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Rozdzial 1

Wstep

1.1 Wprowadzenie

Rozwdj kanonicznej petlowej grawitacji kwantowej, jaki nastapil w ostatnich latach (|[1],
[2], [3], [4]) pozwala wierzy¢, ze model kwantowej grawitacji sprzezonej z polami Modelu
Standardowego znajduje sie w zasiegu obecnie posiadanej wiedzy. Co wiecej, wydaje sie,
ze uda sie to osiggnaé¢ w obrebie kanonicznego formalizmu oryginalnych réwnan Einste-
ina. Wierzymy, ze nalezy rozpocza¢ badania, ktore beda nas prowadzity w tym kierunku.
Sukcesy kanonicznej petlowej grawitacji kwantowej pozwalaja opytmistycznie patrzeé¢ na

mozliwos¢ zastosowania jej rowniez w obecnym przypadku.

Obliczenie i potaczenie klasycznych wzoréw na entropie czarnej dziury ze stanami geome-
trii kwantowej ([30]) stanowi przekonywujacy argument za stusznoscia kwantowego obrazu
geometrii, jaki przedstawia kanoniczna petlowa grawitacja kwantowa. Zastosowanie ka-
nonicznej petlowej grawitacji do modeli kosmologicznych jednorodnego i izotropowego
Wszechswiata byto kolejnym duzym sukcesem kanonicznej petlowej grawitacji kwantowe;j.
W ten sposob powstala kanoniczna petlowa kosmologia ([15], [16], [17], [18], [19], [20],
[21]). Dowiedzielismy sie z niej wiele na temat jakosciowych efektow kwantyzacji i ewo-
lucji fizycznej ([22], [23]). Wiedza ta okazuje sie przydatna przy wykonywaniu kolejnego
kroku.

Pierwszy kompletny, niestosujacy uproszczen model kwantowej kanonicznje grawitacji ze

wszystkimi lokalnymi stopniami swobody zostal skonstruowany przez Browna i Kuchara



([9]) oraz Giesel i Thiemanna (|24]). Model opisuje grawitacje oddzialujaca z pytem.
Brown i Kuchar zastosowalu metode kwantyzacji Diraca, tzn. ,najpierw kwantuj, potem
rozwiazuj wiezy”. Odwrotna metode zastosowali Giesel i Thiemann — najpierw rozwiaz

teorie klasyczna, potem kwantuj”.

Zrozumienie kwantowej teorii, ktora nie zalezy od geometrii tta i traktuje czasoprze-
strzenne dyfeomorfizmy jako przeksztalcenia cechowania, wymaga znalezienia sposobu na
zdefiniowanie nietrywialnej ewolucji fizycznej. Zadanie to nie jest proste, bowiem w ogdél-
nej teorii wzglednosci hamiltonian jest kombinacja wiezow. Ewolucja jest transformacja
cechowania skad wynika, ze obserwable Diraca ulegaja ,zamrozeniu”. Jest to tak zwany

,problem czasu”.

W modelu Giesel i Thiemanna problem ten jest rozwigzany przy pomocy formalizmu
relacyjnych obserwabli Diraca, nazywanych réwniez ,czesciowymi” ([5], [6], [7], [8]). Pod-
stawowa idea, na ktorej opiera sie ten formalizm polega na tym, ze czes¢ pol przejmuje
role dynamicznie sprzezonych obserwatoréw, wzgledem ktérych mierzymy ewolucje pozo-
statych fizycznych stopni swobody. W formalizmie, tym czasoprzestrzen wytania sie w
efekcie badania realcji pomiedzy polami. Skutecznym narzedziem pozwalajacym zdefi-
niowa¢ relacyjna dynamike jest proces deparametryzacji (|9], [10], [11], [12]). Podejscie
takie, pozwala przedstawi¢ ogblng teorie wzglednosci jako teorie z nieznikajacym fizycz-
nym hamiltonianem, ktory nie zalezy od czasu relacyjnego. Wszytsko to jest realizowane
na poziomie klasycznym, a kwantyzacja jest kolejnym krokiem. W podejsciu Browna —

Kuchara zas, formalizm relacyjny sam wytania sie z teorii kwanrowe;j.

1.2 Najwazniejsze wyniki pracy

W ponizszej pracy przeprowadzona jest do korica procedura Diraca konstrukcji teorii
kwantowej z teorii klasycznej z wiezami pierwszego rodzaju. Skonstruowany model opi-
suje sprzezone ze sobg pola grawitacyjne i bezmasowe pole Kleina — Gordona (w niektorych
czesciach pracy rozszerzamy badania do przypadku ogolnego pola KG). Jest to drugi w li-
teraturze catkowicie scharakteryzowany kanoniczny model kwantowy pola grawitacyjnego

ze wszystkimi lokalnymi stopniami swobody.



Punktem wyjscia przeprowadzonej ponizej konstrukeji jest sformutowanie Kochara — Ro-

mana wiezu skalarnego uktadu (|26]). Schemat konstrukcji jest nastepujacy:

e Sformutowane i rozwiazane zostaja kwantowe wiezy teorii kanonicznej. Sa ro wiezy:
Gaussa (Podrozdzial 3.2) , wektorowy (Podrozdzial 3.2) i skalarny (Podrozdziat
3.3).

e W przestrzeni rozwigzan wiezéw wprowadzony zostaje fizyczny iloczyn Hilberta

(Podrozdziat 3.3).

e Znalezione zostaja wszystkie kwantowe obserwable komutujace z operatorami wie-

zow — obserwable Diraca (Podrozdzial 3.4).

e Zbadane jest dziatanie kwantowych obserwabli na rozwigzanie kwantowych wiezow

(Podrozdziat 3.4).

e Postaé¢ obserwabli Diraca wykazuje istnienie naturalnej 1- wymiarowej grupy auto-

morfizméw. Wtlasnosé ta zostaje wykorzystana do definicji dynamicznej ewolucji.

e Znaleziony zostaje kwantowy hamiltonian generujacy dynamiczna ewolucje (Pod-

rozdzial 3.5).

e Scharakteryzowane zostaje dzialanie kwantowego hamiltonianu na rozwiazania wie-

zow kwantowych (Podrozdzial 3.5).

e Wykazana zostaje rownowaznos¢ wyprowadzonego modelu z teorig zdefiniowang w
przstreni stanéw kwantowych teorii pola grawitacyjnego bez materii spetniajacych
wiaz wektorowy (ale nie skalarny) i ewoluujacych wzgledem uzyskanego hamilto-

nianu fizycznego (Podrozdzial 3.5).

e Do opisu stanéw i operatoréw bezzrodtowego pola grawitacyjnego zastosowany jest
formalizm petlowej grawitacji kwantowej. W szczegolnosci podana jest regularyzacja
prowadzgca do wyrazenia nowego fizycznego hamiltonianu przez znane operatory

petlowej grawitacji kwantowej (Podrozdzial 4.5).

e Zaporponowane jest nowe wyprowadzenie kwantowego operatora wiezu skalarnego
bezzrodlowej grawitacji alternatywne do wyprowadzenia Thiemanna (Podrozdziat

4.6).

10



Podsumowujac, ze znalezonych rozwiazan w teorii kwantowej i przeprowadzonej konstruk-
cji wylania sie postac teorii taczaca ze soba elementy klasycznego sformutowania Kuchara
— romano oraz heurystycznego modelu fizycznego czasu autorstwa Rovelliego i Smolina

([25]). Prezentowane tutaj wyniki zostaty opublikowane w dwoch artykutach naukowych

[13] oraz [14].

1.3 Aktualne wyzwania

Zastosowanie kanonicznej petlowej grawitacji kwantowej do tworzenia modelu niesie ze
soba pewne konsekwencje, ktore ciagle wymagaja badan i stanowia ciekwe wyzwanie dla
kontynuacji niniejszych wynikow. Polegaja one na tym, ze opis materii Modelu Standar-
dowego musi zostaé¢ przeformutowany w sposéb zgodny z wynikami kanonicznej petlowej
grawitacji kwantowej. Wynika to z faktu, ze standardowy opis materii z kwantowej teo-
rii pola zdefiniowanej na rozmaitosci Minkowskiego jest niekompatybilny z wymaganiami
petlowej grawitacji kwantowej. Dlatego w oparciu o prezentowane podejscie, kwantowa

grawitacja nie daje si¢ sprzac z Modelem Standardowym w jego obecnym sformutowaniu.

Rozszerzenie prezentowanych wynikéw o pozostate pola Modelu Standardowego i znalezie-
nie spdjnego obrazu obu modeli jest wielkim wyzwaniem na przysztos¢. Mamy nadzieje,

ze niniejsza praca przyczyni sie do dalszego rozwijania prezentowanego kierunku badan.

1.4 Plan pracy i uwagi

1.4.1 Zawartos¢ rozdzialow

Celem niniejszej pracy jest wprowadzenie kwantowego modelu pola skalarnego sprzezo-
nego z polem grawitacyjnym. W celu stworzenia pelnego modelu wykorzystamy techniki

kwantyzacji petlowe;j.

Wybieramy taki sposob zaprezentowania wynikéw, ktory pozwoli wydzieli¢ ogélny sche-
mat postepowania niezalezny od tego czy wybieramy kanoniczng petlowa grawitacje kwan-
towa czy nie. W rzeczywistosci bedzie to centralny punkt naszej pracy, gdzie prezentujemy

pelny model kwantowy wymieniajac niezbedne obiekty matematyczne i okreslajac rela-
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cje miedzy nimi. Oddzielnym punktem naszej prezentacji bedzie pokazanie, w jaki sposob
otrzymujemy te obiekty w formaliZzmie kanonicznej petlowej grawitacji kwantowej. W

szczegblnoscei opiszemy konstrukeje operatora fizycznego Hamiltonianu.

Niniejsza praca sktada sie z pieciu rozdziatow.

Rozdzial 1 jest rozdzialem wstepnym i zawiera dwa podrozdzialy opisujace motywacje,
schemat pracy oraz uwagi o notacji. Dodatkowo Podrozdzial 1.2 opisuje najwazniejsze

wyniki pracy.

Rozdzial 2 opisuje klasyczny model pola skalarnego sprzezonego z polem grawitacyjnym.
Sktada sie ona z trzech podrozdziatéw. Podrozdzial 2.1 opisuje kanoniczne sformutowanie
ogoblnej teorii wzglednosci. Podrozdzial 2.2 zawiera wprowadzenie zmiennych Ashtekara.
W podrozdziale 2.3 natomiast przedstawiona jest deparametryzacja klasycznej ogdlnej

teorii wzglednosci przy uzyciu pola skalarnego.

Rozdzial 3 zawiera 6 podrozdziatéw i opisuje model kwantowy. Zawiera opis niezbed-
nych obiektow, ktorych konstrukcja w oparciu o kanoniczna petlowa grawitacje kwantowa
zostanie dokonana w kolejnej czesci. Podrozdzial 3.1 opisuje kinematyczne podstawy
nowego modelu. W kolejnym podrozdziale 3.2 opisujemy sposéb, w jaki mozemy ,for-
malnie” rozwiaza¢ wiezy gaussowskie i wektorowe ogolnej teorii wzglednosci. Wiezom
skalarnym i ich rozwiazaniu poswiecony jest kolejny podrozdziat 3.3. W podrozdziale 3.4
wprowadzamy pojecie kwantowej obserwabli Diraca, za§ w podrozdziale 3.5 opisujemy ich

ewolucje. Podrozdziat 3.6 stanowi podsumowanie tej czesci.

Rozdzial 4 opisuje zastosowanie technik petlowych. Zawiera sze$¢ rozdzaiatow. W pod-
rozdziale 4.1 opisana jest kinematyczna przestrzen Hilberta. Podrozdzial 4.2 opisuje ge-
nerowane przez wiezy gaussowskie transformacje Yanga—Millsa. Dzialanie wiezow dyfe-
omorficznych (wektorowych) opisane jest w podrozdziale 4.3. Dzialanie operatoréw na
przestrzenach niezmienniczych wzgledem wiezéw opisanych w poprzednich rozdzialach
opisane jest w podrozdziale 4.4. Przestrzen fizyczna i dynamika opisane sa w podroz-

dziale 4.5. Podrozdziat 4.6 zawiera oryginalna propozycje konstrukeji operatora wiezow
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skalarnych. Podejscie to jest obecnie przedmiotem naszych badan.

Rozdzial 5 zawiera uwagi podsumowujace.

Praca zawiera jeden Dodatek, opisujacy kalkulacje nawiasu Poissona nowych wiezow ska-

larnych dla pola skalarnego z potencjatem.

1.4.2 Uwagi o jezyku i notacji

Wybor jezyka polskiego, jako jezyka w jakim pisana jest ta rozprawa jest Swiadomym wy-
borem autora. Dokonalem go pod wplywem rozmoéw, jakie toczytem z prof Stanistawem
Rohoziriskim, ktéry przekonatl mnie, ze nasza odpowiedzialnoscig jest nie tylko rozwdj

nauki, ale réwniez rozwoj jezyka polskiego, ktory ma ta nauke opisywac.

Dlatego podejmuje to wyzwanie w niniejszej pracy, efektem czego sa miejscami propozy-
cje jezykowe, ktore maja odpowiada¢ utartym juz angielskim zwrotom, jakie uzywamy w

publikacjach.

Dlatego w pracy tej, zastepuje angielska nazwe loop quantum gravity polskim odpowied-
nikiem ,kanoniczna petlowa grawitacja kwantowa’.
W miejsce angielskiego stowa observable postanowitem uzy¢ spolszczonego wyrazu ,,obser-

wabla”.
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Rozdzial 2

Analiza na poziomie klasycznym

,, Nie jest zreszty wazne, jak zdefiniujemy czas, ale raczej, jak go bedziemy
mierzy¢. Jednag z metod mierzenia czasu jest wykorzystanie jakiego§ powta-
rzajacego sie regularnie zjawiska, czego$ okresowego (periodycznego). |...]

... to znaczy wierzymy, ze okreslaja one jednakowe przedzialy czasu, chociaz
nie stwierdziliémy, czy oba zjawiska sa ,naprawde”’ okresowe. [...| Mozemy
najwyzej powiedzie¢, ze pewne zjawisko wykazuje podobna regularno$é jak

jakies inne. [...]”

,Feynmana Wyktady z Fizyki” tom I, czes¢ 1

Podstawowa lekcja wyptywajaca z ogolnej teorii wzgledno$ci Alberta Einsteina jest taka,
ze grawitacja to geometria. Nie istnieje sita grawitacyjna, a ruch czastek niepoddawanych

dziataniu innej sity to ruch swobodny po krzywych geodezyjnych.

Ogolna teoria wzgledno$ci wyznacza zakrzywiong geometrie. Staje sie ona $cisle sprze-
zona z materialng zawarto$cia Wszechswiata. Z biernego obiektu fizyki przed ogdlna teoria

wzglednodci zostaje czynnym uczestnikiem zdarzeri podlegajacych prawom fizyki.

Dynamika ogolnej teorii wzglednosci jest catkowicie opisana za pomoca réwnan Einsteina
Gab =8m Tab'

Z réznych jednak wzgledow takie sformutowanie sprawia wiele trudnosci. Z punktu wi-

dzenia definicji tensora energii - pedu i zrozumienia sposobu sprzegania sie geometrii z

14



materia duzo bardziej odpowiednie wydaje sie sformulowanie ogolnej teorii wzglednosci
za pomocy funkcji Lagrange’a i zasady najmniejszego dzialania. Rowniez kwantyzacja w

oparciu o calki po trajektoriach wymaga takiego sformutowania klasycznej teorii.

Kanoniczne podejscie do ogolnej teorii wzglednosci (podejscie hamiltonowskie) pozwala
spojrze¢ na rownania Einsteina, jako na rownania opisujace ,ewolucje w czasie” pewnych
wielkosci. Mozna je wyprowadzi¢ z formalizmu Lagrange’a za pomocg transformacji Le-

gender’a. Stanowi ono rowniez centralne miejsce w kanonicznej metodzie kwantyzacji.

Kanoniczne podejscie ujawnia réwniez pewne trudnosci interpretacyjne. Okazuje sie, ze
ogblna teoria wzglednosci jest teorig z wiezami, a kanoniczny Hamiltonian jest liniowa
kombinacja tych wiezéw. Problem ten,zwany potocznie problemem czasu, przenosi sie na
poziom kwantowy poprzez niemozliwos¢ prostego zdefiniowania nietrywialnych kwanto-

wych obserwabli Diraca.

Poniewaz rozwiazanie problemu czasu, zdefiniowanie rodziny kwantowych obserwabli Di-
raca oraz fizycznego Hamiltonianu generujacego dynamike jest gléwnym tematem tej
pracy, pierwsza cze$¢ tej rozprawy poswiccona jest odpowiedniemu przeformutowaniu
ogolnej teorii wzglednosci. Glownym wynikiem niniejszej czesci bedzie sformutowanie
klasycznej teorii opisanej w formalizmie kanonicznym, ktorej przestrzen fazowa stanowi
podzbiér pelnej przestrzeni fazowej wynikajacej z lagranzowskiego opisu ogoélnej teorii
wzglednosci. Poza tym rownania wiezéw sa rownowazne standardowym réwnaniom wie-
zow wynikajacym z formalizmu ADM, ale definiuja algebre Liego. Ponadto w nowym
ujeciu grawitacja sprzezona z bez masowym polem skalarnym bedzie teoria deparametry-

zowalna, co pozwoli zdefiniowac fizyczng ewolucje w oparciu o tzw. zmienne relacyjne.

2.1 Formalizm kanoniczny w zmiennych ADM

Bedaca tematem pracy konstrukcja kwantowego modelu grawitacji sprzezonej z polem ska-
larnym, w zaden sposob nie wyréznia zmiennych Arnowitta, Desera i Misnera zwanych
ADM. Wybér zmiennych opisujacych geometryczng czesé modelu Wszech$wiara uzalez-

niony jest od formalizmu kwantowego wybranego do jej kwantowego opisu. W przypadku
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prezentowanego tutaj modelu wykorzystujacego formalizm kanonicznej petlowej grawita-

cji kwantowej, takimi zmiennymi beda zmienne Ashtekara.

Zmienne ADM poshuza jednak za punkt wyjscia i tgcznik prezentowanego modelu z kwan-
tyzacja Wheelera-DeWitta. Po przejsciu do nowych zmiennych, w rozwazanym przypadku
zmiennych Ashtekara, zachowamy odniesienie do tego modelu, traktujac zmienne ADM

jako odpowiednie funkcjonaty zmiennych Ashtekara.

2.1.1 Ro6zne opisy ogoélnej teorii wzglednosci

Ogolna teoria wzglednosci ma na celu wyznaczenie geometrii Wszech$wiata. Zastepuje
ona pojecie sity grawitacyjnej, ktora traci swoje klasyczne znaczenie. Geometria ta jest
Scisle zwigzana z materig i z jednej strony okresla jej konfiguracje, a z drugiej strony jest

przez nig wyznaczona.

Sprzezenie geometrii z materia wyrazaja roéwnania Einsteina

G = 87T,

2

(2.1)
gdzie, jako podstawowg zmienng geometryczng bierzemy tensor metryczny g,, na 4-

wymiarowej rozmaito$ci M modelujacej czasoprzestrzei.

Sposob, w jaki wyrazone jest sprzezenie materii z geometria w réwnaniach Einsteina

polega na tym, ze tensor Einsteina

G =G [gw] ) (2.2)
jest wyznaczany z metryki. Natomiast tensor energii-pedu 7),,,

T/w = T/w [¢7 g,uu] > (23)
zalezy rowniez od konfiguracji pola materii symbolizowanej przez ¢. To ta obecno$¢ g,
w (2.3) jest najwieksza komplikacja do zrozumienia natury sprzezenia geometrii z materia.
Formalizm Lagrange’a dostarcza prostszego sposobu patrzenia na sposoéb w jaki geometria
i konfiguracja materii wypetniajacej Wszech$wiat sprzegaja sie w obrebie teorii grawitacji.
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Ich sprzezenie wyraza sie za pomoca dodawania do siebie czltonéw dziatania opisujacych

poszczegoblne rodzaje materii.

Ograniczajac sie do opisu grawitacji sprzezonej z polem skalarnym ¢, szukamy funkcjonatu

S = S[6gul. (2.4)

ktorego znikanie wariacji, okresla¢ bedzie konfiguracje pdl ¢ i g, na M. Sprzezenie
geometrii z materig jest widoczne w postaci tego dzialania, ktére mozemy przedstawic,

jako sume cztonu geometrycznego i cztonu materii

S0, 9] = Sgr (9u] + S [&: G| - (2.5)
Wariacja tego dziatania daje rownania pol

5456, ) = 0, 3,516, gpu] = 0. (2.6)
Podanie postaci Sy, i Sy okresla prawa fizyczne.

Zaro6wno zmienne opisujace czesé¢ grawitacyjng jak i postaé¢ dziatania nie sa jednoznaczne.

Wybieramy tutaj najprostsza posta¢ tego dziatania, czyli dziatanie Einsteina - Hilberta

%MMZ/ﬁMQMWL 2.7)

M

gdzie przez g oznaczamy wyznacznik det g,,,, a R oznacza skalar Ricciego.

Nasza uwage ograniczymy jedynie do pola skalarnego z potencjatem. Dziatanie opisujace

materialng cze$é naszej teorii przyjmuje wtedy postacé
1
S¢ [¢7 g;u/] = /d4$ (_5 (\/ _ggw/v;ﬂstQs + 2\/ _gv[¢])) . (28)
M

Standardowe obliczenia wariacji dziatania zdefiniowanego za pomoca powyzszych rownan,

ktore mozemy znalez¢ w [27], definiuja rownania okreslajace fizycznag konfiguracje pol

5V
045 [f: Gu] = 0554 [0, gu] = 0 = ¢""'V,V ¢ — % =0, (2.9)
1
0459, 9] = 0= Ryy = 5 Ry = 87T, (2.10)
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gdzie
_ i 1 §S¢[¢7 g,ul/]
8T \/—9  0Guw

Powyzsze rownania odpowiadaja rownaniom pola skalarnego potencjatem oraz réwnaniom

T

(2.11)

Einsteina.

2.1.2 Wyprowadzenie formalizmu kanonicznego z zasady najmniej-

szego dzialania

Roéwnania Einsteina traktujemy, jako podstawowe rownania opisujace oddziatywanie gra-
witacji z materia. Za jego pomoca dokonujemy weryfikacji dowolnego innego sformutowa-
nia jako, ze ogdlna teoria wzglednosci zostata doktadnie zweryfikowana eksperymentalnie.
Przedstawione w poprzednim paragrafie sformutowanie ogélnej teorii wzglednosci z polem

skalarnym jest takim réwnowaznym i fizycznie nie rozréznialnym opisem.

Formalizm kanoniczny jest podstawa kanonicznego procesu kwantyzacji. Pozwala inter-
pretowaé odpowiadajaca mu teorie kwantowa. Taki punkt widzenia pozwala przedstawié
grawitacje, jako ewolucje w czasie 3-wymiarowych obiektéw okreslonych na powierzchni

Cauchy’ego globalnie hiperbolicznej czasoprzestrzeni.

Ujecie to ujawnia rowniez problemy interpretacyjne wynikajace z pojawienia sie wiezoéw
pierwszego rodzaju, ktérych liniowa kombinacja stanowi kanoniczny Hamiltonian teorii.
Problemem tym, okreslanym potocznie mianem problemu czasu i jego rozwigzaniem be-
dziemy zajmowaé sie w kolejnych rozdzialach. Celem kolejnych trzech paragraféw bedzie

jego Scisle zdefiniowanie. Wyprowadzona zostanie réwniez algebra wiezow.
Punktem wyjécia bedzie lagranzowskie sformulowanie za pomoca dziatania zdefiniowanego
w poprzednim paragrafie rownaniami (2.5), (2.7) 1 (2.9). Szczegodly opisanego wyprowadz-

nia pochodza z [27] oraz [8].

Dziatanie S jest funkcjonatem konfiguracji pol okreslonych na 4-wymiarowej rozmaitosci
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M modelujacej czasoprzestrzen,

¢: M>p—d(p) €R, (2.12)
G M 3D = gu(p) €S (T"MRST*M) (2.13)
S =S¢, gw] =
~ [ (—éx/—_gg““ww T \/—_ngl) (2.14)
M

Zastosowanie formalizmu kanonicznego wymaga rozbicia takiego opisu na czas i prze-
strzen. Pierwszym krokiem bedzie przyjecie zalozenia, ze czasoprzestrzen M mozemy

przedstawi¢ w postaci

MZ=Rx M,

gdzie M jest 3-wymiarowa rozmaitoscia Euklidesowa. Wiadomo, ze wtasno$¢ taka po-
siada kazda czasoprzestrzen, ktora jest globalnie hiperboliczna. W kanonicznym ujeciu
bedziemy chcieli 4-wymiarowe obiekty na M przedstawi¢, jako 3-wymiarowe obiekty na

M ewoluujace w czasie R.

Wybor dyfeomorfizmu opisanego powyzej nie jest jednoznaczny i jest objawem kowariant-
noéci rozpatrywanej teorii. W pierwszej kolejnosci dokonujemy foliacji czasoprzestrzeni

M za pomoca powierzchni Cauchy’ego M; poprzez wybor globalnej funkeji czasu
t: M—=R (2.15)

Zakladamy, ze wyboru dokonujemy w taki sposob, ze wszystkie M, sa dyfeomorficzne z

3-wymiarowa rozmaitos$cia Euklidesowa M, oraz sa typu przestrzennego.

Nastepnie dokonujemy identyfikacji punktéow na réznych lisciach M;, za pomoca lini cal-
kowych pola wektorowego

M= TM, (2.16)

ktore okresla strumien czasu. Zaktadamy, ze pole t* spelnia warunek
"V, t =1 (2.17)
Otrzymujemy w ten sposob dyfeomorfizm
X :RxM— M, (2.18)
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za pomoca, ktorego bedziemy przedstawiaé¢ 3-wymiarowe obiekty na M, zmieniajace sie w

czasie R.

Dyfeomorfizm (2.18) wraz z tensorem metrycznym g¢,, wyznaczaja jednoznacznie na M

nastepujace pola wektorowe i funkcje
n*: M>p—nt(p) € T,M
=94 N M>p— NHp) e T,M ¢,
N:M>3p— N(p) €R

X RxM—M
G :M3p—=gup) €S(T MT*M)

(2.19)
gdzie n* jest polem wektorowym wektoréw ortonormalnych do lisci foliacji przechodzacego

przez dany punkt. Mamy unormowanie

Gun'n” = —1, (2.20)
a definicje N* zwanego wektorem przesuniecia i N zwana funkcja lapsu znajduja sie w
dalszej czesci tekstu.

Dowolny tensor T*¥ ktorego zwezenie z n* znika, tzn.

p...0)

Y e mynf .. =0, (2.21)

nazywamy tensorem przestrzennym. Tensor taki jest obrazem tréojwymiarowego tensora
Tt ., zdefiniowanego na M. Otrzymujemy go za pomoca odpowiedniego zanurzenia

M — M, otrzymanego z dyfeomorfizmu X.

Interpretacja 4-wymiarowych obiektoéw zdefiniowanych na M jako ewolucje 3-wymiarowych
obiektoéw zdefiniowanych na rozmaitosci modelujacej powierzchnie statego czasu M w cza-
sie R, sprowadza si¢ do przedstawienia ich, jako grupy obiektéw przestrzennych zmienia-
jacych sie w czasie posiadajacych ta samg informacje. W dalszej czesci na konkretnych

przyktadach pokazane jest jak to osiagnaé¢ dla interesujacych nas wielkosci.

Ewolucja w czasie, czyli rézniczkowanie po ¢ w tym podejsciu odpowiada przesuwaniu
sie wzdtuz krzywej catkowej pola wektorowego t#, a wiec odpowiedniej pochodnej Liego

wzdluz t#,

d a na v
— b ea=1 b eq = LwTH o

o (2.22)

Noa
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Kolejno przedstawiamy w ten sposob elementy wystepujace w (2.14). Definiujemy po-

trzebne obiekty.
Quv = G + NNy, (223)

ktory definiuje Euklidesowg metryke na kazdym lisciu foliacji M;. Metryka ta jest prze-
strzenna, g,,n* = 0 1 moze zosta¢ cofnigta do M. Otrzymujemy w ten sposob zalezng od

czasu rodzine tensoréw metrycznych na M,
Qv & M — gap(t) na M. (2.24)

Podnoszac jeden z indeksow otrzymujemy projektor ¢,” rzutujacy dowolny 4-wymiarowy
tensor na tensor przestrzenny. Jezeli V oznacza pochodna kowariantng wyznaczona przez
Juv, to otrzymujemy kolejny tensor przestrzenny okreflajacy krzywizneg zewnetrzng liscia
M,

Ku = q,"4,Von,. (2.25)

Podobnie jak g, jest on przestrzenny i symetryczny ([27]), stad
K,, na M — K,(t) na M. (2.26)

Wielkosci N* i N, ktore pojawiaja sic w (2.19) definiujemy, jako cze$¢ styczng i ortogo-

nalng do lidcia w rozktadzie pola wektorowego t#,
th =N n* + NH, (2.27)

oraz

N¥n, = 0. (2.28)
Mozemy je przedstawié, jako wielkosci na M ewoluujace w czasie
N#,N na M — N%(t), N(t) na M. (2.29)

W dalszej czesci pracy za pomocg D oznaczamy pochodng kowariantng na M okreslong za
pomoca qqp. Korzystajac z [27] i [3| taczymy geometryczne obiekty zdefiniowane na M z
tymi zdefiniowanymi na M. Jest to standardowa procedura formalizmu ADM. Lacznikiem

sa dyfeomorfizmy M — M, wyznaczone przez dyfeomorfizm X z (2.19). Jezeli

X:RxM>3(t,x) > X(t,x) =pe M, (2.30)
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to M — M, definiujemy ktadac t = const
M>x— X(t,x) € M,. (2.31)

W ten sposob otrzymujemy nastepujace zwiazki obiektéow wystepujacych w dziataniu

(2.14).

W pierwszej kolejnosci zamieniamy catkowanie

/ d*r — / dt / d*x. (2.32)
M R M

Poniewaz tensor metryczny g, mozemy roztozy¢ w nastepujacy sposob [3]

_N2 + QabNaNb qabNb

) BN L
I — et (2.33)

qab

widzimy, ze mozemy przedstawi¢ go, jako ewolucje w czasie nastepujacych wielkosci
G na M — N(t), N(t), g (t) na M. (2.34)

Na podstawie (2.33) mamy
V=9=N-a. (2.35)

Roéwnanie Gaussa-Coddaci’ego tacza 3-wymiarowy skalar Ricceigo wyznaczony za pomoca

koneksji D z 4-wymiarowym wynikajacym z koneksji V,
RYW = R® ¢ K,, — K* — { wyrazy brzegowe w calce dzialania }. (2.36)
Stad mozemy przedstawic
R™ na M — R®(t), K(t) na M. (2.37)

Przechodzimy nastepnie do czesci zwiazanej z obecnoscig pola skalarnego. W oczywisty

sposob mozemy przedstawic

¢ na M — ¢(t) na M. (2.38)
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Odwracajac macierz (2.33) otrzymujemy

1 N©e
“ N2 N2
Nﬂ.
g’wj .o ~z . . .
- | " . (2.39)
: qab . NNZZV

Stad obliczamy wyrazenie wystepujace w dziataniu

a

b
—2> Dat Dy, (2.40)

N
9VWOV 0 = ——gzs + 2555 Datb® + ( N

Ponizsza zalezno$¢ pozwoli znalezé¢ ped kanoniczny sprzezony do q,p, poniewaz taczy po-

chodng po czasie z wyrazeniami wystepujacymi w dziataniu

1
Ky = w D, N, — DyN,) . 241
b — 2N (Qb b b ) ( )

Podsumowujac wszystkie powyzsze wyniki mozemy zapisa¢ dziatanie (2.14) w postaci,
gdzie za zmienne konfiguracyjne bedziemy uwazaé¢ N(t), N*(T) i qq(t) w miejsce g, oraz

¢(t) w miejsce ¢. Otrzymujemy nastepujaca posta¢ dziatania

S@WMAWN%MNﬁﬁ::/ﬁ/fmvmwmw+mmw_Kﬂ+

a N\Tb
/dt/ d*x fN( 2+ 2£ Datpd + ( NN];[ ) DopDyg — 2V[¢]>

(2.42)

Kolejny krok wymaga znalezienia pedéw kanonicznie sprzezonych do zmiennych konfigura-
cyjnych i przedstawienia dzialania, jako funkcjonatu potozen i pedéow w miejsce predkosci
uog6lnionych. W pierwszej kolejnosci rozpatrujemy zmienne grawitacyjne i odpowiada-

jace im pedy.

Ped sprzezony do g, znajdujemy zgodnie z definicja ze wzoru

pab 5 — \/— (Kab anb) ’ (243)
qab

gdzie wykorzystalismy (2.41). Natomiast pedy kanonicznie sprzezone do N i N znikaja,

poniewaz N i N nie wystepuja w dziataniu

55
= — =0, 2.44
PN (2:44)

55
=22 2.45
P = N (2:45)
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Kolejno rozpatrujemy czesé pola skalarnego i ped kanonicznie sprzezony do ¢

68 ; 1
™= % = \/a% - \/aNNaDaQS'

(2.46)

Przeksztatcenie dzialania (2.14) za pomoca powyzej wyprowadzonych wzoréw prowadzi

do nastepujacego dziatania bedacego funkcjonatem kanonicznych potozen i pedow

SMwﬁwwmﬂzéﬁLfd%MWm+WM@%-

3 P"Pay
— dt/de(— qR + 2 -
/R M Vi NG

—i—/dt/ d%NC‘ —2qabDCpCd)+

/ dt / d%N( — + f q“bDa¢Db¢+V[¢])

—l—/dt/ PP NT Dy
R JM

(2.47)

W powyzszym réwnaniu zaniedbujemy wyrazy brzegowe. Zarowno qq,(z) jak i ¢(z) trak-

tujemy, jako funkcjonaly potozeri i pedéow kanonicznie do nich sprzezonych. Mozemy z

niego odczyta¢ Hamiltonian kanoniczny, ktory jest catka po przestrzeni M i mozemy go

zapisa¢ w nastepujacej postaci
Niin = / d*xN(z) - C(x) + N*(z) - Cy(x),
M
Wprowadzamy nastepujace oznaczenia

C(x) = €O () + C9(a),

gdzie
ab 1 p2
CU(z) = — qR+p Pab _ ——,
() = =g NN
1
C@(z) = U f 4" Da Dy + \/qV 9.
2V
Podobnie
Calz) = C¥ () + CP(x),
gdzie

C) () = —2¢uDep™,
C(x) = mDy.

a
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Powyzszy Hamiltonian nie zalezy od pedéw kanonicznie sprzezonych do N i N® w zwiazku
z czym ewolucja tych zmiennych nie jest fizycznie zdefiniowana. W rzeczywistosci sa one

dowolne i okreslaja sposob foliacji M.

Wariacja hy;, wzgledem N i N okresla réwnania definiujace wiezy

Clz) = 0, (2.55)
Calz) = 0. (2.56)

Kanoniczna posta¢ nawiaséw Poissona, ktore odczytujemy z postaci dziatania

{qab(2), p°(y) } = 60,050 (x, y), (2.57)
{o(x), m(y)} = d(z,y), (2.58)

okreslaja ewolucje pozostatych zmiennych

Gav(7) = {qap(2), haan} . D™(2) = {p**(2), hin } (2.59)
A(x) = {o(x), hiin}, 7(x) = {7(x), hgin} - (2.60)

Rownania (2.55), (2.56), (2.59) i (2.60) sa rownowazne z rownaniami Einsteina. W dalsze;
czedcl pracy przestrzen fazowa, ktorej punkty stanowia konfiguracje pol na 3 wymiarowej
rozmaitosci M (qap(z), p™(2), ¢(x), w(2)) bedziemy oznaczac I'. Jest ona iloczynem czesci
geometrycznej I'9") skladajacej sie z (gu(2), p™ () oraz czesci materii I'®) skladajace]
sie 2 (§(x), 7(x)).

2.1.3 Wiezy ogolnej teorii wzglednosci

N (x) i N “(x) nie wystepuja w dzialaniu (2.42), z czego wynika wystepowanie wiezow
w rozwazanej teorii. Zmienne konfiguracyjne N(z) i N*(x) nie niosa ze soba informacji
fizycznej, a oznaczaja jedynie wybor foliacji czasoprzestrzeni i petnia role mnoznikéw

Lagrange’a w dzialaniu. W konsekwencji tego otrzymujemy wiezy skalarne
C(x) = CY)(z) + C¥(z) =0, (2.61)

oraz wiezy wektorowe

Cy(z) = CY)(z) + C () = 0. (2.62)



Podstawowe i niezbedne elementy kwantyzacji teorii z wiezami przedstawiamy za [46]. W
celu uczynienia pracy maksymalnie przejrzystej ograniczymy sie jedynie do faktéow nie-

zbednych przy konstrukeji prezentowanego modelu.

Poniewaz przestrzen fazowa rozwazanej teorii jest nieskonczenie wymiarowsa przestrzenia
konfiguracji pol qu(7), ¢(z) oraz gestosci p®(z), w(x) na M, w miejsce kanonicznych
nawiasOw Poissona postugujemy sie tzw. wersjami rozsmarowanymi wynikajacymi z na-

stepujacej definicji

n_ [ g 9G 0G 0G 8¢
{G’G}_/Md (5qab(ﬂ:) Sp(x)  dpod(x) 5qab(:v))+
s [ 0G 0GT 6G 8¢
+/de<5¢(x) om(z) om(x) (5¢(x))' (2.63)

Zakladamy, ze dokonalismy juz redukcji przestrzeni fazowej do (qab(x), o(x), p®(z), 7T(23))
eliminujac niefizyczne zmienne N(z) i N%(z). G i G’ oznaczaja funkcjonalty na tej prze-

strzeni

G=G [qab(x)v ¢(x>’pab($)’ W(ZE)] ) G =G [QGb(m)7 ¢(x)’pab($)v ﬂ-(x)} :

Roéwnania wiezoéw generuja transformacje przestrzeni fazowej, ktore sa transformacjami
cechowania. Oznacza to, ze konfiguracje pol, ktore leza na tej samej orbicie takiej trans-
formacji sg fizycznie réwnowazne. W naszym przypadku nawet po redukcji przestrzeni

fazowej o N i N pozostaje swoboda zwiazana z obecnoscig wiezow (2.61) i (2.62).

Podstawowe wtasnosci wiezéw okreslaja:
e Alebra wiezéw okreslona za pomoca nawiaséw Poissona.
e Generowane prze nie transforamcje przestrzeni fazowe;.

W przypadku wiezéw grawitacyjnych powyzsze wlasnosci wyprowadzamy bezposrednim
rachunkiem. Stad wiezy wektorowe generuja dyfeomorfizmy styczne do powierzchni liscia.
Wiezy skalarne generujg dyfeomorfizmy prostopadle do powierzchni liscia, pod warun-

kiem, ze znajdujemy sie na przestrzeni rozwigzan wiezow.
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Bezposredni rachunek prowadzi rowniez do algebry wiezow

{C.IN, Co[ M)} = C,, [N’ DyM* — M"D,N“], (2.64)
{C[N],CG[MG]} = _C[MaDaN] ) (265)
{C[N],C[M]} = C, [¢" (NDyM — MDyN)] . (2.66)

PrzyjeliSmy nastepujace oznaczenia
C[N] ::/ deN(:L’)C(x), (2.67)
M
CLINY = / BN (2)Co(x). (2.68)
M

We wzorze (2.66) nie mamy stalej, a funkcje struktury, co sprawia, ze obliczona algebra

nie jest algebra Liego.

2.1.4 Znikajacy Hamiltonian i problem czasu w ogélnej teorii
wzglednosci

Przedstawienie ogoélnej teorii wzglednosci w formalizmie kanonicznym ujawnia dodatkowe

komplikacje. Potocznie nazywamy ja problemem czasu.

Ogolna teoria wzglednosci w formalizmie kanonicznym okazuje sie teoria z wiezami. Po-
niewaz nawiasy Poissona pomiedzy wiezami nie generuja dodatkowych wiezow méwimy,

ze s to wiezy pierwszej klasy.

Wiemy, ze takie wiezy generuja transformacje cechowania, stad punkty lezace na orbitach
okreslaja ten sam stan fizyczny uktadu. Dlatego obserwable Diraca, a wiec funkcje na
podprzestrzeni wiezow przestrzeni fazowej, ktore maja fizycznie obserwowalne znaczenie

musza by¢ state na tych orbitach. Oznacza to znikanie ich nawiasow Poissona z wiezami

{F,CIN]} =0, (2.69)
{F,C,IN“]} = 0. (2.70)
Z drugiej strony, kanoniczny Hamiltonian (2.48), ktorego rola jest generowanie ewolucji w

czasie, jest liniowa kombinacja wiezow. Wynika stad, ze po pierwsze, dla konfiguracji pél z

podprzestrzeni rozwiazan wiezéw, czyli fizycznie nas interesujacej, Hamiltonian znika. Po
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drugie ewolucja w czasie pokrywa sie z transformacja cechowania. Dlatego grawitacyjne

obserwable nie ewoluuja w czasie, a pozostaja state.

Problem czasu stanowi nie tylko trudnos¢ interpretacji obserwowalnej lokalnie ewolucji,
ale rowniez stanowit blokade na drodze do kanonicznej grawitacji kwantowej. W dalszej
czesci te] pracy zastosujemy podejécie oparte na zmiennych relacyjnych, aby poradzié¢

sobie z tym problemem.

2.2 PrzejsScie do zmiennych Ashtekara

Kanoniczna posta¢ ogolnej teorii wzglednosci stanowi pierwszy krok na drodze kanonicz-
nej kwantyzacji. Podejscie takie zakonczyto sie niepowodzeniem ze wzgledu na skompliko-
wang, nieliniowg posta¢ Hamiltonianu dla grawitacji. Mimo to prace Wheelera i DeWitta
byly krokiem milowym naprzod. Dlatego kwantowanie kanoniczne zmiennych ADM be-

dziemy nazywaé¢ kwantowaniem Wheelera-DeWitta.

Nowa kanoniczna przestrzen fazowa prowadzona przez Ashtekara ([28], [29]) jest kolejnym
duzym krokiem na drodze do kwantowej teorii grawitacji. Przedstawienie ogoélnej teorii
wzglednos$ci w zmiennych Ashtekara upodabnia jg do teorii Yanga-Milsa. To przedstawie-
nie umozliwia réwniez kwantyzacje niezalezng do metryki tta, co byto duzym problemem

w teorio polowych probach kwantowania ogdlnej teorii wzglednosci.

Wyprowadzenie zmiennych Ashtekara oraz ich zastosowanie do kwantyzacji ogdlnej teorii
wzglednosci znajduje sie w podsumowujacym artykule [1]. Jednak tutaj wyprowadzimy

je za Thiemannem [3].

2.2.1 Rozszerzenie przestrzeni fazowej ADM

Podejscie zaprezentowane w podreczniku Thomasa Thiemanna rézni si¢ od oryginalnego
wyprowadzenia. Jednak ze wzgledu na bezposrednie uwidocznienie ze zmiennymi ADM

to podejécie wybieramy w tej pracy.
W miejsce wyprowadzenia zmiennych Ashtekara motywowanego postacia dziatania, wy-
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bieramy podejscie opierajace sie na transformacjach przestrzeni fazowej. Poniewaz roz-
wazania tego paragrafu tycza sie jedynie zmiennych geometrycznych, mozemy ograniczy¢
sie do T, Punktem wyjscia bedzie przestrzen fazowa, ktorej punktami sg pary poél
(qas (), p*(2)), gdzie

q(z) = qap(x)dz® ® da® (2.71)

jest tensorem metrycznym na M. Pedem kanonicznie sprzezonym jest gestosé tensorowa

w wadze 1,
0 0
= (1) — ® —. 2.72
p=r (x)ax“ @ Oxb ( )
Kanoniczne nawiasy Poissona zapisujemy w postaci
{gae(z), " (v) } = 00,050(x,y). (2.73)

Dokonujemy rozszerzenia powyzszej przestrzeni fazowej . Rozszerzenie to bedzie polegato

na zastapieniu tensora metrycznego polem triad € (z) na M,
qap(2) = 03¢l ()€l (). (2.74)
Pojawia sie dodatkowa swoboda ze wzgledu na obroty SO(3) w przestrzeni wewnetrznej

e, — Oe!

ita

ktora powoduje, ze mozemy traktowac e, jako 1-formy o wartosciach w algebrze Liego
su(2). W tym celu wykorzystujemy fakt, ze reprezentacja dotaczona grupy SU(2) na
jej algebrze Liego jest izomorficzna z definiujaca reprezentacja SO(3) na R3. Izomorfizm
R3 — su(2) ma postaé

R? 5 v' — v'r; € su(2), (2.75)
gdzie 7; stanowia baze su(2). W ten sposob otrzymujemy, ze €’ (r) mozemy traktowac,
jako jednoforme o wartosciach w algebrze Liego su(2),

el (z) : TyM — su(2). (2.76)

W podobny sposéb mozemy roztozyé¢ krzywizne zewnetrzna K, (x), za pomoca, ktorej
okreglony byt ped p®(z),
Kap() = K{, ()] ()3, (2.77)

gdzie
K!(x) : T,M — su(2) (2.78)



Poniewaz macierz K! ma zawiera¢ te same informacje geometryczne co tensor krzywizny
zewnetrzne] Ky, z jego symetrii wynika nastepujace réwnanie, jakie musi by¢ spetnione
przez K!

Gap = Kj,(z)ey(x)d;; = 0. (2.79)
W przeciwnym razie drugi czton w rozktadzie

Kéeé = K(iae?)) + K[iaez]

zawieratby dodatkowa informacje. Stad pojawia sie dodatkowy wiaz teorii opisany roéw-

naniem (2.79).

W ten sposob zastagpiliSmy pare zmiennych kanonicznie sprzezonych (qab(x), p“b(x)) parg
(e!(z), K!(z)). Poniewaz oba te obiekty sa tensorami tego samego typu, nie moga stano-
wié¢ pary zmiennych kanonicznie sprzezonych. Ponadto, zadna z nich nie jest gestoscia o

wadze 1.

Wprowadzamy zmienng E¢(x), ktora bedzie gestoscia wektorowa o wadze 1,

Ef(z) = /q €j(z), (2.80)

gdzie ¢ oznacza jak poprzednio wyznacznik tensora metrycznego ., natomiast e?(x)

stanowi odwrotnosé e’ (x),

¢ (2)eh(z) = 0], €f(x)ey(z) =4, (2.81)

)

Za pomoca powyzszych przeksztalcamy (2.82) do nastepujacej postaci
Gin(z) = Kq(2) g (x) =0, (2.82)

gdzie wykorzystujemy el do zamiany indekséw tensorowych na indeksy wewnetrzne i na

odwrot.

Na przestrzeni par (E%(x), K!(x)) mozemy zdefiniowa¢ nawias Poissona, ktory jest zgodny

z nawiasem ADM,

{Ei(2), Ej(y)} = {K.(2), Kj(y)} =0, (2.83)

(K (), B2 ()} = 50803000, 2) (2.8)
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otrzymujemy rozszerzona przestrzen fazowa. 7 pomoca wiezu (2.82) lub jego postaci

rozsmarowanej

G[A] = / BN K, EL (2.85)
M

gdzie A jest skalarem o wartosciach w so(3). Wiaz ten generuje obroty w przestrzeni

wewnetrznej. Nawiasy Poissona wiezow G pokazuja, ze sa to wiezy pierwszej klasy
1
(GG = 6 |5, (2.56)

Standardowe zmienne ADM mozemy wyrazi¢ za pomocg nowych zmiennych Ashtekara w

nastepujacy sposob

Qab = qab[Ezq7 Kza] = | det (E;I)|E(Z1El];5’u’ (2'87)

p* = p™[Ef, K] = 2| det (E})| ' E} E'6" K64 E5. (2.88)
Mozemy za pomoca powyzszych wzordw wyrazié wiezy C0)(z) oraz C¥”(z) takze, jako
funkcjonaly nowych zmiennych.

Otrzymana w ten sposob teoria kanoniczna na przestrzeni (Ef(x), K!(z)) z nawiasami

Poissona (2.83) i (2.84) oraz wiezami G, CY")(x) oraz C(ggr)(x) traktowanymi, jako ich
funkcjonaly, jest teorig rownowazng do standardowej grawitacji w ujeciu ADM, na prze-

strzeni rozwiazan wiezéw. Czes$¢ grawitacyjna dzialania mozemy zapisaé, jako

S B (z), Kq(z)] = /Rdt/Md% <2K3E;? — (=A9Gy + N*CYn +NC’(9’”))>. (2.89)

2.2.2 Kanoniczna transformacja prowadzaca do zmiennych Ash-
tekara
Jak dotychczas rozszerzyliSmy przestrzen fazowa ADM do nowej postaci. 3-wymiarowa

metryka i ped kanonicznie do niej sprzezony wyrazaja sie przez nowe zmienne za pomoca

wzordéw (2.87) i (2.88).
Krzywizna zewnetrzna K'(x) zawiera informacje o sposobie, w jaki M zanurzone jest w

M. Natomiast informacje o wewnetrznej geometrii M otrzymujemy z Ef(x), podobnie

jak poprzednio czyniliSmy to z g ().
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Poniewaz g, jest jednoznacznie wyznaczone przez Ef, réwniez pochodna kowariantna
dzialajaca na indeksy czasoprzestrzenne D, jest wyznaczona z E' w sposob jednoznaczny.
Poniewaz pojawia sie dodatkowy, wewnetrzny stopien swobody zwigzany z obecnoscia
indeksu 7, musimy umie¢ okresli¢ dzialanie pochodnej rowniez na indeksy wewnetrzne.

Aby dziatanie to bylo spojne z warunkiem metrycznosci koneksji chcemy, aby
Dagpe =0 — Dyel =0, (2.90)
skad otrzymujemy nastepujace réwnanie
Dyée) = Oue], —T€, el + T, ek (2.91)
Powyzsze rownanie traktujemy jako definicje koneksji spinowej. Wynika z niego, ze row-
niez
D.E} = 0,E} + e;ulLE} =0, (2.92)

gdzie Ef jest wyprowadzong poprzednio gestoscia wektorowa o wartosciach w su(2), a r*

jedno forma o wartosciach w su(2)*.

Dokonujemy nastepujacej transformacji kanonicznej polegajacej na skalowaniu zmiennych
. , 1
(Ksz’E;L) — (VKévqu = §EJOL) )
ktora pozostawia powyzsze wzory w niezmienionej postaci. Wspotezynnik ~ nazywamy
parametrem Barbero-Imirzi. Roézne wartos$ci tego parametru definiujg rownowazne kla-
sycznie teorie. Jednak ich kwantowe odpowiedniki nie sg unitarne i fizcznie rownowazne.

Parametr ten okresla réwniez spektra operatorow geometrycznych. Jego warto$é¢ w opar-

ciu o obliczenie entropii czarnej dziury mozna znalezé w [30].

Wiezy (2.82) przejmuja postaé¢ wiezu Gaussa znanego w teorii Yanga-Millas
Gj = D.P}, (2.93)

gdzie pochodng kowariantna D, definiujemy tym razem za pomoca koneksji Ashtekara-

Barbero

Al(x) := T (x) + yKI(z). (2.94)
Tak zdefiniowana pochodna dziata zaréwno na indeksy wewnetrzne
Dovj = 0,v; + €,/ Ay, (2.95)

32



jak i indeksy tensorowe

Da’Ub == Da’Ub, (296)

gdzie lewa strona oznacza nowa pochodna kowariantna, a prawa stara zdefiniowana w

poprzednim rozdziale.

Otrzymujemy ostatecznie przestrzen fazows ztozonag z koneksji Ashtekara-Barbero, 1-
formy o wartosciach w su(2), oraz gestosci wektorowej o wadze 1 i wartosciach w su(2)*,

Pj“(a:) Bezposrednim rachunkiem pokazujemy, ze

{Pi(2), Pl (y)} = {Au(x), Aj(y) } = 0, (2.97)
{4.(), Pi(y)} = 5;870(2. ). (2.98)

Wraz z dodatkowym wiezem
G[A] = / drA\'G, (2.99)

przestrzen ta stanowi przestrzen fazowa ogolnej teorii wzglednosci zapisanej w zmiennych

Ashtekara.

2.2.3 Wiezy ogoélnej teorii wzgledno$ci w zmiennych Ashtekara

Zbierajac wyniki przedstawione w poprzednich paragrafach, nasza przestrzen fazowa sktada
sie obecnie z par (A;(x), Pf’(y)) opisujacych cze$¢ geometryczna teorii, oraz z par (¢(x), m(x))
opisujacej czes¢ materii. Nawiasy Poissona pomiedzy zmiennymi kanonicznymi sprzezo-

nymi ze soba opisane sa we wzorach (2.97), (2.98) oraz (2.58).

Pojawiaja sie nowe wiezy, ktore przyjmuja postac
Gi(x) = 0. P + ;" Al (x) P{ (), (2.100)

wyprowadzona z (2.93) oraz (2.95). Maja one postaé¢ wiezow Gaussa znanych z teorii
Yanga-Millsa i wyrazaja niefizyczno$é dodatkowego stopnia swobody, jaki pojawit sie w

opisie.

Pozostalte wiezy dyfeomorficzne i skalarne mozemy bezposrednim rachunkiem wyrazi¢ za

pomoca nowych zmiennych. W rzeczywistosci taka nowa posta¢ wiezow jest prostsza i
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przydatna, jezeli chcemy dokonaé¢ kinematycznej kwantyzacji tych wiezow.

W dalszej czesci pracy przyjmujemy nastepujaca konwencje. Pozostawiamy posta¢ wiezow
taka jak w formalizmie ADM (2.49) - (2.54), traktujac od tego momentu qq i p® jako

funkcjonaly zmiennych Ashtekara,

ab = qav [AL(2), P} (y)] , (2.101)
p™ =p™ [AL(z), P(y)] . (2.102)

Zakladamy ponadto, ze wiezy dyfeomorficzne i skalarne generuja przeksztalcenia takie
same, jak opisane zostaly w poprzednich paragrafach, tj. odpowiednio dyfeomorfizmy
generowane przez pola wektorowe styczne do M, oraz dyfeomorfizmy generowane przez

pola wektorowe normalne do M.

2.3 Zdeparametryzowana wersja ogolnej teorii wzgled-
nosci

7 poprzednich rozdziatow widzimy, ze ogélna teoria wzglednosci jest szczegdlnym rodza-
jem teorii fizycznej, w ktorej kanoniczny Hamiltonian generuje transformacje cechowania.
Drzieje sie tak, poniewaz okazuje si¢ on liniowa kombinacjg wiezow pierwszej klasy, co
mozemy zapisa¢ w nastepujacy sposob

T = / P (N (2)Gi(x) + N(2)Ca(z) + N(2)C(x)). (2.103)

M

Postugiwanie sie¢ rozsmarowanym Hamiltonianem wynika z faktu, ze przestrzen fazowa
ogblnej teorii wzglednosci jest nieskoriczenie wymiarowa przestrzenia konfiguracji pol, a
nie skonczenie wymiarows rozmaitoscia rézniczkows. Punkty przestrzeni fazowej mode-

lowane sa lokalnie na nieskonczenie wymiarowych przestrzeniach Banacha, a nie na R".

Posta¢ Hamiltonianiu kanonicznego generuje tak zwany problem czasu w ogolnej teorii

wzglednosci. Po wyeliminowaniu wszystkich niefizycznych stopni swobody taka teoria za-

styga.

Hamiltonian, ktory jest liniowa kombinacja wiezéw generuje transformacje cechowania. W

zwiazku z tym brak jest naturalnie zdefiniowanej dynamiki. Jest to w jawnej sprzecznosci
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z obserwacjami dnia codziennego, gdzie obserwujemy zmiany, ktore jesteSmy w stanie de-
terministycznie przewidzie¢. Wniosek, jaki wyplywa z tych rozwazan wskazuje na to, ze
fizyczna dynamika zawiera sie w jakiej$ dodatkowej strukturze, ktora nie zostala jeszcze

uwzgledniona.

Proponowane rozwiazanie opiera sie na wprowadzeniu dodatkowej struktury poprzez tak

zwany mechanizm deparametryzacji ([10], [11]).

Deparametryzacja teorii, ktérej Hamiltonian jest wiezem pierwszego rodzaju nie jest pro-
cedurg jednoznaczng. Wymaga dokonania pewnych wyboréw. W szczegdlnosci stosuje
sie to do ogolnej teorii wzglednosci. W kolejnych paragrafach uzasadnimy nasz wybor.
Mimo, iz byl on juz stosowany, przedstawione tutaj podejscie jest prezentowane po raz

pilerwszy w niniejszej pracy.

2.3.1 Problem czasu na przykladzie skoniczenie wymiarowym

Zmienne relacyjne maja swoja dtuzsza historie. W tej pracy opieramy sie na koncep-
cjach wprowadzonych w [6] i 7], gdzie rowniez mozna znalezé szersze wprowadzenie do
zastosowania zmiennych relacyjnych w systemach z Hamiltonianem bedacym generato-
rom transformacji cechowania. Zastosowanie zmiennych relacyjnych do réznych modeli
wykorzystujacych petlowa kwantyzacje znajdujemy rowniez w [31].

Koncepcja rozwigzania problemu czasu za pomoca zmiennych relacyjnych nie jest nowa
i pod ré6znymi postaciami podejmowano proby zastosowania jej do ogoélnej teorii wzgled-
nosci w przesztoéci. Przyktadem moze by¢ zapoczatkowana pracami Martina Bojowalda
([32], [21]), a rozwinieta w [15] kanoniczna petlowa kosmologia kwantowa. Przyczynita

sie ona do zrozumienia natury Wielkiego Wybuchu.

Model, ktory jest obiektem badan opisanych w tej pracy jest rozszerzeniem modelu
Asktekara-Pawlowskiego-Singha na sytuacje, w ktorych nie dysponujemy tak duza sy-

metrig umozliwiajaca redukcje uktadu do modelu jednowymiarowego.

Przedstawione w tym paragrafie fakty dotyczace teorii zmiennych relacyjnych przyta-

czamy za [33]. Wychodzac od geometrycznego podej$cia prezentowanego na przyktadzie
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skoniczenie wymiarowym, przedstawimy klasyczna nature problemu czasu. W kolejnym
paragrafie pokazemy na czym polega przeksztatcenie do réwnowaznej teorii kanonicznej,
ktore zastosujemy w celu otrzymania deparametryzowalnej wersji ogolnej teorii wzgled-

nosci.

Rozwazamy skonczenie wymiarowsa przestrzen fazowa, bedaca 2n-wymiarowa rozmaitoscia

rozniczkowy I', wyposazona w forme symplektyczna €2,

Q€ AT, (2.104)
dQ = 0, (2.105)
X0Q=0=X=0dlaX €TT. (2.106)

Dwuforma () spelniajaca opisane powyzej warunki jest rownowazna okresleniu nawiaséw

Poissona pomiedzy funkcjami na I'.

Rozwazmy dowolna funkcje

f:T SR (2.107)

Pole wektorowe Xy zdefiniowane za pomoca formy symplektycznej €2 oraz funkcji f za

pomoca ponizszego roOwnania

X ;.0 = df, (2.108)

nazywamy hamiltonowskim polem wektorowym. Nastepnie definiujemy nawias Poissona

pomiedzy dwoma funkcjami f,g: " - R

{f, 9% = X,(f). (2.109)

Ewolucja badanego uktadu opisywana jest za pomoca krzywych catkowych Hamiltonow-
skiego pola wektorowego generowanego przez pewna szczeg6élng funkcje h nazywana Ha-

miltonianem.

Reasumujac, na klasyczny opis uktadu sktadaja sie nastepujace elementy
e przestrzen fazowa I,
e forma symplektyczna €2,
e funkcja Hamiltona h.
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Rozwazmy nastepnie dodatkowo, wiezy pierwszego rodzaju na naszej rozmaitosci I'. Ozna-
czamy je C, Cs, ... , Cr. Przez wiezy pierwszego rodzaju rozumiemy funkcje na prze-
strzeni fazowej

i=1,2,..,1:0:T >R, (2.110)

ktorych wszystkie wzajemne nawiasy Poissona zeruja sie wszedzie tam, gdzie zeruja
sie same wiezy,

{C,C;} [re. = 0. (2.111)

Wiezy takie pelnia dwojaka role. Ograniczaja zbiér mozliwych stanéw badanego uktadu
do punktéw przestrzeni fazowej I', na ktorej funkcje wiezow znikaja. Zbior ten nazywamy

podprzestrzenia wiezoéw

Zaktadamy, ze skonstruowany zbiér wiezow jest zupelny, tzn. ewolucja, a wiec krzywe
catkowe X} nie wyprowadzaja nas poza dostepne stany uktadu. Oznacza to, ze X, jest

wektorem stycznym do ['c.

Kolejng rola wiezow pierwszego rodzaju jest generowanie transformacji cechowania. Ozna-
cza to, ze punkty lezace na tych samych krzywych catkowych generowanych przez Hamil-
tonowskie pola odpowiadajace wiezom lub ich liniowym kombinacjom, opisuja nierozroz-

nialne fizycznie stany uktadu.

Dla wiezéw pierwszego rodzaju, a wiec takich dla ktérych zachodzi
[Xe,, Xc,] Zak Xe,, (2.113)

podpowierzchnia I'c jest foliowana powierzchniami generujacymi réownowazne punkty fi-

zyczne, a przestrzen ilorazowa tych powierzchni odpowiada fizycznym stanom uktadu.
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Rys. II. 1

Roéwnania wiezéw pierwszego rodzaju pozwalaja zidentyfikowaé fizycznie nierozroznialne
punkty na przestrzeni fazowej. Dlatego rozszerzamy o nie elementy opisu uktadu klasycz-

nego
e przestrzen fazowa I,
e forma symplektyczna €,
e funkcja Hamiltona h,
e réwnania wiezow Cy, Cy, ... , Cf.

Szczegbdlnym przypadkiem teorii z wiezami jest teoria, ktorej hamiltonian jest liniowsa

kombinacja wiezéw pierwszego rodzaju
h=a;-Ci+..+ar-Cy. (2114)

W takiej sytuacji Hamiltonian znika na przestrzeni stanéw fizycznie dopuszczalnych I'c.
Dodatkowo generowana przez niego ewolucja jest niczym innym jak transformacja ce-
chowania. Z drugiej strony, poniewaz punkty lezace na tej samej orbicie transformacji
cechowania reprezentuja ten sam stan fizyczny ukltadu, funkcje na przestrzeni fazowej
odpowiadajace fizycznie mierzalnym wielko$ciom powinny przyjmowac na nich stale wiel-

kosci. Powoduje to zamrozenie ukladu i brak mozliwos$ci opisania ewolucji uktadu, w
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sytuacji kiedy kanoniczny Hamiltonian jest generatorem transformacji cechowania.

W przypadku bez wiezow, parametryzacje krzywej caltkowej pola wektorowego odpowia-
dajacego funkcji Hamiltona interpretujemy jako ,absolutny” czas, co mozemy zapisa¢ za

pomocg rownania
d
Ef(t) = Xn(f)- (2.115)

Gdy Hamiltonian generuje transformacje cechowania, parametr ten traci jakiekolwiek zna-
czenie fizyczne. Hamiltonian h(zx) oraz N -h(x) generuja te same krzywe catkowe rézniace
sie jedynie ,predkoscig” poruszania sie po nich. Predko$é¢ ta nie ma jednak zadnego
znaczenia fizycznego, a N odpowiada funkeji lapsu N(X) wyprowadzonej w rozdziale do-

tyczacym kanonicznego sformutowania ogdlnej teorii wzglednosci.
Podsumowujac, w opisywanym powyzej przypadku mozemy przyjaé, ze klasyczny opis
uktadu sktada sie z nastepujacych elementow
e przestrzen fazowa I,
e forma symplektyczna (2,
e réwnania wiezow Cy, Cy, ... , Cf.
Hamiltonian kanoniczny jest liniowa kombinacja wiezow i nie wnosi nic nowego do pro-

ponowanego powyzej opisu modelu.

2.3.2 Deparametryzacja i zmienne relacyjne

Rozwazany model grawitacji sprzezonej z polem skalarnym jest przyktadem teorii w kto-
rej hamiltonian jest generatorem transformacji cechowania. Oznacza to, ze obserwable
Diraca, odpowiadajace fizycznym wielkosciom charakteryzujacym uktad, maja znikajacy
nawias Poissona z hamiltonianem. Co za tym idzie obserwable fizyczne nie ewoluuja i sa

catkowiecie zamrozone w rozwazanej teorii.

Geometrycznie, obserwable Diraca sa funkcjami na klasycznej przestrzeni fazowej, ktore
przyjmuja stala wartos¢ na orbitach transformacji cechowania. Poniewaz hamiltonian jest

generatorem takiej transformacji, to wielkosci fizyczne przyjmuja stata wartosé na orbicie
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generowanej przez hamiltonian. Pojawiajace sie pytanie o mozliwosé znalezienia wielko-
Sci, ktorych ewolucje moglibyémy badaé i opisywac¢ za pomoca fizycznego hamiltoniany,

ktory ja generuje jest tematem kolejnych rozdzialéw niniejszej pracy.

Relacyjne zmienne stanowia propozycje rozwiazania opisanego powyzej problemu. Depa-
rametryzacja jest procesem przeksztatcenia wiezéw do postaci, ktére umozliwiaja prosta
identyfikacje jednej z kanonicznych zmiennych konfiguracyjnych jako relacyjnego czasu

ukladu.

Konstrukcja relacyjnych obserwabli Diraca opiera sie na wykorzystaniu funkcji na prze-
strzeni fazowej, z ktorych kazda z osobna niekoniecznie musi by¢ stata na orbitach dzia-
tania grupy cechowania na I'c. Oznaczamy jedna z nich przez f : ['c — R, natomiast

pozostate T; : I'c — R, gdziet =1,2,...,I.

[logé funkcji T; powinna odpowiada¢ wymiarowi orbity grupy cechowania, na jakie dzia-
tanie grupy cechowania foliuje I'c. Jezeli dodatkowo zalozymy, ze warunki T} = 7, ...
, Tt = 71 jednoznacznie wyznaczaja globalne cigcie wigzki 7 : I'c — I'j;., to mozemy

zdefiniowaé¢ obserwable Diraca
T, 71 = Fipmyomq [T, - 1) : Te = R (2.116)
Wprowadzona powyzej fizyczng przestrzen fazowa I'y;, definiujemy jako
Fpe =Tef ~, (2.117)
gdzie relacja ~ zdefiniowana jest w ten sposob, ze dwa punkty przestrzeni I'c sa rowno-

wazne jezeli istnieje trasformacja cechowania, ktéra przeprowadza jeden w drugi.

Funkcje ta definiujemy w ten sposob, ze dla dowolnego punktu x € ', szukamy na lisciu

do ktorego on nalezy, punktu z,, . (x) zdefiniowanego w nastepujacy sposob

(@) =A{2" € [2]|Ti(2") =7, ..., Ty (z") = 71} (2.118)

-----

Za pomoca powyzszego definiujemy

F[f,T1,...,T1][Tl, L) TI] (Q?) = f (x‘lj,...,‘l'[ (l’)) . (2119)
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W szczegélnym przypadku, kiedy bedziemy rozwiazywaé tylko jeden wiaz i dokonywaé
tylko czesciowej foliacji I'c wzgledem transformacji generowanej przez jeden wiaz, mamy
tylko jedna funkcje T' i jednowymiarowe liscie foliacji, ktére stanowig krzywe catkowe
hamiltonowskiego pola wektorowego generowanego przez te wiezy. Funkcje T czesto na-
zywamy relacyjnym czasem. Sita zmiennych relacyjnych polega na tym, ze funkcja T
moze spetniaé $cisle okreslone réwnania fizyczne i jest czyms$ wiecej niz dowolnym wybo-

rem parametryzacji.

Rozwazajac model teorio polowy, w ktéorym zamiast jednego wiezu, dysponujemy ich
nieskoriczong iloscia - C'(z) w kazdym punkcie - sytuacja ulega skomplikowaniu. Nieskori-
czonej ilosci wiezow odpowiada nieskoriczenie wiele wartosci T'(x). W badanym modelu

role taka bedzie petnito pole materii ¢ spetniajace fizyczne rownanie Kleina-Gordona.

Ograniczajac sie do transfromacji cechowania generowanej przez pojedyncze wiezy C),

moéwimy ze wigz ulega deparametryzacji, kiedy zapisujemy go e postaci
NC =p; + h(g,p), (2.120)

gdzie N jest dowolng nie znikajaca funkcja na I' (regularna), p; jest jedna ze wspolrzed-
nych kanonicznych pi, ... , pn, ¢', ... ¢" na I', a h nie zalezy od p;. W takiej sytuacji
dynamiczna zmienna ¢’ nabiera roli relacyjnego czasu, to znaczy parametru krzywej cal-
kowej. Proces przeksztatcania wiezow do powyzszej postaci nazywamy procesem depara-

metryzacji.

2.3.3 Iloczynowa postaé¢ wiezéw i obszary przestrzeni fazowej na

przyktadzie skonczenie wymiarowym

Rozwazmy klasyczng teorie, ktorej Hamiltonian generuje transformacje cechowania. Jak
napisano w poprzednim paragrafie, na klasyczny opis takiej teorii sktadaja sie nastepujace

elementy
e przestrzen fazowa I,
e forma symplektyczna € (lub réwnowaznie definicja nawiaséw Poissona),
e réwnania wiezéw Cy, Cy, ... , Cf.
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Poniewaz punkty lezace na krzywej catkowej generowanej przez Hamiltonowskie pole wek-
torowe odpowiadajace danemu wiezowi reprezentuja te same stany fizyczne, parametry-
zacja tej krzywej nie ma fizycznego znaczenia. Dlatego wiezy C oraz a - C' sa robwnowazne

z punktu widzenia fizyki uktadu.

Rozwazmy sytuacje, w ktorej jeden z wiezow, np C; ma nastepujaca postac,
c=cW.c?. .cm, (2.121)
Dodatkowo zaktadamy, ze podzbiory przestrzeni fazowej zdefiniowane w nastepujacy spo-
sOb
Lo = {l‘ €T |0 (x) = 0} : (2.122)
gdzie 1 = 1,2, ..., m spekliaja nastepujacy warunek
Int I'yy NInt Iy = 0 dla i, (2.123)

Ie | JTw. (2.124)

Warunek (2.123) nie wynika z teorii. Jednak na obszarze przestrzeni fazowej, na kto-
rym I';y N T'(j) # 0 hamiltonowskie pole wektorowe generujace transformacje cechowania
znika. Wynika to z obliczenn przedstawionych ponizej. Obszar taki charakteryzuje sie w
zwiazku z tym pelna patologiczna cecha prowadzaca do niejednoznacznosci. Stad chcemy

wylaczy¢ takie sytuacje z prezentowanych rozwazan i narzucamy wrunek (2.123).

Jednak wykluczenie pokrywania sie obszaréw I'; na ich punktach brzegowych zbytnio
ograniczaloby nasze rozwazania. 7 takimi patologicznymi sytuacjami, ktore przeprowa-
dzaja ewolucje pomiedzy réznymi obszarami mozemy mie¢ do czynienia w nieskonczenie

wymiarowych modelach opisujacych ogolna teorie wzglednosci.

Rozwazmy Hamiltonowskie pole wektorowe generowane przez Cf,
Xy o0 = dCh. (2.125)
Podstawiamy (2.121) do prawej strony powyzszego rownania i otrzymujemy

acy =d(cf) - o) =

=c@....cm.qcW ¢ 4o oMY ot (2.126)
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Z (2.122)-(2.124) wynika, ze
dCi|r,, = O - of Y of Y Lo dey). (2.127)
Wprowadzamy nastepujace oznaczenie
NO =cW®. oD ot . L om (2.128)

Zdefiniujemy nastepujace pola wektorowe odpowiadajace poszczegélnym czynnikom ilo-

czynowego rozbicia wiezu C',

X092 = dc. (2.129)

Przy pomocy powyzszej definicji oraz (2.127) mozemy zapisa¢ rownanie (2.125) w postaci

<N<1>-X V4 A N X

e >)JQ = NO.gc® £ N g™ (2.130)

cim

Na mocy (2.122)-(2.123) mamy, ze dla kazdego i rownanie (2.130) obcigte do I';) przyjmuje
postac

NGO X000 = ND . 4c? o X g2 = dc. (2.131)

Dochodzimy w ten sposéb do nastepujacego wniosku: Klasyczny model, opisywany za po-
moca elementow (', 2, (C1, ..., C)), gdzie C; spelnia opisane powyzej warunki, rozpada
si¢ na m niezaleznych od siebie uktadow (I'1), Qlr,), (C’fl), 5 CDlrg)y s

(T, Qs (CF oo, CDry))-

W sytuacji, kiedy rozpatrujemy takie warunki poczatkowe uktadu, ze generowana przez
wiezy ewolucja nie zblizg sie do brzegéw obszaréow I'; kazdy z nich moze by¢é rozpatrywany
jako niezalezny model fizyczny. Nie mozemy jednak wykluczy¢ sytuacji, kiedy krzywe cal-
kowe p6l hamiltonowskich generowanych przez wiezy dotykaja ich brzegow. Mamy wtedy
do czynienia z sytuacjami niejednoznacznymi i osobliwymi z punktu widzenia klasycznej

ewolucji uktadu.
Szczegodlnej uwagi wymagaja sytuacje nieskonézenie wymiarowe takie, jak ogdlna teoria

wzglednosci. Osobliwe zachowanie ewolucji uktadu moze wystapié¢ kiedy ewolucja wypro-

wadzi nas do punktu, gdzie znika ped 7, kanonicznie sprzezony do pola skalarnego.
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2.3.4 Przeksztalcenie wiezé6w ogodlnej teorii wzglednosci

W niniejszym paragrafie pokazemy, ze ogdlna teoria wzglednosci, ktora klasycznie okre-

slona jest za pomoca nastepujacych elementow

e przestrzeni fazowej, ktorej punkty stanowia konfiguracje pol (A% (z), PA(z), ¢(x), w(x))

na 3-wymiarowej rozmaitosci M,

e formy symplektycznej okreslonej za pomoca nawiaséw Poissona

{AL(@), P{(y)} = 6,676 (x. ),
{o(2),m(y)} = d(x,y),
e rownan wiezé6w Gaussowskich
Gi(x) = 0. P (x) + ¢;;" Al () P (), (2.132)
wiezéw dyfeomorficznych
Calz) = CF () + m(2)0ug(x), (2.133)
oraz wiezoéw skalarnych
1 72(z) 1

Clx)=C%"(z) + =

2y/q(x)

Rownania (2.64), (2.65) i (2.66) opisuja nawiasy Poissona pomiedzy wiezami ogolnej teo-

q(2)q® (2)0ad(2) Db () + V@)V [¢] . (2.134)

rii wzglednosci. Ze wzgledu na funkcje, a nie state struktury, ktére pojawiaja sie przy

liczeniu ich nawiaséw Poissona, algebra ta nie jest algebra Liego.

Celem niniejszego paragrafu jest przeksztalcenie wiezéow ogoélnej teorii wzglednosci do po-

staci, w ktorej wiezy skalarne maja postac iloczynows opisywana w poprzednim paragrafie.

W tym celu mnozymy réwnanie (2.133) stronami przez niezerowa funkcje

(G = m(2)0g(x)) ¢ ()

(CF + 7(2)0.6()) (Cf — 7(x)Bpi(x)) ¢ (2),
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skad po wymnozeniu otrzymujemy
¢ (2)CY ()Y (2)+
+7(2)q" () (Datp(2)CY" (2) — CF (2)0pb()) +
— ()" (2)0ud(2) Do ().
Srodkowy wyraz znika, ze wzgledu na symetrie i otrzymujemy
" (2)CF (2)CY" (x) — w*(2)g™ (2)u () Do ().

Powyzsze rownanie mnozymy przez % q(x), natomiast réwnanie (2.134) przez m%(z)

otrzymujemy
VA (@O (@O () = 57V ale)a™ ()0(2)40(0),
Cr(@)n(e) + 7D 4 L) i@ ()00 ahole) + VIV [0

2\/q(zx) 2

Po ich zsumowaniu otrzymujemy

1
T (0o + VATV ) 7 + VAT C () (2159
2 Vq
Powyzsze rownanie jest wielomianem 4 stopnia w zmiennej 7(x) i mozemy przedstawic je
w postaci iloczynu czterech czynnikow
1 ~ 1
. O(xr) = —.
2\/q (z) 2\/q
- \/—\@ (C9 + /qV[d]) + \/é\/(Cgr +/qV[¢))? — qCyCy

Nr v + vavio) + vaier + vavien — ety

| ”—V V(O £ VaVIe]) — vay (o + VaVIe)? — g Cr ey

| W V(O 4 VL) — iy (O + VaVIg)? — ey
(2.136)
DoprowadziliSmy w ten sposéb do zmiany opisu ogoblnej teorii wzglednosci zamieniajac

wiezy G;(x), C,(z) oraz Cy(x),

Gi(x) Gi(x)
Co(z) — Cu(z) . (2.137)
C(ﬂf) é(ﬂf) = C[(.Qf) . C[[(ZE) C]]](ZL‘) ij<37)



Tloczynowa postac¢ wiezu C (x) dzieli przestrzen fazowa na obszary spelniajace warunki
opisane w poprzednim paragrafie. Odpowiednie obszary , na ktoérych zeruje sie Cr, Cy,

Crrr i Cry to obszary przestrzeni fazowej, ktére zawarte sg w

I: 7T2 Z ¢,a¢,bqab7 ™ > Oa
II: 7T2 2 ¢,a¢,bqab7 T < 07
I 7 < gappg™, >0,

IV : 7 < ¢adpq™, m<O.

2.3.5 Deparametryzacja ogoélnej teorii wzglednosci

Rozwazania poprzedniego paragrafu doprowadzity do podziatu przestrzeni fazowej ogdlnej

teorii wzglednosci na sprzezonej z bezmasowym polem skalarnym na cztery obszary

e obszar [ e obszar I/

of .} | of., .} ;
oGi(x),Cy(x),Cr(x) oGi(z),Cy(x),Cry(x)

e obszar [1] e obszar IV
o{..} | e} :
oG;(x),Cy(x), Crrr(x) oG;(x),Cy(x), Cry(x)

gdzie {.,.} oznacza nawias Poissona opisany w poprzednim rozdziale.

Doputy, dopoki klasyczna trajektoria rozwazanego przez nas modelu pozostaje wewnatrz
danego obszaru, mozemy go traktowac¢ jako niezalezny od pozostatych model. Jendak w
sytuacji kiedy ewolucja przechodzi przez punkt, w ktérym pole 7 = 0, implikuje to, ze
funkcja lapsu znika N = 0 i dalsza ewolucja staje sie nieokreslona i przejscia pomiedzy

obszarami sa mozliwe.

Na ten moment zakladamy, ze interesujace nas historie nie zawieraja takich punktow a
klasyczna ewolucja Wszechswiata pozostaje w obrebie jednego z wymienionych powyzej
obszaréw. Na ile zalozenie to ogranicza zastosowalnos¢ naszego modelu bedzie tematem

dalszych badan.
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Chcac dokonaé wyboru obszaru, do ktérego nalezy obserwowany Wszechswiat, doko-
nujemy poréwnania z dobrze znanym i prostym modelem jednorodnego i izotropowego

Wszech$wiata, z bezmasowym polem skalarnym. W takim przypadku mamy
V[¢] =0, m=const#0, ¢ = const,

co daje

™ =/q (—C’gr + \/Cg’“ 2 q“ngTC,‘;’T> :
W modelu FRW C¥9" = 0 ze wzgledu na symetrie, natomiast CY" < 0, co wynika ze
znikania C9" 4+ C'¢ = 0 oraz dodatniogci C? > 0. Stad

\/Cgr 2 _ Oy YT = VO 2 = 9.
Réwnanie na 72 przyjmuje teraz postaé
™ = /q(=C £ (=C)).
Wybér znaku ,,—” doprowadzitby do sprzecznosci w2 = 0. Dlatego wierzymy, ze obserwo-

wany Wszechswiat znajduje sie wewnatrz obszaru I lub I1.

Obserwacja rozszerzania sic Wszechswiata prowadzi do wyboru modelu I, w ktérym

m(x) > 0.
Podsumowujac, oryginalny opis ogélnej teorii wzglednosci zastapiliSmy nastepujacym mo-
delem

e przestrzen fazowa: konfiguracja pol (A% (z), PA(z), ¢(x), 7(z)) na 3-wymiarowe]j roz-

maitosci M, ktore spetniaja warunki obszaru I,
e nawias Poissona: standardowy nawias Poissona zdefiniowany powyzej,
o wiczy: Gi(x), Cy(x) oraz C'(z),

gdzie C'(x) := Cy(x). Oznaczenie to wprowadzilismy, aby by¢ w zgodzie z oznaczeniami

stosowanymi w cytowanej literaturze. Na podstawie (2.136) mozemy zapisac

C'(z) = n(z) — h(z), (2.138)
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gdzie

hz) = V VA (O VIO + Ay (O + VAVIG) - g el O, (2130)

Model opisany powyzej ma dodatkowa wtasnosé. Algebra nowych wiezow jest algebra
Liego. Wynika to z tego, ze nawias Poissona starych wiezéw skalarnych zostaje zastapiony
nawiasem Poissona nowych wiezéw C’. W odréznieniu od starego nawiasu w nowym nie

pojawiaja sie funkcje struktury, a nawias Poissona znika
[C'(@),C'(y)} = 0. (2.140)

Szczegolowy rachunek w przypadku znikajacego potencjatu pola skalarnego V{p] = 0

mozna znalezé w [26].

Okazuje sie, ze jest to jedyny przypadek, kiedy zachodzi (2.140). Szczegdltowy rachu-
nek bedacy dowodem tego stwierdzenia jest oryginalnym wynikiem niniejszej pracy. Ze

wzgledu na jego objetos¢ zostanie ono przedstawione w Dodatku A.

W przypadku znikajacego potencjatu pola skalarnego, ktorym bedziemy zajmowac si¢ od
tego momentu, funkcjonal h(z) nie zalezy od pola ¢(z). Zgodnie z definicja podana w
poprzednim paragrafie méwimy, ze model ulega deparametryzacji, a pole ¢(z) nabiera roli

czasu relacyjnego,

h = \/—\/509’“ + ﬂ\/(CQT)z — g CyCY" (2.141)
Otrzymany w ten sposob model bedziemy nazywac¢ zdeparametryzowanym modelem gra-

witacji sprzezonym z bezmasowym polem skalarnym. Konstrukcja jego kwantowego od-

powiednika przedstawiona jest w kolejnym rozdziale tej pracy.
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Rozdzial 3

Konstrukcja modelu kwantowego

» |--.] Jednak argumenty historyczne nie sa dostatecznie przekonywujacym
uzasadnieniem stosowania tego formalizmu. Gdyby udato sie nam odkry¢
kwantowsa teorie pola, ktora prowadzi do zadowalajacej macierzy S, to czy
przejmowalibysSmy sie tym, ze nie mozna jej wywieé¢ z kanonicznego kwanto-

wania jakiego$ lagranzjanu? |[...|”

Steven Weinberg, , Teoria pél kwantowych"t.1

,Formalna” struktura kwantowego modelu opisujacego bezmasowe pole skalarne Kleina
— Gordona zostanie zaprezentowana w niniejszej czesci tej pracy. Zakonczenie konstruk-
cji modelu bedzie przedstawione w kolejnej czesci, gdzie wylistowane niezbedne matema-
tyczne obiekty (przestrzen Hilberta, operatory itp.) zostana zdefiniowane. Wykorzystamy
do tego narzedzia i formalizm znany z konstrukcji kanonicznej petlowej grawitacji kwan-

towej.

Takie podejscie do przedstawienia modelu w czesciach ma na celu rozdzielenie tego co
jest ogolne bez wzgledu na sposob konstruowania poszczegdlnych elementéw, od tego co
bezposrednio korzysta z rezultatéw kanonicznej petlowej grawitacji kwantowej. Schema-

tycznie zaleznosci pomiedzy prezentowanymi wynikami pokazuje ponizszy rysunek.
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. 3.

”fOI'n.lalﬂ.}.’" model kv.vantowej realizacja modelu ,,formal-
grawitacji sprz¢zonej z polem nego” w oparciu o kanoniczng
skalarnym petlowa grawitacje kwantowa

2.

lasyczny zdeparametryzowany
model grawitacji sprzgzonej z
bezmasowym polem skalarnym

Rys. II1.1

Powyzszy schemat zaleznosci pomiedzy wprowadzanymi w tej pracy modelami pokazuje,
ze centralnym punktem naszych rozwazan jest model kwantowy. Nie wyprowadzamy go
bezposrednio w procesie kwantyzacji modelu klasycznego, a traktujemy go jako bardziej
elementarny model, z ktérego musi wynikaé¢ teoria klasyczna. Uzasadniamy to powszech-
nym przekonaniem, ze to teoria kwantowa stanowi bardziej fundamentalny opis Natury.
Gdybysmy kiedykolwiek odkryli teorie klasyczna, ktérej nie otrzymujemy w granicy zad-
nego modelu kwantowego wstrzasnetoby to posadami wspotczesnej fizyki. Jezeli jednak
odkrylibysmy zjawisko i teorie, ktére nie daja w zadnej granicy dobrego modelu klasycz-
nego, to weszlibySmy w nowy ciekawy obszar badan, nie przekreslajac dotychczasowych
osiagniec¢ fizyki. W rzeczywistosci wierzymy, ze z sytuacja taka mamy do czynienia w po-
blizu kosmicznych i kosmologicznych osobliwosci. Podejscie takie dobrze obrazuje cytat z

klasycznego podrecznika Stevena Weinberga [34].

3.1 Kinematyczne podstawy nowego modelu kwanto-
wego

Standardowe podejscie do kwantowania klasycznych teorii z wiezami pozwala nam wybraé
jedno z dwoéch mozliwych podejsé. Pierwsze podejscie zaktada klasyczne rozwiazanie row-
nan wiezéw i zredukowanie klasycznej przestrzeni fazowej do przestrzeni, uwzgledniajacej
jedynie fizyczne stopnie swobody. To podejécie nazywamy kwantyzacja na zredukowanej

przestrzeni fazowej.

Drugie podejscie zaproponowane przez Paula Diraca, zaktada konstrukcje kinematycznej
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przestrzeni Hilberta i operatoréw, bazujac na pelnej klasycznej przestrzeni fazowej. Na-
stepnie klasyczne wiezy implementujemy jako operatory kwantowe i rozwigzujemy kwan-

towe rownania wiezow.

Prezentowane podejscie wychodzi od modelu kwantowego, dlatego stosowanie pierwszego
z podejs¢ wydaje sie nieadekwatne do sytuacji. Dlatego tez, bedziemy stosowaé¢ podejscie

Diraca, w ktorym wiezy przyjmuja forme operatorow kwantowych.

3.1.1 Klasyczny odpowiednik modelu kwantowego

Wychodzac od ,formalnego” modelu kwantowego, mozemy pominaé niniejszy paragraf w
tym miejscu. Cheac jednak caly czas pamictaé o zwiazku, jaki taczy kwantowy model z
klasyczna teoria grawitacji sprzezonej z polem skalarnym, dokonujemy w tym paragrafie
podsumowania tego, co w dalszej czesci bedziemy nazywaé zdeparametryzowang teorig
grawitacji. W tym miejscu ograniczmy wybor zmiennych do zmiennych Ashtekara po-
niewaz jest on wymagany dla poézniejszych konstrukeji, ktore opieraja si¢ na kanonicznej
petlowej grawitacji kwantowej. Jednak pozostaje mozliwo$é uzycia dowolnych innych
zmiennych opisujacych geometryczna czesé teorii w procesie konstruowania konkretnej

realizacji prezentowanego ,formalnego” modelu kwantowego.

Podsumowujac, klasyczna przestrzen fazowa sklada sie z kanonicznie sprzezonych par.
(Ai(x), P(y)) opisujacych geometri¢ oraz (¢(z), w(y)) opisujacych materie, ktora w na-
szym przypadku jest bezmasowe pole skalarne. Znaczenie tych obiektoéw zostalo opisane

w poprzedniej czesci tej pracy. Elementarne nawiasy Poissona maja postac

{Au(2), P/(y)} = 6(2,9)8,9; (3.1)

a~p’

{o(2), (y)} = 0(z,y). (3.2)

Dopuszczane sa tylko te konfiguracje pol (A, P, ¢, ), dla ktorych spelnione sa nastepujace

warunki

m(z)? > ¢a(x)du(1)q" (2), (3.3)
o(z) > 0, (3.4)
CY) (A(x), P(x)) <0 (3.5)



Wszystkie obiekty wystepujace w tych wzorach zostaty zdefiniowane w poprzedniej czesci

tej pracy.

Klasyczny model charakteryzuje sie Hamiltonianem, ktory jest liniowa kombinacja wiezow

wektorowych i gaussowskich

Calx) = C(x) + CL(x), (3.6)
Gi(z) = G (x), (3.7)

zdefiniowanych w czesci opisujacej klasyczna czesé tej pracy. Szczegdlnie wazna jest postaé

trzeciego, wiezu skalarnego

C'(xz) = m(z) — h(x), (3.8)

B o— \/_\/ao(gr) + \/a\/c(g'r‘)Q _ qabcéw)cégr)? (3.9)

gdzie w ostatnim réwnaniu dla uproszczenia zapisu pomineliSmy zalezno$é od punktu

reM.

Powyzej opisany model reprezentuje klasyczna, zdeparametryzowana teorie grawitacji
sprzezonej z polem skalarnym ¢, gdzie pole to postuzy jako relacyjny czas umozliwia-

jacy konstrukcje obserwabli Diraca o nietrywialnej ewolucji wzgledem relacyjnego czasu.

3.1.2 Stany kwantowe i kinematyczna przestrzen Hilberta

Konstrukcja modelu kwantowego wymaga zdefiniowania elementarnych operatoréw kwan-
towych, ktore postuza do definicji wszystkich innych, oraz kinematycznej przestrzeni Hil-
berta, na ktorej dziataja. Wyprowadzimy je w sposéb formalny w tym i w kolejnym
paragrafie podkreslajac ich wlasnosci, ktore musza zostaé spetnione bez wzgledu na to,
jaki konkretny sposob ich realizacji wybierzemy. W niniejszym paragrafie rozpoczniemy

od definicji kinematycznej przestrzeni Hilberta.

Standardowe podejs$cie pozwala nam zbudowaé¢ wymagang przestrzen wychodzac od sta-
now kwantowych, ktore stanowia zespolone funkcje na przestrzeni konfiguracyjnej kla-
sycznej teorii, ktora ma by¢ otrzymywana jako odpowiednia granica z teorii kwantowe;j.

W rozwazanym przypadku przestrzen te stanowig dopuszczalne konfiguracje pol A i ¢

52



(skrocone oznaczenia od Al (z) i ¢(x)) na 3-wymiarowej rozmaitosci M. Przyjmijmy
oznaczenie przestrzeni stanéow kwantowych QS (gr, ¢) (piszemy gr zamiast A aby podkre-
sli¢, ze wybor kanonicznej petlowej grawitacji kwantowej i zmiennych Ashtekara moze by¢é
zastapiony dowolnym innym zestawem zmiennych opisujacych czesé geometryczna teorii)
dla funkcji zespolonych

(6, 4) = W (6, 4). (3.10)

ktore dodatkowo pozwalaja zdefiniowaé¢ dobrze okreslony iloczyn skalarny pomiedzy sta-
nami, (¥ (¢, A), ¥ (¢, A)). Okreslenie konkretnej postaci funkcji W (¢, A), ktora pozwala
na zdefiniowanie iloczynu skalarnego o pozadanych wtasnosciach jest zadaniem konstrukeji
modelu. Istnieje wiele sposobow, ktore pozwalaja to uczynié, ktére nie daja réwnowaz-
nych kwantowo teorii. W dalszej czedci wybierzemy podejécie niezalezne od metryki tta
opierajace si¢ na funkcjach cylindrycznych i sieciach spinowych. Sa to narzedzia znane z

kanonicznej petlowej grawitacji kwantowej.

Kinematyczna przestrzen Hilberta otrzymujemy uzupehiajac QS(gr, ¢) za pomoca normy
iloczynu skalarnego < .,. >. Otrzymana przestrzen, na ktorej bedziemy definiowac ele-
mentarne operatory kwantowe oznaczamy 7—[,(5;’@, gdzie gorny indeks podkresla, ze do jej
konstrukcji wykorzystaliémy stany zalezne zaréwno od czesci geometrycznej jak i czesci

materii. Otrzymujemy w ten sposob

H9") — QS (gr, d). (3.11)

kin

Dodatkowo rozrézniamy przestrzen 7—[,(5.;), ktora opisuje jedynie czes¢ geometryczng no-
wego modelu grawitacji kwantowej. Przestrzen ta jest przestrzenia jaka otrzymaliby$my
kwantujac grawitacje bez obecnosci materii. W naszym modelu kwantowym jako prze-
strzen ta wybierzemy kinematyczna przestrzeni Hilberta kanonicznej petlowej grawitacji

kwantowej opisana w [1]).

W [14] dokonujemy rozbicia H,(ci;’qb) na iloczyn tensorowy czedci opisujacej geometrie i

czescl opisujacej materie

HE = 1) @ M. (3.12)
Obecnie nie bedziemy korzystaé¢ z tego rozbicia i skupimy sie na konstrukcjach na czesci
(g7)

geometrycznej H,, .
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Od tej chwili zakladamy, ze mamy zdefiniowane H.\7"? oraz H'7, i ze posiadaja one

wymagane wtasnosci.

3.1.3 Elementarne operatory kwantowe

Kolejnym krokiem kwantyzacji systemu z wiezami zgodnie z podejéciem Diraca jest zdefi-
niowanie algebry operatorow kinematycznych dziatajacych na kinematycznej przestrzeni
Hilberta H,(Cgiz;’d’) wprowadzonej w poprzednim paragrafie.

W pierwszej kolejnosci musimy zdefiniowaé elementarne operatory kwantowe, ktére umoz-
liwig skonstruowanie kwantowych operatorow wiezow. Algebra tych operatoréw powinna
stanowi¢ reprezentacje klasycznej algebry generowanej przez zmienne kanoniczne i ich na-
wiasy Poissona (3.1) i (3.2), ktora powinnismy moéc odtworzy¢ w odpowiedniej granicy

teorii kwantowej.

Konkretna realizacja w tym przypadku zalezy od sposobu konstrukcji poszczegolnych
obiektow. W prezentowanym obecnie podejéciu definiujemy elementarne operatory kwan-

towe opisujace czesé geometryczna w nastepujacy sposob

A(@)0 (0, A) = A}(2) (¢, A), (3.13)
Pa) (6, 4) = —i- Af@)w, 4) (3.14)

W kolejnej czesci postuzymy sie odpowiednio rozsmarowanymi wersjami tych operatorow

co umozliwi ich definicje w formalizmie kanonicznej petlowej grawitacji kwantowe;j.

Czes¢ zmiennych opisujaca materie zostanie skwantowana w standardowy spos6b Wheelera-

DeWitta

H(2) (9, A) = d(x)¥(0, A), (3.15)

()W (6, 4) = —i ¢(zx)xp(¢, A). (3.16)

W [14] techniki kwantyzacji polimerowej stosujemy réwniez do tej czesci zmiennych ele-

mentarnych. Otrzymujemy réwnowazne wyniki.
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3.2 Formalne rozwiagzanie kwantowych wiezéw wekto-
rowych i gaussowskich

Kolejny krok polega na rozwigzaniu kwantowych réwnan wiezéw. Podzielimy go na dwie
czesci. Pierwsza czesé, ktora traktuje niniejszy rozdzial obejmuje rozwiazanie wiezow
gaussowskich i dyfeomorficznych. Wiezy skalarne, ze wzgledu na swoja wage dla okre-
Slenia dynamiki i duzo wiekszy stopieni skomplikowania, zostang opisane w kolejnym roz-

dziale.

Podobnie jak w poprzednim rozdziale nasze obecne rozwazania maja charakter , formalny”,
ktory przybierze forme konkretnych realizacji w kolejnej czesci tej pracy. Nalezy jednak
podkresli¢ juz w tym momencie, ze obecno$é¢ wiezéw gaussowskich generujacych transfor-
macje Yanga-Millsa jest wynikiem wyboru zmiennych Ashtekara do opisu czesci geome-

trycznej. W przypadku postugiwania sie zmiennymi ADM wiezy gaussowskie nie wyste-

puja.

3.2.1 Uwagi o kwantyzacji wiezéw

Naszym punktem wyjscia obecnie jest skonstruowana w poprzednim rozdziale kinema-
tyczna przestrzen Hilberta H,(Qgi:ﬂ’) oraz elementarne operatory kwantowe. Za ich pomoca
mozemy teraz zdefiniowa¢ kwantowe operatory wiezéw lub ich rozsmarowane wersje. Ko-
lejno szukamy rozwigzan wiezé6w a wiec przestrzeni stanow kwantowych spetniajacych

opisane ponizej warunki.

W pierwszej kolejnosci szukamy rozwiazan wiezéw gaussowskich, a wiec stanéw spetnia-
jacych warunek

GU(p, A) =0,

gdzie G oznacza operator wiezéw gaussowskich. Otrzymane w ten sposéb stany tworza

T)¢)

przestrzen, ktora oznaczamy H(Gg , gdzie indeks dolny G oznacza rozwigzanie wiezdéw

gaussowskich.

Pozostate dwa operatory kwantowe wiezéw, a wiec C,, i C" oznaczaja wiezy dyfeomorficzne

i skalarne dzialajace na tej przestrzeni. W dalszej kolejnosci wychodzac tym razem od
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przestrzeni H(C_?r,qﬁ) szukamy rozwigzan wiezéw dyfeomorficznych

Gl (o, A) = 0.

Otrzymana w ten sposob przestrzen rozwiazan oznaczamy 'Hgfg jy) n-

Rozwigzanie wiezéw gaussowskich i dyfeomorficznych jest przemienne. Schematycznie

przedstawiamy to ponizej. Kolejnos¢ rozwiazywania

(gr,®) gaussowskie (g7,) dyfeomorficzne (g7,¢9)
E— _—
e 7Y HI

oraz

(gr,) dyfeomorficzne (gr,¢) gaussowskie (gr,)
Hiin —— Hayy —>%Gdyf)

prowadza do tego samego wyniku.

Powyzsze schematy nie koniecznie muszg oznaczaé zawieranie sie odpowiednich zbioréw

elementow. W rzeczywistosci nie jest prawda, ze

(g7,9) (gr,)
HED S5 U,

kin

i konstrukcja rozwiazan prowadzi nas do wiekszej przestrzeni niz wyjsciowa przestrzen ki-
nematyczna. Szczegdly zostana przedstawione w kolejnej czesci, gdzie bedziemy omawiaé

zastosowanie kanonicznej petlowej grawitacji kwantowej.

W kolejnym rozdziale oméwimy ostatni krok prowadzacy do fizycznej przestrzeni Hilberta

(g7,9)
Hi,

3.2.2 Rozwiazanie kwantowych wiezéw gaussowskich

Kwantowy operator wiezéw gaussowskich, a raczej jego rozsmarowana wersja G (a), gdzie
a oznacza dowolng funkcje a : M — SU(2) dziala jedynie na geometryczna czesé zmien-
nych kanonicznych. Operator ten generuje unitarng grupe transformacji Yanga-Millsa

dziatajaca na o

k:zn ’

Va: M — SU2) — Ug(a)- ¥ (¢, A) =¥ (¢,a " Aa+a 'da). (3.17)
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Wiezy gaussowskie pojawiaja sie, kiedy stosujemy opis czesci grawitacyjnej teorii oparty
na zmiennych Ashtekara. Ich dziatanie na ortogonalng baze przestrzeni Hilberta kanonicz-
nej petlowej grawitacji czyli sieci spinowe, opisana jest w [1]. W kontekscie opisywanego
w tej pracy modelu zdefiniowane jest [14]| oraz [31]. Opis przedstawiony w tych pracach
bedzie zawarty w rozdziale rozprawy po$wieconym kanonicznej petlowej grawitacji kwan-

towej.

W tym momencie wnioskujemy jedynie, ze przestrzen rozwigzan wiezow gaussowskich

7—[%’“‘75) sklada sie¢ ze stanéw spetniajacych nastepujacy warunek

U (¢, A) =V (¢,a "' Aa+a 'da). (3.18)

3.2.3 Rozwiazanie kwantowych wiezéw wektorowych

Rozwiazanie wiezow wektorowych jest duzo bardziej skomplikowane. Wynika to z kilku
faktow, posrod ktorych najwazniejsze sa dwa. Grupa dyfeomorfizméw jest grupa nie-
skoriczong oraz nie jest zwarta. Unitarne operatory odpowiadajace lokalnym dyfeomorfi-

zmom nie sa ciagte (stabo).

Zakladamy, ze kwantowe wiezy dyfeomorficzne generuja dziatanie lokalnych dyfeomorfi-

zmoOw na stany kwantowe.
Vo: M — M — Uyp(p) V(g A) =V (" 9,0"- A). (3.19)

Przy takim zaltozeniu, ktore formalnie i Scisle wyprowadzimy w kolejnej czesci tej pracy,

rozwiazania wiezow dyfeomorficznych to stany kwantowe spetniajace nastepujacy warunek

(" ¢,0"- A) =V (¢, A), (3.20)

dla dowolnego dyfeomorfizmu lokalnego ¢ : M — M (wzor (3.5) w [13]).

3.2.4 Przestrzen niezmienniczych stanéw kwantowych

Podsumowujac wyniki niniejszego rozdzialu, otrzymaliémy w nim przestrzei stanow dy-
feomorficznie i Yang-Mills niezmienniczych HE?; ’jy)f). Okreslaja ja stany kwantowe spet-

niajace rownania (3.18) i (3.20).
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Kolejnym krokiem bedzie okreslenie dziatania kwantowego operatora wiezu skalarnego i

znalezienie ogblnej postaci stanéw nalezacych do Hgfg f; 1 anihilowanych przez te wiezy.

Przedstawione tutaj ,formalne” obiekty zostana zdefiniowane w Scisty sposéb w kolejnym
rozdziale tej pracy, traktujacej o zastosowaniu kanonicznej petlowej grawitacji kwantowej

do kwantyzacji przedstawionego w obecnym rozdziale modelu.

3.3 Kwantowe wiezy skalarne i ich rozwigzania

Ostatnim etapem rozwiazywania wiezow bedzie znalezienie ogélnej postaci rozwigzan wie-
z6w skalarnych w ich zdeparametryzowanej postaci. Koricowym wynikiem tego rozdziatu

bedzie scharakteryzowanie fizycznej przestrzeni Hilberta 7—[%;’@.

Pierwsze dwa paragrafy tego rozdzialu traktuja o rozwigzaniu wiezéw skalarnych. Dwa
ostatnie stanowia podsumowanie wynikéw tego i poprzedniego rozdziatu. Podsumo-

wuja postaé¢ rozwiazania wszystkich wiezéw naszej teorii.

3.3.1 Kwantowy operator wiezéw skalarnych

W niniejszym paragrafie zdefiniujemy kwantowy odpowiednik zdeparametryzowanych wie-

zow skalarnych (3.8) i (3.9). Najpierw ograniczymy sie do definicji jego dzialania na

H(9T7¢)

win - W kolejnej czgsci pokazemy w jaki sposob dziatanie to przenosi si¢ na zdefinio-

wane w poprzednim rozdziale stany dyfeomorficznie i Yang-Mills niezmiennicze Hg‘g fy) -

Heurystycznie definiujemy kwantowy operator wiezéw skalarnych w nastepujacy sposéb

C'(x) - (g, A) = (fr(x) . h(x)) (¢, A). (3.21)

W przypadku bezmasowego pola skalarnego ¢, mozemy w podobny sposéb zdefiniowaé
kwantowy operator iL(:f;) za pomoce jego klasycznego wyrazenia (3.9). Musimy pamietac,

ze wystepujace tam obiekty traktujemy jako funkcje zmiennych kanonicznych A i P, skad

h(z)=h (Ag(;c), 15?)(3;)) . (3.22)

J
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Problem uporzadkowania operatoréw sprawia, ze heurystyczne wyrazenie (3.22) nie defi-
niuje operatora iL(Qf) w sposob jednoznaczny. Dodatkowym warunkiem na uporzadkowanie
operatoréw jest koniecznosé unikniecia anomalii kwantowych. Wymagamy, aby komutator
odpowiednich operatoréow kwantowych odpowiadal nawiasowi Poissona ich klasycznych

odpowiednikow. Stad otrzymujemy nastepujace ograniczenie

{h(@), hly)} =0 = |[h(z),h(y)| = 0. (3.23)

7 tak zdefiniowanym operatorem, o ktérym w tym momencie zaktadamy, ze istnieje i ma
wymagane wladciwosci rozwigzujemy réwnanie kwantowe zdeparametryzowanego wiezu

skalarnego
(fr(:c) - iz(:c)> (¢, A) = 0. (3.24)
Szczegbdtowa konstrukcja operatora iz(x) zostanie przeprowadzona w rozdziale poswieco-

nym zastosowaniu kanonicznej petlowej grawitacji kwantowej. Ogodlna postac¢ rozwiazania

(3.24) na poziomie ,formalnym” zostanie wyprowadzona w kolejnym paragrafie.

3.3.2 Rozwigzanie kwantowych wiezéw skalarnych

W celu znalezienia ogolnej postaci rozwiazania rownania (3.24) przyjmujemy nastepujacy

anzatz rozwigzania

U (¢, A) = et Poé@h@)y, (4 A) . (3.25)

W ten sposob przesuneli$émy poszukiwania ogolnej postaci rozwiazan z funkeji W(¢, A) na

funkcje (¢, A), ktorej wlasnosci bedziemy obecnie szukaé.

Korzystajac z definicji (3.16) elementarnego operatora kwantowego przeksztalcamy row-

nanie (3.24) wiezu skalarnego do postaci

S )
% W(p,A) = ih(x)V (6, A) . 3.26
S 0.4 = i)Y (6.4) (3.26)
Ze wzgledu na (3.23) zachodzi nastepujacy zwiazek komutacyjny

h(z) & Fvowh) = i/ Cudwh®) fy (), (3.27)
Wykorzystujac go wraz z (3.25) otrzymujemy wyrazenia na prawa strone rownania (3.26)
ih(z)T (¢, A) = ih(z)e! [ vy, (6 A) . (3.28)
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Nastepnie za pomoca definicji (3.15) elementarnego operatora kwantowego (ﬁ(x) oraz nie-

zaleznosci wyrazenia h(z) od ¢(z), przeksztalcamy lewa strone rownania (3.26)

5 5t
— 7 (i dPye(y)h(y) —
0 o3 ?
_ i [ Pyod(y)h(y) -
e )
_ iil(x)eifd3y¢(y)ﬁ(y)w (¢, A) + eifd:‘y@ﬁ(y)ﬁ(y)%(x)w (¢, A).

Poréwnujac powyzsze rownanie z (3.28) znajdujemy warunek jaki musi spetnia¢ funkcja

(6, A),
L
()

Oznacza on, ze 9 jest funkcja zalezng jedynie od zmiennych geometrycznych, tzn.

¥ (¢, A) = 0. (3.29)

(g, A) = (A). (3.30)

Podsumowujac niniejszy paragraf, ogélna postac¢ rozwiazania wiezéw skalarnych przyjmuje

posta¢ dowolnej funkcji postaci

U (g, A) = '/ Peoh@y (4) (3.31)

3.3.3 Ogoblna posta¢ rozwigzan wiezéw kwantowych

Ogolna postaé rozwiazan kwantowych wiezow musi spetnia¢ wszystkie trzy warunki (3.18),

(3.20) oraz (3.26) rownoczesnie.

Kombinacja zmiennych A i P w wyrazeniu na h(z) sprawia, ze jest on niezmienniczy ze
wzgledu na dziatanie transformacji Yanga-Millsa. Tym samym niezmienniczy jest ekspo-

tencjalny operator wystepujacy w wyrazeniu (3.25).

Dodatkowo wystepujaca w tym wyrazeniu catka po catej 3-wymiarowej rozmaitosci M

gwarantuje, ze ekspotencjalny operator w (3.25) jest dyfeomorficznie niezmienniczy.

Stad warunki niezmienniczosci przenosza sie z funkcji ¥(¢, A) na funkcje ¥ (¢, A),

U (¢p,a " Aa+ada) = U (¢,A) = ¢ (a " Aa+ a 'da) = ¢ (A), (3.32)

U (", 9" A) = W (¢, A) = ¢ (¢"A) =1 (4) . (3.33)
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Ostatecznie otrzymujemy ogdlna posta¢ rozwiazania wszystkich wiezow kwantowych
Ogolnym rozwigzaniem kwantowych wiezow gaussa, wektorowych i skalarnych jest

kazda funkcja postaci

U (g, 4) = ! FN@y (),
gdzie 1 spetnia nastepujgce warunki:

e Dla kazdego lokalnego dyfeomorfizmu ¢ : M — M zachodzi ¢ (p*A) = ¢ (A).

e Dla kazdej funkcji a : M — SU(2) zachodzi v (a ' Aa + a'da) = ¢ (A).

3.3.4 Przestrzen rozwigzan wiezow kwantowych

Przestrzen rozwigzan wszystkich trzech wiezéw kwantowych stanowi przestrzen Hilberta
stanow fizycznych H}fg’(ﬁ). Oczywiscie pod warunkiem, ze potrafimy okresli¢ dobrze zde-

finiowany iloczyn skalarny pomiedzy stanami posiadajacy wymagane wlasnosci.

Opisana pod koniec poprzedniego paragrafu przestrzen rozwiazan wiezéw kwantowych
potrafimy skonstruowac, o ile potrafimy znalezé odpowiednie funkcje ¥(A). Co wiecej
jezeli funkcje te beda tworzyly przestrzen Hilberta ”HEQGT )dy nto iloczyn skalarny z tej prze-
strzeni potrafimy przenies¢ na przestrzen ’H}i?qﬁ) w taki sposob, ze otrzymamy réwniez na

niej dobrze zdefiniowany iloczyn. Réwniez operatory zdefiniowane na 'Hgg )dy f) brzenosza

sie na 7-[;9;@) co bedzie pokazane w kolejnym rozdziale.

Podsumowujac, majac dana przestrzen Hilberta kwantowych stanéw geometrii Hgg )dy 'R

ktore sa dyfeomorficznie i Yang-Mills niezmiennicze, za pomoca unitarnego izomorfizmu

HE o = HED D p(A) — (g, A) = ¢! Py, (4) (3.34)

otrzymujemy przestrzen fizycznych stanéw naszego nowego modelu.

Iloczyn skalarny z HEZ )dy f definiuje iloczyn skalarny na H;’;Z’(ﬁ)

(W) (3.35)

fiz -
Konstrukcja kwantowego modelu bezmasowego pola skalarnego sprzezonego z polem gra-
witacyjnym sprowadza si¢ do zdefiniowania obiektéw opisujacych geometryczna czesé na-

szego modelu. Okazuje sie jednak, ze obiekty takie sg dobrze znane, a ich konstrukcja
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zostalta przeprowadzona w ramach kanonicznej petlowej grawitacji kwantowej. Beda one

przedstawione w kolejnej czesci niniejszej pracy.

3.4 Kwantowe obserwable Diraca

W klasycznej teorii z wiezami pierwszego rodzaju mamy do czynienia z sytuacja, kiedy
r6zne punkty przestrzeni fazowej moga opisywac ten sam stan fizyczny uktadu. W rzeczy-
wistosci, wiezy generuja transformacje cechowania, a funkcje reprezentujace fizyczne wiel-
kosci powinny przyjmowac state wartosci na orbitach transformacji cechowania. Oznacza
to znikanie nawiasu Poissona ze wszystkimi wiezami pierwszego rodzaju. Funkcje takie

nazywamy obserwablami Diraca.

W teoriach takich jak ogdlna teoria wzglednosci, gdzie okazuje sie, ze kanoniczny Hamil-
tonian jest liniowa kombinacja wiezéw, generowana przez niego ,ewolucja” jest niczym
innym jak transformacja cechowania. Popularnie nazywamy ten fakt ,problemem czasu”.
Skonstruowanie obserwabli Diraca, o ktérych nietrywialnej ewolucji mozemy méwié nie

jest prostym zadaniem.

Jedno z bardziej skutecznych podejs$¢ opiera si¢ na tzw. zmiennych relacyjnych ([35], [5]).

Dokladne rozwiniecie tych koncepcji mozna znalezé w (6], [7] oraz w [33].

Powyzsze klasyczne wlasciwosci teorii z wiezami pierwszego rodzaju maja swoje odzwier-
ciedlenie w modelach kwantowych. Kwantowe operatory odpowiadajace fizycznie mie-
rzalnym wielko$ciom, powinny by¢ niezmiennicze wzgledem transformacji generowanych

przez kwantowe operatory wiezéw. Sa to tzw. kwantowe obserwable Diraca.

3.4.1 Definicja kwantowych obserwabli Diraca

W przypadku prezentowanego w tym rozdziale modelu kwantowego mamy trzy rodziny

kwantowych wiezow pierwszego rodzaju.

Wiezy dyfeomorficzne C’a(:v), o ktorych zakladamy, ze generujg unitarne transformacje

Udyf(go). Wiezy gaussowskie, ktore generuja unitarne transformacje Ug(a), oraz wiezy
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skalarne zdefiniowane w réwnaniu (3.21).
Obserwable Diraca definiujemy w nastepujacy sposob:

Kwantowym operatorem Diraca bedziemy nazywac operator @ posiadajqcy wszystkie

ponizsze wlasciwosci

e Obciecie operatora O do przestrzeni rozwigzan wiezow kwantowych jest dobrze zde-

fintowane.

e Operator @ jest niezmienniczy wzgledem dziatania wiezow dyfeomorficznych
OUays(p) - @1, A) = Uy()O - B(1), A). (3.36)
e Operator O jest niezmienniczy wzgledem dziatania wiezow gaussowskich

OUq(a) - ®(v, A) = Ug(a)O - (1, A). (3.37)

e Operator @ komutuje z operatorem wiezow skalarnych

[@,é'(z)} —0. (3.38)

3.4.2 Rodzina kwantowych obserwabli Diraca w zdeparametry-

zowanym modelu grawitacji sprzezonej z polem skalarnym

Formalizm obserwabli relacyjnych pozwala zdefiniowa¢ duza rodzine obserwabli konstru-
owanego modelu.W kolejnym paragrafie pokazemy, ze jest ona w rzeczywistosci wystar-

czajaca do opisu badanego modelu.

~

Zaktadamy, ze L oznacza dowolny operator na przestrzeni ’Hg‘g Ly " To znaczy, ze L
przeprowadza funkcje A — 1(A) na funkcje A — L - ¢(A). Ponadto spelnia nastepujace

warunki

[i, Ag(a)} —0, (3.39)

[ﬁ, Adyf(w)] —0. (3.40)
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Majac operator L jak powyzej, mozemy zdefiniowaé operator O(I:) dzialajacy na opisane;j

w Paragrafie 3.3.3 przestrzeni rozwiazan wiezéw kwantowych, w nastepujacy sposob
O(L) := ' d'wéh [ o=i ] d*wdh (3.41)
Aby to udowodnié¢, zauwazamy kolejno:

1. Zauwazamy, ze dla dowolnego ¢ : M — M mamy

[ #zd@iin) = [ Erite@iiela) (3.42)

skad wynika, ze

P Daypp(p)| = 0. (3.43)
Stad otrzymujemy, ze
O(L)Uaysr(0) - W(, A) = Uy (9)O(L) - W(9, A). (3.44)

2. Poniewaz transformacje Yanga-Millsa dziataja jedynie na cze$¢ geometryczng, a

operator h zalezy od Ai P w sposob niezmienniczy, wynika stad, ze

[eﬂfdgm‘%, Ug(a)] =0. (3.45)
Stad otrzymujemy, ze
O(L)Ug(a) - ¥(¢, A) = Ua(a)O(L) - ¥(¢, A). (3.46)

3. Operator O(f) zachowuje przestrzen rozwigzan wiezow
O(L)e' ] Pty A) = e Podhyy (A), (3.47)

gdzie

A

U(A) = Ly(A), (3.48)

a co za tym idzie spelnia warunek
[0@), C*'(a;)] —0. (3.49)

Powyzsze trzy warunki pokazuja, ze O(L) definiuje rodzine obserwabli Diraca na H%’d’),

indeksowana operatorami L na HEQGT )dy N
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Na przestrzeni rozwigzai wiezow rowniez operator ,catkowitego pedu” [ d*z7(x) defi-
niuje operator nalezacy do tej rodziny. Na przestrzeni rozwigzan, spetniony jest bowiem

warunek #(z) = h(x), skad otrzymujemy

o / P (z)) = O / Frh(z)) = / (). (3.50)

3.4.3 Zupelnos$é zdefiniowanej rodziny obserwabli Diraca

Zdefiniowana powyzej rodzina kwantowych obserwabli Diraca w rzeczywistosci zawiera

wszystkie fizyczne obserwable. Dowodzimy tego, zapisujac dowolny operator Ow postaci
O = ¢t [ Padh fro=i ] dadh, (3.51)

Nie zmniejsza to ogdlnosci rozwazan. Kladac K = e~i/ @e6hQei [ @2k ot17vmujemy wy-

magang posta¢ operatora.

Narzucamy na ten operator trzy warunki, jakie musi spetnia¢ kwantowa obserwabla Diraca
w naszym modelu. Powtarzajac rozumowanie analogiczne, do tego jakie przedstawione
jest w poprzednim paragrafie wnioskujemy, co nastepuje. Warunkiem niezmienniczosci
wzgledem dziatania lokalnych dyfeomorfizméw i transformacji Yanga-Millsa operatora @

przenosi si¢ na takie same wymagania wzgledem operatora L.

Pozostatym nietrywialnym warunkiem jest znikanie komutatora
[@,ém} —0.

Wstawiamy (3.51) do powyzszego réwnania i otrzymujemy nastepujacy rownowazny wa-
runek

[f(,fr(x)] ~0. (3.52)

Zbidr rozwiazan powyzszego rOwnania generowany jest za pomoca nastepujacych opera-

torow

1. K = #(x)

Co wynika ze zwigzkéw komutacyjnych pomiedzy zmiennymi pola skalarnego.

2. K=1, gdzie L jest operatorem dziatajacym na funkcje A — 1(A) i przeprowadza-
jacy ja w A — Li(A)
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Co wynika z faktu komutowania zmiennych geometrycznych ze zmiennymi pola ska-

larnego.

Okazuje sie jednak, ze rozwiazania postaci 1. znikaja na przestrzeni rozwigzan. Jest to

konsekwencja zaleznosci
et/ Padhz(p)e~t Poh — 5(20) — fi(z) = C'(2), (3.53)

wynikajacej ze wzoru Bakera—Cambella—Hausdorfa.

Ostatecznie otrzymujemy, ze wszystkie obserwable Diraca badanego modelu generowane
sa przez dyfeomorficznie i Yang-Mills niezmiennicze operatory L dziatajace na przestrzeni

(gr)
/H(Gvdyf)'

3.4.4 Klasyczny odpowiednik kwantowych obserwabli Diraca

Czesto nadajemy fizyczna interpretacje kwantowym operatorom szukajac ich klasycznych
odpowiednikéw. Nie inaczej bedziemy postepowac i w tym przypadku. W pierwszej ko-
lejno$ci musimy zatem znalezé klasyczne funkcje, ktorym odpowiadaja zdefiniowane przez

nas operatory kwantowe.

Pamietajmy jednak, ze w proponowanym przez nas podejsciu do kwantyzacji, to teoria
kwantowa uwazana jest za bardziej elementarng. Istnienie klasycznej interpretacji nie jest

wcale warunkiem koniecznym do stwierdzenia poprawnosci badanego modelu kwantowego.

Klasycznej interpretacji obserwabli kwantowej szukamy odwracajac procedure zamiany
nawiaséw Poissona klasycznych funkcji na komutatory operatoréw. Stosujemy nastepu-
jace podstawienie

[, . ]——=i{., .} (3.54)
Rozwazmy operator L, ktory postuzyl do skonstruowania kwantowej obserwabli Diraca
(9([:) Przyjmujemy, ze dziedzina odpowiadajacej mu funkcji L zdefiniowanej na geome-

trycznej czesci przestrzeni fazowej, zawiera si¢ w tej czesci, w ktorej zachodzi

Cyr < 0.
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Za pomoca wyrazenia znanego z [6] i [7] zapisujemy wzor (3.41) definiujacy kwantowa,

obserwable Diraca w nastepujacej formie

o0

O(L) = Z;—n' [ﬁ, / d%éﬁ}( . (3.55)

n=0

gdzie [., () definiujemy w nastepujacy sposob

{L / d%d)h}

=1L
L, d%qsh [ d3x¢h , d%g?)h]. (3.57)
|: / (n—l)/

(3.

55) prowadzi do klasycznej funkcji O(L),

(3.56)

Zastosowanie podstawienia (3.54)
1 3
O(L) = Z — { , /d :vgbh} , (3.58)
n=0 (n)
odpowiadajacej kwantowemu operatorowi O(ﬁ) {., - }(n) zdefiniowany jest w analogiczny

sposob jak [.,.]n) w przypadku komutatorow.

3.4.5 Interpretacja klasycznej funkcji odpowiadajacej kwantowym

obserwablom Diraca

Rozpatrzmy teraz klasyczna funkcje O(L) okreslona na klasycznej przestrzeni fazowej I'.
Przeprowadza ona punkt (A, P, ¢, m) okreslony konfiguracja odpowiednich pol na M w
punkt O(L)(A, P, ¢, ).

Przedstawiona tutaj interpretacja pochodzi z formalizmu zmiennych relacyjnych opisa-

nego w [6], [7], [8] oraz [33].

Rozpatrzmy najpierw bardziej ogblne wyrazenie, w ktorym w miejsce fizycznego pola ¢
speliajacego odpowiednie rownania, wstawiamy dowolng funkcje ¢t : M > =z — t(x).
Definiujemy funkcje postaci

of (L) = Z% {L, /d?’:cth}(n) . (3.59)

n=0
Na podstawie wynikow z cytowanej na poczatku tego paragrafu literatury wiemy, ze tak

zdefiniowana funkcja jest cofnigciem funkceji L : I'y, — Ty, za pomoca odwzorowania
ap g — Typ (3.60)

67



Powyzsze odwzorowanie jest natomiast jednoznacznie okre$lone za pomoca strumienia
hamiltonowskiego ; : I' — I' na pelnej przestrzeni fazowej, ktore jest generowane przez
wiezy C'(x) przy parametrach t(x). Rownanie definiujace oy : przyjmuje nastepujaca
postac

(A, P,p,m) — B(A, P,op,m) = (ay(A, P),¢p —t,m). (3.61)

W szczegolnosei dla t(x) = ¢(z) otrzymujemy
B(ﬁ(Aa Pa (bv 7T) = (Oé¢(A, P)a 07 7T) ) (362)

co stuzy do zdefiniowania ay, a co za tym idzie O(L).

Otrzymujemy stad nastepujaca charakterystyke funkcji O(L) : I' — IT" okreslona poniz-
szym réwnaniem

O(L)(A, P, ¢, m) = L (as(A, P)) = aj(L). (3.63)
Nadalismy jej klasyczna interpretacje, ktora mowi, ze jezeli chcemy znalezé wartosé tej
funkeji w punkcie (A, P, ¢, ) to znajdujemy orbite transformacji cechowania generowanej
przez wiezy skalarne i szukamy na niej punktu, w ktérym ¢ staje sie rowne zeru. Od-
czytana w tym punkcie konfiguracja pol (A, Py) jest argumentem funkeji L. Wartosé tej
funkeji w tym punkcie jest szukang wartoscia O(L)(A, P, ¢, 7).

/
/

/ " (QQ,(‘b/J}> — | (QJO/"{’Q)B [(o/p)
Cf)(L> &%\@/&’/7/\/ - L ( (}NPO\/ ) /{ / / / =

o // y
g /(’ € }z)/ D’N/ ()/ jﬁ) — [ <&D/p"/ O/'”D\ 7>(/0A ! DO>

. v
4 / / /
r
/

/
Rys. IIL. 2

Podsumowujac, kwantowa obserwabla Diraca O(L), odpowiada klasycznej funkcji O(L),

ktora rowniez jest obserwabla, dlatego mozemy zapisaé

—

O(L) = O(L). (3.64)

W tym momencie niezbedny jest komentarz na temat statusu operatora (’)([:) Moze

sie zdarzy¢ bowiem, ze w danym punkcie (A, P, ¢, 7) przestrzeni fazowej I', szereg (3.58)
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nie jest zbiezny. W rzeczywistosci, z sytuacja taka mamy do czynienia w modelach pe-
tlowej kosmologii kwantowej (LQC) opisujacych jednorodny i izotropowy Wszechswiat z
dodatnia stala kosmologiczna [36]

Operator O(f/) pozostaje jednak dobrze zdefiniowany, o ile samosprzezone rozszerzenie
operatora [ d%gz% jest ustalone, a w zwiazku z tym operator exp <Z i d%gﬁz) jest dobrze

zdefiniowany.

W takiej sytuacji, kwantowa ewolucja wyprowadza nas w obszar niedostepny teorii kla-
sycznej. Ten fakt, w rzeczywistosci byl gléwnym motywem dla naszego podejscia, w
ktorym zdecydowalismy sie zdefiniowaé obserwable Diraca bezposrednio w teorii kwanto-

wej, nadajac ich klasycznej interpretacji jedynie drugorzedne znaczenie.

3.5 Dynamiczna ewolucja obserwabli Diraca

Celem tego rozdziatu jest przedstawienie relacyjnego sposobu interpretacji kwantowych
obserwabli. Oryginalne wyniki niniejszej rozprawy polegaja na zastosowaniu tych koncep-
cji do stworzenia modelu kwantowej grawitacji oddziatujacej z polem skalarnym peliacym

role relacyjnego czasu.

Definicje relacyjnych obserwabli Diraca oraz sposob interpretacji ich dynamiki zostaty
opisane w [7] oraz cytowanej tam literaturze. UsScislenia dokonano w [33]. Prezento-
wane tutaj podejscie zostalo oryginalnie opisane w [13| natomiast osadzenie w szerszym

kontekscie znajduje sie w wyktadach zaprezentowanych w [31].

3.5.1 Relacyjna ewolucja funkcji klasycznych

Zadaniem teorii fizycznych jest okreslenie wielkosci, ktére moga podlega¢ bezposredniemu
lub posredniemu procesowi pomiarowemu, i ktérych wyniki mozna przewidzie¢ w obrebie
danej teorii. Jest to podstawowym warunkiem jej weryfikacji eksperymentalnej. Prze-
widywalnos¢ wynikow moze by¢ Scista, jak w fizyce klasycznej, lub mieé¢ charakter sta-
tystyczny, jak w mechanice kwantowej. Jednak w obu tych przypadkach jest ona $Scisle

zwigzana z pewng zaleznoscia od parametru okreslajacego ewolucje.
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Fizyka klasyczna i mechanika kwantowa utozsamiaja ten parametr z czasem, ktory ptynie
jednostajnie i niezaleznie od ukladu. Geometryzacja tego parametru i wtaczenie go do
dynamicznych rozwazan ogolnej teorii wzglednosci skomplikowaly sytuacje. Dodatkowo
konsekwencjg traktowania dyfeomorfizméw jako transformacji cechowania jest posta¢ Ha-

miltonianu, ktory okazuje sie liniowa kombinacja wiezow.

Funkcja, ktorej klasyczna rola byto generowanie ewolucji w tym zewnetrznym czasie,
okazuje sie generatorem transformacji cechowania. Tym samym czas w swoim klasycz-
nym znaczeniu zostaje zdegradowany do roli parametru numerujacego punkty na orbicie
transformacji cechowania. Przestaje tym samym mie¢ znaczenie fizyczne jako parametr

definiujacy ewolucje uktadu.

Wiaze sie z tym niemozliwo$é zdefiniowania nietrywialnych obserwabli Diraca takiego mo-
delu. W oparciu o formalizm relacyjnych obserwabli, w poprzednich paragrafach zdefinio-
waliSmy kwantowa rodzine takich obserwabli oraz znalezliSmy odpowiadajace im funkcje

klasyczne.

Zaczynajac na poziomie klasycznym, dla takiej klasy obserwabli potrafimy zdefiniowaé
nietrywialng ewolucje oraz co uczynimy w wersji kwantowej w kolejnym paragrafie, fi-
zyczny Hamiltonian definiujacy taka ewolucje. Dynamika taka okreslona jest wzgledem
czasu relacyjnego. W naszym modelu role taka nadajemy polu ¢, a doktadniej wartoscia
jakie pole to przyjmuje w czasie poruszania sie po orbicie transformacji cechowania gene-

rowanej przez wiezy skalarne C'(z).

Mozemy to zobaczy¢ uogoélniajac okreslenie punktu na orbicie cechowania, potrzebnego
do definicji O(L) z L. Przyjmujac t(x) = ¢(x) — ¢po(z) dla dowolnej funkeji ¢, ustalonej

na M, mozemy zapisa¢ wzor (3.62) w postaci

ﬁ¢*¢0 (A, P, (Z), 7T) = (Oégbfqﬁo (A, P), (250, 7T) R (365)

gdzie ay_g4, (A, P) definiujemy podobnie jak poprzednio ay(A, P), tym razem poruszamy
sie wzdhuz orbity cechowania, az do punktu gdzie konfiguracja pola skalarnego ¢ staje

sie réwna ¢y. Pozwala on zdefiniowa¢ w sposéb analogiczny do tego, jaki przedstawia
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wzor (3.63), funkcje Oy (L) na T,
Ogo (L)(A; P, ¢, ) = L (ag-g0(A, P)) = gy, (L)- (3.66)

Funkcja Oy, (L) bedzie dobrze zdefiniowana, o ile strumieii ; : I' — I' bedzie dobrze

zdefiniowany dla
t(x) = ¢(x) — do(x)

na dziedzinie funkcji L.

Powyzszemu réwnaniu mozemy nadac role klasycznej obserwabli Diraca i badac jej ewolu-
cje w relacyjnym czasie ¢. Analiza przeprowadzona przy uzyciu rownania (3.58) pokazuje,
ze ewolucja ta okreslona jest przez fizyczny Hamiltonian. Centrum naszych zainteresowan

jest teoria kwantowa, stad przechodzimy do ewolucji kwantowych obserwabli Diraca.

3.5.2 Ewolucja kwantowych obserwabli Diraca

Przedstawiona powyzej klasyczna interpretacja ewolucji klasycznych obserwabli Oy, (L)

prowadzi do nastepujacego obrazu operatoréw kwantowych
Oy (D) U(9, A) = ¢ P (@) —b0@)h(@) f o i [ d*x(é(x)—do@)h)y (. 4). (3.67)

Ewolucja operatora okreslona jest parametrem ¢q i odpowiada interpretacji Heisenberga
ewolucji w mechanice kwantowej. W powyzszej definicji wybieramy reprezentacje, w

ktorej zachodzi
¢-V(p,A) =0 V(e A).
Zdefiniowana w ten sposob rodzina operatoréow Oy, nie wyprowadza nas poza rodzing

obserwabli zdefiniowanych w Paragrafie 3.4.2 odpowiadajacym operatorom komutujacym

z wiezem skalarnym. Dowodzimy tego zapisujac
Oyy(L) = O(L), (3.68)

gdzie
i) = =i Pago@)h(@) [ i [ dPogo@)hiz) (3.69)

Zdefiniowana w ten sposob rodzina operatoréw stanowi abelowa grupe automorfizméow w

algebrze rozwiazan wiezu skalarnego



Elementy tej grupy numerowane sa chwilami czasu relacyjnego, czyli funkcjami ¢ na

rozmaitosci M

O(L) — Oy (L). (3.70)

Chcac nastepnie ograniczy¢ te automorfizmy do algebry kwantowych operatoréw Diraca,
napotykamy na trudnosé. Dla danej funkcji ¢o(z) wymagamy, aby operator (3.69), czyli
I byt dyfeomorficznie niezmienniczy dla dowolnego dyfeomorficznie niezmienniczego ope-

ratora L.

Dla operatora h(z), ktory bedziemy konstruowaé¢ w obrebie formalizmu kanonicznej pe-
tlowej grawitacji kwantowej, warunek ten moze by¢ speliony tylko dla statych funkeji

do(7),
¢o(r) =¢o €R, VzeM. (3.71)

Wynika to z faktu, iz dziatanie operatora iz(x) jest skupione na wierzchotkach grafu funkeji
cylindrycznych, o ktoérych bedzie mowa w kolejnym rozdziale tej pracy. Aby dla dowolnej
funkcji cylindrycznej odpowiednie dziatanie byto niezalezne od dyfeomorfizméw przesu-

wajacych funkcje ¢o(x), musi by¢ ona stata na catej przestrzeni M.

W rezultacie otrzymujemy 1-wymiarowa grupe automorfizméw algebry kwantowych ob-
serwabli Diraca. Grupa ta zawiera w sobie zaleznos¢ kwantowych obserwabli Diraca od

relacyjnego czasu ¢y.

3.5.3 Fizyczny Hamiltonian

Okazuje sie, ze taka posta¢ operatoréw umozliwia zapisanie ewolucji w kanonicznej po-
staci. Poprzez rézniczkowanie réwnan (3.68) i (3.69) otrzymujemy nastepujace réwnanie
okreslajace dynamike

d

i Ou(D) = =i [y, 04y (L) (372)

izfiz jest nieznikajaca obserwablg Diraca generujaca ewolucje, dlatego nazywamy go fi-

zycznym Hamiltonianem. Przyjmuje on postac

i = / &z h(z). (3.73)
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Fizyczny Hamiltonian bedzie implementacja ponizszego, heurystycznego wyrazenia

b= [0\~ iCr + /iy (Coy - ocrey (3.74)

Operator ten musi by¢ dobrze okreslony na przestrzeni stanéw dyfeomorficznie niezmien-

niczych. Mozemy dlatego zatozyé, ze wybierajac odpowiednie uporzadkowanie operatoréw
otrzymujemy nastepujaca postaé¢ dzialania operatora h i~ na dyfeomorficznie niezmienni-

cze funkcje 1,
hye - 0(4) = [ ' yJ=2v/3C () (3.75)
gdzie uwzgledniono, ze

CT < 0. (3.76)

Wynik ten zgadza sie z [25].

3.6 Podsumowanie 1 wymagania dla zastosowania ka-
nonicznej petlowej grawitacji kwantowej

W tym rozdziale podsumowujemy przeprowadzong powyzej konstrukcje modelu kwanto-
wego. Celem tego podsumowania jest pokazanie jakie elementy musza zosta¢ skonstru-
owane w obrebie modelu kwantowego, ktory postuzy do konstrukeji czesci geometrycznej

modelu.

Glowny sukces prezentowanego modelu polega na wydzieleniu tego co ma by¢ kwantowane
jako czes$¢ grawitacyjna od tego, co ma by¢ kwantowane jako czes¢ pola skalarnego. Pre-
zentowane w tej pracy podejscie opiera sie na kwantyzacji czesci grawitacyjnej w oparciu
o wyniki kanonicznej petlowej grawitacji kwantowej. Podejécie to zaprezentowane jest w

[13]. Kwantyzacji zmiennej pola skalarnego dokonujemy w [14].

Podsumowujac, aby dokonczyé¢ konstrukeje modelu kwantowego musimy umieé¢ skonstru-

owaé nastepujace obiekty

e Przestrzen Hilberta HE?; )dy Y ktora jest przestrzenia Hilberta opisujaca cze$é grawi-

tacyjna, sktadajaca sie ze stanéow Yang-Mills i dyfeomorficznie niezmienniczych.
e Operatoréw na ’Hgf’; 21y n posiadajacych prosta geometryczna interpretacje
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e Operator odpowiadajacy fizycznemu Hamiltonianowi h iz, ktorego dziedzina zawiera

sie w Hgg)dyf).

Majac dane powyzej wymienione obiekty mozemy dokonczy¢ konstrukeji modelu kwan-

towego.

Fizyczna przestrzen jest unitarnie izomorficzna z dziedzing h fiz(x) W HE?; )dy f) %& pomocy
odwzorowania

et S hay s, (3.77)

Kazda obserwabla (’)(IA/) jest skonstruowana za pomoca cofniecia operatora geometrycz-

nego L, ktory zachowuje dopetienie dziedziny h fiz-

Na koricu, relacyjna ewolucja obserwabli przybiera posta¢ dobrze znanej interpretacji

Heisenberga,

[:(T) = e~hyiz Lotz (3.78)

Dodatkowo musimy szczegdlng uwage poswiecié¢ definicji operatora h iz~ Jego konstrukcja
wymaga wprowadzenia dodatkowych struktur, a szczegdétowe wymagania opisujemy w

ponizszych punktach.

e Operator h fi- powinien by¢ skonstruowany, przy uzyciu dystrybucji o wartosciach

operatorowych

M 52— /gl2) 0o (@), (3.79)

e Dystrybucja opisana w poprzednim punkcie powinna byé¢ samosprzezona, aby umoz-

liwi¢ zdefiniowanie podprzestrzeni, na ktorej zachodzi

Ja@) ) <0, (3.80)

i na niej okreslenia nowej dystrybucji

o) = V-2 /a@@cu. (381)

e Musi zachodzi¢ zwiazek, ktory jest zgodny z klasycznym nawiasem Poissona, tzn

[ﬁ(w), iz(y)} —0. (3.82)
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Spetiwszy powyzsze warunki ostatecznie otrzymujemy fizyczny Hamiltonian

by = [ dahgi(a), (3.83)
M

co koriczy konstrukcje modelu kwantowego grawitacji sprzezonej z bezmasowym polem

skalarnym.
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Rozdzial 4

Zastosowanie kanonicznej petlowej

grawitacji kwantowe]

,, W podejsciu tym na powaznie traktujemy podstawowa lekcje ptynaca z
ogoblnej teorii wzglednosci: grawitacja to geometria. Dlatego fundamentalna
teoria nie powinna odwotywaé sie do zadnej metryki stanowiacej tto wydarzen
fizycznych. Grawitacja kwantowa powinna pozwoli¢, aby geometria i materia

wspoélnie wyltanialy sie z kwantowo mechanicznego obrazu”

"Background independent quantum gravity: a status report.”
Class. Quantum Grav.21, R53
A. Ashtekar and J. Lewandowski

Kanoniczna petlowa grawitacja kwantowa, do ktoérej odnosi sie powyzszy cytat, jest teo-
rig, ktora Swiecita spore sukcesy na poziomie kinematycznym. Szczesliwie okazuje sie, ze
przynosi ona narzedzia i gotowe rozwigzania do konstrukeji kwantowego modelu opisanego

w poprzedniej czesci tej pracy.

Kanoniczna petlowa grawitacja kwantowa, ktéra za punkt wyjscia traktuje sformutowa-

nie ogdlnej teorii wzglednosci w zmiennych Ashtekara znaczaco upraszcza postaé wiezow.
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Nadaje réwniez teorii wzglednosci posta¢ teorii Yanga-Millsa i umozliwia kwantyzacje

niezalezna od geometrii tla.

Cena, jaka za to ptacimy jest posta¢ kinematycznej przestrzeni Hilberta. Okazuje sie ona
przestrzenia nieseparowalng i wymaga uwaznego traktowania. Konstrukcja gestego zbioru
funkcji o prostej postaci, ktore ja generuja jest mozliwa. Interpretacji tym funkcjom na-

daja geometryczne operatory pola powierzchni i objetosci.

Wprowadzenie do kanonicznej petlowej grawitacji kwantowej znajduje sie w 1] 1 [3]. Po-
nizsza prezentacja ktadzie nacisk na elementy potrzebne do konstrukecji naszego modelu

kwantowego i operatora fizycznego hamiltonianu.

4.1 Kinematyczna przestrzen Hilberta

W niniejszym rozdziale przedstawimy konkretng realizacje kinematycznej przestrzeni Hil-
berta opisujacej geometryczna czes¢ naszego modelu. W poprzedniej czesci oznaczaliSmy
ja 1),

Kwantowy model stworzony w poprzednim rozdziale nie narzuca sposobu, w jaki kinema-
tyczna przestrzen Hilberta ma by¢ skonstruowana. Nie narzuca réwniez wyboru zmien-
nych, za pomoca ktérych bedziemy opisywaé¢ geometryczna czes¢ modelu. Okazuje sig,
ze kanoniczna petlowa grawitacja kwantowa dostarcza obiektow i narzedzi o wymaganych

do dokonczenia konstrukeji prezentowanego modelu.

W niniejszym rozdziale przedstawiamy konstrukcje trzech najwazniejszych elementéow
sktadajacych sie na ”H,gg;? i kwantowo mechaniczny opis geometrii. Przedstawimy ele-
menty przestrzeni Hilberta i ich iloczyn skalarny. Dokonamy jej ortogonalnego rozktadu.
Na koncu przedstawimy konstrukcje elementarnych operatoréw kwantowych, ktore po-

stuza do zdefiniowania bardziej wyrafinowanych operatoréw.
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4.1.1 Funkcje cylindryczne i iloczyn skalarny

Od tego momentu zaktadamy, ze zaréwno rozpatrywane powierzchnie jak i krzywe sa semi
analityczne. Pozwoli to unikngé¢ sytuacji dopuszczajacych ,patologiczne” zachowania,
gdzie krzywe przecinaja sie miedzy soba nieskoniczenie wiele razy na skonczonym od-
cinku, co bedzie miato kluczowe znaczenie umozliwiajace konstrukcje stanéw kwantowych
opartych o grafy. Rownoczesnie zatozenie takie nie zmniejsza zastosowalnosci teorii i 0gol-

nosci zalozen.

Za zmienna kinematyczna opisujaca geometrie czasoprzestrzeni bierzemy SU (2)-koneksje,
ktora w konkretnej trywializacji reprezentujemy za pomoca A’ (), gdzie x € M, i jest
wewnetrznym indeksem su(2), natomiast a jest indeksem tensorowym. Przestrzen glad-

kich SU(2)-koneksji na M oznaczamy A.

Mechanika kwantowa uktadéw o skonczonej iloSci stopni swobody uzywa reprezentacji
stanow, ktora sktada sie z funkcji na klasycznej przestrzeni konfiguracyjnej. W przy-
padku uktadow o nieskoiiczonej ilodci stopni swobody takich, z jakimi mamy do czynienia
rozwazajac teorie pola, stany kwantowe reprezentowane sa, jako funkcje na kwantowej

przestrzeni konfiguracyjnej.

W naszym przypadku kwantowa przestrzeri konfiguracyjna, to przestrzen koneksji uogol-
nionych A. Aby skonstruowaé przestrzen stanéw kwantowych na tej przestrzeni , za-

czniemy od konstrukeji tzw. funkeji cylindrycznych na A oznaczanych Cyl(.A).

Elementy przestrzeni Cyl(A) sa funkcjami A — C, ktore otrzymujemy w nastepujacy

sposob. Jezeli e oznacza dowolng krzywa semi analityczng na M,

e:[0,1] = M, (4.1)
to holonomia wzdtuz tej krzywej oznaczana jest przez

he|A] € SU(2), (4.2)

dla A € A. Tak wiec holonomia wzdtuz krzywej jest funkcjonatem koneksji. Za po-

moca (4.2) mozemy zdefiniowaé¢ koneksje, jako funkcje, ktora przyporzadkowuje dowolnej
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krzywej, za pomoca rownania (4.2) element grupy SU(2),
A(e) == h[A]. (4.3)

Definicja ta pozostanie stuszna w ogolniejszym przypadku, kiedy element SU(2) nie musi
pochodzié¢ od gtadkiej koneksji. W rzeczywistosci takie dowolne przyporzadkowanie krzy-

wym elementéw grupy definiuje koneksje uogélniona.

Nastepujace obiekty stuza do definicji funkcji cylindrycznych ponizej:
e {e1,¢69,...,6,} stanowi zbioréw semi analitycznych krawedzi
o f:SU(2)" — C funkcja gtadka

Funkcje cylindryczng W(je, es,...en},) 1 A — C definiujemy w nastepujacy sposob

Y(tereaent.n)(A) = f(Aler), Ale2), -, Alen)). (4.4)

Funkcja cylindryczna nie jest okre$lona jednoznacznie. Odwrdcenie orientacji, dzielenie
krawedzi na kilka lub ich taczenie, przy odpowiedniej zmianie funkcji f pozwala zdefinio-

wacl ta sama funkcje. Wynika to z nastepujacych wtasnosci holonomii,

het[A] = (he[A]) ", (4.5)
he2'61 [A] = h62 [A] hel [AL (46)

1

gdzie e oznacza krzywa przebiegajaca w odwrotnym kierunku co e, a e; - e; oznacza

krzywa otrzymana z polaczenia korica e; z poczatkiem e;. Wtedy np. odwrodcenie jednej

z krzywych lub ich polaczenie prowadzi do réwnowaznej definicji funkcji cylindrycznej
{ei=et = f. AE),..)=f(.,Ale)™..),
{nei=>e;-ep, ..} = [, Al€)), Aley), ..) = f(..., Alei) = A(e)) - A(ey), )
Majac dane dwie funkcje cylindryczne, z ktorych jedna jest okreslona za pomoca ({e1, ...e, }, f),
a druga za pomoca ({€},...e/ }, f’) mozemy odpowiednio dzielac i odwracajac krawedzie
znalez¢ taki zbior krawedzi, ze {e/,...e\}, Zze obie powyzsze funkcje sa wzgledem niego
cylindryczne przy odpowiednio zdefiniowanych funkcjach f7 i f},
({er, o enh, f) = (e, e b 1) s
({er,emb f) = (el e} f2) -
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Za pomoca powyzszych definiujemy iloczyn skalarny

(qj({ela“wen})f)’ \Il/({ell,,e;n},f)) = / dNIU/O fT{/ : é/' (47)
SU2)N

Zaktadajac, ze zarowno krzywe e;, jak przestrzen M sa semi analityczne, dla dowolnej
funkcji cylindrycznej istnieje taki podziat krzywych e;, ze tworza one graf. Oznacza to,

ze jezeli dwie krzywe sie przecinaja to tylko w swoim poczatku lub koncu.

Bedziemy mowié¢, ze funkcja cylindryczne okreslone sa na grafie a. Zbior krawedzi grafu
oznaczamy przez {ey,...,eg}, gdzie E oznacza ilos¢ krawedzi, a zbior wierzchotkéw ozna-

czamy {vy,...,vy }, gdzie V oznacza ilos¢ wierzchotkow grafu. Bedziemy zapisywac

Vo) (A) = V(ter,enp.) (A)- (4.8)

Kinematyczna przestrzen Hilberta Ho il deﬁnlujemy jako uzupemienie przestrzeni Cyl(.A)

wzgledem normy zdefiniowanej przez iloczyn (4.7)

HI = Cyl(A). (4.9)

kin

4.1.2 Ortogonalny rozklad kinematycznej przestrzeni Hilberta

(g7)

Mozemy dokona¢ ortogonalnego rozkiadu kinematycznej przestrzeni Hilberta H,

na
przestrzenie zwigzane z grafami. Oznaczamy przez H(km o) Przestrzen Hilberta, ktora
otrzymujemy ograniczajac sie do funkeji cylindrycznych okreslonych na danym grafie «,

dla wszystkich mozliwych funkcji f,
Hgkzn a) T = Cyl (A) (410)

Ze wzgledu na niejednoznacznosé okreslenia funkcji cylindrycznej przez graf, ktora opi-
saliSmy w poprzednim paragrafie, przestrzen taka jest za duza, aby stanowi¢ podstawe
rozktadu ortogonalnego. Dla danego grafu a, majac graf 5, ktory mozemy otrzymac z
grafu a przez sklejenie, odwrocenie orientacji lub usuniecie niektérych krawedzi, otrzy-

mujemy przestrzen H(km 5)» ktora zawiera si¢ w H(km a)

Hitins) © Hidime (4.11)
Nastepnie definiujemy I kma C H(km o) jako ortogonalne uzupekienie w 3o pod—

(kzn )

przestrzeni rozpietej przez wszystkie H(km 8) dla graféw [ otrzymanych z o jak opisano
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powyzej.

W ten spos6b otrzymujemy ortogonalny rozktad
H(QT) — @H’(QT) (4 12)
kin (kin,a)’ ’

gdzie o przebiega wszystkie semi analityczne grafy w M.

Mozemy dokonaé dalszego, bardziej szczegbétowego rozktadu Hz(kg;) o) DA tak zwane sieci

spinowe, ktore stanowia ortogonalng baze przestrzeni Cyl(A).

Na sie¢ spinowa sktadaja siec wymienione ponizej elementy.

e Graf v, ktorego zbior krawedzi sktada sie z elementow {ey, e, ..., eg}, a zbior wierz-

chotkow to {vy, va, ..., vy }.

e Kazdej krawedzi grafu przyporzadkowujemy nietrywialna reprezentacje grupy SU (2),

{peupez’ ---aPeE}'

Definiujemy w ten sposob nastepujacy element zwiazany z kazda z krawedzi grafu,
ktory przyporzadkowuje
Le,
A3 A= [, (Ale))i

gdzie K., 1 L., oznaczaja odpowiedni element macierzowy w danej reprezentacji
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Rys. IV. 1

e Kazdemu wierzchotkowi przyporzadkowujemy nastepujace elementy

— Reprezentacje grupy SU(2), {pus Pugs - Poy }-

— Niezmiennik {¢y,, ty,, .-, tvy, } Dalezacy do iloczynu tensorowego

Ly; € Inv <<® pZ) ® <® pe/) ®P:Z~) ; (4.13)

gdzie e oznacza krawedzie konczace sie w v;, a €’ krawedzie z niego wychodzace.

— Element przestrzeni Hilberta odpowiadajacy reprezentacji przypisanej do wierz-

chotka {&,;,&vs, s &uy s ui € Hp, -

W ten sposob kazdemu wierzchotkowi przyporzadkowujemy element

A A= (], " c (&)l

i
e

Rys. IV. 2

Funkcje sieci spinowej powstaja z tak zdefiniowanego pokolorowanego grafu poprzez od-

powiednie zwezanie indeksow grupowych zgodnie ze schematem wyznaczonym przez graf.

(g7)

Kin,a) rozpada sie na ortogonalng sume przestrzeni dla wszystkich moz-

Podprzestrzen ’H/(

liwych kolorowan graféw «, nieredukowalnymi reprezentacjami grupy SU(2).
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Wybieramy kolorowanie krawedzi nieredukowalnymi reprezentacjami SU(2) numerowa-
nymi za pomocg spinéw ; = (j1,.--, jE), oraz wierzchotkow nieredukowalnymi reprezenta-

cjami [= (1, ..., ly). Wtedy otrzymujemy rozkltad

1(gr)
km o @ H s (4.14)
gdzie
gT) -
7-[( i) Cyl L (4.15)

4.1.3 Elementarne operatory kwantowe

Na koncu tego rozdziatu zdefiniujemy elementarne operatory kwantowe, za pomoca kto-

rych skonstruujemy wszystkie pozostate.

Elementarny operator odpowiadajacy zmiennej konfiguracyjnej, tworzymy przez rozsma-
rowanie A’ (z) wzdluz krawedzi e : [0,1] — M. W reprezentacji definiujacej SU(2)
otrzymujemy operator, ktéry w dzialaniu na funkcje cylindryczng dotacza nowa krawedz

i odpowiedni element holonomii wzdtuz tej krawedzi

A(&)E - Wiap)(A) = A©BF(Aler), ..., Aler)). (4.16)

Mozemy uogoélnié i przypisa¢ role operatora dowolnej funkcji cylindryczne;j

Ui, Capy(A) = f(Aler), ... Alep)) f(Aler), ..., Aler))- (4.17)

Operator odpowiadajacy zmiennej pedowej otrzymujemy przez rozsmarowanie P?(z) po

2-wymiarowej powierzchni S

P Wp(A) = = [ f(Aer), s Ale) e A da. (4.18)
(/S ) 2i Jg 6AL(z)

Dziatanie tego operatora nie zmienia zbioru krawedzi i wierzchotkéw grafu i zalezy od ich

wzajemnego potozenia wzgledem powierzchni S.
Za pomoca powyzszych elementarnych operatoréw, konstruujemy zaréwno kinematyczne

operatory geometrii, jak i operatory kwantowych wiezéw. Razem z iloczynem skalarnym

stanowia podstawowe narzedzia do tworzenia teorii kwantowe;.
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4.2 Transformacje cechowania Yanga-Millsa i wiezy gaus-
sowskie

Celem niniejszego rozdziatu jest wykonanie pierwszego przejscia przedstawionego w pa-

ragrafie 3.2.1

(gr,¢) saussowskie
o

dyfeomorficzne
g R Ait—
kin

H(Qﬂ@

(gr,9)
He (Gdyf)"

H

Tym razem, jak opisaliSmy w poprzednim rozdziale zajmiemy si¢ geometryczna cze-

Scig teorii. Dlatego pokazemy jak znalezé geometryczne stany gaussowsko niezmiennicze

(gr) eaussowskie
kin

M HE.,

Przedstawione wyniki dotycza kinematycznej przestrzeni Hilberta kanonicznej petlowej
grawitacji kwantowej. Zdefiniujemy na niej dzialanie wiezéw Gaussa i znajdziemy stany

niezmiennicze wzgledem cechowania Yanga - Millsa.

4.2.1 Unitarne transformacje kinematycznej przestrzeni Hilberta

W poprzedniej czesci zaktadaliémy, ze kwantowy operator wiezow Gaussowskich G(a),
gdzie a : M — SU(2), jest generatorem unitarnych transformacji cechowania. Prze-

ksztatcaja one dowolng funkcje na przestrzeni A w inna funkcje w nastepujacy sposéb
Uala) - U(A) = ¥(a ' Aa + a 'da). (4.19)

Interpretacja jest prosta w sytuacji, kiedy badamy stany na przestrzeni koneksji gtadkich.
Rozwazenie transformacji unitarnej generowanej przez G (a) na kinematycznej przestrzeni
Hilberta kanonicznej petlowej grawitacji kwantowej, gdzie rozwazane stany sa funkcjami

na przestrzeni koneksji uogoélnionej jest rowniez mozliwe.

Wykorzystujemy w tym celu zbiér funkeji cylindrycznych, ktory stanowi gesty genera-
(g7)

tor przestrzeni H,,, . Poniewaz funkcje cylindryczne zaleza od A € A jedynie poprzez

holonomie wzdtuz krawedzi, wystarczy wiedzie¢ w jaki sposéb transformacja cechowania

dziata na A(e). Standardowa zaleznos$¢ znana z geometrii réozniczkowej mowi, ze

A =a ' Aa+ a tda

= A'(e) = a '(e(1)) Ale) a(e(0)). (4.20)
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Wyciagniemy z powyzszego dwa wnioski ([31], [1]). W pierwszej kolejnosci w odniesieniu

do dowolnej funkcji cylindrycznej,

Via(A) = f(Ale1), ..., Aler)) (4.21)

Dzialanie transformacji generowanej prze G(a) przyjmuje postaé

~

Ua(a) - \IJ(a,f)(A) ‘I’(a_lAa + a_lda) =
(a7 (1) Aler)aler(0)), .. a™ (ex (1) Alep)ales(0))) =

(A(er), ..., Aleg); a(vr), ...a(vy)) . (4.22)

~

f
f

Nastepnie obliczamy efekt dziatania transformacji cechowania generowanej przez wiezy

Gaussa G(a) na funkcje sieci spinowe;.

W poprzednim rozdziale opisalismy sposob konstrukeji funkeji poprzez przypisanie wierz-
chotkom i krawedziom grafu odpowiednich elementéw. Bezposrednim rachunkiem mo-
zemy sprawdzi¢, ze dzialanie Ug(a) sprowadza sie do obrotéw wektorow &, przypisanych

wierzchotkom grafu.

Dzialanie Ug(a) nie zmienia kolorowania grafu reprezentacjami grupy SU(2), jakie przy-

pisujemy krawedziom i wierzchotkom. Zmienia natomiast wektor
Hyp,, 2 &oi = P, (a(vi)) &, € Hy, - (4.23)

Oba powyzsze sposoby zapisu dziatania grupy transformacji cechowania generowanych
przez wiezy gaussowskie wykorzystamy do rozwiazania kwantowych wiezow Gaussa. Czy
to wychodzac od dziatania na funkcje cylindryczne, czy na sieci spinowe otrzymamy de-
finicje przestrzeni ’H(GQT), ktore jest kolejnym krokiem, jaki musimy wykonaé zgodnie ze

schematem opisanym w poprzedniej czesci.

4.2.2 Niezmiennicze sieci spinowe

Niezmiennicze sieci spinowe to funkcje sieci spinowych, ktore spetniaja warunki niezmien-
niczosci wzgledem dziatania transformacji cechowania Ug(a). Szukamy wiec takiego ko-

lorowania grafow, ktore spelniajg warunek

Ug(a) - V(a1 (A) = Y n(A). (4.24)
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Prowadzi to do warunku, ze zgodnie z (4.23) musi zachodzi¢

fvi = Po; (CL(UZ)) : 51;1-' (425)

Wymnika stad, ze niezmiennicze sieci spinowe charakteryzuja sie tym, ze wszystkie re-
prezentacje przyporzadkowane wierzchotkom sa trywialne. Ponadto wektory przypisane

wierzchotkom sg réwne §,, = 1.

Oznacza to, ze calkowity spin w wierzchotku jest réwny zeru. Niezmiennik ¢, splata ze
soba reprezentacje krawedzi wchodzacych do wierzchotka, ze reprezentacjami krawedzi
wychodzacych z wierzchotkami
Ly ® H, — ® Hi, (4.26)
eeln(v) e/ €Out(v)
gdzie In(v) oznacza zbior krawedzi grafu konczacych sie w v, Out(v) oznacza zbior krawe-
dzi grafu wychodzacych z V' a H;, i H;,, oznaczaja odpowiedzenie przestrzenie Hilberta,

na ktorych dzialaja te reprezentacje.

Odnoszac sie do notacji przyjetej we wzorze (4.14), wybor trywialnej reprezentacji przy-

pisanej wierzchotkowi oznacza kolorowanie ich za pomoca = (0,0,...0).

4.2.3 UsSrednianie po grupie

Ze wzgledu na duzo wiekszg intuicyjno$é rozwiagzan wiezéw Gaussa za pomoca konstruk-
¢ji niezmienniczych sieci spinowych, metoda usredniania po grupie nie jest stosowana do
rozwiazywania wiezow gaussowskich. Sa jednak sytuacje, kiedy metoda rozwiazywania

jest najskuteczniejsza, o ile nie jedyna metoda rozwigzywania wiezow kwantowych.

Metoda usredniania po grupie opiera sie na catkowaniu wzgledem grupy cechowania, co

formalnie mozemy zapisaé¢ jako
U(A) — / I da(z) Uala) - ¥(a). (4.27)

W przypadku funkeji cylindrycznych zachodzi wzor (4.22), ktory pozwala sprowadzié po-

wyzsza catke do catki skoniczenie wymiarowe;j

Ui pn(A) = da(vy)...da(vy) f'(A(er), ..., A(eg),a(vy), ..., a(vy)). (4.28)
SU@2)V
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Powyzsza catka definiuje odwzorowanie 7, ktore przeprowadza funkcje cylindryczne w

funkcje, ktore sa rozwiazaniami wiezow Gaussa. Oznaczmy przeciwobraz C'yl nastepujaco

ne : Cyl — CylC. (4.29)

4.2.4 Przestrzen Hilberta stanéw Yang-Mills niezmienniczych

Na koniec niniejszego rozdziatu zdefiniujemy przestrzenn Hilberta stanéw gaussowsko nie-

(GgT). W pierwszej kolejnosci mozemy zdefiniowaé 7{(5") jako uzupelnienie

zmienniczych H
przestrzeni Cyl® okreglonej w (4.29) wzgledem iloczynu skalarnego przeniesionego z Cyl

za Pomoca 7g.

Alternatywne podejscie polega na zastosowaniu rozbicia (4.12) oraz (4.14) dla odpowied-

nich funkcji sieci spinowych.

Na podstawie wnioskow z poprzednich paragraféw tego rozdziatu na temat kolorowania
stanéw niezmienniczych wzgledem cechowania Yanga-Millsa generowanych przez wiezy

Gaussa, mozemy zapisaé

(gr) _ (gr) (gr)
HE =DM =D | DHL g |- (4.30)

gdzie

(gr) s Y
H(a,j,fza) = Cyl, - ~5)- (4.31)

W dalszej czesci, konstruujac rozwigzania wiezéw dyfeomorficznych, bedziemy domyslnie
rozwazaé przestrzenn Hilberta generowana przez niezmiennicze sieci spinowe. Sieci takie
charakteryzowane sa grafami, o kolorowanych krawedziach, nieredukowalnymi reprezen-
tacjami SU(2). Reprezentacje przypisane wierzchotkom sa domyslnie reprezentacjami

trywialnymi.

4.3 Dyfeomorfizmy i wiezy wektorowe

Kolejnym krokiem bedzie wykonanie drugiego kroku przedstawionego na diagramie

(g7,) gaussowskie (g7,9) dyfeomorficzne (gr,®)
Hyn  — Mg ————— Hgayp
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Tak jak w poprzednim rozdziale ograniczymy sie do rozwazania czesci geometrycznej
modelu. Punktem wyjéciowym bedzie przestrzen stanéw niezmienniczych wzgledem ce-
chowania Yanga-Millsa. Wychodzac z niej otrzymamy przestrzen Hilberta stanéow dyfe-

omorficznie niezmienniczych

dyfeomorficzne r
s H (gr)

(g7)
HG (G, dyf)"

Otrzymana w ten sposob przestrzen Hilberta, potraktujemy jako punkt wyjsciowy do

kwantyzacji wiezu skalarnego.

4.3.1 Dzialanie dyfeomorfizmoéw na przestrzeni kinematycznej

Dla dowolnego pola wektorowego N¢ : M — T M, kwantowy operator wiezéw dyfeomor-
ficznych C,(N®) generuje dzialanie unitarne polegajace na dzialaniu dyfeomorfizmu ¢
generowanego przez pole N* na przestrzeni A koneksji na M. Mozemy zapomnieé¢ o polu
wektorowym N generujacym dyfeomorfizmy styczne do powierzchni M i rozpatrywaé

grupe lokalnych dyfeomorfizméow

©: M — M, (4.32)

generujacych transformacje
Uays () - HE” — HE, (4.33)
Usys () - W(A) = U(p" A). (4.34)

W szczegolnosci bedziemy interesowali sie dziataniem grupy dyfeomorfizméw na gesty
podzbidér generujacy H(C‘?T) stanéw Yang-Mills niezmienniczych. Korzystajac z rozktadu

(4.30) i (4.31) otrzymujemy dziatanie Udyf(go) na funkcje sieci spinowej

Uays(#) - ¥ 0 5.26)(A) = Vg 7pi (A): (4.35)

(@, (0-aup-,p-1=0)

Przez ¢ - a oznaczmy graf, ktorego krawedzie i wierzchotki sa obrazami odpowiednich
krawedzi grafu a. Kolorowanie ¢ - j oznacza przeniesienie kolorowania j grafu o na
odpowiadajace im krawedzie grafu ¢ - .

Drziatanie grupy dyfeomorfizméw okazuje sie by¢ nie ciagte nawet w sensie stabym. Jezeli

; oznacza jednoparametrowa rodzine dyfeomorfizméw generowang przez pole wektorowe

styczne do M, to dla dowolnej funkcji cylindrycznej zachodzi
lim (‘I’<a,f>|Udyf(<P) ' ‘I’(a,f)) =07 1= (Ynl¥an)- (4.36)
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Z (4.35) wynika rowniez, ze jedynie dla funkcji statej
U(A) = const, (4.37)

zachodzi warunek (4.34).

Konsekwencja tego jest to, ze rozwiazan wiezéw dyfeomorficznych bedziemy szukaé¢ w

przestrzeni dualnej do Cyl®, ktora stanowi gesty podzbiér generujacy H(C‘?r) .

4.3.2 Dyfeomorfizmy zachowujace grafy i symetrie grafu

W niniejszym paragrafie przedstawimy pojecia, ktore beda wykorzystane zaré6wno do roz-
wigzania wiezéw dyfeomorficznych w kolejnych paragrafach, jak i do konstrukeji opera-
torow w kolejnych rozdziatach. Ze wzgledu na mozliwos¢ przeprowadzenia réwnoleglej

definicji pojeé, przeprowadzamy ja w jednym rozdziale.

Jedyna réznica w obu konstrukcjach bedzie polegata na ograniczeniu zbioru mozliwych
dyfeomorfizmoéw. W dalszej czesci wprowadzimy jedno oznaczenie, ktore bedzie mogto

odnosi¢ sie do obu sytuacji w zaleznosci od kontekstu i potrzeby.

Przez Dyf bedziemy rozumieli jedno z dwoéch. Bad?z przestrzen wszystkich dyfeomorfi-

zmow lokalnych przestrzeni M,
Dyf = Dyf(M),

jak w przypadku rozwigzywania wiezéw dyfeomorficznych. Lub bedziemy rozumieé zbiér
dyfeomorfizmoéw ¢ : M — M takich, ze p(z) = z dla konkretnego punktu = € M, co

oznaczamy

Ten zbior bedzie wykorzystany do konstrukeji operatoréw w kolejnych rozdziatach.

Definiujemy trzy rozne grupy zwiazane z siecig spinows, tzn. grafem a kolorowanym za
pomoca spindéw j okreslajacych nieredukowalne reprezentacje SU(2). Oznaczamy poko-

lorowany graf w skrocie przez (o, j). Przez samo a rozumiemy zbiér punktéow jakie graf

przebiega w przestrzeni M.
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Definiujemy grupe

Dyfiaz = {¢€Dyf|¢-a=a,¢-f=f}7 (4.38)

tzn. element tych elementéw Dy f, ktore zachowuja funkcje sieci spinowych rozpiete przez
dany kolorowany graf. Dyfeomorfizmy takie moga np zamieniac ze soba krawedzie o takim

samym kolorowaniu, przeprowadzajac je na siebie z zachowaniem orientacji.

Kolejno definiujemy grupe zachowujaca krawedzie i wierzchotki grafu

TDyfo ={p € Dyfle-a=a,p(e;) = e} . (4.39)

W tym przypadku dyfeomorfizmy przeprowadzaja kazda krawedz na sama siebie zacho-

wujac jej orientacje.

-,

Przez symetrie sieci spinowej («, j) rozumiemy zbior
GS o7y = DS 07/TDY - (4.40)
[logé elementéw tej grupy oznaczamy
o) = #CG5 ) (4.41)

W powyzszych definicjach, w zaleznosci od kontekstu i rozwazanej sytuacji, Dy f oznacza
jedna z dwoch opisanych na poczatku przestrzeni. W kolejnych dwoch paragrafach, gdzie
bedziemy konstruowac ’HEQGT )dy P bedziemy rozwazaé¢ ¢ € Dy f(M).

4.3.3 Dualna przestrzen stanéw dyfeomorficznie niezmienniczych

Konstrukcja przestrzeni rozwiazan wiezoéw opiera si¢ na przedstawionej w poprzednim
rozdziale metodzie uéredniania po grupie. W tym przypadku grupa Dy f nie jest zwarta
i catkowanie po niej ma charakter formalny i wyprowadza do przestrzeni dystrybucji na
koneksjach A,

(V] : Cyl — C. (4.42)

Rozwigzanie wiezow dyfeomorficznych otrzymuje sie poprzez konstrukcje odwzorowania
Npyf, ktore przeprowadza gesty podzbior przestrzeni H(Ggr), sktadajacy sie z niezmienni-
czych funkcji spinowych

Cylice) = D Cln o), (4.43)
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w przestrzen dualng. Ze wzgledu na rozktad (4.43) mozemy zdefiniowaé np,s osobno na

kazdym z komponentéw sumy.

Obrazem funkcji sieci spinowej ‘If( ) wzgledem 7p, ¢ jest element przestrzeni dualne;
Cylica) 3 Ui 1) = oy [\If(a,ﬁ:ﬁ)} € Cylig.a (4.44)

Definiujemy go poprzez dzialanie na dowolna funkcje w nastepujacy sposéb

1 .
"bys [‘I’t *:6& (q’(ﬂﬁ,z?:@)) T - Z (Udyf () - q’(a,f,”:ﬁ)|‘l'<ﬁ,fcﬁ=6>>
(@3) peDyf/Dyf, 3
(4.45)
Jedyny niezerowy element sumy (4.45) to ten, gdy

Przeciwobraz odwzorowania 7p,; jest réwniez Yang-Mills niezmienniczy, poniewaz roz-
wazamy sieci spinowe niezmiennicze wzgledem dziatania cechowania generowanego przez

wiezy gaussowskie.

4.3.4 Przestrzenn Hilberta stanéw Yang-Mills i dyfeomorficznie

niezmienniczych
Ostatni element konstrukeji 7‘[/ polega na zdefiniowaniu iloczynu skalarnego na prze-
ciwobrazie
Cyliaji=0) = Moy [C’yl Fi= 5)] : (4.47)

Jezeli U, U/ € C’yl oji=0) to iloczyn skalarny definiujemy w nastepujacy sposob

(MDys (Y] | 1Dys[W']) = Npys[P](F). (4.48)

Przestrzeni Hilberta H/\" @, d i) otrzymujemy uzupetniajac Cyl ) wzgledem normy zde-

a,j,

finiowanej powyzszym iloczynem,

ANy

(avGrdyf) (a,j,l:O)‘ (449)

Poniewaz ze wzgledu na definicje (4.45) dwie sieci spinowe, ktore leza na tej samej orbicie

dziatania Dyf okreSlaja ten same element przestrzeni Hilberta, otrzymana przestrzen
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sktada sie ze stanéw Yang-Mills i dyfeomorficznie niezmienniczych. Sumujac po klasach

rownowaznosci grafow [ao] otrzymujemy ostatecznie
H’(gr) (4.50
(e, Gydy f)" : )

W tym przypadku Dy f oznacza Dy f(M). W dalszej czesci przy definicji operatora wiezu
skalarnego, wykorzystamy sytuacje kiedy Dy f = Dyf(M, x).

Wprowadzenie opisanych powyzej przestrzeni pochodzi oryginalnie z pracy [38]. Dodat-

kowo mozna je znalez¢ w [31].

4.4 Operatory na przestrzeni Hilberta stanéw Yang-
Mills i dyfeomorficznie niezmienniczych

W poprzedniej czesci tej pracy przedstawiliSmy sposob konstrukeji przestrzeni rozwia-
zan wiezé6w kwantowego modelu pola skalarnego sprzezonego z polem grawitacyjnym.
Fizyczna przestrzenn Hilberta opisujaca kwantowa teorie grawitacji sprzezonej z polem
skalarnym otrzymujemy rozwigzujac réwnanie kwantowych wiezéw skalarnych na prze-
strzeni ’H(G ) ktora z kolei otrzymujemy rozwazajac obraz gestego podzbioru ’HEQGT )dy n
wzgledem 7p, . Ostatnia z wymienionych przestrzeni, w poprzednich rozdziatach skon-

struowalismy poshugujac sie metodami kanonicznej petlowej grawitacji kwantowe;j.

Za pomoca (3.34) oraz (3.35) konstruujemy z gestego podzbioru o . d ) Przestrzei H G dy n-
Nastepnie za pomocg geometrycznych operatoréow zdefiniowanych na %(g" jy) f) %& pomocy
konstrukeji opisanej w Rozdziale 3.4 otrzymujemy obserwable Diraca oraz znajdujemy

rozwigzanie wiezow skalarnych.

Przeniesienie operatoréw geometrycznych kanonicznej petlowej grawitacji kwantowej do
tej przestrzeni opiszemy w niniejszym rozdziale. Zdefiniujemy réwniez operatory dystry-
bucyjne, ktoére sa zaczepione w punkcie. Postuzg one w kolejnym rozdziale do zdefiniowa-

nia kwantowych operatoréw opisujacych wiezy skalarne.
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4.4.1 Definicja operatorow

Jak opisalismy w poprzednich paragrafach, bedziemy obecnie szukaé¢ operatoréw na prze-
strzeni ”Hg‘g jy) I’y Otrzymujemy je rozpatrujac operatory kanonicznej petlowej grawitacji

kwantowej na przestrzeni funkeji cylindrycznych C'yl.

Kazdy operator L, ktory jest niezmienniczy wzgledem dzialania grupy dyfeomorfizmow
Dy f(M) oraz cechowania Yanga-Millsa, zdefiniowany na Cyl, pozwala zdefiniowaé ope-

rator na ”HEQGT )dy N Definiujemy go za pomoca relacji dualnosci w nastepujacy sposob

(L npyran[¥] | ¥') == (pysan]®) | L+ V') = (npyranlL - ] | ). (4.51)

7, powyzszego rownania odczytujemy, ze L— i, gdzie L przeprowadza

HE 2 Mousan[®] = L npyran V] € HED, o, (4.52)

w taki sposob, ze

A ~

L - npysn Y] = noysoan[L - ). (4.53)
Nastepnie za pomoca konstrukeji opisanej w Paragrafie 111.4.2, przenosimy dziatanie Lz

(ar) (gr.)
HiGayp 12 Hicayp:

Ciezar problemu przenosi sie na znalezienie operatorow L, ktore sa Yang-Mills i dyfeomor-
ficznie niezmiennicze. Przyktady takich operatoré6w mozna znalezé na przyktad w [40] i

[1]. Przyktadem takim jest operator calkowitej objetosci M,

VM:/MdB’x\/q(x). (4.54)

Operatory te nie sg interesujace z punktu widzenia lokalnych wtasciwosci Wszech$wiata,

ktore wymagaja rozszerzenia pojecia operatora o operatory dystrybucyjne zaczepione w

punkcie.

Przyjmujemy nastepujaca konwencje notacyjna. Operatory na przestrzeni kinematyczne;
stanéw Yanga-Millsa niezmienniczych oznaczamy za pomoca tyldy - L. Operatory na
przestrzeni Dy f(M) lub Dy f(M,x) otrzymane za pomoca 7)p,s 0Oznaczamy za pomoca

~

daszka - L.
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4.4.2 Operatory dystrybucyjne zaczepione w punkcie

Na kinematycznej przestrzeni Hilberta kanonicznej petlowej grawitacji kwantowej, mo-
zemy zdefiniowaé operatory dystrybucyjne, ktére mozemy uwazaé, za zaczepione w punk-

cie x € M. Przyktadowo

Va@) =Y 8@ a') . (4.55)

z'eM

Operator /g, jest niezmienniczy wzgledem dziatania Dy f (M, x). Suma po prawej stronie
rownania (4.55) jest dobrze zdefiniowana i zawiera jedynie skoriczenie wiele elementow w

dziataniu na dowolng funkcje cylindryczna okreslong na dowolnym grafie «,

(/Md?’xF(:c)\/N_> Uiop) = (ZF N v)-q;(a’f), (4.56)

gdzie v; sa wierzchotkami grafu a, a F': M — R dowolng funkcja rozsmarowujaca.

Za pomoca 1pyf, gdzie w tym przypadku Dyf = Dyf(M,x) otrzymujemy z ,/q, opera-
tor , /qx dzialajacy na przestrzeni " It dy )" Przestrzen ta otrzymujemy zgodnie z proce-

durg opisana w poprzednim rozdziale, gdzie Dyf = Dy f(M, z).

Na podstawie rozumowania i wynikow przedstawionych w [38| otrzymujemy operator

\/ Z d(x,x) qm, (4.57)

z'eM

ktory jest operatorem Dy f(M, x) niezmienniczym.

4.4.3 Iloczyn operatoréow dystrybucyjnych

Majac dane

= d(@,a)Ay, B(z)=> d(z,2')By, (4.58)

z'eM z'eM

z ktorych kazdy spelnia rownanie analogiczne do (4.56) definiujemy

A(@)B(z) = ) 6(z,2")\/ S(ApBu), (4.59)

ktory rowniez spelnia (4.56). S oznacza symetryzacje, a jego dzialanie ograniczone jest

do czedci przestrzeni na ktorej S (Axléx/) jest dodatnio okreslone.
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Aby wykaza¢ powyzsze, rozwazamy regularyzacje operatorow postaci

A = [ EyAwitno. Bw = [ EuBus) (4.60)
M M
z funkcja rozsmarowujaca, ktorej dziedzina jednostajnie zbiega do punktu =z = y, gdy

¢ — 0. Ponadto funkcja d.(y,x) — d(z,y).

W dziataniu na funkcje cylindryczna okreslona na grafie v dostajemy

<f16(l’)§e(13)> Vi) = (Z (56(55,1)1.))2!1%3%) Ua,p)- (4.61)

=1

Suma po prawej stronie réwnania zawiera skoriczona ilos¢ elementow. Otrzymujemy z

( AE(:U)BE(:CO U f) = (ZV: 56(33,%)\//1%3%) U0 f)- (4.62)

i=1

stad

Ostatecznie mamy

( / 2 F(2)\/ Ad(x) Bz )\If(af (ZF o ﬁ) Vo s) (4.63)

Nastepnie, korzystajac w wynikéw tego rozdziatu, otrzymamy fizyczna przestrzen Hilberta

1 rozwiazanie kwantowych wiezéw skalarnych.

4.5 Fizyczna przestrzen Hilberta i rozwigzania wiezow
skalarnych

Ostatni krok konstrukeji nowego modelu kwantowej grawitacji sprzezonej z polem skalar-

nym wymaga zdefiniowania operatora fizycznego Hamiltonianu (3.75),

hpin = / APz \/ —2\/@097“(3;). (4.64)

Wystepujacy w nim operator C zostal zdefiniowany w [37|. Generalizacja i wlasnosci

tego operatora zostaly opisane w [1] i [38].

Dotychczas wiezy skalarne Cor byly rozwazane w sytuacji kiedy rozsmarowywano je wzgle-

dem dowolnej funkcji lapsu [, d*zN(z )CW lub jako [}, d3x\/q Cg” C’gT( ), tzw.
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master wiaz.

Obecna sytuacja wymaga nowego podejscia. Definiujemy operator \/ —24/ q(Ax)CA’W(x) na

przestrzeni o G, d i) Podejsciu temu poswiecony bedzie obecny rozdzial.

4.5.1 Grawitacyjne kwantowe wiezy skalarne

Kwantowy operator skalarnych wiezow grawitacji zdefiniowany w [1| przyjmuje postaé
/ d*zN(2)C9" (x) = Y N(z)CY". (4.65)

Operator ég’“ dziata w wierzchotku grafu o ile pokrywa sie on z punktem z € M. Jego
dziatanie zmienia graf poprzez doczepienie petelki zaczepionej w danym wierzchotku le-

zace] w plaszczyznie wyznaczonej przez wektory styczne do krawedzi.

Ten sposob regularyzacji i definiowania ég’“ nie jest okreslony $cisle i pozostawia pewna
dowolnosé. Dla przykladu definicja Thiemanna [37] opiera si¢ na innym przypisaniu pe-

telki do wierzchotku grafu.

Poniewaz operatory C’gT przeksztalcaja dziedzine, ktora zawiera sie w Hgg )dy nw podzbior
przestrzeni Hgg )dy )’ ktorej konstrukcja zostata przedstawiona w Rozdziale 4.3 przy wy-

borze Dyf = Dyf(M,z).

Jak pokazano w [38] operator ten jednoznacznie i naturalnie definiuje operator dziatajacy

na przestrzeni ’H(G dyfz)’

Agr . q4(9m) (g7)
¢ HiGayse) = Hicayse) (4.66)

Zdefiniowanie fizycznego hamiltonianu wymaga od nas okreslenia przestrzeni, na ktorej
jest dobrze zdefiniowany pierwiastek. W tym celu dokonujemy symetryzacji operatora

wiezow skalarnych w nastepujacy sposob

Cor = (Cg + Og’*) . (4.67)

(NN

Od tej pory przez ég’“ bedziemy rozumieli operator okreslony tym réwnaniem.
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4.5.2 Fizyczny Hamiltonian
Definicja fizycznego Hamiltonianu okreslonego w (4.64) bedzie korzystata z dwoch defini-

cji.

Zdefiniowany w poprzednim rozdziale operator

Z §(x,x") qx, (4.68)

oraz operatora

Co(x) =Y o(x,2)CY. (4.69)
z'eM

Pozwalaja one zgodnie z Paragrafem 4.4.3 zdefiniowaé

\/ —2\/@@(@. (4.70)

Opisana w poprzednim rozdziale regularyzacja iloczynéw, wraz z symetrycznym uporzad-

kowaniem operatoréw okreslajg kwantowa gestos¢ hamiltonianu

A 1/2 ~
—\ova@ oo vam
= Y s -2 e i

z'eM

1/2

i (4.71)

Jest on zdefiniowany na Hgg Lym b C ’Hg‘g l{y j)» ktore oznacza podprzestrzen rozpigta

f 12 a0 A 1)2
przez dodatnig czesé spektrum operatora —2./q. / CY \/Qw {

Fizyczng przestrzeni Hilberta H ;. otrzymujemy jako obraz tej przestrzeni

Hﬁz = M [%Egézlyf,m—&-)} ’ (472)
wzgledem odwzorowania
. ay(gm) (gr)
M - fH’(gG,dyf,z) — ,H(Z',dyf) (4.73)

zdefiniowanego w nastepujacy sposob

Hgg)dyf,x) = "Dy f (M) [\If] - nDyf(M)[ ] € %(g)dyf (474)

Fizyczny Hamiltonian przyjmuje postacé

1/2

s, — / Poh(e) = 3 bW -2 O i (4.75)

r'eM
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4.5.3 Dowolnosci w modelu i ich ograniczenia
W prezentowanej konstrukeji pozostaja dwie dowolnosci polegajace na

e dowolnosé regularyzacji C’;‘ZT, polegajaca na wyborze petelki zaczepione] w wierz-

chotku grafu, na ktoéry dziala operator;

e dowolnos$é samosprzezonego rozszerzenia operatora zsymetryzowanego (4.67).

Dowolnoéci te ograniczone sa wymaganiami zwigzanymi z uniknieciem anomalii kwanto-

wych w rozwazanej teorii. Oznacza to, znikanie komutatora

[ﬁ(x), ﬁ(y)} —0. (4.76)

W ten sposob zakonczyliémy definiowanie niezbednych elementéw, konczac konstruk-
cje modelu opisanego w drugiej czesci niniejszej pracy. Wnioski konicowe, otwarte pro-

blemy i propozycje dalszych badan przedstawione zostaly w koncowej czesci pracy.

4.6 Alternatywna propozycja kwantyzacji Cor

Definicja kwantowego operatora fizycznego hamiltonianu wykorzystuje znane w literatu-
rze kwantyzacje operatora Cor. Ronig sie one sposobem regularyzacji i jedna pochodzi od

Thiemanna [37], a druga od Ashtekara i Lewandowskiego [1].

Obecnie przedstawimy propozycje alternatywna, kwantyzacji grawitacyjnego wiezu ska-
larnego. Niniejsza porpozycja jest obecnie przedmiotem naszych badarn i opiera sie na

nowym operatorze geometrii kwantowej, definiujacym skalar krzywizny.

4.6.1 Wyjsciowa postaé wiezow skalarnych ogoélnej teorii wzgled-
nosci

Stosowane dotychczas podejécia do regularyzacji grawitacyjnych wiezéw skalarnych roz-

poczynaja sie od sprowadzenia wiezoéw do postaci (wzor (6.13) w [1])

C7(N) =

3% G \/W [ 214~ )K[QKJ}] (4.77)

Nastepnie przedstawia sie powyzszy wiaz w postaci
CU(N) = ACP(N) = 2(1 +~*)T(N). (4.78)
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Kwantyzacja przebiega w dwoch etapach, gdzie osobno dokonujmy regularyzancj CFu<!(N)

oraz T (). Ten drugi odpowiada drugiemu wyrazowi w nawiasie kwadratowym w (4.77).

Nasza nowa propozycja polega na zastapieniu wyrazu 7 (N) innym. Wyrazenie (4.77)
otrzymujemy przeksztatcajac bardziej elementarna postaé¢ wiezu skalarnego w celu wyeli-

minowania w niej wystepujacego skalaru krzywizny R(x). Mozemy zapisac

CTN) = (321G>é/Md3mN

Podobnie jak poprzednio zapisujemy

PP :
Nyl (L+°)VaR(z)| - (4.79)

C9"(N) = /HCFUN) — 2(1 ++*)T(N), (4.80)

gdzie

- g 2 3
N :( ) BN JGR(z). 4.81
T = (50)" | danvarG) (4.8)
Kwantyzacja pierwszego cztonu przebiega jak poprzednio, natomiast kwantyzacja (4.81)

opiera sie na opisanej ponizej tozsamosci geometrycznej.

4.6.2 Podstawowe tozsamos$ci geometryczne

Rozwazamy 3-wymiarowa, gltadka rozmaito$¢é M. Mamy na niej tensor metryczny q,, 0o
sygnaturze(+, +, +). Koneksja Levi-Civity zwiazana z metryka q,, bedzie oznaczona V, a
R%,., jest tensorem Riemanna zdefiniowanym przez V. Krzywizne skalarng R definiujemy
w standardowy sposéb

Ra = R° R = q¢" Ry (4.82)

ach’

Idea pomiaru krzywizny skalarnej opiera sie na badaniu relacji pomiedzy objetoscia zwar-
tego, wypuktego obszaru zawierajacego dany punkt z i pola powierzchni jego brzegu.
Klasyczne wyrazenie, w granicy obszaru zbiegajacego do punktu wzgledem topologii me-
trycznej, pozwala w ten sposob przybliza¢ skalar krywizny w punkcie. Niezbedny jest

jednak wybor ksztattu Scigganego do punktu obszaru.

Dla kazdego punktu p € M istnieje wypukte otoczenie normalne /. Jedna z jego wlasnosci

moéwi, ze kazde dwa punkty w jego wnetrzu mozemy potaczyé za pomoca jednoznacznej
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geodezyjnej. Mozemy na takim otoczeniu zdefiniowaé funkcje odlegtosci (metryke) po-

miedzy dwoma punktami
Vp,r € M d(p,r) = dlugos¢ jednoznacznej geodezyjnej taczacej dwa punkty. (4.83)
Za jej pomoca definiujemy ,sfere geodezyjng” o promieniu r i $rodku w punkcie x

Senlta ={y €U | d(z,y) =1},

oraz podobnie ,kule geodezyjna’,

B(w,r) [Qab] = {y eu ‘ d(l’, y) < T} :

S(z,r) jest brzegiem B, ). Ta definicja zachodzi dla odpowiednio matych r. Jednak sam

region zalezy do tensora metrycznego.

Kolejny krok polega na wyprowadzeniu wyrazenia lgczacego pole powierzchni S ,) -
Ar(S(zr) z objetoscia Vol (B, ) i skalarem krzywizny R(x). W tym momencie niezbedna
jest uwaga na temat ksztaltu Scigganego obszaru. W naszym przypadku zdefiniowalismy
geodezyjne kule i sfere, jednak mozna zdefiniowaé¢ dowolny inny kszatalt, ktory nastepnie
bedziemy $Scigga¢ do punktu. Otrzymany wynik bedzie inny. Jednak posta¢ réwnania
taczacego powyzsze wielko$ci bedzie taka sama. Roznice beda wystepowaly w stalych
wspotezynnikach. Z drugiej strony dokonany przez nas wybor wydaje sie najprostszy z
mozliwych i nie odwoluje si¢ do zadnych wtasnosci rozmaitosci innych niz metryka. W
szczegolnoscei nie zalezy od ukltadu wspotrzednych. Jednak badania nad wplywem tego
wyboru na ostateczny wynik ciagle musza by¢ przeprowadzone i sg obecnie przedmiotem
badan naszego zespotu. Ten najprostszy z mozliwych wyboréw traktujemy jako pierwszy

krok w badaniach przedstawionego sposobu regularyzacji.

Wybieramy do obliczeri najprostszy i najbardziej naturalny uktad wspotrzednych normal-
nych Gaussa. Punkt x wybieramy w poczatku takiego uktadu =z = (0,0, 0), znany wynik
pozwala wyrazié¢ tensor metryczny w jego otoczeniu w postaci
1
gij(z', 2%, 2%) = &5 + gRikhj(Oy 0,0)z"z". (4.84)
Dla odpowiednio matych wspotrzednych mamy

1
q(z', 2*, 2%) == det q;; (2", 2%, 2°) = 1 + gRikhi:ckxh, (4.85)

1
Va(zt, x? 23) = \/det gij(xt, 2%, 23) =1+ gRikhim%h. (4.86)
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Zamieniajac wspolrzedne na wspotrzedne sferyczne i ograniczajac sie do r << 1 bezpo-

srednim rachunkiem mozemy obliczy¢

4 2
Vol (Blda]) = §7r7’3 - 4—57rR(x)7"5, (4.87)

oraz
2
Ar (S laa)) = 4mr® — §7TR(J})T4. (4.88)
Przekszatalcajac wyrazenia (4.87) oraz (4.88) otrzymujemy pozadany rezultat

2160 3 Vol (B lga]) 360 1
= T2 - — o .
7 Ar (S(xﬂ”) [Qab]) 2 7 Ar (S(x,r) [Qab])

R(p) (4.89)

Powyzsze rownanie zachodzi w granicy r — 0.

4.6.3 Kwantyzacja skalara krzywizny

Podstawowa idea polega teraz na zdefiniowaniu operatoréw geometrycznych w sposob
w jaki uprzednio zdefiniowane byty operatory pola powierzchni [39] oraz objetosci [40].

Podstawowa idea jaka jest tam przedstawiona polega na pracy w krokach:
e znalez¢ klasyczne wyrazenie opisujace interesujaca nas wielko$é;
e wyrazi¢ je za pomoca zmiennych Ashtekara lub juz skwantowanych obiektéw;

e wykorzystaé¢ aparat kanonicznej petlowej grawitacji kwantowej do kwantyzacji inte-

resujacych nas obiektow.

W naszym przypadku (4.89) jest podstawowa zaleznoscia, ktora postozy do otryzmana

kwantowego wyrazenia

—_—
1

T(N) = (321 G)i /M BrN/GR (). (4.90)

Wszystkie elementy sktadowe niezbedne w powyzszej kwantyzacji takie jak \]5 oraz ope-
ratory powierzchni i objetosci sa znane. Jednak doktadna procedura kwantyzacji wymaga

dalszej pracy i bedzie prowadzona przez nasz zespot.
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Rozdzial 5

Podsumowanie

5.1 Uwagi podsumowujace

W niniejszej pracy przedstawilismy kwantowy model bezmasowego pola skalarnego Kleina
— Gordona sprzezonego z grawitacja. Model ten opisuje wszystkie stopnie swobody uktadu

bez odwolywania sie do redukc;ji ich ilosci zwiazana z narzucong dodatkowsa symetria.

Zmnikanie potencjatu sprawia, ze model ulega deparametryzacji i mozemy zdefiniowa¢ ob-
serwable Diraca. Pole skalarne ¢ przyjmuje role czasu relacyjnego, wzgledem ktorego
okre$lona jest ewolucja. Uzycie w miejsce bezmasowego pola ¢ dowolnego innego pola
Modelu Standardowego jest mozliwe, jednak model nie deparametryzuje sie w ogdlnym
przypadku. W zwiazku z tym wszystkie techniczne utatwienia, jakie miaty zastosowanie
w tym modelu przestaja sie stosowa¢. Dyskusje rodzajow materii, ktore pozwalaja doko-

na¢ deparametryzacji ogolnej teorii wzglednosci mozna znalezé w [12].

Prezentowana kwantyzacja modelu pola skalarnego sprzezonego z polem grawitacyjnym
jest kompletna. Wszystkie niezbedne obiekty matematyczne istnieja i sa znane z forma-
lizmu kanonicznej petlowej grawitacji kwantowej. Jenakze istnieja niejednoznacznodci,
znane réowniez z petlowej grawitacji kwantowej, dotyczace kwantowego operatora wiezow
skalarnych i wynikajace z ich nie liniowej postaci. Jedynym sposobem prowadzacym do
ich glebszego zrozumienia i wyttumaczenia jest zaczecie stosowania modelu i badanie ich

wplywu na wyniki.
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5.2 Porownanie z kwantowg kosmologia petlowa i mo-
delem Browna-Kuchara

Zastosowanie zmiennych relacyjnych nie jest nowym pomystem. Dotychczas byly one
zastosowane w dwoch przypadkach, ktore korzystaly z wynikow kanonicznej petlowej gra-

witacji kwantowej.

Pierwszym jest kosmologiczny model Ashtekara—Pawlowskiego—Singha, ktory opisuje jed-
norodny i homogeniczny Wszech§wiat wypelniony bezmasowym polem skalarnym ([16],[15]

lub podsumowanie ([41]).

Zredukowane symetrycznie modele pozwalaja kwantowaé jednorodny i izotropowy model
Wszechswiata oraz zrozumieé¢ nature Wielkiego Wybuchu, a raczej jego braku. W jego
miejsce pojawia si¢ obszar kwantowy, po ktorego drugiej stronie znajduje sie Wszech-
Swiat analogiczny do naszego ulegajacy kurczeniu si¢. Inne modele kosmologiczne takie
jak otwarte i zamkniete modele FRW jak i wplyw inflacji na osobliwos¢ poczatkowa byty
badane w [42], [43], [44].

W odréznieniu od kanonicznej petlowej kosmologii podejscie prezentowane w niniejszej
pracy nie zaklada istnienia zadnych symetrii i nie dokonujemy redukcji fizycznych stopni

swobody z tym zwiazanych.

Inaczej wyglada sytuacja modelu Browna—Kuchara opisanego w [9], w ktorym rozwazane
sa cztery pola skalarne majace wlasnoséci pytu, wzgledem ktérego opisujemy relacyjna
dynamike. Jego kwantyzacje w oparciu o kanoniczna petlowa grawitacje opisano w [24].
W tym celu jednak model BK musi zosta¢ rozszerzony o obserwable Diraca wzgledem
wiezow skalarnych. W odréznieniu od obecnie prezentowanego modelu w podejsciu BK
wiezy wektorowe rozwiazywane sg klasycznie, natomiast dla wiezow skalarnych sformuto-

wany zostal warunek kwantowy.

Podejscie [24] oparte na kwantyzacji na zredukowanej przestrzeni fazowej polega na kla-

sycznym rozwigzaniu wiezéw dyfeomorficznych i skalarnych. Jedynie wiezy Gaussa, po-
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dobnie jak w naszym modelu sa rozwigzywane kwantowo. Podejscie takie prowadzi do
klasycznej algebry obserwabli Diraca. Ze wzgledu na deparametryzacje wiezéow skalar-
nych, algebra ta okazuje sie izomorficzna z algebra kinematyczng. Odréznia to stosowane
tam podejscie od tego z niniejszej rozprawy, gdzie kwantyzacja algebry obserwabli odbywa
sie na fizycznej przestrzeni Hilberta. Poniewaz w [24] kinematyczna algebra obserwabli
jest izomorficzna z fizyczng algebra, rowniez kinamatyczna przestrzen Hileberta kanonicz-

nej petlowej grawitacji moze stuzy¢ za przestrzen fizyczna.

Podobnie do prezentowanego podejscia, generator fizycznej dynamiki w [24], tak zwany
fizyczny Hamiltonian jest niezmienniczy wzgledem dziatania lokalnych dyfeomorfizmow.
W podejsciu opartym na kwantyzacji na zredukowanej przestrzeni fazowej prowadzi to, w
celu unikniecia anomalii, do operatoréw niezmienniczych wzgledem lokalnych dyfeomorfi-
zmow. W [45] pokazano, ze operatory takie zdefiniowane na standardowej kinematycznej
przestrzeni Hilberta kanonicznej petlowej grawitacji nie moga zmieniaé¢ graféw. Oznacza
to, ze musza zachowywaé grafy, na ktore dzialaja co oznacza, ze réwniez operatory wiezow
(1], [37]) wchodzace w sklad fizycznego hamiltonianu [24] musza zosta¢ skwantowane w

sposob zachowujacy grafy.

Kinematyczna przestrzen Hilberta kanonicznej petlowej grawitacji jest generowana przez
funkcje cylindryczne okreslone na wszystkich mozliwych grafach. Oryginalny operator
wiezow skalarnych nie zachowuje grafu, na ktory dziata. Stad w modelu [24], gdzie fi-
zyczny Hamiltonian musi zachowywaé grafy, wiezy kwantowe musza byé w odpowiedni

sposob przedefiniowane aby spetniaé¢ ten warunek.

Prezentowane podejécie znacznie upraszacza ta techniczng komplikacje.

5.3 Mozliwe zastosowania modelu

Wyporwadzony model moze postuzy¢ do weryfikacji wtasnosci kwantowej czasoprzestrzeni,
ktorych spodziewamy sie dotychczasowych odkryé zarowno kwantowej teorii pola w za-

krzywionej czasoprzestrzeni jak i kanonicznej petlowej grawitacji kwantowe;j.
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W kanonicznej petlowek kosmologii kwantowej udato sie dotchnaé¢ zagadki Wielkiego Wy-
buchu, ktory wydaje sie by¢ zastapiony Wilekim Odbiciem. Korzystajac z naszego modelu
mozemy pokusi¢ sie o proby rozwazenia problemu osobliwo$ci w sytuacjach pozbawionych
symetrii. Model nasz pozwoli zblizy¢ sie nie tylko do osobliwosci poczatkowej ale row-

niez zrozumie¢ osobliwosci skrywajace sie w czarnych dziurach.

Wszystkie opisane wyzej zagadnienia wydaja sie by¢ w zasiegu prezentowanego modelu
i by¢ moze jego dalszych uogoélnienn. Problemy, jakie napotkamy wydaja sie by¢ natury

czysto technicznej i matematyczne;j.
Mam nadzieje, ze zaprezentowane tutaj wyniki, ktore zostaly réwniez zaprezentowane

w dwoch publikacjach [13] oraz [14] otworza droge do dalszych badan i pozwola znalezé

spos6b na zrozumienie kolejnych zagadek kwantowej grawitacji.
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Dodatek A

Nawias Poissona nowych wiezow
skalarnych w przypadku ogbélnym pola

skalarnego

Zaprezentowane w [9] oraz [26] rachunek pokazuje, ze

{C'(2),C"(y)} =0, (A1)

w przypadku, w ktorym potencjat pola skalarnego jest tozsamosciowo réwny zeru
V(p(x)) =0. (A.2)
Opierajac sie na przedstawionych tam wyliczeniach, w tym dodatku pokazujemy, ze (A.1)

wtedy i tylko wtedy, gdy zachodzi (A.2).

W tym celu wprowadzamy nastepujace oznaczenia:

= n(z) — V/A(z) gestos¢ skalarna o wadze 1 (A.3)

= \/_ JA(x) gestos¢ skalarna o wadze 2 (A.4)
(Cg’" +q(@)V (¢ ) G(z)  gestos¢ skalarna o wadze 1 (A.5)

= (C’gr )+ V(@) V (6(x)) )2 — F(x) gestos¢ skalarna o wadze 2 (A.6)

F(x) = ¢"(z)C (2)CY" () gestos¢ skalarna o wadze 2 (A.7)

W przypadku V (¢(z)) = 0 powyzsze wielkosci bedziemy oznaczaé za pomoca indeksu 0

i sprowadzaja sie one do analogicznych obiektow wprowadzonych w [9] i [26]. F(z), ktore
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nie zaleza od pola skalarnego nie wymaga rozrézniania za pomoca indeksu 0 i mamy tylko

jedna taka wartosc.

Korzystamy z wynikow z [9], ktore pokazuja, ze

{F(z), F(y)} =0, (A.8)

{Go(z), Go(y)} = 0. (A.9)

Ogolnie nie ograniczajac sie do przypadku znikajacego potencjatu pola skalarnego mamy

=27 (@) + Val@)V (6(@)) {C7 (@) + Val@)V (6(2)) , Fly) } +
2(097“ )+ V)V (¢ ){F ), 09 (y +¢_v¢ }
+4(C7(2) + Va@)V (6(2)) (C7(y) + Valw)V (6(y))) *

< {07 @) + Va@)V (é(x)) . €7 (y +¢_ WV (o)} (A-10)

Na mocy wzoru (A.8) pierwszy wyraz znika. Przy przeksztalcaniu kolejnych wyrazow

wykorzystujemy réwnosci

{(V(o(2)), F(y)} = {C(x),V (¢(y))} = 0, (A.11)

ktore wynikaja z faktu, ze zaréwno F'(x) jak i C9"(z) nie zaleza od 7(x). Mozemy dalej
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przeksztatci¢ (A.10).

{6 (@).6)} =

= —2(C7 (@) + Va@V (6(2)) {C” (@), Fy)} +
= 2(C7 (@) + V@V (¢(@))) V (6(2) { Va@), F(y) } +
=2(C7 () + VAWV (o) {F(2).C7 ()} +
=2(C7 (W) +VaV (6()) V (6(v) { F(2) «m}+
+4(C7 (@) + V@V (6(@)) (07 () + Valw)V (0 ){cg (), O™ ()} +
+4(07(@) + Va@V (6()) V (6(x)) (C7 ) + Va)V (6(w)) { Va(e), 07 ()} +
+4(C7 (@) + Va@V (@) (€7 W) + VawlV () V (6@) {07 (2). Va) |

(A.12)

Wyrazy w drugiej i czwartej oraz szostej i siodmej sa proporcjonalne do delty d(z,y).
Dodatkowo zmienne z i y zamieniaja sie w nich parami, co powoduje antysymetryzacje.

Zgodnie z wynikami przedstawionymi w [26] wyrazy takie znikaja. Stad otrzymujemy:

{G(2), G(y)} =
(
=2(C(y) + Val)V (6v) ) {F(2), €7 (y)} +
(

+4(C(@) + V@V (0) (€ )+ VaV (6)) {C7 (@), €7 (1))

(A.13)
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Wykorzystujac definicje F(z) oraz symetrie ¢®*(x), otrzymujemy kolejno z (A.13)

{G(2), Gy)} =
:_4(ch )+ V@V (6(x))) a” W)CY (1) {07 (x), O ()} +
0 (@)CY () (C7 () + Va)V (6)) ) {CF (@), C7 ()} +
4 (cw 7) + Va@V (6(@)) (€ (1)+){C7 (), C7(y)} =
= — 407 (x)q "b( )G (y ){Cg’"( ), CI(y)} +
— 4/q(x)V (¢ W)CF () {C (), CF (y) } +
— 4g™ () Gy (2) O (y) {CF" (x), O (y)} +
— g ()G @)V a(y)V (8(y)) {CF (), O ()} +
+407 (2)C (y) {C" (2), C7 ()} +
+4V/q(2)V (6(x)) C (y) {C" (x), C7 ()} +
+4CY (2 \/_V ) {C" (), G (y)} +
+4y/q@)V (¢ \/_V NACT (), C" (y)} =
={Go(x), Go(y)} +
— 4/q(2)V (¢ (W)C () {C (), CF (y) } +
— g™ (z)CY" (2 J_ V(o) {C (), C (y) } +
+4/q(2)V (6(x)) O (y) {C7 (), C" ()} +
+ 409" ( \/_v ) {C (), C (y)} +
+4/q(2)V (¢ \/_V NA{CY (), C7(y)} (A.14)

Na podstawie (A.14) oraz korzystajac z algebry rozsmarowanych wiezéow grawitacyjnych

otrzymujmey

{G[N],G[M]} =4C" [CI"q*\/qV (¢)(MD,N — ND,M)] +
—8CY" [C7¢"\/qV (¢)(M DN — ND,M)] +
+CY9" (¢ qV?(¢)(NDyM — MDyN)] . (A.15)

Poniewaz V(¢) wystepuje w kazdym z rozsmarowywaczy, powyzszy komutator znika nie-

zaleznie do wyboru N i M tylko wtedy, kiedy znika potencjat
{GIN],G[M]} =0 <= V() =0
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Nastepnie zajmujemy sie obliczeniem

(C'(), C'(y)} =
() — - VAW } =
{r(z), 7(y)} +

- ({rtor AW} + {0} 4

VAT -
1 1
:2M2m{/\(x),/\(y)}+
_<{”(l’)v A(y)}+{ A(l’)m(y)}) (A.16)

W pierwszej kolejnosci obliczamy wyrazenie w nawiasie. W tym celu przeksztatcamy

{n(x). M)} = ﬁ (7@ Vi) -

3t U= (O + V)V () + V] -

Ay q(y) (). G} —
: A(y){ (), V(@w)} + 5 0 G(y){ (z),G(y)}
_aly)
: A(y){ (), V (o(y))} +

av) cIr w(x =
o m( (v) + VaW)V (6(y)) {(@), V (6(y))}
—=B(y) {x(2),V (6(»))} (A17)

gdzie wykorzystalismy fakt, ze F(z) nie zalezy od zmiennych opisujacych pole skalarne

oraz wprowadziliSmy skracajace zapis oznaczenie B(y).

Poniewaz

(@), (0l)} = =W = -V (60) 8(0.2) (A18)

jest proporcjonalne do §(y, z), to z (A.17) wynika, Ze wyrazenie w nawiasie we wzorze

(A.16) znika. Stad mamy

{C'(x), C"(y)} =

{A(2), Ay)} - (A.19)

1 1
A
2/A(z) 24/ A(y)
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Dalsze obliczenia dzielimy na kroki podobne do tych z [26].

Krok 1
Krok pierwszy odwoluje si¢ jedynie do postaci A = ,/g), nie odwoluje si¢ natomiast do
potencjatu pola skalarnego. Bezposrednim rachunkiem otrzymujemy posta¢ podobna do

tej pokazanej w [26]

{A). AW} =v/a(@) Valy) {M(x) Aw)} +
+ (M@Valy) { Vale) xw) } + Va@Aw) {A@), Val) }) . (4.20)

Krok 2

Kolejno obliczamy wyrazenie

(VT30 = VT~ (C70) -+ VATV (001 + VT ~
- {\/m7 C“"(y)} +
—{Va@). V)V (o) | +
+{Va@), VG | -
:{\/@,\/@}Jroca(x,y). (A.21)

Nastepnie obliczamy

{Vale) VGG | =

vﬁ_{wf—(mr )+ VAV (60) = F =
Cgr )+ \/_V { \/q_ C (y }

G(y)

v A

— 2\/_{\/_ ), F(y }+o<5(x,y). (A.22)

Poniewaz +/q(z) 1 F(y) nie zalezy od pola ¢, to otrzymujemy wynik identyczny z wynikem

opisanym w Kroku 2 w [26],

(Vi@ )} = DD, 0y ocsey), (A23)

G(x)

co pokrywa sie z wynikem opisanym w Kroku 2 w [26].
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Krok 3
Kolejny krok otrzymujemy dokonujac algebraicznych manipulacji nawiasami wyprowa-

dzonymi w dwoch poprzednich. Po przeksztalceniach otrzymujemy

(Ma)Val) {Va@) A |+ Val A(y){x<x>, W) =
~Va(2)g"(@)CF (z) () Iz + mx/q(y)qab(y)Cé”'(y)A(y) 5

G(x) e G(y)

ktory swoja postacia przypomina Krok 3 z [26].
Krok 4
W niniejszym kroku dokonujemy obliczen na obiektach, ktore zaleza tylko i wytacznie od

zmiennych grawitacyjnych

209 (2)C (y) {C (2), O (y) } = O (y) {F (), C7 (y)} — C () {F(y), CT" ()} .
(A.25)
7 tego powodu obliczenia tego kroku nie r6znig sie od wych zaprezentowanych w Kroku
4 w [26].
Krok 5
W kolejnym kroku obliczamy

@) A} =
{07 (@) =A@V (@) + /O, ~C7 (1) = VAWV (6(0) +VC) } =
= {C7" (), C7 (y)} +
+{07@). VW)V (o) | + { Va@V (¢(x)), " () } +
—{om@). Vaw | - {Vaw,cm )} +

+{Va@V (6@) VaWV (o) } + (A.26)
—{Va@V (6(2)) VG | — {VE@), Va)V (o)) } +
+ {\/G(x), \/G(y)} . (A.27)

Na podstawie argumentacji przedstawionej w poprzednich punktach, zerujemy odpowied-
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nie wyrazenia w powyzszym réwnaniu i otrzymujmemy

{A2), AMy)} =

gT‘ _ 1 T ar
2\/—{ (), GW)} — 5 ) {G(2).C"(y)} +
{\/ ), /Gl y} (A.28)
Nastepnie zauwazamy, ze
{07 (2),G(y)} =
= { (@), 7 () + 207 )V IV () + aW)V () ~ Fly) } =
= {C(2), Go(y)} + o< V() + o< 8(, y). (A.29)

Stad otrzymujemy Krok 5 w formie, ktora odbiega od tej znanej z [26|

{A(), My)} =

= (OO0} = | 5O T F)} + o )|+
+ o V(o) + {\/G(x), \/G(y)} : (A.30)

Krok 6
Analogicznia modyfikacja wzgledem [26] Kroku 6 daje

Va@)valy) {M=
Z\/Q( IV N— ()g™ (2)CF ()0 4z, y) + (x> p)
+ o V(o —|—oc{\/ 2),\/G } (A.31)

Ostatecznie zbieramy wyniki wyprowadzone w powyzszych krokach i otrzymujemy ocze-

kiwany rezultat

[A@),AW)} =+ x V(e)+ o { VG@), /Gy } (A.32)

Widzimy, ze {C'(z),C'(y)} = 0 jedynie w przypadku znikajacego potencjatu skalarnego.
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