second independent solution is differentiation with respect to s.

x2L (∂syb(x, s))
∣∣
gn>0=0

= ∂s

(
x2Lyb(x, s)

∣∣
gn>0=0

)
= ∂s

(
xsa0(s− α)2(s− β)

)
= xsa0 [ln(x)(s− α)(s− β) + (s− α) + 2(s− β)] (s− α) .

Which vanishes when s = α. Writing this new solution explicitly:

y2 := (∂syb(x, s))|s=α = ∂s

(
xs
∑

bn(s)xn
)∣∣∣
s=α

=
(

ln(x)xs
∑

bn(s)xn + xs
∑

b′n(s)xn
)∣∣∣
s=α

= ln(x)yβ + xα
∑

b′nx
n , (1.2.25)

where in the third line we recalled that (s− α)xs
∑
an(s)xn|s=α = xs

∑
bn(s)xn|s=α = yβ .

Inspection of the form of this solution makes it clear that it is linearly independent of yβ , and

is therefore the only other solution. The full solution is therefore

y = c1yβ + c2

(
ln(x)yβ + xα

∑
b′nx

n
)

= yβ (c1 + c2 ln(x)) + c2x
α
∑

dn x
n . (1.2.26)

Note that the leading order term is still xα, and the logs appear later. Written out this is of the

form

y = xα
(
d0 + d1x+ · · ·+ di−1x

i−1 +
(
a0 + k0 ln(x)

)
xi +

(
a1 + k1 ln(x)

)
xi+1 + . . .

)
. (1.2.27)

The formalism described here applied to general second-order linear ordinary differen-

tial equations, but it can be generalised to higher-order linear ordinary differential equations,

which follows similarly but where we differentiate more times, so terms like ln(x)2, ln(x)3, etc.,

appear as well. For higher order equations there is no proof that such solutions are guaran-

teed to exist, but the method can still be useful. Later in chapter 3.2.1 this formalism will be

applied to a second-order linear ordinary differential equation, but more often we shall simply

draw inspiration from this formalism when we are working on third-order and second-order

pairs of non-linear coupled ODEs. We shall expand our two functions in the form of (1.2.19)

and find series solutions. Seeing the alternative solutions (1.2.22) and (1.2.25) we also use trial

functions with ln(x) terms and ln(x)n terms. Trial solutions of the Frobenius form will actually

prove very successful. However, unfortunately, in the non-linear case we have no theorems to

tell us about the convergence properties of such solutions.



42 Chapter 1. Introduction

1.3 Equations of motion

1.3.1 The general case

Consider the four-dimensional higher-derivative action (1.1.7)

I =

∫
d4x
√
−g
(
γ(R− 2Λ)− αCµνρσCµνρσ + βR2

)
.

Varying it with respect to the metric
1√
−g

δI
δgµν

produces the equations of motion [6]

1

2
Tµν = Hµν := γ

(
Rµν −

1

2
gµνR+ Λgµν

)
+

2

3
(α− 3β)∇µ∇νR− 2α�Rµν +

1

3
(α+ 6β) gµν�R

− 4αRηλRµηνλ + 2

(
β +

2

3
α

)
RRµν +

1

2
gµν

(
2αRηλRηλ −

(
β +

2

3
α

)
R2

)
,

(1.3.1a)

Where the identity

RρσRµρνσ = RµρRν
ρ −∇ρ∇(µRν)

ρ +
1

2
∇µ∇νR (1.3.2)

can be used to write them in an alternative way. We consider only the case where Λ = 0

except where specified. Note that all vacuum solutions to general relativity (Rµν = 0) are still

vacuum solutions of the higher-derivative theory. In particular note that this implies that the

Schwarzschild solution is still a vacuum solution. The equations of motion satisfy generalised

Bianchi identity:

∇νHµν ≡ 0 (1.3.3)

and have trace

H µ
µ = 6β�R− γR =

1

2
T µ
µ , (1.3.4)

which is of fourth-order in derivatives of the metric for β 6= 0 and of second-order for β = 0.

As already stated the work in [7] showed that the theory describes two massive particles

beyond the massless graviton of GR, one spin-2 particle and one spin-0 particle

m 2
2 :=

γ

2α
, (1.3.5a)

m 2
0 :=

γ

6β
, , (1.3.5b)

providing an intuitive rewriting of (1.3.4)

H µ
µ = 6β

(
�−m 2

0

)
R . (1.3.6)
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1.3.1.1 Comparison to the solutions of general relativity

The solutions to the Einstein field equations of general relativity are

Rµν =
Tµν
2γ

+ gµν
1

d− 2

(
2Λ− T

2γ

)
.

Substituting these into the fields equations of the higher-derivative theory, (1.3.1), gives

Hµν =
1

2
Tµν +

1

d− 2

4

6γ
(α− 3β) (gµν�T −∇µ∇νT )− α

γ
�Tµν +

2α

γ
∇ρ∇(µT

ρ
ν)

− α

γ2
TρµT

ρ
ν + gµν

T 2

4γ2

1

d− 2

(
−α+

1

d− 2

2

3
(3β − α)

)
+ TTµν

1

3γ2

1

d− 2
(4α− 3β) +

α

4γ
gµνTρσT

ρσ

− ΛTµν
2

3γ

(
3β + α+

2

d− 2
[3β − 4α]

)
+ ΛTgµν

4

3γ

1

(d− 2)2
(α− 3β)

+ gµνΛ2 4

3

(
−α− 3

2
β +

1

d− 2
3α+

1

(d− 2)2
2(3β − α)

)
.

This has to be equal to 1
2Tµν for it to be a solution to the theory, so we see that it misses being

a solution by terms like T 2, ∇∇T , ΛT or Λ2. If, however, we simplify this by considering the

Einstein space solutions Rµν = 2
d−2(Λ − λ)gµν , corresponding in general relativity to T (GR)

µν =

2γλ gµν , then we find the energy-momentum density of this solution in the higher derivative

theory is

1

2
Tµν = Hµν = γ λ gµν − gµν

2

3

d− 4

(d− 2)2
(Λ− λ)2

(
2α (d− 3) + 3β d

)
(1.3.7a)

=
1

2
T (GR)
µν − gµν

2

3

d− 4

(d− 2)2
(Λ− λ)2

(
2α (d− 3) + 3β d

)
. (1.3.7b)

So we see that in d = 4 an Einstein space is sourced by the same stress-energy in higher-

derivative gravity as in general relativity. In d 6= 4 Einstein spaces only have the same energy-

momentum density in the two theories if λ = Λ.

Unless stated, we shall always be considering the theory with no cosmological constant

and for a vacuum Tµν , for which the solutions to general relativity are all also solutions to the

higher derivative theory in any dimension.

1.3.2 The static spherically-symmetric case

We shall be studying the static spherically-symmetric solutions of the equations of motion

(1.3.1), so we shall use Schwarzschild coordinates:

ds2 = −B(r) dt2 +A(r) dr2 + r2dθ2 + r2 sin2 θ dφ2 . (1.3.8)
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In this ansatz we have two independent equations of motion, corresponding to the two free

functions in the metric (1.3.8). The purpose of this work is to attempt a complete description

of static spherically-symmetric solutions, so we emphasise that we leave A and B completely

general, and do not choose any simplifying assumptions (e.g. AB = const.) as is often done.

The static spherically-symmetric H tensor has the form

Hµν =


Htt(r) 0 0 0

0 Hrr(r) 0 0

0 0 Hθθ(r) 0

0 0 0 Hθθ(r) sin2 θ

 , (1.3.9)

where the three different components are related by the r component of (1.3.3):(
Hrr

A

)′
+

2Hrr

Ar
+
B′Hrr

2AB
− 2Hθθ

r3
+
B′Htt

2B2
≡ 0 . (1.3.10)

Accordingly the system is described by just two independent equations:

Htt =
1

2
Ttt , (1.3.11a)

Hrr =
1

2
Trr . (1.3.11b)

This restriction to the static spherically-symmetric case is a consistent truncation. This can be

checked by substituting in the static spherically-symmetric ansatz (1.3.8) into the Lagrangian

and checking that the equations of motion implied by

1√
−g

δI
δA

and
1√
−g

δI
δB

(1.3.12)

match those from (1.3.1) evaluated for (1.3.8).

We shall usually study the vacuum solutions with Tµν = 0.

1.3.3 Differential Order

1.3.3.1 For the generic higher-derivative theory

The higher-derivative equations of motion are complex and highly nonlinear. The equations

of motion Htt and Hrr are functions of A(r), B(r), A′(r), B′(r), A′′(r), B′′(r), A(3), B(3) but Htt

is a function also of B(4), but this dependence can be eliminated in a suitable combination of

the equations.

0 = Hrr , (1.3.13a)

0 = Htt −X(r)Hrr − Y (r)∂rHrr , (1.3.13b)
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where the appropriate X(r) and Y (r) are

X =
(α− 3β)B

A2 (r(α− 3β)B′ − 2(α+ 6β)B)2

(
2r(α− 3β)B

(
rA′ − 2A

)
B′

+ 4(α+ 6β)B2
(
3A− rA′

)
− r2(α− 3β)AB′2

)
(1.3.14a)

Y =
2r(α− 3β)B2

A (2(α+ 6β)B − r(α− 3β)B′)
. (1.3.14b)

In full, these equations are

24r4A3B4Hrr = 8r3A2B2B(3)
(
r(α− 3β)B′ − 2(α+ 6β)B

)
− 4r2AB2A′′

(
r2(α− 3β)B′2 − 4r(α+ 6β)BB′ + 4(α− 12β)B2

)
− 4r4(α− 3β)A2B2B′′2

− 4r2ABB′′
(

2rBA′
(
r(α− 3β)B′ − 2(α+ 6β)B

)
+A

(
3r2(α− 3β)B′2 − 12r(α+ 3β)BB′ + 8(α+ 6β)B2

))
+ 7r2B2A′2

(
r2(α− 3β)B′2 − 4r(α+ 6β)BB′ + 4(α− 12β)B2

)
+ 2r2ABA′B′

(
3r2(α− 3β)B′2 − 4r(2α+ 3β)BB′ + 4(α+ 24β)B2

)
+ 24A3B3

(
γr3B′ +B

(
γr2 − 12β

))
+A2

(
7r4(α− 3β)B′4 − 4r3(5α+ 12β)BB′3

− 4r2(α− 48β)B2B′2 + 32r(α+ 6β)B3B′ − 16(α− 21β)B4

)
+ 8A4B4

(
2α− 6β − 3γr2

)
, (1.3.15)
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a function of A,B,A′, B′, A′′, B′′, B(3) and the other equation

2r4A5B2
(
αrB′ − 3βrB′ − 2αB − 12βB

)2 (
Htt −X(r)Hrr − Y (r)∂rHrr

)
=

72αβr3A2A(3)B4
(
r(α− 3β)B′ − 2(α+ 6β)B

)
+ 36αβr2AB3A′′

(
13rBA′

(
2(α+ 6β)B − r(α− 3β)B′

)
− 2A(−r2(α− 3β)B′2 + r(α+ 6β)BB′ + 2(α+ 6β)B2)

)
+ 12βr4(α− 3β)A3B2B′′2

(
(α+ 6β)B − r(α− 3β)B′

)
+ 4r3A2BB′′

(
3βBA′

(
r2(α− 3β)2B′2 + r

(
α2 − 15αβ + 36β2

)
BB′ − 6α(α+ 6β)B2

)
− 3βAB′

(
−r2(α− 3β)2B′2 − 6αr(α− 3β)BB′ + 2

(
7α2 + 48αβ + 36β2

)
B2
)

+ γ(−r)(α− 3β)A2B2
(
2(α+ 6β)B − r(α− 3β)B′

))
+ 504αβr3B4A′3

(
r(α− 3β)B′ − 2(α+ 6β)B

)
− 3βr2AB2A′2

(
r3(α− 3β)2B′3 + 3r2

(
17α2 − 57αβ + 18β2

)
BB′2

− 60αr(α+ 6β)B2B′ − 4
(
23α2 + 150αβ + 72β2

)
B3

)
− 6βrA2BA′

(
r4(α− 3β)2B′4 + r3

(
11α2 − 39αβ + 18β2

)
BB′3 − 4r2

(
8α2 + 51αβ + 18β2

)
B2B′2

+ 4r
(
11α2 − 12αβ + 18β2

)
B3B′ − 16

(
4α2 + 21αβ − 18β2

)
B4

)
+A3

(
− 4r(α− 3β)B4B′

(
12β(5α+ 3β) + r(α− 3β)A′

(
γr2 − 12β

))
− 2r2B3B′2

(
6β
(
α2 + 66αβ + 36β2

)
+ γr3(α− 3β)2A′

)
− 8(α+ 6β)B5

(
−6β(5α+ 3β)− rA′

(
2α
(
γr2 − 6β

)
+ 3β

(
12β + γr2

)))
− 3βr5(α− 3β)2B′5 + 3βr4

(
−19α2 + 51αβ + 18β2

)
BB′4 + 12βr3

(
13α2 + 84αβ + 36β2

)
B2B′3

)
− 8A5B4

(
r(α− 3β)B′

(
α
(
γr2 − 6β

)
+ 6β

(
3β + γr2

))
+ (α+ 6β)B

(
α
(
6β − 2γr2

)
− 3β

(
6β + γr2

)))
− 2A4B2

(
γr5(α− 3β)2B′3 − 6r2(α− 3β)BB′2

(
α
(
γr2 − 4β

)
+ 3β

(
4β + γr2

))
+ 4r(α− 3β)B2B′

(
α
(
γr2 − 24β

)
+ 6β

(
γr2 − 6β

))
+ 4

(
2α2 + 15αβ + 18β2

)
B3
(
12β + γr2

))
,

(1.3.16)

a function of A,B,A′, B′, A′′, B′′, A(3).

The reader will not be surprised to hear that it is too difficult to solve these in closed form.
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The main focus of this work shall be to learn as much as possible about the solutions of these

two coupled non-linear differential equations, use various analytic and numerical techniques.

These equations of motion are two coupled third-order ordinary differential equations, so we

expect that they will have six free parameters. It would be possible to reduce a pair of linear

coupled third-order ordinary differential equations to a single sixth-order ordinary differential

equation, but for the non-linear equations we can merely outline the equivalent procedure:

(1.3.15) : 0 = f1(r,A,B,A′, B′, A′′, B′′, B′′′)

(1.3.16) : 0 = g1(r,A,B,A′, B′, A′′, B′′, A′′′)

∂r(1.3.16) : 0 = ∂rg1(r,A,B,A′, B′, A′′, B′′, A′′′)

= g2(r,A,B,A′, B′, A′′, B′′, A′′′, B′′′, A(4))

∴ B′′′ = g−1
2 (r,A,B,A′, B′, A′′, B′′, A′′′, A(4))

sub into (1.3.15) : 0 = f2(r,A,B,A′, B′, A′′, B′′, A′′′, A(4))

∴ B′′ = f−1
2 (r,A,B,A′, B′, A′′, A′′′, A(4))

sub into (1.3.16) : 0 = g3(r,A,B,A′, B′, A′′, A′′′, A(4))

∴ B′ = g−1
3 (r,A,B,A′, A′′, A′′′, A(4))

sub f−1
2 and g−1

3 into (1.3.16) : 0 = g4(r,A,B,A′, A′′, A′′′, A(4))

∴ B = g−1
4 (r,A,A′, A′′, A′′′, A(4))

sub into (1.3.16) : 0 = g5(r,A,A′, A′′, A′′′, A(4), A(5), A(6)) .

but this would require inversion of high-order polynomials, so we cannot prove that it is pos-

sible. However, later we shall find various perturbative solutions and see that there are six free

parameters, so we believe that this is the order of the system.

1.3.3.2 For the Einstein-Weyl theory

We shall see later that the β = 0, or Einstein-Weyl, case with Lagrangian density γR − αC2 is

of particular interest to us. In this case the system is simpler and in fact has a lower differen-

tial order. The simplification is clearly visible in the fourth-order trace equation (1.3.4) which

becomes simply the second-order equation

R = − 1

2γ
T µ
µ , (1.3.17)
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and the absence of the massive scalar particle (1.3.5b). In this case the vacuum equations of

motion are equivalent to the two equations

0 = H µ
µ , (1.3.18a)

0 =
Hrr

α
+H µ

µ

3rBA′ − 2A (rB′ +B) + 2A2B

3γr2AB
− (H µ

µ )2 A

6γ2
− ∂r(H µ

µ )
2B − rB′

3γrB
, (1.3.18b)

which are second order in B and first order in A, and second order in A and first order in B,

respectively.

In full, these equations are

−2

γ
r2A2B2(1.3.18a) =rBA′

(
rB′ + 4B

)
+A

(
r2B′2 − 2rB

(
rB′′ + 2B′

)
− 4B2

)
+ 4A2B2

(1.3.19a)

2αr4A3B3(1.3.18b) =αr2B2A′2
(
5B − 4rB′

)
+ αA2

(
−4B3

(
rA′ + 2

)
+ r3B′3 − 3r2BB′2

)
+ αrAB

(
r2A′B′2 + 2rBB′

(
rA′′ +A′

)
+ 4B2

(
A′ − rA′′

))
+ 2A3B2

(
γr3B′ +B

(
4α+ γr2

))
− 2γr2A4B3 . (1.3.19b)

So we expect four free parameters in the Einstein-Weyl case.
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2.1 Constraining the Ricci scalar

2.1.1 The proof

In [34] an important result was proved about the Ricci scalar in higher derivative gravity in

static vacuum space-times. We now discuss and extend that result. The starting point for the

proof is the trace of the equations of motion (1.3.4).

0 = H µ
µ = 6β�R− γR = 6β

(
�−m 2

0

)
R . (2.1.1)

It is clear that for β = 0 we can immediately say R = 0 for all vacuum space, whereas for

β 6= 0 we can only say that
(
�−m 2

0

)
R = 0 for all vacuum space. In [34] static symmetry

and appropriate boundary conditions were used to show that this still implies R = 0. The

argument is presented here in a different style using a time-like dimensional reduction instead

of a time-like Killing vector field. Using static symmetry write the metric as 1.

ds2 = −λ(x)2dt2 + hab(x)dxadxb , (2.1.2)

where the indices a, b run over the spatial coordinates x. It follows straightforwardly that

�R := gµν∇µ∇νR = DaDaR+
1

λ
(Daλ) (DaR) , (2.1.3)

where Da is the covariant derivative for the spatial metric hab, and thus that

0 =
H µ
µ

6β
= DaDaR+

1

λ
(Daλ) (DaR)−m 2

0 R . (2.1.4)

Multiply this by λR and integrate over a volume S of the spatial dimensions

0 =

∫
S

√
h d3x

H µ
µ

6β
λR =

∫
S

√
h d3x

[
λR (DaDaR) +R (Daλ) (DaR)−m 2

0 λR2
]
, (2.1.5)

and then integrate by parts:

0 =

∫
S

√
h d3x

[
Da (λR DaR)− λ (DaR) (DaR)−m 2

0 λR2
]
. (2.1.6)

The integrand consists of a boundary term and two bulk terms. The theorem is then: If the

space-time has Minkowski signature and the boundary term contribution vanishes, thenR = 0

throughout the integration region. Strictly, the proof requires that m 2
0 > 0 ⇔ β > 0, and that

the spatial metric hab is positive definite, for which Minkowski signature is sufficient. Then the

proof simply states that since the two bulk terms obviously have the same sign, therefore they

must vanish everywhere because of the vanishing of the boundary term and of the integral as
1Note that in the proof in [34] the metric was written differently, with λdt2, so our λ is not the same as theirs
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a whole. In the space-times we consider we shall often be able to choose a suitable integration

region such that the boundary term vanishes. An example is a boundary at infinity, assuming

asymptotic flatness, so that DaR = 0 on the boundary and the contribution to the integral

vanishes. We discuss some example space-times in the next subsection.

Later we shall need the explicit expression for the contribution of the boundary term to

(2.1.6) so we calculate it here:

boundary contribution =

∫
S

√
h [Da (λ R DaR)] d3x =

∫
S
∂a

[√
h λ R DaR

]
d3x . (2.1.7)

So far the proof has been valid for all static space-times, but in particular we shall be interested

in the specialisation to the static spherically symmetric case, where only the r component is

non-zero, and we find a simplification of the boundary contribution:

boundary contribution =

∫
S
∂r

[√
AB r2 sin(θ)R DrR

]
drdθdφ = 4π

[√
AB r2 R DrR

]r+
r−

(2.1.8)

so we define a function C(r) as

C(r) :=
√
AB r2 R DrR

∣∣∣
r
, (2.1.9)

and we shall evaluate it in the various solutions we find. The most general spherically sym-

metric application of the theorem is then that R = 0 at radii between two zeroes of C(r). A

generalisation of this proof to the case where there is a cosmological constant Λ was presented

in [1] and [2] and is discussed in appendix A.

2.1.2 Physical implications

Being able to prove that the Ricci scalar vanishes affords a great simplification of the equations

of motion. Consider the vacuum equations of motion (1.3.1) for R = 0 :

0 = Hµν |R=0 = −2α

(
�Rµν + 2RρµRνρ − 2∇ρ∇µRρν −

1

2
gµνR

ρσRρσ

)
+ γRµν . (2.1.10)

There is no dependence on β. The equations of motion forR = 0 are in fact identical to those of

the Einstein-Weyl theory, i.e. the theory with β = 0. Thus this proof makes the Einstein-Weyl

theory of considerable interest. We saw in section 1.3.3.2 that in the static spherically symmetric

situation the Einstein-Weyl theory reduces to two coupled second-order ODEs, with four free

parameters, instead of the third-order equations of and six free parameters of the full theory.

At various places in this work we find that several calculations that are intractable in the full

theory are tractable in the Einstein-Weyl theory.

We now consider two physical situations that stand out for consideration in light of the

theorem (2.1.6). The first is a simply connected region covering all space, the second is the
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region exterior to a horizon. In both of these the theorem (2.1.6) can be used to show that the

Ricci scalar vanishes subject to some reasonable assumptions which we now discuss.

Firstly we consider an asymptotically flat space-time with vacuum and Minkowski signa-

ture throughout. We choose a simply connected spatial integration region covering all space

i.e. with a single boundary at r → ∞. On the boundary R and DaR vanish by asymptotic

flatness. Thus R = 0 throughout all space-time.

Secondly we consider an asymptotically flat space-time containing a horizon. We choose

the integration region to be a vacuum Minkowski-signature region outside the horizon, ex-

tending out to infinity. On the inner boundary (the horizon) since λ(x) vanishes by definition

the boundary contribution is again zero and it follows that R = 0 everywhere outside the

horizon. 2

This theorem will prove to be very useful because with every solution we find we will be

able to use this theorem to relate local properties (of the boundary term) to bulk properties (R

for some open range of r) and we shall see some more examples later on.

2.1.3 The trace-free part

In [34], after using the trace equation to prove R = 0 given certain assumptions, the trace-free

part of the equations of motion was discussed. Unfortunately we find errors in that calculation
3 and we discuss a corrected version here.

Take the trace-free part of the equations of motion ,

0 = Hµν |R=0 = −2α

(
�Rµν + 2RρµRνρ − 2∇ρ∇µRρν −

1

2
gµνR

ρσRρσ

)
+ γRµν , (2.1.11)

and multiply it by λRµν and break it up into the time and space parts. As a side note we

present a list of identities involved in that calculation. The connection and curvature break up

2One might be concerned that although λ(x)|horizon = 0 it may be that another quantity, e.g. ∂iR diverges on the
horizon such that the combination is non-vanishing. Later, while assuming spherical symmetry, we shall explicitly
calculate the whole boundary contributionC(r) near to the horizon and find that it indeed vanishes on the horizon.

3 Specifically, in [34] their equations (2.28) and (2.30) are written in the convention (1.1.8) for curvature tensors,
but their equations of motion (2.1) would only be correct if the opposite convention was used. The resulting errors
in the analysis of the equations of motion invalidate their conclusion regarding the trace-free part.
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simply as

Γi00 = λDiλ (2.1.12a)

Γ0
0i =

Diλ

λ
(2.1.12b)

Γ0
ij = 0 (2.1.12c)

Γ0
00 = 0 (2.1.12d)

Γi0j = 0 (2.1.12e)

R00 = λDiD
iλ (2.1.12f)

R0i = 0 (2.1.12g)

Rij = R̄ij −
1

λ
DiDjλ , (2.1.12h)

where R̄ij denotes the Ricci tensor of the spatial metric hij . We use these to find the more

complex identities:

0 = R = 2g00R00 + R̄ = R̄− 2

λ2
R00 (2.1.13a)

∇0R00 = 0 (2.1.13b)

∇iR00 =
λ2

2
DiR̄ (2.1.13c)

∇0Ri0 = − λ

2
R̄Diλ− λRijDjλ (2.1.13d)

∇0Rij = 0 (2.1.13e)

∇iRj0 = 0 (2.1.13f)

∇iRjk = DiRjk (2.1.13g)

�φ = DiDiφ+
1

λ
DiλDiφ (2.1.13h)

�R00 =
λ2

2
DiDiR̄+

λ

2
DiλDiR̄− R̄DiλDiλ− 2SijD

iλDjλ (2.1.13i)

�Rij = DkDkRij +
1

λ
DkλDkRij −

1

λ2
R̄DiλDjλ−

2

λ2
D(iλRj)kD

kλ (2.1.13j)

∇ρ∇0R
ρ
0 = − λ

2
R̄DiDiλ− λSijDiDjλ−RijDiλDjλ− λDjλDiRij −

1

2
R̄DiλD

iλ (2.1.13k)

∇ρ∇iRρj = DkDiR
k
j −

1

2λ2
R̄DiλDjλ−

1

λ2
DiλRjkD

kλ+
1

λ
DkλDiRjk +

1

2λ
DjλDiR̄ (2.1.13l)

RµνRµν =
R̄2

4
+RijRij (2.1.13m)

RµνR
ν
ρR

ρ
µ = − R̄3

8
+RijR

j
kR

k
i , (2.1.13n)

where R̄ denotes the Ricci scalar of the spatial metric hij . In particular note that Rµν is block-

diagonal in the time and space parts. We also need the contracted Bianchi identity for R = 0:
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∇µRµν =
1

2
∇νR = 0 (2.1.14a)

∴ 0 = ∇µRµi =DjRij +
1

λ
RijD

jλ+
R̄

2λ
Diλ . (2.1.14b)

The result of the calculation is

0 =

∫
S

√
h d3x

[
λ Rµν

Hµν

−2α

∣∣∣∣
R=0

]
=

∫
S

√
h d3x

[
Di

(
λ

4
R̄DiR̄+ λ R..DiR.. − 2λ R..D

.R.i − λ R̄DjR
ji

)
− λ

4
DiR̄ DiR̄+ 2λ DiR̄DjRji − λ DiRjk [DiRjk − 2DjRki]

− λ R̄
2

4

(
m 2

2 + R̄
)
− λ RijRij

(
m 2

2 − 2R
) ]

,

whereR is defined as

R :=
RijR

j
kR

k
i

RmnRmn
. (2.1.15)

For an asymptotically flat vacuum space-time the boundary term vanishes at spatial infinity,

so the hope would be that the remaining bulk terms could be shown to be all positive- or

negative-semi-definite, and therefore each to separately vanish. However, in our calculation

this is not the case and we cannot conclude that Rµν vanishes (nor any other new constraints

on it). In fact in [2] an explicit numerical solution was found of an asymptotically flat solution

with a horizon but non-vanishing Ricci curvature, and we will discuss and develop such black

holes solutions in section 3.2. Although the Ricci tensor does not vanish, these solutions will

only deviate from Ricci-flatness via a single parameter, so it may indeed be tractable to prove

other constraints on the Ricci tensor but we have not succeeded in doing so.

A generalisation of all the expressions in this section to the case where there is a cosmo-

logical constant Λ was presented in [1] (repeated in more detail in [2]) and is discussed in

appendix A. Unfortunately allowing non-zero Λ does not open up any new possibilities for

proving constraints on the curvature.



2.2. Solutions near the origin 55

2.2 Solutions near the origin

The static spherically-symmetric equations of motion were analysed near the origin in [6] and

three solution families were found. We can now build on this, including using Mathematica to

give confident statements about the number of free parameters in the solutions. We expect to

always find at least one free parameter, because the static symmetry allows us to freely scale

the B function by positive constants.

2.2.1 Frobenius analysis

In [6] they made the ansatz

A(r) = asr
s + as+1r

s+1 + as+2r
s+2 + . . . ,

B(r) = bt
(
rt + bt+1r

t+1 + bt+2r
t+2 + . . .

)
,

(2.2.1)

(as 6= 0, bt 6= 0) and attempt to find a suitable s, t and coefficients an, bm. They found that the

only solutions that exist for all α, β are the (s, t) pairs

• (0, 0)0

• (1,−1)0

• (2, 2)0

where we write the 0 subscript to indicate that these are (s, t) of solutions (2.2.1) around the

origin.

We find additional solution families that exist only for suitable α > 3β > 0:

t− 2

3
= s ∈ Z+ , α =

(s2 + 2s+ 2)2

s4
3β ,

but since these require precise values for the couplings these solutions will not be considered

further. We also do not consider the theory with α = 0.

In [6] only the leading order terms in the expansions were found. In [33] the (0, 0)0 and

(2, 2)0 families were expanded further, and the number of free parameters could be counted

with confidence. We repeated the expansion analysis, for the general α, β theory and also

for the β = 0 theory, and including the (1,−1)0 family, and we show our results below. In

each family we expanded out to at least 12 orders, and found that in each family all the free

parameters had appeared by fourth order at the latest. The three short sections below present

these solution families. There are a few physical comments but the most interesting points will

wait slightly until section 2.2.2.
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2.2.1.1 The (0, 0)0 family

The first few terms of this solution family are

A(r) = 1 + a2r
2

+ r4a2 (γ(2α+ 3β)− 36αβb2) + 18a2
2β(10α+ 3β)− 2b2 (γ(α− 3β) + 9βb2(2α+ 3β))

180αβ

+O(r6) , (2.2.2a)

B(r)

b0
= 1 + b2r

2

+
r4
(
54a2

2β
2 + a2 (−αγ + 108αβb2 + 3βγ) + b2 (γ(α+ 6β) + 54βb2(2α− β))

)
360αβ

+O(r6) . (2.2.2b)

which has 3=2+1 free parameters: a2, b2 and the trivial parameter b0.

This solution can be compared to the (0, 0)0 solution of general relativity, which is Minkowski

space (and the zero-mass limit of the Schwarzschild solution). In our coordinate ansatz (1.3.8)

(where the r coordinate is fixed) Minkowski space has one free parameter, corresponding to its

static symmetry.

For later reference we also present the (0, 0)0 solution for the β = 0 theory which is equal

to (2.2.2) fixing b2 = a2:

A(r) = 1 + a2

(
r2 + r4 12αa2 + γ

20α
+ r6 320α2a2

2 + 100αa2γ + γ2

1120α2
+O(r8)

)
(2.2.3a)

B(r)

b0
= 1 + a2

(
r2 + r4 24αa2 + γ

40α
+ r6 960α2a2

2 + 144αa2γ + γ2

3360α2
+O(r8)

)
, (2.2.3b)

and has 2=1+1 free parameters. Note that we have Rµν = 0 if and only if Minkowski space, if

and only if a2 = 0.

We consider this solution family to be the vacuum. Being of (0, 0)0 type is sufficient for the

metric to be non-singular. Further, if one looks at the Riemann curvature tensor related to local

orthonormal frame, Rabcd = Rµνρσe
µ
aeνb e

ρ
ceσd , we find that the non-zero components are

Ryzyz =
A− 1

Ar2
(2.2.4a)

Rxyxy = Rxzxz =
A′

2rA2
(2.2.4b)

Rtyty = Rtztz =
B′

2rAB
(2.2.4c)

Rtxtx =
1

4A2B2

(
−AB′2 −BA′B′ + 2BAB′′

)
, (2.2.4d)

and others related by symmetry, where t, x, y, z are the chosen orthonormal coordinates for the
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local inertial frame. We can see that Rabcd is non-diverging in the limit r → 0 if and only if

A(r) → 1, A′(r) → 0, B(r) → constant, B′(r) → 0 and B′′(r) non-diverging. So the necessary

and sufficient condition for being non-singular is thatA andB are of the form c1 +c2r
2 +O(r3).

Additionally being a solution of the field equations implies that A and B are elements of this

solution family.

Later in section 2.3.6 we discuss this family further using comparisons to perturbative so-

lutions.

2.2.1.2 The (1,−1)0 family

The first few terms of this solution family are:

A(r) = a1r − a2
1r

2 + a3
1r

3 + a4r
4 − 1

16
r5
(
a1

(
3a1b2 + 19a4

1 + 35a4

))
+

1

40
a2

1r
6
(
21a1b2 + 101a4

1 + 141a4

)
+O(r7) , (2.2.5a)

B(r)

b−1
=

1

r
+ a1 + b2r

2 +
1

16
r3
(
a1b2 + a4

1 + a4

)
− 1

40
3r4
(
a1

(
a1b2 + a4

1 + a4

))
+O(r5) , (2.2.5b)

which has 4=3+1 free parameters: a1, a4, b2 and the trivial parameter b−1.

The (1,−1)0 family is clearly the family that contains the classic Schwarzschild solution of

Einstein theory. For later reference we also present the (1,−1)0 solution to the β = 0 theory

which is equal to (2.2.5) fixing a4 = 5
3a1b2 − a4

1.

A(r) = a1r − a2
1r

2 + a3
1r

3 + r4

(
5

3
a1b2 − a4

1

)
+ r5

(
a5

1 −
23

6
a2

1b2

)
+O(r6) (2.2.6a)

B(r)

b−1
=

1

r
+ a1 + b2r

2 +
1

6
a1b2r

3 − 1

5
r4a2

1b2 +O(r5) . (2.2.6b)

Where we have chosen the parameterisation so that there is a clear similarity between a1 and

the Schwarzschild mass of the Schwarzschild solution, and b2 6= 0 describes the space of devi-

ation from Schwarzschild. Specifically, b2 = 0 is necessary and sufficient for Rµν = 0, in which

case a1 = −1
2(GMSchwarzschild)−1.

At the origin, the (1,−1)0 indicial structure gives rise to a curvature singularity, with

RµνρσR
µνρσ going like r−6 as r → 0 [6].
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2.2.1.3 The (2, 2)0 family

The first few terms of this solution family are

A(r) = a2r
2 + a2b3r

3 − a2r
4

6

(
2a2 + b23 − 8b4

)
+ a5r

5

+
r6

1296αβ

(
− 12α2a3

2 − 2a2
2

(
b23
(
α2 − 603αβ − 252β2

)
+ 27α (20βb4 + γ)

)
+ a2

(
b43
(
−16α2 + 1413αβ − 72β2

)
+ 2b4b

2
3

(
19α2 − 2223αβ + 180β2

)
− 36b5b3

(
α2 + 45β2

)
+ 12αb24(α+ 162β)

)
+ 324a5βb3(7α+ 3β)

)
+O(r7) , (2.2.7a)

B(r)

b2
= r2 + b3r

3 + b4r
4 + b5r

5

+
r6

216αa2

(
− 12αa3

2 + a2
2

(
14b23(2α+ 3β)− 24αb4

)
+ a2

(
2b43(67α− 3β) + 2b4b

2
3(15β − 227α) + 45b5b3(7α− 3β) + 180αb24

)
+ 27a5b3(α+ 3β)

)
+O(r7) , (2.2.7b)

which has 6=5+1 free parameters a2, b3, b4, b5, a5 and the trivial parameter b2.

This family does not appear in General Relativity. It is singular at the origin, withRµνρσRµνρσ ∼
r−8 as r → 0 [6].

For later reference we also present the (2, 2)0 solution to the β = 0 theory which is equal to

(2.2.7) fixing

a5 =− a2

18αb3

(
10αa2

2 + a2

(
11αb23 + 45γ

)
+ α

(
12b43 − 25b4b

2
3 − 10b24

))
(2.2.8a)

b5 =− 1

18αb3

(
6αa2

2 + a2

(
αb23 + 27γ

)
+ α

(
8b43 − 19b4b

2
3 − 6b24

))
, (2.2.8b)
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and begins with

A(r) = a2r
2 + a2b3r

3 − 1

6
r4
(
a2

(
2a2 + b23 − 8b4

))
−
r5
(
a2

(
10αa2

2 + a2

(
11αb23 + 45γ

)
+ α

(
12b43 − 25b4b

2
3 − 10b24

)))
18 (αb3)

−
r6
(
a2

(
140αa2

2 + 10a2

(
2αb23 + 12αb4 + 63γ

)
+ α

(
11b43 + 144b4b

2
3 − 356b24

)))
144α

+O(r7) . (2.2.9a)

B(r)

b2
= r2 + b3r

3 + b4r
4 −

r5
(
6αa2

2 + a2

(
αb23 + 27γ

)
+ α

(
8b43 − 19b4b

2
3 − 6b24

))
18 (αb3)

+
1

36
r6

(
−
a2

(
αb23 + 4αb4 + 90γ

)
α

− 22a2
2 − 4b43 − 14b4b

2
3 + 50b24

)
+O(r7) . (2.2.9b)

2.2.2 Constraints on the Ricci scalar for the near-origin solution families

We shall also consider the solutions in the light of the theorem (2.1.6). Consider a spherically-

symmetric space-time with a vacuum everywhere except perhaps the origin, and integrate

over ε < r <∞, taking ε→ 0. The inner boundary is near the origin and is described by these

near-origin solutions, but at the origin itself the space-time may be singular or non-vacuum

so we exclude it from the integration region. If we find (possibly subject to conditions) that

the contribution from the inner boundary vanishes, then we would also need to show that the

space-time has Minkowski signature before we could prove thatRmust vanish. The boundary

term contribution is given by C(r) (2.1.9) with r+ →∞ and r− = ε→ 0. The contribution from

r →∞ vanishes by asymptotic flatness, so we must determine if

C(r = ε→ 0) =
√
AB r2 R ∂r R

∣∣∣
r=ε→0

(2.2.10)

vanishes. We calculate it in the three solution families below.

Solution family R∂rR C(r)

(0, 0)0
2γ
β (a2 − b2)2 r +O(r3) ∼ O(r3)

(1,−1)0 − 3γ
8a4

1β

(
5
3a1b2 − a4

1 − a4

)2
r +O(r3) ∼ O(r3)

(2, 2)0 −(a2(14a2b3−2b33+10b4b3−45b5)+27a5)2

9a5
2

r−5 +O(r−4) ∼ O(r−1)

The table shows that the (0, 0)0 and (1,−1)0 families have the boundary contribution at

r = ε tend to zero as ε tends to zero, so in the region r > 0 the space-time has R = 0 (if it
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has Minkowski signature throughout). This is consistent with our claim that the (0, 0)0 family

represents the vacuum, in that we find that the theorem applies equally well if the origin is

excluded from the integration region, or included (i.e. a simply connected region with a single

boundary at r → ∞). The (0, 0)0 and (1,−1)0 solutions for R = 0 ⇔ β = 0 were given

already in (2.2.3) and (2.2.6). They are obtained from their general expressions by setting to

zero (a2−b2) and (a4− 5
3a1b2+a4

1), respectively, so we can say that these quantities parameterise

asymptotic non-flatness in the R 6= 0 parts of these families (at least they do when the other

conditions of the theory are met, if possibly not always). This does not necessarily imply that

the R = 0 parts of these families are asymptotically flat.

On the other hand, for the (2, 2)0 family the boundary term contribution is generically not

zero, and in fact blows up as ε → 0, and the proof fails. However, the (2, 2)0 family is a (5+1)-

parameter space of solutions and R does in fact vanish in a subspace of its parameter space. In

the (2, 2)0 family R and C(r) generically go as r−1. The condition on the parameters to remove

the divergent term in R is also necessary and sufficient to remove the divergence from C(r)

(such that C(r) ∼ r5). We can use the theorem within this subspace. This is a (4+1)-parameter

space given by b5 = b̃5 where

b̃5 :=
1

45

(
14a2b3 +

27a5

a2
− 2b33 + 10b4b3

)
. (2.2.11)

This can be compared to the space of (2, 2)0 solutions where R vanishes, which is of course a

subspace of the space where R is non-divergent, which is a (3+1)-parameter space (given by

(2.2.8)), where a5 = ã5 as well as b5 = b̃5

ã5 :=− a2

18αb3

(
10αa2

2 + a2

(
11αb23 + 45γ

)
+ α

(
12b43 − 25b4b

2
3 − 10b24

))
b̃5 =

1

45

(
14a2b3 +

27ã5

a2
− 2b33 + 10b4b3

)
=− 1

18αb3

(
6αa2

2 + a2

(
αb23 + 27γ

)
+ α

(
8b43 − 19b4b

2
3 − 6b24

))
.

We learn that if b5 = b̃5, and the space-time has Minkowski signature for r > 0, and DaR

vanishes at infinity, then a5 is constrained. Conversely, it follows that if b5 = b̃5, and the space-

time has Minkowski signature for r > 0 and a5 6= ã5 then DaR does not vanish at infinity,

and the space-time is not asymptotically flat. So within the solution space b5 = b̃5 (Minkowski

signature) we can say that (a5 − ã5) is one of the two parameters controlling asymptotic non-

flatness, analogous to C0+ in the linearised solution from [6] which we shall see later in section

2.3.
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2.2.3 Non-Frobenius solutions

One should worry that there are other solution families not described by the Frobenius ansatz

(2.2.1). We do in fact find a solution family more like the form (1.2.27), which we name (1,−1)ln,

which we detail next before moving on to a description of the searches that did not yield new

solution families.

2.2.3.1 A wider (1,−1)0 family : (1,−1)ln

The Frobenius solution (1.2.27), had logs appearing at sub-leading orders. We also consider an

ansatz of that form. We note, however, that the (2, 2)0 family already has the full number of

free parameters of the theory, so we do not expect to be able to add terms of the form k ln(x) to

it. The (0, 0)0 family has been determined to be the vacuum (an analysis which depended on

its first two terms only), and its number of free parameters is the same as the vacuum family

in the linearised theory, so we do not expect to be able to include any log terms, since they

would have to be associated with additional free parameters. That leaves the (1,−1)0 family.

We write the following ansatz

A = r
(
a0 + p0 ln(r) + (a1 + p1 ln(r))r + (a2 + p2 ln(r))r2 + ...

)
B

b0
=

1

r

(
1 + q0 ln(r) + (b1 + q1 ln(r))r + (b2 + q2 ln(r))r2 + ...

)
.

For β = 0 we find that all the pi and qi are zero for i ≤ 9. For β 6= 0, however, we find that logs

are admissible in the third order terms.

A = r
(
a1 + a2r + a3r

2 + (a4 + p4 ln(r))r3 + (a5 + p5 ln(r))r4 + . . .
)

B

b−1
=

1

r

(
1 + b0r + b1r

2 + (b2 + q2 ln(r))r3 + (b3 + q3 ln(r))r4 . . .
)
,

where there are 4+1 free parameters b−1, a1, a4, b2, p4. At sixth order we find that p4 = 0 appears

to be required. We note that we are solving coupled non-linear third-order ODEs, and we take

inspiration from the generalisation of Frobenius’ method from second-order linear ODEs (see

section 1.2.3) to third-order linear ODEs, which causes ln(r)2 terms to appear. Generalising our

ansatz to allow ln(r)2 terms allows it to remain a solution for p4 6= 0, and makes the solution

of the form:

A = r
(
a1 + a2r + a3r

2 + . . .
)

+ ln(r)
∑
p=4

cpr
p + ln(r)2f7r

7 + . . .

B

b−1
=

1

r

(
1 + b0r + b1r

2 + . . .
)

+ ln(r)
∑
q=2

dqr
q + g5r

5 ln(r)2 + . . . ,

where f7 = f7(a1, a4, b2, p4) and g5 = g5(a1, a4, b2, p4) so there are 4+1 free parameters.
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The boundary term of the theorem (2.1.6) went as O(r3) in the (1,−1)0 family, but in this

wider family it goes as

C(r) =

√
b−1

a1

81p2
4

a4
1(7α+ 15β)2

(
36α2 ln(r) +

α

p4

(
(7α+ 15β)

(
3
(
a4

1 + a4

)
− 5a1b2

)
+ 18p4(α− β)

)
− ra136α2 + r2a2

118α2

)
+O(r3) +O(r3 ln(r)) +O(r3 ln(r)2) + . . . .

The leading order is p4(∼ r0+ ∼ ln(r)). This boundary contribution does not vanish for p4 6= 0

The R = 0 ⇔ β = 0 sub-family has p4 = 0 and is the same as the (1,−1)0 family. In the

(1,−1)ln family we assume p4 6= 0, so we cannot say that R must vanish for asymptotically flat

solutions in this family. In this family the Ricci scalar goes as

54

a 2
1

α

7α+ 15β
p4 ln(r) +O(r0) . (2.2.13)

It is interesting to note that although the ln(r) expressions appeared at third-order in the metric,

they are the leading order in the Ricci scalar. In the (1,−1)0 family the Ricci scalar went as

∼ O(r0) but in the (1,−1)ln family the leading order is lower, p4 ln(r). This gives us a sense in

which we can say that these are different families, rather than interpreting the (1,−1)0 family

as merely a sub-family of the (1,−1)ln family: though the p4 term is sub-leading in the metric

it is the leading order term in the curvature.

2.2.3.2 Searching for other non-Frobenius solutions

We have tried various other ansatzes but found no other solution families. We detail the out-

come of the search below. Note that it is usually not possible to rule out a solution of a partic-

ular form, but only to say that no such solution is positively confirmed.

The Frobenius analysis of linear differential equations in fact involves solutions of another

form, that we haven’t mentioned so far, the form of (1.2.23) or (1.2.27). We are now dealing with

non-linear differential equations, to let us consider an ansatz that allows logs to any power, but

for now we restrict consideration to the leading order, to make the problem tractable.

A = rna (a0 ln(r)ma +O(ε)) (2.2.14)

B = btr
nb (ln(r)mb +O(ε)) . (2.2.15)

The only allowed (na, nb) cases are (0, 0)0, (1,−1)0, (2, 2)0, and for each it can be shown that

neither ma 6= 0 nor mb 6= 0 are admissible, and this follows for both the β 6= 0 theory and the

β = 0 theory. So we see that there are no logs in the leading order terms.
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One ansatz we have tried uses exponentials. This has been tried only in the simpler β = 0

theory. The form is

A =eS(r) (2.2.16a)

B =eT (r) , (2.2.16b)

where S(r) and/or T (r) are large near the origin. For S(r → 0) >> 0 there is no solution. For

S(r → 0) << 0 we must choose an ansatz for S, T in order to say more. We choose

S =s0r
na ln(r)ma(1 + εs(r)) (2.2.17a)

T =t0r
nb ln(r)mb(1 + εt(r)) (2.2.17b)

and look for na, nb,ma,mb such that the leading order is not of the Frobenius form for both

A and B. There are no solutions except possibly the special cases na = 0 and/or nb = 0.

However, in these cases the NLO becomes relevant so to examine these cases we need to use

an ansatz for the NLO as well. We use the ansatz

S =s0r
na ln(r)ma + s1r

pa ln(r)qa(1 + εs(r)) (2.2.18a)

T =t0r
nb ln(r)mb + t1r

pb ln(r)qb(1 + εt(r)) , (2.2.18b)

where na = 0 and/or nb = 0. There is now a very large variety of possible cases of combina-

tions of na, nb,ma,mb, pa, pb, qa, qb, which cannot be examined exhaustively. In the case na = 0

we can eliminate most solutions, but we cannot eliminate the solutions

nb =pb (2.2.19a)

nb =pa (2.2.19b)

pa =0 (2.2.19c)

pb =0 ,ma = 0 = mb (2.2.19d)

because an examination of them requires consideration of the NNLO as well. Similarly in the

case nb = 0 we can eliminate most solutions, but we cannot eliminate the solutions

na =pa (2.2.20a)

na =pb (2.2.20b)

pa =0 (2.2.20c)

mb =0 (2.2.20d)

because an examination of them requires consideration of the NNLO as well. In the case na =
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0 = nb then there are no non-Frobenius cases except possibly the special case pa = 0 = pb,

where further examination requires consideration of the NNLO too. We cannot conclude that

this non-Frobenius form for A and B is not a solution, but since the LO and NLO fail to give

specific values for the indices we decide to not consider it further.

Another ansatz considered in the β = 0 theory is one similar to the solution around an

irregular singular point of a linear ODE.

A =eS(r)E(r) (2.2.21a)

B =eT (r)F (r) , (2.2.21b)

where S(r), T (r), E(r), F (r) are Frobenius series, and we require that at least one of S and T

is large near the origin (we will not discuss the case where they are both finite ). For S(r →
0) >> 0 there is no solution. To discuss S(r → 0) << 0 or S(r → 0) finite then we need to

define terms in our ansatz

S(r) =
1

ru
ST (r) (2.2.22a)

T (r) =
1

rv
TT (r) (2.2.22b)

E(r) =rsET (r) (2.2.22c)

F (r) =rtFT (r) , (2.2.22d)

where the T subscripts denote Taylor series, and we shall require that u ≥ 0 and v ≥ 0.

Consider S(r → 0) finite - i.e. u = 0 - one finds that there is no solution. Next consider

S(r → 0) << 0, implying u > 0. Solving at next-to-leading order we learn that v = u > 1. At

the next order we learn that t = s+ 2u+ 2 and going to higher orders we can rule out more of

possible values for u, At the highest order studied u < 3
2 is excluded, and we did not continue

to check higher values of u.

Another ansatz considered is r powers not in integer steps, A,B ∼ ra + ra+δ. Write

A =asr
s + as+xr

s+x + . . . (2.2.23a)

B =bt
(
rt + bt+yr

t+y + . . .
)

(2.2.23b)

and look for positive real non-integer x, y ({x, y ∈ R+ | x, y 6∈ Z}). as before we find that the

leading order has (s, t) = (0, 0)0 or (1,−1)0 or (2, 2)0. For the β = 0 theory we can rule out

any non-integer x, y. For the β 6= 0 theory we can eliminate non-integer x, y in the (0, 0)0 and
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(1,−1)0 cases but for the (2, 2)0 case there are possible solutions:

y =2 , x > 2 , b4 =
1

4
a2 (2.2.24)

or x =2 , y > 2 , a4 = −1

3
a 2
s (2.2.25)

or y =x , x < 2 , a2+x =
x+ 2

3
asb2+x , (2.2.26)

which would need consideration of the NNLO too before they could be ruled out. However,

they are consistent with the Frobenius solution (2.2.7). (2.2.24) is consistent with (2.2.7) with

x = 3, b3 = 0, b4 = 1
4a2 where one would have A ∼ r2 + r5. (2.2.25) is consistent with (2.2.7)

with y = 3, b3 = b4 = 0. (2.2.26) is consistent with (2.2.7) with x = 1, b3 6= 0. So although we

cannot completely rule out solutions of this form we fail to find evidence for their existence.

So we do not find any non-Frobenius solutions. Our investigation indicated that the α = 3β

(m 2
2 = m 2

0 ) theory is a special case and may be different, but we do not consider it here.

2.2.4 Summary

We present the key properties of all the families of solutions around the origin that we have

found in table 2.1.

Solution family C(r) number of free parameters

(generic α, β) (β = 0)

(0, 0)0 O(r3) 2+1 1+1

(1,−1)0 O(r3) 3+1 2+1

(2, 2)0 O(r−1) 5+1 3+1

(1,−1)ln O(r0 ln(r)) 4+1 N/A

TABLE 2.1: Summary of free parameter counts in the three families of solutions
near the origin



66 Chapter 2. Properties of Solution Families

2.3 The Linearised theory

In [6] perturbations about Minkowski space were studied. These solutions can be used for

studying the large r regime when considering asymptotically flat solutions. When linearising

around flat space we can obtain closed-form solutions and it becomes possible to study cou-

pling to various matter sources, which is extremely difficult in the full nonlinear theory. We

shall expand on the matter coupling solutions that appeared in [6] to show more detail and

consider more situations.

The perturbations are written as

A =1 +W (r) +O(W 2) (2.3.1a)

B =1 + V (r) +O(V 2) , (2.3.1b)

where W and V are both assumed to be small, of order ε, and the equations of motion are

solved to linear order in ε.

2.3.1 Solving the vacuum for r > 0

The first task is to find the vacuum solutions to the theory. To solve the vacuum equations it is

convenient to make the substitution

Y (r) =
(rW )′

r2
, (2.3.2)

but one should take note that while we require that the metric does not contain any delta

functions, with this substitution it is permitted for Y to contain delta functions. Specifically, 1
r

terms in W do not give rise to bulk terms in Y but do give rise to delta functions, while e±mr

r

terms in W give bulk and delta terms.

W ∼ k

r
implies Y =

(rW )′

r2
∼ k 4πδ3(~r) . (2.3.3)

To solve note that the equations of motion (1.3.1) imply the pair of equations [6]

H µ
µ =2(3β − α)∇2∇2V − γ∇2V − 4(3β − α)∇2Y + 2γY +O((W,V )2) (2.3.4a)

H i
i −H t

t =2β∇2∇2V − γ∇2V + 2(α− 2β)∇2Y +O((W,V )2) , (2.3.4b)

where ∇2 is the three-dimensional Laplacian operator. Note that although this is a very con-

venient form of the equations of motion, by (1.3.10) the equations (2.3.4) contain both Hrr and

H ′rr, forming a first order differential equation for Hrr (specifically, 1
2((2.3.4a) + (2.3.4b)) =

3Hrr(r) + rH ′rr(r) + O((W,V )2)). So solutions to (2.3.4) must be refined with Hrr = 0 as an

extra condition.
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These vacuum equations of motion for r > 0 can be solved using normal methods, giving

terms like V, Y ∼ e±mr

r . This was done in [6] but featured a typo; the correct solutions are given

by

V =C +
C2,0

r
+ C0−

e−m0r

r
+ C0+

em0r

r
+ C2−

e−m2r

r
+ C2+

em2r

r
, (2.3.5a)

W =− C2,0

r
+ C0−

e−m0r

r
(1 +m0r) + C0+

em0r

r
(1−m0r) (2.3.5b)

− 1

2
C2−

e−m2r

r
(1 +m2r)−

1

2
C2+

em2r

r
(1−m2r) ,

Y =−m 2
0

(
C0−

e−m0r

r
+ C0+

em0r

r

)
+
m 2

2

2

(
C2−

e−m2r

r
+ C2+

em2r

r

)
− 4πδ3(~r)

(
C2,0 − (C0− + C0+) +

1

2
(C2− + C2+)

)
. (2.3.5c)

There are six free parameters in these solutions, which can be broken up as one parameter, C,

corresponding to the time scaling symmetry, and five physical parameters.

By inspection of these solutions we see that we should restrict our consideration to positive

couplings α, β. For negative α or negative β we would have pure imaginary masses m2 or m0,

respectively. Then W would have terms that went as ∼ sin(imnr) and ∼ cos(imnr) (n = 0, 2)

which are non-diminishing oscillations that are mutually exclusive with the the asymptotically

flat solutions that we wish to consider.

For a generic solution to the linearised theory the Ricci curvature is given by

R =− 3m 2
0

r

(
C0−e

−m0r + C0+e
m0r
)

+O((W,V )2) (2.3.6a)

Rtt =
1

2r

(
C0−m

2
0 e
−m0r + C0+m

2
0 e

m0r + C2−m
2

2 e
−m2r + C2+m

2
2 e

m2r
)

+O((W,V )2) (2.3.6b)

Rrr =
1

2r3

(
− C0−e

−m0r
(
3(m0r)

2 + 4m0r + 4
)

+ C0+e
m0r

(
−3(m0r)

2 + 4m0r − 4
)

− C2−e
−m2r (1 +m2r)− C2+e

m2r ((1−m2r) +O((W,V )2)
)
, (2.3.6c)

which are all generically divergent, as are the curvature invariants constructed from the Rie-

mann and Ricci tensors

RµνR
µν ∼3(4C0− + 4C0+ + C2− + C2+)2

8r6
+O(r−5) +O((W,V )3) (2.3.7)

RµνρσR
µνρσ ∼ 3

2r6

(
8(C0−)2 + 4C0−(4C0+ + C2− + C2+) + 8(C0+)2 + 4C0+(C2− + C2+)

+ 8(C2,0)2 + (C2− + C2+)(12C2,0 + 5(C2− + C2+))
)

+O(r−4) +O((W,V )3) . (2.3.8)

The three curvature scalars R , RµνRµν and RµνρσR
µνρσ and non-divergent at the origin if

and only if 0 = C2,0 = C2− + C2+ = C0− + C0+. We do not expect the linearised theory to
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approximate the full theory if the curvature grows large, but it may be a good approximation

in this case of non-singular curvature. We comment on this again in section 2.3.6.

We can compare to the theorem (2.1.6) where we find that the boundary contribution C(r)

goes as

C(r) = −9m 4
0

r

(
C0−e

−m0r + C0+e
m0r
) (
C0−e

−m0r(1 +m0r) + C0+e
m0r(1−m0r)

)
+O((W,V )2) ,

(2.3.9)

which has two zeroes (at distinct radii 0 ≤ r ≤ ∞) only if C0− = 0 = C0+ which is clearly

necessary and sufficient for R (2.3.6a) to vanish everywhere, clearly reflecting the statement of

the theorem.

Note that here α = 3β is a special case where m2 = m0 coincide. In this case the solutions

(2.3.5) would have only four independent functions of r. This is an artefact of the linearised

theory; there are still 5+1 free parameters in the static spherically symmetric theory. The free

parameter count for the non-linear α = 3β theory is found from an expansion around r0, called

the (0, 0)r0 family, that we shall see later in section 2.4.1.1, and it finds that there are still 5+1

free parameters.

We now couple this vacuum solution to different matter distributions. Since we can only

do this in the linearised theory this will provide most of our intuition about matter coupling

in the higher derivative theory.

2.3.2 Vacuum for r ≥ 0

The solutions (2.3.5) describe a vacuum for r > 0. To include the origin we can use Stokes’

theorem on (2.3.4) to find:

H µ
µ =4πδ3(~r) γ C2,0

+ 4π∇2δ3(~r)6β (3(C0− + C0+)− C2,0) (2.3.10a)

H i
i −H t

t =− 4πδ3(~r) γ C2,0

+ 4π∇2δ3(~r)2

(
α(C2− + C2+) + 3β(C0− + C0+) +

[
4

3
α− β

]
C2,0

)
, (2.3.10b)

and one can also show that

lim
r0→0

∫
r≤r0

r2HrrdV = 12π

(
α(C2− + C2+) + 12β(C0− + C0+) +

4

3
(α− 3β)C2,0

)
, (2.3.11)
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so the true vacuum solution, i.e. vacuum for r ≥ 0, has 0 = C2,0 = C2− + C2+ = C0− + C0+

Vvacuum =C + 2C0+
sinh (m0r)

r
+ 2C2+

sinh (m2r)

r
(2.3.12a)

Wvacuum = 2C0+

(
sinh(m0r)

r
−m0 cosh(m0r)

)
− C2+

(
sinh(m2r)

r
−m2 cosh(m2r)

)
.

(2.3.12b)

One can clearly see that the vacuum solution is the Minkowski solution (V = C,W = 0) if

and only if it is asymptotically flat.

This solution has 2+1 free parameters, because there are three independent constraints for

there to be a vacuum at the origin. This count agrees with the near-origin expansions, which

found the vacuum family to be the (2+1)-parameter (0, 0)0 family (2.2.2). This point will be

reinforced again in section 2.3.6.

2.3.3 A point source at the origin

In [6] the discussion of coupling to sources began with the simple and understandable example

of the point source. We will expand on the discussion of sources in [6] and begin by repeating

the point source example. We show the curvatures of this solution too. Take as source a point

mass at the origin,

Tµν = δ0
µδ

0
νMδ3(~r) , (2.3.13)

so that by

Hµν =
1

2
Tµν (2.3.14)

we can compare to (2.3.10) to get

Hµ
µ =− 1

2
Mδ3(~r) (2.3.15a)

H i
i −Ht

t =
1

2
Mδ3(~r) , (2.3.15b)

and therefore

C2,0 =− 3
M

24πγ
(2.3.16a)

C0− + C0+ =− M

24πγ
(2.3.16b)

C2− + C2+ =4
M

24πγ
, (2.3.16c)

and for an asymptotically flat matter distribution we say C2+ = C0+ = 0.
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So the metric of a point source is [6]:

V =C − M

24πγr

(
e−m0r − 4e−m2r + 3

)
(2.3.17a)

W =− M

24πγr

(
e−m0r (1 +m0r) + 2e−m2r (1 +m2r)− 3

)
, (2.3.17b)

indicating that γ = 1
16πG to match with the Schwarzschild result in the limit α, β → 0, i.e.

m0,m2 →∞ .

The curvatures of a point source are:

R =
M

8πγr
m 2

0 e−m0r +O(W,V 2) (2.3.18a)

Rtt =
M

48πγr

(
4m 2

2 e
−m2r −m 2

0 e
−m0r

)
+O((W,V )2) (2.3.18b)

Rrr =
M

48πγr3

(
e−m0r

[
3(m0r)

2 + 4m0r + 4
]
− 4e−m2r [1 +m2r]

)
+O((W,V )2)

(2.3.18c)

RµνρσR
µνρσ ∼

(
m4

0 +m 2
2 m

2
0 + 7m4

2

)
M2

288π2γ2r2
+O(r−1) +O((W,V )2) . (2.3.18d)

The curvatures diverge towards the origin and tend to zero at large r.

This stress-energy solution is not persuasive enough, however, since there are two main

reasons to doubt its reliability. The first is that in general relativity there is a problem with

codimension 2 sources like this, in that they are not properly defined [37]. To be properly

defined the source should be codimension 0 or 1. The second is that the source is located at

r = 0, a region where the linearised theory may not be valid because we see that the curvatures

become large, and in fact we shall see in section 2.3.6 that indeed, the non-vacuum linearised

solution is only valid for large r. Hence we turn to other examples of sources, macroscopic and

with codimension 1, for more confident statements about source coupling in the theory.

2.3.4 Shell source

We now turn to extended sources, whose solutions will illustrate the important point that there

is no uniqueness theorem for spherically symmetric solutions - in fact we shall explicitly see

that the exterior solution depends on the details of the source. We start with a simple example,

a thin spherical shell of matter of radius `:

Ttt =
M

4π`2
δ(r − `) (2.3.19a)

Trr =0 , (2.3.19b)
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where by the linearised∇µTµν = 0 condition we must have

Tθθ = 0 +O((W,V )2) . (2.3.20)

For r < ` we use the vacuum solution (2.3.12) with free parameters D, D0−, D2−:

Vin =D − 2D0− sinh(m0r)

r
− 2D2− sinh(m2r)

r
, (2.3.21a)

Win = − 2D0−

(
sinh(m0r)

r
−m0 cosh(m0r)

)
+D2−

(
sinh(m2r)

r
−m2 cosh(m2r)

)
,

(2.3.21b)

and for the exterior solution (r > `) we use the generic solutions (2.3.5) for Vout and Wout with

the free parameters C, C0−, C0+, C2−, C2+.

For α 6= 0 and β 6= 0 we require step discontinuities (of the form Θ(r − `)) in W ′′ and V ′′′

(equivalently A′′ and B′′′), with the following discontinuity structure

W ∼ (continuous)

W ′ ∼ (continuous)

W ′′ ∼ (continuous part) − `M(α+ 6β)

144παβ
Θ(r − `)

V ∼ (continuous)

V ′ ∼ (continuous)

V ′′ ∼ (continuous)

V ′′′ ∼ (continuous part) − `M(α− 12β)

144παβ
Θ(r − `) .

The solution in full is

Vin =D +
sinh (m0r)

r

(
2C0+ −

Me−m0`

24πγm0`

)
+

sinh (m2r)

r

(
2C2+ +

Me−m2`

6πγm2`

)
(2.3.22a)

Win =

(
sinh (m0r)

r
−m0 cosh (m0r)

)(
2C0+ −

Me−m0`

24πγm0`

)
(2.3.22b)

−
(

sinh (m2r)

r
−m2 cosh (m2r)

)(
C2+ +

Me−m2`

12πγm0`

)
Vout =D +

M

8πγ`
− M

24πγr

(
3 +

sinh (m0`)

m0`
e−m0r − 4

sinh (m2`)

m2`
e−m2r

)
(2.3.22c)

+ 2C0+
sinh(m0r)

r
+ 2C2+

sinh(m2r)

r

Wout =
M

24πγr

(
3− 2

sinh(m2`)

m2`
e−m2r(1 +m2r)−

sinh(m0`)

m0`
e−m0r(1 +m0r)

)
(2.3.22d)

C0+
em0r

r
(1−m0r)− C0+

e−m0r

r
(1 +m0r)−

1

2
C2+

em2r

r
(1−m2r) +

1

2
C2+

e−m2r

r
(1 +m2r) ,
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with Ricci scalar

Rout =
M

8πγr
m 2

0 e−m0r sinh(m0`)

m0`
+O((W,V )2) , (2.3.23)

So we see that the exterior metric and curvature of the spherical shell are of the same form

as the metric and curvature of the point source, with sinh(mn`)
mn`

terms multiplying the functions.

Since terms of this form appear both with m2 and with m0 the dependence on ` cannot be

absorbed by any of the other free parameters, and we see the unlike General Relativity there is

no Birkhoff theorem - the exterior metric depends not just on the total mass of the source but

also on its structure through the parameter `. In the `→ 0 limit the sinh(mn`)
mn`

terms tend to 1 and

the solutions corresponds with the point source expressions. The interior metric is divergent

in the limit `→ 0 but this does not worry us since the volume of space that is described by that

metric would vanish.

The lack of a Birkhoff theorem was noted already in [6] using as example source a "balloon",

which we shall also cover in section 2.3.5.

2.3.4.1 The shell source in the β = 0 case

We find that in the limit β → 0 the coupling to sources is changed slightly. We shall see that

although the final result is changed simply, and is given by taking the same expression and

removing the m0 terms, the derivation is changed significantly because the discontinuities

are different. We shall take the hollow shell source as an example and see that in the β = 0

case there is actually in discontinuity in the normal component of the metric (grr) itself. The

reader may wish to refer back to the introduction to the topic of junction conditions in section

1.2.1. The simpler equations of motion for the Einstein-Weyl theory reveal that the appropriate

discontinuity structure for the linearised shell is the following:

W ∼ (continuous part) +
M

24πγ`
Θ(r − `)

W ′ ∼ (continuous part) +
M

24πγ`
δ(r − `)− M

24πγ`2
Θ(r − `)

V ∼ (continuous)

V ′ ∼ (continuous part)− M

24πγ`2
Θ(r − `)

V ′′ ∼ (continuous part)− M

24πγ`2
δ(r − `) +

M

12πγ`3
Θ(r − `) .
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The solution is:

Vin =D +
sinh (m2r)

r

(
2C2+ +

Me−m2`

6πγm2`

)
(2.3.24a)

Win =−
(

sinh (m2r)

r
−m2 cosh (m2r)

)(
C2+ +

Me−m2`

12πγm0`

)
Vout =D +

M

8πγ`
− M

24πγr

(
3− 4

sinh (m2`)

m2`
e−m2r

)
(2.3.24b)

+ 2C2+
sinh(m2r)

r

Wout =
M

24πγr

(
3− 2

sinh(m2`)

m2`
e−m2r(1 +m2r)

)
(2.3.24c)

− 1

2
C2+

em2r

r
(1−m2r) +

1

2
C2+

e−m2r

r
(1 +m2r) .

Despite the different discontinuity structure, The only difference from the solution (2.3.22) is

that m0 terms do not appear.

2.3.5 Balloon source

The next source we shall consider is a balloon of radius `. This expands upon the discussion

of the balloon in [6]. By balloon we mean a uniform mass and pressure for r < ` and vacuum

outside:

Tµν =


3M
4π`3

Θ(`− r) 0 0 0

0 PΘ(`− r) 0 0

0 0 Tθθ 0

0 0 0 Tθθ sin2 θ

 , (2.3.25)

where Θ(r) is the Heaviside theta function. Tθθ is fixed by the condition (1.3.3)

Tθθ = Pr2Θ(`− r)− 1

2
Pr3δ(`− r) (2.3.26)

(plus higher-order terms). The interior solution is now modified to solve (2.3.4) for non-zero

Hµν :

Vin(r) =− 2D0− sinh (m0r)

r
− 2D2− sinh (m2r)

r
+D +

r2
(
4π`3P +M

)
16πγ`3

(2.3.27)

Win(r) =− 2D0−

(
sinh (m0r)

r
−m0 cosh (m0r)

)
+D2−

(
sinh (m2r)

r
−m2 cosh (m2r)

)
+

Mr2

8πγ`3
. (2.3.28)

Note that the new terms that produce the bulk mass and pressure are proportional to r2, and

so near the origin V,W, V ′,W ′ are not different from the discussion in 2.3.1 above and the
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discussion of section 2.3.2 (regarding the condition to have no delta functions at the origin) is

unmodified for the balloon, i.e. 0 = D2,0 = D2−+D2+ = D0−+D0+ still applies to the interior

solution.

The discontinuity structure of the balloon is similar to that of the hollow shell, with discon-

tinuities in V ′′′(r) and W ′′(r) at r = `:

V ′′′out(`+) =V ′′′in (`−) +
`P (α+ 6β)

36αβ
(2.3.29a)

W ′′out(`+) =W ′′in(`−)− `2P (α− 3β)

36αβ
. (2.3.29b)

We also enforce continuity of the lower order derivatives and the metric itself. The continuity

and discontinuity conditions form a system of six independent constraints, as one might expect

from the nature of the system, which is sixth order in differentials.

To present the solution, we shall enforce asymptotic flatness and use a shorthand notation

Mn := M + n 2π`3P , (2.3.30)

making the interior and exterior metrics of a balloon

Vin =D +
1

48πγ`3

(
3M2r

2 + 2

[
3

1 +m0`

m 2
0

M−2 − 4π`5P

]
sinh(m0r)

m0r
e−m0`

− 8

[
3

1 +m2`

m 2
2

M1 + 2π`5P

]
sinh(m2r)

m2r
e−m2`

)

Win =
1

24πγ`3

(
3M0r

2 +

[
3

1 +m0`

m 2
0

M−2 − 4π`5P

] [
sinh(m0r)

m0r
− cosh(m0r)

]
e−m0`

+ 2

[
3

1 +m2`

m 2
2

M1 + 2π`5P

] [
sinh(m2r)

m2r
− cosh(m2r)

]
e−m2`

)

Vout =D +
1

16πγ`

(
2
M−2

`2m 2
0

− 8
M1

`2m 2
2

+ 3M + 4π`3P

)
− M

8πγr

+
e−m0r

24πγr

(
3
M−2

`2m 2
0

[
sinh(m0`)

m0`
− cosh(m0`)

]
− 4π`3P

sinh(m0`)

m0`

)
− e−m2r

6πγr

(
3
M1

`2m 2
2

[
sinh(m2`)

m2`
− cosh(m2`)

]
+ 2π`3P

sinh(m2`)

m2`

)
Wout =

M

8πγr

+
e−m0r(1 +m0r)

24πγr

(
3
M−2

`2m 2
0

[
sinh(m0`)

m0`
− cosh(m0`)

]
− 4π`3P

sinh(m0`)

m0`

)
+
e−m2r(1 +m2r)

12πγr

(
3
M1

`2m 2
2

[
sinh(m2`)

m2`
− cosh(m2`)

]
+ 2π`3P

sinh(m2`)

m2`

)
(where the exterior metric appeared already in [6])
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Like the hollow spherical shell, we see that the exterior metric depends on the details of the

source. The hollow spherical shell depended on the mass and size, M and `. The balloon has

these and also a third parameter describing it, the pressure P , and the result for the exterior

metric depends on M , ` and P as independent quantities. The exterior metric necessarily has

free parameters corresponding to static symmetry (D) and asymptotic non-flatness (C0+, C2+,

here constrained to vanish). Since it also depends on multiple parameters of the source then

we see that all six free parameters of the theory are needed to describe the solution of a matter

source in the linearised theory. This is in contrast to general relativity where Birkhoff’s theorem

implies that spherically symmetric solutions depend on the matter distribution through only

one parameter.

2.3.6 Next correction to the linearised theory

For the β = 0 theory it is actually tractable to find the second-order perturbations around flat

space, too. Let us define precisely what we mean. Write A,B as

A =1 + εW (r) + ε2W2(r) +O(ε3) (2.3.32a)

B =1 + εV (r) + ε2V2(r) +O(ε3) (2.3.32b)
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and solve the equations of motion to order ε2, neglecting order ε3. The solution is

V2 =Ei (−2rm2)
1

8
C2−m2

(
3C2−m2 − 4C2,0

em2r

r

)
+ Ei (2rm2)

1

8
C2+m2

(
3C2+m2 + 4C2,0

e−m2r

r

)
+
e−m2r

r

1

4
C2−

(
2C2,0m2 ln(r) +

C2,0

r
+ 4C

)
+
em2r

r

1

4
C2+

(
−C2,0m2 ln(r) +

C2,0

r
+ 4C

)
+ Ei (−rm2)C2−m2

69

128

(
C2−

e−m2r

r
− 2C2+

em2r

r

)
+ Ei (rm2)C2+m2

69

128

(
2C2−

e−m2r

r
− C2+

em2r

r

)
+
e−2m2r

r2

1

64
C2

2− (15− 4m2r) +
e2m2r

r2

1

64
C2

2+ (15 + 4m2r)

− Ei (−3rm2)
69

128
C2

2−m2
em2r

r
+ Ei (3rm2)

69

128
C2

2+m2
e−m2r

r

+
3

4
C2−C2+m

2
2 ln(r) +

15C2−C2+

32r2
+
C2,0C

r

W2 = +
1

4

em2r

r
Ei (−2rm2)C2−C2,0m2 (1−m2r)

− 1

4

e−m2r

r
Ei (2rm2)C2,0C2+m2 (1 +m2r)

+ Ei (−rm2)
69

256
C2−m2

(
−C2−

e−m2r

r
(1 +m2r) + C2+

em2r

r
2 (1−m2r)

)
+ Ei (rm2)

69

256
C2+m2

(
−C2−

e−m2r

r
2 (1 +m2r) + C2+

em2r

r
(1−m2r)

)
+

1

8

e−m2r

r
C2,0C2−

(
6m2 − 2m2 ln(r) (1 +m2r) +

7

r

)
+

1

8

em2r

r
C2,0C2+

(
−6m2 + 2m2 ln(r) (1−m2r) +

7

r

)
+ Ei (−3rm2)

69

256
C2

2−m2
em2r

r
(1−m2r)− Ei (3rm2)

69

256
C2

2+m2
e−m2r

r
(1 +m2r)

+
1

64

e−2m2r

r2
C2

2−
(
9 + 21m2r + 20m 2

2 r
2
)

+
1

64

e2m2r

r2
C2

2+

(
9− 21m2r + 20m 2

2 r
2
)

− 1

8
C2−C2+m

2
2

32C2
2,0 + 9C2−C2+

32r2
,

where Ei is the exponential integral function defined as the principal value of the integral

Ei(z) = −
∫ ∞
−z

e−t

t
dt . (2.3.33)
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At large and small argument Ei(x) goes as

Ei(x) ∼

ln(|x|) + γE +O(x) , 0 < |x| << 1

ex
(
x−1 +O(x−2)

)
, 1 << |x|

, (2.3.34)

where γE is the Euler constant γE ≈ 0.577. So we can see that in the order ε2 solution the terms

that blow up as r gets large are still controlled by C2+. We also see that the corrections blow

up for small r except in the vacuum case 0 = C2,0 = C2− + C2+ (2.3.12). Generically, for all

non-vacuum space-times the linearised solutions (2.3.5) only approximate the full theory away

from the origin. This is an important point since it is the reason why we have not compared

the linearised solutions (2.3.5) to the small-r solutions of section 2.2, though this would have

been extremely useful if it were possible.

Although generic solutions to the non-linear theory are not approximated by solutions to

the linearised theory, there should certainly exist a subset of solutions that are perturbatively

close to Minkowski for all r, that can be consistently described with the linearised solution.

The next-to-leading order corrections are non-divergent only for the vacuum solution family

0 = C2,0 = C2− + C2+, so it must be this family that is consistent for all finite r. Recall

that the condition for the linearised solution to be vacuum is the same as the condition for its

curvatures to be non-singular at the origin. The vacuum family can therefore be compared to

the (0, 0)0 solution of section 2.2.1.1. We can only use linearised solutions near the origin in the

non-singular, vacuum case, and all such linearised solutions have a (0, 0) behaviour at small r.

In the non-linear theory the (0, 0)0 family is necessary and sufficient for being non-singular at

the origin. We feel justified in identifying the linearised vacuum solutions as the perturbative

approximation of the (0, 0)0 family at any radius.

The (0, 0)0 family had 2+1 free parameters in the general theory and 1+1 in the β = 0

theory. From the discussion in section 2.2.2 we saw that in the (0, 0)0 family asymptotic flatness

(with or without any horizons) implies that the family reduces to its β = 0 version and that

a2 = b2. This implies that the parameter (a2 − b2) describes a deviation from asymptotic

flatness analogous to C0+. Within the linearised β = 0 theory, the vacuum solutions are only

asymptotically flat if they are flat space, and we recall that in the non-linear β = 0 theory the

(0, 0)0 solutions are flat space if and only if a2 = 0, so we believe that a2 corresponds to C2+.

In summary, we believe that the two non-trivial free parameters of the (0, 0)0 family, a2 and b2,

both describe asymptotic non-flatness, and the only asymptotically flat member of the (0, 0)0

family is Minkowski space.

The next-to-leading-order expressions found here will appear again in section 3.3 which

deals with asymptotically flat numerical solutions in the β = 0 theory.
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2.4 Solutions around r0 6= 0.

We gain further insight into solutions of the theory by studying expansions around an arbitrary

radius r0. This will include radii where special things happen, e.g. a horizon. A Frobenius

analysis is very successful but we shall find other very important non-Frobenius solutions too.

2.4.1 Frobenius Analysis

We write the metric functions as expansions about an arbitrary point, i.e. series in (r−r0). This

will be much easier using a different radial function:

ds2 = −B(r) dt2 +
dr2

f(r)
+ r2dΩ2

2 , (2.4.1)

simply related to (1.3.8) by A(r) = 1/f(r).

The Frobenius ansatz we shall use is

f =fu(r − r0)u + fu+1(r − r0)u+1 + · · · (2.4.2a)

B

bt
=(r − r0)t + bt+1(r − r0)t+1 + · · · (2.4.2b)

for some u and t, not confusing these undetermined placeholders (u, t) with the undetermined

placeholders (s, t) we wrote earlier (2.2.1)

In the β = 0 case the equations of motion imply the two relatively simple coupled second-

order ODEs (c.f. equations (1.3.19))

0 =− 2γr2B3 (2.4.3a)

− 3αr2B3f ′2 + 4αr2fB3f ′′ (2.4.3b)

− 2αr3fB2f ′′B′ (2.4.3c)

− r3αfBf ′B′2 + αr3f2B′3 (2.4.3d)

+ 8αfB3 + 2γr2fB3 − 8αf2B3 + 4αrB3f ′ (2.4.3e)

− 4αrfB3f ′ + 2γr3fB2B′ − 2αr2fB2f ′B′ − 3αr2f2BB′2 , (2.4.3f)



2.4. Solutions around r0 6= 0. 79

0 =
H µ
µ

γ
=− r2f3B′2 + 2r2f3BB′′ (2.4.4a)

+ r2f2Bf ′B′ (2.4.4b)

+ 4rf2B2f ′ (2.4.4c)

− 4f2B2 (2.4.4d)

+ 4f3B2 + 4rf3BB′ , (2.4.4e)

These equations are simple and the reader can easily use a paper calculation to gain insight

into the method we use to determine u and t. Substituting the ansatz (2.4.2) into (2.4.3) we

find that if 3
2 < u then the term (2.4.3a) contributes the leading order behaviour, but does not

vanish, so we conclude that u ≤ 3
2 . In (2.4.4) we find that for all u < 2 the terms (2.4.4a) and

(2.4.4b) lead, and vanish only for t = 0 or t = 2 − u. Now we must examine the next-to-

leading order. For t = 2 − u the leading-order terms are contributed by (2.4.4a) and (2.4.4b),

and (2.4.3c) and (2.4.3d), and vanish only for u = 1. On the other hand, for t = 0, if 1 < u

then the leading order appears in (2.4.3a) and (2.4.4d) but never vanishes. For t = 0 and u < 1

then the leading order comes from the terms (2.4.3b) and (2.4.3c), and (2.4.4b) and (2.4.4c),

and vanish only for u = 0. Thus we rule out all Frobenius solutions except the (u, t) pairs

• (u, t) = (1, 1)r0

• (u, t) = (0, 0)r0

• (u, t) = (1, 0)r0

where we write the r0 subscript to indicate that these are (u, t) of solutions (2.4.2) around

r = r0 6= 0.

In the β 6= 0 theory there is a similar calculation producing the same (u, t) pairs. Details

of the calculation find that the α = 3β case may have different properties (due to solving

equations at leading order of the form (α − 3β)(. . . ) = 0), and that there may be a special

radius r̃0 s.t. 3γr̃0
2 = 2(α − 3β), though these may just be an artefact of the series approach.

Note, however, that we will also find some solutions not described by a Frobenius ansatz, and

these are detailed in section 2.4.2.

2.4.1.1 The (0, 0)r0 solution

This solution corresponds to no special point of the solution and since we impose no boundary

conditions at r 6= r0 we expect this expansion to see the full number of free parameters of the
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theory. The first few terms in the solution are:

f(r) =f0 + f1 (r − r0) + f2 (r − r0)2

+
(r − r0)3

432αβf0r3
0 ((α− 3β)b1r0 − 2(α+ 6β))

(
− 3β

(
(α− 3β)2b51r

5
0 +

(
19α2 − 51βα− 18β2

)
b41r

4
0

− 4b31
(
13α2 + 84βα+ 36β2 + 2(α− 3β)2b2r

2
0

)
r3

0

+ 4b21
(
α2 − 12(α− 3β)b2r

2
0α+ 66βα+ 36β2

)
r2

0

+ 16b1
(
(α− 3β)2b22r

4
0 +

(
7α2 + 48βα+ 36β2

)
b2r

2
0 + 5α2 − 9β2 − 12αβ

)
r0

− 16
((
α2 + 3βα− 18β2

)
b22r

4
0 + 5α2 + 18β2 + 33αβ

) )
f2

0

+ 2

(
− α2γb31r

5
0 − 9β2γb31r

5
0 + 6αβγb31r

5
0 + 4α2γb1b2r

5
0 + 36β2γb1b2r

5
0 − 24αβγb1b2r

5
0

+ 6α2γb21r
4
0 − 54β2γb21r

4
0 − 8α2γb2r

4
0 + 144β2γb2r

4
0 − 24αβγb2r

4
0 − 4α2γb1r

3
0 + 72β2γb1r

3
0

− 12αβγb1r
3
0 − 216β3b21r

2
0 + 144αβ2b21r

2
0 − 24α2βb21r

2
0 − 8α2γr2

0 − 72β2γr2
0 − 60αβγr2

0

− 72αβf2

(
(α− 3β)b21r

2
0 − (α+ 6β)b1r0 − 2(α+ 6β)

)
r2

0

− 432β3b1r0 − 144αβ2b1r0 + 96α2βb1r0 + 3βf1

(
(α− 3β)2b41r

4
0 +

(
11α2 − 39βα+ 18β2

)
b31r

3
0

− 4b21
(
8α2 + 51βα+ 18β2 + (α− 3β)2b2r

2
0

)
r2

0

− 4b1
(
−11α2 + 12βα− 18β2 +

(
α2 − 15βα+ 36β2

)
b2r

2
0

)
r0 + 8(α+ 6β)

(
3αb2r

2
0 − 8α+ 6β

) )
r0

− 864β3 − 720αβ2 − 96α2β

)
f0

+ 2f1r0 ((α− 3β)b1r0 − 2(α+ 6β))
(
(α− 3β)γb1r

3
0 + 4αγr2

0 + 6βγr2
0 − 36αβf2r

2
0 + 72β2 − 24αβ

)
− 3βf2

1 r
2
0

(
(α− 3β)2b31r

3
0 + 3

(
α2 − 9βα+ 18β2

)
b21r

2
0 − 12α(α+ 6β)b1r0 + 4

(
α2 − 6βα− 72β2

))
+ 8

(
−(α− 3β)b1r0

(
α
(
γr2

0 − 6β
)

+ 6β
(
γr2

0 + 3β
))
− (α+ 6β)

(
α
(
6β − 2γr2

0

)
− 3β

(
γr2

0 + 6β
))))

+O
(

(r − r0)4
)

(2.4.5a)
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B(r)

b0
=1 + b1 (r − r0) + b2 (r − r0)2

+
(r − r0)3

48f2
0 r

3
0 (b1r0(α− 3β)− 2(α+ 6β))

×

(
2f0

(
4b1r

2
0

(
f1

(
α− 2b2r

2
0(α− 3β) + 24β

)
− 3γr0

)
+ 4

(
4b2f1r

3
0(α+ 6β) + 36β − 3γr2

0

)
+ 3b31f1r

4
0(α− 3β)− 4b21f1r

3
0(2α+ 3β)− 4f2r

2
0

(
4(α− 12β) + b21r

2
0(α− 3β)− 4b1r0(α+ 6β)

))
+ f2

0

(
− 7b41r

4
0(α− 3β) + 4b31r

3
0(5α+ 12β) + 4b21r

2
0

(
α+ 6b2r

2
0(α− 3β)− 48β

)
− 32b1r0

(
α+ 3b2r

2
0(α+ 3β) + 6β

)
+ 16

(
α+ b22r

4
0(α− 3β) + 4b2r

2
0(α+ 6β)− 21β

))
+ f2

1 r
2
0

(
4(α− 12β) + b21r

2
0(α− 3β)− 4b1r0(α+ 6β)

)
+ 8

(
−2α+ 6β + 3γr2

0

))
+O

(
(r − r0)4

)
, (2.4.5b)

which has 5+1 free parameters, f0, f1, f2, b1, b2 and the trivial parameter b0.

The boundary quantity C(r) goes as a product of two functions F (b1, b2, f0, f1, r0) and

F (b1, b2, f0, f1, r0, f2, α, β, γ) over a denominator:

C(r) =

√
b0
f0

16r3
0 (b1r0(α− 3β)− 2(α+ 6β))

× F (b1, b2, f0, f1, r0)× F (b1, b2, f0, f1, r0, f2, α, β, γ)

+O (r − r0) , (2.4.6)

so for a given r0 there are two (4+1)-parameter sub-solutions (equivalently, there are two possi-

bly constraints) where the O((r− r0)0) term vanishes and therefore that this quantity vanishes

at r0. From the theorem (2.1.6) we see that if C(r) vanishes at two radii r1 and r2 it implies that

R = 0 for all r1 < r < r2. From (2.4.6) we expect that this would be one constraint at r1 and a

second (assumed independent) constraint at r2, so the R = 0 solution has two fewer parame-

ters than the generic solution. This agrees with the analysis of 1.3.3.2 where we found that the

solution with R = 0⇔ β = 0 has 4 free parameters compared to 6 in the generic theory.

The fact that in this expansion around an arbitrary point r0 the condition for the boundary

term C(r0) to vanish is one constraint compares well with the information in section 2.2.4.

Consider using (2.1.6) with integration region 0 < r < r0, and assume for the sake of argument

that even matching onto a specified small-r solution family, it is still true that C(r0) = 0 is

exactly one constraint. We saw that the two families where C(r → 0) vanished had one fewer

free parameter in the R = 0 theory than in the generic theory, which matches nicely with the

idea that the single condition C(r0) = 0 is sufficient to force R to vanish by (2.1.6).
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We present the solution for the β = 0 theory too.

f(r) =f0 + f1 (r − r0)

+
(r − r0)2

4αf0r2
0 (b1r0 − 2)

(
f0

(
2
(
4α+ b1γr

3
0 + γr2

0

)
− αf1r0

(
b21r

2
0 + 2b1r0 + 4

))
+ αf2

0

(
b31r

3
0 − 3b21r

2
0 − 8

)
+ r0

(
4αf1 − 3αf2

1 r0 − 2γr0

))
+O

(
(r − r0)3

)
(2.4.7a)

B(r)

b0
=1 + b1 (r − r0)

+
(r − r0)2

4f0r2
0

(
−f1r0 (b1r0 + 4) + f0

(
b21r

2
0 − 4b1r0 − 4

)
+ 4
)

+O
(

(r − r0)3
)
, (2.4.7b)

which has 3+1 free parameters, b0, b1, f0, f1, as expected.

2.4.1.2 The (1, 1)r0 solution

This solution family corresponds to a horizon and goes as:

f(r) =f1 (r − r0) + f2 (r − r0)2 +O
(

(r − r0)3
)

(2.4.8a)

B(r)

b1
=(r − r0)

+
(r − r0)2

9βf1r2
0(α− 3β)

(
−±

(
+ (α− 3β)

(
144β2(α− 3β) + γ2r4

0(α− 3β)− 24βγr2
0(α+ 6β)

)
+ 72βf1r0

(
2βf1r0(α+ 3β)2 − (α− 3β)

(
4β(α− 3β) + 8αβf2r

2
0 + γr2

0(−(α+ 2β))
)) ) 1

2

+ r2
0(α− 3β) (γ − 3βf2) + 12βf1r0(α+ 3β)

)
+O

(
(r − r0)3

)
. (2.4.8b)

It has 3+1 free parameters: f1, f2, b1 and the location of the horizon, r0.
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In this solution family (2.1.9) goes as

C(r) = (r − r0)

√
b1
f1
γ

108β3r2
0(α− 3β)2

(
144α2β2 − 864αβ3 + 1296β4+

±
(

144β2f2
1 r

2
0(α+ 3β)2 − 72βf1r0(α− 3β)

(
8αβf2r

2
0 + α

(
4β − γr2

0

)
− 2β

(
6β + γr2

0

))
+ α2

(
γr2

0 − 12β
)

2 − 6αβ
(
144β2 + 12βγr2

0 + γ2r4
0

)
+ 9β2

(
144β2 + 48βγr2

0 + γ2r4
0

) ) 1
2 (

(α− 3β)
(
12β − γr2

0

)
− 36βf1r0(α− β)

)
− 288α2β2f1f2r

3
0 + 720α2β2f2

1 r
2
0 − 576α2β2f1r0

+ 72α2βγf1r
3
0 + 864αβ3f1f2r

3
0 − 864αβ3f2

1 r
2
0 + 2592αβ3f1r0 − 180αβ2γf1r

3
0

+ 1296β4f2
1 r

2
0 − 2592β4f1r0 − 108β3γf1r

3
0 − 24α2βγr2

0

+ α2γ2r4
0 + 36αβ2γr2

0 − 6αβγ2r4
0 + 108β3γr2

0 + 9β2γ2r4
0

)
+O

(
(r − r0)2

)
, (2.4.9)

which always vanishes as r → r0.

We present the solution for the β = 0 theory too:

f(r) =f1 (r − r0) (2.4.10a)

+ (r − r0)2

(
3γ

8α
+
− 3γ

8αf1
− 2f1

r0
+

1

r2
0

)

+
(r − r0)3

288α2f3
1 r

3
0

(
f1

(
f1

(
4αf1

(
−64α+ 136αf1r0 − 5γr2

0

)
+ γr0

(
γr2

0 − 28α
))

+ 8γ
(
6α+ γr2

0

) )
− 9γ2r0

)
+O

(
(r − r0)4

)
B(r)

b1
=(r − r0) (2.4.10b)

+
(r − r0)2

8αf2
1 r

2
0

(
γr0 − f1

(
−8α+ 16αf1r0 + γr2

0

))
+

(r − r0)3

288α2f4
1 r

3
0

(
f1

(
f1

(
4αf1

(
−160α+ 232αf1r0 + γr2

0

)
+ γr0

(
7γr2

0 − 52α
))

− 16γ
(
γr2

0 − 3α
) )

+ 9γ2r0

)
+O

(
(r − r0)4

)
,
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which has 2+1 free parameters f1, b1 and r0. It is related to the generic β theory by fixing f2 = f̃2

where f̃2 := 3γ
8α−

3γ
8αf1r0

−2f1

r0
+ 1
r2
0

and the± to the sign of f1

(
36βf1r0(α− β)− (α− 3β)

(
12β − γr2

0

))
The (1, 1)r0 family should be compared to the Schwarszchild solution. The (1, 1)r0 be-

haviour has a smooth sign change of f(r) and B(r), describing a horizon. Consider the theo-

rem (2.1.6) with the integration region having one boundary at r = r0 and the other boundary

at r → ∞. The boundary contribution C(r) (2.4.9) vanishes on both boundaries if the space-

time asymptotically flat, and tells us that R = 0, i.e. that we should restrict consideration to

(2.4.10).

This family is a particularly important family because it describes black holes. There is

a lot to say about the global structure of black hole solutions so the discussion is presented

separately in section 3.2.

2.4.1.3 The (1, 0)r0 solution

This solution family has f ∼ (r−r0) andB ∼ 1+ ∼ (r−r0). We postpone a physical discussion

of this family, however, until we consider its non-Frobenius generalisation, the (1, 0)1/2 family,

in section 2.4.2.1. This family is better understood as an important special case of that more

general family. In this section we simply present the solution, which goes as:

f =f1 (r − r0)− (r − r0)2

18αβf1r2
0(α− 3β)

(
12α2βf1 − 72αβ2f1 + 108β3f1

+± (γr0(α− 3β)− 6βf1(2α+ 3β))
√

27αβf2
1 r

2
0 + 2(α− 3β)

(
2α− 6β − 3γr2

0

)
+ 9α2βf2

1 r0 − 3α2γf1r
2
0 + 135αβ2f2

1 r0 + 27β2γf1r
2
0 + 2γr0(α− 3β)2

)
+O

(
(r − r0)3

)
(2.4.11a)

B

b0
=1 +

2 (r − r0)

f1r2
0(α− 3β)

(
f1r0(α+ 6β)−±

√
27αβf2

1 r
2
0 + 2(α− 3β)

(
2α− 6β − 3γr2

0

))
+O

(
(r − r0)2

)
,

(2.4.11b)

which has 2+1 free parameters, b0, f1, r0.

In this solution family (2.1.9) goes as

C(r) =
√
r − r0

√
b0
f1
γ

3βr2
0(α− 3β)2

(
+ 36αβf1r0 + 2(α− 3β)

(
4α− 3

(
4β + γr2

0

))
+ 9α2f2

1 r
2
0 − 12α2f1r0 + 27αβf2

1 r
2
0

− 2± (−2α+ 6β + 3αf1r0)
√

27αβf2
1 r

2
0 + 2(α− 3β)

(
2α− 6β − 3γr2

0

))
+ . . . ,

which vanishes at r0.
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We present the solution for the β = 0 theory too:

r0 =
4αf1

3αf2
1 + 2γ

(2.4.12a)

f(r) =f1 (r − r0)−
γ (r − r0) 2

(
2γ + αf2

1

)
4α2f2

1

+O
(
(r − r0)3

)
(2.4.12b)

B(r)

b0
=1 + (r − r0)

(
γ2

α2f3
1

+
γ

αf1
− 3f1

4

)
+
γ (r − r0)2

16α4f6
1

(
2γ + 3αf2

1

)2 (
2γ − 3αf2

1

)
+O

(
(r − r0)3

)
, (2.4.12c)

which has only 1+1 free parameters, b0 and f1.

2.4.2 Non-Frobenius solutions

As in the analysis of solutions around the origin, one might think that there are other solutions

around r0 that are not described by the Frobenius ansatz rs × (a Taylor series), but may be of

the form of the Frobenius ansatz that uses logs or of an entirely different form.

We do, in fact, find two other solutions families, which we detail next, before moving on

to a description of searches we did that came back negative (or inconclusive). Both of the new

solutions are based on series of integer and half-integer powers of (r − r0). They are denoted

with their (u, t) brackets as usual, but with a subscript to indicate that the powers go up in

half-integer steps.

2.4.2.1 A consistent wormhole solution - (1, 0)1/2

We find one solution similar to the solution (2.4.11), except it sees the full number of free

parameters of the theory. For β 6= 0 the solution goes as

f(r) =f1 (r − r0) + f2 (r − r0)3/2 +O
(
(r − r0)2

)
(2.4.13)

B(r)

b0
=1 + b1

√
r − r0 + b2 (r − r0) +O

(
(r − r0)

3
2

)
. (2.4.14)

This solution has 5+1 free parameters, f1, f2, b1, b2, r0 and the trivial parameter b0.
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To talk about the theorem (2.1.6) we calculate the boundary term contribution:

C(r) =−

√
b0
f1

512b1r4
0(α− 3β)

×
(
−b1f2r

2
0 + f1r0

(
b21r0 − 4 (b2r0 + 4)

)
+ 16

)
×
(

(α− 3β)
(
r2

0 (4b2f1 + b1 (f2 − b1f1))− 16
) (
r2

0 (4b2f1 + b1 (f2 − b1f1)) + 16
)

+ 384γr2
0

+ 32f1r
2
0

(
b21f1r0(2α+ 3β) + b1f2r0(4α− 3β)− 2b2f1r0(α+ 6β) + 2f1(α− 12β)

))
+O

(
(r − r0)

1
2

)
.

This tends to a finite value as r → r0, so the theorem (2.1.6) for asymptotically flat solutions

does not apply. It tends to the (r− r0)0 term shown, which is a product of two large bracketed

terms, and for a given r0 either of the brackets could vanish for a choice of f2 or b2, however.

For β = 0 the solution is

f(r) =f1 (r − r0)−
(r − r0) 3/2

(
αf2

1 r0

(
b21r0 + 12

)
− 16αf1 + 8γr0

)
3αb1f1r2

0

+O
(
(r − r0)2

)
(2.4.15)

B(r)

b0
=1 + b1

√
r − r0 +

(r − r0)

3αf2
1 r

2
0

(
αf2

1 r0

(
b21r0 − 9

)
+ 8αf1 + 2γr0

)
+O

(
(r − r0)

3
2

)
, (2.4.16)

which has 3+1 free parameters, f1, r0, b1 and the trivial parameter b0.

This (1, 0)1/2 family is interpreted as the generalisation of the (1, 0)r0 family. To see this

one would take the limit as the coefficients of half-integers powers go to zero. Taking the

limit f2 → 0, b1 → 0 causes the O
(

(r − r0)
3
2

)
term in B, which goes as 1

b1
, to blow up unless

the numerator is fixed to zero by constraining the value of b2. Those three requirements are

sufficient to reduce this family to the integer wormhole family (1, 0)r0 already shown.

In [2] the (1, 0)r0 solution was interpreted as a wormhole. We shall develop that discussion

in the context of this generalisation of the family. Let us change coordinates to

r − r0 =
1

4
ρ2 (2.4.17)

to write the metric near r = r0 in the form

ds2 = −b0
(

1 +
b1
2
ρ+

b2
4
ρ2 + . . .

)
dt2 +

dρ2

f1 + 1
2f2ρ+ 1

4f3ρ2 + . . .
+

(
1

4
ρ2 + r0

)2

dΩ2 . (2.4.18)

The interpretation of the coordinate transformation (2.4.17) is that a ρ > 0 patch is sewed on to

a ρ < 0 patch. The natural next question then concerns the causal structure of the wormhole

and how it works with this patch structure.
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We can solve the geodesic equation

(Xµ)′′(λ) + Γµρσ(Xρ)′(λ)(Xσ)′(λ) = 0 ,

in the vicinity of the wormhole, choosing a radial geodesic and use coordinates t, ρ. Pick an

affine parameter such that ρ(0) = 0 and choose the time coordinate such that t(0) = 0. The

geodesic is then:

t(λ) = λt′(0)− 1

4
λ2t′(0)2b1

ρ′(0)2

t′(0)2
+O(λ3)

ρ(λ) = λt′(0)
ρ′(0)

t′(0)
+

1

8
λ2t′(0)2

(
f2

f1

ρ′(0)2

t′(0)2
− b0b1f1

)
+O(λ3) ,

which has length

(Xµ)′(λ)(Xµ)′(λ) =
ρ′(0)2

f1
− b0t′(0)2 +O(λ3) . (2.4.19)

The signs of these terms are determined by the signs of f1 and b0, which are both positive if

the signature of the space-time is to be − + ++ at r just above r0. So we see that there are

geodesics that pass through from the ρ > 0 patch to the ρ < 0 patch, they have ρ′(0) 6= 0,

t′(0) > 0, and they can be space-like, time-like or null. This underpins their interpretation as

traversable wormholes, since a time-like observer could pass through from the 0 < ρ (r0 < r)

region to the ρ < 0 (r0 < r) region. We see from the transformed metric (2.4.18) that these

two patches have different metrics though, since it has terms odd in ρ. The integer wormhole

(1, 0)r0 is an important special case because in that family the same coordinate transformation

shows us a metric with only even terms in ρ and so the two patches have the same metric.

What about the global structure of these solutions? Fixing the time coordinate so that

asymptotically gtt → −1 must be one constraint by static symmetry. Since this family has

5+1 free parameters, the maximum allowed by the system, there must be a mapping between

them and the 5+1 free parameters of the linearised solution (2.3.5) without any redundancy.

Therefore the two constraints of asymptotic flatness, C2+ = 0 = C2−, must be two constraints

on this family, using only the reasonable assumption that a comparison to the linearised theory

is valid. However, when considering asymptotic flatness in this family recall that there are two

large-r regions, one in the ρ > 0 patch and one in the ρ < 0 patch. In the half-integer solu-

tion family (1, 0)1/2 these two regions do not have the same metric, and requiring asymptotic

flatness and gtt → −1 in the other asymptotic region as well will be additional, independent

constraints 4. Thus there are six constraints on the 5+1 free parameters, and in this (5+1)-

parameter family there is a single asymptotically flat solution (a zero-parameter family). In

4 Note that usually, in the way we choose to parameterise our solutions, the constraint gtt(ρ → ∞) → −1 is a
constraint on what we call the trivial parameter, the parameter b0 that corresponds to scaling the time coordinate.
When there is a second patch with different metric, however, the requirement gtt(ρ → −∞) → −1 is an indepen-
dent constraint on the whole system of parameters, not just b0, and therefore does not make b0 overconstrained.
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the integer solution family (1, 0)r0 there are only 2+1 free parameters, but the two asymptotic

regions are the same, so the three conditions of asymptotic flatness and gtt → −1 in the one

patch are the same as in the other patch, so there are only three independent constraints, so

again we can find exactly one asymptotically flat solution in this family. Comparing, then,

the half-integer wormhole (1, 0)1/2 with the integer wormhole (1, 0)r0 , it seems that within the

system of six independent constraints on (1, 0)1/2 that we described, we can cast three of them

as asymptotic flatness constraints and three as constraining the two patches to be identical i.e.

as fixing it to the (1, 0)r0 case.

Consider the theorem (2.1.6) for the integer wormhole (1, 0)r0 . The symmetry of the (1, 0)r0

family can be used to prove that C(r0) = 0 must vanish identically. Consider the following

picture. The use of two patches means we can choose one boundary in each patch, one at

r1, ρ > 0 and one at r1, ρ < 0. With some thought it is clear that this two-patch structure is

compatible with the theorem as we derived it. If C(r = r1 > r0) is zero in one patch, then

by the symmetry of this solution it is also zero in the other patch, and by the theorem we can

say that R(r0 < r < r1) = 0. The point is that in this family a single zero of C(r = r1 > r0)

is sufficient to prove the vanishing of the Ricci scalar, as opposed to the usual requirement of

two zeroes. Now consider an alternative picture. Consider the theorem in a single patch, and

put one boundary at r = r0 and one at r = r1 > r0. In this picture we need C(r1) = 0 and

C(r0) = 0 in order to prove that R(r0 < r < r1) = 0. However, from the previous picture we

also know that C(r1) = 0 is sufficient to prove this. The two pictures are obviously equivalent.

So how can these two pictures be reconciled? The only way is if C(r0) = 0 identically in this

family. In the more general (1, 0)1/2 family the two patches are not identical and this proof fails,

and indeed we see that C(r0) does not vanish identically in the wider family.

We believe we have a good picture of the global structure of these solutions, and although

the discussion falls short of a proof, a numerical analysis can quickly corroborate our ideas. We

shoot outwards from the (1, 0)r0 family for β = 0, which has only 1+1 free parameters b0 and

f1. Fix the trivial parameter b0 = 1 and shoot from 1.01× r0 towards large r. Recall that r0 and

f1 are related by (2.4.12a), so there is only a single non-trivial free parameter. We find that there

are two behaviours. For large f1 as you shoot outwards f(r) will go to zero, at which point

the numerical routines fail. For small f1 as you shoot outwards f(r) grows large while B(r)

asymptotes to zero. By interpolating between such a too-large value of f1 and such a too-small

value of f1 a solution can be found that is regular out to a larger radius, and then by repeated

interpolation solutions regular to larger and larger distances can be found. Ultimately precise

tuning of f1 will give us a single asymptotically flat solution. For values of the couplings α = 1
2

and γ = 1 the asymptotically flat solution appears around f1 ≈ 1.18151794738, corresponding

to a wormhole radius of r0 ≈ 0.577198137788. The wormhole of this radius remains flat out to

r ≈ 25 and is plotted in figure 2.1. The numerical approach implies some uncertainty of the

quoted value of f1 that corresponds to an asymptotically flat solution, but the procedure of
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interpolating between the two behaviours seems sound and could be carried out to arbitrary

accuracy as required.
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FIGURE 2.1: The asymptotically flat wormhole solution for α = 1
2 and γ = 1. The

left-hand plot shows the space-time staying flat out to r ≈ 25, with f(r) tending
to 1 and B(r) tending to a constant. The right-hand plot shows detail around the
wormhole, for 0.58 . r < 2.5. In both graphs the function B(r) has been scaled
(as indicated), to make the functions of comparable size.

2.4.2.2 A consistent horizon solution - (3
2 ,

1
2)1/2

We find another solution that is similar to a horizon in that it is a zero of both B(r) and f(r).

The metric goes as:

f(r) =f0 (r − r0)3/2 + function(α, β, r0, f0, k)(r − r0)2 +O
(

(r − r0)
5
2

)
B(r)

b0
=
√
r − r0 + function(α, β, r0, f0, k)(r − r0)1 +O

(
(r − r0)

3
2

)
,

where

k = ±r2
0

√
(α− 3β)

(
α
(
−36β2

(
3f2

0 r
3
0 − 4

)
− 24βγr2

0 + γ2r4
0

)
− 3β

(
144β2 + 48βγr2

0 + γ2r4
0

))
,

(2.4.20)

which has 2+1 free parameters, f0, r0 and the trivial parameter b0. This solution family does

not appear in the β = 0 theory, and therefore it cannot have R = 0 for an open interval of r.

However, evaluating the boundary quantity for the theorem (2.1.6) near r0 gives

C(r) =
√
r − r0

γ
√

bt
a0

54β3r4
0(α− 3β)

(
54αa2

0β
2r5

0 − 12βk + r2
0

(
γk − 144β2(α− 3β)

)
+ γ2r6

0(−(α− 3β)) + 12βγr4
0(2α+ 3β)

)
+ . . . ,

which vanishes towards r0. However, since solutions of the β = 0 theory are equivalent to the

solutions with R = 0 ∀r, and this solution does not exist for β = 0, we can say that R cannot
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vanish everywhere. In fact we can evaluate it near r0 to find it goes as O(1) +O(
√
r − r0):

R =
k − γr4

0(α− 3β) + 12βr2
0(α− 3β)

6βr4
0(α− 3β)

+O(
√
r − r0) , (2.4.21)

and the leading order (the constant term) is never zero for the theory we wish to consider,

which has positive α, γ, r0, and real f . So we consider the theorem (2.1.6) with inner integration

boundary at r0+ and outer integration boundary r →∞, and take the fact that the Ricci scalar

is not zero throughout the integration region, but the boundary term C(r) does vanish at the

inner integration boundary r0. Taken together we can say that if there is Minkowski 5 signature

for r0 < r < ∞ then the boundary term cannot vanish at the outer boundary r → ∞, i.e. the

solution cannot be asymptotically flat. More generally we can say that (assuming Minkowski

signature) there are no zeroes of C at radii larger than r0 by obtaining a contradiction. Suppose

that there is a zero of C at r1 > r0 s.t. C(r1) = 0. By (2.1.6) this would imply that R vanishes

for r0 < r < r1, which is not possible. Thus no such zero of C(r > r0) exists. Recall that

(assuming f 6= 0) C(r) would vanish either for R = 0 or ∂rR = 0, and therefore there are no

zeroes of either of these for r > r0. So in fact, starting from the horizon at r = r0, as you move

towards increasing r either the Ricci scalar must monotonically increase or the Ricci scalar

must monotonically decrease (without asymptotically approaching zero).

This solution family is interpreted as a horizon. To see this, change coordinates to

√
r − r0 =

f0ρ0

4
(ρ− ρ0) (2.4.22a)

r − r0 =
f 2

0 ρ
2

0

16
(ρ− ρ0)2 (2.4.22b)

so that the metric is explicitly of the Schwarzschild form for ρ− ρ0 << ρ0:

ds2 = −b0
f0ρ

2
0

4

(
ρ− ρ0

ρ0
+
b1f0

4
(ρ− ρ0)2 + . . .

)
dt2 +

dρ2

ρ−ρ0

ρ0
+ f1

4 (ρ− ρ0)2 + . . .
+ r(ρ)2dΩ2 .

(2.4.23)

Near this unusual "horizon" this fortunately allows us to use all the familiar apparatus of the

Schwarzschild solution. The interpretation of the coordinate transformation (2.4.22a) is that a

ρ > ρ0 patch is sewed on to a ρ < ρ0 patch. Because it is locally Schwarzschild we can say

that time-like geodesics pass through from the ρ > ρ0 patch to the ρ < ρ0 patch (keeping the

same θ and φ), and find the coordinates t and ρ changed from being time-like to being space-

like and vice-versa. The ρ < ρ0 patch also corresponds to r > r0, and thus an observer on

a time-like geodesic falls to a finite minimum radius and then touches this horizon and then

continues to increasing radius. The fact that the coordinates change in nature between space-

like and time-like when this happens makes further physical interpretation difficult, and it

5or Euclidean
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should be borne in mind that we said that this solution cannot be asymptotically flat. The

proof that it is not asymptotically flat, however, was conditional upon a − + ++ signature

for r > r0. The physical interpretation just given complicates things, because the signature is

different in the two patches, so the proof can apply to at most one patch. It may be possible

to think of an interpretation where there are more creative signature changes at various radii,

and that this interesting solution could appear at one radius in the space-time, with another of

the interesting (r − r0) solution families at some other radius. In the current work we do not

spend any longer finding interpretations of this solution, however, and leave it as a curiosity.

2.4.2.3 Searching for other non-Frobenius solutions

One possible ansatz is

f =fu(r − r0)u + fu+x(r − r0)u+x + . . . (2.4.24a)

B =bt
(
(r − r0)t + bt+y(r − r0)t+y + . . .

)
, (2.4.24b)

however it proves very difficult to confirm or exclude any s, t, x, y range for this ansatz. We

shall instead try the similar but simpler ansatz where the powers go up in steps 1
n , for n some

integer n ≥ 2:

f =f0(r − r0)u + f1(r − r0)u+ 1
n + f2(r − r0)u+ 2

n + . . . (2.4.25a)

B

b0
=(r − r0)t + b1(r − r0)t+

1
n + b2(r − r0)t+

2
n + . . . . (2.4.25b)

We cannot rule out solutions for all n, but trying the first few integers for n we can find no

solutions except those n = 2 solutions already discussed, in either the β = 0 case or the β 6= 0

case.

Another possible ansatz has logs in the leading order term in the expansion:

A = (r − r0)na (a0[ln(r − r0)]ma + εa(r)) (2.4.26)

B

bt
= (r − r0)nb ([ln(r − r0)]mb + εb(r)) . (2.4.27)

This proved difficult so only the β = 0 theory was examined. We can rule out solutions where

such log terms appear in the leading order, but we did not check if the sub-leading terms could

contain log terms of this form.

It is not possible to exhaustively exclude solutions families other than those already given,

but we now have more confidence in the assumption that there are no such families.
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2.4.3 Summary

The results for series expansions in (r − r0) are summarised in table 2.2 where the numbers

in brackets refer to the leading-order behaviours of f and B, s.t. (u, t) corresponds to f ∼
(r−r0)u+ . . . , B ∼ (r−r0)t+ . . . , and where (1, 0)1/2 and (3

2 ,
1
2)1/2 refer to the solution families

with both integer and half-integer powers of (r − r0) appearing.

Solution family C(r) number of free parameters

(generic α, β) (β = 0)

(0, 0)r0 O(1) 5+1 3+1

(1, 1)r0 O(r − r0) 3+1 2+1

(1, 0)r0 O(
√
r − r0) 2+1 1+1

(1, 0)1/2 O(1) 5+1 3+1

(3
2 ,

1
2)1/2 O(

√
r − r0) 2+1 N/A

TABLE 2.2: Summary of free parameter counts in the five families of solutions
around r = r0



93

Chapter 3

Key Physical Discussions



94 Chapter 3. Key Physical Discussions

3.1 Coupling to matter in the full non-linear theory

Considering all our results so far, there is a stark difference between the matter coupling in

the higher derivative theory and the matter coupling in GR. It is apparent from two of the

simpler results. The first result is that the theorem (2.1.6) implies that static space-times that

are asymptotically flat and have horizons must have R = 0 for all space above the horizon.

The second result is that when we do matter coupling in the linearised theory, the Ricci scalars

are not zero, for example (2.3.18a) and (2.3.23). Together these imply that matter coupled

solutions do not have horizons, and follows for matter sources of any mass and radius. The

contrast with General Relativity is clear. However, the weak link in the argument in the use

of the linearised theory. We saw in section 2.3.6 that for non-vacuum solutions the linearised

theory is only a valid approximation at large radii. In general relativity horizons only form for

matter sources contained within a radius 2GM , so therefore in the higher derivative theory we

would wish to couple to matter at small radii, where the linear approximation may be poor.

In any case linearised solutions would not be good at describing horizons since a horizon is a

large deviation from flat space. The linearised theory is the only theory where we have found

matter-coupled solutions in closed form, because of its simplicity, but that same simplicity

causes us to doubt what it says about horizons.

The issue of horizons and matter coupling needs more examination, but the discussion

will have to cope without closed-form solutions. We present a range of arguments about the

features of the solutions in this section.

3.1.1 General arguments that matter fields in higher-derivative gravity are unlike
those in general relativity

We have already seen in the linearised theory (section 2.3) that the solutions of matter sources

have no Birkhoff theorem; the fields of extended sources depended on multiple parameters of

the source. In the balloon source example, the source was described by three parameters, and

the solution depended on all three of these, and had additionally one free parameter corre-

sponding to time-scaling, and two free parameters corresponding to asymptotic non-flatness,

totalling an irreducible dependence on 6 parameters, the maximum allowed by the theory. We

also saw in the extended sources that the interior solutions were joined to the exterior solu-

tions via six independent constraints. So we suppose that the vacuum exterior solution must

have six free parameters in order for the coupling to work, i.e. it is not possible to couple to an

exterior solution that has previously been constrained by some other consideration.

In the non-linear theory the coupling to matter is greatly more difficult than in the lin-

earised theory, so we can only present a schematic discussion. Knowing the number of free

parameters in each solution family will be key. Consider a shell source with a stress tensor like



3.1. Coupling to matter in the full non-linear theory 95

(2.3.19):

Ttt =
M

4π`2
δ(r − `) , (3.1.1a)

Trr = 0 , (3.1.1b)

where the (non-linearised) conservation condition ∇µTµν = (0,∇µTµr, 0, 0) = 0 requires the

other component be

Tθθ =
r3B′Ttt

4B2
. (3.1.1c)

The equations of motion (1.3.1) expand schematically as

Htt = ∼ B(4)+ ∼ A(3)+ ∼ B(3) + . . . , (3.1.2a)

Hrr = ∼ B(3)+ ∼ A′′+ ∼ B′′ + . . . , (3.1.2b)

Hθθ = ∼ B(4)+ ∼ A(3)+ ∼ B(3) + . . . , (3.1.2c)

where we show only the high-derivative terms, i.e. the dots stand for functions of lower

derivatives of A,B, and the ∼ are also understood to indicate that similar functions multiply

the high-derivative terms too. This suggests that we should consider

B(4) ∼ δ(r − `) + Θ(r − `) , (3.1.3a)

A(3) ∼ δ(r − `) + Θ(r − `) , (3.1.3b)

B(3) ∼ Θ(r − `) , (3.1.3c)

A′′ ∼ Θ(r − `) . (3.1.3d)

Then A,A′, B,B′, B′′ will be continuous at r = `, while A′′ has a step of size

A′′out(`+)−A′′in(`−) =
M

8π`
A3 `(α− 3β)B′ − 2(α+ 6β)B

36αβ

∣∣∣∣
r=`

. (3.1.4)

We describe the region interior to the shell with the (0, 0)0 family (2.2.2), which is the vac-

uum family as discussed in section 2.2.1.1. This has 2+1 free parameters. Alternatively, one

could think of the condition to be vacuum at the origin as the three constraints A(0) = 1,

A′(0) = 0 = B′(0) coming from (2.2.4). We describe the solution in the region exterior to the

shell using some as yet undetermined solution family. We take inspiration from the linearised

theory and assume that the continuity and step conditions (3.1.3) and (3.1.4) form a system

of six independent constraints. Again inspired by the linearised theory we assume that the

asymptotic flatness requirement amounts to two constraints. We know from the static sym-

metry that requiring gtt(r → ∞) = −1 is one constraint. We can count the total number of

constraints we are imposing on the space-time and work out the minimum number of free
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parameters necessary for the coupling scheme to work. We have two constraints for flatness

at infinity, one to fix the time coordinate (gtt → −1), and six constraints for the shell coupling,

totalling nine. There are three free parameters available in the interior metric, so we need the

exterior metric to be one of the vacuum solution families with six free parameters. We can see

from section 2.2.4 that such solutions are in the (2, 2)0 family near the origin. One can imagine

taking the shell size ` to zero and in that limit finding the field of a point mass. This stress-

energy tensor would then have exterior metric in the (2, 2)0 family, a clear contrast to general

relativity where the field of a point source is in the (1,−1)0 family.

We can consider this argument in the light of the results of [33] where solutions were found

that coupled a stress-energy tensor to the (0, 0)0 family. The situation there was different - the

source was a density going as ρ ∼ e−r2
so it was not considering vacuum solutions. One might

still expect that those non-vacuum results still serve as a test of our claim that only the non-GR

(2, 2)0 family couples to matter. In fact those results found that asymptotically flat solutions

required a constraint on the pressure part of the stress-energy tensor, reflecting the gist of our

argument that (0, 0)0 family descriptions are over-constrained. In contrast, our claim is that a

generic stress-energy tensor should be described by exterior solutions in the (2, 2)0 family. We

shall only explicitly consider the example of shell sources but the principle is expected to hold

for other sources too, and this comparison to results for a ρ ∼ e−r2
source is encouraging.

An important feature of our argument was the assumption that the coupling conditions

were independent. This may not be true. It may be that given that the interior metric is in the

(0, 0)0 family, and given also that the two asymptotic flatness conditions have been imposed,

one or more of the six shell-coupling conditions might be automatically satisfied. For example

if two of the constraints were redundant with the other constraints then it would be possible to

place the (1,−1)0 family as the exterior solution. Unfortunately, it is not possible to establish

if the constraints are independent or not without a closed form for the solution. However we

can discuss the feasibility of the proposed coupling of a shell to a (2, 2)0 exterior solution. The

method is slightly involved so we first discuss general relativity.

3.1.2 Details of coupling the series solutions to matter

In the previous section we proposed that in the higher-derivative theory the field of a matter

source is completely different in the higher-derivative theory and general relativity, having a

(2, 2)0 form instead of (1,−1)0 . However, it is not clear if this is possible or feasible. In this

section we discuss the method and its difficulties, but we first illustrate them with an general

relativistic example.
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3.1.2.1 Coupling in general relativity using the closed form

In the higher derivative theory we do not know the solutions for the metric, instead have

only series solutions. Our coupling method will be discussed in terms of series solutions,

accordingly, and we can do a general relativistic example. Firstly though, in this section we

derive the exact general-relativistic solution for comparison.

It is convenient to define the length scale

LM := 2GM = M(8πγ)−1 . (3.1.5)

The equations of motion of general relativity are compatible with the source (3.1.1) if there

is a step in the A function:

Bout(`+) = Bin(`−) , Aout(`+)−Ain(`−) =
LMAin(`−)2

`B(`)− LMAin(`−)
. (3.1.6)

In terms of LM the space-time of a spherical shell has metric

Ain = 1 , (3.1.7a)

Bin = b , (3.1.7b)

Aout =
1

1− LM
b r

, (3.1.7c)

Bout =
b

1− LM
b `

(
1− LM

b r

)
. (3.1.7d)

We want to write the exterior solution in the Schwarzschild form

Aout =
1

1− rs
r

, (3.1.8a)

Bout = k2
(

1− rs
r

)
, (3.1.8b)

so we find expressions for the metric parameters in terms of the Schwarzschild radius rs and

time-scaling k2:

b = k2
(

1− rs
`

)
, (3.1.9a)

LM = k2
(

1− rs
`

)
rs . (3.1.9b)

The signature of this space-time should be commented on, although it is not the key part of

this discussion. When the source is larger than the Schwarzschild radius, 0 < rs < `, then the

interior solution isA = 1, B = b > 0, i.e. normal flat space-time. The signature is−+++ for all

r. When the source is smaller than the Schwarzschild radius, 0 < ` < rs, there is a horizon s.t.

the signature is −+ ++ for rs < r, and then +−++ for ` < r < rs. However, then at r = `, as
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stated already B is continuous (and non-zero) but A has a step. This step will actually change

the sign of A to its positive interior value of 1. We see from (3.1.9a) that Bin = b < 0 and from

(3.1.9b) that LM < 0. So we find that inside the source, for 0 < r < ` < rs, that the signature is

+ + ++. This is not so strange in the context of the static symmetry. The source is inside the

horizon, so t is a space-like coordinate, but the source is static so it is in fact tachyonic, hence

the strange interior metric signature and the negative mass LM . The higher derivative theory

will avoid this peculiarity because A and B are continuous across the shell radius, and so we

expect a −+ ++ signature for all r.

The key part of this discussion is that the interior free parameter b blows up as `−1 as the

source is shrunk toward the origin. When one is using series solutions, expanded around the

r = 0, we shall have to deal with the limit ` → 0, and we shall have to allow interior free

parameters to behave in this way.

3.1.2.2 Coupling in general relativity using a series solution

We repeat the coupling calculation for GR, this time using series solutions instead of the closed-

form solutions, to mimic the circumstances of the higher-derivative theory.

If one solved the equations of motion of general relativity using a Frobenius ansatz one

would find two solution families. The first is a vacuum solution, suitable for putting inside the

spherical shell, of the (0, 0)0 form:

A(0,0)0
= 1 + . . . (3.1.10a)

B(0,0)0
= b+ . . . . (3.1.10b)

The second is a non-vacuum solution of the (1,−1)0 form, corresponding to the Schwarzschild

solution.

A(1,−1)0
=xr − x2r2 + x3r3 − x4r4 +O(r5) (3.1.11a)

B(1,−1)0
=
y

r
+ xy + . . . . (3.1.11b)

We shall place this solution outside the spherical shell source and solve the matching con-

ditions (3.1.6). We shall find we need to allow the free parameters to depend on the shell size

`, (x(`), y(`), b(`)). The exterior free parameters will simply be Taylor series in ` so that as we

shrink the source they remain finite and preserve the (1,−1)0 form.

x(`) =x(0) + `x′(0) +
1

2
`2x′′(0) + . . . (3.1.12a)

y(`) = y(0) + `y′(0) +
1

2
`2y′′(0) + . . . , (3.1.12b)
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whereas we take inspiration from the analytic solution of the previous section and allow b and

LM to be Laurent series in `.

b = `a
(
b0 + b1`+ b2`

2 + b3`
3 + . . .

)
(3.1.13a)

LM = `d
(
L0 + `L1 + `2L2 + `3L3 + . . .

)
, (3.1.13b)

and we shall find that the poles should be a = −1, d = −1 for the coupling to work. Coupling

the series solutions to the shell via (3.1.6) we find the solution:

y(`) = − LM (`)
(
`x(`)− `2x(`)2 +O

(
`3
))

= − L0x(0) + `
(
L0

(
x(0)2 − x′(0)

)
− L1x(0)

)
+O

(
`2
)

(3.1.14a)

b(`) = − LM (`)x(`) +O
(
`3
)

= − L0x(0)

`
+
(
−L0x

′(0)− L1x(0)
)

+
1

2
`
(
−L0x

′′(0)− 2L1x
′(0)− 2L2x(0)

)
+O

(
`2
)
.

(3.1.14b)

We see that we are solving for combinations of Ln and x(m)(0), so there is some extra freedom

beyond what is needed for the matching. To understand this recall that for the purposes of

understanding the situation in the higher-derivative theory, we are pretending that we do

not know the exact forms of the interior and exterior solutions of the metric. The coupling

conditions (3.1.6) do not make reference to the Schwarzschild radius. Holding rs constant for

all ` will completely specify LM (`) and x(`). If we compare (3.1.14) to the closed-form solution

(3.1.9a), (3.1.9b) and (3.1.8), where we held rs fixed for all `, we find they are of the same form,

and we find agreement in the leading order for x(0) = − 1
rs

and L0 = −k2r2
s . Going to higher

and higher orders in ` will gradually reveal the closed-form solution for all ` with the values

x(`) = − 1
rs

and LM (`) = k2
(
1− rs

`

)
rs.

3.1.2.3 Coupling in the higher-derivative theory

We now consider coupling a thin shell source described by (3.1.1). We describe the region

interior to the shell with the (0, 0)0 family (2.2.2), which is the vacuum family as discussed in

section 2.2.1.1. As argued in section 3.1.1 we want to see if it is possible to place the (2, 2)0

family outside the shell. In order to avoid confusion with re-use of an, bm notation we shall

write the exterior solution with wn, vm as

A = r2w2 +
r3v3w2

v2
−
r4
(
w2

(
2v2 (v2w2 − 4v4) + v2

3

))
6v2

2

+ r5w5 +O(r6) , (3.1.15a)

B = r2v2 + r3v3 + r4v4 + r5v5 +O(r6) . (3.1.15b)
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We presented the coupling scheme we intend to use in equations (3.1.3) and (3.1.4). The key

problem we shall encounter is exemplified by the continuity of A at r = `. For a very small

shell the interior solution is described by (0, 0)0 and therefore A ∼ 1, whereas just outside in

the (2, 2)0 familyA(`+) ∼ `2 ∼ 0. There are similar problems in the other continuity conditions

but we shall focus on this example. The resolution is in the same spirit as in the general rela-

tivistic example, where we saw in (3.1.9a) that the free parameters of the interior metric can be

diverging functions of `.

To proceed we will need a formula to understand the progression of terms in the (0, 0)0

series. Inspecting the full form of the series up to 14 orders one finds that the metric is of the

form

A = 1 + a2r
2 +

∑
n,p,q,m

Xn,p,m,q rn
(
γ

β

)n
2
−p
am2 b

p−m
2

(
β

α

)q
(3.1.16a)

B

b0
= 1 + b2r

2 +
∑

n,p,q,m

Yn,p,m,q rn
(
γ

β

)n
2
−p
am2 b

p−m
2

(
β

α

)q
, (3.1.16b)

where the Xn,p,m,q and Yn,p,m,q are rational numbers and the n, p, q,m sums are taken over

n = 4, 6, 8, . . .; 1 ≤ p ≤ n
2 ; 0 ≤ q ≤ n

2 − 1 and 0 ≤ m ≤ p. Using this it can be shown that the

free parameters should be written as functions of ` with the following scheme:

b0 = `2H0(`) , w2 =w2(`) ,

a2 = `−2G2(`) , v2 = v2(`) ,

b2 = `−2F2(`) , v3 = v3(`) ,

v4 = v4(`) ,

w5 =w5(`) ,

M = `dµ(`) , v5 = v5(`) ,

where the functions of ` are all understood to be Taylor series, i.e. the poles have been made

explicit. Specifically a2 and b2 should diverge as `−2. The `-power of the leading order of M

has not been determined.

For continuity of A, i.e. Ain(`−) = Aout(`+), we need to evaluate the series (3.1.16) at r = `:

Ain(`−) = 1 +G2(`) +
∑

k,n,q,m

`k
(
γ

β

) 1
2
k

Xn,n−k
2
,m,q G2(`)mF2(`)

n−k
2
−m
(
β

α

)q
, (3.1.17)

where the sum is taken over k = 0, 2, 4, 6, . . . ; k + 2 ≤ n = 4, 6, 8, . . . ; 0 ≤ q ≤ n
2 − 1 and

0 ≤ m ≤ n−k
2 . Thus Ain(`−) goes as A0 + O(`1), whereas Aout(`+) goes as `2. Solving the

equation for all ` requires that A0, defined as the coefficient of the `0 term in Ain(`−), should
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vanish:

A0 = 1 +G2(0) +
∑
n,q,m

Xn,n
2
,m,q G2(0)mF2(0)

n
2
−m

(
β

α

)q
, (3.1.18)

where the sum is taken for n = 4, 6, 8, . . . ; 0 ≤ q ≤ n
2 − 1 and 0 ≤ m ≤ n

2 . We need this sum to

converge, so that the coupling could be done with a finite-length series solution, and it must in

fact converge to zero. We have not comprehensively studied the convergence properties, but

have considered the simpler limit β << α. In this limit, the q ≥ 1 terms are suppressed and

we need only consider Xn,n
2
,m,0. Of the coefficients appearing in this series, the Xn,n

2
,n
2
,0 equal

1 for all n while the other coefficients Xn,n
2
,m≤n

2
−1,0 appear to grow at most linearly with n (for

at least n ≤ 14). Let us rename t = 1
2n, Xn,n

2
,m,0 = Xt,m and G2(0) = ζF2(0) and consider only

the first T terms. We get

A0 = 1 +
∑

t=1,2,3,4,...T
0≤m≤t

Xt,m ζmF2(0)t . (3.1.19)

Assuming that the Xt,m grow with t at most linearly we can estimate the sum A0 by writing

Xt,m = a+ bt. For the estimate Ã0:

Ã0 = 1 +
∑

t=1,2,3,4,...T

(a+ bt)
1− ζt+1

1− ζ
F2(0)t , (3.1.20)

which has a ratio of terms at large t

a+ b+ bt

a+ bt

F2(0)t+1

F2(0)t
1− ζt+2

1− ζt+1
∼

F2(0), |ζ| < 1

ζF2(0) = G2(0), |ζ| > 1
. (3.1.21)

Thus the series converges if |G2(0)| < 1 and |F2(0)| < 1. One would expect that the se-

ries converges outside the β << α limit too. So one needs to know many terms in the

(0, 0)0 series and also needs to deal with the matching of `N≥1 terms and the matching of

A′(`), B(`), B′(`), B′′(`), A′′(`). We are encouraged by the Ã0 result and expect that this could

succeed if the computational difficulty was overcome. This would end with a solution for the

interior and exterior metric written in terms of α, β, γ, LM (`) and three other free parameters

p1(`), p2(`), p3(`).
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3.2 Global structure of black hole solutions

Possibly the most important question about any modified theory of gravity is : how do the

black holes change? In this section we consider the global properties of black hole solutions,

meaning the properties of the solutions that cover all r. Let us recap some of what we al-

ready know from analyses already done and see how much we can deduce from them, and

afterwards build on them with new analyses.

The defining feature of black holes is that they have a horizon. We have already seen the

family of solutions around a horizon, the (1, 1)r0 family, in section 2.4.1.2. By the theorem

(2.1.6) we saw that asymptotically flat solutions in this family must have R = 0 ⇔ β = 0. We

can count parameters and constraints in this family to learn a lot about the global properties

of the black hole solutions. Compare the (1, 1)r0 family in expansions around r0 (2.4.10), to the

(1,−1)0 family around the origin (2.2.6), for the β = 0 theory. The (1, 1)r0 family has 2+1 free

parameters and certainly contains the 2-parameter Schwarzschild black hole solution. It has a

horizon in half of its 3d parameter space (f1 finite, r0 > 0, b1 6= 0). The (1,−1)0 family also has

2+1 free parameters and also certainly contains the (1+1)-parameter Schwarzschild solution.

The Schwarzschild family has a horizon for all values of the free parameter describing time-

scaling and all positive values of the horizon radius r0. Therefore in the (1,−1)0 family there

is a half-plane of parameter space, r0 > 0, where the solution has a horizon. Considering the

third free parameter, we consider it reasonable that the horizon exists not only in this half-

plane but in an open 3-dimensional volume of the parameter space. If that is true then both

(1,−1)0 and (1, 1)r0 have horizons in open 3d regions of their parameter spaces, both of which

contain the half-plane of the Schwarzschild solution. Therefore we suppose further that these

two asymptotic solution families are different descriptions of the same true solution family.

This argument connects the (1, 1)r0 family with the origin.

We can make some connection between the (1, 1)r0 family and infinity r → ∞. Consider

the (1, 1)r0 family for β 6= 0, (2.4.8) and define a reparameterisation:

∆f2 := f2 − f̃2

f̃2 :=
3γ

8α
− 3γ

8αf1r0
− 2f1

r0
+

1

r2
0

.

We established in section 2.4.1.2 that asymptotic flatness implies that ∆f2 = 0 and R = 0, so it

is clear that ∆f2 corresponds to the asymptotic non-flatness parameter C0+ from the linearised

theory (2.3.5). We see that the (1,−1)0 ⇔ (1, 1)r0 family loses, one, not two, free parameters

when going from the β 6= 0 theory to the β = 0 theory, so we conclude that it has no sepa-

rate parameter analogous to C0− from the linearised theory (2.3.5). In the β = 0 theory the

(1,−1)0 ⇔ (1, 1)r0 family has 2+1 free parameters, one more than the Schwarzschild solution.
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We make the difference from Schwarzschild explicit by writing the reparameterisation

∆f1 := f1 − f̃1

f̃1 :=
1

r0

where ∆f1 = 0 corresponds to the Schwarzschild solution (2.4.10). If we now make a compar-

ison to the linearised theory again, note that in the β = 0 theory there are four free parameters

C,C2,0, C2−, C2+. In the (1, 1)r0 family the free parameter b1 is certainly analogous to C, since

these describe time-scaling symmetry, and r0 is analogous to C2,0, since for Schwarzschild this

is r0 ∼ GM , the mass of the solution. This suggests that the higher-derivative corrections

C2−, C2+ manifest as the single parameter ∆f1. We are particularly interested in how ∆f1 6= 0

affects the asymptotic behaviour of the family. We certainly would imagine that ∆f1 6= 0 will

produce asymptotically non-flat solutions, but this is not necessarily the case and more anal-

ysis is needed. The key question about the global structure of the (1,−1)0 ⇔ (1, 1)r0 family is

then: what asymptotically flat black hole solutions are there? In the remainder of this section

we shall answer this question with a perturbative analysis and a numerical analysis. We shall

find that when ∆f1 is small, it does control asymptotic non-flatness, but that a finite value of it

can restore asymptotic flatness, i.e. that there are two asymptotically flat black hole solutions.

They both have R = 0 ⇔ β = 0, and one has ∆f1 = 0, r0 free, b1 free, and the other has

∆f1 = ∆f1(r0), r0 free, b1 free.

3.2.1 Asymptotically flat perturbations from the Schwarzschild solution

We have established that in the higher derivative theory the family of black hole solutions

is two parameters larger than the Schwarzschild family in GR. We wish to consider asymp-

totically flat solutions, so we set one of the parameters (∆f2) to zero, or equivalently restrict

consideration to the β = 0 theory. We are left with a solution space one parameter wider than

the Schwarzschild solution. We wish to understand this solution space, and learn about the

asymptotically flat solutions. We first study perturbations of the Schwarzschild solution.

Write the metric perturbations around the Schwarzschild solution as

f(r) = 1− r0

r (1 + εZA(r))
(3.2.1a)

B(r)

bt
= 1− r0

r (1 + εZB(r))
, (3.2.1b)

and we expand the equations of motion to first order in ε, giving us two coupled linear second-

order ODEs in ZA(r) and ZB(r). These equations will have four solutions modes. We ex-

pect two solution modes to exist within the Schwarzschild solution, and two perturbations

away from Schwarzschild. The two solution modes within Schwarzschild are shifts of r0 and
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changes of the time-scaling parameter. Solutions that shift r0 look like

1− r0 + δr0

r
= 1− r0

r (1 + εZA(r))
(3.2.2a)

1− r0 + δr0

r
= 1− r0

r (1 + εZB(r))
(3.2.2b)

∴ εZA(r) = εZB(r) = − δr0

r0
= constant . (3.2.2c)

Solutions that shift the time-scaling parameter look like

B = (bt + δbt)
(

1− r0

r

)
= bt

(
1− r0

r (1 + εZB(r))

)
(3.2.3a)

∴ εZB =
r − r0

r0

δbt
bt

ZB ∝ (r − r0) , ZA = 0 . (3.2.3b)

The two remaining modes are away from Schwarzschild, but recall that the (1, 1)r0 family has

fewer free parameters than generic solutions to the β = 0 theory. The (1, 1)r0 family only has

2+1 free parameters, 1+1 of which are Schwarzschild and one of which describes solutions

different from Schwarzschild. So in effect, the condition that there be a horizon somewhere in

the space is a one-parameter constraint on the generic solution. Therefore we expect that in

the perturbations about Schwarzschild, described by two coupled linear second-order ODEs

in ZA(r) and ZB(r), one of the solution modes must remove the horizon. From the table 2.2

(assuming it does in fact have a complete list of all solution families) we see that solution

families with 4 (rather than 3) free parameters haveB(r → r0)→ const.. Looking for functions

ZB that have B(r → r0) → const., but discarding the mode (3.2.2), we find that the mode that

removes the horizon has ZB divergent for small (r − r0). Thus we already know a lot about

what we will find in the solution space. There will be a mode where ZB diverges at r0, which

we will discard, a mode like (3.2.2), which we will discard, and a mode like (3.2.3) which we

will discard, and one remaining mode that we wish to study. Since we wish to discard the

mode (3.2.3) it is convenient to take a superposition of the two coupled linear second-order

ODEs that eliminates ZB and leaves a linear ODE in ZA alone.

By taking a suitable superposition of our two linear ODEs we can eliminate ZB in this

combination:

ZB(r)−(r − r0)Z ′B(r) =

ZA(r) +
α
(
−8r2 + 16rr0 − 9r2

0

)
(r − r0)Z ′A(r)

2γr4 − 2γr3r0 − 4αrr0 + 5αr2
0

+
2αr(2r − 3r0)(r − r0)2Z ′′A(r)

2γr4 − 2γr3r0 − 4αrr0 + 5αr2
0

,

leaving us with an equation of motion that is a linear ODE in Z ′A(r), Z ′′A(r) and Z ′′′A (r). One

of the solutions to this equation is obviously ZA is constant, ZA = k, which corresponds to
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functions ZB = k + const.(r− r0), which are our two Schwarzschild modes (3.2.2) and (3.2.3)

which we want to discard. Thus the two Schwarzschild modes appear as the trivial solution to

the linear ODE in Z ′A(r), Z ′′A(r), Z ′′′A (r) and are easily dropped from consideration by looking

for the non-trivial solutions. Define a function Y (r) with

ZA =

∫ r Y (r′)

ω(r′)
dr′ , (3.2.4)

where ω(r) is a function that we shall fix, to change the form of the ODE for Y to convenient

forms. We now have a second-order linear ODE in Y (r) whose two solutions describe the two

perturbations away from Schwarzschild.

To write down the differential equation define a shorthand

ξ :=
α

γr2
0

=
1

2m 2
2 r

2
0

. (3.2.5)

The differential equation we are studying is then

0 = h0(r)Y (r) + h1(r)Y ′(r) + h2(r)Y ′′(r) , (3.2.6a)

where

h0 = ω(r)2
(
2r7 − r0

(
2r6 + ξr0

(
8r5 + r0

(
r0

(
5r3 + 4ξr0

(
8r2 − 11r0r + 5r2

0

))
− 16r4

))))
− ω′(r)24ξr2 (r − r0) r2

0

(
2r4 − 2r0r

3 − 4ξr3
0r + 5ξr4

0

)
− ω(r)ω′(r)4ξr2 (2r − 3r0) r2

0

(
r3 − r0r

2 + ξr3
0

)
+ ω(r)ω′′(r)2ξr2 (r − r0) r2

0

(
2r4 − 2r0r

3 − 4ξr3
0r + 5ξr4

0

)
(3.2.6b)

h1 = ω(r)24ξr2 (2r − 3r0) r2
0

(
r3 − r0r

2 + ξr3
0

)
+ ω(r)ω′(r)4ξr2 (r − r0) r2

0

(
2r4 − 2r0r

3 − 4ξr3
0r + 5ξr4

0

)
(3.2.6c)

h2 = − ω(r)22ξr2 (r − r0) r2
0

(
2r4 − 2r0r

3 − 4ξr3
0r + 5ξr4

0

)
. (3.2.6d)

We shall solve this equation in two approximations, the large-r limit and the near-horizon

limit, and to make it easier we choose ω(r) = 1:

0 = h0(r)Y (r) + h1(r)Y ′(r) + h2(r)Y ′′(r) (3.2.7a)

h0 = 2r7 − 2r0r
6 − 8ξr2

0r
5 + 16ξr3

0r
4 − 5ξr4

0r
3 − 32ξ2r5

0r
2 + 44ξ2r6

0r − 20ξ2r7
0 (3.2.7b)

h1 = 4ξr2 (2r − 3r0) r2
0

(
r3 − r0r

2 + ξr3
0

)
(3.2.7c)

h2 = − 2ξr2 (r − r0) r2
0

(
2r4 − 2r0r

3 − 4ξr3
0r + 5ξr4

0

)
. (3.2.7d)
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Let us solve this near the horizon, using Frobenius’s method. Write Y (r) = (r − r0)s
∑
yn(r −

r0)n. The leading order term is

−2 ξ2 r8
0 s (s+ 1) y0

r − r0
+O((r − r0)0) , (3.2.8)

so we see that there are two roots, s = 0 and s = −1. These roots differ by an integer so the

solution is of the form (1.2.26). The larger root is s = 0 so name the solution for the larger root

Y0:

Y0(r) =
∑
n=0

yn(r − r0)n , (3.2.9)

so that the full solution is

Y (r) = c1Y0(r) + c2

(
Y0(r) ln(r − r0) +

1

r − r0

∑
n

y′n(r − r0)n

)
, (3.2.10)

where y′n are some coefficients to be determined. We see that the second solution, controlled

by c2, is divergent, and it is clear that it corresponds to ZA ∼ ln(r − r0) and ZB ∼ (r − r0)−2

both divergent, and thus corresponds to removing the horizon from the solution. Therefore we

have found a two-parameter family of solutions, which is reduced to a one-parameter family

after requiring the horizon to exist, which is as we predicted. Thus we have now established

that we can eliminate all three modes that we wish to disregard, leaving only the fourth mode

still to study.

Next we consider what behaviours exist at large r. In fact we already have the answer - in

the large r limit the Schwarzschild solution that we are perturbing around becomes Minkowski,

and we have already written down the large-r solutions of perturbations around Minkowski

in equation (2.3.5). We write the β = 0 version of this solution here:

B = 1 + V =(1 + C) +
C2,0

r
+ C2−

e−m2r

r
+ C2+

em2r

r
+O(ε2)

A = 1 +W =1− C2,0

r
− 1

2
C2−

e−m2r

r
(1 +m2r)−

1

2
C2+

em2r

r
(1−m2r) +O(ε2) ,
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so we can find the large-r behaviour of ZA and ZB in terms of W and V :

A =
1

1− r0
r(1+εZA)

≈ r

r − r0

(
1− r0

r − r0
εZA

)
∴ εZA ≈ −

r

r0
W (r) (3.2.11)

Y = Z ′A(r) = − 1

2
C2−

e−m2r

r0
m 2

2 r −
1

2
C2+

em2r

r0
m 2

2 r

B

bt
= 1− r0

r(1 + εZB)
≈ 1− r0

r
+
r0

r
εZB

∴ εZB ≈ 1 +
r

r0
V |C=0

≈
(

1 +
C2,0

r0

)
+ C2−

e−m2r

r0
+ C2+

e+m2r

r0
.

Alternatively one can take the large-r behaviour only of h0, h1 and h2 (3.2.7) and solve the

simple resulting ODE to get

Y =
const.

m
3/2

2

em2r(1−m2r) +
const.

m
3/2

2

e−m2r(1 +m2r) , (3.2.12)

which clearly agrees, for large-r, with the Y = Z ′A expression obtained in (3.2.11). We see

two behaviours: the e−m2r term describes asymptotically flat perturbations and the the em2r

term describes non-asymptotically flat perturbations. Generically, then, we expect that ad-

missible perturbations would not be asymptotically flat, but it is possible that by excluding

the three modes we’ve said that we are disregarding, we may have implicitly excluded the

non-asymptotically flat perturbation. That is, it seems likely that the perturbations around the

Schwarzschild solution are not asymptotically flat, but we have not yet proved it one way or

the other. It was shown in [2] that if α satisfies an inequality we can write such a proof, a "no-

hair" theorem that proves that the perturbations from Schwarzschild are not asymptotically

flat, and we turn to that next.

Take the ODE equation (3.2.6) (for a general function ω(r) once more) and multiply it by

u(r)Y (r), and integrate it over r:

0 =

∫ ∞
r0

(
h0(r)Y (r) + h1(r)Y ′(r) + h2(r)Y ′′(r)

)
u(r)Y (r) dr

=

∫ ∞
r0

uh0Y
2 − uh2(Y ′)2 + (uh2Y

′Y )′ + Y ′Y (uh1 − u′h2 − uh′2) dr .

We choose a function u(r) such that (uh1 − u′h2 − uh′2) = 0 for convenience:

u(r) =
const. (r − r0)(

2 (r − r0) r4 + ξr3
0 (5r0 − 4r) r

)2
ω(r)4

, (3.2.13)
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which has no sign changes in r0 < r < ∞ for any ω(r). Let us assume WLOG that u(r) is

positive. Recalling our assumption that Y is finite near r0, we have that uh2Y
′Y ∼ (r−r0)2

ω(r)2 → 0

so the boundary term does not contribute at the inner boundary. At large r it goes as uh2Y
′Y ∼

1
m 2

2 r2 ω(r)2Y
′Y , and for asymptotically flat perturbations Y ′(r → ∞) → 0 vanishes, so the

boundary term does not contribute at the outer boundary either. So we establish, for functions

ω(r) with suitable limits, that asymptotically flat perturbations about a horizon must satisfy

the following equation:

0 =

∫ ∞
r0

uh0Y
2 − uh2(Y ′)2 dr . (3.2.14)

We have already said that u(r) is positive, so if h0 and h2 have opposite signs then the integrand

is positive-definite or negative-definite, so using this and the fact that the integral vanishes we

could then prove that Y (r) = 0 = Y ′(r) throughout the integration region r0 < r <∞.

We want h0 and h2 to have no sign changes in the integration region. It is clear from (3.2.6d)

that h2 cannot be positive throughout the region r > r0, but on the other hand if can be negative

throughout all that region if

0 < ξ <
27

8
= 3.375 . (3.2.15)

Therefore we consider the condition for h0 to be positive. Positivity of (3.2.6b) is rather harder

to prove than negativity of h2. Transform the problem to new variables

r = r0(1 + x) , ξ =
ξmax

1 + y
,

and require positivity of h0 throughout the quadrant x > 0, y > 0, and find the largest value of

ξmax that our proof permits. With this substitution h0 is

h0 =

∑N
n=0

∑M
m=0 Cn,m(r0, ξmax) xnym

(1 + y)2
. (3.2.16)

A sufficient condition for h0 to be positive is then that Cn,m ≥ 0 for all n,m. Let us initially

consider the simple case ω(r) = 1, where h0 is given by (3.2.7b). In this case Cn,m ≥ 0 reduces

to ξmax < 3
8 , and one can also show that this is not only a sufficient condition but also the

necessary condition. We take the largest value ξmax = 3
8 and therefore write the bound on ξ to

be:

0 < ξ <
3

8
. (3.2.17)

At this point the function ω(r) becomes useful. By trying different functions in ω(r) in (3.2.4)

and repeating the steps we can arrive at an equation of the same form but with different Cn,m,

and the transformed condition Cn,m ≥ 0, which is sufficient but not necessary, may allow

greater values of ξmax. In [2] the best function that was found is

ω(r) = (c r 3
0 + r3)

1/3 , (3.2.18)
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where c can be varied to find an optimal value. This choice of ω allows a maximum value of

ξmax of

ξmax =
[
the largest root of the equation: 0 = 28160x4 + 12176x3 − 43374x2 + 19179x− 2322

]
≈ 0.626

c =
3− 4ξmax

8ξmax − 3
≈ 0.246 .

Numerical study could reduce this bound by considering the necessary condition rather than

a sufficient one, and it may also be possible to increase the upper bound on ξ using other

functions ω(r), all of which must be subject to the limit from considering h2 (3.2.15).

The result we have established is that there are no asymptotically flat perturbations away

from Schwarzschild if the horizon radius satisfies the inequality

α

γr 2
0

. 0.626 or equivalently m2 r0 & 0.894 . (3.2.19)

This immediately suggests three questions. One is: what happens when the r0 saturates this

inequality? The Schwarzschild solution might not be isolated around that point. The second

is: what happens for small r0 violating this inequality? We have tried but have not been able

to prove anything about that region, which may be because the situation is different there. The

third is: what about solutions with horizons that are finitely different from Schwarzschild? To

answer this last question we must now turn to a numerical analysis, and in doing so we shall

answer the other two questions as well.

3.2.2 Numerical study of solutions with horizons

To learn about solutions finitely different from the Schwarzschild solution we shall have to

resort to a numerical analysis. We remain in the β = 0 theory and fix the numerical values of

some of the free parameters in this description:

γ = 1 (3.2.20a)

α =
1

2
(3.2.20b)

(∴ m2 = 1) (3.2.20c)

b1 = 1 (3.2.20d)

f1 =
1 + φ

r0
(3.2.20e)

r0, φ left free .
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We shall study different values of r0, and for each one vary φ such that when we numerically

shoot outwards from the horizon we reach an asymptotically flat solution. We shall shoot

from r0 × 1.01, using values for A,A′, B,B′ given by (2.4.10) to 9 orders, and shoot outwards

to r ≈ 30 or r ≈ 20.

η=+11

η=+2

η=0

η=-0.4

η=-6.0

0 5 10 15 20 25 30

r

1

2

3

4

5

f(r)

FIGURE 3.1: Illustration of how a score η is assigned to a solution f(r). Five
example curves are shown, for r0 = 2, with φ in the range 5.0844594 < φ <
5.0844617, each labelled with their score η[f(r)]. Curves that grow too large or
small before reaching the right-hand boundary are given a score that is the dis-
tance around the edge of the box to the intersection with the curve, illustrated
for the η = 11 curve with an arrow.

To find the asymptotically flat solutions we shall assign each solution a flatness score

η[f(r)]. Working with a numerical solution covering the region r0 < r < rmax, we analyse

the region 1.2r0 < r < rmax, and there are two cases. The first case is that f doesn’t get very

large or very small, 0.1 < f(r) < 5, and the score is simply f(rmax)−1. The second case is that f

becomes too large or too small at some radius r1, in which case the score is±(rmax−r1)+const.

where the ± is such that too-large curves have positive score and too-small curves have neg-

ative score, and the constant is chosen so that η[f(r)] is smooth. A diagram showing some

example solutions annotated with these requirements is shown in fig 3.1. For each radius r0 of

black hole we can vary φ and observe how the score, η, changes. We expect that for every r0

there will be some values of φ that cause the score to vanish. We know to expect that φ ≈ 0 will

be asymptotically flat, with zero score, because it will be the Schwarzschild solution. In fact

we shall find there is another asymptotically flat solution. Let us call the two values of φ that

correspond to asymptotically flat solutions φ0, where this should be Schwarzschild φ0(r0) ≈ 0,
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and φ1(r0), where this is another solution, |φ1| > |φ0|. Then η(φ0(r0)) = 0 and η(φ1(r0)) = 0.

In practice, since this will be done numerically, we shall not obtain exact zeroes of the score,

nor shall we find that φ0 = 0 exactly.

-0.5 0.5

ϕ

-30

-20

-10

10

20

30

η(ϕ)

r0=1.1

FIGURE 3.2: The asymptotic-flatness score η as a function of φ for r0 = 1.1,
clearly showing two zeroes and indicating a second type of black hole for posi-
tive φ.

Let us understand the system and the score using two examples. We shoot outwards from a

black hole of radius 1.1, varying the parameter φ, and obtaining the score for each space-time,

and plot the results in figure 3.2. The plot shows negative score for φ . 0, positive score for

0 . φ . 0.7, and negative score again for φ & 0.7, clearly showing that there are two zeroes, i.e.

two asymptotically flat black hole solutions. The scores η(φ) are typically large in magnitude,

indicating that f(r) becomes large or small very close to the horizon. Around the two zeroes

of η(φ) the gradient is very steep, indicating that φ has to be extremely finely tuned to find the

asymptotically flat solutions, and this was troublesome throughout the numerical work. Next,

we shoot outwards from a horizon of a smaller radius, r0 = 0.7, and plot the scores η(φ) in

figure 3.3. The plot shows similar characteristics, except that the second zero now occurs for

negative φ ≈ −0.4. We shall see later that for some range of r0 the function η(φ) passes so

steeply through a zero that we can only put a bound on the φ value of that zero, but cannot

find the solution itself. When discussing the properties of the asymptotically flat solutions we

are forced to restrict consideration to r0 outside that range.

The graphs of η(φ) for these two radii are typical of those of other radii as well. All have

a rough top-hat shape of varying width, with two zeroes. We expect there to be a degenerate

top-hat shape, where the width vanishes and the two zeroes coincide. We used an automatic

routine to search for φ1(r0) and φ0(r0), and obtain approximations to them (note that we do not

require perfect flatness, but admit space-times with−6 < η(φ1) < 11 for φ1 and−3 < η(φ0) < 3
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η(ϕ)

r0=0.7

FIGURE 3.3: The asymptotic-flatness score η as a function of φ for r0 = 0.7,
clearly showing two zeroes and indicating a second type of black hole for nega-
tive φ.

for φ0). We plot the so-obtained values of φ0 and φ1 as a function of r0 in figure 3.4. The φ0

values are not exactly zero but are of order 10−5 and 10−6, reflecting the small inaccuracies

inherent in numerical work, and seemingly have a random distribution in r0, as can be seen

from a plot of them on an expanded scale in figure 3.5. It was not possible to obtain values of φ1

for horizon radii r0 . 0.58 because the solutions become extremely sensitive to the value of φ,

being extremely non-flat for tiny deviations from φ0 or φ1, and do not yield easily to analysis,

not even to assigning a score. The minimum value of φ1 that we found is ≈ −0.66, and we

note from equation (3.2.20e) that as φ→ −1 then f1 → 0, but since we know from our indicial

treatment that f1 = 0 is not a solution, then perhaps it is not surprising that there are problems

probing this regime numerically.

The key result is that there are two asymptotically flat black hole solutions, at all values of

0.6 . r0 . 2 except one. Polynomial fits of φ1(r0) can find the point where it vanishes, and

at this point φ1 ≈ φ0 and there is only a single asymptotically flat solution. This coincidence

point is at

r0 ≈ 0.876 . (3.2.21)

The next thing to do is to look at the properties of the new black holes, and to match their

large-radius behaviour to the linearised theory. This is most conveniently done for B(r), since

it includes all four parameters, and for Schwarzschild solutions the linearised solution for B is

also the exact solution. We write the linearised theory solution for B as

B ≈ Ct
(

1 +
C2,0

r
+ C2−

e−m2r

r
+ C2+

em2r

r

)
, (3.2.22)
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FIGURE 3.4: The values of φ that produce asymptotically flat solutions as a func-
tion of horizon radius r0, showing two values: the φ0(r) ≈ 0 Schwarzschild
solution and a second curve φ1(r) that intersects at r0 ≈ 0.876.

where the time-scaling has been made exact using Ct (instead of using the perturbative treat-

ment with C as in (2.3.5)) By correspondence with GR, in these units (β = 0, α = 1
2 , γ = 1),

GM = −1

2
C2,0 . (3.2.23)

Let us first discuss what we expect to find. Since we are considering approximately asymp-

totically flat solutions, we hope to find small values for C2+. For Schwarzschild black holes

this linearised expression has C2− = 0 = C2+ and is exact for all radii. The new black holes

are distinct from Schwarzschild, and the only parameter available to describe this distinction

is C2−, so we expect that they will have non-zero values of C2−. Now let us turn to our nu-

merical results and see if they agree. We numerically find the new black holes for r0 < r < 30

and the Schwarzschild black holes for r0 < r < 20, where these ranges have been chosen to

be as large as possible while keeping the maximum gradient of η(φ) small enough to allow its

roots to be found. We fit the B(r) from the approximately asymptotically-flat numerical solu-

tions to the B(r) from the linearised theory, and obtain values for Ct, C2−, C2+ and GM . The

values of Ct, C2−, C2+ for the Schwarzschild branch and the new black hole branch are plotted

in figure 3.6 . The values of C2+ are tiny, as intended, and are not clearly grouped, reflecting

that we intend to use only results with C2+ = 0, but numerical issues cause random variations

around 0. The values of C2− for the Schwarzschild black holes are also small, of order 10−2 or

10−1, as they should be, while for the new black holes the C2− are of order 103, in line with

what was expected. The values of C2− do not form a neat line because the fitting procedure
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ϕ0(r0) detail

FIGURE 3.5: Detail of the values φ0(r) of the Schwarzschild solutions. If the
method was perfect these values would all be exactly zero, so their non-zero val-
ues of order 10−5 give us an indication of the method’s accuracy. The intermittent
patterns that are visible are assumed to be artefacts of the algorithms used.

is not well sensitive to this parameter, because the term it controls ( e
−r

r ) is small in the large-r

region where the fitting takes place. The masses GM of the two branches are plotted together

in figure 3.7, along with a line showing the ideal Schwarzschild relation r0 = 2GM . The found

values GM(r0) on the Schwarzschild branch deviate from the ideal line by an amount of order

10−5, showing good agreement. This deviation of the numerical Schwarzschild black holes

from the ideal results is assumed to be purely due to inaccuracies of the method (and not to be

a physical result) and gives us a rough estimate of those inaccuracies.

The horizon radius r0 ≈ 0.876 at which the Schwarzschild black hole and new black hole

coincide compares well with the best bound (3.2.19) we obtained from the perturbative treat-

ment (recall we used m 2
2 = 1 for the numerics), which is close and slightly larger. It seems

that the bound we obtained is no accident, that in fact it is reflecting the existence of the coin-

cidence point. By optimising the choice of function ω in (3.2.4) we could presumably improve

the bound (3.2.19) slightly to eventually obtain

m2 r0 & 0.876 . (3.2.24)

When this bound is saturated there is a crossing point where the Schwarzschild black hole is

not isolated from the new black hole. When r0 violates this bound we see that the Schwarzschild
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FIGURE 3.6: The values of the C2−, C2+ and Ct found when fitting the two types
of numerical black hole to the linearised theory as written in equation (3.2.22).

solution becomes isolated again, and the new black hole becomes distinct again. The most no-

table feature of the new black holes is that as well as existing with a positive mass, they also

exist with a negative mass. Negative-mass new black holes appear in the approximate range

r0 & 1.141, and restoring the dimensions we write the negative mass range as:

m2 r0 & 1.141

φ1 & 0.837 .

We can comment on how realistic these solutions are by considering the curvature scalar

RµνR
µν . The numerical solutions of the new black hole show that the curvature reduces to

≈ 0 at large r as expected. The value of the curvature at the horizon may not be the maximum
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FIGURE 3.7: The values of the mass found when fitting the two types of numeri-
cal black hole to the linearised theory as written in equation (3.2.22). The curves
intersect at r0 ≈ 0.876 and negative masses appear for r0 & 1.141.

curvature of the space-time, but gives us some indication and is easy to evaluate. Using the

series expansion (2.4.10), we find that the value of the curvature near the horizon is given by

1

γ2
RµνR

µν =
4φ2

γ2r4
0

+O(r − r0) (3.2.25)

(for general values of the couplings). This indicates that if the parameter of the asymptoti-

cally flat solution φ1(r0,m2) is of order 1
2γr

2
0 = αm 2

2 r
2
0 then the curvature is large and higher-

curvature terms might significantly affect the solutions. In our numerical results, the value

of 4φ 2
1

r 4
0

takes its minimum, of zero, at the intersection point of the non-Schwarzschild and

Schwarzschild black holes (as expected) and monotonically increases as one moves away from

that point in either direction along the non-Schwarzschild black hole branch. Around the

appearance of negative-mass solutions we have 4φ 2
1

r 4
0
≈ 1.6, so if one considered corrections

from even-higher derivative terms in the Lagrangian, it is likely that the negative-mass non-

Schwarzschild black holes will change considerably or not appear, which chimes well with

their arguably unphysical nature.

To give the reader some physical intuition about the new solutions we plot ones with pos-

itive, negative and zero mass in figure 3.8.

The thermodynamic properties of the new black holes were studied in [1] where it was
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FIGURE 3.8: Comparison of the Schwarzschild black hole and the new black
hole for three different radii. The solid blue line shows f(r) of the Schwarzschild
solution. The dashed orange line shows f(r) of the new black hole solution. The
dotted green line shows the ratio B(r)

f(r) for the new black hole solution, scaled so
that it approaches 1 at large radius. The r0 = 0.58, r0 = 1.14 and r0 = 2 plots are
for positive, ≈ zero and negative mass new black holes, respectively.

found that for a given mass the temperature of the non-Schwarzschild black holes is lower than

the temperature of the Schwarzschild black hole, and conversely that for a given temperature

the mass of the non-Schwarzschild black hole is lower than the mass of the Schwarzschild black

hole. For a fixed mass below the coincidence mass (GMc ≈ 0.44) the non-Schwarzschild black

hole has lower entropy than the Schwarzschild black hole, and for a fixed mass above the coin-

cidence mass the non-Schwarzschild black hole has a greater entropy than the Schwarzschild

black hole. An approximate relation for the masses and temperatures in terms of the Wald

entropy, for small entropy, was found and the non-Schwarzschild black holes were seen to ap-

proximately obey the first law dM = TdS. The thermodynamical properties of the two types

of black hole will be revisited in [54].

We note that the existence of a second branch of asymptotically flat black hole solutions

was predicted earlier by Brian Whitt in [55]. He considered the equations of motion of fourth-

order gravity in four dimensions, and studied perturbations around solutions to the Einstein

equation Rµν = 0, with a view to determining their dynamic stability. We now know that

static asymptotically flat solutions with horizons must have R = 0 and similarly that static

asymptotically flat perturbation must also have δR = 0, so we consider only the Einstein-Weyl

theory. Whitt did not know about this restriction and considered the general 4-dimensional

theory and a governing equation that features both perturbations δRµν and perturbations δR.

Fortunately, however, Whitt decided to study the part governing δRµν in isolation, as this is

sufficient for the time-dependent discussion, which makes his analysis equivalent to ours. The

governing equation of the perturbations is then found to be(
(∆L)µανβ +

1

βWhitt
gµαgνβ

)
δR̄µν = 0 , (3.2.26)
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where δR̄µν is the traceless part s.t. gµνδR̄µν = 0, and where his couplings are related to ours

by

αWhitt =− 3β + 2α

3γ
, βWhitt =

2α

γ
=

1

m 2
2

,

α =
γ

2
βWhitt , β =− γ

3
(βWhitt + 3αWhitt) .

As a side note on the way to studying the dynamical stability, he noted that on the Schwarzschild

background there exists a single normalizable static spherically symmetric perturbation. This

was noted to indicate the existence of a second branch of spherically symmetric black hole

solutions that intersects the Schwarzschild branch. The perturbation exists at 1
βWhitt

≈ 0.19
(GM)2 ,

which we translate to be in terms of horizon radius and our couplings to get

m2r0 ≈ 2
√

0.19 ≈ 0.87 , (3.2.27)

and we see that this is in good agreement with our numerical result (3.2.21). While our nu-

merical results are limited in what they can say, the calculation by Whitt provides an algebraic

proof of the existence of the second branch. A detailed treatment of this bifurcation of black

hole solutions, the dynamical stability of the two types of black holes, their thermodynamics

and the relation between thermodynamics and stability will appear in [54].
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3.3 Asymptotically flat numerical solutions

3.3.1 Method

Our goal has been to learn about the asymptotically flat solutions to higher derivative gravity.

Our investigations so far have found that asymptotically flat solutions must haveR = 0 if there

is a horizon or if the behaviour near the origin is either vacuum ((0, 0)0) or Schwarzschild-like

((1,−1)0). The R = 0 case is thus seen to be important, but certain classes of asymptotically

flat space-times, notably those with wormholes and those that have (2, 2)0 behaviour near the

origin, allow non-vanishing R. Our analyses using free parameter counts in the non-linear

and linearised theories have indicated that solutions minimally coupled to matter are of the

latter type, and need not haveR = 0. The major missing component has been the relationships

between behaviours near the origin, or near r0, and behaviours near infinity. In particular we

want to find an explicit example of a solution that is asymptotically flat, but has (2, 2)0 be-

haviour near the origin, as a critical piece of evidence in our argument that matter-coupled

solutions have those properties. In this section we use numerical shooting techniques to inves-

tigate the relationships between behaviours at large r and behaviours at smaller r. We shall

find some agreement with results already obtained, albeit with significant difficulties with the

accuracy of the numerical method, and some areas of disagreement. Ultimately we will con-

clude that the method is promising but more study is needed, and in particular it must address

the accuracy issues.

We use numerical solutions to connect the origin and infinity, working in the β = 0 theory

for simplicity. We fix the large-r behaviour to be asymptotically flat, using the solutions to the

linearised theory at NLO as described in section 2.3.6, and fixing C = 0 and C2+ = 0. This

leaves us with two free parameters, C2,0 and C2−. We can shoot towards the origin for many

different values of these, and for each solution we find we can categorise it as one of the known

behaviours (from tables 2.1 and 2.2).

Let us discuss what we expect to see. We look at the free parameter counts for each family.

The stated parameter counts always include the trivial time-scaling parameter, which we have

fixed in our shooting s.t. B(r → ∞) → 1, so this should be discounted. The stated parameter

counts may or may not include a parameter that corresponds to C2+, which we have fixed in

our shooting to vanish C2+ = 0. We generally assume that they do include such a parameter.

So if we consider shooting inwards, varying C2,0 and C2−, and picture the C2,0, C2− plane,

then the asymptotic solution families will appear as areas, lines or points. Table 3.1 shows

how we expect the families to appear. Consider one such example: from the results of section

3.2.2, especially the graphs 3.6, we expect that the (1, 1)r0 family will appear as two lines, one

along C2,0 < 0, C2− ≈ 0 corresponding to Schwarzschild and another corresponding to the

new black hole.
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Family No. of free parameters Expected appearance in C2,0, C2+ plane
(0, 0)0 1+1 point

(1,−1)0 2+1 line
(2, 2)0 3+1 area
(1, 1)r0 2+1 line
(1, 0)r0 1+1 point
(1, 0)1/2 3+1 area

TABLE 3.1: The way we expect small/finite r solution families to appear in the
C2,0, C2− plane when shooting inwards from large-r, C = 0 = C2+. We have
fixed both the trivial parameter and asymptotic flatness, which we usually expect
to constrain 1+1 free parameters.

We may not be able to resolve points or lines where certain solution families appear, and

we will have an issue where we need to know behaviours very close to the origin but the

origin is a singular point of the differential equations that is therefore likely to be fraught with

numerical issues. We also will have difficulty determining which (s, t) solution family we have

found. This may sound easy, but there are transitions between different near-origin families,

that are realised continuously, while s and t change discretely. For values of C2,0, C2− near a

(s, t) transition (e.g. where there is a line of different family) it can be difficult to determine the

(s, t) of a solution. To help understand the difficulty of resolving lines and determining (s, t),

we consider the solutions to general relativity.

An easy way to determine the (s, t) values of a solution is to plot the functions

PA(r) := r ∂r ln(A(r)) =
rA′(r)

A(r)
(3.3.1a)

PB(r) := r ∂r ln(B(r)) =
rB′(r)

B(r)
. (3.3.1b)

The advantage of these is that ifA(r) andB(r) are Frobenius series, of the form rsas+r
s+1as+1+

rs+2as+2 + rs+3as+3 + . . . , then PA and PB are of the form

PA = s+ r
as+1

as
− r2

(
a2
s+1 − 2asas+2

)
a2
s

+ . . . , (3.3.2)

i.e. they are Taylor series and s and t can be determined as the intercept of PA and PB , which

can easily be extrapolated from data that doesn’t quite reach the origin. The extrapolated value

of the intercept can be rounded to one of the few known values that s can take. This should

work very well away from transitions of s, but near a transition how does a discrete change of
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s manifest with a continuous change of the function? Consider the Schwarzschild solution:

A(r) =
1

1− rs
r

(3.3.3a)

= − r

rs
− r2

r2
s

+ . . . (rs 6= 0) (3.3.3b)

PA = 1 +
r

rs
+
r2

r2
s

+ . . . (rs 6= 0) . (3.3.3c)

For non-zero rs the function PA has intercept 1 and we would easily deduce that A ∼ r1. We

plot PA for different values of rs in figure 3.9. For non-small negative rs it is easy to interpret

the graphs and to find the s value of the solution from the intercept of PA. For small negative

rs we see that PA ≈ 0 near the origin, except at very small r, where it suddenly steeply rises in

order to satisfy PA(r → 0) → 1. For positive rs there is a horizon, and numerical integration

cannot see the behaviour near the origin. However, for very small positive rs the solution

appears to have PA ≈ 0 near the origin, and the steep slope corresponding to the horizon only

appears at very small radius. So if the numerical solution stops before r = 0, at some r = ε,

then we would not see these steep slopes and we would wrongly believe that A ∼ r0 for some

values of rs s.t. −ε′ < rs < ε′′. The complete picture we would draw in rs space would be


horizon, ε′′ < rs

A ∼ r0 + . . . , −ε′ < rs < ε′′

A ∼ r1 + . . . , rs < ε′

(3.3.4)

i.e. the single point in the variable rs where A ∼ r0 becomes smeared into a finite range of rs
due to difficulties in numerically probing very small radius.

r
s = -1

r
s = -0.2

r
s = -0.045r

s = -0.005

rs = +0.005

0.1 0.2 0.3 0.4 0.5
r

-1.0

-0.5

0.5

1.0

r ∂r ln(A(r)) for the Schwarzschild solution

FIGURE 3.9: Illustration of how data very near the origin may be needed in order
to correctly identify the s index of a solution

This Schwarzschild example illustrates a second important point. Note that the analytic
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form of A(r) (3.3.3a) can be seen to have r1 behaviour at small r for rs 6= 0, but in the limit

rs → 0 to have r0 behaviour at small r. However, if one did not know the analytic form of

A(r) (3.3.3a) but only knew part of the series form (3.3.3b) then taking the limit rs → 0 would

take the apparent radius of covergence of the series to zero, and so the r0 behaviour cannot be

discovered. In the asymptotic series we found in sections 2.2 and 2.4 to the higher derivative

theory, the various solution families found must be continuous deformations of each other (in

e.g. the variables of the linearised solution C, C2,0, C2− and C2+) but in practice this is difficult

or impossible to demonstrate from the series approach. This illustrates another reason to do a

shooting-inwards analysis of the system: this is the only way to gain an understanding of how

solution families deform into each other.

We shall employ this method of using PA and PB as defined in (3.3.1) to estimate the (s, t)

values of numerical solutions in the higher derivative theory as well. As we move around

the C2,0 - C2− plane we generally expect that things are similar to the Schwarzschild example

above, i.e. points and lines become blurred out to have a small width, and appear as small

circles or lines with finite width, respectively. This over-identification of constrained solutions

is fortunate in a way, because it will enable us to detect solutions that exist as lines or points.

Let us summarise the method. We use the same numerical values for the couplings as in

section 3.2.2

γ = 1 (3.3.5a)

α =
1

2
(3.3.5b)

(∴ m2 = 1) , (3.3.5c)

and we shoot inwards from large radius rmax = 10 towards small radius. The differential

equations we shall use are (1.3.19). We fix initial conditions A(rmax), A′(rmax), B(rmax), and

B′(rmax) using the solutions to the linearised theory at LO and NLO as described in section

2.3.6. We fix C = 0 and C2+ = 0 and vary C2,0 and C2−, so see what ranges of C2,0 and

C2− connect to which small-r families. We stop numerical integration if either function A(r)

or B(r) become zero since such points are singular points of the differential equations. The

ranges of C2,0 and C2− will be chosen so that the perturbative solution (that is used as initial

value) is valid. The C2,0
1
r term at r = rmax has size 0.1 × C2,0 and should be much less than

1, so |C2,0| . O(1) is appropriate. The C2−
e−m2r

r term r = rmax has size C2− × 5 × 10−6 so

|C2−| . O(105) may be appropriate. In fact the term controlled by C2− grows so fast as we

shoot towards small r that we find it better to limit C2− to smaller values than that. It will

turn out that presenting results for larger values of |C2,0| . 5 make the results clearer. We will

present results for |C2,0| . 8 and |C2−| . 103.

Our choice of rmax is chosen so that the exponential growth of the e−mr/r terms is manage-

able, but it may strike the reader as modestly small. Later on we shall briefly discuss how the
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choice of rmax can significantly affect the accuracy of the findings and the numerical problems

one encounters.

3.3.2 Results

The C2,0-C2− plane is plotted to scale in figure 3.10. Some features are not visible in that

diagram though, so a diagram with exaggerated dimensions is presented in figure 3.11. Let

us consider each of the features we see in turn and comment on whether they conform to our

expectations or not.

The most apparent feature visible in the C2,0-C2− plane is that open 2-dimensional ranges

of (C2,0-C2−) values correspond to wormhole solutions. This conforms to our expectations

since we saw in table 3.1 that since wormhole solutions have the maximum number of free

parameters, they appear generically. Wormholes appear in three quadrants of the diagram

and we show an example wormhole solution from each quadrant in figure 3.12. They show

diverging gradients of B(r) as the surface of the wormhole is approached, indicating that

they are members of the (1, 0)1/2 family rather than the (1, 0)r0 family, as expected since the

(1, 0)r0 has fewer free parameters (we did not do a thorough check to find where the single

asymptotically flat (1, 0)r0 solution (fig 2.1) appears). Note that the curvature scalar RµνRµν is

smaller than O(1) for the whole space outside the wormhole r0 < r, so we speculate that they

might also appear in theories with even higher curvature terms.

The second most apparent feature is that open 2-dimensional ranges of the C2,0-C2− plane

are (1,−1)0 solutions. This does not conform to our expectations. We saw in table 3.1 that

the (1,−1)0 family in the β = 0 theory was expected to have one fewer free parameter than

generic solutions, and thus to appear as a line in the C2,0-C2− plane. There are several pos-

sible explanations. This may indicate that the asymptotic analysis around the origin was not

done to enough orders, and an additional free parameter was not seen. Alternatively, it may

indicate that the count of free parameters is correct, but all solutions in the (1,−1)0 family are

naturally asymptotically flat, but this possibility is discounted very quickly after numerical

shooting outwards from the origin using (2.2.6) because non-asymptotically-flat solutions ap-

pear at once. Another possibility is that it indicates a non-Frobenius family of solutions that

also shares the leading-order characteristics of the (1,−1)0 family but has terms of other forms

at sub-leading order (e.g. logarithms or fractional powers) but that escaped our investigations.

The final possibility is that there are issues with the numerical method in the specific context of

the equations (1.3.19). It doesn’t seem likely that numerical issues could cause such a striking

distortion of the features that a one-dimensional line wrongly appears as a two-dimensional

area covering around half the parameter space, though, but a more precise argument should be

made and a more careful study done before we can reach any conclusion with confidence. We

show the reader some plots from the (1,−1)0 region as a basis to let them judge the evidence for

themselves. Plots of PA and PB from the top-right and bottom-left (1,−1)0 regions are shown
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FIGURE 3.10: The solution families encountered when shooting inwards from
large radius, varying C2,0 and C2−. The diagram is to scale. Between the
wormhole behaviour and the (1,−1)0 behaviour are horizon and (2, 2)0 and be-
haviours, but they are not visible on this scale. They are visible on a diagram
with exaggerated sizes in figure 3.11
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FIGURE 3.11: The solutions families encountered when shooting inwards from
large radius, varying C2,0 and C2−, with dimensions exaggerated so that the ar-
eas of (2, 2)0 solutions and the lines of horizon solutions are visible. The horizon
solutions appear at the boundary of the wormhole region, and in a rough cross
shape, with the upper and right arms separated from the lower and left arms by
the region of wormhole solutions.
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FIGURE 3.12: Examples of wormhole solutions from all three quadrants and
the quadrant boundary where they appear. Both positive and negative masses
2GM = −C2,0 are exhibited. The diverging gradient of the function B(r) indi-
cates that they are members of the (1, 0)1/2 family rather than the (1, 0)r0 family.

in figures 3.14 and 3.15 respectively. Note that the intercepts of the graphs are usually not ex-

actly 1 and−1, but nearby values. Due the issue illustrated in figure 3.9 we expect that near the

boundaries of the (1,−1)0 regions there are continuous changes of our estimates of (s, t), even

though the true (s, t) would change discretely. So we are expecting estimates of (s, t) that are

neither (1,−1)0 nor (2, 2)0 for certain regions of theC2,0−C2− plane. But what about the bulk of

the (1,−1)0 regions? Define the bulk of the top-right (1,−1)0 region as−0.5 < C2,0 , 10 < C2−,

and the bulk of the bottom-left (1,−1)0 region as C2,0 < −1.1 , C2− < 121.622C2,0 + 8.10811,

i.e. the excluding the regions near the boundaries. Then the (s, t) values in that top-right

region have 1.129 < s < 1.180 , −1.32 < t < −1.42, and in the bottom-left region have

1.133 < s < 1.147 ,−1.359 < t < −1.328. These are plotted in figure 3.16. It is clear that there is

a spread of values, following a clear trend, and that the values are distinct from their expected

values of (1,−1)0. The larger values of s in the graphs are taken from nearer the point in figure

3.10 that is mid-way between the two (1,−1)0 regions, roughly (C2,0, C2−) ≈ (−0.9, 0). The

smaller values of s are taken from farther from the centre. The fact that the (s, t) estimates

differ from (1,−1)0 slightly could be simply put down to various numerical inaccuracies, or it

could be due to the effect illustrated in figure 3.9. The latter would suggest that the size of the

(1,−1)0 region is being exaggerated. It would be quite wishful thinking to speculate that the
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(1,−1)0 region is actually a line that has been smeared out into a very large area by this effect

and thus be consistent with our understanding of free parameter counts. Note finally that the

only place where 0.99 < s < 1.01 and −1.01 < t < −0.99 simultaneously is at the border of the

top-right region of (1,−1)0 with the right-hand (2, 2)0 region (see figure 3.11).
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FIGURE 3.13: Plots of PA and PB for a finite range of C2−, showing that (2, 2)0
behaviour has finite width in C2−, and thus a 2-dimensional area.

Another unexpected feature of the C2,0-C2− plane is the way the (2, 2)0 solutions appear.

This solution family has the maximum number of free parameters, so we expect it to appear

as an area in the plane. Its area of appearance is so narrow, though, that it is only visible as a

line in figure 3.10. We said above that lines may appear as narrow areas and gave an example

in equation (3.3.4). We can show that the width of the (2, 2)0 region appears to be different; it

appears to reflect a genuine width. We show plots of PA and PB for C2,0 = 1 for a selection

of values of C2− in the range −9.1 < C2− < −8.3 in figure 3.13. It is apparent that for a finite

deformation of the curves the intercepts remain constant at 2, so the (2, 2)0 solution clearly

appears to occupy an area rather than a line. To be more precise, in the part of the (2, 2)0 region

away from the boundary the (s, t) estimates satisfy 1.94 < s < 2.06 and 1.96 < t < 2.03 (c.f.

the (1,−1)0 region which actually had (s, t) ≈ (1.14,−1.35)). The centres of the two branches
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FIGURE 3.14: An illustrative selection of plots of PA and PB from solutions in the
top-right region of (1,−1)0 solutions, from both near to and far from the region’s
boundary.
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FIGURE 3.15: An illustrative selection of plots of PA and PB from solutions in the
bottom-left area of (1,−1)0 solutions, from both near to and far from the region’s
boundary.
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FIGURE 3.16: The estimates of (s, t) for the top-right and bottom-left regions of
(1,−1)0 solutions. In each graph the region with larger s is taken from nearer
the mid-point (C2,0, C2−) ≈ (−0.9, 0) and the region with smaller s is taken from
farther the mid point.
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of the (2, 2)0 solution can be approximately fitted to polynomials:

C
(left 2,2)
2− ≈− 1267.7− 3861.87 (C2,0)− 5574.46 (C2,0)2 − 4770.1 (C2,0)3 − 2696. (C2,0)4

− 1043.18 (C2,0)5 − 279.186 (C2,0)6 − 50.9575 (C2,0)7

− 6.06474 (C2,0)8 − 0.424736 (C2,0)9 − 0.0132866 (C2,0)10 (3.3.6a)

C
(right 2,2)
2− ≈− 0.866796 + 2.88585 (C2,0)− 11.4821 (C2,0)2

+ 0.238216 (C2,0)3 + 0.309514 (C2,0)4 − 0.0525535 (C2,0)5 , (3.3.6b)

so we define coordinates measuring deviations from these lines

C
(right 2,2 residual)
2− := C2− − C

(right 2,2)
2− (3.3.7a)

C
(left 2,2 residual)
2− := C2− − C

(right 2,2)
2− . (3.3.7b)

We plot the width profiles of the left branch and right branch in fig 3.17. The widths are only

approximately 0.01 (left) and 2 (right), which is extremely small on the scale of the range of

C2− we consider, but appears to be finite. This is in line with what we expected from our other

analyses, but it is a little surprising that the (2, 2)0 area is quite so narrow.

Representative plots of A and B and the scalar curvature for various (2, 2)0 solutions are

shown in figure 3.18. Plots for other points in the (2, 2)0 region are similar in character. In each

solution it is apparent that curvature is small at large radii but then increases greatly towards

small radii. Let us define the strong curvature region as the region where RµνRµν > 1 ⇔
ln(RµνR

µν) > 0, and its outer radius as rstrong.

ln(RµνR
µν) ∼

> 0 , r < rstrong

< 0 , rstrong < r
. (3.3.8)

These plots are in accord with Holdom’s similar result in [33], where he found a horizonless

asymptotically-flat (2, 2)0 solution and observed that it had a region of strong curvature near

to the would-be horizon. Our results show this again for a different choice of couplings (we

use β = 0, α = 1
2 and he used α = 3β = 1

32π ) and for a large number of solutions (of which

only a selection are shown in fig 3.18). In the positive-mass ⇔ negative C2,0 (2, 2)0 plots we

presented one can clearly see the function A become large and B become small, reminiscent

of the Schwarzschild solution where as rs ∼ −C2,0 is approached A → +∞ and B → 0, but

unlike the Schwarzschild solution the curvature gets strong and the metric functions curve

away again to avoid forming a horizon. The size of the region of strong curvature, rstrong,

for (2, 2)0 solutions at the centre of each of the region, is plotted as a function of C2,0 in

figure 3.19. It shows that for positive ADM mass 2GM := −C2,0 there is a rough relation

rstrong ∼ −C2,0 = 2GM = rSchwarzschild, i.e. that the strong curvature region is always roughly
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FIGURE 3.17: Width profiles of most of the left (C2,0 < 0) and right (C2,0 > 0)
areas of (2, 2)0 solution. The coordinates on the vertical axes are defined in 3.3.6.
It is a scatter plot of ( C2,0 , C

right/left 2,2 residuals
2− ) points whose space-time is in the

(2, 2)0 family. Details of the numerics, and of the automatic algorithm for deter-
mining if a space-time is a member of the (2, 2)0 family, have resulted in ragged
edges of the borders with the wormhole region (the region below the right-hand
(2, 2)0 region and above the left-hand (2, 2)0 region). Manual examinations of the
space-times near the (2, 2)0-wormhole border can sharpen the edge but proved
too time-consuming.
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FIGURE 3.18: Example (2, 2)0 solutions from both the right-hand (C2,0 > 0 ,
negative mass) and left-hand (C2,0 < 0 , positive mass) regions.

of the necessary size to interfere with the formation of a horizon. Holdom’s similar result led

him to speculate that other theories with even higher curvature terms will also lack horizons.

The presence of higher curvature terms would likely mean that the "interior" regions are sig-

nificantly different from the ones in this theory, however. Holdom found that only the (0, 0)0

family is present in generic theory with even higher derivatives, so he speculated that the ef-

fect of many even-higher-curvature terms would be to deform the "interior" into this family, to

make it non-singular. Our discussion of coupling in section 3.1 emphasised parameter count-

ing of solution families, and in our discussion of the non-singular (0, 0)0 family in sections

2.2.1.1 and 2.3.6 we concluded that what few free parameters this family does have are all fixed

by the requirement of asymptotic flatness. This makes it difficult to see how higher-curvature

corrections to the example (2, 2)0 solutions could deform them into (0, 0)0 solutions, but on the

other hand we have already described how Holdom’s considerations of higher-curvature the-

ories seem to suggest that they must. We consider this question unresolved. For comparison,

in the wormhole solutions the curvature does not become strong outside of the wormhole, and

in the (1,−1)0 solutions (recall that these do not have horizons) rstrong is generally larger than

in nearby (2, 2)0 solutions. In the (1,−1)0 regions rstrong gets larger as one moves away from

the centre of the diagram 3.10 and as one moves away from the boundary of the (1,−1)0 region

(the places where there are horizons) into the interior.

Horizons are apparent in the C2,0-C2− plane, in an approximate cross shape. They appear
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FIGURE 3.19: The outer radius rstrong of the region of strong curvature (defined as
RµνR

µν > 1) in (2, 2)0 solutions near the centre of the (2, 2)0 strip in the C2,0-C2−
plane, as a function of C2,0.

at the edges of the wormhole region as a limit of a wormhole solution. Recall that both worm-

holes and horizons have a zero of f(r) = 1
grr(r)

at r = r0, but that wormholes have B(r0) 6= 0

and horizons have B(r0) = 0. The values of B(r0) are largest away from the edges of the

wormhole region, and tend to zero towards the edges, becoming zero at the boundary, thus

forming horizons. The solutions with horizons on the upper, lower and left-hand branches

are exactly the Schwarzschild solution, to good accuracy 1 , with masses 2GM = r0 = −C2,0

matching the C2,0 value at which they appear and not depending on their supposed value of

C2− (we do not plot these solutions since the reader is so familiar with the Schwarzschild solu-

tion). This cannot be correct and must represent numerical issues, but we postpone discussion

until we have finished the description of the horizon solutions. The remaining solutions with

horizons, on the right-hand branch, are the non-Schwarzschild, or "new", black holes, and we

show examples with positive and negative mass in 3.20.

We can compare the non-Schwarzschild black holes we have found when shooting inwards

from large-r to the non-Schwarzschild black holes we found when shooting outwards from a

horizon in section 3.2.2. The relation between the horizon radius r0 and the mass GM =

−1
2C2,0 is shown in figure 3.22 for both these two classes of numerical non-Schwarzschild black

holes. There is good agreement for GM & −2 or equivalently C2,0 . 4. The numerical results

from shooting inwards use perturbative solutions as initial conditions, so inaccuracies at larger

values of C2,0 are to be expected.

Now we must comment on how this compares to what we expected to find. We know

1This can be checked by examining e.g. rA′(r)+A(r)(A(r)−1) and rB′(r)+B(r)−1 for these solutions, which
will be zero for all r > r0 IFF Schwarzschild, for any rs
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FIGURE 3.20: Non-Schwarzschild solutions with horizons, for both positive and
negative mass, found by shooting inwards from asymptotic flatness. See also
figure 3.8
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FIGURE 3.21: A negative-mass Schwarzschild solution found with a small non-
zero value of C2− rather than the expected location of C2− = 0.
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FIGURE 3.22: A comparison of the mass-radius relation for Non-Schwarzschild
black holes, for the solutions obtained by shooting outwards from a horizon and
for the solutions obtained by shooting inwards from asymptotic flatness. See
also figure 3.7
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FIGURE 3.23: A scatter plot of the C2,0 and C2− values found for the asymp-
totically flat horizon solutions in section 3.2.2 found by shooting outwards from
horizons. A large X marks the point (C2,0, C2−) ≈ (−0.9, 0) of the solution where
the Schwarzschild and non-Schwarzschild black holes coincide. This scatter
plot is overlaid on a close-up of the lower-right quadrant of the diagram figure
3.10 of shooting-inwards results, i.e. the black lines mark the location of hori-
zon solutions between (1,−1)0 and wormhole regions. The non-Schwarzschild
black hole scatter data can be seen to qualitatively agree with the shooting-
inwards data for C2,0 > 1.5 (though with some numerical differences), and the
Schwarzschild black hole scatter data to agree with the shooting-inwards data
for −0.5 . C2,0 . 0, but the remainder of the scatter data requires discussion
and analysis.

that Schwarzschild black holes have C2− = 0 and C2,0 = −2GM < 0, so we expect to find

Schwarzschild horizons of radii r0 = −C2,0 along the negative C2,0 axis. In fact we find

Schwarzschild horizons of those radii a little below the negative C2,0 axis, which we write

off as numerical inaccuracies on the effect of C2− 6= 0 without worrying too much. Similarly,

we would expect (1,−1)0 negative-mass Schwarzschild solutions along the positive C2,0 axis.

Again, the expected Schwarzschild solutions are to be found slightly off the axis and we show

an example from positionC2,0 = 2, C2− ≈ −33.155 in figure 3.21. We also found Schwarzschild

black hole solutions along the upper and lower arms, for C2,0 ≈ −0.8, all having roughly the

same radius r0 = −C2,0 ≈ 0.8, even for large values of C2−. We know that Schwarzschild

solutions should only appear for C2− = 0 so this represents very significant numerical issues,

but we shall make another observation before commenting on numerical accuracy.

We have said where we expected to find the Schwarzschild solutions, but we have yet to

say where we expected to find the non-Schwarzschild black holes and whether our results

match. The non-Schwarzschild black holes found by shooting outwards from a horizon in
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section 3.2.2 had values of C2,0 and C2− fitted to them (plotted in figures 3.6 and 3.7). In

figure 3.23 we compare those values to the C2,0 and C2− values where we found the non-

Schwarzschild black holes in this section. There was some difficulty in fitting values of C2−

to non-Schwarzschild black hole solutions with small mass, so the corresponding points have

poor precision, but it is still visible that the non-Schwarzschild black holes lie approximately

where they were expected to lie, in a seeming endorsement of the numerical accuracy of the

method. The Schwarzschild black holes to the right of the vertical arms, i.e. C2,0 & −0.9, show

good agreement as well. However, for C2,0 . −0.9 the agreement becomes very poor. We have

said already that we consider the left arm of 3.11 to be the continuation of the Schwarzschild

family of solutions for larger positive masses, but figure 3.23 shows that the left arm of the

shooting-inwards data starts at (C2,0, C2−) ≈ (−1.5,−100) but the scatter data from shooting

outwards clearly has C2− ≈ 0. Worse, there are upper and lower arms of horizons in the

shooting-inwards data for this value of C2,0. We can no longer avoid commenting on these

upper and lower branches of horizon solutions, which we have said must be incorrect both be-

cause they have non-zero values ofC2− and because they do not even vary withC2−. This may

indicate thatC2,0 ≈ −0.9 is some sort of critical value where not only do the non-Schwarzschild

and Schwarzschild black holes coincide in a shooting-outwards analysis, but also the numeri-

cal shooting becomes insensitive to C2− in a shooting-inwards analysis.

It is not clear why there should be a critical value of C2,0 where significant numerical issues

appear, nor is it clear what exactly these issues are. The presence of the upper and lower arms

of Schwarzschild horizon solutions seems like it must be wrong, but it is closely linked to the

overall, broad shapes of the C2,0,C2− plane. At the moment, the upper and lower arms of hori-

zon solutions form a separation between large areas of (1,−1)0 solutions and (1, 0)1/2 worm-

hole solutions. It is hard to cast doubt on the presence of these areas themselves, because they

show up for very large ranges of values. There must therefore be boundaries where other solu-

tions appear, asC2,0 andC2− are varied continuously but solution properties change discretely.

The numerical solutions close to these boundaries are, not surprisingly, hard to interpret, but it

generally seems reasonable that a line of another family might appear at the boundary. It seems

natural that the extreme limit of a wormhole solution is a horizon, since both have f(r0) = 0,

while the wormhole has B(r0) > 0 and the horizon has B(r0) = 0. On the other hand, in

section 3.2 we tried to find all solutions with horizons. The non-Schwarzschild black holes we

found were determined to have C2,0,C2− values of another region of the plane, far away from

the upper and lower branches of horizons. There were some numerical limits on that work,

however, so it is possible that there are other branches of non-Schwarzschild black hole solu-

tions. Optimistically, such a hypothetical additional branch of non-Schwarzschild black holes

might have C2,0,C2− values of roughly this part of the plane and might look extremely simi-

lar to Schwarzschild, but this is speculation. The other possibility is that some undiscovered

solution family is responsible for the seeming appearance of the upper and lower branches of
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horizon solutions, but there are no obvious candidates from among the families listed in table

3.1.

We can imagine that with some effort the numerical accuracy could be improved and the

reason for the upper and lower branches of black holes and for C2,0 having a critical value

could be unravelled, and these current problems could be overcome. Perhaps something far

more radical could happen that simultaneously addresses the issues of the critical value of

C2,0, the upper and lower horizon branches, and the issue that the (1,−1)0 region is an area

instead of the line that was expected, and we would be left with results that simply confirm

our beliefs from the other analyses. However, this doesn’t seem at all likely. We must conclude

that this shooting-inwards analysis has revealed unexpected new information to us, but it is

not clear what. It does not seem entirely safe even to say that the (1,−1)0 family is an area, and

thus has more free parameters than we realised from the asymptotic analyses, because there is

a contradiction in its boundary with the wormhole solutions. More analysis is needed.

Perhaps the most important way to improve the quality of the results would be to increase

the radius rmax from which the shooting starts. We had numerical issues with larger values,

but with more precision these could be overcome. Let us explain the nature of the problem.

The initial values for the shooting are calculated from evaluating the linearised solutions at

rmax, and the effect of this is that the initial values do not exactly correspond to asymptoti-

cally flat solutions (though by the number of free parameters they will always correspond to

some solution). This is likely responsible for a lot of problems with the results. The difficulty

overcoming it is that the value of the falling Yukawa term e−mr/r is so small at large radii that

rounding errors at large r have huge effects at small r. Our way around this problem was

to use only a modest value of rmax and to assume the shooting’s initial conditions were accu-

rate enough, but perhaps an approach using large rmax could be complementary to ours, even

though it swaps our issues for others.

As a final comment, we note that varying the value of α does not seem to change any of

the main features of the C2,0,C2− plane but does shift the boundaries around. In a similar

fashion to figure 3.10, we assume that the only features visible on the C2,0,C2− plane are a

large region of wormhole solutions, covering most of the top-left and bottom-right quadrants,

and two regions of (1,−1)0 solutions in the top-right and bottom-left. Assuming that, to draw

the C2,0,C2− plane one only needs to draw the lines indicating the boundaries between these

regions. In figure 3.24 we show the C2,0,C2− plane with such lines drawn, overlaying three

sets of such lines for three different values of α. We note that as α varies, the coincidence point

of the Schwarzschild and non-Schwarzschild black holes is given by (3.2.27) to be

m2 r
(coincidence)
0 ≈ 0.87

∴ −2GM (coincidence) = C(coincidence)
2,0 ≈ −

√
2

γ

√
α 0.87 ,
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FIGURE 3.24: The outlines of the (1,−1)0 regions of the C2,0,C2− plane, for three
different values of alpha: 0.3, 0.4 and 1.2. In each case the area to the top-right
of the top-right line is (1,−1)0, the area to the bottom-left of the bottom-left line
is also (1,−1)0, and the area in-between, extending from the top-left through
the centre to the bottom-right, is wormholes. The plot shows that for increasing
values of α the bottom-left (1,−1)0 region grows and reaches towards the left
axis. For increasing value of α the bottom-right boundary of the (1,−1)0 region
retreats out of the bottom-right quadrant towards the right axis.

so thatC2,0 becomes more negative with increasing α. TheC2,0 value of the mid-point between

the upper and lower lines of boundary moves to more negative values as α is increased. The

analysis is too rough to dignify with a quantitative treatment, but we note that our results

are consistent with the supposition that the coincidence point of the Schwarzschild and non-

Schwarzschild black holes is always directly between the upper and lower boundary lines.
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In this thesis we considered the classical solutions to four-dimensional higher derivative

gravity truncated at four derivatives and without a cosmological term. We considered the

static spherically symmetric problem, in particular building on the work in [6], [33] and [34],

and reached an improved understanding of the solution space, especially the properties of

solutions coupled to matter, solutions that have horizons and solutions that are asymptotically

flat.

In the first part we attempted to document all the solution families that exist in the theory,

using both a Frobenius ansatz and other ansatzes. We reproduced the families around the

origin originally found in [6], the (0, 0)0, (1,−1)0 and (2, 2)0 families, and confirmed the count

of free parameters for (0, 0)0 and (2, 2)0 given in [33], and counted the free parameters of the

(1,−1)0 family, which can include logarithmic terms. We also found series solutions around

r = r0 6= 0, which come in five families: (0, 0)r0 , (1, 1)r0 , (1, 0)r0 , (1, 0)1/2 and (3
2 ,

1
2)1/2. We

reproduced the solutions to the linearised theory originally found in [6] and expanded upon

their discussion of linearised coupling to matter sources. Comparison of families from all three

of these methods allowed us to infer a lot about true solutions. This was bolstered considerably

by the spherically symmetric application of a theorem generalised from [34] which relates local

properties of a solution (an ideal application of the series expansions) to the property R = 0

that must hold for an open range of r. A key application was allowing us to identify which

combination of the free parameters of the R 6= 0 part of a solution family corresponded to

non-flatness at infinity (for certain families). For example, it was possible to show that the

(3
2 ,

1
2)1/2 family has no asymptotically flat members. Most importantly though it proved that

static asymptotically flat black hole solutions are fully described by the special Lagrangian

γR−αC2, which is very significant because the spherically symmetric solutions of that theory

have two fewer free parameters than the general theory.

All of the knowledge of vacuum solution families of the full theory, and vacuum and non-

vacuum solutions of the linearised theory, was brought together to make several arguments

that the Schwarzschild solution does not describe minimal coupling to positive matter. Many

arguments were made that solutions with minimal coupling to matter do not have horizons.

In fact, based primarily on knowledge of free parameter counting, it was argued that matter-

coupled solutions belong to the (2, 2)0 family, which has no analogue in general relativity. This

is interesting if one looks to theories with even higher derivatives, since the curvature of (2, 2)0

solutions is large for radii out to around the Schwarzschild radius, so disruption to the would-

be horizon may be taken seriously even if "interior" properties may not be. Holdom pointed

out in [33] that the (2, 2)0 solution family is generically not present in theories with higher

derivatives, however, so the matter coupling of such theories still needs investigation.

The Schwarzschild black hole is still a vacuum solution to the higher-derivative theory,

but a second branch of black hole solutions was found, that coincide with the Schwarzschild

solution for m2 r0 = m2 2GM ≈ 0.876. The existence of a second branch was analytically



Chapter 4. Conclusion 141

proved by Whitt in [55]. For Schwarzschild black holes larger than at the branch point it was

shown that there are no asymptotically flat deformations. The non-Schwarzschild black holes

also appear with negative ADM mass, but these solutions have strong curvature at the horizon

and it is possible that they would not appear if higher derivative corrections were considered

(if, indeed, the non-Schwarzschild black holes would still appear at all).

The space of asymptotically flat solutions was explored using numerical shooting. It was

found that the generic asymptotically flat solutions are wormholes (1, 0)1/2 and horizonless

(1,−1)0 solutions. At the boundaries of the wormhole region the solutions limited to horizons

of the (1, 1)r0 family, including the non-Schwarzschild black holes, which appeared where

expected and with the radii predicted by the numerical shooting outwards from horizons to-

wards infinity. Between the wormhole region and the (1,−1)0 regions there were very narrow

areas of (2, 2)0 solutions. There were several reasons to question the accuracy of these results,

however. It was mildly surprising that the (2, 2)0 family, which was expected to be the generic

solution, appeared only in a small area. On the other hand, the (1,−1)0 family was expected,

based on its count of free parameters from the series analysis, to appear as a line rather than

a region. As it is, around half of the asymptotically flat solutions were found to be (1,−1)0,

but there was some reason to doubt the numerical accuracy of this, especially that the solutions

consistently deviated from (r1, r−1) behaviour and instead had≈ (r1.14, r−1.35) behaviour. The

strangest result was that there seems to be a critical value of C2,0 = −2GM corresponding to

the mass at which the Schwarzschild and non-Schwarzschild black holes intersect. The point

(C2,0, C2−) = (C(coincidence)
2,0 , 0) lies approximately right between the two (1,−1)0 regions (even

for other values of α). The two (1,−1)0 regions both have a boundary with the wormhole re-

gion on part of the lineC2,0 = C(coincidence)
2,0 . As you approach this boundary from the wormhole

side the wormhole solutions limit to horizons, but these horizon solutions appear to be identi-

cal to a single Schwarzschild solution, even though they have a large range of non-zero values

of C2− which corresponds to higher-derivative effects. The findings are certainly interesting

but unfortunately they must be repeated with more numerical accuracy before the physical

message becomes clear. The most important factor may be to repeat the study using a different

starting radius rmax for the numerical shooting, though this trades our problems for others.

One of the most important areas for future research is the dynamical stability of these static

solutions in the presence of time-dependent perturbations. We have often restricted consider-

ation to asymptotically flat solutions, which are assumed to be more physically realistic, but

our static analysis tells us nothing about whether the solutions are dynamically stable, which

would be key to any claim of astrophysical relevance. The only non-trivial solution that is

known analytically is the Schwarzschild solution. The dynamical stability of Schwarzschild in

the four-derivative theory was studied by Whitt in [55], who concluded that it was stable, but

revisited by Myung in [56] who drew a comparison to a black string to find an unstable mode

that Whitt hadn’t considered. This will be followed up in [54] where the instability of small
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Schwarzschild black holes will be discussed and the thermodynamics of both types of black

hole presented in detail.

Our attempt to discover all solution families should be seen in the context of the solution

families of stationary space-times. It may be that some families are not physically realistic be-

cause they are not limits of stationary solutions. There is also the question of theories with

even higher derivatives. Holdom [33] found that only the (0, 0)0 family exists as a vacuum

solution to generic theories with more derivatives, which is interesting because we have found

that black holes and matter-coupled solutions belong to other families, and we argued that

the (0, 0)0 family has flat space as its only asymptotically flat member. The issue of matter

coupling has been discussed thoroughly for the four-derivative theory, and it has been argued

that the (2, 2)0 family provides the correct description. Since this family doesn’t exist in the-

ories with more derivatives, the issue of matter coupling in those theories is unresolved. The

classical, static, spherically symmetric solutions to four-derivative theory with a cosmological

constant will be different from the ones considered in this work, but it may be possible to find

them without too much difficulty using this work as a guide. Such theories are of particu-

lar interest because of the possibilities raised in [31] and [32] that they offer solutions to the

higher-derivative theory’s problems with unitarity.

Finally, we recall that there are very few uniqueness theorems for higher-derivative gravity,

so it may be that the most astrophysically realistic black hole solutions are of an even more

difficult character, for example without spherical symmetry, or without axisymmetry, or even

black holes with non-spherical topology.
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In [2] the expressions of section 2.1 were generalised to the case with a cosmological con-

stant. The Lagrangian is

I =

∫
d4x
√
−g
(
γ(R− 2Λ)− αCµνρσCµνρσ + βR2

)
. (A.0.1)

The equations of motion implied by this action are the same as (1.3.1) and (1.3.4) except for an

additional cosmological constant term.

Hµν(Λ) = Hµν(Λ = 0) + γΛgµν (A.0.2)

H µ
µ (Λ) = H µ

µ (Λ = 0) + 4γΛ . (A.0.3)

The proof that the Ricci scalar vanishes no longer holds - but instead one can show that the

Ricci scalar is constant. Start with the trace of the equations of motion:

H µ
µ (Λ) = 6β�R− γ (R− 4Λ) (A.0.4)

= 6β
(
�R−m 2

0 (R− 4Λ)
)

(A.0.5)

= 6β
(
�S −m 2

0 S
)
, (A.0.6)

where the quantity S is defined as a shift of the Ricci scalar

S := R− 4Λ . (A.0.7)

The equation (2.1.13h) is used to obtain an equation similar to the Λ = 0 calculation of equation

(2.1.6):

0 =

∫
S

√
h d3x

H µ
µ (Λ)

6β
λS =

∫
S

√
h d3x

[
Da (λS DaS)− λ (DaS) (DaS)−m 2

0 λS2
]
. (A.0.8)

Now the requirement that the contribution from the boundary term vanishes is actually un-

changed: we need the vanishing of DaS = DaR at infinity. The consequence is that the bulk

terms must vanish throughout the integration region:

S = 0 ⇔ R = 4Λ . (A.0.9)

Note that while in section 2.1 we assumed asymptotic flatness, which was sufficient for DaR

to vanish on the boundary, in the case with a cosmological constant we will be considering a

space-time satisfying R = 4Λ, which is not asymptotically flat.
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To discuss the trace-free part of the equations of motion we define shifts of other quantities

too:

Sµν :=Rµν − gµνΛ (A.0.10)

S̄ =R̄− 2Λ (A.0.11)

m2(Λ)2 = m 2
2 + Λ

8

6

3β − α
α

. (A.0.12)

The trace-free part of the equations of motion is then given by

0 =
Hµν(Λ)

−2α

∣∣∣∣
S=0

= �Sµν −m2(Λ)2Sµν + 2SρµSνρ − 2∇ρ∇µSρν −
1

2
gµνS

ρσSρσ , (A.0.13)

where we have used the identity

RρσRµρνσ =RµρR
ρ
ν −∇ρ∇µRρν +

1

2
∇µ∇νR (A.0.14)

=SµρS
ρ
ν −∇ρ∇µSρν +

1

2
∇µ∇νS + 2ΛSµν + gµνΛ2 . (A.0.15)

Note also that the S = 0 equations of motion are not equivalent to Einstein-Weyl gravity

(the β = 0 case), but it is still true that they depend on the two couplings only through one

parameter, m2(Λ) 1.

The dimensional reduction of the trace-free part of the equations of motion (A.0.13) pro-

ceeds exactly as in section 2.1.3 where the identities (2.1.13) and (2.1.14) can all still be used if

one reads every R, Rµν and R̄ as S, Sµν and S̄ respectively. The final result is

0 =

∫
S

√
h d3x

[
λ Sµν

Hµν

−2α

∣∣∣∣
S=0

]
=

∫
S

√
h d3x

[
Di

(
λ

4
S̄DiS̄ + λ S..DiS.. − 2λ S..D

.S.i − λ S̄DjS
ji

)
− λ

4
DiS̄ DiS̄ + 2λ DiS̄DjSji − λ DiSjk [DiSjk − 2DjSki]

− λ S̄
2

4

(
m2(Λ)2 + S̄

)
− λ SijSij

(
m2(Λ)2 − 2S

) ]
,

where S is defined as

S :=
SijS

j
kS

k
i

SmnSmn
. (A.0.16)

Unfortunately this suffers from the same problem as the Λ = 0 case and we cannot conclude

anything about Sµν .

1if one had parameterised the Lagrangian as γ(R− 2Λ)− 3(8β′Λ+γ)

8Λ+6m2(Λ)2
C2 + β′R2 then the statement is that there

is no dependence on β′.
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We can try using a slightly more general integrand,

0 = λ
(
aS00 + bSij

)µν Hµν

−2α

∣∣∣∣
S=0

=Di

(
aλ

4
S̄DiS̄ + bλ S..DiS.. − 2bλ S..D.S.i − aλ S̄DjSji

)
− aλ D

iS̄

2

DiS̄

2
+ aλ 2DiS̄DjSji− bλ DiSjk [DiSjk − 2DjSki]

+
a− b
2λ

DiS̄SijD
jλ

− λ S̄
2

4

(
am2(Λ)2 +

3a+ b

4
S̄

)
− SijSijλ

(
bm2(Λ)2 − 2bS +

b− a
4

S̄

)
,

but we still cannot see any way to prove constraints on the curvature.
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