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Abstract We analyze the propagation of light signals in the context of nonlinear electrodynamics. As a general feature of the
nonlinear theories, the superposition principle is no longer satisfied. In the electromagnetic theory, this is due to the self-interactions
of the field and light propagation is governed by an effective or optical metric. We present a simple derivation of the two light
cones that arise if the Lagrangian depends on the electromagnetic invariants in a nonlinear way. Using the algebraic properties of
the electromagnetic tensor fμν , we determine the dispersion relations from the eigenvalues of a Sturm–Liouville equation. It turns
out that in the presence of a background field, light propagation can be slower or faster than the one in vacuum. We also derive the
corresponding transport vector fields.

1 Introduction

Vacuum polarization appears when strong fields, of the order of the critical field Ecr � Bcr � m2
ec

3/e� ≈ 1.3 × 1018 V/m
≈ 4.4×1013G, are present in a certain region. In this situation, small deviations from the standard results of Classical Electrodynamics
arise, leading to the appearance of new phenomena such as photon–photon scattering, vacuum dichroism, photon acceleration and
birefringence [1, 2], among others. Moreover, light velocity depends on the polarization [3, 4], and light trajectories follow the null
geodesics of an effective or optical metric, which in most cases is non-unique, rather than null geodesics of the geometric spacetime.

These effects are described by Quantum Electrodynamics (QED), however, on a classical level phenomenological features are
captured by nonlinear electrodynamics (NLE). Some of these effects, like birefringence, can also be observed in materials with a
nonlinear response that can be modeled in an effective way by NLE, where the electromagnetic background plays the role of an
optical material. The deviations of light trajectories respect to Maxwell ones can also be described as the propagation in a curved
spacetime and in this sense, it resembles light propagating in an effective gravitational field [5]. In other words, gravity emerges
from the nonlinearity of the theory, allowing for the establishment of optical analogies in gravitational kinematics [6], effectively
curved geometries which guide the propagation of electromagnetic waves in material media whose physical properties depend on
an external electric field were derived in [7]. Birefringence as well arises in wave solutions to Maxwell equations in anisotropic
backgrounds [8].

Conditions on the NLE Lagrangian that guarantee causality of the optical metrics for all allowed background fields were established
in [9]. And in [10], it was shown that NLE is a symmetric hyperbolic theory if and only if light cones these metrics give rise to, have
a nonempty intersection, and in that case, the initial-value problem is well posed.

In linear electrodynamics, the algebraic structures of a general electromagnetic field and its energy-momentum tensor in stationary
spaces were analyzed in [11]. In [12], was established that shock waves propagate along characteristic surfaces of the Maxwell
equations.

NLE theories that are Lorentz invariant and gauge invariant were studied and classified by Plebański [13] with important
contributions due to Boillat [14] who obtained the laws of propagation of photons and of charged particles, along with an anisotropic
propagation of the wavefronts from a Lagrangian which is an arbitrary nonlinear function of the two electromagnetic invariants.

It is known that for any theory of the Plebański class, the rays are the null geodesics of two optical metrics; this was also
pointed out by Novello et al. [5]. Using a different representation Obukhov and Rubilar [15] derived the Fresnel equation for the
wave covectors and for the class of local nonlinear Lagrangian nondispersive models, it was demonstrated that the quartic Fresnel
equation factorizes, yielding the generic birefringence effect.

So far, there are several ways to derive the eikonal equation for nonlinear fields. In [16] the authors introduce an approximate
plane wave Ansatz on an arbitrary general relativistic spacetime and evaluate the “generalized Maxwell” equations; to zeroth order,
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they obtain the eikonal equation an one condition for the polarization plane. The treatment, although being more general, because
it is valid in a curved spacetime, it is more involved, and the basic features are not so evident.

In contrast, we present a straightforward derivation of the twofold light cones that, although in a restricted case, captures the
essential features on how the twofold light cone emerge. Taking a nonlinear Lagrangian depending on one of the electromagnetic
Lorentz invariants we derive the two possible dispersion relations. Our analysis is simpler than others available in the literature
[17, 18], which focus on the stress-energy tensor and treat the problem as a propagation in an effective metric, then propose an
approximation in terms of the background metric and the stress-energy tensor.

In this work from a general Lagrangian that depends nonlinearly on the electromagnetic invariants F and G and by variation of
the action, we obtain the field equations. Then, we restrict to the vacuum case jα � 0 and present a simple derivation of the two light
cones that arise when the Lagrangian depends nonlinearly on one of the electromagnetic invariants. We analyze the propagation of
electromagnetic field discontinuities using Hadamard’s description [19] of the first derivative discontinuity of the electromagnetic
tensor. Introducing the discontinuity into the electromagnetic field equations, they can be cast as an eigenvalue problem for the
vectors on the discontinuity surface. The dispersion relations obeyed by the wave number can be derived imposing the vanishing
condition to the eigenvalues, and from the dispersion relation, the transport vector fields are deduced.

This article is organized as follows: In Sect. 2 we review the derivation of the field equations from the NLE Lagrangian, showing the
need of introducing the skew symmetric tensor Pμν and its relation with the electromagnetic field tensor fμν . In Sect. 3, the equation
for the propagation of the discontinuity of the electromagnetic field is put in the form of an eigenvalue problem whose eigenvalues
and eigenvectors are determined; from them, we obtain two possible cones for the propagation of signals, the Maxwell cone and
a modified or distorted cone. In Sect. 4, we show that the 4D vector space generated by the eigenvectors of the electromagnetic
tensor, can be split into two 2D disjoint vector spaces, and we apply this to the analysis of the modified cone. In Sect. 5, we connect
our results with the more familiar formalism of effective or optical metrics and determine the constraint on the polarization of
an electromagnetic wave as well as the refraction index of an equivalent material medium. Finally, in Sect. 6, we present some
conclusions.

2 Nonlinear electrodynamics

For the sake of completeness and to emphasize how the NLE equations arise, pointing out their structure and the need of introducing
a new skew symmetric tensor, Pμν , in addition to the electromagnetic field tensor fμν , we present in this section the derivation of
the field equations by varying the NLE action.

We utilize a general formalism that can be applied to any locally constructed gauge-invariant field theory based on the two invariants
of the Maxwell field, namely F and G. Nonlinear electrodynamics Lagrangians can be written in the form L̃ � L f + Li + LNL ,
where the subscripts stand for free, interaction, and nonlinear terms, respectively. The nonlinear terms depend explicitly on the
invariants G and F, defined by

F � 1

4
fμν f

μν � 1

2

(
B2 − E2), G � 1

4
fμν f̃

μν � − �E · �B, (1)

where fμν � ∂μAν − ∂ν Aμ is the field-strength of the electromagnetic field, and Aν is the electromagnetic potential. f̃ μν �
(1/2)εμναβ fαβ is the dual stress-tensor, and εμναβ represents the Levi-Civita symbol. We start with the action written as

W �
∫ �2

�1

[
−m0c

2 − 1

c2 jαAα − 1

4πc
L(F ,G)

]
ds, (2)

denoting LNL (F , G) � L(F , G) for short, m0 is the mass of a charged test particle; jα represents the sources of electrical or
magnetic fields, charges and currents, that in the discrete case is a sum of charges and currents, while it is an integral of charge and
current densities in the continuous case, and �1, �2 are arbitrary surfaces crossed by the particle world sheet on its trajectory.

2.1 The Lorentz force equation

By varying the action respect to the coordinates xα and imposing the least action principle δW � 0, we obtain the Euler–Lagrange
equations,

d

ds

(
∂ L̃

∂ ẋα

)

− ∂ L̃

∂xα

� 0,

where L̃ � −m0c2 − 1
c2 j

αAα − 1
4πc L(F , G) and ẋα � uα , is the 4-velocity of the test charge. The Euler–Lagrange equations, with

the notation dv/dxα � v, α and dv/du � v, u are explicitly,

d

ds

[
∂

∂uα

(
−m0c

2 − 1

c2 jβ Aβ − 1

4πc
L(F , G)

)]
− ∂

∂xα

[
−m0c

2 − 1

c2 jβ Aβ − 1

4πc
L(F , G)

]
� 0.
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Using that uαuα � c2, and ∂uβ/∂uα � δ α
β we obtain,

m0
d

ds

(
uα

) − e

c2

d

ds

(
Aα

) − 1

4πc

[
d

ds

(
∂L(F , G)

∂uα

)
− ∂L(F , G)

∂xα

]
+

e

c2 u
β A α

β, � 0.

Demanding that L(F, G) satisfies the Euler–Lagrange equations, the third term is zero and using d/ds � (
dxβ/ds

) (
d/dxβ

) �
uβ d/dxβ , we arrive at the Lorentz force equation,

m0c
duα

ds
� −e

c
uβ f α

β. (3)

This equation describes the kinematics followed by a particle with mass m0 in the presence of the electromagnetic field f α
β [20].

No changes are introduced by the inclusion of L(F, G), not as long as it complies with the Euler–Lagrange equations.

2.2 The electromagnetic field equations

The electromagnetic field equations are obtained by a variation of the action (2) respect to the potential Aα . Note that only the second
and third term of the action depend on Aα , the dependence of the second term is linear and the one of the third term is through the
electromagnetic tensor fμν from the invariants F and G. Let’s us compute this variation,

δAα L(F , G) � LFδF + LGδG � LFδ(
1

4
fμν f

μν) + LGδ(
1

4
fμν f̃

μν) � 1

2
LF f μνδ fμν +

1

2
LG f̃ μνδ fμν ,

where dL/dF � LF and using that f μνδ fμν � f μν(δAν, μ − δAμ, ν) � (− f νμ)δAν, μ − f μνδAμ, ν � −2 f μνδAμ, ν , then

δAα L(F , G) � −
[
LF f μν + LG f̃ μν

]
δAμ, ν .

Using the previous relations, the variation of the action Eq. (2) respect to Aα is given by

δAαW � − 1

c2

∫




jαδAαd
4x +

1

4πc

∫




[
LF f μν + LG f̃ μν

]
δAμ, νd

4x ;

at this point, it is convenient to define the skew symmetric tensor Pμν as,

Pμν � LF f μν + LG f̃ μν , (4)

then the variation of the action respect to the potential can be written as

δAαW � − 1

c2

∫




jαδAαd
4x − 1

4πc

∫




δAμ

(
∂

∂xν
Pμν

)
d4x +

1

4πc

∫




∂

∂xν

(
δAμP

μν
)
d4x ,

by applying the Gauss’s theorem to the third term, passing from a volume integral
∫


d4x to a surface integral

∫
∂


d3x of δAμPμν

over the surface ∂
 that encloses the volume 
 and considering that Pμν is localized in a finite region, then, when the surface that
encloses the volume tends to infinity, the integral vanishes and we have

δAαW � −1

c

∫




[
1

c
jαδAα +

1

4π
δAμ

∂

∂xν
Pμν

]
d4x

� −1

c

∫




[
1

c
jμ +

1

4π

∂

∂xν
Pμν

]
δAμd

4x ,

imposing that δAαW � 0, then, the fields equations result in

Pμν
,ν � −4π

c
jμ. (5)

Equation (5) has the same form than Maxwell’s equations for f μν , i.e., f μν −→ Pμν , then, we can identify Pμν as the field produced
by the source jμ that obeys the continuity equation jμ, μ � 0. Meanwhile, f μν can be treated like an effective field associated with
Pμν by the structure equations (4) and being the field that drives the particle motion through (3). The Faraday-Maxwell equations
express the necessary and sufficient conditions that fμν is a curl, by means of f[μν, ρ] � O ⇐⇒ fμν � Aμ, ν − Aν, μ, and that
complete the set of the electrodynamical equations in NLE. At this point, we have derived the dynamics of the field and kinematics
of a charged test particles using the least action principle, following mainly [21].

3 The eigenvalue problem for the propagation of discontinuities

We restrict ourselves to Lagrangians depending on only one of the invariants, L � L(F), since it is sufficient to exhibit the main
features of the emergence of the twofold light cone.

Substituting Eq. (4) into (5), and considering that jμ � 0, we obtain
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Pμν
, ν � ∂

∂xν

(
LF f μν

) � LFF
∂F

∂xν
f μν + LF f μν

, ν � 0.

Using that

F � 1

4
f μν fμν ,

∂F

∂xα
� 1

2
f μν fμν, α ,

the field equation (3) becomes,

1

2
LFF f αβ fαβ,ν f

μν + LF f μν
,ν � 0. (6)

Note that Eq. (6) depends on the first and second derivatives of the Lagrangian, LFF , LF . We shall introduce in Eq. (6), the
propagation of the electromagnetic field discontinuities, through the characteristic surfaces.

We shall analyze the propagation of an electromagnetic discontinuity based on the Hadamard setting [19]. Let a hypersurface �

be defined by ξ (xα) � 0; the spacetime is divided into the half-spaces U−(ξ < 0) and U+(ξ > 0). The discontinuity of a function
f (xα) across � is defined by

[ f ]|�� lim
P−,P+→P

{
f (P−) − f (P+)

}
, (7)

where P− ∈ U− and P+ ∈ U+ and P ∈ �.
Let us consider that the electromagnetic potential Aα is discontinuous in its second derivatives at the characteristic surface �,

where ξ (x) � 0. We shall analyze the propagation of the discontinuity assuming that the potential Aα and its first derivative Aα, μ

are continuous, and that at least some of its second derivatives are not. Then, we assume that

[Aα] � 0, [Aα,β ] � 0, [Aα,βγ ] 	� 0. (8)

Following Hadamard’s lemma [19], we can write the jump of the second derivatives of Aα in the form

[Aα,βγ (x)]|�� ξαkβkγ , (9)

where ξα is a vector related to the polarization that is located on the surface � where the discontinuity of the field lies; kβ is the
wave 4-vector, which is normal to �, ∂β� � kβ . Since fαβ � ∂αAβ − ∂β Aα , then, fαβ is discontinuous in its first derivatives, such
that

[ fαβ,γ ]|�� ξβkαkγ − ξαkβkγ � (
ξβkα − ξαkβ

)
kγ . (10)

To analyze the propagation of the discontinuity, we substitute (10) into (6) and obtain an equation for the surface of discontinuity,

1

2
LFF f αβ

(
ξβkα − ξαkβ

)
kν f

μν + LF
(
ξνkμ − ξμkν

)
kν � 0. (11)

Permuting the subscripts α and β Eq. (11) can be cast as a linear operation over ξμ

[−LFF
(
f α
ν kα

)(
f μβkβ

)
+ LFk

μkν − LFk
2δμ

ν

]
ξν � 0, (12)

where we have denoted k2 � kνkν . Equation (12) is known as the eikonal equation for � and as well can be considered as an
algebraic condition on the polarization ξν . Defining �α � f αβkβ and the operator Yμ

ν as

Yμ
ν � −LFF�μ�ν + LFk

μkν − LFk
2δμ

ν , (13)

Eq.(12) becomes the eigenvalue equation for the operator Yμ
ν acting on ξν ,

Yμ
νξ

ν � 0; (14)

therefore, ξν is an eigenvector with zero eigenvalue of the symmetric operator Yμ
ν . In what follows we show that imposing the

vanishing condition to the eigenvalues of Yμ
ν we arrive at the dispersion relations.

3.1 Eigenvectors and eigenvalues

In this subsection, we find the eigenvectors in the kernel of Yμ
ν ; and then imposing the vanishing condition to their eigenvalues we

determine the twofold light cone.
Let us consider a vector ξ

μ
1 that is parallel to the wave 4-vector, ξ

μ
1 � αkμ, with α being an arbitrary constant. Applying Yμ

ν to
ξ

μ
1 we have that, since kμ�μ � kμ

(
fμνkν

) � 0, then, Y ξ1 � 0 and ξ
μ
1 is an eigenvector of Y with zero eigenvalue, that we call

λ1 � 0. However, ξ
μ
1 � αkμ does not give us new information on the discontinuity of the first derivative of fμν . Therefore, for

having a nontrivial jump on �, we look for eigenvectors with vanishing eigenvalues such that ξ
μ
i 	� αkμ; i.e., we should consider
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eigenvectors that are linearly independent of kμ. We shall now determine such eigenvectors and eigenvalues of Y and require the
latter to vanish.

Let us consider ξ
μ
2 that is orthogonal to both k and �, i.e., kνξ

ν
2 � 0 and �νξ

ν
2 � 0, then,

Yμ
νξ

ν
2 �[−LFF�μ�ν + LFk

μkν − LFk
2δμ

ν

]
ξν

2

� − LFF�μ
(
�νξ

ν
2

)
+ LFk

μ
(
kνξ

ν
2

) − LF (kαk
α)δμ

νξ
ν
2

� − (LFk
2)ξμ

2

Then, ξ
μ
2 is an eigenvector of Y with eigenvalue λ2 � −LFk2.

Suppose now a vector ξν
3 proportional to �, ξν

3 � β�ν , β is an arbitrary constant; note that ξν
3 is orthogonal to kμ, ξν

3 kμ � 0;
applying the operator Y on ξν

3 ,

Yμ
νξ

ν
3 �[−LFF�μ�ν + LFk

μkν − LFk
2δμ

ν

]
ξν

3

� − LFF�μ
(
�νξ

ν
3

)
+ LFk

μ
(
kνξ

ν
3

) − LFk
2δμ

νξ
ν
3

� − β
(
LFF�2 + LFk

2)�μ � −(
LFF�2 + LFk

2)ξμ
3 ,

then, ξν
3 is an eigenvector of Y with eigenvalue λ3 � −(LFF�2 + LFk2).

Therefore, the eigenvalues of Y are λ1 � 0, λ2 � −LFk2, λ3 � −LFF�2 − LFk2. Thus, the characteristic equation of Y is

Y
[
Y + LFk

2
I
][
Y +

(
LFk

2 + LFF�2)
I
] � 0, (15)

where I denotes the identity matrix. If we impose the condition that λi � 0, i � 1, 2, 3; the set {ξμ
1 , ξ

μ
2 , ξ

μ
3 } spans the kernel of

the operator Y . Demanding that λ2 � 0, we obtain,

λ2 � −LFk
2 � 0 ⇒ k2 � kαk

α � 0, (16)

recalling that kα is the normal directions to the characteristic surface, �, i.e., kα is the null directions that generate the light cone in
Minkowski space that we call the Maxwell light cone; the wavefronts or characteristics surfaces are normal to the light cone.

From the condition that λ3 � 0, we obtain,

λ3 � −(
LFF�2 + LFk

2) � 0 ⇒ LFFkν f
νμ fμσ k

σ − LFk
2 � 0, (17)

Equation (17) being a dispersion relation for k; this second possibility for the signal propagation given by the equation of a cone
different from the Maxwell cone, we call it the modified cone; assuming that LF 	� 0, the modified cone is described by

k2 − LFF

LF
k f 2k � 0, (18)

where we are denoting k f 2k � −�2 � kν f νμ fμσ k σ . The twofold cone, known as birefringence, arises by the two possibilities of
propagation of the discontinuity, one way is along the Maxwell cone, Eq. (16), and the other one is along the modified cone, Eq.
(18), that besides is a first order differential equation for the characteristic surface � (kα � ∂α�).

In the next section, we examine the algebraic structure of f β
α that directly determines the geometry of the modified cone.

4 The geometry of the modified cone

The geometry of the modified cone in Eq. (18) is determined by the algebraic structure of f 2 � f μσ fσν , as well as the properties
of the quadratic form (k f 2k). Let us analyze the structure of f 2; f � f μ

ν is given by

f μ
ν �

⎛

⎜⎜
⎝

0 E1 E2 E3

E1 0 B3 − B2

E2 − B3 0 B1

E3 B2 − B1 0

⎞

⎟⎟
⎠ (19)

where we denote the components of the electric and magnetic fields, respectively, by Ei and Bi , i � 1, 2, 3. The analysis that
follows is completely general for the electromagnetic field tensor and independent of the electromagnetic Lagrangian. In terms of
the invariants F � (B2 − E2)/2 and G � − �E · �B, the tensor f � f σ

ν has the eigenvalues κ1 � −κ2 � √
κ−, κ3 � −κ4 � √

κ+,
where

κ± � −F ±
√
F2 + G2 � −1

2
(B2 − E2) ± 1

2

√
(B2 − E2)2 + 4( �E · �B)2.

It can be shown, by straightforward calculation, that the tensor f 2 satisfies

f 4 + 2F f 2 − ( f 2)( f̃ 2) � 0, or f 4 + (B2 − E2) f 2 − ( �E · �B)2
I � 0,
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Fig. 1 It is illustrated the light
cone of Maxwell as the lines at
45o (in yellow); a vector k+ in X+
is shown as the dashed arrow; it is
a linear combination of a, b,
k+ � αa + βb, α and β are
constants. a, b lie on the Maxwell
cone; X− is the orthogonal
complement to X+

such that it can be factorized as

( f 2 − κ+I)( f 2 − κ−I) � 0,

and thus f 2 can be diagonalized as,

f 2 � κ±I �
(
−F ±

√
F2 + G2

)
I. (20)

Then, it is possible to split the 4-dimensional vector space X of f 2 into two 2-dimensional disjoint proper subspaces X+ and X−,
i.e., X � X+ ⊕ X−, where X+ is the subspace of vectors with positive or null norm, and X− is the subspace of spacelike vectors
with negative norm.

In the case �E · �B 	� 0, it turns out that κ+ > 0 and

( f 2 − κ+I) � 0.

Since there are not multiple roots, f 2 can be factorized as

( f − √
κ+ I)( f +

√
κ+ I) � 0,

such that f can be diagonalized in X+.

4.1 Light cones

Let us consider two eigenvectors of f , a and b, corresponding to different eigenvalues f a � √
κ+a and f b � −√

κ+b, where
±√

κ+ ∈ R, and then, a and b are real. Due to the antisymmetry of fαβ , a and b are null vectors,

fαβaαaβ � 0, fαβbαbβ � 0. (21)

We can then assume that both a and b are in the future cone and that a and b span X+, i.e., a vector k+ in X+ is a linear combination
of a and b,

k+ � αa + βb, (22)

where α and β are constants. a and b lie on the Maxwell cone.
Any vector k− ∈ X− is such that k2− < 0, i.e., is spacelike, then, X− is the orthogonal complement to X+. An illustrative sketch

is shown in Fig. 1.
Since X � X+ ⊕ X− any vector in X can be written as a linear combination of one vector in X+ (k+ � αa + βb) and one vector

in X− (k−),

k � k+ + k− � αa + βb + γ k−, (23)

where α, β and γ are constants. If the norm of k is positive, then, k is inside the Maxwell cone; while if the norm of k is negative, it
is outside the Maxwell cone; the null vectors k2 � 0 are located on the Maxwell cone.

Regarding the quadratic form k f 2k � kν f νμ fμσ k σ , it is easy to show that it is non-negative, substituting k � k+ + k− we show
that it cannot be negative IN or ON the cone,

k f 2k �(k+ + k−) f 2(k+ + k−) � (k+ + k−)(κ+k+ + κ−k−)

�(κ+k
2
+ + κ−k2−) ≥ 0,

and is zero only when k2
+ � k2− � 0.
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Fig. 2 To the left the dashed arrow illustrates a spacelike vector, k2 < 0, corresponding to � � LFF
LF

< 0; in this case Eq. (18) cannot be satisfied neither

INSIDE nor ON the light cone. To the right the dashed arrow illustrates a timelike vector, k2 > 0, for � � LFF
LF

> 0; in this case the vector k lies inside
the Maxwell cone

Defining � � LFF/LF , from Eq. (18), k2 − �k f 2k � 0, and since k f 2k ≥ 0, then, the norm of the vector k depends on the
sign of �. In case � < 0, Eq. (18) cannot be satisfied unless k2 < 0, then, k is not IN (inside) or ON the light cone but belongs to
the subspace X−.

In the case � > 0, the norm of k is positive and k lies inside the Maxwell cone. Recall that the vectors a and b are null, then,
they lie on the Maxwell cone. The two cases are illustrated in Fig. 2.

This is how the structure of the modified cone depends on the sign of � � LFF/LF . The cone in the Minkowski spacetime
corresponds to the Maxwell Lagrangian LM � −F , with � � 0.

4.2 The Monge cone

For NLE, the direction of the vectors kα in general does not coincide with the propagation direction. The propagating surfaces are
orthogonal to the vectors kα � ∂α�, while the propagating direction vectors, also called transport vector fields, denoted by V σ , can
be deduced from the dispersion relations for kα as follows,

We define the vector,

V σ � (
gσμ − � f μν f ·σ

ν

)
kμ, (24)

and introducing the “modified metric” Aαβ ,

Aαβ � gαβ − � f αν f ·β
ν ; (25)

using Eq. (18), it is easy to show that vectors kα satisfy,

Aαβk
αkβ � 0, (26)

while the vectors V α satisfy

BαβV
αV β � 0, (27)

where the matrix Bαβ is given by

Bαβ � gαβ + � f αν f ·β
ν ; (28)

and it is easy to check that Bαγ Aγβ � δ
β
α , i.e., Bαγ is the inverse matrix of Aαγ (in some treatments B is called the adjugate of the

matrix A [22]). Moreover, it is easy to check that V α is orthogonal to kα at each point on �,

V αkα � Aαμkμkα � 0. (29)

From Eqs. (26) and (27), we see that kα and V α constitute two complementary cones in R4; at each point on �, Eq. (26) is the cone
of the directions that are normal to �, while Eq. (27) is the cone of the propagating signals; the latter is also known as the Monge
Cone or Monge patch [23].

A Monge surface is a surface obtained by sweeping a generating plane curve along a trajectory that is orthogonal to the moving
plane containing the curve. Locally, they are characterized as being foliated by a family of planar geodesic lines of curvature.

In the case, we are analyzing; these are the geodesics of the modified “metric” Aαβ . The geometric relevance of the modified
“metric” Aαβ is that it is related to the integral curves of kα that in fact satisfy the null geodesic equation with Aαβ as the metric: Since
the propagator vector kα � ∂α�, is and exact gradient, then ∇μkν � ∇νkμ, it implies it satisfies the geodesic equation, kμ∇μkν � 0;
where this covariant derivative is calculated assuming that Aαβ is the metric. The same applies to V α with the “metric” Bαβ ; these
geodesics folliate the Monge surface.
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Fig. 3 Sketch of the different
cones generated by the transport
vectors V α ; the cone in the middle
is Maxwell’s, the inner cone
corresponds to the case
� � LFF/LF < 0, and the
external cone is the � > 0 case

As we deduced above, the cone of the normals to �, generated by kα , lies inside (outside) the Maxwell cone if the sign of � is
positive (negative); accordingly, the complementary cone of the propagating signals, V α lies outside (inside) the Maxwell cone if
� is positive (negative); the sketch in Fig. 3 illustrates the situation. The inner cone of V α (� < 0) corresponds to a subluminal
signal; while the external cone (� > 0) corresponds to a superluminal signal.

5 The two effective metrics

The information of the two light cones can be comprised in the equation

(k̃2 − ��2)k2 � 0, (30)

where � � LFF/LF and −�2 � k̃ f 2k̃; the modified cone corresponds to the vanishing of the first factor, and k̃ is the vector
orthogonal to �. While k2 � 0 describes the null Maxwell’s cone. In each case, this is the eikonal equation and each solution
k determines a family of light rays, in the same way as in Hamiltonian mechanics each solution to the Hamilton-Jacobi equation
determines a family of trajectories. It can also be considered as an algebraic condition on the covector kμ. This equation is also
known as the dispersion relation, the characteristic equation or the Fresnel equation.

Equivalently we can set Eq. (30) defining the two effective metrics g+ and g− ,

(k̃2 − ��2)k2 �
[
k̃μk̃μ − �k̃α f αμ fμβ k̃

β
]
kνkν

�
[
ημα k̃α k̃μ − � f μα k̃α f β

μ k̃β

](
ηνσ kσ kν

) �
([

ημα − � f βα f μ
β

]
k̃α k̃μ

)(
ηνσ kσ kν

)

�
(
gμα

+
k̃μk̃α

)(
gνσ

− kνkσ

)
� 0 (31)

where η � diag(−1, 1, 1, 1) is the Minkowski metric. The two possible effective metrics are (1) the metric of the Minkowski
spacetime gνσ

− � ηνσ and (2) an effective metric gμα
+

� ημα − � f βα f μ
β . Equation (31) comprises the non-uniqueness of the

propagating surface, i.e., the birefringence effect. Depending on the light polarization, a part of the signals (discontinuities) will
propagate along the isotropic (usual) surfaces of g− , while the other part will follow the modified surfaces that are normal to the
null vectors of g+ , k̃.

5.1 Connection with the wave polarization

In order to relate the previous treatment with a more familiar one, we will show the connection with the polarization. Considering
that the propagating discontinuities are plane waves characterized by the electromagnetic 4-potential, Aμ � εμei� , where εμ and
� represent the polarization and phase of the wave, respectively. We can choose both quantities to be real functions of time and
space. The wave vector was previously defined,
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kμ � ∇μ� � ∂μ�,

where k0 is the frequency of the wave, and ki represents the spatial components of the wave vector. As we showed earlier, the nature
of the propagation depends on the sign of kμkμ � k2. Substituting Aμ � εμei� into fμν � ∂μAν − ∂ν Aμ,

fμν � (
∂μεν − ∂νεμ

)
ei� , (32)

and then substituting in the equation for the propagating discontinuity, Eq. (12), we arrive at,
[
LFF

(
f ναkα

)(
f μβkβ

) − LF
(
kμkν − k2δ νμ

)]
εν � 0, (33)

this equation is the dispersion relation for the modified cone, and it restricts the allowed polarization modes εν ; cf. [24].

5.2 The refraction index of the effective metric

The effect of NLE on light propagation can be modeled as well as a material medium characterized by tensors of electric permittivity,
εi j , and magnetic permeability μ j . Thus, the electric displacement D is related to the electric field E through the electric permittivity
tensor, εi j , and the magnetic field B is related to the field intensity H through the magnetic permeability tensor, μ j , in this way [25],

Di �εi j E j − ε0i jkμ j Hk

Bi �εi j H j − ε0i jkμ j Ek

with

εi j � −√−g
gi j

g00
, μi � − g0i

g00
, (34)

Latin subscripts i, j run for the spatial coordinates, from 1 to 3 and gi j refers to the effective metric.
We present explicitly the permittivity and permeability for the effective metric gμν

+ � ημν − � f μ
β f βν . In matrix form, the

effective metric g+ can be written as

gμν
+ �

⎛

⎜⎜
⎝

−�E2 − 1 �(B2E3 − B3E2) − �(B1E3 − B3E1) �(B1E2 − B2E1)
�(B2E3 − B3E2) 1 − �(B2

2 + B2
3 − E2

1) �(B1B2 + E1E2) �(B1B3 + E1E3)
−�(B1E3 − B3E1) �(B1B2 + E1E2) 1 − �(B2

1 + B2
3 − E2

2) �(B2B3 + E2E3)
�(B1E2 − B2E1) �(B1B3 + E1E3) �(B2B3 + E2E3) 1 − �(B2

1 + B2
2 − E2

3)

⎞

⎟⎟
⎠ (35)

the determinant of the effective metric is

det[g] � g � −(
1 − 2�F + �2G2)2 � −(

1 − �(B2 − E2) + �2(B · E)2)2

the inverse of the effective metric is

g+
μν � g−1

⎛

⎜⎜
⎝

−�B2 + 1 − �(B2E3 − B3E2) �(B1E3 − B3E1) − �(B1E2 − B2E1)
−�(B2E3 − B3E2) − �(E2

2 + E2
3 − B2

1 ) − 1 �(B1B2 + E1E2) + �(B1B3 + E1E3)
�(B1E3 − B3E1) �(B1B2 + E1E2) − �(E2

1 + E2
3 − B2

2 ) − 1 �(B2B3 + E2E3)
−�(B1E2 − B2E1) �(B1B3 + E1E3) �(B2B3 + E2E3) − �(E2

1 + E2
2 − B2

3 ) − 1

⎞

⎟⎟
⎠ (36)

Substituting the effective metric covariant and contravariant expressions into Eq. (34), the indexes of permittivity ε and permeability
μ are given by

εi j � g2(1 − �B2)−1

⎛

⎝
�(E2

1 − B2
2 − B2

3 ) − 1 − �(B1B2 + E1E2) − �(B1B3 + E1E3)
−�(B1B2 + E1E2) �(E2

2 − B2
1 − B2

3 ) − 1 − �(B2B3 + E2E3)
−�(B1B3 + E1E3) − �(B2B3 + E2E3) �(E2

3 − B2
1 − B2

2 ) − 1

⎞

⎠ (37)

μi � −�(1 − �B2)−1(B3E2 − B2E3, B1E3 − B3E1, B2E1 − B1E2
)

(38)

While in vacuum, spacetime is flat and kμkμ � 0, εi j � δi j and μi � 0.

6 Conclusions

In this article, we have shown that the twofold light cones (related to the birefringence effect) naturally arise from adding to the
classical electromagnetic Lagrangian nonlinear terms that depend nonlinearly on the electromagnetic invariants. We did not specify
the nonlinear electromagnetic theory, apart from the fact that it is of the Plebanski class and that L(F). The field equations obtained
for the propagation of field discontinuities can be settled as a Sturm–Liouville equation, whose eigenvalues and eigenvectors are
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related to the different paths followed by the light; to be precise, from the vanishing eigenvalues, the two different dispersion relations
can be identified; one of them corresponds to the classical Maxwell light cone and the other one to a modified cone. The algebraic
structure of the electromagnetic field tensor is discussed in order to understand, the modified cone depends on structure. For the
modified light cone, it is not possible to describe the light trajectories using global-oriented cones because the factor � � LFF/L f

can change from point to point. The different situations are illustrated with light cone diagrams.
We obtained that the velocity of the signal propagation depends on the signs of the derivatives of the Lagrangian, and superluminic

signals arise as a possibility. This result tells us that not all theories should be considered as physically meaningful, because probably
some of them violate causality in the sense that the light cones of the optical metrics are not inside the light cone of the spacetime
metric [26]. The signs of L and its derivatives may be constrained if we additionally demand the fulfillment of one or more energy
conditions [27]. For instance, if we impose the Dominant Energy Condition (DEC), we need LF ≤ 0 and T ≤ 0, in our case,
T � −L − FLF , where T is the trace of the energy-momentum tensor. On the other hand, imposing Strong Energy Condition
(SEC), we need LF ≤ 0 and T ≥ 0. For each particular NLE, it has to be checked that the initial-value problem is well posed [28].
Finally, we connect our results with the polarization of a plane wave, which is restricted by the dispersion relations and also present
the permeability and permittivity of an equivalent material medium. In this way, we have illustrated the form in which light signals
propagate in NLE; the scheme can be applied as well to anisotropic media.
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