
Uniwersytet Warszawski

Wydział Fizyki

Rozprawa doktorska pt.

Kwantowy model bezmasowego pola
Kleina – Gordona sprzężonego z polem

grawitacyjnym.

Marcin Grzegorz Domagała

Promotor:
prof. Jerzy Lewandowski
Katedra Teorii Względności i Grawitacji
Instytut Fizyki Teoretycznej UW

Warszawa, styczeń 2015 r.

1



Ewelinie i Ignasiowi

2



Podziękowania

Wielu osobom jestem winny wdzięczność, bo bez ich pomocy i wsparcia praca ta nigdy

by nie powstała. W pierwszej kolejności dziękuję mojej żonie Ewelinie i synkowi Ignasiowi,

bo to czas zabrany im poświęciłem na napisanie tej pracy. Bez względu na wszystko za-

wsze mogłem liczyć na ich wsparcie i zrozumienie. Chciałbym też podziękować Rodzicom

i Bratu, bo od kiedy byłem mały byli oni świadkami i ofiarami mojej przygody z nauką.

Chciałbym również podziękować promotorowi prof Jerzemu Lewandowskiemu, za lata

współpracy, która była wypełniona mnóstwem naukowych i nie tylko przygód.

Marcin G. Domagała

3



Spis treści

1 Wstęp 8

1.1 Wprowadzenie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Najważniejsze wyniki pracy . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Aktualne wyzwania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Plan pracy i uwagi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Zawartość rozdziałów . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Uwagi o języku i notacji . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Analiza na poziomie klasycznym 14

2.1 Formalizm kanoniczny w zmiennych ADM . . . . . . . . . . . . . . . . . . 15

2.1.1 Różne opisy ogólnej teorii względności . . . . . . . . . . . . . . . . 16

2.1.2 Wyprowadzenie formalizmu kanonicznego z zasady najmniejszego

działania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Więzy ogólnej teorii względności . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Znikający Hamiltonian i problem czasu w ogólnej teorii względności 27

2.2 Przejście do zmiennych Ashtekara . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Rozszerzenie przestrzeni fazowej ADM . . . . . . . . . . . . . . . . 28

2.2.2 Kanoniczna transformacja prowadząca do zmiennych Ashtekara . . 31

2.2.3 Więzy ogólnej teorii względności w zmiennych Ashtekara . . . . . . 33

2.3 Zdeparametryzowana wersja ogólnej teorii względności . . . . . . . . . . . 34

2.3.1 Problem czasu na przykładzie skończenie wymiarowym . . . . . . . 35

2.3.2 Deparametryzacja i zmienne relacyjne . . . . . . . . . . . . . . . . . 39

2.3.3 Iloczynowa postać więzów i obszary przestrzeni fazowej na przykła-

dzie skończenie wymiarowym . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Przekształcenie więzów ogólnej teorii względności . . . . . . . . . . 44

4



2.3.5 Deparametryzacja ogólnej teorii względności . . . . . . . . . . . . . 46

3 Konstrukcja modelu kwantowego 49

3.1 Kinematyczne podstawy nowego modelu kwantowego . . . . . . . . . . . . 50

3.1.1 Klasyczny odpowiednik modelu kwantowego . . . . . . . . . . . . . 51

3.1.2 Stany kwantowe i kinematyczna przestrzeń Hilberta . . . . . . . . . 52

3.1.3 Elementarne operatory kwantowe . . . . . . . . . . . . . . . . . . . 54

3.2 Formalne rozwiązanie kwantowych więzów wektorowych i gaussowskich . . 55

3.2.1 Uwagi o kwantyzacji więzów . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Rozwiązanie kwantowych więzów gaussowskich . . . . . . . . . . . . 56

3.2.3 Rozwiązanie kwantowych więzów wektorowych . . . . . . . . . . . . 57

3.2.4 Przestrzeń niezmienniczych stanów kwantowych . . . . . . . . . . . 57

3.3 Kwantowe więzy skalarne i ich rozwiązania . . . . . . . . . . . . . . . . . . 58

3.3.1 Kwantowy operator więzów skalarnych . . . . . . . . . . . . . . . . 58

3.3.2 Rozwiązanie kwantowych więzów skalarnych . . . . . . . . . . . . . 59

3.3.3 Ogólna postać rozwiązań więzów kwantowych . . . . . . . . . . . . 60

3.3.4 Przestrzeń rozwiązań więzów kwantowych . . . . . . . . . . . . . . 61

3.4 Kwantowe obserwable Diraca . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Definicja kwantowych obserwabli Diraca . . . . . . . . . . . . . . . 62

3.4.2 Rodzina kwantowych obserwabli Diraca w zdeparametryzowanym

modelu grawitacji sprzężonej z polem skalarnym . . . . . . . . . . . 63

3.4.3 Zupełność zdefiniowanej rodziny obserwabli Diraca . . . . . . . . . 65

3.4.4 Klasyczny odpowiednik kwantowych obserwabli Diraca . . . . . . . 66

3.4.5 Interpretacja klasycznej funkcji odpowiadającej kwantowym obser-

wablom Diraca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Dynamiczna ewolucja obserwabli Diraca . . . . . . . . . . . . . . . . . . . 69

3.5.1 Relacyjna ewolucja funkcji klasycznych . . . . . . . . . . . . . . . . 69

3.5.2 Ewolucja kwantowych obserwabli Diraca . . . . . . . . . . . . . . . 71

3.5.3 Fizyczny Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Podsumowanie i wymagania dla zastosowania kanonicznej pętlowej grawi-

tacji kwantowej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5



4 Zastosowanie kanonicznej pętlowej grawitacji kwantowej 76

4.1 Kinematyczna przestrzeń Hilberta . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Funkcje cylindryczne i iloczyn skalarny . . . . . . . . . . . . . . . . 78

4.1.2 Ortogonalny rozkład kinematycznej przestrzeni Hilberta . . . . . . 80

4.1.3 Elementarne operatory kwantowe . . . . . . . . . . . . . . . . . . . 83

4.2 Transformacje cechowania Yanga-Millsa i więzy gaussowskie . . . . . . . . 84

4.2.1 Unitarne transformacje kinematycznej przestrzeni Hilberta . . . . . 84

4.2.2 Niezmiennicze sieci spinowe . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Uśrednianie po grupie . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Przestrzeń Hilberta stanów Yang-Mills niezmienniczych . . . . . . . 87

4.3 Dyfeomorfizmy i więzy wektorowe . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Działanie dyfeomorfizmów na przestrzeni kinematycznej . . . . . . . 88

4.3.2 Dyfeomorfizmy zachowujące grafy i symetrie grafu . . . . . . . . . . 89

4.3.3 Dualna przestrzeń stanów dyfeomorficznie niezmienniczych . . . . . 90

4.3.4 Przestrzeń Hilberta stanów Yang-Mills i dyfeomorficznie niezmien-

niczych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Operatory na przestrzeni Hilberta stanów Yang-Mills i dyfeomorficznie nie-

zmienniczych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Definicja operatorów . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2 Operatory dystrybucyjne zaczepione w punkcie . . . . . . . . . . . 94

4.4.3 Iloczyn operatorów dystrybucyjnych . . . . . . . . . . . . . . . . . 94

4.5 Fizyczna przestrzeń Hilberta i rozwiązania więzów skalarnych . . . . . . . . 95

4.5.1 Grawitacyjne kwantowe więzy skalarne . . . . . . . . . . . . . . . . 96

4.5.2 Fizyczny Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.3 Dowolności w modelu i ich ograniczenia . . . . . . . . . . . . . . . . 98

4.6 Alternatywna propozycja kwantyzacji Ĉgr . . . . . . . . . . . . . . . . . . 98
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Rozdział 1

Wstęp

1.1 Wprowadzenie

Rozwój kanonicznej pętlowej grawitacji kwantowej, jaki nastąpił w ostatnich latach ([1],

[2], [3], [4]) pozwala wierzyć, że model kwantowej grawitacji sprzężonej z polami Modelu

Standardowego znajduje się w zasięgu obecnie posiadanej wiedzy. Co więcej, wydaje się,

że uda się to osiągnąć w obrębie kanonicznego formalizmu oryginalnych równań Einste-

ina. Wierzymy, że należy rozpocząć badania, które będą nas prowadziły w tym kierunku.

Sukcesy kanonicznej pętlowej grawitacji kwantowej pozwalają opytmistycznie patrzeć na

możliwość zastosowania jej również w obecnym przypadku.

Obliczenie i połączenie klasycznych wzorów na entropię czarnej dziury ze stanami geome-

trii kwantowej ([30]) stanowi przekonywujący argument za słusznością kwantowego obrazu

geometrii, jaki przedstawia kanoniczna pętlowa grawitacja kwantowa. Zastosowanie ka-

nonicznej pętlowej grawitacji do modeli kosmologicznych jednorodnego i izotropowego

Wszechświata było kolejnym dużym sukcesem kanonicznej pętlowej grawitacji kwantowej.

W ten sposób powstała kanoniczna pętlowa kosmologia ([15], [16], [17], [18], [19], [20],

[21]). Dowiedzieliśmy się z niej wiele na temat jakościowych efektów kwantyzacji i ewo-

lucji fizycznej ([22], [23]). Wiedza ta okazuje się przydatna przy wykonywaniu kolejnego

kroku.

Pierwszy kompletny, niestosujący uproszczeń model kwantowej kanonicznje grawitacji ze

wszystkimi lokalnymi stopniami swobody został skonstruowany przez Browna i Kuchara

8



([9]) oraz Giesel i Thiemanna ([24]). Model opisuje grawitację oddziałującą z pyłem.

Brown i Kuchar zastosowalu metodę kwantyzacji Diraca, tzn. „najpierw kwantuj, potem

rozwiązuj więzy”. Odwrotną metodę zastosowali Giesel i Thiemann – „najpierw rozwiąż

teorię klasyczną, potem kwantuj”.

Zrozumienie kwantowej teorii, która nie zależy od geometrii tła i traktuje czasoprze-

strzenne dyfeomorfizmy jako przekształcenia cechowania, wymaga znalezienia sposobu na

zdefiniowanie nietrywialnej ewolucji fizycznej. Zadanie to nie jest proste, bowiem w ogól-

nej teorii względności hamiltonian jest kombinacją więzów. Ewolucja jest transformacją

cechowania skąd wynika, że obserwable Diraca ulegają „zamrożeniu”. Jest to tak zwany

„problem czasu”.

W modelu Giesel i Thiemanna problem ten jest rozwiązany przy pomocy formalizmu

relacyjnych obserwabli Diraca, nazywanych również „częściowymi” ([5], [6], [7], [8]). Pod-

stawowa idea, na której opiera się ten formalizm polega na tym, że część pól przejmuje

rolę dynamicznie sprzężonych obserwatorów, względem których mierzymy ewolucję pozo-

stałych fizycznych stopni swobody. W formaliźmie, tym czasoprzestrzeń wyłania się w

efekcie badania realcji pomiędzy polami. Skutecznym narzędziem pozwalającym zdefi-

niować relacyjną dynamikę jest proces deparametryzacji ([9], [10], [11], [12]). Podejście

takie, pozwala przedstawić ogólną teorię względności jako teorię z nieznikającym fizycz-

nym hamiltonianem, który nie zależy od czasu relacyjnego. Wszytsko to jest realizowane

na poziomie klasycznym, a kwantyzacja jest kolejnym krokiem. W podejściu Browna –

Kuchara zaś, formalizm relacyjny sam wyłania się z teorii kwanrowej.

1.2 Najważniejsze wyniki pracy

W poniższej pracy przeprowadzona jest do końca procedura Diraca konstrukcji teorii

kwantowej z teorii klasycznej z więzami pierwszego rodzaju. Skonstruowany model opi-

suje sprzężone ze sobą pola grawitacyjne i bezmasowe pole Kleina – Gordona (w niektórych

częściach pracy rozszerzamy badania do przypadku ogólnego pola KG). Jest to drugi w li-

teraturze całkowicie scharakteryzowany kanoniczny model kwantowy pola grawitacyjnego

ze wszystkimi lokalnymi stopniami swobody.
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Punktem wyjścia przeprowadzonej poniżej konstrukcji jest sformułowanie Kochara – Ro-

mana więzu skalarnego układu ([26]). Schemat konstrukcji jest następujący:

• Sformułowane i rozwiązane zostają kwantowe więzy teorii kanonicznej. Są ro więzy:

Gaussa (Podrozdział 3.2) , wektorowy (Podrozdział 3.2) i skalarny (Podrozdział

3.3).

• W przestrzeni rozwiązań więzów wprowadzony zostaje fizyczny iloczyn Hilberta

(Podrozdział 3.3).

• Znalezione zostają wszystkie kwantowe obserwable komutujące z operatorami wię-

zów – obserwable Diraca (Podrozdział 3.4).

• Zbadane jest działanie kwantowych obserwabli na rozwiązanie kwantowych więzów

(Podrozdział 3.4).

• Postać obserwabli Diraca wykazuje istnienie naturalnej 1– wymiarowej grupy auto-

morfizmów. Własność ta zostaje wykorzystana do definicji dynamicznej ewolucji.

• Znaleziony zostaje kwantowy hamiltonian generujący dynamiczną ewolucję (Pod-

rozdział 3.5).

• Scharakteryzowane zostaje działanie kwantowego hamiltonianu na rozwiązania wię-

zów kwantowych (Podrozdział 3.5).

• Wykazana zostaje równoważność wyprowadzonego modelu z teorią zdefiniowaną w

przstreni stanów kwantowych teorii pola grawitacyjnego bez materii spełniających

wiąz wektorowy (ale nie skalarny) i ewoluujących względem uzyskanego hamilto-

nianu fizycznego (Podrozdział 3.5).

• Do opisu stanów i operatorów bezźródłowego pola grawitacyjnego zastosowany jest

formalizm pętlowej grawitacji kwantowej. W szczególności podana jest regularyzacja

prowadząca do wyrażenia nowego fizycznego hamiltonianu przez znane operatory

pętlowej grawitacji kwantowej (Podrozdział 4.5).

• Zaporponowane jest nowe wyprowadzenie kwantowego operatora więzu skalarnego

bezźródłowej grawitacji alternatywne do wyprowadzenia Thiemanna (Podrozdział

4.6).
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Podsumowując, ze znaleźonych rozwiązań w teorii kwantowej i przeprowadzonej konstruk-

cji wyłania się postać teorii łącząca ze sobą elementy klasycznego sformułowania Kuchara

– romano oraz heurystycznego modelu fizycznego czasu autorstwa Rovelliego i Smolina

([25]). Prezentowane tutaj wyniki zostały opublikowane w dwóch artykułach naukowych

[13] oraz [14].

1.3 Aktualne wyzwania

Zastosowanie kanonicznej pętlowej grawitacji kwantowej do tworzenia modelu niesie ze

sobą pewne konsekwencje, które ciągle wymagają badań i stanowią ciekwe wyzwanie dla

kontynuacji niniejszych wyników. Polegają one na tym, że opis materii Modelu Standar-

dowego musi zostać przeformułowany w sposób zgodny z wynikami kanonicznej pętlowej

grawitacji kwantowej. Wynika to z faktu, że standardowy opis materii z kwantowej teo-

rii pola zdefiniowanej na rozmaitości Minkowskiego jest niekompatybilny z wymaganiami

pętlowej grawitacji kwantowej. Dlatego w oparciu o prezentowane podejście, kwantowa

grawitacja nie daje się sprząc z Modelem Standardowym w jego obecnym sformułowaniu.

Rozszerzenie prezentowanych wyników o pozostałe pola Modelu Standardowego i znalezie-

nie spójnego obrazu obu modeli jest wielkim wyzwaniem na przyszłość. Mamy nadzieję,

że niniejsza praca przyczyni się do dalszego rozwijania prezentowanego kierunku badań.

1.4 Plan pracy i uwagi

1.4.1 Zawartość rozdziałów

Celem niniejszej pracy jest wprowadzenie kwantowego modelu pola skalarnego sprzężo-

nego z polem grawitacyjnym. W celu stworzenia pełnego modelu wykorzystamy techniki

kwantyzacji pętlowej.

Wybieramy taki sposób zaprezentowania wyników, który pozwoli wydzielić ogólny sche-

mat postępowania niezależny od tego czy wybieramy kanoniczną pętlową grawitację kwan-

tową czy nie. W rzeczywistości będzie to centralny punkt naszej pracy, gdzie prezentujemy

pełny model kwantowy wymieniając niezbędne obiekty matematyczne i określając rela-

11



cję między nimi. Oddzielnym punktem naszej prezentacji będzie pokazanie, w jaki sposób

otrzymujemy te obiekty w formaliźmie kanonicznej pętlowej grawitacji kwantowej. W

szczególności opiszemy konstrukcję operatora fizycznego Hamiltonianu.

Niniejsza praca składa się z pięciu rozdziałów.

Rozdział 1 jest rozdziałem wstępnym i zawiera dwa podrozdziały opisujące motywację,

schemat pracy oraz uwagi o notacji. Dodatkowo Podrozdział 1.2 opisuje najważniejsze

wyniki pracy.

Rozdział 2 opisuje klasyczny model pola skalarnego sprzężonego z polem grawitacyjnym.

Składa się ona z trzech podrozdziałów. Podrozdział 2.1 opisuje kanoniczne sformułowanie

ogólnej teorii względności. Podrozdział 2.2 zawiera wprowadzenie zmiennych Ashtekara.

W podrozdziale 2.3 natomiast przedstawiona jest deparametryzacja klasycznej ogólnej

teorii względności przy użyciu pola skalarnego.

Rozdział 3 zawiera 6 podrozdziałów i opisuje model kwantowy. Zawiera opis niezbęd-

nych obiektów, których konstrukcja w oparciu o kanoniczną pętlową grawitację kwantową

zostanie dokonana w kolejnej części. Podrozdział 3.1 opisuje kinematyczne podstawy

nowego modelu. W kolejnym podrozdziale 3.2 opisujemy sposób, w jaki możemy „for-

malnie” rozwiązać więzy gaussowskie i wektorowe ogólnej teorii względności. Więzom

skalarnym i ich rozwiązaniu poświęcony jest kolejny podrozdział 3.3. W podrozdziale 3.4

wprowadzamy pojęcie kwantowej obserwabli Diraca, zaś w podrozdziale 3.5 opisujemy ich

ewolucję. Podrozdział 3.6 stanowi podsumowanie tej części.

Rozdział 4 opisuje zastosowanie technik pętlowych. Zawiera sześć rozdzaiałów. W pod-

rozdziale 4.1 opisana jest kinematyczna przestrzeń Hilberta. Podrozdział 4.2 opisuje ge-

nerowane przez więzy gaussowskie transformacje Yanga–Millsa. Działanie więzów dyfe-

omorficznych (wektorowych) opisane jest w podrozdziale 4.3. Działanie operatorów na

przestrzenach niezmienniczych względem więzów opisanych w poprzednich rozdziałach

opisane jest w podrozdziale 4.4. Przestrzeń fizyczna i dynamika opisane są w podroz-

dziale 4.5. Podrozdział 4.6 zawiera oryginalną propozycję konstrukcji operatora więzów
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skalarnych. Podejście to jest obecnie przedmiotem naszych badań.

Rozdział 5 zawiera uwagi podsumowujące.

Praca zawiera jeden Dodatek, opisujący kalkulację nawiasu Poissona nowych więzów ska-

larnych dla pola skalarnego z potencjałem.

1.4.2 Uwagi o języku i notacji

Wybór języka polskiego, jako języka w jakim pisana jest ta rozprawa jest świadomym wy-

borem autora. Dokonałem go pod wpływem rozmów, jakie toczyłem z prof Stanisławem

Rohozińskim, który przekonał mnie, że naszą odpowiedzialnością jest nie tylko rozwój

nauki, ale również rozwój języka polskiego, który ma tą naukę opisywać.

Dlatego podejmuję to wyzwanie w niniejszej pracy, efektem czego są miejscami propozy-

cje językowe, które mają odpowiadać utartym już angielskim zwrotom, jakie używamy w

publikacjach.

Dlatego w pracy tej, zastępuję angielską nazwę loop quantum gravity polskim odpowied-

nikiem „kanoniczna pętlowa grawitacja kwantowa”.

W miejsce angielskiego słowa observable postanowiłem użyć spolszczonego wyrazu „obser-

wabla”.
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Rozdział 2

Analiza na poziomie klasycznym

„ Nie jest zresztą ważne, jak zdefiniujemy czas, ale raczej, jak go będziemy

mierzyć. Jedną z metod mierzenia czasu jest wykorzystanie jakiegoś powta-

rzającego się regularnie zjawiska, czegoś okresowego (periodycznego). [...]

... to znaczy wierzymy, że określają one jednakowe przedziały czasu, chociaż

nie stwierdziliśmy, czy oba zjawiska są „naprawdę” okresowe. [...] Możemy

najwyżej powiedzieć, że pewne zjawisko wykazuje podobną regularność jak

jakieś inne. [...]”

„Feynmana Wykłady z Fizyki” tom I, część 1

Podstawowa lekcja wypływająca z ogólnej teorii względności Alberta Einsteina jest taka,

że grawitacja to geometria. Nie istnieje siła grawitacyjna, a ruch cząstek niepoddawanych

działaniu innej siły to ruch swobodny po krzywych geodezyjnych.

Ogólna teoria względności wyznacza zakrzywioną geometrię. Staje się ona ściśle sprzę-

żona z materialną zawartością Wszechświata. Z biernego obiektu fizyki przed ogólną teorią

względności zostaje czynnym uczestnikiem zdarzeń podlegających prawom fizyki.

Dynamika ogólnej teorii względności jest całkowicie opisana za pomocą równań Einsteina

Gab = 8πTab.

Z różnych jednak względów takie sformułowanie sprawia wiele trudności. Z punktu wi-

dzenia definicji tensora energii - pędu i zrozumienia sposobu sprzęgania się geometrii z
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materią dużo bardziej odpowiednie wydaje się sformułowanie ogólnej teorii względności

za pomocą funkcji Lagrange’a i zasady najmniejszego działania. Również kwantyzacja w

oparciu o całki po trajektoriach wymaga takiego sformułowania klasycznej teorii.

Kanoniczne podejście do ogólnej teorii względności (podejście hamiltonowskie) pozwala

spojrzeć na równania Einsteina, jako na równania opisujące „ewolucję w czasie” pewnych

wielkości. Można je wyprowadzić z formalizmu Lagrange’a za pomocą transformacji Le-

gender’a. Stanowi ono również centralne miejsce w kanonicznej metodzie kwantyzacji.

Kanoniczne podejście ujawnia również pewne trudności interpretacyjne. Okazuje się, że

ogólna teoria względności jest teorią z więzami, a kanoniczny Hamiltonian jest liniową

kombinacją tych więzów. Problem ten,zwany potocznie problemem czasu, przenosi się na

poziom kwantowy poprzez niemożliwość prostego zdefiniowania nietrywialnych kwanto-

wych obserwabli Diraca.

Ponieważ rozwiązanie problemu czasu, zdefiniowanie rodziny kwantowych obserwabli Di-

raca oraz fizycznego Hamiltonianu generującego dynamikę jest głównym tematem tej

pracy, pierwsza część tej rozprawy poświęcona jest odpowiedniemu przeformułowaniu

ogólnej teorii względności. Głównym wynikiem niniejszej części będzie sformułowanie

klasycznej teorii opisanej w formalizmie kanonicznym, której przestrzeń fazowa stanowi

podzbiór pełnej przestrzeni fazowej wynikającej z lagranżowskiego opisu ogólnej teorii

względności. Poza tym równania więzów są równoważne standardowym równaniom wię-

zów wynikającym z formalizmu ADM, ale definiują algebrę Liego. Ponadto w nowym

ujęciu grawitacja sprzężona z bez masowym polem skalarnym będzie teorią deparametry-

zowalną, co pozwoli zdefiniować fizyczną ewolucję w oparciu o tzw. zmienne relacyjne.

2.1 Formalizm kanoniczny w zmiennych ADM

Będąca tematem pracy konstrukcja kwantowego modelu grawitacji sprzężonej z polem ska-

larnym, w żaden sposób nie wyróżnia zmiennych Arnowitta, Desera i Misnera zwanych

ADM. Wybór zmiennych opisujacych geometryczną część modelu Wszechświara uzależ-

niony jest od formalizmu kwantowego wybranego do jej kwantowego opisu. W przypadku
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prezentowanego tutaj modelu wykorzystującego formalizm kanonicznej pętlowej grawita-

cji kwantowej, takimi zmiennymi będą zmienne Ashtekara.

Zmienne ADM posłużą jednak za punkt wyjścia i łącznik prezentowanego modelu z kwan-

tyzacją Wheelera-DeWitta. Po przejściu do nowych zmiennych, w rozważanym przypadku

zmiennych Ashtekara, zachowamy odniesienie do tego modelu, traktując zmienne ADM

jako odpowiednie funkcjonały zmiennych Ashtekara.

2.1.1 Różne opisy ogólnej teorii względności

Ogólna teoria względności ma na celu wyznaczenie geometrii Wszechświata. Zastępuje

ona pojęcie siły grawitacyjnej, która traci swoje klasyczne znaczenie. Geometria ta jest

ściśle związana z materią i z jednej strony określa jej konfigurację, a z drugiej strony jest

przez nią wyznaczona.

Sprzężenie geometrii z materią wyrażają równania Einsteina

Gµν = 8πTµν , (2.1)

gdzie, jako podstawową zmienną geometryczną bierzemy tensor metryczny gµν na 4-

wymiarowej rozmaitościM modelującej czasoprzestrzeń.

Sposób, w jaki wyrażone jest sprzężenie materii z geometrią w równaniach Einsteina

polega na tym, że tensor Einsteina

Gµν = Gµν [gµν ] , (2.2)

jest wyznaczany z metryki. Natomiast tensor energii-pędu Tµν ,

Tµν = Tµν [φ, gµν ] , (2.3)

zależy również od konfiguracji pola materii symbolizowanej przez φ. To ta obecność gµν

w (2.3) jest największą komplikacją do zrozumienia natury sprzężenia geometrii z materią.

Formalizm Lagrange’a dostarcza prostszego sposobu patrzenia na sposób w jaki geometria

i konfiguracja materii wypełniającej Wszechświat sprzęgają się w obrębie teorii grawitacji.
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Ich sprzeżenie wyraża się za pomocą dodawania do siebie członów działania opisujących

poszczególne rodzaje materii.

Ograniczając się do opisu grawitacji sprzężonej z polem skalarnym φ, szukamy funkcjonału

S = S [φ, gµν ] , (2.4)

którego znikanie wariacji, określać będzie konfigurację pól φ i gµν na M. Sprzężenie

geometrii z materią jest widoczne w postaci tego działania, które możemy przedstawić,

jako sumę członu geometrycznego i członu materii

S [φ, gµν ] = Sgr [gµν ] + Sφ [φ, gµν ] . (2.5)

Wariacja tego działania daje równania pól

δφS [φ, gµν ] = 0, δgS [φ, gµν ] = 0. (2.6)

Podanie postaci Sgr i Sφ określa prawa fizyczne.

Zarówno zmienne opisujące część grawitacyjną jak i postać działania nie są jednoznaczne.

Wybieramy tutaj najprostszą postać tego działania, czyli działanie Einsteina - Hilberta

Sgr [gµν ] =

∫
M

d4x
√
−gR [gµν ] , (2.7)

gdzie przez g oznaczamy wyznacznik det gµν , a R oznacza skalar Ricciego.

Naszą uwagę ograniczymy jedynie do pola skalarnego z potencjałem. Działanie opisujące

materialną część naszej teorii przyjmuje wtedy postać

Sφ [φ, gµν ] =

∫
M

d4x

(
−1

2

(√
−ggµν∇µφ∇νφ+ 2

√
−gV [φ]

))
. (2.8)

Standardowe obliczenia wariacji działania zdefiniowanego za pomocą powyższych równań,

które możemy znaleźć w [27], definiują równania określające fizyczną konfigurację pól

δφS [φ, gµν ] = δφSφ [φ, gµν ] = 0⇒ gµν∇µ∇νφ−
δV [φ]

δφ
= 0, (2.9)

δgS [φ, gµν ] = 0⇒ Rµν −
1

2
Rgµν = 8πTµν , (2.10)
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gdzie

T µν =
1

8π

1√
−g

δSφ[φ, gµν ]

δgµν
. (2.11)

Powyższe równania odpowiadają równaniom pola skalarnego potencjałem oraz równaniom

Einsteina.

2.1.2 Wyprowadzenie formalizmu kanonicznego z zasady najmniej-

szego działania

Równania Einsteina traktujemy, jako podstawowe równania opisujące oddziaływanie gra-

witacji z materią. Za jego pomocą dokonujemy weryfikacji dowolnego innego sformułowa-

nia jako, że ogólna teoria względności została dokładnie zweryfikowana eksperymentalnie.

Przedstawione w poprzednim paragrafie sformułowanie ogólnej teorii względności z polem

skalarnym jest takim równoważnym i fizycznie nie rozróżnialnym opisem.

Formalizm kanoniczny jest podstawą kanonicznego procesu kwantyzacji. Pozwala inter-

pretować odpowiadającą mu teorię kwantową. Taki punkt widzenia pozwala przedstawić

grawitację, jako ewolucję w czasie 3-wymiarowych obiektów określonych na powierzchni

Cauchy’ego globalnie hiperbolicznej czasoprzestrzeni.

Ujęcie to ujawnia również problemy interpretacyjne wynikające z pojawienia się więzów

pierwszego rodzaju, których liniowa kombinacja stanowi kanoniczny Hamiltonian teorii.

Problemem tym, określanym potocznie mianem problemu czasu i jego rozwiązaniem bę-

dziemy zajmować się w kolejnych rozdziałach. Celem kolejnych trzech paragrafów będzie

jego ściśle zdefiniowanie. Wyprowadzona zostanie również algebra więzów.

Punktem wyjścia będzie lagranżowskie sformułowanie za pomocą działania zdefiniowanego

w poprzednim paragrafie równaniami (2.5), (2.7) i (2.9). Szczegóły opisanego wyprowadz-

nia pochodzą z [27] oraz [8].

Działanie S jest funkcjonałem konfiguracji pól określonych na 4-wymiarowej rozmaitości
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M modelującej czasoprzestrzeń,

φ :M3 p→ φ(p) ∈ R, (2.12)

gµν :M3 p→ gµν(p) ∈ S (T ∗M⊗ T ∗M) (2.13)

S = S[φ, gµν ] =

=

∫
M

d4x

(
−1

2

√
−ggµν∇µφ∇νφ+

√
−gV [φ]

)
(2.14)

Zastosowanie formalizmu kanonicznego wymaga rozbicia takiego opisu na czas i prze-

strzeń. Pierwszym krokiem będzie przyjęcie założenia, że czasoprzestrzeń M możemy

przedstawić w postaci

M∼= R×M,

gdzie M jest 3-wymiarową rozmaitością Euklidesową. Wiadomo, że własność taką po-

siada każda czasoprzestrzeń, która jest globalnie hiperboliczna. W kanonicznym ujęciu

będziemy chcieli 4-wymiarowe obiekty naM przedstawić, jako 3-wymiarowe obiekty na

M ewoluujące w czasie R.

Wybór dyfeomorfizmu opisanego powyżej nie jest jednoznaczny i jest objawem kowariant-

ności rozpatrywanej teorii. W pierwszej kolejności dokonujemy foliacji czasoprzestrzeni

M za pomocą powierzchni Cauchy’ego Mt poprzez wybór globalnej funkcji czasu

t :M→ R. (2.15)

Zakładamy, że wyboru dokonujemy w taki sposób, że wszystkie Mt są dyfeomorficzne z

3-wymiarową rozmaitością Euklidesową M , oraz są typu przestrzennego.

Następnie dokonujemy identyfikacji punktów na różnych liściach Mt, za pomocą lini cał-

kowych pola wektorowego

tµ :M→ TM, (2.16)

które określa strumień czasu. Zakładamy, że pole tµ spełnia warunek

tµ∇µt = 1. (2.17)

Otrzymujemy w ten sposób dyfeomorfizm

X : R×M →M, (2.18)
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za pomocą, którego będziemy przedstawiać 3-wymiarowe obiekty naM , zmieniające się w

czasie R.

Dyfeomorfizm (2.18) wraz z tensorem metrycznym gµν wyznaczają jednoznacznie naM

następujące pola wektorowe i funkcje

 X : R×M →M

gµν :M3 p→ gµν(p) ∈ S (T ∗M⊗ T ∗M)

⇒


nµ :M3 p→ nµ(p) ∈ TpM

Nµ :M3 p→ Nµ(p) ∈ TpM

N :M3 p→ N(p) ∈ R

 ,

(2.19)

gdzie nµ jest polem wektorowym wektorów ortonormalnych do liści foliacji przechodzącego

przez dany punkt. Mamy unormowanie

gµνn
µnν = −1, (2.20)

a definicje Nµ zwanego wektorem przesunięcia i N zwaną funkcją lapsu znajdują się w

dalszej części tekstu.

Dowolny tensor T µ...ν ρ...σ, którego zwężenie z nµ znika, tzn.

T µ...ν ρ...σnµ...nνn
ρ...nσ = 0, (2.21)

nazywamy tensorem przestrzennym. Tensor taki jest obrazem trójwymiarowego tensora

T a...b c...d zdefiniowanego na M . Otrzymujemy go za pomocą odpowiedniego zanurzenia

M →Mt otrzymanego z dyfeomorfizmu X.

Interpretacja 4-wymiarowych obiektów zdefiniowanych naM jako ewolucję 3-wymiarowych

obiektów zdefiniowanych na rozmaitości modelującej powierzchnię stałego czasuM w cza-

sie R, sprowadza się do przedstawienia ich, jako grupy obiektów przestrzennych zmienia-

jących się w czasie posiadających tą samą informację. W dalszej części na konkretnych

przykładach pokazane jest jak to osiągnąć dla interesujących nas wielkości.

Ewolucja w czasie, czyli różniczkowanie po t w tym podejściu odpowiada przesuwaniu

się wzdłuż krzywej całkowej pola wektorowego tµ, a więc odpowiedniej pochodnej Liego

wzdłuż tµ,
d

dt
T a...b c...d = Ṫ a...b c...d → LtµT µ...ν ρ...σ. (2.22)
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Kolejno przedstawiamy w ten sposób elementy występujące w (2.14). Definiujemy po-

trzebne obiekty.

qµν = gµν + nµnν , (2.23)

który definiuje Euklidesową metrykę na każdym liściu foliacji Mt. Metryka ta jest prze-

strzenna, qµνnµ = 0 i może zostać cofnięta do M . Otrzymujemy w ten sposób zależną od

czasu rodzinę tensorów metrycznych na M ,

qµν naM−→ qab(t) na M. (2.24)

Podnosząc jeden z indeksów otrzymujemy projektor q ν
µ rzutujący dowolny 4-wymiarowy

tensor na tensor przestrzenny. Jeżeli ∇ oznacza pochodną kowariantną wyznaczoną przez

gµν , to otrzymujemy kolejny tensor przestrzenny określający krzywiznę zewnętrzną liścia

Mt

Kµν := q σ
µ q

ρ
ν ∇σnρ. (2.25)

Podobnie jak qµν jest on przestrzenny i symetryczny ([27]), stąd

Kµν naM−→ Kab(t) na M. (2.26)

Wielkości Nµ i N , które pojawiają się w (2.19) definiujemy, jako część styczną i ortogo-

nalną do liścia w rozkładzie pola wektorowego tµ,

tµ = N nµ +Nµ, (2.27)

oraz

Nµnµ = 0. (2.28)

Możemy je przedstawić, jako wielkości na M ewoluujące w czasie

Nµ, N naM−→ Na(t), N(t) na M. (2.29)

W dalszej części pracy za pomocą D oznaczamy pochodną kowariantną naM określoną za

pomocą qab. Korzystając z [27] i [3] łączymy geometryczne obiekty zdefiniowane na M z

tymi zdefiniowanymi naM. Jest to standardowa procedura formalizmu ADM. Łącznikiem

są dyfeomorfizmy M →Mt wyznaczone przez dyfeomorfizm X z (2.19). Jeżeli

X : R×M 3 (t, x)→ X(t, x) = p ∈M, (2.30)
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to M →Mt definiujemy kładąc t = const

M 3 x→ X(t, x) ∈Mt. (2.31)

W ten sposób otrzymujemy następujące związki obiektów występujących w działaniu

(2.14).

W pierwszej kolejności zamieniamy całkowanie∫
M
d4x −→

∫
R
dt

∫
M

d3x. (2.32)

Ponieważ tensor metryczny gµν możemy rozłożyć w następujący sposób [3]
gµν

→

−N2 + qabN

aN b qabN
b . . .

qabN
b . . .

... . qab .

. . .

 (2.33)

widzimy, że możemy przedstawić go, jako ewolucję w czasie następujących wielkości

gµν naM−→ N(t), Na(t), qab(t) na M. (2.34)

Na podstawie (2.33) mamy
√
−g = N · √q. (2.35)

Równanie Gaussa-Coddaci’ego łączą 3-wymiarowy skalar Ricceigo wyznaczony za pomocą

koneksji D z 4-wymiarowym wynikającym z koneksji ∇,

R(4) = R(3) +Kµν −K2 − { wyrazy brzegowe w całce działania }. (2.36)

Stąd możemy przedstawić

R(4) naM−→ R(3)(t), Kab(t) na M. (2.37)

Przechodzimy następnie do części związanej z obecnością pola skalarnego. W oczywisty

sposób możemy przedstawić

φ naM−→ φ(t) na M. (2.38)
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Odwracając macierz (2.33) otrzymujemy
. . . .

. gµν . .

. . . .

. . . .

→

− 1
N2

Na

N2 . . .

Na

N2 . . .
... . qab − NaNb

N2 .

. . .

 (2.39)

Stąd obliczamy wyrażenie występujące w działaniu

gµν∇µφ∇νφ = − 1

N2
φ̇2 + 2

Na

N2
Daφφ̇+

(
qab − NaN b

N2

)
DaφDbφ. (2.40)

Poniższa zależność pozwoli znaleźć pęd kanoniczny sprzężony do qab, ponieważ łączy po-

chodną po czasie z wyrażeniami występującymi w działaniu

Kab =
1

2N
(q̇ab −DaNb −DbNa) . (2.41)

Podsumowując wszystkie powyższe wyniki możemy zapisać działanie (2.14) w postaci,

gdzie za zmienne konfiguracyjne będziemy uważać N(t), Na(T ) i qab(t) w miejsce gµν oraz

φ(t) w miejsce φ. Otrzymujemy następującą postać działania

S
[
qab, q̇ab, N

a, Ṅa, N, Ṅ , φ, φ̇
]

=

∫
R
dt

∫
M

d3x
√
qN
(
R(3) +KabK

ab −K2
)

+

+

∫
R
dt

∫
M

d3x
1

2

√
qN

(
− 1

N2
φ̇2 + 2

Na

N2
Daφφ̇+

(
qab − NaN b

N2

)
DaφDbφ− 2V [φ]

)
(2.42)

Kolejny krok wymaga znalezienia pędów kanonicznie sprzężonych do zmiennych konfigura-

cyjnych i przedstawienia działania, jako funkcjonału położeń i pędów w miejsce prędkości

uogólnionych. W pierwszej kolejności rozpatrujemy zmienne grawitacyjne i odpowiada-

jące im pędy.

Pęd sprzężony do qab znajdujemy zgodnie z definicją ze wzoru

pab =
δS

δq̇ab
=
√
q
(
Kab −Kqab

)
, (2.43)

gdzie wykorzystaliśmy (2.41). Natomiast pędy kanonicznie sprzężone do N i Na znikają,

ponieważ Ṅ i Ṅa nie występują w działaniu

p =
δS

δṄ
= 0, (2.44)

pa =
δS

δṄa
= 0. (2.45)

23



Kolejno rozpatrujemy część pola skalarnego i pęd kanonicznie sprzężony do φ

π =
δS

δφ̇
=
√
q
φ̇

N
−√q 1

N
NaDaφ. (2.46)

Przekształcenie działania (2.14) za pomocą powyżej wyprowadzonych wzorów prowadzi

do następującego działania będącego funkcjonałem kanonicznych położeń i pędów

S
[
qab, p

ab, Na, N, φ, π
]

=

∫
R
dt

∫
M

d3x
(
q̇ab(x)pab(x) + φ̇(x)π(x)

)
+

−
∫
R
dt

∫
M

d3xN

(
−√qR +

pabpab√
q
− 1

2

p2

√
q

)
+

+

∫
R
dt

∫
M

d3xNa
(
−2qabDcp

cd
)

+

+

∫
R
dt

∫
M

d3xN

(
1

2

π2

√
q

+
1

2

√
qqabDaφDbφ+ V [φ]

)
+

+

∫
R
dt

∫
M

d3xNaπDaφ. (2.47)

W powyższym równaniu zaniedbujemy wyrazy brzegowe. Zarówno q̇ab(x) jak i φ̇(x) trak-

tujemy, jako funkcjonały położeń i pędów kanonicznie do nich sprzężonych. Możemy z

niego odczytać Hamiltonian kanoniczny, który jest całką po przestrzeni M i możemy go

zapisać w następującej postaci

hkin =

∫
M

d3xN(x) · C(x) +Na(x) · Ca(x), (2.48)

Wprowadzamy następujące oznaczenia

C(x) = C(gr)(x) + C(φ)(x), (2.49)

gdzie

C(gr)(x) = −√qR +
pabpab√

q
− 1

2

p2

√
q
, (2.50)

C(φ)(x) =
1

2

π2

√
q

+
1

2

√
qqabDaφDbφ+

√
qV [φ]. (2.51)

Podobnie

Ca(x) = C(gr)
a (x) + C(φ)

a (x), (2.52)

gdzie

C(gr)
a (x) = −2qabDcp

cd, (2.53)

C(φ)
a (x) = πDaφ. (2.54)
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Powyższy Hamiltonian nie zależy od pędów kanonicznie sprzężonych do N i Na w związku

z czym ewolucja tych zmiennych nie jest fizycznie zdefiniowana. W rzeczywistości są one

dowolne i określają sposób foliacjiM.

Wariacja hkin względem N i Na określa równania definiujące więzy

C(x) = 0, (2.55)

Ca(x) = 0. (2.56)

Kanoniczna postać nawiasów Poissona, które odczytujemy z postaci działania

{
qab(x), pcd(y)

}
= δc(aδ

d
b)δ(x, y), (2.57)

{φ(x), π(y)} = δ(x, y), (2.58)

określają ewolucję pozostałych zmiennych

q̇ab(x) = {qab(x), hkin} , ṗab(x) =
{
pab(x), hkin

}
, (2.59)

φ̇(x) = {φ(x), hkin} , π̇(x) = {π(x), hkin} . (2.60)

Równania (2.55), (2.56), (2.59) i (2.60) są równoważne z równaniami Einsteina. W dalszej

części pracy przestrzeń fazową, której punkty stanowią konfiguracje pól na 3 wymiarowej

rozmaitościM
(
qab(x), pab(x), φ(x), π(x)

)
będziemy oznaczać Γ. Jest ona iloczynem części

geometrycznej Γ(gr) składającej się z
(
qab(x), pab(x)

)
oraz części materii Γ(φ) składającej

się z (φ(x), π(x)).

2.1.3 Więzy ogólnej teorii względności

Ṅ(x) i Ṅa(x) nie występują w działaniu (2.42), z czego wynika występowanie więzów

w rozważanej teorii. Zmienne konfiguracyjne N(x) i Na(x) nie niosą ze sobą informacji

fizycznej, a oznaczają jedynie wybór foliacji czasoprzestrzeni i pełnią rolę mnożników

Lagrange’a w działaniu. W konsekwencji tego otrzymujemy więzy skalarne

C(x) = C(gr)(x) + C(φ)(x) = 0, (2.61)

oraz więzy wektorowe

Ca(x) = C(gr)
a (x) + C(φ)

a (x) = 0. (2.62)
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Podstawowe i niezbędne elementy kwantyzacji teorii z więzami przedstawiamy za [46]. W

celu uczynienia pracy maksymalnie przejrzystej ograniczymy się jedynie do faktów nie-

zbędnych przy konstrukcji prezentowanego modelu.

Ponieważ przestrzeń fazowa rozważanej teorii jest nieskończenie wymiarową przestrzenią

konfiguracji pól qab(x), φ(x) oraz gęstości pab(x), π(x) na M , w miejsce kanonicznych

nawiasów Poissona posługujemy się tzw. wersjami rozsmarowanymi wynikającymi z na-

stępującej definicji

{G,G′} =

∫
M

d3x

(
δG

δqab(x)

δG′

δpab(x)
− δG

δpab(x)

δG′

δqab(x)

)
+

+

∫
M

d3x

(
δG

δφ(x)

δG′

δπ(x)
− δG

δπ(x)

δG′

δφ(x)

)
. (2.63)

Zakładamy, że dokonaliśmy już redukcji przestrzeni fazowej do
(
qab(x), φ(x), pab(x), π(x)

)
eliminując niefizyczne zmienne N(x) i Na(x). G i G′ oznaczają funkcjonały na tej prze-

strzeni

G = G
[
qab(x), φ(x), pab(x), π(x)

]
, G′ = G′

[
qab(x), φ(x), pab(x), π(x)

]
.

Równania więzów generują transformację przestrzeni fazowej, które są transformacjami

cechowania. Oznacza to, że konfiguracje pól, które leżą na tej samej orbicie takiej trans-

formacji są fizycznie równoważne. W naszym przypadku nawet po redukcji przestrzeni

fazowej o N i Na pozostaje swoboda związana z obecnością więzów (2.61) i (2.62).

Podstawowe własności więzów określają:

• Alebra więzów określona za pomocą nawiasów Poissona.

• Generowane prze nie transforamcje przestrzeni fazowej.

W przypadku więzów grawitacyjnych powyższe własności wyprowadzamy bezpośrednim

rachunkiem. Stąd więzy wektorowe generują dyfeomorfizmy styczne do powierzchni liścia.

Więzy skalarne generują dyfeomorfizmy prostopadłe do powierzchni liścia, pod warun-

kiem, że znajdujemy się na przestrzeni rozwiązań więzów.
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Bezpośredni rachunek prowadzi również do algebry więzów

{
Ca[N

a], Cb[M
b]
}

= Ca
[
N bDbM

a −M bDbN
a
]
, (2.64)

{C[N ], Ca[M
a]} = −C [MaDaN ] , (2.65)

{C[N ], C[M ]} = Ca
[
qab (NDbM −MDbN)

]
. (2.66)

Przyjęliśmy następujące oznaczenia

C[N ] :=

∫
M

d3xN(x)C(x), (2.67)

Ca[N
a] :=

∫
M

d3xNa(x)Ca(x). (2.68)

We wzorze (2.66) nie mamy stałej, a funkcję struktury, co sprawia, że obliczona algebra

nie jest algebrą Liego.

2.1.4 Znikający Hamiltonian i problem czasu w ogólnej teorii

względności

Przedstawienie ogólnej teorii względności w formalizmie kanonicznym ujawnia dodatkowe

komplikacje. Potocznie nazywamy ją problemem czasu.

Ogólna teoria względności w formalizmie kanonicznym okazuje się teorią z więzami. Po-

nieważ nawiasy Poissona pomiędzy więzami nie generują dodatkowych więzów mówimy,

że są to więzy pierwszej klasy.

Wiemy, że takie więzy generują transformację cechowania, stąd punkty leżące na orbitach

określają ten sam stan fizyczny układu. Dlatego obserwable Diraca, a więc funkcje na

podprzestrzeni więzów przestrzeni fazowej, które mają fizycznie obserwowalne znaczenie

muszą być stałe na tych orbitach. Oznacza to znikanie ich nawiasów Poissona z więzami

{F,C[N ]} = 0, (2.69)

{F,Ca[Na]} = 0. (2.70)

Z drugiej strony, kanoniczny Hamiltonian (2.48), którego rolą jest generowanie ewolucji w

czasie, jest liniową kombinacja więzów. Wynika stąd, że po pierwsze, dla konfiguracji pól z

podprzestrzeni rozwiązań więzów, czyli fizycznie nas interesującej, Hamiltonian znika. Po

27



drugie ewolucja w czasie pokrywa się z transformacją cechowania. Dlatego grawitacyjne

obserwable nie ewoluują w czasie, a pozostają stałe.

Problem czasu stanowi nie tylko trudność interpretacji obserwowalnej lokalnie ewolucji,

ale również stanowił blokadę na drodze do kanonicznej grawitacji kwantowej. W dalszej

części tej pracy zastosujemy podejście oparte na zmiennych relacyjnych, aby poradzić

sobie z tym problemem.

2.2 Przejście do zmiennych Ashtekara

Kanoniczna postać ogólnej teorii względności stanowi pierwszy krok na drodze kanonicz-

nej kwantyzacji. Podejście takie zakończyło się niepowodzeniem ze względu na skompliko-

waną, nieliniową postać Hamiltonianu dla grawitacji. Mimo to prace Wheelera i DeWitta

były krokiem milowym naprzód. Dlatego kwantowanie kanoniczne zmiennych ADM bę-

dziemy nazywać kwantowaniem Wheelera-DeWitta.

Nowa kanoniczna przestrzeń fazowa prowadzona przez Ashtekara ([28], [29]) jest kolejnym

dużym krokiem na drodze do kwantowej teorii grawitacji. Przedstawienie ogólnej teorii

względności w zmiennych Ashtekara upodabnia ją do teorii Yanga-Milsa. To przedstawie-

nie umożliwia również kwantyzację niezależną do metryki tła, co było dużym problemem

w teorio polowych próbach kwantowania ogólnej teorii względności.

Wyprowadzenie zmiennych Ashtekara oraz ich zastosowanie do kwantyzacji ogólnej teorii

względności znajduje się w podsumowującym artykule [1]. Jednak tutaj wyprowadzimy

je za Thiemannem [3].

2.2.1 Rozszerzenie przestrzeni fazowej ADM

Podejście zaprezentowane w podręczniku Thomasa Thiemanna różni się od oryginalnego

wyprowadzenia. Jednak ze względu na bezpośrednie uwidocznienie ze zmiennymi ADM

to podejście wybieramy w tej pracy.

W miejsce wyprowadzenia zmiennych Ashtekara motywowanego postacią działania, wy-
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bieramy podejście opierające się na transformacjach przestrzeni fazowej. Ponieważ roz-

ważania tego paragrafu tyczą się jedynie zmiennych geometrycznych, możemy ograniczyć

się do Γ(gr). Punktem wyjścia będzie przestrzeń fazowa, której punktami są pary pól(
qab(x), pab(x)

)
, gdzie

q(x) = qab(x)dxa ⊗ dxb (2.71)

jest tensorem metrycznym na M . Pędem kanonicznie sprzężonym jest gęstość tensorowa

w wadze 1,

p = pab(x)
∂

∂xa
⊗ ∂

∂xb
. (2.72)

Kanoniczne nawiasy Poissona zapisujemy w postaci{
qab(x), pcd(y)

}
= δc(aδ

d
b)δ(x, y). (2.73)

Dokonujemy rozszerzenia powyższej przestrzeni fazowej . Rozszerzenie to będzie polegało

na zastąpieniu tensora metrycznego polem triad eia(x) na M ,

qab(x) = δije
i
a(x)ejb(x). (2.74)

Pojawia się dodatkowa swoboda ze względu na obroty SO(3) w przestrzeni wewnętrznej

eia → Oi
je
j
a,

która powoduje, że możemy traktować eia jako 1-formy o wartościach w algebrze Liego

su(2). W tym celu wykorzystujemy fakt, że reprezentacja dołączona grupy SU(2) na

jej algebrze Liego jest izomorficzna z definiującą reprezentacją SO(3) na R3. Izomorfizm

R3 → su(2) ma postać

R3 3 vi → viτi ∈ su(2), (2.75)

gdzie τi stanowią bazę su(2). W ten sposób otrzymujemy, że eia(x) możemy traktować,

jako jednoformę o wartościach w algebrze Liego su(2),

eia(x) : TxM → su(2). (2.76)

W podobny sposób możemy rozłożyć krzywiznę zewnętrzną Kab(x), za pomocą, której

określony był pęd pab(x),

Kab(x) := Ki
(a(x)ejb)(x)δij, (2.77)

gdzie

Ki
a(x) : TxM → su(2) (2.78)
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Ponieważ macierz Ki
a ma zawierać te same informacje geometryczne co tensor krzywizny

zewnętrznej Kab, z jego symetrii wynika następujące równanie, jakie musi być spełnione

przez Ki
a

Gab = Ki
[a(x)eib](x)δij = 0. (2.79)

W przeciwnym razie drugi człon w rozkładzie

Ki
ae
i
b = Ki

(ae
i
b) +Ki

[ae
i
b]

zawierałby dodatkową informację. Stąd pojawia się dodatkowy wiąz teorii opisany rów-

naniem (2.79).

W ten sposób zastąpiliśmy parę zmiennych kanonicznie sprzężonych
(
qab(x), pab(x)

)
parą

(eia(x), Ki
a(x)). Ponieważ oba te obiekty są tensorami tego samego typu, nie mogą stano-

wić pary zmiennych kanonicznie sprzężonych. Ponadto, żadna z nich nie jest gęstością o

wadze 1.

Wprowadzamy zmienną Ea
i (x), która będzie gęstością wektorową o wadze 1,

Ea
i (x) =

√
q eaj (x), (2.80)

gdzie q oznacza jak poprzednio wyznacznik tensora metrycznego qab, natomiast eaj (x)

stanowi odwrotność eja(x),

eai (x)eja(x) = δji , eai (x)eia(x) = δba (2.81)

Za pomocą powyższych przekształcamy (2.82) do następującej postaci

Gjk(x) = Ka[j(x)Ea
k](x) = 0, (2.82)

gdzie wykorzystujemy e∗∗ do zamiany indeksów tensorowych na indeksy wewnętrzne i na

odwrót.

Na przestrzeni par (Ea
i (x), Ki

a(x)) możemy zdefiniować nawias Poissona, który jest zgodny

z nawiasem ADM, {
Ea
i (x), Eb

j (y)
}

=
{
Ki
a(x), Kb

j (y)
}

= 0, (2.83){
Kj
b (y), Ea

i (x)
}

=
1

2
δab δ

j
jδ(y, x) (2.84)
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otrzymujemy rozszerzoną przestrzeń fazową. Z pomocą więzu (2.82) lub jego postaci

rozsmarowanej

G[Λ] =

∫
M

d3xΛjiKajE
a
k , (2.85)

gdzie Λ jest skalarem o wartościach w so(3). Wiąz ten generuje obroty w przestrzeni

wewnętrznej. Nawiasy Poissona więzów G pokazują, że są to więzy pierwszej klasy

{G[Λ], G′[Λ]} = G

[
1

2
[Λ,Λ′]

]
. (2.86)

Standardowe zmienne ADM możemy wyrazić za pomocą nowych zmiennych Ashtekara w

następujący sposób

qab = qab[E
a
i , K

a
i ] = | det (Ea

i )|Ei
aE

j
bδij, (2.87)

pab = pab[Ea
i , K

a
i ] = 2| det (Ea

i )|−1Ea
kE

d
l δ

klKj
[dδ

b
c]E

c
j . (2.88)

Możemy za pomocą powyższych wzorów wyrazić więzy C(gr)(x) oraz C(gr)
a (x) także, jako

funkcjonały nowych zmiennych.

Otrzymana w ten sposób teoria kanoniczna na przestrzeni (Ea
i (x), Ki

a(x)) z nawiasami

Poissona (2.83) i (2.84) oraz więzami G, C(gr)(x) oraz C(gr)
a (x) traktowanymi, jako ich

funkcjonały, jest teorią równoważną do standardowej grawitacji w ujęciu ADM, na prze-

strzeni rozwiązań więzów. Część grawitacyjną działania możemy zapisać, jako

S
[
Ea
i (x), Ki

a(x)
]

=

∫
R
dt

∫
M

d3x
(

2K̇j
aE

a
j −

(
−ΛijGij +NaC(gr)

a +NC(gr)
))
. (2.89)

2.2.2 Kanoniczna transformacja prowadząca do zmiennych Ash-

tekara

Jak dotychczas rozszerzyliśmy przestrzeń fazową ADM do nowej postaci. 3-wymiarowa

metryka i pęd kanonicznie do niej sprzężony wyrażają się przez nowe zmienne za pomocą

wzorów (2.87) i (2.88).

Krzywizna zewnętrzna Ki
a(x) zawiera informację o sposobie, w jaki M zanurzone jest w

M. Natomiast informację o wewnętrznej geometrii M otrzymujemy z Ea
i (x), podobnie

jak poprzednio czyniliśmy to z qab(x).
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Ponieważ qab jest jednoznacznie wyznaczone przez Ea
i , również pochodna kowariantna

działająca na indeksy czasoprzestrzenne Da jest wyznaczona z Ea
i w sposób jednoznaczny.

Ponieważ pojawia się dodatkowy, wewnętrzny stopień swobody związany z obecnością

indeksu i, musimy umieć określić działanie pochodnej również na indeksy wewnętrzne.

Aby działanie to było spójne z warunkiem metryczności koneksji chcemy, aby

Daqbc = 0→ Dae
j
b = 0, (2.90)

skąd otrzymujemy następujące równanie

Dae
j
b = ∂ae

j
b − Γcabe

j
c + Γ j

ak e
k
b . (2.91)

Powyższe równanie traktujemy jako definicję koneksji spinowej. Wynika z niego, że rów-

nież

DaE
a
j = ∂aE

a
j + εjklΓ

k
aE

a
l = 0, (2.92)

gdzie Ea
j jest wyprowadzoną poprzednio gęstością wektorową o wartościach w su(2), a Γka

jedno formą o wartościach w su(2)∗.

Dokonujemy następującej transformacji kanonicznej polegającej na skalowaniu zmiennych(
Kj
a, E

a
j

)
→
(
γKj

a, P
a
j :=

1

γ
Ea
j

)
,

która pozostawia powyższe wzory w niezmienionej postaci. Współczynnik γ nazywamy

parametrem Barbero-Imirzi. Różne wartości tego parametru definiują równoważne kla-

sycznie teorie. Jednak ich kwantowe odpowiedniki nie są unitarne i fizcznie równoważne.

Parametr ten określa również spektra operatorów geometrycznych. Jego wartość w opar-

ciu o obliczenie entropii czarnej dziury można znaleźć w [30].

Więzy (2.82) przejmują postać więzu Gaussa znanego w teorii Yanga-Millas

Gj = DaP
a
j , (2.93)

gdzie pochodną kowariantną Da definiujemy tym razem za pomocą koneksji Ashtekara-

Barbero

Aja(x) := Γja(x) + γKj
a(x). (2.94)

Tak zdefiniowana pochodna działa zarówno na indeksy wewnętrzne

Davj := ∂avj + ε l
jkA

k
avl, (2.95)
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jak i indeksy tensorowe

Davb = Davb, (2.96)

gdzie lewa strona oznacza nową pochodną kowariantną, a prawa starą zdefiniowaną w

poprzednim rozdziale.

Otrzymujemy ostatecznie przestrzeń fazową złożoną z koneksji Ashtekara-Barbero, 1-

formy o wartościach w su(2), oraz gęstości wektorowej o wadze 1 i wartościach w su(2)∗,

P a
j (x). Bezpośrednim rachunkiem pokazujemy, że

{
P a
i (x), P b

j (y)
}

=
{
Aia(x), Abj(y)

}
= 0, (2.97){

Aia(x), P b
j (y)

}
= δab δ

j
jδ(x, y). (2.98)

Wraz z dodatkowym więzem

G[Λ] =

∫
M

d3xΛiGi (2.99)

przestrzeń ta stanowi przestrzeń fazową ogólnej teorii względności zapisanej w zmiennych

Ashtekara.

2.2.3 Więzy ogólnej teorii względności w zmiennych Ashtekara

Zbierając wyniki przedstawione w poprzednich paragrafach, nasza przestrzeń fazowa składa

się obecnie z par
(
Aia(x), P b

j (y)
)
opisujących część geometryczną teorii, oraz z par (φ(x), π(x))

opisującej część materii. Nawiasy Poissona pomiędzy zmiennymi kanonicznymi sprzężo-

nymi ze sobą opisane są we wzorach (2.97), (2.98) oraz (2.58).

Pojawiają się nowe więzy, które przyjmują postać

Gi(x) = ∂aP
a
i + ε k

ij A
j
a(x)P a

k (x), (2.100)

wyprowadzoną z (2.93) oraz (2.95). Mają one postać więzów Gaussa znanych z teorii

Yanga-Millsa i wyrażają niefizyczność dodatkowego stopnia swobody, jaki pojawił się w

opisie.

Pozostałe więzy dyfeomorficzne i skalarne możemy bezpośrednim rachunkiem wyrazić za

pomocą nowych zmiennych. W rzeczywistości taka nowa postać więzów jest prostsza i
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przydatna, jeżeli chcemy dokonać kinematycznej kwantyzacji tych więzów.

W dalszej części pracy przyjmujemy następującą konwencję. Pozostawiamy postać więzów

taką jak w formaliźmie ADM (2.49) - (2.54), traktując od tego momentu qab i pab jako

funkcjonały zmiennych Ashtekara,

qab = qab
[
Aia(x), P b

j (y)
]
, (2.101)

pab = pab
[
Aia(x), P b

j (y)
]
. (2.102)

Zakładamy ponadto, że więzy dyfeomorficzne i skalarne generują przekształcenia takie

same, jak opisane zostały w poprzednich paragrafach, tj. odpowiednio dyfeomorfizmy

generowane przez pola wektorowe styczne do M , oraz dyfeomorfizmy generowane przez

pola wektorowe normalne do M .

2.3 Zdeparametryzowana wersja ogólnej teorii względ-

ności

Z poprzednich rozdziałów widzimy, że ogólna teoria względności jest szczególnym rodza-

jem teorii fizycznej, w której kanoniczny Hamiltonian generuje transformacje cechowania.

Dzieje się tak, ponieważ okazuje się on liniową kombinacją więzów pierwszej klasy, co

możemy zapisać w następujący sposób

hkin =

∫
M

d3x
(
Λi(x)Gi(x) +Na(x)Ca(x) +N(x)C(x)

)
. (2.103)

Posługiwanie się rozsmarowanym Hamiltonianem wynika z faktu, że przestrzeń fazowa

ogólnej teorii względności jest nieskończenie wymiarową przestrzenią konfiguracji pól, a

nie skończenie wymiarową rozmaitością różniczkową. Punkty przestrzeni fazowej mode-

lowane są lokalnie na nieskończenie wymiarowych przestrzeniach Banacha, a nie na Rn.

Postać Hamiltonianiu kanonicznego generuje tak zwany problem czasu w ogólnej teorii

względności. Po wyeliminowaniu wszystkich niefizycznych stopni swobody taka teoria za-

styga.

Hamiltonian, który jest liniową kombinacją więzów generuje transformacje cechowania. W

związku z tym brak jest naturalnie zdefiniowanej dynamiki. Jest to w jawnej sprzeczności
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z obserwacjami dnia codziennego, gdzie obserwujemy zmiany, które jesteśmy w stanie de-

terministycznie przewidzieć. Wniosek, jaki wypływa z tych rozważań wskazuje na to, że

fizyczna dynamika zawiera się w jakiejś dodatkowej strukturze, która nie została jeszcze

uwzględniona.

Proponowane rozwiązanie opiera się na wprowadzeniu dodatkowej struktury poprzez tak

zwany mechanizm deparametryzacji ([10], [11]).

Deparametryzacja teorii, której Hamiltonian jest więzem pierwszego rodzaju nie jest pro-

cedurą jednoznaczną. Wymaga dokonania pewnych wyborów. W szczególności stosuje

się to do ogólnej teorii względności. W kolejnych paragrafach uzasadnimy nasz wybór.

Mimo, iż był on już stosowany, przedstawione tutaj podejście jest prezentowane po raz

pierwszy w niniejszej pracy.

2.3.1 Problem czasu na przykładzie skończenie wymiarowym

Zmienne relacyjne mają swoją dłuższą historię. W tej pracy opieramy się na koncep-

cjach wprowadzonych w [6] i [7], gdzie również można znaleźć szersze wprowadzenie do

zastosowania zmiennych relacyjnych w systemach z Hamiltonianem będącym generato-

rom transformacji cechowania. Zastosowanie zmiennych relacyjnych do różnych modeli

wykorzystujących pętlową kwantyzację znajdujemy również w [31].

Koncepcja rozwiązania problemu czasu za pomocą zmiennych relacyjnych nie jest nowa

i pod różnymi postaciami podejmowano próby zastosowania jej do ogólnej teorii względ-

ności w przeszłości. Przykładem może być zapoczątkowana pracami Martina Bojowalda

([32], [21]), a rozwinięta w [15] kanoniczna pętlowa kosmologia kwantowa. Przyczyniła

się ona do zrozumienia natury Wielkiego Wybuchu.

Model, który jest obiektem badań opisanych w tej pracy jest rozszerzeniem modelu

Asktekara-Pawłowskiego-Singha na sytuacje, w których nie dysponujemy tak dużą sy-

metrią umożliwiającą redukcję układu do modelu jednowymiarowego.

Przedstawione w tym paragrafie fakty dotyczące teorii zmiennych relacyjnych przyta-

czamy za [33]. Wychodząc od geometrycznego podejścia prezentowanego na przykładzie
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skończenie wymiarowym, przedstawimy klasyczną naturę problemu czasu. W kolejnym

paragrafie pokażemy na czym polega przekształcenie do równoważnej teorii kanonicznej,

które zastosujemy w celu otrzymania deparametryzowalnej wersji ogólnej teorii względ-

ności.

Rozważamy skończenie wymiarową przestrzeń fazową, będącą 2n-wymiarową rozmaitością

różniczkową Γ, wyposażoną w formę symplektyczną Ω,

Ω ∈ Λ2Γ, (2.104)

dΩ = 0, (2.105)

XyΩ = 0⇒ X = 0 dla X ∈ TΓ. (2.106)

Dwuforma Ω spełniająca opisane powyżej warunki jest równoważna określeniu nawiasów

Poissona pomiędzy funkcjami na Γ.

Rozważmy dowolną funkcję

f : Γ→ R. (2.107)

Pole wektorowe Xf zdefiniowane za pomocą formy symplektycznej Ω oraz funkcji f za

pomocą poniższego równania

XfyΩ = df, (2.108)

nazywamy hamiltonowskim polem wektorowym. Następnie definiujemy nawias Poissona

pomiędzy dwoma funkcjami f, g : Γ→ R

{f, g} = Xg(f). (2.109)

Ewolucja badanego układu opisywana jest za pomocą krzywych całkowych Hamiltonow-

skiego pola wektorowego generowanego przez pewną szczególną funkcję h nazywaną Ha-

miltonianem.

Reasumując, na klasyczny opis układu składają się następujące elementy

• przestrzeń fazowa Γ,

• forma symplektyczna Ω,

• funkcja Hamiltona h.
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Rozważmy następnie dodatkowo, więzy pierwszego rodzaju na naszej rozmaitości Γ. Ozna-

czamy je C1, C2, ... , CI . Przez więzy pierwszego rodzaju rozumiemy funkcje na prze-

strzeni fazowej

i = 1, 2, ..., I : Ci : Γ→ R, (2.110)

których wszystkie wzajemne nawiasy Poissona zerują się wszędzie tam, gdzie zerują

się same więzy,

{Ci, Cj} |ΓC = 0. (2.111)

Więzy takie pełnią dwojaką rolę. Ograniczają zbiór możliwych stanów badanego układu

do punktów przestrzeni fazowej Γ, na której funkcje więzów znikają. Zbiór ten nazywamy

podprzestrzenią więzów

ΓC = {x ∈ Γ|C1(x) = 0, ..., CI(x) = 0} . (2.112)

Zakładamy, że skonstruowany zbiór więzów jest zupełny, tzn. ewolucja, a więc krzywe

całkowe Xh nie wyprowadzają nas poza dostępne stany układu. Oznacza to, że Xh jest

wektorem stycznym do ΓC .

Kolejną rolą więzów pierwszego rodzaju jest generowanie transformacji cechowania. Ozna-

cza to, że punkty leżące na tych samych krzywych całkowych generowanych przez Hamil-

tonowskie pola odpowiadające więzom lub ich liniowym kombinacjom, opisują nierozróż-

nialne fizycznie stany układu.

Dla więzów pierwszego rodzaju, a więc takich dla których zachodzi

[
XCi , XCj

]
=
∑
k

ak XCk , (2.113)

podpowierzchnia ΓC jest foliowana powierzchniami generującymi równoważne punkty fi-

zyczne, a przestrzeń ilorazowa tych powierzchni odpowiada fizycznym stanom układu.
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Rys. II. 1

Równania więzów pierwszego rodzaju pozwalają zidentyfikować fizycznie nierozróżnialne

punkty na przestrzeni fazowej. Dlatego rozszerzamy o nie elementy opisu układu klasycz-

nego

• przestrzeń fazowa Γ,

• forma symplektyczna Ω,

• funkcja Hamiltona h,

• równania więzów C1, C2, ... , CI .

Szczególnym przypadkiem teorii z więzami jest teoria, której hamiltonian jest liniową

kombinacją więzów pierwszego rodzaju

h = a1 · C1 + ...+ aI · CI . (2.114)

W takiej sytuacji Hamiltonian znika na przestrzeni stanów fizycznie dopuszczalnych ΓC .

Dodatkowo generowana przez niego ewolucja jest niczym innym jak transformacją ce-

chowania. Z drugiej strony, ponieważ punkty leżące na tej samej orbicie transformacji

cechowania reprezentują ten sam stan fizyczny układu, funkcje na przestrzeni fazowej

odpowiadające fizycznie mierzalnym wielkościom powinny przyjmować na nich stałe wiel-

kości. Powoduje to zamrożenie układu i brak możliwości opisania ewolucji układu, w
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sytuacji kiedy kanoniczny Hamiltonian jest generatorem transformacji cechowania.

W przypadku bez więzów, parametryzację krzywej całkowej pola wektorowego odpowia-

dającego funkcji Hamiltona interpretujemy jako „absolutny” czas, co możemy zapisać za

pomocą równania
d

dt
f(t) = Xh(f). (2.115)

Gdy Hamiltonian generuje transformację cechowania, parametr ten traci jakiekolwiek zna-

czenie fizyczne. Hamiltonian h(x) oraz N ·h(x) generują te same krzywe całkowe różniące

się jedynie „prędkością” poruszania się po nich. Prędkość ta nie ma jednak żadnego

znaczenia fizycznego, a N odpowiada funkcji lapsu N(X) wyprowadzonej w rozdziale do-

tyczącym kanonicznego sformułowania ogólnej teorii względności.

Podsumowując, w opisywanym powyżej przypadku możemy przyjąć, że klasyczny opis

układu składa się z następujących elementów

• przestrzeń fazowa Γ,

• forma symplektyczna Ω,

• równania więzów C1, C2, ... , CI .

Hamiltonian kanoniczny jest liniową kombinacją więzów i nie wnosi nic nowego do pro-

ponowanego powyżej opisu modelu.

2.3.2 Deparametryzacja i zmienne relacyjne

Rozważany model grawitacji sprzężonej z polem skalarnym jest przykładem teorii w któ-

rej hamiltonian jest generatorem transformacji cechowania. Oznacza to, że obserwable

Diraca, odpowiadające fizycznym wielkościom charakteryzującym układ, mają znikający

nawias Poissona z hamiltonianem. Co za tym idzie obserwable fizyczne nie ewoluują i są

całkowiecie zamrożone w rozważanej teorii.

Geometrycznie, obserwable Diraca są funkcjami na klasycznej przestrzeni fazowej, które

przyjmują stałą wartość na orbitach transformacji cechowania. Ponieważ hamiltonian jest

generatorem takiej transformacji, to wielkości fizyczne przyjmują stałą wartość na orbicie

39



generowanej przez hamiltonian. Pojawiające się pytanie o możliwość znalezienia wielko-

ści, których ewolucję moglibyśmy badać i opisywać za pomocą fizycznego hamiltoniany,

który ją generuje jest tematem kolejnych rozdziałów niniejszej pracy.

Relacyjne zmienne stanowią propozycję rozwiązania opisanego powyżej problemu. Depa-

rametryzacja jest procesem przekształcenia więzów do postaci, które umożliwiają prostą

identyfikację jednej z kanonicznych zmiennych konfiguracyjnych jako relacyjnego czasu

układu.

Konstrukcja relacyjnych obserwabli Diraca opiera się na wykorzystaniu funkcji na prze-

strzeni fazowej, z których każda z osobna niekoniecznie musi być stała na orbitach dzia-

łania grupy cechowania na ΓC . Oznaczamy jedną z nich przez f : ΓC → R, natomiast

pozostałe Ti : ΓC → R, gdzie i = 1, 2, ..., I.

Ilość funkcji Ti powinna odpowiadać wymiarowi orbity grupy cechowania, na jakie dzia-

łanie grupy cechowania foliuje ΓC . Jeżeli dodatkowo założymy, że warunki T1 = τ1, ...

, TI = τI jednoznacznie wyznaczają globalne cięcie wiązki π : ΓC → Γfiz, to możemy

zdefiniować obserwablę Diraca

τ1, ..., τI → F[f,T1,...,TI ][τ1, ..., τI ] : ΓC → R. (2.116)

Wprowadzoną powyżej fizyczną przestrzeń fazową Γfiz definiujemy jako

Γfiz = ΓC/ ∼, (2.117)

gdzie relacja ∼ zdefiniowana jest w ten sposób, że dwa punkty przestrzeni ΓC są równo-

ważne jeżeli istnieje trasformacja cechowania, która przeprowadza jeden w drugi.

Funkcje tą definiujemy w ten sposób, że dla dowolnego punktu x ∈ ΓC , szukamy na liściu

do którego on należy, punktu xτ1,...,τI (x) zdefiniowanego w następujący sposób

xτ1,...,τI (x) = {x′ ∈ [x]|Ti(x′) = τ1, ..., TI(x
′) = τI} . (2.118)

Za pomocą powyższego definiujemy

F[f,T1,...,TI ][τ1, ..., τI ](x) = f (xτ1,...,τI (x)) . (2.119)
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W szczególnym przypadku, kiedy będziemy rozwiązywać tylko jeden wiąz i dokonywać

tylko częściowej foliacji ΓC względem transformacji generowanej przez jeden wiąz, mamy

tylko jedną funkcję T i jednowymiarowe liście foliacji, które stanowią krzywe całkowe

hamiltonowskiego pola wektorowego generowanego przez te więzy. Funkcję T często na-

zywamy relacyjnym czasem. Siła zmiennych relacyjnych polega na tym, że funkcja T

może spełniać ściśle określone równania fizyczne i jest czymś więcej niż dowolnym wybo-

rem parametryzacji.

Rozważając model teorio polowy, w którym zamiast jednego więzu, dysponujemy ich

nieskończoną ilością - C(x) w każdym punkcie - sytuacja ulega skomplikowaniu. Nieskoń-

czonej ilości więzów odpowiada nieskończenie wiele wartości T (x). W badanym modelu

rolę taką będzie pełniło pole materii φ spełniające fizyczne równanie Kleina-Gordona.

Ograniczając się do transfromacji cechowania generowanej przez pojedyncze więzy C,

mówimy że wiąz ulega deparametryzacji, kiedy zapisujemy go e postaci

NC = pj + h(q, p), (2.120)

gdzie N jest dowolną nie znikającą funkcją na Γ (regularną), pj jest jedną ze współrzęd-

nych kanonicznych p1, ... , pn, q1, ... qn na Γ, a h nie zależy od pj. W takiej sytuacji

dynamiczna zmienna qj nabiera roli relacyjnego czasu, to znaczy parametru krzywej cał-

kowej. Proces przekształcania więzów do powyższej postaci nazywamy procesem depara-

metryzacji.

2.3.3 Iloczynowa postać więzów i obszary przestrzeni fazowej na

przykładzie skończenie wymiarowym

Rozważmy klasyczną teorię, której Hamiltonian generuje transformacje cechowania. Jak

napisano w poprzednim paragrafie, na klasyczny opis takiej teorii składają się następujące

elementy

• przestrzeń fazowa Γ,

• forma symplektyczna Ω (lub równoważnie definicja nawiasów Poissona),

• równania więzów C1, C2, ... , CI .
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Ponieważ punkty leżące na krzywej całkowej generowanej przez Hamiltonowskie pole wek-

torowe odpowiadające danemu więzowi reprezentują te same stany fizyczne, parametry-

zacja tej krzywej nie ma fizycznego znaczenia. Dlatego więzy C oraz α ·C są równoważne

z punktu widzenia fizyki układu.

Rozważmy sytuację, w której jeden z więzów, np C1 ma następującą postać,

C1 = C
(1)
1 · C

(2)
1 · ... · C

(m)
1 . (2.121)

Dodatkowo zakładamy, że podzbiory przestrzeni fazowej zdefiniowane w następujący spo-

sób

Γ(i) =
{
x ∈ Γ | C(i)

1 (x) = 0
}
, (2.122)

gdzie i = 1, 2, ...,m spełniają następujący warunek

Int Γ(i) ∩ Int Γ(j) = ∅ dla i, (2.123)

ΓC ⊂
⋃

Γ(i). (2.124)

Warunek (2.123) nie wynika z teorii. Jednak na obszarze przestrzeni fazowej, na któ-

rym Γ(i) ∩ Γ(j) 6= ∅ hamiltonowskie pole wektorowe generujące transformację cechowania

znika. Wynika to z obliczeń przedstawionych poniżej. Obszar taki charakteryzuje się w

związku z tym pełną patologiczną cechą prowadzącą do niejednoznaczności. Stąd chcemy

wyłączyć takie sytuacje z prezentowanych rozważań i narzucamy wrunek (2.123).

Jednak wykluczenie pokrywania się obszarów Γi na ich punktach brzegowych zbytnio

ograniczałoby nasze rozważania. Z takimi patologicznymi sytuacjami, które przeprowa-

dzają ewolucję pomiędzy różnymi obszarami możemy mieć do czynienia w nieskończenie

wymiarowych modelach opisujących ogólną teorię względności.

Rozważmy Hamiltonowskie pole wektorowe generowane przez C1,

XC1yΩ = dC1. (2.125)

Podstawiamy (2.121) do prawej strony powyższego równania i otrzymujemy

dC1 = d
(
C

(1)
1 · C

(2)
1 · ... · C

(m)
1

)
=

= C
(2)
1 · ... · C

(m)
1 · dC(1)

1 + ...+ C
(1)
1 · ... · C

(m−1)
1 · dC(m)

1 . (2.126)
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Z (2.122)-(2.124) wynika, że

dC1|Γ(i)
= C

(1)
1 · ... · C

(i−1)
1 · C(i+1)

1 · ... · C(m)
1 · dC(i)

1 . (2.127)

Wprowadzamy następujące oznaczenie

N (i) = C
(1)
1 · ... · C

(i−1)
1 · C(i+1)

1 · ... · C(m)
1 . (2.128)

Zdefiniujemy następujące pola wektorowe odpowiadające poszczególnym czynnikom ilo-

czynowego rozbicia więzu C1,

X
C

(i)
1
yΩ = dC

(i)
1 . (2.129)

Przy pomocy powyższej definicji oraz (2.127) możemy zapisać równanie (2.125) w postaci(
N (1) ·X

C
(1)
1

+ ...+N (m) ·X
C

(m)
1

)
yΩ = N (1) · dC(1)

1 + ...+N (m) · dC(m)
1 . (2.130)

Na mocy (2.122)-(2.123) mamy, że dla każdego i równanie (2.130) obcięte do Γ(i) przyjmuje

postać

N (i) ·X
C

(i)
1
yΩ = N (i) · dC(i)

1 ⇔ X
C

(i)
1
yΩ = dC

(i)
1 . (2.131)

Dochodzimy w ten sposób do następującego wniosku: Klasyczny model, opisywany za po-

mocą elementów (Γ,Ω, (C1, ..., CI)), gdzie C1 spełnia opisane powyżej warunki, rozpada

się na m niezależnych od siebie układów (Γ(1),Ω|Γ(1)
, (C

(1)
1 , ..., CI)|Γ(1)

), ... ,

(Γ(m),Ω|Γ(m)
, (C

(m)
1 , ..., CI)|Γ(1)

).

W sytuacji, kiedy rozpatrujemy takie warunki początkowe układu, że generowana przez

więzy ewolucja nie zbliżą się do brzegów obszarów Γi każdy z nich może być rozpatrywany

jako niezależny model fizyczny. Nie możemy jednak wykluczyć sytuacji, kiedy krzywe cał-

kowe pól hamiltonowskich generowanych przez więzy dotykają ich brzegów. Mamy wtedy

do czynienia z sytuacjami niejednoznacznymi i osobliwymi z punktu widzenia klasycznej

ewolucji układu.

Szczególnej uwagi wymagają sytuacje nieskonćzenie wymiarowe takie, jak ogólna teoria

względności. Osobliwe zachowanie ewolucji układu może wystąpić kiedy ewolucja wypro-

wadzi nas do punktu, gdzie znika pęd π, kanonicznie sprzężony do pola skalarnego.
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2.3.4 Przekształcenie więzów ogólnej teorii względności

W niniejszym paragrafie pokażemy, że ogólna teoria względności, która klasycznie okre-

ślona jest za pomocą następujących elementów

• przestrzeni fazowej, której punkty stanowią konfigurację pól (Aia(x), P a
i (x), φ(x), π(x))

na 3-wymiarowej rozmaitości M ,

• formy symplektycznej określonej za pomocą nawiasów Poissona

{
Aia(x), P b

j (y)
}

= δab δ
j
jδ(x, y),

{φ(x), π(y)} = δ(x, y),

• równań więzów Gaussowskich

Gi(x) = ∂aP
a
i (x) + ε k

ij A
j
a(x)P a

k (x), (2.132)

więzów dyfeomorficznych

Ca(x) = Cgr
a (x) + π(x)∂aφ(x), (2.133)

oraz więzów skalarnych

C(x) = Cgr(x) +
1

2

π2(x)√
q(x)

+
1

2

√
q(x)qab(x)∂aφ(x)∂bφ(x) +

√
q(x)V [φ] . (2.134)

Równania (2.64), (2.65) i (2.66) opisują nawiasy Poissona pomiędzy więzami ogólnej teo-

rii względności. Ze względu na funkcje, a nie stałe struktury, które pojawiają się przy

liczeniu ich nawiasów Poissona, algebra ta nie jest algebrą Liego.

Celem niniejszego paragrafu jest przekształcenie więzów ogólnej teorii względności do po-

staci, w której więzy skalarne mają postać iloczynową opisywaną w poprzednim paragrafie.

W tym celu mnożymy równanie (2.133) stronami przez niezerową funkcję

(Cgr
b − π(x)∂bφ(x)) qab(x)

(Cgr
a + π(x)∂aφ(x)) (Cgr

b − π(x)∂bφ(x)) qab(x),
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skąd po wymnożeniu otrzymujemy

qab(x)Cgr
a (x)Cgr

b (x)+

+ π(x)qab(x) (∂aφ(x)Cgr
b (x)− Cgr

a (x)∂bφ(x)) +

− π2(x)qab(x)∂aφ(x)∂bφ(x).

Środkowy wyraz znika, ze względu na symetrię i otrzymujemy

qab(x)Cgr
a (x)Cgr

b (x)− π2(x)qab(x)∂aφ(x)∂bφ(x).

Powyższe równanie mnożymy przez 1
2

√
q(x), natomiast równanie (2.134) przez π2(x)

otrzymujemy

1

2

√
q(x)qab(x)Cgr

a (x)Cgr
b (x)− 1

2
π2(x)

√
q(x)qab(x)∂aφ(x)∂bφ(x),

Cgr(x)π2(x) +
1

2

π4(x)√
q(x)

+
1

2
π2(x)

√
q(x)qab(x)∂aφ(x)∂bφ(x) +

√
q(x)V [φ] .

Po ich zsumowaniu otrzymujemy

1

2

π4(x)√
q(x)

+
(
Cgr(x) +

√
q(x)V [φ]

)
π2(x) +

1

2

√
q(x)qab(x)Cgr

a (x)Cgr
b (x) (2.135)

Powyższe równanie jest wielomianem 4 stopnia w zmiennej π(x) i możemy przedstawić je

w postaci iloczynu czterech czynników

1

2
√
q
· C̃(x) =

1

2
√
q
·

·

[
π −

√
−√q (Cgr +

√
qV [φ]) +

√
q

√
(Cgr +

√
qV [φ])2 − qabCgr

a C
gr
b

]

·

[
π +

√
−√q (Cgr +

√
qV [φ]) +

√
q

√
(Cgr +

√
qV [φ])2 − qabCgr

a C
gr
b

]

·

[
π −

√
−√q (Cgr +

√
qV [φ])−√q

√
(Cgr +

√
qV [φ])2 − qabCgr

a C
gr
b

]

·

[
π +

√
−√q (Cgr +

√
qV [φ])−√q

√
(Cgr +

√
qV [φ])2 − qabCgr

a C
gr
b

]
(2.136)

Doprowadziliśmy w ten sposób do zmiany opisu ogólnej teorii względności zamieniając

więzy Gi(x), Ca(x) oraz Ca(x),

Gi(x)

Ca(x)

C(x)

−→
Gi(x)

Ca(x)

C̃(x) = CI(x) · CII(x) · CIII(x) · CIV (x)

. (2.137)

45



Iloczynowa postać więzu C̃(x) dzieli przestrzeń fazową na obszary spełniające warunki

opisane w poprzednim paragrafie. Odpowiednie obszary , na których zeruje się CI , CII ,

CIII i CIV to obszary przestrzeni fazowej, które zawarte są w

I : π2 ≥ φ,aφ,bq
ab, π > 0,

II : π2 ≥ φ,aφ,bq
ab, π < 0,

III : π2 ≤ φ,aφ,bq
ab, π > 0,

IV : π2 ≤ φ,aφ,bq
ab, π < 0.

2.3.5 Deparametryzacja ogólnej teorii względności

Rozważania poprzedniego paragrafu doprowadziły do podziału przestrzeni fazowej ogólnej

teorii względności na sprzężonej z bezmasowym polem skalarnym na cztery obszary


• obszar I

•{., .}

•Gi(x), Ca(x), CI(x)

 ,

• obszar II

•{., .}

•Gi(x), Ca(x), CII(x)

 ,

• obszar III

•{., .}

•Gi(x), Ca(x), CIII(x)

 ,

• obszar IV

•{., .}

•Gi(x), Ca(x), CIV (x)

 ,
gdzie {., .} oznacza nawias Poissona opisany w poprzednim rozdziale.

Doputy, dopóki klasyczna trajektoria rozważanego przez nas modelu pozostaje wewnątrz

danego obszaru, możemy go traktować jako niezależny od pozostałych model. Jendak w

sytuacji kiedy ewolucja przechodzi przez punkt, w którym pole π = 0, implikuje to, że

funkcja lapsu znika N = 0 i dalsza ewolucja staje się nieokreślona i przejścia pomiędzy

obszarami są możliwe.

Na ten moment zakładamy, że interesujące nas historie nie zawierają takich punktów a

klasyczna ewolucja Wszechświata pozostaje w obrębie jednego z wymienionych powyżej

obszarów. Na ile założenie to ogranicza zastosowalność naszego modelu będzie tematem

dalszych badań.
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Chcąc dokonać wyboru obszaru, do którego należy obserwowany Wszechświat, doko-

nujemy porównania z dobrze znanym i prostym modelem jednorodnego i izotropowego

Wszechświata, z bezmasowym polem skalarnym. W takim przypadku mamy

V [φ] ≡ 0, π = const 6= 0, φ = const,

co daje

π2 =
√
q

(
−Cgr ±

√
Cgr 2 − qabCgr

a C
gr
b

)
.

W modelu FRW Cgr
a = 0 ze względu na symetrię, natomiast Cgr < 0, co wynika ze

znikania Cgr + Cφ = 0 oraz dodatniości Cφ > 0. Stąd√
Cgr 2 − qabCgr

a C
gr
b =

√
Cgr 2 = −Cgr.

Równanie na π2 przyjmuje teraz postać

π2 =
√
q (−Cgr ± (−Cgr)) .

Wybór znaku „−” doprowadziłby do sprzeczności π2 = 0. Dlatego wierzymy, że obserwo-

wany Wszechświat znajduje się wewnątrz obszaru I lub II.

Obserwacja rozszerzania się Wszechświata prowadzi do wyboru modelu I, w którym

π(x) > 0.

Podsumowując, oryginalny opis ogólnej teorii względności zastąpiliśmy następującym mo-

delem

• przestrzeń fazowa: konfiguracja pól (Aia(x), P a
i (x), φ(x), π(x)) na 3-wymiarowej roz-

maitości M , które spełniają warunki obszaru I,

• nawias Poissona: standardowy nawias Poissona zdefiniowany powyżej,

• więzy: Gi(x), Ca(x) oraz C ′(x),

gdzie C ′(x) := CI(x). Oznaczenie to wprowadziliśmy, aby być w zgodzie z oznaczeniami

stosowanymi w cytowanej literaturze. Na podstawie (2.136) możemy zapisać

C ′(x) = π(x)− h(x), (2.138)
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gdzie

h(x) :=

√
−√q (Cgr +

√
qV [φ]) +

√
q

√
(Cgr +

√
qV [φ])2 − qabCgr

a C
gr
b . (2.139)

Model opisany powyżej ma dodatkową własność. Algebra nowych więzów jest algebrą

Liego. Wynika to z tego, że nawias Poissona starych więzów skalarnych zostaje zastąpiony

nawiasem Poissona nowych więzów C ′. W odróżnieniu od starego nawiasu w nowym nie

pojawiają się funkcje struktury, a nawias Poissona znika

{C ′(x), C ′(y)} = 0. (2.140)

Szczegółowy rachunek w przypadku znikającego potencjału pola skalarnego V [φ] = 0

można znaleźć w [26].

Okazuje się, że jest to jedyny przypadek, kiedy zachodzi (2.140). Szczegółowy rachu-

nek będący dowodem tego stwierdzenia jest oryginalnym wynikiem niniejszej pracy. Ze

względu na jego objętość zostanie ono przedstawione w Dodatku A.

W przypadku znikającego potencjału pola skalarnego, którym będziemy zajmować się od

tego momentu, funkcjonał h(x) nie zależy od pola φ(x). Zgodnie z definicją podaną w

poprzednim paragrafie mówimy, że model ulega deparametryzacji, a pole φ(x) nabiera roli

czasu relacyjnego,

h :=

√
−√qCgr +

√
q
√

(Cgr)2 − qabCgr
a C

gr
b (2.141)

Otrzymany w ten sposób model będziemy nazywać zdeparametryzowanym modelem gra-

witacji sprzężonym z bezmasowym polem skalarnym. Konstrukcja jego kwantowego od-

powiednika przedstawiona jest w kolejnym rozdziale tej pracy.
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Rozdział 3

Konstrukcja modelu kwantowego

„ [...] Jednak argumenty historyczne nie są dostatecznie przekonywującym

uzasadnieniem stosowania tego formalizmu. Gdyby udało się nam odkryć

kwantową teorię pola, która prowadzi do zadowalającej macierzy S, to czy

przejmowalibyśmy się tym, że nie można jej wywieść z kanonicznego kwanto-

wania jakiegoś lagranżjanu? [...]”

Steven Weinberg, „Teoria pól kwantowych"t.1

„Formalna” struktura kwantowego modelu opisujacego bezmasowe pole skalarne Kleina

– Gordona zostanie zaprezentowana w niniejszej części tej pracy. Zakończenie konstruk-

cji modelu bedzie przedstawione w kolejnej części, gdzie wylistowane niezbędne matema-

tyczne obiekty (przestrzeń Hilberta, operatory itp.) zostaną zdefiniowane. Wykorzystamy

do tego narzędzia i formalizm znany z konstrukcji kanonicznej pętlowej grawitacji kwan-

towej.

Takie podejście do przedstawienia modelu w częściach ma na celu rozdzielenie tego co

jest ogólne bez względu na sposób konstruowania poszczególnych elementów, od tego co

bezpośrednio korzysta z rezultatów kanonicznej pętlowej grawitacji kwantowej. Schema-

tycznie zależności pomiędzy prezentowanymi wynikami pokazuje poniższy rysunek.
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Rys. III.1

Powyższy schemat zależności pomiędzy wprowadzanymi w tej pracy modelami pokazuje,

że centralnym punktem naszych rozważań jest model kwantowy. Nie wyprowadzamy go

bezpośrednio w procesie kwantyzacji modelu klasycznego, a traktujemy go jako bardziej

elementarny model, z którego musi wynikać teoria klasyczna. Uzasadniamy to powszech-

nym przekonaniem, że to teoria kwantowa stanowi bardziej fundamentalny opis Natury.

Gdybyśmy kiedykolwiek odkryli teorię klasyczną, której nie otrzymujemy w granicy żad-

nego modelu kwantowego wstrząsnęłoby to posadami współczesnej fizyki. Jeżeli jednak

odkrylibyśmy zjawisko i teorię, które nie dają w żadnej granicy dobrego modelu klasycz-

nego, to weszlibyśmy w nowy ciekawy obszar badań, nie przekreślając dotychczasowych

osiągnięć fizyki. W rzeczywistości wierzymy, że z sytuacją taką mamy do czynienia w po-

bliżu kosmicznych i kosmologicznych osobliwości. Podejście takie dobrze obrazuje cytat z

klasycznego podręcznika Stevena Weinberga [34].

3.1 Kinematyczne podstawy nowego modelu kwanto-

wego

Standardowe podejście do kwantowania klasycznych teorii z więzami pozwala nam wybrać

jedno z dwóch możliwych podejść. Pierwsze podejście zakłada klasyczne rozwiązanie rów-

nań więzów i zredukowanie klasycznej przestrzeni fazowej do przestrzeni, uwzględniającej

jedynie fizyczne stopnie swobody. To podejście nazywamy kwantyzacją na zredukowanej

przestrzeni fazowej.

Drugie podejście zaproponowane przez Paula Diraca, zakłada konstrukcję kinematycznej
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przestrzeni Hilberta i operatorów, bazując na pełnej klasycznej przestrzeni fazowej. Na-

stępnie klasyczne więzy implementujemy jako operatory kwantowe i rozwiązujemy kwan-

towe równania więzów.

Prezentowane podejście wychodzi od modelu kwantowego, dlatego stosowanie pierwszego

z podejść wydaje się nieadekwatne do sytuacji. Dlatego też, będziemy stosować podejście

Diraca, w którym więzy przyjmują formę operatorów kwantowych.

3.1.1 Klasyczny odpowiednik modelu kwantowego

Wychodząc od „formalnego” modelu kwantowego, możemy pominąć niniejszy paragraf w

tym miejscu. Chcąc jednak cały czas pamiętać o związku, jaki łączy kwantowy model z

klasyczną teorią grawitacji sprzężonej z polem skalarnym, dokonujemy w tym paragrafie

podsumowania tego, co w dalszej części będziemy nazywać zdeparametryzowaną teorią

grawitacji. W tym miejscu ograniczmy wybór zmiennych do zmiennych Ashtekara po-

nieważ jest on wymagany dla późniejszych konstrukcji, które opierają się na kanonicznej

pętlowej grawitacji kwantowej. Jednak pozostaje możliwość użycia dowolnych innych

zmiennych opisujących geometryczną część teorii w procesie konstruowania konkretnej

realizacji prezentowanego „formalnego” modelu kwantowego.

Podsumowując, klasyczna przestrzeń fazowa składa się z kanonicznie sprzężonych par.(
Aia(x), P b

j (y)
)
opisujących geometrię oraz (φ(x), π(y)) opisujących materię, którą w na-

szym przypadku jest bezmasowe pole skalarne. Znaczenie tych obiektów zostało opisane

w poprzedniej części tej pracy. Elementarne nawiasy Poissona mają postać

{
Aia(x), P b

j (y)
}

= δ(x, y)δbaδ
i
j, (3.1)

{φ(x), π(y)} = δ(x, y). (3.2)

Dopuszczane są tylko te konfiguracje pól (A,P, φ, π), dla których spełnione są następujące

warunki

π(x)2 ≥ φ,a(x)φ,b(x)qab(x), (3.3)

φ(x) > 0, (3.4)

C(gr) (A(x), P (x)) < 0. (3.5)
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Wszystkie obiekty występujące w tych wzorach zostały zdefiniowane w poprzedniej części

tej pracy.

Klasyczny model charakteryzuje się Hamiltonianem, który jest liniową kombinacją więzów

wektorowych i gaussowskich

Ca(x) = C(gr)
a (x) + C(φ)

a (x), (3.6)

Gi
a(x) = G(gr)i

a (x), (3.7)

zdefiniowanych w części opisującej klasyczną część tej pracy. Szczególnie ważna jest postać

trzeciego, więzu skalarnego

C ′(x) = π(x)− h(x), (3.8)

h :=

√
−√qC(gr) +

√
q

√
C(gr)2 − qabC(gr)

a C
(gr)
b , (3.9)

gdzie w ostatnim równaniu dla uproszczenia zapisu pominęliśmy zależność od punktu

x ∈M .

Powyżej opisany model reprezentuje klasyczną, zdeparametryzowaną teorię grawitacji

sprzężonej z polem skalarnym φ, gdzie pole to posłuży jako relacyjny czas umożliwia-

jący konstrukcję obserwabli Diraca o nietrywialnej ewolucji względem relacyjnego czasu.

3.1.2 Stany kwantowe i kinematyczna przestrzeń Hilberta

Konstrukcja modelu kwantowego wymaga zdefiniowania elementarnych operatorów kwan-

towych, które posłużą do definicji wszystkich innych, oraz kinematycznej przestrzeni Hil-

berta, na której działają. Wyprowadzimy je w sposób formalny w tym i w kolejnym

paragrafie podkreślając ich własności, które muszą zostać spełnione bez względu na to,

jaki konkretny sposób ich realizacji wybierzemy. W niniejszym paragrafie rozpoczniemy

od definicji kinematycznej przestrzeni Hilberta.

Standardowe podejście pozwala nam zbudować wymaganą przestrzeń wychodząc od sta-

nów kwantowych, które stanowią zespolone funkcje na przestrzeni konfiguracyjnej kla-

sycznej teorii, która ma być otrzymywana jako odpowiednia granica z teorii kwantowej.

W rozważanym przypadku przestrzeń tę stanowią dopuszczalne konfiguracje pól A i φ
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(skrócone oznaczenia od Aia(x) i φ(x)) na 3-wymiarowej rozmaitości M . Przyjmijmy

oznaczenie przestrzeni stanów kwantowych QS(gr, φ) (piszemy gr zamiast A aby podkre-

ślić, że wybór kanonicznej pętlowej grawitacji kwantowej i zmiennych Ashtekara może być

zastąpiony dowolnym innym zestawem zmiennych opisujących część geometryczną teorii)

dla funkcji zespolonych

(φ,A)→ Ψ (φ,A) , (3.10)

które dodatkowo pozwalają zdefiniować dobrze określony iloczyn skalarny pomiędzy sta-

nami, 〈Ψ (φ,A) ,Ψ′ (φ,A)〉. Określenie konkretnej postaci funkcji Ψ (φ,A), która pozwala

na zdefiniowanie iloczynu skalarnego o pożądanych własnościach jest zadaniem konstrukcji

modelu. Istnieje wiele sposobów, które pozwalają to uczynić, które nie dają równoważ-

nych kwantowo teorii. W dalszej części wybierzemy podejście niezależne od metryki tła

opierające się na funkcjach cylindrycznych i sieciach spinowych. Są to narzędzia znane z

kanonicznej pętlowej grawitacji kwantowej.

Kinematyczną przestrzeń Hilberta otrzymujemy uzupełniającQS(gr, φ) za pomocą normy

iloczynu skalarnego < ., . >. Otrzymaną przestrzeń, na której będziemy definiować ele-

mentarne operatory kwantowe oznaczamy H(gr,φ)
kin , gdzie górny indeks podkreśla, że do jej

konstrukcji wykorzystaliśmy stany zależne zarówno od części geometrycznej jak i części

materii. Otrzymujemy w ten sposób

H(gr,φ)
kin = QS(gr, φ). (3.11)

Dodatkowo rozróżniamy przestrzeń H(gr)
kin , która opisuje jedynie część geometryczną no-

wego modelu grawitacji kwantowej. Przestrzeń ta jest przestrzenią jaką otrzymalibyśmy

kwantując grawitację bez obecności materii. W naszym modelu kwantowym jako prze-

strzeń tą wybierzemy kinematyczną przestrzeń Hilberta kanonicznej pętlowej grawitacji

kwantowej opisaną w [1]).

W [14] dokonujemy rozbicia H(gr,φ)
kin na iloczyn tensorowy części opisującej geometrię i

części opisującej materię

H(gr,φ)
kin = H(gr)

kin ⊗H
(φ)
kin. (3.12)

Obecnie nie będziemy korzystać z tego rozbicia i skupimy się na konstrukcjach na części

geometrycznej H(gr)
kin .

53



Od tej chwili zakładamy, że mamy zdefiniowane H(gr,φ)
kin oraz H(gr)

kin , i że posiadają one

wymagane własności.

3.1.3 Elementarne operatory kwantowe

Kolejnym krokiem kwantyzacji systemu z więzami zgodnie z podejściem Diraca jest zdefi-

niowanie algebry operatorów kinematycznych działających na kinematycznej przestrzeni

Hilberta H(gr,φ)
kin wprowadzonej w poprzednim paragrafie.

W pierwszej kolejności musimy zdefiniować elementarne operatory kwantowe, które umoż-

liwią skonstruowanie kwantowych operatorów więzów. Algebra tych operatorów powinna

stanowić reprezentację klasycznej algebry generowanej przez zmienne kanoniczne i ich na-

wiasy Poissona (3.1) i (3.2), którą powinniśmy móc odtworzyć w odpowiedniej granicy

teorii kwantowej.

Konkretna realizacja w tym przypadku zależy od sposobu konstrukcji poszczególnych

obiektów. W prezentowanym obecnie podejściu definiujemy elementarne operatory kwan-

towe opisujące część geometryczną w następujący sposób

Âjb(x)Ψ(φ,A) = Ajb(x)Ψ(φ,A), (3.13)

P̂ b
j (x)Ψ(φ,A) = −i δ

δAjb(x)
Ψ(φ,A). (3.14)

W kolejnej części posłużymy się odpowiednio rozsmarowanymi wersjami tych operatorów

co umożliwi ich definicje w formalizmie kanonicznej pętlowej grawitacji kwantowej.

Część zmiennych opisująca materię zostanie skwantowana w standardowy sposóbWheelera-

DeWitta

φ̂(x)Ψ(φ,A) = φ(x)Ψ(φ,A), (3.15)

π̂(x)Ψ(φ,A) = −i δ

δφ(x)
Ψ(φ,A). (3.16)

W [14] techniki kwantyzacji polimerowej stosujemy również do tej częsci zmiennych ele-

mentarnych. Otrzymujemy równoważne wyniki.
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3.2 Formalne rozwiązanie kwantowych więzów wekto-

rowych i gaussowskich

Kolejny krok polega na rozwiązaniu kwantowych równań więzów. Podzielimy go na dwie

części. Pierwsza część, którą traktuje niniejszy rozdział obejmuje rozwiązanie więzów

gaussowskich i dyfeomorficznych. Więzy skalarne, ze względu na swoją wagę dla okre-

ślenia dynamiki i dużo większy stopień skomplikowania, zostaną opisane w kolejnym roz-

dziale.

Podobnie jak w poprzednim rozdziale nasze obecne rozważania mają charakter „formalny”,

który przybierze formę konkretnych realizacji w kolejnej części tej pracy. Należy jednak

podkreślić już w tym momencie, że obecność więzów gaussowskich generujących transfor-

macje Yanga-Millsa jest wynikiem wyboru zmiennych Ashtekara do opisu części geome-

trycznej. W przypadku posługiwania się zmiennymi ADM więzy gaussowskie nie wystę-

pują.

3.2.1 Uwagi o kwantyzacji więzów

Naszym punktem wyjścia obecnie jest skonstruowana w poprzednim rozdziale kinema-

tyczna przestrzeń Hilberta H(gr,φ)
kin oraz elementarne operatory kwantowe. Za ich pomocą

możemy teraz zdefiniować kwantowe operatory więzów lub ich rozsmarowane wersje. Ko-

lejno szukamy rozwiązań więzów a więc przestrzeni stanów kwantowych spełniających

opisane poniżej warunki.

W pierwszej kolejności szukamy rozwiązań więzów gaussowskich, a więc stanów spełnia-

jących warunek

ĜΨ(φ,A) = 0,

gdzie Ĝ oznacza operator więzów gaussowskich. Otrzymane w ten sposób stany tworzą

przestrzeń, którą oznaczamy H(gr,φ)
G , gdzie indeks dolny G oznacza rozwiązanie więzów

gaussowskich.

Pozostałe dwa operatory kwantowe więzów, a więc Ĉa i Ĉ ′ oznaczają więzy dyfeomorficzne

i skalarne działające na tej przestrzeni. W dalszej kolejności wychodząc tym razem od
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przestrzeni H(gr,φ)
G szukamy rozwiązań więzów dyfeomorficznych

ĈaΨ(φ,A) = 0.

Otrzymaną w ten sposób przestrzeń rozwiązań oznaczamy H(gr,φ)
(G,dyf).

Rozwiązanie więzów gaussowskich i dyfeomorficznych jest przemienne. Schematycznie

przedstawiamy to poniżej. Kolejność rozwiązywania

H(gr,φ)
kin

gaussowskie−−−−−−→ H(gr,φ)
G

dyfeomorficzne−−−−−−−−→ H(gr,φ)
(G,dyf)

oraz

H(gr,φ)
kin

dyfeomorficzne−−−−−−−−→ H(gr,φ)
dyf

gaussowskie−−−−−−→ H(gr,φ)
(G,dyf)

prowadzą do tego samego wyniku.

Powyższe schematy nie koniecznie muszą oznaczać zawieranie się odpowiednich zbiorów

elementów. W rzeczywistości nie jest prawdą, że

H(gr,φ)
kin ⊃ H(gr,φ)

dyf ,

i konstrukcja rozwiązań prowadzi nas do większej przestrzeni niż wyjściowa przestrzeń ki-

nematyczna. Szczegóły zostaną przedstawione w kolejnej części, gdzie będziemy omawiać

zastosowanie kanonicznej pętlowej grawitacji kwantowej.

W kolejnym rozdziale omówimy ostatni krok prowadzący do fizycznej przestrzeni Hilberta

H(gr,φ)
fiz .

3.2.2 Rozwiązanie kwantowych więzów gaussowskich

Kwantowy operator więzów gaussowskich, a raczej jego rozsmarowana wersja Ĝ(a), gdzie

a oznacza dowolną funkcję a : M → SU(2) działa jedynie na geometryczną część zmien-

nych kanonicznych. Operator ten generuje unitarną grupę transformacji Yanga-Millsa

działającą na H(gr,φ)
kin ,

∀a : M → SU(2) −→ UG(a) ·Ψ (φ,A) = Ψ
(
φ, a−1Aa+ a−1da

)
. (3.17)
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Więzy gaussowskie pojawiają się, kiedy stosujemy opis części grawitacyjnej teorii oparty

na zmiennych Ashtekara. Ich działanie na ortogonalną bazę przestrzeni Hilberta kanonicz-

nej pętlowej grawitacji czyli sieci spinowe, opisana jest w [1]. W kontekście opisywanego

w tej pracy modelu zdefiniowane jest [14] oraz [31]. Opis przedstawiony w tych pracach

będzie zawarty w rozdziale rozprawy poświęconym kanonicznej pętlowej grawitacji kwan-

towej.

W tym momencie wnioskujemy jedynie, że przestrzeń rozwiązań więzów gaussowskich

H(gr,φ)
G składa się ze stanów spełniających następujący warunek

Ψ (φ,A) = Ψ
(
φ, a−1Aa+ a−1da

)
. (3.18)

3.2.3 Rozwiązanie kwantowych więzów wektorowych

Rozwiązanie więzów wektorowych jest dużo bardziej skomplikowane. Wynika to z kilku

faktów, pośród których najważniejsze są dwa. Grupa dyfeomorfizmów jest grupą nie-

skończoną oraz nie jest zwarta. Unitarne operatory odpowiadające lokalnym dyfeomorfi-

zmom nie są ciągłe (słabo).

Zakładamy, że kwantowe więzy dyfeomorficzne generują działanie lokalnych dyfeomorfi-

zmów na stany kwantowe.

∀ϕ : M →M −→ Udyf (ϕ) ·Ψ (φ,A) = Ψ (ϕ∗ · φ, ϕ∗ · A) . (3.19)

Przy takim założeniu, które formalnie i ściśle wyprowadzimy w kolejnej części tej pracy,

rozwiązania więzów dyfeomorficznych to stany kwantowe spełniające następujący warunek

Ψ (ϕ∗ · φ, ϕ∗ · A) = Ψ (φ,A) , (3.20)

dla dowolnego dyfeomorfizmu lokalnego ϕ : M →M (wzór (3.5) w [13]).

3.2.4 Przestrzeń niezmienniczych stanów kwantowych

Podsumowując wyniki niniejszego rozdziału, otrzymaliśmy w nim przestrzeń stanów dy-

feomorficznie i Yang-Mills niezmienniczych H(gr,φ)
(G,dyf). Określają ją stany kwantowe speł-

niające równania (3.18) i (3.20).
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Kolejnym krokiem będzie określenie działania kwantowego operatora więzu skalarnego i

znalezienie ogólnej postaci stanów należących do H(gr,φ)
(G,dyf) anihilowanych przez te więzy.

Przedstawione tutaj „formalne” obiekty zostaną zdefiniowane w ścisły sposób w kolejnym

rozdziale tej pracy, traktującej o zastosowaniu kanonicznej pętlowej grawitacji kwantowej

do kwantyzacji przedstawionego w obecnym rozdziale modelu.

3.3 Kwantowe więzy skalarne i ich rozwiązania

Ostatnim etapem rozwiązywania więzów będzie znalezienie ogólnej postaci rozwiązań wię-

zów skalarnych w ich zdeparametryzowanej postaci. Końcowym wynikiem tego rozdziału

będzie scharakteryzowanie fizycznej przestrzeni Hilberta H(gr,φ)
fiz .

Pierwsze dwa paragrafy tego rozdziału traktują o rozwiązaniu więzów skalarnych. Dwa

ostatnie stanowią podsumowanie wyników tego i poprzedniego rozdziału. Podsumo-

wują postać rozwiązania wszystkich więzów naszej teorii.

3.3.1 Kwantowy operator więzów skalarnych

Wniniejszym paragrafie zdefiniujemy kwantowy odpowiednik zdeparametryzowanych wię-

zów skalarnych (3.8) i (3.9). Najpierw ograniczymy się do definicji jego działania na

H(gr,φ)
kin . W kolejnej części pokażemy w jaki sposób działanie to przenosi się na zdefinio-

wane w poprzednim rozdziale stany dyfeomorficznie i Yang-Mills niezmiennicze H(gr,φ)
(G,dyf) .

Heurystycznie definiujemy kwantowy operator więzów skalarnych w następujący sposób

Ĉ ′(x) ·Ψ(φ,A) =
(
π̂(x)− ĥ(x)

)
·Ψ(φ,A). (3.21)

W przypadku bezmasowego pola skalarnego φ, możemy w podobny sposób zdefiniować

kwantowy operator ĥ(x) za pomocę jego klasycznego wyrażenia (3.9). Musimy pamiętać,

że występujące tam obiekty traktujemy jako funkcje zmiennych kanonicznych A i P , skąd

ĥ(x) = h
(
Âjb(x), P̂ b

j (x)
)
. (3.22)
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Problem uporządkowania operatorów sprawia, że heurystyczne wyrażenie (3.22) nie defi-

niuje operatora ĥ(x) w sposób jednoznaczny. Dodatkowym warunkiem na uporządkowanie

operatorów jest konieczność uniknięcia anomalii kwantowych. Wymagamy, aby komutator

odpowiednich operatorów kwantowych odpowiadał nawiasowi Poissona ich klasycznych

odpowiedników. Stąd otrzymujemy następujące ograniczenie

{h(x), h(y)} = 0⇒
[
ĥ(x), ĥ(y)

]
= 0. (3.23)

Z tak zdefiniowanym operatorem, o którym w tym momencie zakładamy, że istnieje i ma

wymagane właściwości rozwiązujemy równanie kwantowe zdeparametryzowanego więzu

skalarnego (
π̂(x)− ĥ(x)

)
·Ψ(φ,A) = 0. (3.24)

Szczegółowa konstrukcja operatora ĥ(x) zostanie przeprowadzona w rozdziale poświęco-

nym zastosowaniu kanonicznej pętlowej grawitacji kwantowej. Ogólna postać rozwiązania

(3.24) na poziomie „formalnym” zostanie wyprowadzona w kolejnym paragrafie.

3.3.2 Rozwiązanie kwantowych więzów skalarnych

W celu znalezienia ogólnej postaci rozwiązania równania (3.24) przyjmujemy następujący

anzatz rozwiązania

Ψ (φ,A) = ei
∫
d3xφ̂(x)ĥ(x)ψ (φ,A) . (3.25)

W ten sposób przesunęliśmy poszukiwania ogólnej postaci rozwiązań z funkcji Ψ(φ,A) na

funkcję ψ(φ,A), której własności będziemy obecnie szukać.

Korzystając z definicji (3.16) elementarnego operatora kwantowego przekształcamy rów-

nanie (3.24) więzu skalarnego do postaci

δ

δφ(x)
Ψ (φ,A) = iĥ(x)Ψ (φ,A) . (3.26)

Ze względu na (3.23) zachodzi następujący związek komutacyjny

ĥ(x) ei
∫
d3yφ̂(y)ĥ(y) = ei

∫
d3yφ̂(y)ĥ(y) ĥ(x). (3.27)

Wykorzystując go wraz z (3.25) otrzymujemy wyrażenia na prawą stronę równania (3.26)

iĥ(x)Ψ (φ,A) = iĥ(x)ei
∫
d3yφ(y)ĥ(y)ψ (φ,A) . (3.28)
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Następnie za pomocą definicji (3.15) elementarnego operatora kwantowego φ̂(x) oraz nie-

zależności wyrażenia h(x) od φ(x), przekształcamy lewą stronę równania (3.26)

δ

δφ(x)
Ψ (φ,A) =

δ

δφ(x)

(
ei

∫
d3yφ̂(y)ĥ(y)ψ (φ,A)

)
=

=
δ

δφ(x)

(
ei

∫
d3yφ(y)ĥ(y)ψ (φ,A)

)
=

= iĥ(x)ei
∫
d3yφ(y)ĥ(y)ψ (φ,A) + ei

∫
d3yφ(y)ĥ(y) δ

δφ(x)
ψ (φ,A) .

Porównując powyższe równanie z (3.28) znajdujemy warunek jaki musi spełniać funkcja

ψ(φ,A),
δ

δφ(x)
ψ (φ,A) = 0. (3.29)

Oznacza on, że ψ jest funkcją zależną jedynie od zmiennych geometrycznych, tzn.

ψ (φ,A) = ψ (A) . (3.30)

Podsumowując niniejszy paragraf, ogólna postać rozwiązania więzów skalarnych przyjmuje

postać dowolnej funkcji postaci

Ψ (φ,A) = ei
∫
d3xφ̂(x)ĥ(x)ψ (A) . (3.31)

3.3.3 Ogólna postać rozwiązań więzów kwantowych

Ogólna postać rozwiązań kwantowych więzów musi spełniać wszystkie trzy warunki (3.18),

(3.20) oraz (3.26) równocześnie.

Kombinacja zmiennych A i P w wyrażeniu na h(x) sprawia, że jest on niezmienniczy ze

względu na działanie transformacji Yanga-Millsa. Tym samym niezmienniczy jest ekspo-

tencjalny operator występujący w wyrażeniu (3.25).

Dodatkowo występująca w tym wyrażeniu całka po całej 3-wymiarowej rozmaitości M

gwarantuje, że ekspotencjalny operator w (3.25) jest dyfeomorficznie niezmienniczy.

Stąd warunki niezmienniczości przenoszą się z funkcji Ψ(φ,A) na funkcję ψ(φ,A),

Ψ
(
φ, a−1Aa+ a−1da

)
= Ψ (φ,A) =⇒ ψ

(
a−1Aa+ a−1da

)
= ψ (A) , (3.32)

Ψ (ϕ∗φ, ϕ∗A) = Ψ (φ,A) =⇒ ψ (ϕ∗A) = ψ (A) . (3.33)
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Ostatecznie otrzymujemy ogólną postać rozwiązania wszystkich więzów kwantowych

Ogólnym rozwiązaniem kwantowych więzów gaussa, wektorowych i skalarnych jest

każda funkcja postaci

Ψ (φ,A) = ei
∫
d3xφ̂(x)ĥ(x)ψ (A) ,

gdzie ψ spełnia następujące warunki:

• Dla każdego lokalnego dyfeomorfizmu ϕ : M →M zachodzi ψ (ϕ∗A) = ψ (A).

• Dla każdej funkcji a : M → SU(2) zachodzi ψ (a−1Aa+ a−1da) = ψ (A).

3.3.4 Przestrzeń rozwiązań więzów kwantowych

Przestrzeń rozwiązań wszystkich trzech więzów kwantowych stanowi przestrzeń Hilberta

stanów fizycznych H(gr,φ)
fiz . Oczywiście pod warunkiem, że potrafimy określić dobrze zde-

finiowany iloczyn skalarny pomiędzy stanami posiadający wymagane własności.

Opisaną pod koniec poprzedniego paragrafu przestrzeń rozwiązań więzów kwantowych

potrafimy skonstruować, o ile potrafimy znaleźć odpowiednie funkcje ψ(A). Co więcej

jeżeli funkcje te będą tworzyły przestrzeń Hilberta H(gr)
(G,dyf) to iloczyn skalarny z tej prze-

strzeni potrafimy przenieść na przestrzeń H(gr,φ)
fiz w taki sposób, że otrzymamy również na

niej dobrze zdefiniowany iloczyn. Również operatory zdefiniowane na H(gr)
(G,dyf) przenoszą

się na H(gr,φ)
fiz co będzie pokazane w kolejnym rozdziale.

Podsumowując, mając daną przestrzeń Hilberta kwantowych stanów geometrii H(gr)
(G,dyf) ,

które są dyfeomorficznie i Yang-Mills niezmiennicze, za pomocą unitarnego izomorfizmu

H(gr)
(G,dyf) → H(gr,φ)

fiz : ψ(A)→ Ψ(φ,A) := ei
∫
d3xφ̂(x)ĥ(x)ψ (A) (3.34)

otrzymujemy przestrzeń fizycznych stanów naszego nowego modelu.

Iloczyn skalarny z H(gr)
(G,dyf) definiuje iloczyn skalarny na H(gr,φ)

fiz

〈Ψ(φ,A)|Ψ′(φ,A)〉fiz =
〈
ei

∫
d3xφ̂(x)ĥ(x)ψ(A)|ei

∫
d3xφ̂(x)ĥ(x)ψ′(A)

〉
fiz

= 〈ψ|ψ′〉 . (3.35)

Konstrukcja kwantowego modelu bezmasowego pola skalarnego sprzężonego z polem gra-

witacyjnym sprowadza się do zdefiniowania obiektów opisujących geometryczną część na-

szego modelu. Okazuje się jednak, że obiekty takie są dobrze znane, a ich konstrukcja
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została przeprowadzona w ramach kanonicznej pętlowej grawitacji kwantowej. Będą one

przedstawione w kolejnej części niniejszej pracy.

3.4 Kwantowe obserwable Diraca

W klasycznej teorii z więzami pierwszego rodzaju mamy do czynienia z sytuacją, kiedy

różne punkty przestrzeni fazowej mogą opisywać ten sam stan fizyczny układu. W rzeczy-

wistości, więzy generują transformacje cechowania, a funkcje reprezentujące fizyczne wiel-

kości powinny przyjmować stałe wartości na orbitach transformacji cechowania. Oznacza

to znikanie nawiasu Poissona ze wszystkimi więzami pierwszego rodzaju. Funkcje takie

nazywamy obserwablami Diraca.

W teoriach takich jak ogólna teoria względności, gdzie okazuje się, że kanoniczny Hamil-

tonian jest liniową kombinacją więzów, generowana przez niego „ewolucja” jest niczym

innym jak transformacją cechowania. Popularnie nazywamy ten fakt „problemem czasu”.

Skonstruowanie obserwabli Diraca, o których nietrywialnej ewolucji możemy mówić nie

jest prostym zadaniem.

Jedno z bardziej skutecznych podejść opiera się na tzw. zmiennych relacyjnych ([35], [5]).

Dokładne rozwinięcie tych koncepcji można znaleźć w [6], [7] oraz w [33].

Powyższe klasyczne właściwości teorii z więzami pierwszego rodzaju mają swoje odzwier-

ciedlenie w modelach kwantowych. Kwantowe operatory odpowiadające fizycznie mie-

rzalnym wielkościom, powinny być niezmiennicze względem transformacji generowanych

przez kwantowe operatory więzów. Są to tzw. kwantowe obserwable Diraca.

3.4.1 Definicja kwantowych obserwabli Diraca

W przypadku prezentowanego w tym rozdziale modelu kwantowego mamy trzy rodziny

kwantowych więzów pierwszego rodzaju.

Więzy dyfeomorficzne Ĉa(x), o których zakładamy, że generują unitarne transformacje

Ûdyf (ϕ). Więzy gaussowskie, które generują unitarne transformacje ÛG(a), oraz więzy
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skalarne zdefiniowane w równaniu (3.21).

Obserwable Diraca definiujemy w następujący sposób:

Kwantowym operatorem Diraca będziemy nazywać operator Ô posiadający wszystkie

poniższe właściwości

• Obcięcie operatora Ô do przestrzeni rozwiązań więzów kwantowych jest dobrze zde-

finiowane.

• Operator Ô jest niezmienniczy względem działania więzów dyfeomorficznych

ÔÛdyf (ϕ) · Φ(ψ,A) = Ûdyf (ϕ)Ô · Φ(ψ,A). (3.36)

• Operator Ô jest niezmienniczy względem działania więzów gaussowskich

ÔÛG(a) · Φ(ψ,A) = ÛG(a)Ô · Φ(ψ,A). (3.37)

• Operator Ô komutuje z operatorem więzów skalarnych[
Ô, Ĉ ′(x)

]
= 0. (3.38)

3.4.2 Rodzina kwantowych obserwabli Diraca w zdeparametry-

zowanym modelu grawitacji sprzężonej z polem skalarnym

Formalizm obserwabli relacyjnych pozwala zdefiniować dużą rodzinę obserwabli konstru-

owanego modelu.W kolejnym paragrafie pokażemy, że jest ona w rzeczywistości wystar-

czająca do opisu badanego modelu.

Zakładamy, że L̂ oznacza dowolny operator na przestrzeni H(gr)
(G,dyf). To znaczy, że L̂

przeprowadza funkcje A→ ψ(A) na funkcje A→ L̂ · ψ(A). Ponadto spełnia następujące

warunki [
L̂, ÛG(a)

]
= 0, (3.39)[

L̂, Ûdyf (ϕ)
]

= 0. (3.40)
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Mając operator L̂ jak powyżej, możemy zdefiniować operator O(L̂) działający na opisanej

w Paragrafie 3.3.3 przestrzeni rozwiązań więzów kwantowych, w następujący sposób

O(L̂) := ei
∫
d3xφ̂ĥL̂e−i

∫
d3xφ̂ĥ. (3.41)

Aby to udowodnić, zauważamy kolejno:

1. Zauważamy, że dla dowolnego ϕ : M →M mamy∫
d3xφ̂(x)ĥ(x) =

∫
d3xφ̂(ϕ(x))ĥ(ϕ(x)), (3.42)

skąd wynika, że [
e±i

∫
d3xφ̂ĥ, Ûdyff (ϕ)

]
= 0. (3.43)

Stąd otrzymujemy, że

O(L̂)Ûdyff (ϕ) ·Ψ(φ,A) = Ûdyff (ϕ)O(L̂) ·Ψ(φ,A). (3.44)

2. Ponieważ transformacje Yanga-Millsa działają jedynie na część geometryczną, a

operator ĥ zależy od Â i P̂ w sposób niezmienniczy, wynika stąd, że[
e±i

∫
d3xφ̂ĥ, ÛG(a)

]
= 0. (3.45)

Stąd otrzymujemy, że

O(L̂)ÛG(a) ·Ψ(φ,A) = ÛG(a)O(L̂) ·Ψ(φ,A). (3.46)

3. Operator O(L̂ zachowuje przestrzeń rozwiązań więzów

O(L̂)ei
∫
d3xφ̂ĥψ(A) = ei

∫
d3xφ̂ĥψ′(A), (3.47)

gdzie

ψ′(A) = L̂ψ(A), (3.48)

a co za tym idzie spełnia warunek[
O(L̂), Ĉ ′(x)

]
= 0. (3.49)

Powyższe trzy warunki pokazują, że O(L̂) definiuje rodzinę obserwabli Diraca na H(gr,φ)
fiz ,

indeksowaną operatorami L̂ na H(gr)
(G,dyf).
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Na przestrzeni rozwiązań więzów również operator „całkowitego pędu”
∫
d3xπ̂(x) defi-

niuje operator należący do tej rodziny. Na przestrzeni rozwiązań, spełniony jest bowiem

warunek π̂(x) = ĥ(x), skąd otrzymujemy

O(

∫
d3xπ̂(x)) = O(

∫
d3xĥ(x)) =

∫
d3xĥ(x). (3.50)

3.4.3 Zupełność zdefiniowanej rodziny obserwabli Diraca

Zdefiniowana powyżej rodzina kwantowych obserwabli Diraca w rzeczywistości zawiera

wszystkie fizyczne obserwable. Dowodzimy tego, zapisując dowolny operator Ô w postaci

Ô = ei
∫
d3xφ̂ĥK̂e−i

∫
d3xφ̂ĥ. (3.51)

Nie zmniejsza to ogólności rozważań. Kładąc K̂ = e−i
∫
d3xφ̂ĥÔei

∫
d3xφ̂ĥ otrzymujemy wy-

maganą postać operatora.

Narzucamy na ten operator trzy warunki, jakie musi spełniać kwantowa obserwabla Diraca

w naszym modelu. Powtarzając rozumowanie analogiczne, do tego jakie przedstawione

jest w poprzednim paragrafie wnioskujemy, co następuje. Warunkiem niezmienniczości

względem działania lokalnych dyfeomorfizmów i transformacji Yanga-Millsa operatora Ô

przenosi się na takie same wymagania względem operatora L̂.

Pozostałym nietrywialnym warunkiem jest znikanie komutatora[
Ô, Ĉ ′(x)

]
= 0.

Wstawiamy (3.51) do powyższego równania i otrzymujemy następujący równoważny wa-

runek [
K̂, π̂(x)

]
= 0. (3.52)

Zbiór rozwiązań powyższego równania generowany jest za pomocą następujących opera-

torów

1. K̂ = π̂(x)

Co wynika ze związków komutacyjnych pomiędzy zmiennymi pola skalarnego.

2. K̂ = L̂, gdzie L̂ jest operatorem działającym na funkcję A→ ψ(A) i przeprowadza-

jący ją w A→ L̂ψ(A)
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Co wynika z faktu komutowania zmiennych geometrycznych ze zmiennymi pola ska-

larnego.

Okazuje się jednak, że rozwiązania postaci 1. znikają na przestrzeni rozwiązań. Jest to

konsekwencją zależności

ei
∫
d3xφ̂ĥπ̂(x)e−i

∫
d3xφ̂ĥ = π̂(x)− ĥ(x) = Ĉ ′(x), (3.53)

wynikającej ze wzoru Bakera–Cambella–Hausdorfa.

Ostatecznie otrzymujemy, że wszystkie obserwable Diraca badanego modelu generowane

są przez dyfeomorficznie i Yang-Mills niezmiennicze operatory L̂ działające na przestrzeni

H(gr)
(G,dyf).

3.4.4 Klasyczny odpowiednik kwantowych obserwabli Diraca

Często nadajemy fizyczną interpretację kwantowym operatorom szukając ich klasycznych

odpowiedników. Nie inaczej będziemy postępować i w tym przypadku. W pierwszej ko-

lejności musimy zatem znaleźć klasyczne funkcje, którym odpowiadają zdefiniowane przez

nas operatory kwantowe.

Pamiętajmy jednak, że w proponowanym przez nas podejściu do kwantyzacji, to teoria

kwantowa uważana jest za bardziej elementarną. Istnienie klasycznej interpretacji nie jest

wcale warunkiem koniecznym do stwierdzenia poprawności badanego modelu kwantowego.

Klasycznej interpretacji obserwabli kwantowej szukamy odwracając procedurę zamiany

nawiasów Poissona klasycznych funkcji na komutatory operatorów. Stosujemy następu-

jące podstawienie

[ . , . ] −→ −i { . , . }. (3.54)

Rozważmy operator L̂, który posłużył do skonstruowania kwantowej obserwabli Diraca

O(L̂). Przyjmujemy, że dziedzina odpowiadającej mu funkcji L zdefiniowanej na geome-

trycznej części przestrzeni fazowej, zawiera się w tej części, w której zachodzi

Cgr < 0.
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Za pomocą wyrażenia znanego z [6] i [7] zapisujemy wzór (3.41) definiujący kwantową

obserwablę Diraca w następującej formie

O(L̂) =
∞∑
n=0

in

n!

[
L̂,

∫
d3xφ̂ĥ

]
(n)

, (3.55)

gdzie [., .](n) definiujemy w następujący sposób[
L̂,

∫
d3xφ̂ĥ

]
(0)

= L̂ (3.56)[
L̂,

∫
d3xφ̂ĥ

]
(n)

=

[[
L̂,

∫
d3xφ̂ĥ

]
(n−1)

,

∫
d3xφ̂ĥ

]
. (3.57)

Zastosowanie podstawienia (3.54) do (3.55) prowadzi do klasycznej funkcji O(L),

O(L) =
∞∑
n=0

1

n!

{
L,

∫
d3xφh

}
(n)

, (3.58)

odpowiadającej kwantowemu operatorowi O(L̂). {., .}(n) zdefiniowany jest w analogiczny

sposób jak [., .](n) w przypadku komutatorów.

3.4.5 Interpretacja klasycznej funkcji odpowiadającej kwantowym

obserwablom Diraca

Rozpatrzmy teraz klasyczną funkcję O(L) określoną na klasycznej przestrzeni fazowej Γ.

Przeprowadza ona punkt (A,P, φ, π) określony konfiguracją odpowiednich pól na M w

punkt O(L)(A,P, φ, π).

Przedstawiona tutaj interpretacja pochodzi z formalizmu zmiennych relacyjnych opisa-

nego w [6], [7], [8] oraz [33].

Rozpatrzmy najpierw bardziej ogólne wyrażenie, w którym w miejsce fizycznego pola φ

spełniającego odpowiednie równania, wstawiamy dowolną funkcję t : M 3 x → t(x).

Definiujemy funkcję postaci

α∗t (L) =
∞∑
n=0

1

n!

{
L,

∫
d3xth

}
(n)

. (3.59)

Na podstawie wyników z cytowanej na początku tego paragrafu literatury wiemy, że tak

zdefiniowana funkcja jest cofnięciem funkcji L : Γgr → Γgr za pomocą odwzorowania

αt : Γgr → Γgr. (3.60)
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Powyższe odwzorowanie jest natomiast jednoznacznie określone za pomocą strumienia

hamiltonowskiego βt : Γ → Γ na pełnej przestrzeni fazowej, które jest generowane przez

więzy C ′(x) przy parametrach t(x). Równanie definiujące αt : przyjmuje następującą

postać

(A,P, φ, π)→ βt(A,P, φ, π) = (αt(A,P ), φ− t, π) . (3.61)

W szczególności dla t(x) = φ(x) otrzymujemy

βφ(A,P, φ, π) = (αφ(A,P ), 0, π) , (3.62)

co służy do zdefiniowania αφ, a co za tym idzie O(L).

Otrzymujemy stąd następującą charakterystykę funkcji O(L) : Γ → Γ określoną poniż-

szym równaniem

O(L)(A,P, φ, π) = L (αt(A,P )) = α∗φ(L). (3.63)

Nadaliśmy jej klasyczną interpretację, która mówi, że jeżeli chcemy znaleźć wartość tej

funkcji w punkcie (A,P, φ, π) to znajdujemy orbitę transformacji cechowania generowanej

przez więzy skalarne i szukamy na niej punktu, w którym φ staje się równe zeru. Od-

czytana w tym punkcie konfiguracja pól (A0, P0) jest argumentem funkcji L. Wartość tej

funkcji w tym punkcie jest szukaną wartością O(L)(A,P, φ, π).

Rys. III. 2

Podsumowując, kwantowa obserwabla Diraca O(L̂), odpowiada klasycznej funkcji O(L),

która również jest obserwablą, dlatego możemy zapisać

Ô(L) = O(L̂). (3.64)

W tym momencie niezbędny jest komentarz na temat statusu operatora O(L̂). Może

się zdarzyć bowiem, że w danym punkcie (A,P, φ, π) przestrzeni fazowej Γ, szereg (3.58)
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nie jest zbieżny. W rzeczywistości, z sytuacją taką mamy do czynienia w modelach pę-

tlowej kosmologii kwantowej (LQC) opisujących jednorodny i izotropowy Wszechświat z

dodatnią stałą kosmologiczną [36]

Operator O(L̂) pozostaje jednak dobrze zdefiniowany, o ile samosprzężone rozszerzenie

operatora
∫
d3xφ̂ĥ jest ustalone, a w związku z tym operator exp

(
i
∫
d3xφ̂ĥ

)
jest dobrze

zdefiniowany.

W takiej sytuacji, kwantowa ewolucja wyprowadza nas w obszar niedostępny teorii kla-

sycznej. Ten fakt, w rzeczywistości był głównym motywem dla naszego podejścia, w

którym zdecydowaliśmy się zdefiniować obserwable Diraca bezpośrednio w teorii kwanto-

wej, nadając ich klasycznej interpretacji jedynie drugorzędne znaczenie.

3.5 Dynamiczna ewolucja obserwabli Diraca

Celem tego rozdziału jest przedstawienie relacyjnego sposobu interpretacji kwantowych

obserwabli. Oryginalne wyniki niniejszej rozprawy polegają na zastosowaniu tych koncep-

cji do stworzenia modelu kwantowej grawitacji oddziałującej z polem skalarnym pełniącym

rolę relacyjnego czasu.

Definicje relacyjnych obserwabli Diraca oraz sposób interpretacji ich dynamiki zostały

opisane w [7] oraz cytowanej tam literaturze. Uściślenia dokonano w [33]. Prezento-

wane tutaj podejście zostało oryginalnie opisane w [13] natomiast osadzenie w szerszym

kontekście znajduje się w wykładach zaprezentowanych w [31].

3.5.1 Relacyjna ewolucja funkcji klasycznych

Zadaniem teorii fizycznych jest określenie wielkości, które mogą podlegać bezpośredniemu

lub pośredniemu procesowi pomiarowemu, i których wyniki można przewidzieć w obrębie

danej teorii. Jest to podstawowym warunkiem jej weryfikacji eksperymentalnej. Prze-

widywalność wyników może być ścisła, jak w fizyce klasycznej, lub mieć charakter sta-

tystyczny, jak w mechanice kwantowej. Jednak w obu tych przypadkach jest ona ściśle

związana z pewną zależnością od parametru określającego ewolucję.
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Fizyka klasyczna i mechanika kwantowa utożsamiają ten parametr z czasem, który płynie

jednostajnie i niezależnie od układu. Geometryzacja tego parametru i włączenie go do

dynamicznych rozważań ogólnej teorii względności skomplikowały sytuację. Dodatkowo

konsekwencją traktowania dyfeomorfizmów jako transformacji cechowania jest postać Ha-

miltonianu, który okazuje się liniową kombinacją więzów.

Funkcja, której klasyczną rolą było generowanie ewolucji w tym zewnętrznym czasie,

okazuje się generatorem transformacji cechowania. Tym samym czas w swoim klasycz-

nym znaczeniu zostaje zdegradowany do roli parametru numerującego punkty na orbicie

transformacji cechowania. Przestaje tym samym mieć znaczenie fizyczne jako parametr

definiujący ewolucję układu.

Wiąże się z tym niemożliwość zdefiniowania nietrywialnych obserwabli Diraca takiego mo-

delu. W oparciu o formalizm relacyjnych obserwabli, w poprzednich paragrafach zdefinio-

waliśmy kwantową rodzinę takich obserwabli oraz znaleźliśmy odpowiadające im funkcje

klasyczne.

Zaczynając na poziomie klasycznym, dla takiej klasy obserwabli potrafimy zdefiniować

nietrywialną ewolucję oraz co uczynimy w wersji kwantowej w kolejnym paragrafie, fi-

zyczny Hamiltonian definiujący taką ewolucję. Dynamika taka określona jest względem

czasu relacyjnego. W naszym modelu rolę taką nadajemy polu φ, a dokładniej wartością

jakie pole to przyjmuje w czasie poruszania się po orbicie transformacji cechowania gene-

rowanej przez więzy skalarne C ′(x).

Możemy to zobaczyć uogólniając określenie punktu na orbicie cechowania, potrzebnego

do definicji O(L) z L. Przyjmując t(x) = φ(x)− φ0(x) dla dowolnej funkcji φ0, ustalonej

na M , możemy zapisać wzór (3.62) w postaci

βφ−φ0(A,P, φ, π) = (αφ−φ0(A,P ), φ0, π) , (3.65)

gdzie αφ−φ0(A,P ) definiujemy podobnie jak poprzednio αφ(A,P ), tym razem poruszamy

się wzdłuż orbity cechowania, aż do punktu gdzie konfiguracja pola skalarnego φ staje

się równa φ0. Pozwala on zdefiniować w sposób analogiczny do tego, jaki przedstawia
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wzór (3.63), funkcję Oφ0(L) na Γ,

Oφ0(L)(A,P, φ, π) = L (αφ−φ0(A,P )) = α∗φ−φ0(L). (3.66)

Funkcja Oφ0(L) będzie dobrze zdefiniowana, o ile strumień βt : Γ → Γ będzie dobrze

zdefiniowany dla

t(x) = φ(x)− φ0(x)

na dziedzinie funkcji L.

Powyższemu równaniu możemy nadać rolę klasycznej obserwabli Diraca i badać jej ewolu-

cję w relacyjnym czasie φ. Analiza przeprowadzona przy użyciu równania (3.58) pokazuje,

że ewolucja ta określona jest przez fizyczny Hamiltonian. Centrum naszych zainteresowań

jest teoria kwantowa, stąd przechodzimy do ewolucji kwantowych obserwabli Diraca.

3.5.2 Ewolucja kwantowych obserwabli Diraca

Przedstawiona powyżej klasyczna interpretacja ewolucji klasycznych obserwabli Oφ0(L)

prowadzi do następującego obrazu operatorów kwantowych

Oφ0(L̂)Ψ(φ,A) = ei
∫
d3x(φ(x)−φ0(x))ĥ(x)L̂e−i

∫
d3x(φ(x)−φ0(x))ĥ(x)Ψ(φ,A). (3.67)

Ewolucja operatora określona jest parametrem φ0 i odpowiada interpretacji Heisenberga

ewolucji w mechanice kwantowej. W powyższej definicji wybieramy reprezentację, w

której zachodzi

φ̂ ·Ψ(φ,A) = φ ·Ψ(φ,A).

Zdefiniowana w ten sposób rodzina operatorów Oφ0 nie wyprowadza nas poza rodzinę

obserwabli zdefiniowanych w Paragrafie 3.4.2 odpowiadającym operatorom komutującym

z więzem skalarnym. Dowodzimy tego zapisując

Oφ0(L̂) = O(L̂′), (3.68)

gdzie

L̂′ = e−i
∫
d3xφ0(x)ĥ(x)L̂ei

∫
d3xφ0(x)ĥ(x). (3.69)

Zdefiniowana w ten sposób rodzina operatorów stanowi abelową grupę automorfizmów w

algebrze rozwiązań więzu skalarnego [
Ô, Ĉ ′(x)

]
= 0.
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Elementy tej grupy numerowane są chwilami czasu relacyjnego, czyli funkcjami φ0 na

rozmaitości M

O(L̂)→ Oφ0(L̂). (3.70)

Chcąc następnie ograniczyć te automorfizmy do algebry kwantowych operatorów Diraca,

napotykamy na trudność. Dla danej funkcji φ0(x) wymagamy, aby operator (3.69), czyli

L̂′ był dyfeomorficznie niezmienniczy dla dowolnego dyfeomorficznie niezmienniczego ope-

ratora L̂.

Dla operatora ĥ(x), który będziemy konstruować w obrębie formalizmu kanonicznej pę-

tlowej grawitacji kwantowej, warunek ten może być spełniony tylko dla stałych funkcji

φ0(x),

φ0(x) = φ0 ∈ R, ∀ x ∈M. (3.71)

Wynika to z faktu, iż działanie operatora ĥ(x) jest skupione na wierzchołkach grafu funkcji

cylindrycznych, o których będzie mowa w kolejnym rozdziale tej pracy. Aby dla dowolnej

funkcji cylindrycznej odpowiednie działanie było niezależne od dyfeomorfizmów przesu-

wających funkcję φ0(x), musi być ona stała na całej przestrzeni M .

W rezultacie otrzymujemy 1-wymiarową grupę automorfizmów algebry kwantowych ob-

serwabli Diraca. Grupa ta zawiera w sobie zależność kwantowych obserwabli Diraca od

relacyjnego czasu φ0.

3.5.3 Fizyczny Hamiltonian

Okazuje się, że taka postać operatorów umożliwia zapisanie ewolucji w kanonicznej po-

staci. Poprzez różniczkowanie równań (3.68) i (3.69) otrzymujemy następujące równanie

określające dynamikę
d

dφ0

Oφ0(L̂) = −i
[
ĥfiz,Oφ0(L̂)

]
. (3.72)

ĥfiz jest nieznikającą obserwablą Diraca generującą ewolucję, dlatego nazywamy go fi-

zycznym Hamiltonianem. Przyjmuje on postać

ĥfiz =

∫
d3x ĥ(x). (3.73)
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Fizyczny Hamiltonian będzie implementacją poniższego, heurystycznego wyrażenia

ĥfiz =

∫
d3x

√
−
√
q̂Ĉgr +

√
q̂

√
(Ĉgr)2 − q̂abĈgr

a Ĉ
gr
b . (3.74)

Operator ten musi być dobrze określony na przestrzeni stanów dyfeomorficznie niezmien-

niczych. Możemy dlatego założyć, że wybierając odpowiednie uporządkowanie operatorów

otrzymujemy następującą postać działania operatora ĥfiz na dyfeomorficznie niezmienni-

cze funkcje ψ,

ĥfiz · ψ(A) =

∫
d3x

√
−2
√
q̂Ĉgr · ψ(A) (3.75)

gdzie uwzględniono, że

Ĉgr < 0. (3.76)

Wynik ten zgadza się z [25].

3.6 Podsumowanie i wymagania dla zastosowania ka-

nonicznej pętlowej grawitacji kwantowej

W tym rozdziale podsumowujemy przeprowadzoną powyżej konstrukcję modelu kwanto-

wego. Celem tego podsumowania jest pokazanie jakie elementy muszą zostać skonstru-

owane w obrębie modelu kwantowego, który posłuży do konstrukcji części geometrycznej

modelu.

Główny sukces prezentowanego modelu polega na wydzieleniu tego co ma być kwantowane

jako część grawitacyjna od tego, co ma być kwantowane jako część pola skalarnego. Pre-

zentowane w tej pracy podejście opiera się na kwantyzacji części grawitacyjnej w oparciu

o wyniki kanonicznej pętlowej grawitacji kwantowej. Podejście to zaprezentowane jest w

[13]. Kwantyzacji zmiennej pola skalarnego dokonujemy w [14].

Podsumowując, aby dokończyć konstrukcje modelu kwantowego musimy umieć skonstru-

ować następujące obiekty

• Przestrzeń Hilberta H(gr)
(G,dyf), która jest przestrzenią Hilberta opisującą część grawi-

tacyjną, składającą się ze stanów Yang-Mills i dyfeomorficznie niezmienniczych.

• Operatorów na H(gr)
(G,dyf) posiadających prostą geometryczną interpretację
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• Operator odpowiadający fizycznemu Hamiltonianowi ĥfiz, którego dziedzina zawiera

się w H(gr)
(G,dyf).

Mając dane powyżej wymienione obiekty możemy dokończyć konstrukcji modelu kwan-

towego.

Fizyczna przestrzeń jest unitarnie izomorficzna z dziedziną ĥfiz(x) w H(gr)
(G,dyf) za pomocą

odwzorowania

ei
∫
φ̂ĥψ → ψ. (3.77)

Każda obserwabla O(L̂) jest skonstruowana za pomocą cofnięcia operatora geometrycz-

nego L̂, który zachowuje dopełnienie dziedziny ĥfiz.

Na końcu, relacyjna ewolucja obserwabli przybiera postać dobrze znanej interpretacji

Heisenberga,

L̂(τ) = e−iτ ĥfiz L̂eiτ ĥfiz . (3.78)

Dodatkowo musimy szczególną uwagę poświęcić definicji operatora ĥfiz. Jego konstrukcja

wymaga wprowadzenia dodatkowych struktur, a szczegółowe wymagania opisujemy w

poniższych punktach.

• Operator ĥfiz powinien być skonstruowany, przy użyciu dystrybucji o wartościach

operatorowych

M 3 x→ ̂√
q(x)C(gr)(x). (3.79)

• Dystrybucja opisana w poprzednim punkcie powinna być samosprzężona, aby umoż-

liwić zdefiniowanie podprzestrzeni, na której zachodzi

̂√
q(x)C(gr) < 0, (3.80)

i na niej określenia nowej dystrybucji

ĥ(x) =

√
−2

̂√
q(x)C(gr). (3.81)

• Musi zachodzić związek, który jest zgodny z klasycznym nawiasem Poissona, tzn[
ĥ(x), ĥ(y)

]
= 0. (3.82)
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Spełniwszy powyższe warunki ostatecznie otrzymujemy fizyczny Hamiltonian

ĥfiz =

∫
M

d3xĥfiz(x), (3.83)

co kończy konstrukcję modelu kwantowego grawitacji sprzężonej z bezmasowym polem

skalarnym.
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Rozdział 4

Zastosowanie kanonicznej pętlowej

grawitacji kwantowej

„ W podejściu tym na poważnie traktujemy podstawową lekcję płynącą z

ogólnej teorii względności: grawitacja to geometria. Dlatego fundamentalna

teoria nie powinna odwoływać się do żadnej metryki stanowiącej tło wydarzeń

fizycznych. Grawitacja kwantowa powinna pozwolić, aby geometria i materia

wspólnie wyłaniały się z kwantowo mechanicznego obrazu”

”Background independent quantum gravity: a status report.”

Class. Quantum Grav.21, R53

A. Ashtekar and J. Lewandowski

Kanoniczna pętlowa grawitacja kwantowa, do której odnosi się powyższy cytat, jest teo-

rią, która święciła spore sukcesy na poziomie kinematycznym. Szczęśliwie okazuje się, że

przynosi ona narzędzia i gotowe rozwiązania do konstrukcji kwantowego modelu opisanego

w poprzedniej części tej pracy.

Kanoniczna pętlowa grawitacja kwantowa, która za punkt wyjścia traktuje sformułowa-

nie ogólnej teorii względności w zmiennych Ashtekara znacząco upraszcza postać więzów.
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Nadaje również teorii względności postać teorii Yanga-Millsa i umożliwia kwantyzację

niezależną od geometrii tła.

Cena, jaką za to płacimy jest postać kinematycznej przestrzeni Hilberta. Okazuje się ona

przestrzenią nieseparowalną i wymaga uważnego traktowania. Konstrukcja gęstego zbioru

funkcji o prostej postaci, które ją generują jest możliwa. Interpretacji tym funkcjom na-

dają geometryczne operatory pola powierzchni i objętości.

Wprowadzenie do kanonicznej pętlowej grawitacji kwantowej znajduje się w [1] i [3]. Po-

niższa prezentacja kładzie nacisk na elementy potrzebne do konstrukcji naszego modelu

kwantowego i operatora fizycznego hamiltonianu.

4.1 Kinematyczna przestrzeń Hilberta

W niniejszym rozdziale przedstawimy konkretną realizację kinematycznej przestrzeni Hil-

berta opisującej geometryczną część naszego modelu. W poprzedniej części oznaczaliśmy

ją H(gr)
kin .

Kwantowy model stworzony w poprzednim rozdziale nie narzuca sposobu, w jaki kinema-

tyczna przestrzeń Hilberta ma być skonstruowana. Nie narzuca również wyboru zmien-

nych, za pomocą których będziemy opisywać geometryczną część modelu. Okazuje się,

że kanoniczna pętlowa grawitacja kwantowa dostarcza obiektów i narzędzi o wymaganych

do dokończenia konstrukcji prezentowanego modelu.

W niniejszym rozdziale przedstawiamy konstrukcję trzech najważniejszych elementów

składających się na H(gr)
kin i kwantowo mechaniczny opis geometrii. Przedstawimy ele-

menty przestrzeni Hilberta i ich iloczyn skalarny. Dokonamy jej ortogonalnego rozkładu.

Na końcu przedstawimy konstrukcję elementarnych operatorów kwantowych, które po-

służą do zdefiniowania bardziej wyrafinowanych operatorów.
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4.1.1 Funkcje cylindryczne i iloczyn skalarny

Od tego momentu zakładamy, że zarówno rozpatrywane powierzchnie jak i krzywe są semi

analityczne. Pozwoli to uniknąć sytuacji dopuszczających „patologiczne” zachowania,

gdzie krzywe przecinają się między sobą nieskończenie wiele razy na skończonym od-

cinku, co będzie miało kluczowe znaczenie umożliwiające konstrukcję stanów kwantowych

opartych o grafy. Równocześnie założenie takie nie zmniejsza zastosowalności teorii i ogól-

ności założeń.

Za zmienną kinematyczną opisującą geometrię czasoprzestrzeni bierzemy SU(2)-koneksję,

którą w konkretnej trywializacji reprezentujemy za pomocą Aia(x), gdzie x ∈ M , i jest

wewnętrznym indeksem su(2), natomiast a jest indeksem tensorowym. Przestrzeń gład-

kich SU(2)-koneksji na M oznaczamy A.

Mechanika kwantowa układów o skończonej ilości stopni swobody używa reprezentacji

stanów, która składa się z funkcji na klasycznej przestrzeni konfiguracyjnej. W przy-

padku układów o nieskończonej ilości stopni swobody takich, z jakimi mamy do czynienia

rozważając teorię pola, stany kwantowe reprezentowane są, jako funkcje na kwantowej

przestrzeni konfiguracyjnej.

W naszym przypadku kwantowa przestrzeń konfiguracyjna, to przestrzeń koneksji uogól-

nionych Ā. Aby skonstruować przestrzeń stanów kwantowych na tej przestrzeni , za-

czniemy od konstrukcji tzw. funkcji cylindrycznych na A oznaczanych Cyl(A).

Elementy przestrzeni Cyl(A) są funkcjami A → C, które otrzymujemy w następujący

sposób. Jeżeli e oznacza dowolną krzywą semi analityczną na M ,

e : [0, 1]→M, (4.1)

to holonomia wzdłuż tej krzywej oznaczana jest przez

he[A] ∈ SU(2), (4.2)

dla A ∈ A. Tak więc holonomia wzdłuż krzywej jest funkcjonałem koneksji. Za po-

mocą (4.2) możemy zdefiniować koneksję, jako funkcję, która przyporządkowuje dowolnej
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krzywej, za pomocą równania (4.2) element grupy SU(2),

A(e) := he[A]. (4.3)

Definicja ta pozostanie słuszna w ogólniejszym przypadku, kiedy element SU(2) nie musi

pochodzić od gładkiej koneksji. W rzeczywistości takie dowolne przyporządkowanie krzy-

wym elementów grupy definiuje koneksję uogólnioną.

Następujące obiekty służą do definicji funkcji cylindrycznych poniżej:

• {e1, e2, ..., en} stanowi zbiorów semi analitycznych krawędzi

• f : SU(2)n → C funkcja gładka

Funkcję cylindryczną Ψ({e1,e2,...,en},f) : A → C definiujemy w następujący sposób

Ψ({e1,e2,...,en},f)(A) := f(A(e1), A(e2), ..., A(en)). (4.4)

Funkcja cylindryczna nie jest określona jednoznacznie. Odwrócenie orientacji, dzielenie

krawędzi na kilka lub ich łączenie, przy odpowiedniej zmianie funkcji f pozwala zdefinio-

wać tą samą funkcję. Wynika to z następujących własności holonomii,

he−1 [A] = (he[A])−1 , (4.5)

he2·e1 [A] = he2 [A]he1 [A], (4.6)

gdzie e−1 oznacza krzywą przebiegającą w odwrotnym kierunku co e, a e2 · e1 oznacza

krzywą otrzymaną z połączenia końca e1 z początkiem e2. Wtedy np. odwrócenie jednej

z krzywych lub ich połączenie prowadzi do równoważnej definicji funkcji cylindrycznej

{..., e′i = e−1
i , ...} → f ′(..., A(e′i), ...) = f(..., A(ei)

−1, ...),

{..., ei− > e′j · e′k, ...} → f ′(..., A(e′j), A(e′k), ...) = f(..., A(ei) = A(e′j) · A(e′k), ...).

Mając dane dwie funkcje cylindryczne, z których jedna jest określona za pomocą ({e1, ...en}, f),

a druga za pomocą ({e′1, ...e′m}, f ′) możemy odpowiednio dzieląc i odwracając krawędzie

znaleźć taki zbiór krawędzi, że {e′′1, ...e′′N}, że obie powyższe funkcje są względem niego

cylindryczne przy odpowiednio zdefiniowanych funkcjach f ′′1 i f ′′2 ,

({e1, ..., en}, f)→ ({e′′1, ..., e′′N}, f ′′1 ) ,

({e′1, ..., e′m}, f)→ ({e′′1, ..., e′′N}, f ′′2 ) .
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Za pomocą powyższych definiujemy iloczyn skalarny(
Ψ({e1,...,en},f),Ψ

′
({e′1,...,e′m},f)

)
=

∫
SU(2)N

dNµ0 f̄ ′′1 · f ′′2 . (4.7)

Zakładając, że zarówno krzywe ei, jak przestrzeń M są semi analityczne, dla dowolnej

funkcji cylindrycznej istnieje taki podział krzywych ei, że tworzą one graf. Oznacza to,

że jeżeli dwie krzywe się przecinają to tylko w swoim początku lub końcu.

Będziemy mówić, że funkcja cylindryczne określone są na grafie α. Zbiór krawędzi grafu

oznaczamy przez {e1, ..., eE}, gdzie E oznacza ilość krawędzi, a zbiór wierzchołków ozna-

czamy {v1, ..., vV }, gdzie V oznacza ilość wierzchołków grafu. Będziemy zapisywać

Ψ(α,f)(A) := Ψ({e1,...,eE},f)(A). (4.8)

Kinematyczna przestrzeń HilbertaH(gr)
kin definiujemy jako uzupełnienie przestrzeni Cyl(A)

względem normy zdefiniowanej przez iloczyn (4.7)

H(gr)
kin = Cyl(A). (4.9)

4.1.2 Ortogonalny rozkład kinematycznej przestrzeni Hilberta

Możemy dokonać ortogonalnego rozkładu kinematycznej przestrzeni Hilberta H(gr)
kin na

przestrzenie związane z grafami. Oznaczamy przez H(gr)
(kin,α) przestrzeń Hilberta, którą

otrzymujemy ograniczając się do funkcji cylindrycznych określonych na danym grafie α,

dla wszystkich możliwych funkcji f ,

H(gr)
(kin,α) = Cylα(A). (4.10)

Ze względu na niejednoznaczność określenia funkcji cylindrycznej przez graf, którą opi-

saliśmy w poprzednim paragrafie, przestrzeń taka jest za duża, aby stanowić podstawę

rozkładu ortogonalnego. Dla danego grafu α, mając graf β, który możemy otrzymać z

grafu α przez sklejenie, odwrócenie orientacji lub usunięcie niektórych krawędzi, otrzy-

mujemy przestrzeń H(gr)
(kin,β), która zawiera się w H(gr)

(kin,α),

H(gr)
(kin,β) ⊂ H

(gr)
(kin,α). (4.11)

Następnie definiujemy H′(gr)(kin,α) ⊂ H
(gr)
(kin,α) jako ortogonalne uzupełnienie w H(gr)

(kin,α) pod-

przestrzeni rozpiętej przez wszystkie H(gr)
(kin,β) dla grafów β otrzymanych z α jak opisano
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powyżej.

W ten sposób otrzymujemy ortogonalny rozkład

H(gr)
kin =

⊕
α

H′(gr)(kin,α), (4.12)

gdzie α przebiega wszystkie semi analityczne grafy w M .

Możemy dokonać dalszego, bardziej szczegółowego rozkładu H′(gr)(kin,α) na tak zwane sieci

spinowe, które stanowią ortogonalną bazę przestrzeni Cyl(A).

Na sieć spinową składają się wymienione poniżej elementy.

• Graf γ, którego zbiór krawędzi składa się z elementów {e1, e2, ..., eE}, a zbiór wierz-

chołków to {v1, v2, ..., vV }.

• Każdej krawędzi grafu przyporządkowujemy nietrywialną reprezentację grupy SU(2),

{ρe1 , ρe2 , ..., ρeE}.

Definiujemy w ten sposób następujący element związany z każdą z krawędzi grafu,

który przyporządkowuje

A 3 A→ [ρei (A(ei))]
Lei
Kei

,

gdzie Kei i Lei oznaczają odpowiedni element macierzowy w danej reprezentacji
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Rys. IV. 1

• Każdemu wierzchołkowi przyporządkowujemy następujące elementy

– Reprezentację grupy SU(2), {ρv1 , ρv2 , ..., ρvV }.

– Niezmiennik {ιv1 , ιv2 , ..., ιvV } należący do iloczynu tensorowego

ιvi ∈ Inv

((⊗
e

ρ∗e

)
⊗

(⊗
e′

ρe′

)
⊗ ρ∗vi

)
, (4.13)

gdzie e oznacza krawędzie kończące się w vi, a e′ krawędzie z niego wychodzące.

– Element przestrzeni Hilberta odpowiadający reprezentacji przypisanej do wierz-

chołka {ξv1 , ξv2 , ..., ξvV }, ξvi ∈ Hρvi
.

W ten sposób każdemu wierzchołkowi przyporządkowujemy element

A 3 A→ [ιvi ]
Ke′ ...

Le... C [ρv(ξv)]
C .

Rys. IV. 2

Funkcje sieci spinowej powstają z tak zdefiniowanego pokolorowanego grafu poprzez od-

powiednie zwężanie indeksów grupowych zgodnie ze schematem wyznaczonym przez graf.

Podprzestrzeń H′(gr)(kin,α) rozpada się na ortogonalną sumę przestrzeni dla wszystkich moż-

liwych kolorowań grafów α, nieredukowalnymi reprezentacjami grupy SU(2).
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Wybieramy kolorowanie krawędzi nieredukowalnymi reprezentacjami SU(2) numerowa-

nymi za pomocą spinów ~j = (j1, ..., jE), oraz wierzchołków nieredukowalnymi reprezenta-

cjami ~l = (l1, ..., lV ). Wtedy otrzymujemy rozkład

H′(gr)(kin,α) =
⊕
~j,~l

H′(gr)
(α,~j,~l)

, (4.14)

gdzie

H′(gr)
(α,~j,~l)

= Cyl(α,~j,~l). (4.15)

4.1.3 Elementarne operatory kwantowe

Na końcu tego rozdziału zdefiniujemy elementarne operatory kwantowe, za pomocą któ-

rych skonstruujemy wszystkie pozostałe.

Elementarny operator odpowiadający zmiennej konfiguracyjnej, tworzymy przez rozsma-

rowanie Aia(x) wzdłuż krawędzi e : [0, 1] → M . W reprezentacji definiującej SU(2)

otrzymujemy operator, który w działaniu na funkcję cylindryczną dołącza nową krawędź

i odpowiedni element holonomii wzdłuż tej krawędzi

Â(e)BC ·Ψ(α,f)(A) := A(e)BCf(A(e1), ..., A(eE)). (4.16)

Możemy uogólnić i przypisać rolę operatora dowolnej funkcji cylindrycznej

Ψ̂(β,f ′) ·Ψ(α,f)(A) = f ′(A(e1), ..., A(eE′))f(A(e1), ..., A(eE)). (4.17)

Operator odpowiadający zmiennej pędowej otrzymujemy przez rozsmarowanie P a
i (x) po

2-wymiarowej powierzchni S(∫
S

P̂ a
i

)
·Ψ(α,f)(A) =

1

2i

∫
S

δ

δAia(x)
f(A(e1), ..., A(eE))ηabcdx

b ∧ dxc. (4.18)

Działanie tego operatora nie zmienia zbioru krawędzi i wierzchołków grafu i zależy od ich

wzajemnego położenia względem powierzchni S.

Za pomocą powyższych elementarnych operatorów, konstruujemy zarówno kinematyczne

operatory geometrii, jak i operatory kwantowych więzów. Razem z iloczynem skalarnym

stanowią podstawowe narzędzia do tworzenia teorii kwantowej.
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4.2 Transformacje cechowania Yanga-Millsa i więzy gaus-

sowskie

Celem niniejszego rozdziału jest wykonanie pierwszego przejścia przedstawionego w pa-

ragrafie 3.2.1

H(gr,φ)
kin

gaussowskie−−−−−−→ H(gr,φ)
G

dyfeomorficzne−−−−−−−−→ H(gr,φ)
(G,dyf).

Tym razem, jak opisaliśmy w poprzednim rozdziale zajmiemy się geometryczną czę-

ścią teorii. Dlatego pokażemy jak znaleźć geometryczne stany gaussowsko niezmiennicze

H(gr)
kin

gaussowskie−−−−−−→ H(gr)
G .

Przedstawione wyniki dotyczą kinematycznej przestrzeni Hilberta kanonicznej pętlowej

grawitacji kwantowej. Zdefiniujemy na niej działanie więzów Gaussa i znajdziemy stany

niezmiennicze względem cechowania Yanga - Millsa.

4.2.1 Unitarne transformacje kinematycznej przestrzeni Hilberta

W poprzedniej części zakładaliśmy, że kwantowy operator więzów Gaussowskich Ĝ(a),

gdzie a : M → SU(2), jest generatorem unitarnych transformacji cechowania. Prze-

kształcają one dowolną funkcję na przestrzeni A w inną funkcję w następujący sposób

ÛG(a) ·Ψ(A) = Ψ(a−1Aa+ a−1da). (4.19)

Interpretacja jest prosta w sytuacji, kiedy badamy stany na przestrzeni koneksji gładkich.

Rozważenie transformacji unitarnej generowanej przez Ĝ(a) na kinematycznej przestrzeni

Hilberta kanonicznej pętlowej grawitacji kwantowej, gdzie rozważane stany są funkcjami

na przestrzeni koneksji uogólnionej jest również możliwe.

Wykorzystujemy w tym celu zbiór funkcji cylindrycznych, który stanowi gęsty genera-

tor przestrzeni H(gr)
kin . Ponieważ funkcje cylindryczne zależą od A ∈ A jedynie poprzez

holonomię wzdłuż krawędzi, wystarczy wiedzieć w jaki sposób transformacja cechowania

działa na A(e). Standardowa zależność znana z geometrii różniczkowej mówi, że

A′ = a−1Aa+ a−1da

⇒ A′(e) = a−1(e(1)) A(e) a(e(0)). (4.20)
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Wyciągniemy z powyższego dwa wnioski ([31], [1]). W pierwszej kolejności w odniesieniu

do dowolnej funkcji cylindrycznej,

Ψ(α,f)(A) = f (A(e1), ..., A(eE)) (4.21)

Działanie transformacji generowanej prze Ĝ(a) przyjmuje postać

ÛG(a) ·Ψ(α,f)(A) = Ψ(a−1Aa+ a−1da) =

= f
(
a−1(e1(1))A(e1)a(e1(0)), ..., a−1(eE(1))A(eE)a(eE(0))

)
=

= f ′ (A(e1), ..., A(eE); a(v1), ...a(vV )) . (4.22)

Następnie obliczamy efekt działania transformacji cechowania generowanej przez więzy

Gaussa Ĝ(a) na funkcje sieci spinowej.

W poprzednim rozdziale opisaliśmy sposób konstrukcji funkcji poprzez przypisanie wierz-

chołkom i krawędziom grafu odpowiednich elementów. Bezpośrednim rachunkiem mo-

żemy sprawdzić, że działanie ÛG(a) sprowadza się do obrotów wektorów ξvi przypisanych

wierzchołkom grafu.

Działanie ÛG(a) nie zmienia kolorowania grafu reprezentacjami grupy SU(2), jakie przy-

pisujemy krawędziom i wierzchołkom. Zmienia natomiast wektor

Hρvi
3 ξvi → ρvi (a(vi)) ξvi ∈ Hρvi

. (4.23)

Oba powyższe sposoby zapisu działania grupy transformacji cechowania generowanych

przez więzy gaussowskie wykorzystamy do rozwiązania kwantowych więzów Gaussa. Czy

to wychodząc od działania na funkcje cylindryczne, czy na sieci spinowe otrzymamy de-

finicję przestrzeni H(gr)
G , które jest kolejnym krokiem, jaki musimy wykonać zgodnie ze

schematem opisanym w poprzedniej części.

4.2.2 Niezmiennicze sieci spinowe

Niezmiennicze sieci spinowe to funkcje sieci spinowych, które spełniają warunki niezmien-

niczości względem działania transformacji cechowania ÛG(a). Szukamy więc takiego ko-

lorowania grafów, które spełniają warunek

ÛG(a) ·Ψ(α,f)(A) = Ψ(α,f)(A). (4.24)

85



Prowadzi to do warunku, że zgodnie z (4.23) musi zachodzić

ξvi = ρvi (a(vi)) · ξvi . (4.25)

Wynika stąd, że niezmiennicze sieci spinowe charakteryzują się tym, że wszystkie re-

prezentacje przyporządkowane wierzchołkom są trywialne. Ponadto wektory przypisane

wierzchołkom są równe ξvi = 1.

Oznacza to, że całkowity spin w wierzchołku jest równy zeru. Niezmiennik ιv splata ze

sobą reprezentacje krawędzi wchodzących do wierzchołka, ze reprezentacjami krawędzi

wychodzących z wierzchołkami

ιv :
⊗

e∈In(v)

Hje →
⊗

e′∈Out(v)

Hje′
, (4.26)

gdzie In(v) oznacza zbiór krawędzi grafu kończących się w v, Out(v) oznacza zbiór krawę-

dzi grafu wychodzących z V a Hje i Hje′
oznaczają odpowiedzenie przestrzenie Hilberta,

na których działają te reprezentacje.

Odnosząc się do notacji przyjętej we wzorze (4.14), wybór trywialnej reprezentacji przy-

pisanej wierzchołkowi oznacza kolorowanie ich za pomocą ~l = (0, 0, ...0).

4.2.3 Uśrednianie po grupie

Ze względu na dużo większą intuicyjność rozwiązań więzów Gaussa za pomocą konstruk-

cji niezmienniczych sieci spinowych, metoda uśredniania po grupie nie jest stosowana do

rozwiązywania więzów gaussowskich. Są jednak sytuacje, kiedy metoda rozwiązywania

jest najskuteczniejszą, o ile nie jedyną metodą rozwiązywania więzów kwantowych.

Metoda uśredniania po grupie opiera się na całkowaniu względem grupy cechowania, co

formalnie możemy zapisać jako

Ψ(A)→
∫ ∏

x∈M

da(x) ÛG(a) ·Ψ(a). (4.27)

W przypadku funkcji cylindrycznych zachodzi wzór (4.22), który pozwala sprowadzić po-

wyższą całkę do całki skończenie wymiarowej

Ψ(α,f)(A)→
∫
SU(2)V

da(v1)...da(vV ) f ′(A(e1), ..., A(eE), a(v1), ..., a(vV )). (4.28)
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Powyższa całka definiuje odwzorowanie ηG, które przeprowadza funkcje cylindryczne w

funkcje, które są rozwiązaniami więzów Gaussa. Oznaczmy przeciwobraz Cyl następująco

ηG : Cyl→ CylG. (4.29)

4.2.4 Przestrzeń Hilberta stanów Yang-Mills niezmienniczych

Na koniec niniejszego rozdziału zdefiniujemy przestrzeń Hilberta stanów gaussowsko nie-

zmienniczych H(gr)
G . W pierwszej kolejności możemy zdefiniować H(gr)

G jako uzupełnienie

przestrzeni CylG określonej w (4.29) względem iloczynu skalarnego przeniesionego z Cyl

za pomocą ηG.

Alternatywne podejście polega na zastosowaniu rozbicia (4.12) oraz (4.14) dla odpowied-

nich funkcji sieci spinowych.

Na podstawie wniosków z poprzednich paragrafów tego rozdziału na temat kolorowania

stanów niezmienniczych względem cechowania Yanga-Millsa generowanych przez więzy

Gaussa, możemy zapisać

H(gr)
G =

⊕
α

H′(gr)(α,G) =
⊕
α

⊕
~j

H′(gr)
(α,~j,~l=~0)

 , (4.30)

gdzie

H′(gr)
(α,~j,~l=~0)

= Cyl(α,~j,~l=~0). (4.31)

W dalszej części, konstruując rozwiązania więzów dyfeomorficznych, będziemy domyślnie

rozważać przestrzeń Hilberta generowaną przez niezmiennicze sieci spinowe. Sieci takie

charakteryzowane są grafami, o kolorowanych krawędziach, nieredukowalnymi reprezen-

tacjami SU(2). Reprezentacje przypisane wierzchołkom są domyślnie reprezentacjami

trywialnymi.

4.3 Dyfeomorfizmy i więzy wektorowe

Kolejnym krokiem będzie wykonanie drugiego kroku przedstawionego na diagramie

H(gr,φ)
kin

gaussowskie−−−−−−→ H(gr,φ)
G

dyfeomorficzne−−−−−−−−→ H(gr,φ)
(G,dyf).
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Tak jak w poprzednim rozdziale ograniczymy się do rozważania części geometrycznej

modelu. Punktem wyjściowym będzie przestrzeń stanów niezmienniczych względem ce-

chowania Yanga-Millsa. Wychodząc z niej otrzymamy przestrzeń Hilberta stanów dyfe-

omorficznie niezmienniczych

H(gr)
G

dyfeomorficzne−−−−−−−−→ H(gr)
(G,dyf).

Otrzymaną w ten sposób przestrzeń Hilberta, potraktujemy jako punkt wyjściowy do

kwantyzacji więzu skalarnego.

4.3.1 Działanie dyfeomorfizmów na przestrzeni kinematycznej

Dla dowolnego pola wektorowego Na : M → TM , kwantowy operator więzów dyfeomor-

ficznych Ĉa(N
a) generuje działanie unitarne polegające na działaniu dyfeomorfizmu ϕ

generowanego przez pole Na na przestrzeni A koneksji na M . Możemy zapomnieć o polu

wektorowym Na generującym dyfeomorfizmy styczne do powierzchni M i rozpatrywać

grupę lokalnych dyfeomorfizmów

ϕ : M →M, (4.32)

generujących transformacje

Ûdyf (ϕ) : H(gr)
G → H(gr)

G , (4.33)

Ûdyf (ϕ) ·Ψ(A) = Ψ(ϕ∗A). (4.34)

W szczególności będziemy interesowali się działaniem grupy dyfeomorfizmów na gęsty

podzbiór generujący H(gr)
G stanów Yang-Mills niezmienniczych. Korzystając z rozkładu

(4.30) i (4.31) otrzymujemy działanie Ûdyf (ϕ) na funkcję sieci spinowej

Ûdyf (ϕ) ·Ψ(α,~j,~l=~0)(A) = Ψ(ϕ·α,ϕ·~j,ϕ·~l=~0)(A). (4.35)

Przez ϕ · α oznaczmy graf, którego krawędzie i wierzchołki są obrazami odpowiednich

krawędzi grafu α. Kolorowanie ϕ · ~j oznacza przeniesienie kolorowania ~j grafu α na

odpowiadające im krawędzie grafu ϕ · α.

Działanie grupy dyfeomorfizmów okazuje się być nie ciągłe nawet w sensie słabym. Jeżeli

ϕt oznacza jednoparametrową rodzinę dyfeomorfizmów generowaną przez pole wektorowe

styczne do M , to dla dowolnej funkcji cylindrycznej zachodzi

lim
t→0

(
Ψ(α,f)|Ûdyf (ϕ) ·Ψ(α,f)

)
= 0 6= 1 =

(
Ψ(α,f)|Ψ(α,f)

)
. (4.36)
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Z (4.35) wynika również, że jedynie dla funkcji stałej

Ψ(A) = const, (4.37)

zachodzi warunek (4.34).

Konsekwencją tego jest to, że rozwiązań więzów dyfeomorficznych będziemy szukać w

przestrzeni dualnej do CylG, która stanowi gęsty podzbiór generujący H(gr)
G .

4.3.2 Dyfeomorfizmy zachowujące grafy i symetrie grafu

W niniejszym paragrafie przedstawimy pojęcia, które będą wykorzystane zarówno do roz-

wiązania więzów dyfeomorficznych w kolejnych paragrafach, jak i do konstrukcji opera-

torów w kolejnych rozdziałach. Ze względu na możliwość przeprowadzenia równoległej

definicji pojęć, przeprowadzamy ją w jednym rozdziale.

Jedyna różnica w obu konstrukcjach będzie polegała na ograniczeniu zbioru możliwych

dyfeomorfizmów. W dalszej części wprowadzimy jedno oznaczenie, które będzie mogło

odnosić się do obu sytuacji w zależności od kontekstu i potrzeby.

Przez Dyf będziemy rozumieli jedno z dwóch. Bądź przestrzeń wszystkich dyfeomorfi-

zmów lokalnych przestrzeni M ,

Dyf = Dyf(M),

jak w przypadku rozwiązywania więzów dyfeomorficznych. Lub będziemy rozumieć zbiór

dyfeomorfizmów ϕ : M → M takich, że ϕ(x) = x dla konkretnego punktu x ∈ M , co

oznaczamy

Dyf = Dyf(M,x).

Ten zbiór będzie wykorzystany do konstrukcji operatorów w kolejnych rozdziałach.

Definiujemy trzy rożne grupy związane z siecią spinową, tzn. grafem α kolorowanym za

pomocą spinów ~j określających nieredukowalne reprezentacje SU(2). Oznaczamy poko-

lorowany graf w skrócie przez (α,~j). Przez samo α rozumiemy zbiór punktów jakie graf

przebiega w przestrzeni M .
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Definiujemy grupę

Dyf(α,~j) :=
{
ϕ ∈ Dyf |ϕ · α = α, ϕ ·~j = ~j

}
, (4.38)

tzn. element tych elementów Dyf , które zachowują funkcje sieci spinowych rozpięte przez

dany kolorowany graf. Dyfeomorfizmy takie mogą np zamieniać ze sobą krawędzie o takim

samym kolorowaniu, przeprowadzając je na siebie z zachowaniem orientacji.

Kolejno definiujemy grupę zachowującą krawędzie i wierzchołki grafu

TDyfα = {ϕ ∈ Dyf |ϕ · α = α, ϕ(ei) = ei} . (4.39)

W tym przypadku dyfeomorfizmy przeprowadzają każdą krawędź na samą siebie zacho-

wując jej orientację.

Przez symetrię sieci spinowej (α,~j) rozumiemy zbiór

GS(α,~j) = Dyf(α,~j)/TDyfα. (4.40)

Ilość elementów tej grupy oznaczamy

n(α,~j) = #GS(α,~j). (4.41)

W powyższych definicjach, w zależności od kontekstu i rozważanej sytuacji, Dyf oznacza

jedną z dwóch opisanych na początku przestrzeni. W kolejnych dwóch paragrafach, gdzie

będziemy konstruować H(gr)
(G,dyf) będziemy rozważać ϕ ∈ Dyf(M).

4.3.3 Dualna przestrzeń stanów dyfeomorficznie niezmienniczych

Konstrukcja przestrzeni rozwiązań więzów opiera się na przedstawionej w poprzednim

rozdziale metodzie uśredniania po grupie. W tym przypadku grupa Dyf nie jest zwarta

i całkowanie po niej ma charakter formalny i wyprowadza do przestrzeni dystrybucji na

koneksjach A,

〈Ψ| : Cyl→ C. (4.42)

Rozwiązanie więzów dyfeomorficznych otrzymuje się poprzez konstrukcję odwzorowania

ηDyf , które przeprowadza gęsty podzbiór przestrzeni H(gr)
G , składający się z niezmienni-

czych funkcji spinowych

Cyl(G,α) :=
⊕
α

Cyl(α,~j,~l=~0), (4.43)
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w przestrzeń dualną. Ze względu na rozkład (4.43) możemy zdefiniować ηDyf osobno na

każdym z komponentów sumy.

Obrazem funkcji sieci spinowej Ψ(α,~j,~l=~0) względem ηDyf jest element przestrzeni dualnej

Cyl(G,α) 3 Ψ(α,~j,~l=~0) → ηDyf

[
Ψ(α,~j,~l=~0)

]
∈ Cyl∗(G,α). (4.44)

Definiujemy go poprzez działanie na dowolną funkcję w następujący sposób

ηDyf

[
Ψ(α,~j,~l=~0)

] (
Ψ(β,~j′,~l′=~0)

)
=

1

n(α,~j)

∑
ϕ∈Dyf/Dyf(α,~j)

(
Ûdyf (ϕ) ·Ψ(α,~j,~l=~0)|Ψ(β,~j′,~l′=~0)

)
(4.45)

Jedyny niezerowy element sumy (4.45) to ten, gdy

ϕ(α) = β, ϕ ·~j = ~j′. (4.46)

Przeciwobraz odwzorowania ηDyf jest również Yang-Mills niezmienniczy, ponieważ roz-

ważamy sieci spinowe niezmiennicze względem działania cechowania generowanego przez

więzy gaussowskie.

4.3.4 Przestrzeń Hilberta stanów Yang-Mills i dyfeomorficznie

niezmienniczych

Ostatni element konstrukcjiH′(gr)(G,dyf) polega na zdefiniowaniu iloczynu skalarnego na prze-

ciwobrazie

Cyl(α,~j,~l=~0) → ηDyf

[
Cyl(α,~j,~l=~0)

]
. (4.47)

Jeżeli Ψ, Ψ′ ∈ Cyl(α,~j,~l=~0) to iloczyn skalarny definiujemy w następujący sposób

(ηDyf [Ψ] | ηDyf [Ψ′]) = ηDyf [Ψ](Ψ′). (4.48)

Przestrzeń Hilberta H′(gr)(G,dyf) otrzymujemy uzupełniając Cyl(α,~j,~l=~0) względem normy zde-

finiowanej powyższym iloczynem,

H′(gr)(α,G,dyf) = Cyl(α,~j,~l=~0). (4.49)

Ponieważ ze względu na definicje (4.45) dwie sieci spinowe, które leżą na tej samej orbicie

działania Dyf określają ten same element przestrzeni Hilberta, otrzymana przestrzeń
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składa się ze stanów Yang-Mills i dyfeomorficznie niezmienniczych. Sumując po klasach

równoważności grafów [α] otrzymujemy ostatecznie

H(gr)
(G,dyf) =

⊕
[α]

H′(gr)(α,G,dyf). (4.50)

W tym przypadku Dyf oznacza Dyf(M). W dalszej części przy definicji operatora więzu

skalarnego, wykorzystamy sytuację kiedy Dyf = Dyf(M,x).

Wprowadzenie opisanych powyżej przestrzeni pochodzi oryginalnie z pracy [38]. Dodat-

kowo można je znaleźć w [31].

4.4 Operatory na przestrzeni Hilberta stanów Yang-

Mills i dyfeomorficznie niezmienniczych

W poprzedniej części tej pracy przedstawiliśmy sposób konstrukcji przestrzeni rozwią-

zań więzów kwantowego modelu pola skalarnego sprzężonego z polem grawitacyjnym.

Fizyczna przestrzeń Hilberta opisująca kwantową teorię grawitacji sprzężonej z polem

skalarnym otrzymujemy rozwiązując równanie kwantowych więzów skalarnych na prze-

strzeni H(gr,φ)
(G,dyf), którą z kolei otrzymujemy rozważając obraz gęstego podzbioru H(gr)

(G,dyf)

względem ηDyf . Ostatnią z wymienionych przestrzeni, w poprzednich rozdziałach skon-

struowaliśmy posługując się metodami kanonicznej pętlowej grawitacji kwantowej.

Za pomocą (3.34) oraz (3.35) konstruujemy z gęstego podzbioruH(gr)
(G,dyf) przestrzeńH

(gr,φ)
(G,dyf).

Następnie za pomocą geometrycznych operatorów zdefiniowanych na H(gr,φ)
(G,dyf) za pomocą

konstrukcji opisanej w Rozdziale 3.4 otrzymujemy obserwable Diraca oraz znajdujemy

rozwiązanie więzów skalarnych.

Przeniesienie operatorów geometrycznych kanonicznej pętlowej grawitacji kwantowej do

tej przestrzeni opiszemy w niniejszym rozdziale. Zdefiniujemy również operatory dystry-

bucyjne, które są zaczepione w punkcie. Posłużą one w kolejnym rozdziale do zdefiniowa-

nia kwantowych operatorów opisujących więzy skalarne.
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4.4.1 Definicja operatorów

Jak opisaliśmy w poprzednich paragrafach, będziemy obecnie szukać operatorów na prze-

strzeni H(gr,φ)
(G,dyf). Otrzymujemy je rozpatrując operatory kanonicznej pętlowej grawitacji

kwantowej na przestrzeni funkcji cylindrycznych Cyl.

Każdy operator L̃, który jest niezmienniczy względem działania grupy dyfeomorfizmów

Dyf(M) oraz cechowania Yanga-Millsa, zdefiniowany na Cyl, pozwala zdefiniować ope-

rator na H(gr)
(G,dyf). Definiujemy go za pomocą relacji dualności w następujący sposób

〈L̂ · ηDyf(M)[Ψ] | Ψ′〉 := 〈ηDyf(M)[Ψ] | L̃ ·Ψ′〉 = 〈ηDyf(M)[L̃ ·Ψ] | Ψ′〉. (4.51)

Z powyższego równania odczytujemy, że L̃→ L̂, gdzie L̂ przeprowadza

H(gr)
(G,dyf) 3 ηDyf(M)[Ψ]→ L̂ · ηDyf(M)[Ψ] ∈ H(gr)

(G,dyf), (4.52)

w taki sposób, że

L̂ · ηDyf(M)[Ψ] = ηDyf(M)[L̃ ·Ψ]. (4.53)

Następnie za pomocą konstrukcji opisanej w Paragrafie III.4.2, przenosimy działanie L̂ z

H(gr)
(G,dyf) na H

(gr,φ)
(G,dyf).

Ciężar problemu przenosi się na znalezienie operatorów L̃, które są Yang-Mills i dyfeomor-

ficznie niezmiennicze. Przykłady takich operatorów można znaleźć na przykład w [40] i

[1]. Przykładem takim jest operator całkowitej objętości M ,

ṼM =

∫
M

d3x
√̃
q(x). (4.54)

Operatory te nie są interesujące z punktu widzenia lokalnych właściwości Wszechświata,

które wymagają rozszerzenia pojęcia operatora o operatory dystrybucyjne zaczepione w

punkcie.

Przyjmujemy następującą konwencję notacyjną. Operatory na przestrzeni kinematycznej

stanów Yanga-Millsa niezmienniczych oznaczamy za pomocą tyldy - L̃. Operatory na

przestrzeni Dyf(M) lub Dyf(M,x) otrzymane za pomocą ηDyf oznaczamy za pomocą

daszka - L̂.
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4.4.2 Operatory dystrybucyjne zaczepione w punkcie

Na kinematycznej przestrzeni Hilberta kanonicznej pętlowej grawitacji kwantowej, mo-

żemy zdefiniować operatory dystrybucyjne, które możemy uważać, za zaczepione w punk-

cie x ∈M . Przykładowo √̃
q(x) =

∑
x′∈M

δ(x, x′)
√̃
qx′ . (4.55)

Operator √̃qx′ jest niezmienniczy względem działaniaDyf(M,x). Suma po prawej stronie

równania (4.55) jest dobrze zdefiniowana i zawiera jedynie skończenie wiele elementów w

działaniu na dowolną funkcję cylindryczną określoną na dowolnym grafie α,(∫
M

d3xF (x)
√̃
qx

)
·Ψ(α,f) =

(
V∑
i=1

F (vi)
√̃
qvi

)
·Ψ(α,f), (4.56)

gdzie vi są wierzchołkami grafu α, a F : M → R dowolną funkcją rozsmarowującą.

Za pomocą ηDyf , gdzie w tym przypadku Dyf = Dyf(M,x) otrzymujemy z √̃qx opera-

tor √̂qx działający na przestrzeni H(gr)
(G,dyf,x). Przestrzeń tą otrzymujemy zgodnie z proce-

durą opisaną w poprzednim rozdziale, gdzie Dyf = Dyf(M,x).

Na podstawie rozumowania i wyników przedstawionych w [38] otrzymujemy operator

√̂
q(x) =

∑
x′∈M

δ(x, x′)
√̂
qx′ , (4.57)

który jest operatorem Dyf(M,x) niezmienniczym.

4.4.3 Iloczyn operatorów dystrybucyjnych

Mając dane

Ã(x) =
∑
x′∈M

δ(x, x′)Ãx′ , B̃(x) =
∑
x′∈M

δ(x, x′)B̃x′ , (4.58)

z których każdy spełnia równanie analogiczne do (4.56) definiujemy√
Ã(x)B̃(x) =

∑
x′∈M

δ(x, x′)

√
S(Ãx′B̃x′), (4.59)

który również spełnia (4.56). S oznacza symetryzację, a jego działanie ograniczone jest

do części przestrzeni na której S(Ãx′B̃x′) jest dodatnio określone.
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Aby wykazać powyższe, rozważamy regularyzację operatorów postaci

Ãε(x) =

∫
M

d3yÃ(y)δε(y, x), B̃ε(x) =

∫
M

d3yB̃(y)δε(y, x), (4.60)

z funkcją rozsmarowującą, której dziedzina jednostajnie zbiega do punktu x = y, gdy

ε→ 0. Ponadto funkcja δε(y, x)→ δ(x, y).

W działaniu na funkcję cylindryczną określoną na grafie α dostajemy

(
Ãε(x)B̃ε(x)

)
Ψ(α,f) =

(
V∑
i=1

(δε(x, vi))
2 ÃviB̃vi

)
Ψ(α,f). (4.61)

Suma po prawej stronie równania zawiera skończoną ilość elementów. Otrzymujemy z

stąd (√
Ãε(x)B̃ε(x)

)
Ψ(α,f) =

(
V∑
i=1

δε(x, vi)

√
ÃviB̃vi

)
Ψ(α,f). (4.62)

Ostatecznie mamy(∫
d3xF (x)

√
Ãε(x)B̃ε(x)

)
Ψ(α,f) →

(
V∑
i=1

F (vi)

√
ÃviB̃vi

)
Ψ(α,f). (4.63)

Następnie, korzystając w wyników tego rozdziału, otrzymamy fizyczną przestrzeń Hilberta

i rozwiązanie kwantowych więzów skalarnych.

4.5 Fizyczna przestrzeń Hilberta i rozwiązania więzów

skalarnych

Ostatni krok konstrukcji nowego modelu kwantowej grawitacji sprzężonej z polem skalar-

nym wymaga zdefiniowania operatora fizycznego Hamiltonianu (3.75),

ĥfiz =

∫
d3x

√
−2

√
ˆq(x)Ĉgr(x). (4.64)

Występujący w nim operator Ĉgr został zdefiniowany w [37]. Generalizacja i własności

tego operatora zostały opisane w [1] i [38].

Dotychczas więzy skalarne Ĉgr były rozważane w sytuacji kiedy rozsmarowywano je wzglę-

dem dowolnej funkcji lapsu
∫
M
d3xN(x)Ĉgr, lub jako

∫
M
d3x

ˆ√
q(x)

−1

Ĉgr(x)Ĉgr(x)†, tzw.

95



master wiąz.

Obecna sytuacja wymaga nowego podejścia. Definiujemy operator

√
−2

√
ˆq(x)Ĉgr(x) na

przestrzeni H(gr)
(G,dyf). Podejściu temu poświęcony będzie obecny rozdział.

4.5.1 Grawitacyjne kwantowe więzy skalarne

Kwantowy operator skalarnych więzów grawitacji zdefiniowany w [1] przyjmuje postać∫
d3xN(x)Ĉgr(x) =

∑
x∈M

N(x)Ĉgr
x . (4.65)

Operator Ĉgr
x działa w wierzchołku grafu o ile pokrywa się on z punktem x ∈ M . Jego

działanie zmienia graf poprzez doczepienie pętelki zaczepionej w danym wierzchołku le-

żącej w płaszczyźnie wyznaczonej przez wektory styczne do krawędzi.

Ten sposób regularyzacji i definiowania Ĉgr
x nie jest określony ściśle i pozostawia pewną

dowolność. Dla przykładu definicja Thiemanna [37] opiera się na innym przypisaniu pę-

telki do wierzchołku grafu.

Ponieważ operatory Ĉgr
x przekształcają dziedzinę, która zawiera się w H(gr)

(G,dyf) w podzbiór

przestrzeni H(gr)
(G,dyf,x), której konstrukcja została przedstawiona w Rozdziale 4.3 przy wy-

borze Dyf = Dyf(M,x).

Jak pokazano w [38] operator ten jednoznacznie i naturalnie definiuje operator działający

na przestrzeni H(gr)
(G,dyf,x),

Ĉgr
x : H(gr)

(G,dyf,x) → H
(gr)
(G,dyf,x). (4.66)

Zdefiniowanie fizycznego hamiltonianu wymaga od nas określenia przestrzeni, na której

jest dobrze zdefiniowany pierwiastek. W tym celu dokonujemy symetryzacji operatora

więzów skalarnych w następujący sposób

Ĉgr
x =

1

2

(
Ĉgr
x + Ĉgr†

x

)
. (4.67)

Od tej pory przez Ĉgr
x będziemy rozumieli operator określony tym równaniem.
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4.5.2 Fizyczny Hamiltonian

Definicja fizycznego Hamiltonianu określonego w (4.64) będzie korzystała z dwóch defini-

cji.

Zdefiniowany w poprzednim rozdziale operator√̂
q(x) =

∑
x′∈M

δ(x, x′)
√̂
qx′ , (4.68)

oraz operatora

Ĉgr(x) =
∑
x′∈M

δ(x, x′)Ĉgr
x′ . (4.69)

Pozwalają one zgodnie z Paragrafem 4.4.3 zdefiniować√
−2

√
ˆq(x)Ĉgr(x). (4.70)

Opisana w poprzednim rozdziale regularyzacja iloczynów, wraz z symetrycznym uporząd-

kowaniem operatorów określają kwantową gęstość hamiltonianu

ĥ(x) :=

√
−2

ˆ√
q(x)

1/2

Ĉgr(x)
ˆ√
q(x)

1/2

=
∑
x′∈M

δ(x, x′)

√
−2 ˆ√qx′

1/2
Ĉgr
x′

ˆ√qx′
1/2
. (4.71)

Jest on zdefiniowany na H(gr)
(G,dyf,x+) ⊂ H

(gr)
(G,dyf,x), które oznacza podprzestrzeń rozpiętą

przez dodatnią część spektrum operatora −2 ˆ√qx′
1/2
Ĉgr
x′

ˆ√qx′
1/2

.

Fizyczną przestrzeń Hilberta Hfiz otrzymujemy jako obraz tej przestrzeni

Hfiz = ηM

[
H(gr)

(G,dyf,x+)

]
, (4.72)

względem odwzorowania

ηM : H(gr)
(G,dyf,x) → H

(gr)
(G,dyf) (4.73)

zdefiniowanego w następujący sposób

H(gr)
(G,dyf,x) 3 ηDyf(M,x)[Ψ]→ ηDyf(M)[Ψ] ∈ H(gr)

(G,dyf). (4.74)

Fizyczny Hamiltonian przyjmuje postać

ĥfiz =

∫
M

d3xĥ(x) =
∑
x′∈M

δ(x, x′)

√
−2 ˆ√qx′

1/2
Ĉgr
x′

ˆ√qx′
1/2
. (4.75)
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4.5.3 Dowolności w modelu i ich ograniczenia

W prezentowanej konstrukcji pozostają dwie dowolności polegające na

• dowolność regularyzacji Ĉgr
x , polegająca na wyborze pętelki zaczepionej w wierz-

chołku grafu, na który działa operator;

• dowolność samosprzężonego rozszerzenia operatora zsymetryzowanego (4.67).

Dowolności te ograniczone są wymaganiami związanymi z uniknięciem anomalii kwanto-

wych w rozważanej teorii. Oznacza to, znikanie komutatora[
ĥ(x), ĥ(y)

]
= 0. (4.76)

W ten sposób zakończyliśmy definiowanie niezbędnych elementów, kończąc konstruk-

cję modelu opisanego w drugiej części niniejszej pracy. Wnioski końcowe, otwarte pro-

blemy i propozycje dalszych badań przedstawione zostały w końcowej części pracy.

4.6 Alternatywna propozycja kwantyzacji Ĉgr

Definicja kwantowego operatora fizycznego hamiltonianu wykorzystuje znane w literatu-

rze kwantyzacje operatora Ĉgr. Rónią się one sposobem regularyzacji i jedna pochodzi od

Thiemanna [37], a druga od Ashtekara i Lewandowskiego [1].

Obecnie przedstawimy propozycję alternatywną, kwantyzacji grawitacyjnego więzu ska-

larnego. Niniejsza porpozycja jest obecnie przedmiotem naszych badań i opiera się na

nowym operatorze geometrii kwantowej, definiującym skalar krzywizny.

4.6.1 Wyjściowa postać więzów skalarnych ogólnej teorii względ-

ności

Stosowane dotychczas podejścia do regularyzacji grawitacyjnych więzów skalarnych roz-

poczynają się od sprowadzenia więzów do postaci (wzór (6.13) w [1])

Cgr(N) =
( γ

32πG

) 1
2

∫
M

d3xN
P a
i P

b
j√

detP

[
εij k − 2(1 + γ2)Ki

[aK
j
b]

]
. (4.77)

Następnie przedstawia sie powyższy wiąz w postaci

Cgr(N) =
√
γCEucl(N)− 2(1 + γ2)T (N). (4.78)
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Kwantyzacja przebiega w dwóch etapach, gdzie osobno dokonujmy regularyzancj CEucl(N)

oraz T (N). Ten drugi odpowiada drugiemu wyrazowi w nawiasie kwadratowym w (4.77).

Nasza nowa propozycja polega na zastąpieniu wyrazu T (N) innym. Wyrażenie (4.77)

otrzymujemy przekształcając bardziej elementarną postać więzu skalarnego w celu wyeli-

minowania w niej występującego skalaru krzywizny R(x). Możemy zapisać

Cgr(N) =
( γ

32πG

) 1
2

∫
M

d3xN

[
P a
i P

b
j√

detP
εij k − (1 + γ2)

√
qR(x)

]
. (4.79)

Podobnie jak poprzednio zapisujemy

Cgr(N) =
√
γCEucl(N)− 2(1 + γ2)T̃ (N), (4.80)

gdzie

T̃ (N) =
( γ

32πG

) 1
2

∫
M

d3xN
√
qR(x). (4.81)

Kwantyzacja pierwszego członu przebiega jak poprzednio, natomiast kwantyzacja (4.81)

opiera się na opisanej poniżej tożsamości geometrycznej.

4.6.2 Podstawowe tożsamości geometryczne

Rozważamy 3-wymiarową, gładką rozmaitość M. Mamy na niej tensor metryczny qab o

sygnaturze(+,+,+). Koneksja Levi-Civity związana z metryką qab będzie oznaczona ∇, a

Ra
bcd jest tensorem Riemanna zdefiniowanym przez ∇. Krzywiznę skalarną R definiujemy

w standardowy sposób

Rab = Rc
acb, R = qabRab. (4.82)

Idea pomiaru krzywizny skalarnej opiera się na badaniu relacji pomiędzy objętością zwar-

tego, wypukłego obszaru zawierającego dany punkt x i pola powierzchni jego brzegu.

Klasyczne wyrażenie, w granicy obszaru zbiegającego do punktu względem topologii me-

trycznej, pozwala w ten sposób przybliżać skalar krywizny w punkcie. Niezbędny jest

jednak wybór kształtu ściąganego do punktu obszaru.

Dla każdego punktu p ∈M istnieje wypukłe otoczenie normalne U . Jedna z jego własności

mówi, że każde dwa punkty w jego wnętrzu możemy połączyć za pomocą jednoznacznej
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geodezyjnej. Możemy na takim otoczeniu zdefiniować funkcję odległości (metrykę) po-

między dwoma punktami

∀p, r ∈M d(p, r) = długość jednoznacznej geodezyjnej łączącej dwa punkty. (4.83)

Za jej pomocą definiujemy „sferę geodezyjną” o promieniu r i środku w punkcie x

S(x,r)[qab] = {y ∈ U | d(x, y) = r} ,

oraz podobnie „kulę geodezyjną”,

B(x,r)[qab] = {y ∈ U | d(x, y) ≤ r} .

S(x,r) jest brzegiem B(x,r). Ta definicja zachodzi dla odpowiednio małych r. Jednak sam

region zależy do tensora metrycznego.

Kolejny krok polega na wyprowadzeniu wyrażenia łączącego pole powierzchni S(x,r) -

Ar(S(x,r)) z objętością V ol(B(x,r)) i skalarem krzywizny R(x). W tym momencie niezbędna

jest uwaga na temat kształtu ściąganego obszaru. W naszym przypadku zdefiniowaliśmy

geodezyjne kule i sferę, jednak można zdefiniować dowolny inny kszatałt, który następnie

będziemy ściągać do punktu. Otrzymany wynik będzie inny. Jednak postać równania

łączącego powyższe wielkości będzie taka sama. Różnice będą występowały w stałych

współczynnikach. Z drugiej strony dokonany przez nas wybór wydaje się najprostszy z

możliwych i nie odwołuje się do żadnych własności rozmaitości innych niż metryka. W

szczególności nie zależy od układu współrzędnych. Jednak badania nad wpływem tego

wyboru na ostateczny wynik ciągle muszą być przeprowadzone i są obecnie przedmiotem

badań naszego zespołu. Ten najprostszy z możliwych wyborów traktujemy jako pierwszy

krok w badaniach przedstawionego sposobu regularyzacji.

Wybieramy do obliczeń najprostszy i najbardziej naturalny układ współrzędnych normal-

nych Gaussa. Punkt x wybieramy w początku takiego układu x = (0, 0, 0), znany wynik

pozwala wyrazić tensor metryczny w jego otoczeniu w postaci

qij(x
1, x2, x3) = δij +

1

3
Rikhj(0, 0, 0)xkxh. (4.84)

Dla odpowiednio małych współrzędnych mamy

q(x1, x2, x3) := det qij(x
1, x2, x3) = 1 +

1

3
Rikhix

kxh, (4.85)√
q(x1, x2, x3) :=

√
det qij(x1, x2, x3) = 1 +

1

6
Rikhix

kxh. (4.86)
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Zamieniając współrzędne na współrzędne sferyczne i ograniczając się do r << 1 bezpo-

średnim rachunkiem możemy obliczyć

V ol
(
B(x,r)[qab]

)
=

4

3
πr3 − 2

45
πR(x)r5, (4.87)

oraz

Ar
(
S(x,r)[qab]

)
= 4πr2 − 2

9
πR(x)r4. (4.88)

Przekszatałcając wyrażenia (4.87) oraz (4.88) otrzymujemy pożądany rezultat

R(p) =
2160

7
π

3
2
V ol

(
B(x,r)[qab]

)
Ar
(
S(x,r)[qab]

) 5
2

− 360

7
π

1

Ar
(
S(x,r)[qab]

) . (4.89)

Powyższe równanie zachodzi w granicy r → 0.

4.6.3 Kwantyzacja skalara krzywizny

Podstawowa idea polega teraz na zdefiniowaniu operatorów geometrycznych w sposób

w jaki uprzednio zdefiniowane były operatory pola powierzchni [39] oraz objętości [40].

Podstawowa idea jaka jest tam przedstawiona polega na pracy w krokach:

• znaleźć klasyczne wyrażenie opisujące interesującą nas wielkość;

• wyrazić je za pomocą zmiennych Ashtekara lub już skwantowanych obiektów;

• wykorzystać aparat kanonicznej pętlowej grawitacji kwantowej do kwantyzacji inte-

resujących nas obiektów.

W naszym przypadku (4.89) jest podstawową zależnością, która posłóży do otryzmana

kwantowego wyrażenia

̂̃T (N) =
̂( γ

32πG

) 1
2

∫
M

d3xN
√
qR(x). (4.90)

Wszystkie elementy składowe niezbędne w powyższej kwantyzacji takie jak √̂q oraz ope-

ratory powierzchni i objętości są znane. Jednak dokładna procedura kwantyzacji wymaga

dalszej pracy i będzie prowadzona przez nasz zespół.
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Rozdział 5

Podsumowanie

5.1 Uwagi podsumowujące

W niniejszej pracy przedstawiliśmy kwantowy model bezmasowego pola skalarnego Kleina

– Gordona sprzężonego z grawitacją. Model ten opisuje wszystkie stopnie swobody układu

bez odwoływania się do redukcji ich ilości związaną z narzuconą dodatkową symetrią.

Znikanie potencjału sprawia, że model ulega deparametryzacji i możemy zdefiniować ob-

serwable Diraca. Pole skalarne φ przyjmuje rolę czasu relacyjnego, względem którego

określona jest ewolucja. Użycie w miejsce bezmasowego pola φ dowolnego innego pola

Modelu Standardowego jest możliwe, jednak model nie deparametryzuje się w ogólnym

przypadku. W związku z tym wszystkie techniczne ułatwienia, jakie miały zastosowanie

w tym modelu przestają się stosować. Dyskusję rodzajów materii, które pozwalają doko-

nać deparametryzacji ogólnej teorii względności można znaleźć w [12].

Prezentowana kwantyzacja modelu pola skalarnego sprzężonego z polem grawitacyjnym

jest kompletna. Wszystkie niezbędne obiekty matematyczne istnieją i są znane z forma-

lizmu kanonicznej pętlowej grawitacji kwantowej. Jenakże istnieją niejednoznaczności,

znane również z pętlowej grawitacji kwantowej, dotyczące kwantowego operatora więzów

skalarnych i wynikające z ich nie liniowej postaci. Jedynym sposobem prowadzącym do

ich głębszego zrozumienia i wytłumaczenia jest zaczęcie stosowania modelu i badanie ich

wpływu na wyniki.
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5.2 Porównanie z kwantową kosmologią pętlową i mo-

delem Browna-Kuchara

Zastosowanie zmiennych relacyjnych nie jest nowym pomysłem. Dotychczas były one

zastosowane w dwóch przypadkach, które korzystały z wyników kanonicznej pętlowej gra-

witacji kwantowej.

Pierwszym jest kosmologiczny model Ashtekara–Pawłowskiego–Singha, ktory opisuje jed-

norodny i homogenicznyWszechświat wypełniony bezmasowym polem skalarnym ([16],[15]

lub podsumowanie ([41]).

Zredukowane symetrycznie modele pozwalają kwantować jednorodny i izotropowy model

Wszechświata oraz zrozumieć naturę Wielkiego Wybuchu, a raczej jego braku. W jego

miejsce pojawia się obszar kwantowy, po którego drugiej stronie znajduje się Wszech-

świat analogiczny do naszego ulegający kurczeniu się. Inne modele kosmologiczne takie

jak otwarte i zamknięte modele FRW jak i wpływ inflacji na osobliwość początkową były

badane w [42], [43], [44].

W odróżnieniu od kanonicznej pętlowej kosmologii podejście prezentowane w niniejszej

pracy nie zakłada istnienia żadnych symetrii i nie dokonujemy redukcji fizycznych stopni

swobody z tym związanych.

Inaczej wygląda sytuacja modelu Browna–Kuchara opisanego w [9], w którym rozważane

są cztery pola skalarne mające własności pyłu, względem którego opisujemy relacyjną

dynamikę. Jego kwantyzację w oparciu o kanoniczną pętlową grawitację opisano w [24].

W tym celu jednak model BK musi zostać rozszerzony o obserwable Diraca względem

więzów skalarnych. W odróżnieniu od obecnie prezentowanego modelu w podejściu BK

więzy wektorowe rozwiązywane są klasycznie, natomiast dla więzów skalarnych sformuło-

wany został warunek kwantowy.

Podejście [24] oparte na kwantyzacji na zredukowanej przestrzeni fazowej polega na kla-

sycznym rozwiązaniu więzów dyfeomorficznych i skalarnych. Jedynie więzy Gaussa, po-
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dobnie jak w naszym modelu są rozwiązywane kwantowo. Podejście takie prowadzi do

klasycznej algebry obserwabli Diraca. Ze względu na deparametryzację więzów skalar-

nych, algebra ta okazuje się izomorficzna z algebrą kinematyczną. Odróżnia to stosowane

tam podejście od tego z niniejszej rozprawy, gdzie kwantyzacja algebry obserwabli odbywa

się na fizycznej przestrzeni Hilberta. Ponieważ w [24] kinematyczna algebra obserwabli

jest izomorficzna z fizyczną algebrą, również kinamatyczna przestrzeń Hileberta kanonicz-

nej pętlowej grawitacji może służyć za przestrzeń fizyczną.

Podobnie do prezentowanego podejścia, generator fizycznej dynamiki w [24], tak zwany

fizyczny Hamiltonian jest niezmienniczy względem działania lokalnych dyfeomorfizmów.

W podejściu opartym na kwantyzacji na zredukowanej przestrzeni fazowej prowadzi to, w

celu uniknięcia anomalii, do operatorów niezmienniczych względem lokalnych dyfeomorfi-

zmów. W [45] pokazano, że operatory takie zdefiniowane na standardowej kinematycznej

przestrzeni Hilberta kanonicznej pętlowej grawitacji nie mogą zmieniać grafów. Oznacza

to, że muszą zachowywać grafy, na które działają co oznacza, że również operatory więzów

([1], [37]) wchodzące w skład fizycznego hamiltonianu [24] muszą zostać skwantowane w

sposób zachowujący grafy.

Kinematyczna przestrzeń Hilberta kanonicznej pętlowej grawitacji jest generowana przez

funkcje cylindryczne określone na wszystkich możliwych grafach. Oryginalny operator

wiezów skalarnych nie zachowuje grafu, na który działa. Stąd w modelu [24], gdzie fi-

zyczny Hamiltonian musi zachowywać grafy, więzy kwantowe muszą być w odpowiedni

sposób przedefiniowane aby spełniać ten warunek.

Prezentowane podejście znacznie upraszacza tą techniczną komplikację.

5.3 Możliwe zastosowania modelu

Wyporwadzony model może posłużyć do weryfikacji własności kwantowej czasoprzestrzeni,

których spodziewamy się dotychczasowych odkryć zarówno kwantowej teorii pola w za-

krzywionej czasoprzestrzeni jak i kanonicznej pętlowej grawitacji kwantowej.
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W kanonicznej pętlowek kosmologii kwantowej udało się dotchnąć zagadki Wielkiego Wy-

buchu, który wydaje się być zastąpiony Wilekim Odbiciem. Korzystając z naszego modelu

możemy pokusić się o próby rozważenia problemu osobliwości w sytuacjach pozbawionych

symetrii. Model nasz pozwoli zbliżyć się nie tylko do osobliwości początkowej ale rów-

nież zrozumieć osobliwości skrywające się w czarnych dziurach.

Wszystkie opisane wyżej zagadnienia wydają się być w zasięgu prezentowanego modelu

i być może jego dalszych uogólnień. Problemy, jakie napotkamy wydają się być natury

czysto technicznej i matematycznej.

Mam nadzieję, że zaprezentowane tutaj wyniki, które zostały również zaprezentowane

w dwóch publikacjach [13] oraz [14] otworzą drogę do dalszych badań i pozwolą znaleźć

sposób na zrozumienie kolejnych zagadek kwantowej grawitacji.
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Dodatek A

Nawias Poissona nowych więzów

skalarnych w przypadku ogólnym pola

skalarnego

Zaprezentowane w [9] oraz [26] rachunek pokazuje, że

{C ′(x), C ′(y)} = 0, (A.1)

w przypadku, w którym potencjał pola skalarnego jest tożsamościowo równy zeru

V (φ(x)) ≡ 0. (A.2)

Opierając się na przedstawionych tam wyliczeniach, w tym dodatku pokazujemy, że (A.1)

wtedy i tylko wtedy, gdy zachodzi (A.2).

W tym celu wprowadzamy następujące oznaczenia:

C ′(x) = π(x)−
√

Λ(x) gęstość skalarna o wadze 1 (A.3)

Λ(x) =
√
q(x)λ(x) gęstość skalarna o wadze 2 (A.4)

λ(x) = −
(
Cgr(x) +

√
q(x)V (φ(x))

)
+
√
G(x) gęstość skalarna o wadze 1 (A.5)

G(x) =
(
Cgr(x) +

√
q(x)V (φ(x))

)2

− F (x) gęstość skalarna o wadze 2 (A.6)

F (x) = qab(x)Cgr
a (x)Cgr

b (x) gęstość skalarna o wadze 2 (A.7)

W przypadku V (φ(x)) ≡ 0 powyższe wielkości będziemy oznaczać za pomocą indeksu 0

i sprowadzają się one do analogicznych obiektów wprowadzonych w [9] i [26]. F (x), które
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nie zależą od pola skalarnego nie wymaga rozróżniania za pomocą indeksu 0 i mamy tylko

jedną taką wartość.

Korzystamy z wyników z [9], które pokazują, że

{F (x), F (y)} = 0, (A.8)

oraz

{G0(x), G0(y)} = 0. (A.9)

Ogólnie nie ograniczając się do przypadku znikającego potencjału pola skalarnego mamy

{G(x), G(y)} =

=

{(
Cgr(x) +

√
q(x)V (φ(x))

)2

− F (x),
(
Cgr(y) +

√
q(y)V (φ(y))

)2

− F (y)

}
=

= {F (x), F (y)}+

− 2
(
Cgr(x) +

√
q(x)V (φ(x))

){
Cgr(x) +

√
q(x)V (φ(x)) , F (y)

}
+

− 2
(
Cgr(y) +

√
q(y)V (φ(y))

){
F (x), Cgr(y) +

√
q(y)V (φ(y))

}
+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)(
Cgr(y) +

√
q(y)V (φ(y))

)
×

×
{
Cgr(x) +

√
q(x)V (φ(x)) , Cgr(y) +

√
q(y)V (φ(y))

}
(A.10)

Na mocy wzoru (A.8) pierwszy wyraz znika. Przy przekształcaniu kolejnych wyrazów

wykorzystujemy równości

{V (φ(x)) , F (y)} = {Cgr(x), V (φ(y))} = 0, (A.11)

które wynikają z faktu, że zarówno F (x) jak i Cgr(x) nie zależą od π(x). Możemy dalej
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przekształcić (A.10).

{G (x), G(y)} =

=− 2
(
Cgr(x) +

√
q(x)V (φ(x))

)
{Cgr(x), F (y)}+

− 2
(
Cgr(x) +

√
q(x)V (φ(x))

)
V (φ(x))

{√
q(x), F (y)

}
+

− 2
(
Cgr(y) +

√
q(y)V (φ(y))

)
{F (x), Cgr(y)}+

− 2
(
Cgr(y) +

√
q(y)V (φ(y))

)
V (φ(y))

{
F (x),

√
q(y)

}
+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)(
Cgr(y) +

√
q(y)V (φ(y))

)
{Cgr(x), Cgr(y)}+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)
V (φ(x))

(
Cgr(y) +

√
q(y)V (φ(y))

){√
q(x), Cgr(y)

}
+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)(
Cgr(y) +

√
q(y)V (φ(y))

)
V (φ(y))

{
Cgr(x),

√
q(y)

}
(A.12)

Wyrazy w drugiej i czwartej oraz szóstej i siódmej są proporcjonalne do delty δ(x, y).

Dodatkowo zmienne x i y zamieniają sie w nich parami, co powoduje antysymetryzację.

Zgodnie z wynikami przedstawionymi w [26] wyrazy takie znikają. Stąd otrzymujemy:

{G(x), G(y)} =

=− 2
(
Cgr(x) +

√
q(x)V (φ(x))

)
{Cgr(x), F (y)}+

− 2
(
Cgr(y) +

√
q(y)V (φ(y))

)
{F (x), Cgr(y)}+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)(
Cgr(y) +

√
q(y)V (φ(y))

)
{Cgr(x), Cgr(y)}

(A.13)
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Wykorzystując definicję F (x) oraz symetrię qab(x), otrzymujemy kolejno z (A.13)

{G(x), G(y)} =

=− 4
(
Cgr(x) +

√
q(x)V (φ(x))

)
qab(y)Cgr

b (y) {Cgr(x), Cgr
a (y)}+

− 4qab(x)Cgr
b (x)

(
Cgr(y) +

√
q(y)V (φ(y))

)
{Cgr

a (x), Cgr(y)}+

+ 4
(
Cgr(x) +

√
q(x)V (φ(x))

)
(Cgr(y)+) {Cgr(x), Cgr(y)} =

=− 4Cgr(x)qab(y)Cgr
b (y) {Cgr(x), Cgr

a (y)}+

− 4
√
q(x)V (φ(x)) qab(y)Cgr

b (y) {Cgr(x), Cgr
a (y)}+

− 4qab(x)Cgr
b (x)Cgr(y) {Cgr

a (x), Cgr(y)}+

− 4qab(x)Cgr
b (x)

√
q(y)V (φ(y)) {Cgr

a (x), Cgr(y)}+

+ 4Cgr(x)Cgr(y) {Cgr(x), Cgr(y)}+

+ 4
√
q(x)V (φ(x))Cgr(y) {Cgr(x), Cgr(y)}+

+ 4Cgr(x)
√
q(y)V (φ(y)) {Cgr(x), Cgr(y)}+

+ 4
√
q(x)V (φ(x))

√
q(y)V (φ(y)) {Cgr(x), Cgr(y)} =

= {G0(x), G0(y)}+

− 4
√
q(x)V (φ(x)) qab(y)Cgr

b (y) {Cgr(x), Cgr
a (y)}+

− 4qab(x)Cgr
b (x)

√
q(y)V (φ(y)) {Cgr

a (x), Cgr(y)}+

+ 4
√
q(x)V (φ(x))Cgr(y) {Cgr(x), Cgr(y)}+

+ 4Cgr(x)
√
q(y)V (φ(y)) {Cgr(x), Cgr(y)}+

+ 4
√
q(x)V (φ(x))

√
q(y)V (φ(y)) {Cgr(x), Cgr(y)} (A.14)

Na podstawie (A.14) oraz korzystając z algebry rozsmarowanych więzów grawitacyjnych

otrzymujmey

{G [N ] , G [M ]} =4Cgr
[
Cgr
b q

ab√qV (φ)(MDaN −NDaM)
]

+

− 8Cgr
b

[
Cgrqab

√
qV (φ)(MDaN −NDaM)

]
+

+ Cgr
a

[
qabqV 2(φ)(NDbM −MDbN)

]
. (A.15)

Ponieważ V (φ) występuje w każdym z rozsmarowywaczy, powyższy komutator znika nie-

zależnie do wyboru N i M tylko wtedy, kiedy znika potencjał

{G [N ] , G [M ]} = 0 ⇐⇒ V (φ) ≡ 0
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Następnie zajmujemy się obliczeniem

{C ′(x), C ′(y)} =

=
{
π(x)−

√
Λ(x), π(y)−

√
Λ(y)

}
=

= {π(x), π(y)}+

−
({
π(x),

√
Λ(y)

}
+
{√

Λ(x), π(y)
})

+

+
{√

Λ(x),
√

Λ(y)
}

=

=
1

2
√

Λ(x)

1

2
√

Λ(y)
{Λ(x),Λ(y)}+

−
({
π(x),

√
Λ(y)

}
+
{√

Λ(x), π(y)
})

(A.16)

W pierwszej kolejności obliczamy wyrażenie w nawiasie. W tym celu przekształcamy

{π(x)
√

Λ(y)
}

=

=
1

2
√

Λ(y)
{π(x),Λ(y)} =

1

2
√

Λ(y)

{
π(x),

√
q(y)λ(y)

}
=

=

√
q(y)

2
√

Λ(y)
{π(x), λ(y)} =

=

√
q(y)

2
√

Λ(y)

{
π(x),−

(
Cgr(y) +

√
q(y)V (φ(y))

)
+
√
G(y)

}
=

=− q(y)

2
√

Λ(y)
{π(x), V (φ(y))}+

√
q(y)

4
√

Λ(y)
√
G(y)

{π(x), G(y)} =

=− q(y)

2
√

Λ(y)
{π(x), V (φ(y))}+

+

√
q(y)

4
√

Λ(y)
√
G(y)

(
Cgr(y) +

√
q(y)V (φ(y))

)
{π(x), V (φ(y))} =

=B(y) {π(x), V (φ(y))} , (A.17)

gdzie wykorzystaliśmy fakt, że F (x) nie zależy od zmiennych opisujących pole skalarne

oraz wprowadziliśmy skracające zapis oznaczenie B(y).

Ponieważ

{π(x), V (φ(y))} = −δV (φ(y))

δφ(x)
= −V ′ (φ(x)) δ(y, x) (A.18)

jest proporcjonalne do δ(y, x), to z (A.17) wynika, że wyrażenie w nawiasie we wzorze

(A.16) znika. Stąd mamy

{C ′(x), C ′(y)} =
1

2
√

Λ(x)

1

2
√

Λ(y)
{Λ(x),Λ(y)} . (A.19)
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Dalsze obliczenia dzielimy na kroki podobne do tych z [26].

Krok 1

Krok pierwszy odwołuje się jedynie do postaci Λ =
√
qλ, nie odwołuje się natomiast do

potencjału pola skalarnego. Bezpośrednim rachunkiem otrzymujemy postać podobną do

tej pokazanej w [26]

{Λ(x),Λ(y)} =
√
q(x)

√
q(y) {λ(x), λ(y)}+

+
(
λ(x)

√
q(y)

{√
q(x), λ(y)

}
+
√
q(x)λ(y)

{
λ(x),

√
q(y)

})
. (A.20)

Krok 2

Kolejno obliczamy wyrażenie{√
q(x), λ(y)

}
=
{√

q(x),−
(
Cgr(y) +

√
q(y)V (φ(y))

)
+
√
G(y)

}
=

=−
{√

q(x), Cgr(y)
}

+

−
{√

q(x),
√
q(y)V (φ(y))

}
+

+
{√

q(x),
√
G(y)

}
=

=
{√

q(x),
√
G(y)

}
+ ∝ δ(x, y). (A.21)

Następnie obliczamy{√
q(x),

√
G(y)

}
=

1

2
√
G(y)

{√
q(x),

(
Cgr(y) +

√
q(y)V (φ(y))

)2

− F (y)

}
=

=
Cgr(y) +

√
q(y)V (φ(y))√
G(y)

{√
q(x), Cgr(y)

}
+

− 1

2
√
G(y)

{√
q(x), F (y)

}
=

=− 1

2
√
G(y)

{√
q(x), F (y)

}
+ ∝ δ(x, y). (A.22)

Ponieważ
√
q(x) i F (y) nie zależy od pola φ, to otrzymujemy wynik identyczny z wynikem

opisanym w Kroku 2 w [26],{√
q(x), λ(y)

}
= −

√
q(x)qab(x)Cgr

a (x)√
G(x)

δ,b(x, y)+ ∝ δ(x, y), (A.23)

co pokrywa się z wynikem opisanym w Kroku 2 w [26].

111



Krok 3

Kolejny krok otrzymujemy dokonując algebraicznych manipulacji nawiasami wyprowa-

dzonymi w dwóch poprzednich. Po przekształceniach otrzymujemy(
λ(x)

√
q(y)

{√
q(x), λ(y)

}
+
√
q(x)λ(y)

{
λ(x),

√
q(y)

})
=

= −
√
q(x)qab(x)Cgr

a (x)λ(x)√
G(x)

√
q(y)δ,b(x, y) +

√
q(x)

√
q(y)qab(y)Cgr

a (y)λ(y)√
G(y)

δ,b(y, x),

(A.24)

który swoją postacią przypomina Krok 3 z [26].

Krok 4

W niniejszym kroku dokonujemy obliczeń na obiektach, które zależą tylko i wyłącznie od

zmiennych grawitacyjnych

2Cgr(x)Cgr(y) {Cgr(x), Cgr(y)} = Cgr(y) {F (x), Cgr(y)} − Cgr(x) {F (y), Cgr(x)} .

(A.25)

Z tego powodu obliczenia tego kroku nie różnią się od wych zaprezentowanych w Kroku

4 w [26].

Krok 5

W kolejnym kroku obliczamy

{λ(x), λ(y)} =

=
{
−Cgr(x)−

√
q(x)V (φ(x)) +

√
G(x),−Cgr(y)−

√
q(y)V (φ(y)) +

√
G(y)

}
=

= {Cgr(x), Cgr(y)}+

+
{
Cgr(x),

√
q(y)V (φ(y))

}
+
{√

q(x)V (φ(x)) , Cgr(y)
}

+

−
{
Cgr(x),

√
G(y)

}
−
{√

G(x), Cgr(y)
}

+

+
{√

q(x)V (φ(x)) ,
√
q(y)V (φ(y))

}
+ (A.26)

−
{√

q(x)V (φ(x)) ,
√
G(y)

}
−
{√

G(x),
√
q(y)V (φ(y))

}
+

+
{√

G(x),
√
G(y)

}
. (A.27)

Na podstawie argumentacji przedstawionej w poprzednich punktach, zerujemy odpowied-
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nie wyrażenia w powyższym równaniu i otrzymujmemy

{λ(x), λ(y)} =

− 1

2
√
G(y)

{Cgr(x), G(y)} − 1

2
√
G(x)

{G(x), Cgr(y)}+

+
{√

G(x),
√
G(y)

}
. (A.28)

Następnie zauważamy, że

{Cgr(x), G(y)} =

=
{
Cgr(x), Cgr(y)2 + 2Cgr(y)

√
(y)V (φ(y)) + q(y)V (φ(y))2 − F (y)

}
=

= {Cgr(x), G0(y)}+ ∝ V (φ)+ ∝ δ(x, y). (A.29)

Stąd otrzymujemy Krok 5 w formie, która odbiega od tej znanej z [26]

{λ(x), λ(y)} =

= {Cgr(x), Cgr(y)} −

[
1

2
√
G(x)

Cgr(x)Cgr(y) {Cgr(x), F (y)}+ (x↔ y)

]
+

+ ∝ V (φ) +
{√

G(x),
√
G(y)

}
. (A.30)

Krok 6

Analogicznia modyfikacja względem [26] Kroku 6 daje

√
q(x)

√
q(y) {λ(x), λ(y)} =

=
√
q(x)

√
q(y)

1

2
√
G(x)

λ(x)qab(x)Cgr
a (x)δ,b(x, y) + (x↔ y)

+ ∝ V (φ)+ ∝
{√

G(x),
√
G(y)

}
. (A.31)

Ostatecznie zbieramy wyniki wyprowadzone w powyższych krokach i otrzymujemy ocze-

kiwany rezultat

{Λ(x),Λ(y)} = + ∝ V (φ)+ ∝
{√

G(x),
√
G(y)

}
. (A.32)

Widzimy, że {C ′(x), C ′(y)} = 0 jedynie w przypadku znikającego potencjału skalarnego.
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