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Abstract

Topological materials are one of the lead candidates for developing
viable noise resilient quantum computers. The properties that make
these materials so suited to the task include their degenerate ground
states and anyonic excitation statistics. However, it is often the case
that the more exotic the statistics are the more complex the under-
lying Hamiltonian is. This can make them challenging to work with.
Alternate representations of these Hamiltonians can prove useful in
solving the systems and investigating the behaviour of their physical

observables.

This thesis explores the construction and advantages of alternate rep-
resentations of certain topological quantum systems. Initially, unitary
transformations are presented, which map the Z, surface code and
toric code to free fermions and fermions coupled to global symmetry
operators, respectively. The methods presented in this thesis could be
employed to find possible free fermion solvable descriptions of other
more complex interacting topological systems. It also is found that
the Kitaev honeycomb model has an effective geometric description in
terms of massless Majorana spinors obeying the Dirac equation em-
bedded in a Riemann-Cartan spacetime. This description is shown
numerically to be faithful for the low energy limit of the model, pre-
dicting the response of two-point correlations to variations of the cou-
pling parameters of the model. These results suggest that geometric
descriptions of topological materials could provide useful insights into
the behaviour of their physical observables that make them so useful

for quantum computation.
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Chapter 1

Introduction

What do quantum computers and kids these days have in common? They are
both too sensitive. The quantum computers of today have been dubbed Noisy
Intermediate Scale Quantum (NISQ)) computers Preskill (2018). This is due to
their size and susceptibility to external noise, which can destroy the delicate
superpositions essential for quantum computation. This noise could be due to
imperfect interactions with the system, such as when performing operations or
reading data. Alternatively, it could be an inability to protect the qubits from
temperature fluctuations or other forms of radiation. Despite these issues Google
recently unveiled Sycamore, a 54-qubit quantum processor. This has since proved
to be sufficient to realise quantum supremacy Arute et al. (2019), a significant
achievement in the development of useful quantum devices. However, many of
the accomplishments of the last decade have been down to advancements in engi-
neering. We are now able to control qubits and isolate them from external noise
more effectively. They are still the same inherently sensitive qubits though.
Topologically ordered materials are being studied as possible candidates for a
fundamentally different approach to quantum computing. These materials could
be used as quantum memories, providing topological protection to information en-
coded in logical qubits Dennis e al. (2002). The exotic anyonic statistics of their
excitations can be used to encode the quantum logic gates necessary for quantum
computation. In fact some non-Abelian anyons, such as Fibonacci anyons, have

been found to be universal for quantum computation Mong et al. (2014). The



exchange statistics of such anyons are sufficient to encode any possible unitary
operation on the logical qubits of the system Nielsen & Chuang (2011).

Due to the complexity of topologically ordered materials it is often unclear
from the defining Hamiltonian what their properties are and whether their dy-
namics is even solvable. Finding alternative representations of these systems can
provide useful insight into the solvability and allow one to make predictions about
the physical observables of the model. This thesis explores construction and ad-
vantages of alternate representations of topologically ordered systems. The first
half (Chapters 2, 3 and 4) examines models with possible free fermion repre-
sentations. This could help produce exact solutions of the models. The second
half (Chapters 5 and 6) considers effective descriptions of the continuum limit of
topologically ordered systems. These descriptions are useful for predicting the

behaviour of physical observables of the models in the low energy limit.

Chapters 2, 3 and 4

A striking feature of topological many-body systems is their ability to exhibit
collective phenomena without analogue in their constituent particles. Many in-
vestigations into exotic statistical behaviours focus on topologically ordered sys-
tems Wen (1990) that support anyons Leinaas & Myrheim (1977); Wilezek (1982).
Although some properties associated to topological phases of matter can occur
in systems of free fermions, their emergence is generally associated with inter-
actions between particles. One of the difficulties of working with such systems
however is that interactions between particles can make them extremely complex
and hard to solve. Systems, such as the spin liquids Anderson (1987) and the
fractional quantum Hall states T'sui et al. (1982), exemplify the effects of interac-
tions in many-electron systems. On the other hand, there are systems which can
be modelled by free fermions, making them exactly solvable, that exhibit many
of the unique properties of topological phases of matter that make them so inter-
esting. For example, Kitaev’s honeycomb model Kitaev (2006) supports ground
state degeneracies and exotic topological excitations in the form of Majorana zero
modes Ivanov (2001); Read & Green (2000).



Identifying models with free fermion representations will allow us to better
understand the emergence of properties such as anyonic excitations and degen-
erate ground states in these complex topological systems. Chapter 3 uses the
measure of interaction distance D Turner et al. (2017) to study the role of inter-
actions in topological states of matter in (24 1)—dimensional string-nets Levin &
Wen (2005) and 3+ 1—dimensional Walker-Wang models Walker & Wang (2012).
This work was published as part of Meichanetzidis et al. (2018). Interestingly, all
of the states studied supporting non-Abelian anyons are found to be interacting,
suggesting interactions are necessary for the emergence of non-Abelian excitation
statistics in these fixed point stabilizer Hamiltonians. This contrasts with the
Kitaev honeycomb model, which supports Ising anyons and has a representation
in terms of free fermions coupled to a Z, gauge field. States with free fermion
representations are also identified, including the states of the toric code Browne
(2014); Kitaev (2003); Resende (2017) and its open boundary version, the Zy sur-
face code Bombin & Martin-Delgado (2007); Bravyi et al. (2017). These models
have been the test-bed for numerous investigations of condensed matter phenom-
ena as well as quantum information applications Brown et al. (2016); Fowler et al.
(2012); Kitaev & Laumann (2009). The main reason for the popularity of the
toric code is that it is an exactly solvable model that has eigenstates with non-
trivial topological entanglement entropy Hamma et al. (2013), able to support
Abelian anyons, exotic quasiparticles that can fault-tolerantly encode and ma-
nipulate quantum information. An important feature of this topological model is
that it is relatively simple, with the anyonic statistics and fusion rules emerging
directly from the algebraic properties of Pauli matrices. At the same time the
toric code enjoys many applications. It can be used as a fault tolerant quan-
tum memory protecting against spurious local perturbations Wootton & Pachos
(2011), it can perform topological quantum computation resilient against con-
trol errors Kitaev (2003), or it can encode more complex anyonic models such as
Majorana fermions at lattice defects Brown et al. (2017); Wootton (2017).

The toric code has been experimentally simulated with highly entangled four-
photon GHZ states Pachos et al. (2009) and the four-body interaction has been
physically realised with Josephson junctions Gladchenko et al. (2009); Terhal
et al. (2012). However, it has been argued that the Hilbert space of the toric



code, in the presence of an external magnetic field contains a low energy subspace
that can be described effectively by hopping fermionic excitations coupled to a Zo
gauge field Levin & Wen (2003). This gauge field does not introduce interactions,
but encodes the exotic statistics of the excitations.

Chapter 4 presents local unitary transformations from the Z, surface and
toric code to a free fermion system and a system of free fermions coupled to
an interacting parity operator, respectively. It also explores how the anyonic
statistics of the models are encoded in the free fermion modes. This work was
published in Farjami (2020). Previous works studying transformations of the toric
code include the paper Brown et al. (2011), where the authors provide a duality
mapping from a cluster state on an N x N lattice to the toric code on an N X
(N —1) lattice. The cluster state can be mapped to individual spin Hamiltonians,
which are equivalent to free fermions. The mapping to the toric code takes some
of the cluster state’s boundary terms to stabilizers of non-contractible loops in
the toric code, thus removing the degeneracy of the ground state. In addition,
the paper Nussinov & Ortiz (2009) maps the toric code onto decoupled Ising
chains, and the papers Jamadagni et al. (2018); Tagliacozzo & Vidal (2011) give
duality mappings, built from CNOT gates, from the toric and surface code in the
presence of external magnetic fields to Ising models.

Chapter 2 provides background on general anyon models, lattice models, and
interactions in quantum many-body systems used in the study of interaction
distance and alternative representations of the surface and toric code in Chapters
3 and 4.

Chapters 5 and 6

The Kitaev model is an important model of topological superconductors. It has
been the focus of much research since its introduction by Kitaev in Kitaev (2006).
It is a model of spin-1/2 particles on a two dimensional honeycomb lattice. The
Kitaev honeycomb model is both topologically ordered in the sense that it can
support anyonic excitations and it is a topological phase with a non-trivial Chern

number Kitaev (2006). Kitaev demonstrated that the model is exactly solvable



as it has a representation in terms of free fermions, which provides the oppor-
tunity to analytically probe its anyonic properties Lahtinen et al. (2008), its
topological edge currents Self et al. (2017), and to investigate its finite tempera-
ture behaviour Lahtinen & Pachos (2010); Lahtinen et al. (2012); Nasu & Motome
(2015); Nasu et al. (2014, 2015); Self et al. (2019). Moreover, many features of the
Kitaev honeycomb model are recognised in experimentally realisable materials,
such as complex iridium oxides Chaloupka et al. (2010); Choi et al. (2012); Jackeli
& Khaliullin (2009) or ruthenium chloride Banerjee et al. (2016). This makes the
KHLM of interest to numerous theoretical and experimental investigations.

The first part of Chapter 5 focuses on the Kitaev honeycomb model discussing
many of its interesting properties such as its free fermion representation, the any-
onic excitations Ivanov (2001); Read & Green (2000) and phase diagram Kitaev
(2006). It also studies the continuum limit, or low energy limit, of the isotropic,
homogeneous version of the model, which is equivalent to a Dirac equation em-
bedded in a flat (2 + 1)—dimensional Minkowski spacetime.

It is known that topological superconductors can have an effective interpre-
tation in terms of curved geometry. For example, it has been shown in Golan
& Stern (2018) that the continuum limit of a spinless p-wave superconductor on
a square lattice minimally coupled to an electromagnetic field, takes the form
of a Dirac Hamiltonian defined on a Riemann-Cartan spacetime Carroll (2003);
Hehl & Datta (1971); Nakahara (2003). Riemann-Cartan geometry also arises in
the theory of defects in lattices, where disclinations and dislocations in the con-
tinuum limit are described by curvature and torsion, respectively de Juan et al.
(2010); Katanaev & Volovich (1992). This has been investigated in strained
graphene de Juan et al. (2010, 2013); Wagner et al. (2019). On the other hand,
the fractional quantum Hall (FQH) states have been shown to exhibit a universal
response to variations of lattice geometry, leading to many fruitful investigations
of an interplay between the topology and ambient geometry of these strongly-
correlated systems Abanov & Gromov (2014); Avron et al. (1995); Bradlyn &
Read (2015); Can et al. (2014); Gromov & Abanov (2014); Gromov & Son (2017);
Gromov et al. (2015); Haldane (2009, 2011); Hughes et al. (2011); Klevtsov &
Wiegmann (2015); Read (2009); Wen & Zee (1992); Wiegmann (2018).



Nevertheless, it is not known how accurately Riemann-Cartan geometry can
describe the behaviour of actual microscopic, solvable lattice models. Chapter 6
studies the continuum limit of the Kitaev honeycomb model in a variety of cou-
pling regimes deriving a geometric description of the model in terms of Majorana
spinors obeying the Dirac equation embedded in a non-trivial Riemann-Cartan
spacetime with curvature and torsion. It is important to note that this geome-
try emerges purely from distortions in the couplings of the system and not from
the geometry of the lattice itself, as with many of the FQH studies above. This
Riemann-Cartan picture has an associated metric describing a distortion of space
proportional to the coupling parameters of the model. The Kitaev model is ex-
actly solvable, which provides the opportunity to numerically verify this metric by
studying the behaviour of two-point Majorana quantum correlations in different
coupling regimes. This work was published in Farjami et al. (2020).

The second part of Chapter 5 provides necessary background for Chapter 6,
detailing the components of (2+ 1)—dimensional Riemann-Cartan geometry Car-
roll (2003); Nakahara (2003) including the dreibein and spin connection defining

non-trivial metric, curvature and torsion.

Chapter 7

Chapter 7 reviews the results presented in Chapters 3, 4 and 6. Potential avenues

of future investigations are discussed.



Chapter 2

Background 1: Anyons, Lattices

and Interactions

This chapter provides background on lattice models with anyonic excitations and
interactions in many-body systems. It starts by introducing the theory of anyons
in Section 2.1. Fusion and braiding operations are defined, which encode the
exotic statistics of these particles that make them useful for quantum computa-
tion. The Z, surface code and toric code are presented in Section 2.2 as specific
examples of lattice models supporting anyonic excitations. The statistics of these
excitations are explored along with an interpretation of the surface code and
toric code as stabilizer codes or quantum memories. It is discussed how quan-
tum information can be encoded and protected in these codes. This provides the
background for Chapter 4, which explores free fermion representations of these
codes. Section 2.3 then gives a overview of the general formulation of string-nets
and Walker-Wang models. These models are built from the fusion and braiding
operations introduced in Section 2.1. The form of the reduced density matrix
of string-net and Walker-Wang states is also presented. Finally, Section 2.4 dis-
cusses interactions in quantum many-body systems. The properties of the energy
and entanglement spectrum of free fermion systems are described and used in
order to define the interaction distance Turner et al. (2017). This provides the
necessary background for Chapter 3, which uses the interaction distance to iden-
tify string-nets and Walker-Wang models with effective descriptions in terms of

free fermions.



2.1 Anyon models

Figure 2.1: (Left) A diagrammatic representation of anyons in terms of oriented
strings of given charge. (Right) The quantum dimension d, is represented by a
loop of charge a, which is equivalent to the creation of a pair a and a from the

vacuum and fusion back to the vacuum.

2.1 Anyon models

Anyons are emergent quasiparticles of (2 + 1)—dimensional topological systems.
They have a variety of interesting properties such as spins that can take on any
value Bonderson (2007). These properties lead to exotic braiding and fusion
statistics, discussed in this section, which make anyonic systems an excellent
candidate for quantum computing. Anyons created in a particular fusion state
are manipulated through fusion and braiding operations, which act as quantum
gates Fan & de Garis (2010). Braiding of anyonic charges in non-Abelian models
can lead to non-trivial evolutions of fusion states. For certain non-Abelian anyon
models these operations are sufficient for universal quantum computation Mong
et al. (2014). Quantum computation based on anyon models also have a degree
of topological protection. Braiding operations do not depend on the specific path
taken, so small deformations to the path have no effect on the encoded quantum
information.

This section is broken down as follows. Section 2.1.1 presents the fusion rules
of anyon models in terms of F-moves and defines the fusion and splitting states of
sets of anyons. Section 2.1.2 discusses the braiding of anyons in terms of R-moves.

A useful diagrammatic representation of anyons in terms of oriented strings

of given charge is introduced and employed throughout this section.



2.1 Anyon models

2.1.1 Fusion

An anyon model has a finite set of anyons or anyonic charges C = {0,a,b,c, ...}
given by the irreducible representations of a group G Bonderson (2007); Pachos
(2012). Tt is useful to employ a diagrammatic representation of these anyon
models. Each anyonic charge in C corresponds to a string with a given orientation,
shown in Fig. 2.1 (Left). These can be considered as worldlines in 2+1 dimensions
with time pointing downwards. Fusion of a pair of anyons equates to bringing
two anyons together and observing their collective behaviour. The anyons in C
obey a commutative, associative fusion algebra defined by the group operation of
G,

axb= ZN;bc, (2.1)

where N, is the fusion multiplicity, denoting how many distinct ways a and b fuse
to give c. Thus, fusion multiplicities are non-negative integers. Abelian anyons
have unique fusion outcomes, implying > Ng = 1 if a or b is Abelian. If there

exists some a, b, ¢ € C such that
> NG >1 (2.2)

then the set C and the fusion algebra (2.1) describe a non-Abelian anyon model. In
each anyon model there exists a single vacuum charge 0 € C which fuses trivially
with all other anyons, N% = d,. The vacuum charge is often represented by an
empty string. Each anyon a € C also has a unique antiparticle pair a € C with
which it fuses to the vacuum, N9 = 8. The a and @ anyonic strings are related
by a flipping of orientation, as shown in Fig. 2.1 (Left).

Products of anyons have fusion and splitting Hilbert spaces. States in the
Hilbert space correspond to specific fusion and splitting processes. For example,
take the product a x b =) N&c. Each possible fusion channel corresponds to
a state

la, by, ) € Hey,  {a,bic, | € HE (2:3)

where p = 1,..., NS, labels the way in which a fusion or splitting outcome is
achieved, while H¢, and H are the fusion and splitting Hilbert spaces, respec-

tively. The fusion or splitting states are represented by the trivalent vertices



2.1 Anyon models

d 1/4 a b
¢ = |a, b;c, )
(dadb) y
/4 ¢
(dd; > Kb = (a, b c, yf
alp aQ,

Figure 2.2: A diagramatic representation of the fusion (Top) and spliting (Bot-

tom) states (2.3). Included are normalisation factors in terms of the quantum
dimension d,, defined in (2.9).

Figure 2.3: A diagramatic representation of the F-moves (2.6).

of anyon strings shown in Fig. 2.2, where the quantum dimension d, are taken
to be normalisation factors and are discussed later in this section. The states
(2.3) form an orthonormal basis for the fusion and splitting spaces. Additionally,
states corresponding to different fusion outcomes are orthogonal to one another,
(a,b;c, pla,b;d, v) = 6c40,,,. This ensures that a pair of anyons a and b created
from ¢ via the mechanism g must also fuse to ¢ via u, unless some non-trivial
operation is applied, such as a braiding, discussed in 2.1.2. These spaces have
dim(Hs,) = dim(H2) = NG, !

Consider now the fusion space H4 of three anyons a, b and c¢ fusing to d.
This can be broken down into the fusion of a and b to e and the subsequent fusion

abc

of e and ¢ to d. The space Hj* is isomorphic to the following composition of

fusion spaces

Hpe = @ Hy, © He, (2.4)

LAll Abelian and non-Abelian anyon models considered in this thesis have N& <1 for all

combinations of a, b and ¢ so the multiplicity label p is dropped from here on.

10



2.1 Anyon models

Figure 2.4: A diagramatic representation of the Pentagon equation (2.8).

where the direct sum runs over all possible anyons e from the fusion of a and
b. This space has dim(H4%) = Y, N5NZ and an orthonormal basis of states
defined by

la,b;e) |e, c;dy, (2.5)

where the tensor product symbol is missed out. However, the order in which
anyons are fused could be rearranged. Each ordering corresponds to a different
basis of states. One may map between these basis with isomorphisms called

F-moves defined as

ja,be) le, e;d) =y [FaJf (b, c; f) la, f1d). (2:6)
f
These are unitary matrices. A diagrammatic representation of these moves is
given in Fig. 2.3.
This process of breaking down fusion and splitting spaces generalises to larger

products of anyons. The fusion space H’*~1 has

aj...an
. bn—
dim(Hp ot )= > NNyl (2.7)
b1..bp—2

where the sum runs over all in between fusion outcomes possible given the fusion

ordering. It is possible to map from any set of basis states in this space to any

11



2.1 Anyon models

Figure 2.5: A diagramatic representation of the R-moves (2.11).

other with some composition of F-moves. Any two sequences of F-moves which
both map between the same specific fusion orderings must be equivalent. As
a result the F-moves must satisfy the consistency equation called the Pentagon

equation

[Ffecd]i[Faebh]{ = Z[ngc];[ 5jd]?[Flfcd]%' (2-8)

J
This equivalence is demonstrated in Fig. 2.4.

An important quantity in anyon models is the quantum dimension d, of each
anyon a. It is a measure of how fast the dimension of the fusion or splitting
Hilbert space grows as anyons are added to the system. For a large number, n,
of a anyons the dimension of the Hilbert space is dim(>, H<1) ~ d". These
quantum dimensions satisfy relations defined by the fusion rules, i.e. if (2.1) holds
then

dody =Y Niyde. (2.9)

The quantum dimension d, has a diagrammatic representation equivalent to the
creation of a pair a and a from the vacuum and fusion back to the vacuum as
shown in Fig. 2.1 (Right). This agrees with the normalisation factors in Fig. 2.2.

The total quantum dimension of the system is defined as

D= [> d. (2.10)

2.1.2 Exchange and Braiding

A pair of anyons a and b are exchanged by the unitary braid operation R,,. These

operators are called R-moves. They act on the fusion states as

Ry la,b;c) = RS, |b, a;¢) (2.11)

12



2.1 Anyon models

Figure 2.6: A diagramatic representation of the Hexagon equation (2.13).

where R, defines the action of R, on a particular fusion state. A diagrammatic
representation of (2.11) is given in Fig. 2.5.

The exchange R, is equivalent to rotating a and b anticlockwise and ¢ clock-
wise by 7 Pachos (2012). The clockwise rotation of a spin s particle by ¢ produces
the phase e~ Therefore,

Rgb — emsa emsbefmsc, (212)

where s,, s, and s, are the spin of a, b and ¢, respectively. Thus, the exchange of
a particle with its antiparticle pair is equivalent to one full anticlockwise rotation,
RV = ¢®™aand exchange with the vacuum charge is trivial, R%, = 1.

Similar to the pentagon equation for F-moves alone, the F-moves and R—moves

together must satisfy the Hexagon consistency equation
RZC[Fng];Rbe = Z[ngb];Rgc[ngc]?' (213)
g

This ensures that any two sequences of F-moves and R-moves which both map
between the same specific string configurations are equivalent. This equivalence

is demonstrated in Fig. 2.6.

13



2.2 The Surface and Toric Code

c 1
ab — pa b
Figure 2.7: A diagramatic representation of the S-tensor (2.14).

Another important quantity is the S-tensor. The elements of which are defined
in Bullivant & Pachos (2016) as

C, = ZN;,, b SRS RS\ dodyd, (2.14)

A diagrammatic representation of this tensor is shown in Fig. 2.7. A non-zero
element S¢, implies that braiding two charges @ and b can map non-trivially
between fusion states |a, a;0) |0, b;b) and |a,a; c) |c, b; b).

Anyons can be used to perform quantum computation. Quantum information
is encoded in the fusion states of the anyons and braiding operations act as
quantum gates mapping between fusion states. As all Abelian anyons have unique
fusion outcomes braiding cannot change their fusion states. Therefore, S;Zéo =0
for any Abelian anyons a, b and c. This implies Abelian anyons are not sufficient
for universal quantum computation, as braiding Abelian anyons produces only
phases. Non-Abelian anyon models such as Fibonacci anyons are able to achieve

universal quantum computation Mong et al. (2014).

2.2 The Surface and Toric Code

This section presents a brief review of the Z, surface Bombin & Martin-Delgado
(2007); Bravyi et al. (2017) and toric code Browne (2014); Kitaev (2003); Resende
(2017). These are equivalent models in the bulk with distinct boundary condi-
tions. This provides necessary background for work presented in Chapters 3 and
4. Section 2.2.1 presents the Hamiltonian of the model, introducing the vertex
and plaquette operators. Section 2.2.2 shows that the excitations of the model are
Abelian anyons by studying their fusion and exchange statistics. Finally, Section

2.2.3 discusses the interpretation of the toric code as a quantum error correcting

14



2.2 The Surface and Toric Code

Bb Bw

Figure 2.8: (Left) The 3 x 3 surface code, with physical qubits located at the
vertices of the lattice. Plaquette stabilizers B, and B,, are on black b and white
w plaquettes respectively. By, (B,,) applies a 0 (0%) operator to each qubit sur-
rounding b (w) and detects the parity of 0* (0*) operators on these qubits. Logical
Pauli operators S, and S, are shown as the red and green lines, respectively, en-
coding one logical qubit. (Right) The 4 x 4 toric code, with physical qubits at
the vertices of the lattice. Plaquette stabilizers, B, and B,,, are of the same form
as those in the surface code. The choices of X and Z logical operators are shown
in red and green, respectively, with S,, and S, depicted as the horizontal lines
and S,, and S,, as the vertical lines. These encode the two logical qubits of the
toric code. A o® operator acting on a single qubit producing a string with an m

anyon on the plaquettes at each end is shown in blue.

stabilizer code suitable for use as a quantum memory. This model has been the
focus of much research and there are a variety of comprehensive reviews available
such as Kitaev (2003) and Browne (2014).

2.2.1 The Hamiltonian

The surface and toric codes are models of qubits or spin-1/2 particles on the
vertices of an L x L square lattice. The surface code has open boundary conditions
and the toric code has periodic boundary conditions, i.e. defined on the surface

of a torus. The lattice length L is always odd for the surface code and even for

15



2.2 The Surface and Toric Code

the toric code. The Hamiltonians of both models are given by
H=-) B,—>» B, (2.15)
b w

defined in terms of black B, and white B, plaquette operators arranged in an

alternating checker pattern, as shown in Fig. 2.8. These are given by

B, =[] (2.16)
icb
and
B, =[], (2.17)
cw
where 0% and o* are Pauli operators. The products run over all spins ¢ sur-
rounding the black plaquette b and white plaquette w, respectively. The surface
code has some semi circular plaquettes on the boundary of the model, as shown
in Fig. 2.8 (Left). Operators corresponding to the semicircle plaquettes on the
boundary and square plaquettes in the bulk have support on two and four qubits,
respectively.

It is easy to see that black (2.16) and white (2.17) operators commute with
each other and the Hamiltonian (2.15). Any black operator trivially commutes
with all other black operators as they are built of ¢* operators, which commute.
The same is true of white operators, built from ¢ operators. Although ¢ and
o* operators acting on the same spin anti-commute with each other, any black
operator shares an even number of spins with any white operator, two if they are
neighbouring and zero if they are not. Therefore, they will always commute as
[ofo%, 0f0%] = 0.

The operators B, and B,, square to the identity, so they have eigenvalues +1.
Hence, for each ground state |1),) of the model By |¢y) = By, |,) = |1,) for all b

and w. One such state is

[¢g,) = [J(T+ Bu) 1000...0) . (2.18)

b

Indeed By |¢g,) = [¢g,), as By [[,(I+ By) = [[,(I+ B,,) for all black plaquettes
w. Also By [1)g,) = |1)g,), as 07 |0) = |0) and B, commutes with B,,.

16



2.2 The Surface and Toric Code

The state (2.18) is the only ground state of the Hamiltonian (2.15) on the
infinite plane. However, the toric code with periodic boundary conditions actually
has four degenerate ground states, while the surface code has two. This will be

discussed in more detail in Section 2.2.3.

2.2.2 Anyonic Excitations

The surface and toric codes support anyonic excitations at black and white pla-
quettes when the corresponding operators (2.16) and (2.17) have the eigenvalue
—1. Hence, the ground states correspond to the anyonic vacuum. A Pauli rota-
tion of of or o7 applied to site 7 anti-commutes with the two adjacent black or
white operators, respectively, exciting a pair of anyons. A of creates a pair of m
anyons on black plaquettes, shown in Fig. 2.8 (Right), while a o} creates a pair
of e anyons on white plaquettes. An e anyon is the combination of an m and an
e anyon on neighbouring plaquettes. Therefore, a rotation of o¥o? = io] creates

a pair of € anyons.

Fusion

The operators B, and B,, essentially detect the parity of the number of ¢* and
o” rotations, respectively, on that vertex or plaquette. If two of the same type of
Pauli rotations are applied to spins of the same plaquette, then the eigenvalue of
the corresponding operator will be +1. In other words, if two m or two e anyons
are created on the same plaquette they annihilate or fuse to the vacuum. The
same is true of € anyons as these are just composite particles made of m and e
anyons.
The anyonic fusion rules of the excitations are
exe=mxm=c¢Xxe=0,
(2.19)
eXm=c¢ exXxm=e, €Xe=nm,
where 0 is the vacuum. These are Abelian anyons as each pair has a unique fusion
outcome.
Anyons are moved about the lattice by their corresponding Pauli operators.

Each site ¢ is shared by two white plaquettes and two black plaquettes. If there

17
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Figure 2.9: The composition of an open and closed string operator consisting of

0”’s deforms the open string about the path of the closed string.

is already an anyon on one of the plaquettes, then applying the corresponding
Pauli rotation to site ¢ annihilates the existing anyon and creates one at the
other plaquette of the same type. This effectively moves the anyon across the
site. Sequences of rotations on neighbouring spins can be thought of as strings
of operators with anyons at their end points. The m anyons exist at the ends
of strings between black plaquettes, while e anyons are at the ends of strings
between white plaquettes.

A closed loop of Pauli rotations produces no anyonic excitations, as the anyons
at the ends of the string annihilate with each other. A closed loop of ¢* rotations
around a white plaquette w is equivalent to a B,, operator, while a loop of ¢*
around a black plaquette b is equivalent to a B, operator. Closed loops of o%’s
around multiple white plaquettes correspond to the product of the associated
white plaquette operators. These closed loops measure the parity of the number
of strings of the opposite type passing through them. Equivalently, they measure
the parity of the number of anyonic excitations on the enclosed white plaquettes.
The same is true of strings of ¢*’s around black plaquettes. The product of a
closed loop with a bordering open or closed string of the same type deforms the
string around the plaquettes or vertices bounded by the loop without shifting any
end points. This is shown in Fig. 2.9 for strings of o” operators.

Consider the Hamiltonian (2.15) on the infinite plane. The ground state |1, )
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Figure 2.10: (Left) The exchange of two m anyons is equivalent to acting on an
empty white plaquette with the operator B,, = ojojo507. This has an eigenvalue
of +1. (Right) An e anyon is braided around an m anyon with the operator L.

This has an eigenvalue of —1.

in (2.18) is the equal weight superposition of all possible string configurations of
closed o” loops. Therefore, acting with any closed loop operator maps between
different configurations in the superposition and returns the same state. This
extends to excited states, which are superpositions of all possible configurations of
open strings with the same end points. From this it is easy to see that the specific
string configuration of operators producing a pattern of anyonic excitations is not
physically significant. Any two configurations with the same end points can be
deformed into each other through the application of closed loop operators and
hence, describe physically equivalent states. Note that on a finite lattice with
open or periodic boundary conditions not all configurations with the same end
points can be deformed into each other in such a way. In this situation string
configurations which can be deformed into one another form equivalence classes
corresponding to different degenerate states. This will be discussed in Section

2.2.3.

Braiding and Exchange Statistics

Take two m anyons, as shown in Fig. 2.10 (Left). Applying the sequence of

rotations B,, = ojojo507 exchanges the two particles, by acting with a white
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2.2 The Surface and Toric Code

plaquette operator on a plaquette with no e anyon. This operator has an eigen-
value of +1 for such states, so acts trivially and returns the initial state. A similar
argument holds for the e anyons. Therefore, both m and e anyons have bosonic
mutual exchange statistics.

Although m and e anyons live on different features of the lattice so can not
be exactly exchanged, the exchange statistics can be inferred from fully braiding
one around the other. Take a state [1)1) = 0,0, |¢),,), where a O, string operator
is built from a line of ¢® rotations. The state [¢);) has an m and an e anyon at
the ends of the operators O, and O,, respectively, as shown in Fig. 2.10 (Right).
The e anyon can be braided around the m anyon and back to its original position
with a loop operator L, composed of o® rotations. This results in a final state
|1h9) = L, |1p1). The operator L, shares a single spin with O,, so {L.,0,} =0. It
also trivially commutes with O, [L,,O.] = 0. From these commutation relations

and the knowledge that L, acts trivially on the ground state |1y, ), it follows that,

|¢2> = L.0.0, |¢g1>
=-0,0,L, |¢g1> (2.20)

:_W1>-

Therefore, the braiding of an m and an e anyon results in a non-trivial topological
phase of —1. From this the exchange of an m and an e is taken to produce a
phase of v/—1 = i. These exchange statistics are neither fermionic nor bosonic,
they are anyonic.

From the exchange statistics of m and e particles with themselves and each
other the exchange statistics of any anyon with an € can be deduced. Braiding an
m or e around an € is equivalent to braiding it around both an m and e anyon.
This has a non-trivial topological phase of —1. Hence, m and e anyons also have
anyonic exchange statistics with e anyons, producing a phase of ¢. Similarly, the
exchange of two e anyons is equivalent to exchanging an m and e with an e,
which results in a phase of —1. Thus, ¢ anyons have fermionic mutual exchange
statistics.

Finally the spin of each anyon can be calculated. The m and e anyons have
trivial bosonic spin, as they cannot be rotated. On the other hand, € anyons are

rotated by transporting the constituent e anyon around the m anyon through the
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Figure 2.11: An e and an m anyon on neighbouring plaquettes form an e anyon.
This can be rotated with the plaquette operator B, = ojo3o50] applied to the

plaquette supporting the m anyon. This has an eigenvalue of —1.

application of a plaquette operator B, = o{o50307, as shown in Fig. 2.11. This
operator acts on a plaquette supporting an m anyon and produces a phase of —1.
Transporting the m around the e gives the same result. Rotating a spin s particle
by an angle 27 produces a phase factor of e~ Bradlyn & Read (1992). Hence,
¢ anyons are spin 1/2 fermionic particles.

To summaries, m and e particles have bosonic mutual exchange and spin
statistics, but have non-trivial anyonic exchange statistics with each other and

with € anyons. The e particles have fermionic mutual exchange and spin statistics.

2.2.3 The Surface and Toric Code as Stabilizer Codes

The surface and toric codes are stabilizer codes Brown et al. (2016); Browne
(2014). A stabilizer code is a quantum error correcting code consisting of n phys-
ical qubits, k& encoded logical qubits and n — k£ independent stabilizer generators.
The stabilizer generators are the generators of the stabilizer group, the set of n-
qubit Pauli operators which leave the encoded logical states invariant. The state
space spanned by the encoded logical states is called the code space.

Initially, consider the toric code with periodic boundary conditions on an L x L

lattice. This has L? = n physical qubits. The stabilizer generators are the black
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2.2 The Surface and Toric Code

and white plaquette operators. There are L?/2 black operators and the same

number of white operators. However, the products of all B, or B,, are
[[=B=1 ][][B.=L (2.21)
b w

Note, this is not true on a lattice with open boundary conditions where all B,
and B, are independent of one another. In order to make the operators inde-
pendent on the periodic lattice, one black and one white plaquette operator must
be removed from the set of generators. Therefore, there are L? —2 = n — k
independent stabilizer generators. This implies there are 2 = k encoded logical
qubits with 4 logical operators S,,, S;,, 5., and S;,. The encoded states of the
model must be invariant under the application of any element of the stabilizer
group. In other words they are ground states of the model. Anyonic excitations
correspond to errors in the quantum error correcting code.

The logical operators must commute with all elements of the stabilizer group,
while not being elements of the group themselves. This ensures that acting with
a logical operator on a state in the code space returns another distinct state
in the code space. They must also obey the usual anti-commutation relations,
{S.,,Sz,} = 0 and {S,,,S,,} = 0. The S,, operator is a string of ¢” rota-
tions around one of the non-contractible loops of the torus. This is equivalent
to creating a pair of m anyons and transporting them around the loop and an-
nihilating them. The S,, operator is a string of o rotations around the other
non-contractible loop. These operators are shown in Fig. 2.8 (Right). The four

degenerate ground states of the toric code are given by

Y900 s S V1) = [¥52) s Sa [V90) = [Wgs) s S Sa [¥090) = [0u)» - (2:22)

where [1,,) is given in (2.18). Each of these states are distinct states in the
code space as they cannot be mapped to one another through applications of
the stabilizer operators. The S,, operator is a string of ¢* rotations around the
opposite non-contractible loop of the torus to S,,. It intersects with S,, at one
qubit so they satisfy the appropriate anti-commutation relation. The S, operator
is a string of ¢* rotations around the other loop. These operators are also shown

in Fig. 2.8 (Right). The four logical operators produce a four dimensional Hilbert
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2.2 The Surface and Toric Code

space. The degenerate ground states (2.22) can be written in terms of the encoded

logical qubits as

|¢91> = |O>L1 ® |O>L2’ |¢92> = |1>L1 ® |0>L2 )

(2.23)

|¢93> = |0>L1 ® |1>L27 |¢g4> = |1>L1 ® |1>L2 )
where the logical operators act as S, [0), = [1), Sz, [1); = 0),, S, 0), =
0),, and S, 1), = — 1), . An equivalence class of logical operators which act

in the same way on states in the code space can be produced by multiplying the
logical operators with stabilizer operators. For example, multiplying the operator
S., by a closed contractible loop of o rotations is equivalent to deforming the
path of S., around the enclosed loops. However, as we saw in Section 2.2.2 the
specific path of an operator is not physically significant and does not change
its effect on the state. This equivalence can also be simply derived from the

commutation relations of the logical operators with the stabilizers

LaSo,

ng> = Sai

¢gj> ) (2.24)

where a € (x,z2), 1 € (1,2) and j € (1,2,3,4).

Consider now the surface code with open boundary conditions on an L x L
lattice. This has L? = n physical qubits. The stabilizer generators are the
black and white plaquette operators. There are (L? — 1)/2 black operators and
the same number of white operators. Unlike the toric code all B, and B, are
independent of one another. Therefore, there are L? — 1 = n — k independent
stabilizer generators. This implies there is 1 = k encoded logical qubits with
2 logical operators S, and S,. Similar to the toric code, the encoded states of
the model are ground states and anyonic excitations correspond to errors in the
quantum error correcting code.

The logical operator S, is a string of ¢% rotations connecting the top and
bottom edges of the lattice. The logical operator S, is a string of ¢* rotations
connecting the left and right edges of the lattice. These operators are shown in
Fig. 2.8 (Left). The operator S, is equivalent to creating an m anyon at the top
or bottom edge of the lattice and annihilating it at the opposite edge. Note, m
anyons can be created and annihilated at the top and bottom edges of the lattice,

while e anyons can be created and annihilated at left and right edges. This is
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2.3 String-nets and Walker-Wang models

clear from examination of the checked pattern of the surface code and the specific
boundary conditions imposed by the configuration of semicircular plaquettes at
the edges.

The logical operators of the surface code share much of the same analy-
sis as those of the toric code. They obey the same anti-commutation rela-
tions, {S,,S,} = 0. They produce only two degenerate ground states |t,,) and
Sz |Yg) = |1g,), Where [1),,) is given in (2.18). These again can be written in
terms of the encoded logical qubits as [¢,,) = |0),; and |),,) = |1);, such that
S0y, =11);, Sz 1), =10);, S.10), =10), and S, |1); = —|1),. Similarly to
the toric code, an equivalence class of logical operators which act in the same
way on states in the code space can be produced through multiplication with
stabilizer operators.

The surface and toric codes provide models for possible quantum memories,
as the encoded logical states (2.23) are topologically protected. In order to move
from one state to another anyonic excitations must be created and transported
around a non-trivial loop of the torus. For sufficiently low error probability this
provides increasing protection for states with larger system size Browne (2014).
However, it is not able to accomplish universal quantum computation as this
an Abelian model and the logical operators produce only phases. Non-Abelian
anyons are necessary in order to achieve universal quantum computation, as dis-

cussed in Section 2.1.2.

2.3 String-nets and Walker-Wang models

String-nets Levin & Wen (2005) and Walker-Wang models Walker & Wang (2012)
are trivalent lattice models in 2 + 1 and 3 + 1 dimensions, respectively. The
links of the lattice take charges corresponding to irreducible representations of a
particular group GG. The corresponding operators in the Hamiltonian are built
from combinations of F' (2.6) and R-moves (2.11). String-nets give rise to anyonic
emergent quasiparticles. In fact any anyon model in (2 4+ 1) can be produced
by a string-net with the appropriate group algebra applied to the links. For

example, the Z, surface code and toric code correspond to Zsy string-nets with
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2.3 String-nets and Walker-Wang models

distinct boundary conditions. The point-like excitations of Walker-Wang models
are fermionic or bosonic.

This section is broken down as follows. Section 2.3.1 provides a brief overview
of the general form of the Hamiltonians, introducing the vertex and plaquette
operators. It also discusses the form of the ground states and excited states.
Section 2.3.2 defines the reduced density matrices of models with topologically
trivial and non-trivial bipartitions. These formulae are used in Chapter 3 to

calculate the interaction distance (2.34) of various anyon models.

2.3.1 Hamiltonians

String-nets and Walker-Wang models are trivalent lattice models in 2 + 1 and
3 4+ 1 dimensions, respectively. They describe the behaviour of anyons through
the use of F' and R-moves. Each link of the lattice has an orientation and a spin
located on it which can be in N different states labelled by ¢ = 0,1,..., N — 1.
Each spin state corresponds to an anyonic charge in C, given in Section 2.1.1 as
the irreducible representation of a group G. A spin in state ¢ corresponds to a
string of type ¢ occupying the link orientated in the same direction as the link.
The string of type 0 corresponds to the vacuum charge.

The string-net/Walker-Wang Hamiltonian is given by
H=- Z Qv — Z Wp7 (225)
v P

where the sums run over all vertices v and plaquettes p of the lattice. The vertex

operator (), acts on the three links a, b and ¢ adjacent to the vertex v and has

1, if N¢
5abc = ’ 1 o 7& 0 ) (226)
0, if N¢, =

eigenvalues

where N&, defines the fusion algebra of anyonic charges given in (2.1) as the group
operation of G. Hence, @), ensures the ground state string configurations of the
model obey the fusion algebra (2.1). The @, operator is also called the charge
operator as it detects whether there is an open string with anyonic charge at the

vertex v.
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2.3 String-nets and Walker-Wang models

The plaquette operator is given by

=

— dZ 4

(2

I
o

where W; acts by fusing a string of type ¢ around the plaquette p through a
series of F' and R-moves. The specific form of this operator depends on the
lattice geometry and dimensionality of the model. This will not be discussed
here as it is not relevant to the work presented in Chapter 3. For a more in
depth look at these Hamiltonians the reader should consult Levin & Wen (2005);
Walker & Wang (2012). The plaquette operator is also called the flux operator as
it measures the magnetic flux through a plaquette. The ground state corresponds
to the state with no magnetic flux.

From equations (2.26) and (2.27) the ground states of these models are the
superposition of all possible closed string configurations allowed by the fusion
algebra of the model. This is comparable to the ground states of the toric code
presented in Section 2.2.

Excited states are produced by acting on a ground state with an open string
operator, i.e. by fusing a string of a certain type along a path s picking up phases
based on the states of links adjacent to s. Each distinct type of string operator
corresponds to a possible quasiparticle excitation of the model and produces a
particle antiparticle pair of excitations at the end points of the path s. Thus,
they encode the anyonic fusion and braiding statistics of the excitations through
a series of ' and R-moves. Again the specific form of these operators depends
on the lattice geometry and dimensionality and will not be discussed here. Ex-
cited states are the superposition of all open string configurations with the same
quasiparticle excitation pattern.

The anyon model described by the excitations of string-nets and Walker-Wang
models depends on the group G. For example, a G = Z, string-net with C = {0, 1}
and fusion defined by addition modulo 2 describes the same anyon model as the
toric code. The Zs string-net supports e anyons on the vertices, m anyons on the
plaquettes and e fermions across neighbouring vertices and plaquettes. Although
the lattice geometries are different, the anyonic fusion and exchange statistics

they describe are identical.
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2.3 String-nets and Walker-Wang models

z B

Figure 2.12: A topologically non-trivial toroidal cut of a Walker-Wang model Bul-
livant & Pachos (2016).

2.3.2 Reduced Density Matrix

Chapter 3 calculates the interaction distance, presented in Section 2.4.3, of string-
nets and Walker-Wang models for a variety of groups G. An important quantity
for these calculations is the reduced density matrix p.

Take the ground state |U) of a string-net or Walker-Wang model partitioned
into two regions A and B. The Schmidt decomposition is given by |¥) =
> aAa [¥Y) [WE) Bullivant & Pachos (2016); Li & Haldane (2008), where a in-
dexes all possible string configurations on the boundary dA. It is clear that the
eigenvalues of the reduced density matrix p = trg(|¥) (¥|) Peschel & Chung
(2011); Peschel & Eisler (2009) are determined by the probability |A,|* of hav-
ing a certain boundary configuration a of strings. As shown in Section 2.3.1 the
ground state is the superposition of all configurations of closed loops. Therefore,
for a topologically trivial boundary, such as all boundaries in 2 + 1 dimensions or
a sphere in 3 + 1 dimensions, all strings in a fuse to the vacuum. The associated
probabilities |\,|? are calculated in Bullivant & Pachos (2016) and the eigenvalues
of the reduced density matrix are given by

Han dxj

pu = rton (2.28)

where the 0-th Betti number by is the number of disjoint components of the

boundary and |0A| is the number of strings crossing the boundary of A.
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2.4 Interactions in Quantum Many-Body Systems

For Walker-Wang models in 3 + 1 dimensions it is possible to take partitions
with non-trivial boundary topology. For example, take the boundary of A to be
topologically equivalent to a torus. Among the allowed string configurations in
the ground state is a braiding of loops with charges = and y supported in A and
B respectively. A non zero S, defined in (2.14) allows for the existence of a
charge z connecting x and y, piercing 0A, as shown in Fig. 2.12. The associated
probabilities are calculated in Bullivant & Pachos (2016) and the eigenvalues of
the reduced density matrix are now given by

Hjeaz dﬂ?j

paz = D2|6A| Y (2.29)

where a, labels a boundary configuration fusing to the charge z. Note, only non-
Abelian groups G can support configurations with z # 0 as products of anyonic

charges in Abelian groups have single fusion outcomes.

2.4 Interactions in Quantum Many-Body Sys-

tems

This section initially provides an overview of free fermion systems. It focuses on
properties of the energy and entanglement spectrum that all free fermion systems
have in common. These properties are used to define the interaction distance Dz
Meichanetzidis et al. (2018); Turner et al. (2017), a measure of how interacting
a many-body state is. An interaction distance of Dr = 0 suggests the state has
an effective description in terms of free fermions. This could hint at new ways to
simulate or solve originally interacting systems with simple free representations.
Chapter 3 uses Dr to study a variety of anyon models.

This section is broken down as follows. Section 2.4.1 defines the general form
of the Hamiltonian for free fermion systems and discusses interesting properties
of the energy spectrum. Section 2.4.2 details the form of the entanglement spec-
trum and reduced density matrix of free fermion systems. Finally, Section 2.4.3
defines the interaction distance of a many-body state in terms of the correspond-

ing reduced density matrix.
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2.4 Interactions in Quantum Many-Body Systems

2.4.1 Free Fermion systems

Consider a system of free fermions on a lattice with N sites. Each site, indexed

by i, is either occupied by a fermion, |1),, or unoccupied, |0),, These states

i
are encoded by fermion creation zﬁj and annihilation 1); operators, such that
1), = 11 0),, |0), = 1 |1), and ] [1), = ¥, |0), = 0. The entire lattice encodes a
2V dimensional Hilbert space.

Hamiltonians of free fermion systems contain terms which are quadratic in
fermion operators, i.e. terms which are products of two fermionic operators.

They have the general form

N
H = 3" (aigly + Biytbitsy + vl + he.) (2.30)
ij=1

where ¢j Y + ¢ﬂ/}} are fermionic hopping terms representing the potential for
fermions to hop between sites i and j. The system could be coupled to an external
bath producing superconducting terms ;1; + @ %T- characterising the possibility
for the exchange of pairs of fermions with the bath. The local chemical potential

terms wj 1; define an energy cost associated to occupying a site 1.
This Hamiltonian can be diagonalised by an N dimensional unitary transfor-

mation detailed in Lieb et al. (1961) to give
N ~ ~
H=> e, (2.31)
i=1

where 1/?3 and sz are linear transformations of the initial fermion operators.

From (2.31) the energy spectrum of a free fermion system has a specific form

N

El(e) = e + Z emni(k), (2.32)

=1

where n;(k) € {0,1} is the eigenvalue of ¥/1; and gives the free fermion mode
occupation pattern for each many-body state k. The ¢; are the single-particle

energies corresponding to each mode and ¢ is the energy of the vacuum state.
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2.4 Interactions in Quantum Many-Body Systems

2.4.2 Entanglement spectrum

Take a free fermion system in the ground state partitioned into two parts A and B.

—H™ here H®™ is the entanglement

The reduced density matrix is given by p = e
Hamiltonian Li & Haldane (2008); Peschel & Chung (2011). The spectrum of the
entanglement Hamiltonian, also known as the entanglement spectrum E™ has
the same form as the spectrum of the full Hamiltonian (2.32) Meichanetzidis et al.
(2018); Pachos & Papi¢ (2018); Peschel & Eisler (2009); Turner et al. (2017).
Therefore, the eigenvalues of the reduced density matrix p, = e %" take the
form N
Pa = €XP (—60 — Z emi(a)> , (2.33)
i=1
where n;(a) € {0,1} gives the mode occupation pattern for each level a of the
entanglement spectrum. The ¢; are the single-particle energies corresponding to

each mode and ¢; is the energy of the vacuum state.

2.4.3 Interaction distance

Interaction distance, Dz, is a measure of how far a given state is from any free
state Meichanetzidis et al. (2018); Turner et al. (2017). It is defined as Dr =
ming,ecrD(p, o), the minimal trace distance D(p, o) between the reduced density
matrix p of a bipartitioned system and the manifold F of all possible free-fermion
reduced density matrices, o. Interaction distance can be written as Turner et al.
(2017)

Dr(p) = 5 min 3 Jpu — 0a(e)]. (2.34

where p, and o, are the eigenvalues of p and o, respectively, arranged in decreas-
ing order. As the state corresponding to o is free, the eigenvalues o, take the form
(2.33). The minimisation in (2.34) is over all possible sets of single-particle en-
ergies {¢;}. Clearly, D is dominated by the lowest energies of the entanglement
spectrum as o, decays exponentially with increasing energy E.

The next chapter studies the interaction distance of various anyon models
by considering the entanglement spectra of sting-nets and Walker-Wang models

presented in Section 2.3.2. In particular the Z, string-net corresponding to the Z,
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2.5 Summary

surface code or toric code is identified as having Dz = 0. This suggests that they
have a free fermion representation. Such representations are explored in Chapter
4.

2.5 Summary

This chapter provided a brief introduction to a wide range of topics concerning
anyon models and interaction distance. This started with a summary of anyon
models, focusing on their fusion and braiding statistics. The toric code was then
reviewed, a specific example of a lattice model supporting anyonic excitations.
This was followed by a short review of string-nets and Walker-Wang models along
with the properties of their reduced density matrices. Finally, the interaction
distance was defined as the minimal trace distance between the reduced density
matrix of a state and the manifold of all free-fermion reduced density matrices.
All of these areas will be relevant in Chapter 3 when the interaction distance
of string-nets and Walker-Wang models is used to quantify the role of interactions

in anyon models.
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Chapter 3

Interactions in string-nets and
Walker-Wang models

This chapter addresses the problem of quantifying the role of interactions in gen-
eral classes of topological states of matter in 2+ 1 and 3 + 1 dimensions by using
the interaction distance Dz Turner et al. (2017) as a measure of the distinguisha-
bility of these states from free-fermion states. Specifically, string-nets Levin &
Wen (2005) and Walker-Wang models Walker & Wang (2012) defined with a
selection of Abelian and non-Abelian groups are considered here. Even though
these models have excitations that exhibit anyonic statistics all topological states
of certain models can be exactly described by free fermions. The distribution of
Dr values for the states of these models shows that some models saturate the
maximum possible Dz, while others have states that are Gaussian states with
Dr=0.

While the interaction distance D is defined in (2.34) for a quantum state, it
can be redefined as the thermal interaction distance D% Pachos & Papi¢ (2018)
allowing one to probe the full energy spectrum of a system, as seen in Section
4.1.1. The study of interaction distance presented in this Chapter suggests there
is a wide range of models with possible free fermion representations. This is
used in Chapter 4 along with an investigation of the thermal interaction distance
to motivate the search for local unitary mappings of the Z, surface and toric
code to free fermions and free fermions coupled to fermionic symmetry operators,

respectively.
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3.1 String-nets

This chapter is organised as follows. Section 3.1 calculates the interaction
distance of string-nets with a variety of finite groups parametrising the edges of
the lattice. Section 3.1.1 shows that Abelian Zy string-nets have flat entangle-
ment spectra with degeneracy N. The distribution of the interaction distance of
Zs string-nets shows that they all either admit a free-fermion description for any
partition if N =2" n € N, or maximise Dz for a large fraction of the partitions
if N 22" The set of string-nets with Dz = 0 includes the Zy string-net, which
is equivalent to the Z, surface or toric code. This is used in Section 4.1 when
discussing the free fermion signatures of these models. Section 3.1.2 numerically
calculates the interaction distance of the non-Abelian SU(2);, string-nets for all
levels 2 < k < 20. The interaction distance of all such models is found to be
Dx # 0. This implies it is not possible to find a free fermion description of
these non-Abelian string-net models. Section 3.2 then studies the interaction
distance of Walker-Wang models, comparing the interaction distance of different
partitions. It is shown that the interaction distance of non-Abelian Walker-Wang
models depends not only on the size of the cut but also on the topology of the

partition.

3.1 String-nets

This section calculates the interaction distance for a wide range of string-nets.
The eigenvalues of the reduced density matrix for any string-net are given by
(2.28). Thus allowing one to determine analytically the entanglement spectra of

all string-net models, Abelian or non-Abelian, and for any partition.

3.1.1 Abelian

Initially consider a string-net with the irreducible representations of an Abelian
group Zy parametrising the edges of the lattice bipartitioned into A and B. Fig.
3.1 (Left) shows an example of such a bipartition. These models have d, = 1
Bonderson (2007) for all # € C and thus D = /N from (2.10). According
to (2.28) the corresponding reduced density matrix p(y) for any bipartition of

the ground state has a flat spectrum with degeneracy ¥ = N* and eigenvalues
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.16

2 4 6 8 10 12 14 16 18 20

;
Figure 3.1: (Left) The string-net model on a honeycomb lattice with a bipartition
into A and B. For this bipartition |0A| = 10 and by = 1. A configuration of
charges x; is depicted at the links of the boundary 0A. (Right, Top) Distribution
P(Dz) of the interaction distance for varying |0A|. (Inset) The dots represent the
numerically obtained interaction distance as a function of |0A|. (Right, Bottom).
Plot of D for SU(2) against k for a partition with |0A| = 3.

pa = 1/x = 1/NF for all a, where k = |0A| — by, the 0-th Betti number by is
the number of disjoint components of the boundary 0A and |0A| is the number
of strings crossing JA. In fact equation (2.28) can be generalised to give the

eigenvalues of the reduced density matrix for a bipartition of any eigenstate of

Hjeac dmj

Pac. = D2|0A|—bo

the model as
(3.1)

where a, labels boundary configurations which fuse to the charge c¢. From (3.1)
it is clear that the reduced density matrix of a bipartition of any excited state of
a Z, string-net is the same as that of the ground state.

In order to find the optimal free model corresponding to the minimal D for
a flat probability spectrum, with p, = 1/x for all a, let n be the greatest integer

such that 2™ < y. Assume that the optimal free fermion spectrum is of the form

Uansatz2diag(X_17"'7X_17p7"'7p)a (3'2)
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Figure 3.2: Interaction distance Dx(p) for flat spectra of rank N. The solid blue
line is the analytical upper bound given in (3.3). The dashed line is the maximal
value D#**. The dots are results of numerical optimisation and coincide with the

analytic upper bound.

where there are 2" entries for each value y ! and p. The normalisation tr(Cansatz) =
1 implies p = 27" —x ™. The trace distance D(p(X), Tansatz) forms an upper bound
for Dx(p(x)) given in Meichanetzidis et al. (2018) as

(3.3)

To evaluate D(p(X), Tansatz) the spectrum of p(y) is padded with zeros until p
and O.usat; have the same number of entries. This procedure is always viable as
it leaves the entropy invariant Turner et al. (2017).

In Meichanetzidis et al. (2018) the upper bound (3.3) is found to be in agree-
ment with the numerically computed Dz(p(x)), as shown in Fig. 3.2. Numerical
minimisation for values up to y = 2% never finds results below the analytic upper
bound making a convincing case that the upper bound is the exact result. The
upper bound is also shown analytically to be equal to Dx(p(x)) for x < 6. Hence,
the upper bound of (3.3) is assumed to be exactly Dx(p(x)) from here on.

From (3.3) the maximum of the interaction distance is D'2** = 3 —2+/2. This
maximum is approached by rational approximations y /2" of v/2 for increasing n,

as shown in Fig. 3.2.
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Figure 3.3: Distribution P(a) for varying k in the cases of N = 3 and N = 35.
The line is the analytic result P(a) = 1. The markers are numerical results for a

sample up to k = 2% — 1.

Returning to Zy string-nets, the case when N = 2" can be exactly described
by fermionic zero modes. For any boundary size |0A| the interaction distance
is exactly Dy = 0. Hence, the eigenstates of these models are Gaussian states.
This is a surprising result as anyonic quasiparticles are expected to emerge in
interacting systems. Nevertheless, the optimal free models are not necessarily
local and their energy spectrum is not necessarily given by filling of single fermion
modes. The case N = 2 corresponds to the toric code Kitaev (2003), presented
in Section 2.2. A free fermionic representation of the toric model is the A phase
of Kitaev’s honeycomb model Kitaev (2006) reviewed in Section 5.1.5. Chapter
4 demonstrates that it is possible to find a local unitary transformation mapping
the Zy surface code Bombin & Martin-Delgado (2007); Bravyi et al. (2017) (the
open boundary version of the toric code) to free fermions and presents its explicit
form. It also presents the explicit form of a local unitary transformation mapping
the toric code to free fermions with an interacting fermionic parity operator.

On the other hand, when N # 2" Dy is always non-zero. In particular, its
value depends on the size |0A| and the number of disjoint components by of the
partition boundary. Its behaviour can be investigated by studying the distribution

P(Dx) of Dg by varying k € N for a certain model Zy. An intermediate step in
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3.1 String-nets

the calculation of P(Dg) is finding the density function for P(a), where a = log, x
(mod 1) = logy, N¥ (mod 1) is a variable describing the position of y between
powers of 2.

If N # 2" then log, N is irrational. This implies a = klog, N (mod 1) for
each k, which uniformly samples the interval [0, 1] and hence P(a) = 1 over that
interval. Fig. 3.3 compares this prediction for fixed N against a sample of k£ up
to 2! — 1. Assuming (3.3) is an equality, the interaction distance can be written
as Dr(p(x)) <3 —24 — 2172,

From the distribution P(a) and the relation P(Dx) = P(a)(“2£)~! the dis-
tribution P(Dx), for fixed N, is given by,

B 2/1In2
V1+Dr(Dr —6)

Surprisingly, this is independent of N. Hence, there exist partitions that asymp-

totically maximise Dy for all N # 2", as shown in Fig. 3.1 (Right, Top). There-

fore, all Zy Abelian string-nets either admit a free-fermion description for any

P(Dy) (3.4)

partition or they maximise D for a large fraction of the partitions.

3.1.2 Non-Abelian

Next consider non-Abelian string-net models. For concreteness, take the finite
group to be SU(2) for various levels k£ > 2. This group gives rise to string-net
models that support a large class of non-Abelian anyons, such as the Ising anyons
for k = 2, with statistics similar to Majorana fermions, or the Fibonacci anyons
for k = 3, that are universal for quantum computation Pachos (2012); Trebst et al.
(2008). The interaction distance for a boundary around a single vertex that has
|0A| = 3 is considered here for simplicity. The interaction distance for all £ < 20
is found numerically to be Dz # 0, as shown in Fig. 3.1 (Right, Bottom). Hence,
it is not possible to find a free fermion description of these non-Abelian string-
net models. This suggests interactions are necessary for non-Abelian anyons in
these stabilizer fixed point Hamiltonians. Interestingly non-Abelian Ising anyons
occur in the Kitaev honeycomb model, reviewed in Section 5.1, which has a

representation in terms of free fermions coupled to a Z, gauge field.

37



3.2 Walker-Wang Models

0.16 I I I Il Il
®--® toroidal cut
¥ V trivial cut
0.12 p N
SR S S T S SR
Qv "o"\\‘ ‘// /'\\ /"\-.._‘
- v
0.04 | NN
000 ] ] ] ] ] ]
2 3 4 5) 6 7 8 9

Figure 3.4: A plot of Dx against k-level for a toroidal and a topologically trivial
partition, both with |0A| = 3.

3.2 Walker-Wang Models

While the string-net models can be directly generalised to three spatial dimen-
sions, a more powerful generalisation is in terms of the Walker-Wang mod-
els Walker & Wang (2012). These models allow non-trivial braiding of the charges
giving a rich behaviour in their bulk and at their boundary von Keyserlingk &
Burnell (2015); von Keyserlingk et al. (2013).

The entanglement spectrum for topologically trivial cuts of a Walker-Wang
model can be found in the same way as for string-nets given by (2.28). Parti-
tions with trivial boundary topology have the same entanglement spectrum, and
hence interaction distance as string-nets with the same group structure. Nev-
ertheless, partitions with non-trivial boundary topology reveal novel correlation
properties Bullivant & Pachos (2016). To identify their effect on the interaction
distance take the region A with a boundary topologically equivalent to a torus,
as shown in Fig. 2.12. Among the allowed configurations in the ground state
is a braiding of loops with charges x and y supported in A and B respectively,
connected by a string of charge z piercing A Bullivant & Pachos (2016). Thus,
the probability spectrum should now encode information about the non-trivial
braiding of the charges. The eigenvalues of the reduced density matrix are now

given by (2.29). Fig. 3.4 shows D for a toroidal cut compared to a trivial cut of
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non-Abelian SU(2), Walker-Wang models as a function of the level k£ > 2, where
|0A| = 3. It is clear that the interaction distance depends not only on the size of
the cut but also on the topology of JA. Its non-zero value indicates the necessity
of interactions for the existence of non-Abelian topological order also in these

three dimensional stabilizer fixed point Hamiltonians.

3.3 Conclusions

This chapter has quantified the effect of interactions in states of topological phases
of matter 2+ 1 and 3+ 1 dimensions. It was found that in string-nets, the size of
the partition boundary plays a role in determining the value of Dz, but not its
geometry. For Walker-Wang models the topology of the boundary also becomes
relevant.

Surprisingly, all states of both the Zon string-nets and Walker-Wang models
have Dr = 0 for any bipartition. It was also demonstrated by studying the
distribution P(Dx) of D that all Zy string-nets and Walker-Wang models, with
N # 2" maximise Dr for a large fraction of the partitions. The interaction
distance was found to be Dz # 0 for the non-Abelian SU(2), string-nets and
Walker-Wang models for 2 < k£ < 20. This seems to suggest that interactions are
necessary for the emergence of excitations with non-Abelian anyonic statistics in
these string-nets and Walker-Wang models.

More generally, this work makes use of the interaction distance to find models
with possible fermionic representations, which could be employed to solve these
quantum Hamiltonians. This is possible if a system has Dz = 0 for all possible
bipartitions and in all eigenstates, while at the same time the energy spectrum
is also free. Note that Dr = 0 in all eigenstates can be compatible with anyon
statistics because the latter only emerges when one interpolates adiabatically
between different sectors of the conserved charges of the model Lahtinen & Pachos
(2009a).

This work is will prove to be significant for the study of fermionic representa-
tions of the Z, surface and toric codes in Chapter 4. Interestingly, even though the

individual states and energy spectra are free, one must introduce highly non-local
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3.3 Conclusions

interacting excitation operators in order to encode the exotic anyonic statistics

of the models.
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Chapter 4

Free fermion representation of

the topological surface code

Investigation of the toric code’s eigenstates in terms of the interaction distance
Turner et al. (2017), presented in Chapter 3, showed that they are equivalent
to free fermion states Meichanetzidis et al. (2018). This chapter will show there
is a more general equivalence. Not only are all eigenstates of the toric code
Gaussian states having entanglement spectra given in terms of free fermions,
but the energy spectrum has a similar decomposition in terms of single particle
energies. Hence, it is expected that a unitary transformation exists that maps
the toric code to a free fermion Hamiltonian. Nevertheless, a free fermion system
can support neither anyonic statistics nor eigenstates with non-trivial topological
entanglement entropy. Hence, these properties have to be encoded non-trivially
in the unitary transformation that maps between these two physically different
models.

This chapter demonstrates that indeed it is possible to find a unitary trans-
formation Ug that maps the surface code to free fermions and presents its explicit
form. It also presents the explicit form of a unitary transformation Uy map-
ping the toric code to free fermions with an interacting fermionic parity operator,
which ensures the excitations of the model are created in pairs, as in the toric
code. These transformations comprise of products of C4 Clifford rotations You
et al. (2016) that act on each plaquette, and are directly generalisable to arbitrary

size systems. The resulting system of the surface code transformation consists of
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free fermion modes with local chemical potentials, that encode the single parti-
cle excitations of the plaquettes, and of a single zero energy fermion mode that
does not appear in the Hamiltonian, encoding the logical state of the model. The
quasiparticle excitations of the toric code on the other hand always come in pairs.
Therefore, as the unitary transformation is isospectral, it cannot map the toric
code to a system of this form. The fermionic description of the toric code needs
to be highly non-local in order to give rise to non-trivial topological order Yao
& Qi (2010), articulated here by a non-local fermionic parity operator (Zg sym-
metrisation) coupled to the fermionic modes of the system. This ensures any
excitations are created in pairs, thus fixing the isospectral nature of the transfor-
mation. The fermionic system also has an extra zero mode encoding the second
logical qubit of the toric code. The possibility to transform the surface code to
free fermions could have a variety of applications, e.g. in condensed matter, by
dissecting the way anyonic statistics emerge, or in quantum information, as free
fermion systems and their manipulation have a very efficient descriptions Bravyi
(2004); Bravyi et al. (2017).

The chapter is organised as follows. Section 4.1 shows the Z, surface and
toric code are representable in terms of free fermions. It also provides the specific
form of these representations by studying the stabilizer group structure of the
models. Section 4.2 explicitly presents the local unitary transformations Us and
U7 that map between the surface and toric code, respectively, and their fermionic
counterparts for arbitrary size systems. Section 4.3 studies the resulting models
showing how the states of the models split into “dynamic” and “zero” (or “log-
ical”) modes. Section 4.4 looks at how string operators transform between the
systems. It is demonstrated how the mapping keeps endpoints of anyonic string
operators fixed, while extending their support into the dynamic and logical modes
of the fermionic systems. Finally, it is shown that highly non-local interacting
operators are required to encode the anyonic excitation statistics of the surface

and toric code in excitations of the fermion models.
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4.1 Free Fermion Signature

4.1 Free Fermion Signature

This section details the properties of the Zy surface and toric code which suggest
they are representable in terms of free fermions. The interaction distance Dz
Meichanetzidis et al. (2018); Turner et al. (2017) is used to study the entanglement
and energy spectra and show that they both exactly correspond to those of free
fermions. The stabilizer groups of both the surface and toric code are then shown
to be isomorphic to groups generated by commuting Pauli operators, thus giving

a description of the form of the unitarily equivalent fermion models.

4.1.1 Entanglement and Energy Spectra

This section considers the entanglement and energy spectra of the Zs surface
and toric code. The entanglement spectrum can be studied with the interaction
distance Dz = min,cxD(p, o) Meichanetzidis et al. (2018); Turner et al. (2017),
defined in Section 2.4.3 as the minimal trace distance D(p, o) of a given reduced
density matrix p to the manifold F of all Gaussian density matrices (2.34). Sec-
tion 3.1 calculates the interaction distance all eigenstates of the Zs surface and
toric code to be Dz = 0 for any possible bipartition.

The energy spectrum {FEj} of a system can be probed with the thermal in-
teraction distance DY = min,czD(p™(8),0) Pachos & Papi¢ (2018), defined
as the minimal trace distance D(p'®(83),0) of a given thermal density matrix
P (B) = %e‘ﬂH to the manifold F of all Gaussian density matrices, where
7 = tr(e7PH) is the partition function, H is the Hamiltonian and T = % is
the temperature. The eigenvalues of p™ have the form pi* = Le ##+. The energy
spectrum of free states takes the form (2.32). For the surface and toric code,
the energy spectrum is given by the syndrome pattern of anyonic excitations at
plaquettes. These excitations all have the same energy contribution, as seen from
(2.15). Thus, the spectrum of the surface code can be reproduced with a set
of L? — 1 single particle energies {¢;}, corresponding to the L? — 1 plaquettes
of the L x L surface code, arranged in all possible occupation patterns. Simi-
larly, the spectrum of the toric code can be reproduced with a set of L? single
particle energies, corresponding to the L? plaquettes of the L x L toric code,

arranged in all possible occupation patterns with even total occupation number.
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4.1 Free Fermion Signature

The total occupation must be equal as all excitations in toric code are created
in pairs. Therefore, the thermal interaction distance of these codes is D% =

This implies the codes are isospectral to free fermion systems, suggesting there
should exist unitary transformations, &, mapping the codes to such isospectral

free fermion models.

4.1.2 Group Structure

This section studies the stabilizer group structure of the Z, surface and toric
code, presented in Section 2.2.3, to find the form of the fermionic models they
map to. Section 2.2.3 gives the generators of the surface code stabilizer group
as the set of all black B, (2.16) and white B,, (2.17) plaquette operators. These
plaquette operators all square to one and commute with each other. This group

is isomorphic to a group generated by a set of commuting Pauli operators,
<BP|B;2: = B/\BUBABW = H> = <Uz‘zw:1,...,|7>|>7 (4-1)

where P is the set of all plaquettes on the lattice. This suggests it should be
possible to map each plaquette operator of the surface code to a single free fermion
mode.

The toric code has the added restriction that the product of all plaquette
operators supported on a black, By, or white, B,,, plaquette, respectively, must
be equal to the identity. Therefore, the set of stabilizer generators is two smaller
than the set of all plaquettes P. The group generated by these operators is
isomorphic to a group generated by a set of commuting Pauli operators two

smaller than |P|,

<BP|B;2; = B/\BanBn = H Bp = H Bp = ]I> = <va@'=1,...,|7>|72> ) (4-2)
PEPy PEPuw

where P, and P, are the set of all black and white plaquettes, respectively. The

resulting group generated by the Pauli operators in (4.2) will be one quarter the

size of that in (4.1), for a fixed |P|. All plaquette operators in the toric code

will be mapped to free fermion modes, except one black and one white operator

which will each be mapped to fermionic parity operators over the set of all black
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4.2 The Transformation

and white modes, respectively. These symmetry terms are a result of the periodic
boundary conditions of the toric code and the fact that excitations in the code
are created in pairs. Hence, even though the toric code is isospectral to a free
fermion model, as seen in Section 4.1.1, by studying the group structure of the
code these interacting fermionic parity operators are found to be necessary to
ensure excitations are created in pairs in the transformed model, as they are in

the toric code. This is discussed in more detail in Section 4.4.

4.2 The Transformation

This section presents the transformation of the Z, surface Bombin & Martin-
Delgado (2007); Bravyi et al. (2017) and toric code Kitaev (2003) to free fermions
and fermions with fermionic parity operators, respectively. The representations
of the codes used here are the ones presented in Section 2.2. However, in order to
see the effect of such transformations on the codes and their operators a specific
form must be chosen for the logical operators of each code. The logical operators
of the L x L surface code S, and S,, defined in Section 2.2.3, are chosen to
have support on the L physical qubits along the left and bottom of the lattice,
respectively. This choice is shown for the 3 x 3 surface code in Fig. 2.8 (Left).

The toric code logical operators can be chosen arbitrarily as long as S, and S,
loop around the same non-contractible loop of the torus, S,, and S,, loop around
the other, and the appropriate commutation and anti-commutation relations are
obeyed, detailed in Section 2.2.3. For any L x L toric code choose all logical
operators to be of length L and parallel loops S;, and S.,, where i # j to be
a distance L/2 from each other. This choice is shown for the 4 x 4 toric code
in Fig. 2.8 (Right). The logical operators of both codes still form equivalence
classes of logical operators when multiplied with stabilizer operators, as described
in Section 2.2.3.

The surface code Hamiltonian Hgc is transformed by the unitary transforma-

tion Ug, while the toric code Hamiltonian Hr¢ is transformed by Ur as

Us HscUl = Hys

; (4.3)
UrHrclUy = Hpr,
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4.2 The Transformation

where Hpg is a free fermion Hamiltonian and Hpr is a fermionic Hamiltonian,
consisting of free fermion terms coupled two interacting fermionic parity opera-
tors.

The explicit forms of the unitaries s and Uy are presented here. These
unitaries take a general form suitable for any system size. To achieve this C}

Clifford rotations You et al. (2016) are employed, taking the form,

' 1
Re (0 = exp(Zoltl) = = (1 + jol¥ 4.4
04(0- ) exp( 40 ) \/5( +10 )7 ( )
where o# is the Pauli matrix acting on the ith qubit and ol = grirams- =

oM ® ot ® oM ® ... is the direct product of some set of Pauli matrices. The

action of R, on a matrix o is given by,

o RTC4(0[“])0[”]RC4(0M)
B {UM’ if [0, olW] = 0, (4.5)

ioWol it (g ol} — 0.

These rotations can be used to map a collection of spin operators to a spin

operator on a single qubit and the identity everywhere else. For example,

304(_0[;4]11[1/])
—_—>

el il gyl — 10..1200..]

el BT el pldule] 0.0 o
where 0¥ = 1.

Initially consider the surface code mapping Ug. The purpose of Ug is to
transform each plaquette stabilizer, B, in Hgc to an operator, Bp =0*=1-2d"a
Nielsen (2005) on a single free fermion mode or spin, while mapping the logical
operators S, and S, to operators S'x = 0% =af + a and SZ = 0% =1—2dla
with support on a shared zero mode, not in Hrg, and hence separate from those
supporting Bp operators. The operators a and a are fermionic creation and
annihilation operators, respectively. The transformation Us is split into N + 2
unitaries,

Us = Unsa...UsUr, (4.7)

where N = L? — 1 is the number of plaquettes in the L x L surface code. Each of

the U’s has a similar structure, transforming one of the L?—1 plaquette stabilizers,
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4.2 The Transformation

or 2 logical operators into single spin operators. The first N/2 unitary parts,

{U1,...,Uny2}, correspond to the transformation of black plaquette operators with

Jzz22[0..] [0...}zz[0...]7

support on four qubits, B)Y = ol , or two qubits, Bil = o as
shown in Fig. 4.1(a) and (b). The mappings take the form,
BIEV }%C'Al(o.[()];l/zzz[o])> O_[O]IOO[)[O] RC4(—U[O'”]yOOO[O”'])/ O_[O]ZO[)O[O]’ (4 8)
I RC4(J[0..,]yz[0...]) [0...]20[0...] Rc4(—a[0...]y0[0...]) 0..120[0..] .

By ——— o0 > o ;

where R, (ol01vz220- 1) R, (—gl0-1v00010--1) is one unitary part, U. We label the

resulting operators Biv = l0-]200000--] apq BIEI = gl0--]2000-.],

These operators
have support on the top left qubit of the corresponding plaquette b or just the
top qubit for the order two stabilizers. All other Pauli operators in the Cy rotation
are equal to those in the operator being mapped from at each stage, but at this
top left qubit the Pauli operator is replaced with a ¢V in the first step and a
—oY in the second. There is a lot of freedom in the choice of the specific form
of Cy rotations throughout this section. For example, the first R, could have a
—oY and the second could have a ¢¥. This section just presents two particular
collections of (4 rotations that work for the surface and toric code, respectively.
These N/2 unitary parts act in order from the top to bottom row of the lattice.
This ensures that their effect on all other black plaquettes are trivial. The effect of
these unitaries on the white (X) plaquettes, however are non-trivial. Fig. 4.1(b)
and (c) shows that some o® operators of the white plaquettes are mapped to o*
operators by the first N/2 unitaries. These o® operators are those with support
on the same qubits as the ¥ operators in 4.8, indicated by the blue arrows.
The white plaquette stabilizers are mapped by the next N/2 unitary parts
to 0% operators on the bottom right qubit of the plaquette, or the right qubit
in the case of the order two operators. They are mapped individually, each by
their own U in order from the right to left column. The form of the U’s that
perform this mapping vary depending on the effect of the U’s corresponding to
the black plaquettes. The mapping (Unye...U;) acts trivially on the semi circle
plaquette stabilizers on the bottom row of the lattice, as shown in Fig. 4.1(c),
(UN/2---U1)BS(U1T...U;{,/2) = BI = 0201 For these types of plaquettes the
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Figure 4.1: Mapping of the 3 x 3 surface code under Us. (a) Rotations
Re, (o0 w2220 1y and R¢, (—o0+1v0000-1) acting on the top left black plaquette
stabilizer By, are labelled in black on the interior of b;. (b) Blue arrows indicate
the free fermion modes supporting transformed black plaquette stabilizers B,.
The letters in parentheses show the form of operators acted on non-trivially by
the rotations. The letters are orange for white plaquettes, red for S, and green
for S,. Rotations for the other three black plaquettes are labelled in black in
their interior. (c¢) The C} rotations corresponding to the white plaquettes are
labelled in black in their interior. (d) Orange arrows show the positions of free
fermion modes supporting transformed white plaquette stabilizers, B,,. The ro-
tations mapping (Uy...U1)S,(US..UL) and (Un...U1)S.(Uf...UL,) to a single o*
and o7, respectively, with support on the logical mode are labelled along the left
and bottom of the lattice. (e) Red and green arrows point to the logical mode

supporting S, and S..

rotations take the form,

RC4 (_U[O]zy[o])

BunI R 0_[0...]02[0...] (49)

All others are acted on non-trivially, such as the top right square plaquette stabi-
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4.2 The Transformation

lizer, BLY, in Fig. 4.1(c), (UN/Q...Ul)BB/(UlT...U]T\W) = BY = gl0-Jezz2l0-] wwhere

w 7

BLY labels the intermediate form of the operator. For such an operator of the

rotation takes the form,

B R, (—ol0-Jez2u0-.]) 510-10002[0..] (4.10)

where the Pauli operators in the R¢, rotation are equal to those in the operator
being mapped from, BLY, except at the bottom right qubit of the plaquette where
the o” is replaced with a —o¥. The operator on the bottom right qubit of a white
plaquette is always unaffected by any previous U’s by construction, thus will
remain a o”.

Once the N plaquette operators have been transformed, the logical operators
are transformed with the two remaining unitaries, Uy,; and Uy,o. The logical
operator, S, is mapped by all previous unitaries to a string of ¢* operators along
the left boundary attached to a ¢® on the bottom left qubit of the lattice, where

it intersects with S,, which is acted on trivially by all previous unitaries. These

, respectively. They are both shown in Fig. 4.1(d), along with the

form of Unyq and Ung, for a 3 x 3 lattice. These act as,

RC4 (0.[0...]zzz“.[0...])

s  I0.Jy00..[0.] Rea(zo!0- 000
T

s ol0-1200-.0..]

S, , _olo-yoo.fo.] Fea=o ), 1010000,

S, = gl0-1200-0-] " regpectively, with support on a single shared qubit. Uy.1 and
Un.o act trivially on all previously obtained B, and B, operators.

The toric code mapping Ur take a similar form to Us. Ur transforms each
plaquette stabilizer, B,, in Hyc to an operator Bp = 0% on a single free fermion
mode, except one black, By,, and one white, B, , stabilizer, which are mapped

B,,, which are the

products of all other black and white transformed stabilizers, respectively. The

to symmetry operators, Pbl = Hb\bl Bb and pwl =1

w\wy

four logical operators, S;,, S.,, Sz, and S,,, are mapped to operators le = o7,

S’Zl =03, S'IQ = o} and 5'22 = o}, with support on two zero modes j and k not in
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4.2 The Transformation

the Hamiltonian Hrg, and hence separate from those supporting Bp operators.

The operator Uy is split into M + 2 unitaries,
U = Uppys...Us Uy, (4.12)

where M = L? is the number of plaquettes in the L x L toric code. Each of the U’s
transforms one of the L? plaquette stabilizers, or 4 logical operators into single

spin operators. The first M/2 — 1 unitary parts, {Uy, ..., Unrj2-1}, correspond to

[0...]z2z22[0...] 7

the transformation of black plaquette operators, B, = o as shown in

Fig. 4.2(a) and (b). The mappings take the following form,

RC4 (O.[O...]yzzz[O.”]) RC4(_U[O...]yOOO[O...])

B, , 0.]2000[0... s 710--100000..] (4.13)

ol0-1200000-] " This operator has support on one of the four qubits of

where Bb =
the corresponding plaquette b the same qubit that supports the o¥ operators in
the C; rotations. These qubits are the ones positioned at the heads of blue arrows
in Fig. 4.2(c) to (f). The orientation of unitary parts, and hence these arrows,
vary depending on the location of plaquette b on the lattice. The rule for an
arbitrarily sized L x L lattice with the S, operators positioned along the central
row and column and the S,, operators along the top row and left column of the
lattice, as depicted in Fig. 4.2, goes as follows. The blue arrows of plaquettes in
the top right quarter of the lattice point towards the bottom left, those in the
bottom left and right quarters point towards the top right and left, respectively,
and those in the top left in general point towards the bottom right. There are
two exceptions to this rule. One of which is the top left plaquette, which will be
mapped to a symmetry operator ]551 with support over all other B, plaquettes,
labelled by underlined blue (Z)’s in Fig. 4.2(c) to (f). Hence, it does not have a
unitary part, U, corresponding to it. The second exception is all other plaquettes
in the top left quarter of the lattice that run along the diagonal line of black
plaquettes from the top left to the bottom right of the lattice. All arrows along
this diagonal point towards the top left of the lattice. The orientation of all
arrows for the 6 x 6 toric code is shown in Fig. 4.3.

These M/2 — 1 unitary parts act in a certain order. No unitary part may

act before the unitary corresponding to the plaquette their arrow points at. So
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4.2 The Transformation

as can be seen from Fig. 4.2 the first plaquette is the one whose arrow points
towards the top left plaquette, as this has no unitary part of its own. This
ordering ensures that the effect of each part on all other black plaquettes that
are yet to be transformed is trivial. However, the effect of each of these parts
on the top left plaquette is non-trivial. This is mapped to a symmetry operator
15171 consisting of a o% supported at each qubit supporting a B,. This non-trivial
effect is marked in Fig. 4.2(b) to (f), by the position of underlined blue (Z)’s.
Similarly to the surface code mapping, the effect of these unitaries on the white
plaquettes are also non-trivial. Fig. 4.2(b) to (d) shows that some o” operators
on white plaquettes are mapped to o* operators by the first M /2 — 1 unitaries.
These o® operators are those with support on the qubits pointed at by the blue
arrows.

The next M/2 — 1 unitary parts each act on a white plaquette stabilizer
mapping them to single ¢* operators. The form of the U’s that perform this
mapping vary depending on the effect of the U’s corresponding to the black
plaquettes. The mapping (Upr/2-1,...,U1) acts trivially on the two plaquette
stabilizers in the bottom left and top right corner of the lattice, as is shown in
Fig. 4.2(c), (Unj2...Ur) Bu(U]..UL ) = By, = ol*+Jm222l0-1 For these plaquettes

the rotation takes the form,

RC4 (_U[O]zyzz[O])

B, y or0-10200[0...] (4.14)

All others are acted on non-trivially, such as the leftmost plaquette on the top row,
By, in Fig. 4.2(c), (Uptja-1.--U1) Bu(U]..UL, ) = By = ol0-1225#0-) where B,
labels the intermediate form of the operator. For such an operator the rotation
takes the form,

_ RC4(—O'[0“']‘U&;ZZ[O'“])

By, 5 orl0-1200000-..] (4.15)

where the Pauli operators in the Rq, rotation are equal to those in the operator
being mapped from, B,,, except at the top left qubit where the 0% is replaced
with a —o¥. The operator on the qubit that will support the final B, operator
will always be unaffected by any previous U’s by construction, thus will remain
a 0. These qubits are the ones positioned at the heads of orange arrows in
Fig. 4.2(e) and (f). The orientation of the second M /2 — 1 unitaries, and hence
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Figure 4.2: Mapping of the 4 x 4 toric code under Uy (a) Rotations
Re, (o0 w2220 1y and Re, (—ol0 00001y acting on the black plaquette stabilizer
By, are labelled in black on the interior of by. (b) Blue arrows indicate the
fermion modes supporting transformed black plaquette stabilizers B,. The letters
in parentheses show the form of operators acted on non-trivially by the rotations.
The letters are orange for white plaquettes, blue for black plaquettes, red for X
logical operators and green for Z logical operators. They are underlined for the
two plaquette operators that will be mapped to fermionic parity operators. Ro-
tations for the remaining black plaquettes are labelled in black in their interior.
(c¢) The Cy rotation corresponding to the bottom left white plaquette is shown
labelled in black in its interior. (d) Orange arrows show the positions of fermion
modes supporting transformed white plaquette stabilizers B,,. Rotations for the
remaining white plaquettes are shown in their interior. (e) Rotations mapping
the partially transformed logical operators to single Pauli operators with support
on the two logical modes are labelled in black. (f) Red and green arrows point to
the logical modes supporting S,,, S.,, Sy, and S,,. The black P,, and white P,
symmetry operators are labelled in blue and orange, respectively, with support

on all transformed operators of the same colour.
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4.2 The Transformation

the orange arrows, are fixed in a similar way to the first A//2—1. The rule for an
arbitrarily sized L x L lattice goes as follows. The orange arrows of plaquettes in
the top left and right quarters of the lattice point towards the top left and right,
respectively, those in the bottom right quarters point towards the bottom right,
and those in the bottom left in general point towards the bottom left. There are
again two exceptions to this rule. One of which is the top rightmost plaquette
in the bottom left quarter, which will be mapped to a symmetry operator ﬁ’wl
with support over all other B, plaquettes, labelled by underlined orange (X)’s
in Fig. 4.2(e) and (f), and thus does not have a unitary part corresponding to
it. The second is all other plaquettes in the bottom left quarter of the lattice
which run along the diagonal line of white plaquettes from the top right to the
bottom left of the lattice. All other arrows along this diagonal point towards the
top right of the lattice. The orientation of all arrows for the 6 x 6 toric code is
shown in Fig. 4.3.

As with the first M/2—1 unitary parts, the second M/2—1 act in a particular
order. No unitary part may act before the unitary corresponding to the plaquette
their arrow points at. As can be seen from Fig. 4.2 the first plaquette must be the
one whose arrow points towards the top right plaquette of the bottom left quarter
of the lattice, as this has no unitary part of its own. This ordering ensures that
the effect of each part on all other white plaquettes that are yet to be transformed
is trivial.

Once all plaquette operators have been mapped to single ¢* operators or sym-
metry operators the logical operators are transformed with the four remaining
unitaries Ups_1, ..., Upr2. The logical operators S, and S,,, are mapped by all
previous unitaries to strings of o* operators along the qubits they originally had
support on with a o on the qubits that intersect with S,, and S,,, respectively.

While S,, and S., are acted on trivially by all previous unitaries. These interme-
0...]zzz...[0...]

diate forms of the operators are labelled as S,, = g0-#z=- 01§ = 5l

S., = o0z 00 and S, = gl0-1#z22- 001 They are shown in Fig. 4.2(e), along

with the form of the unitaries Uy;_1, ..., Uprio, for a 4 x 4 lattice. These act as,

RC4 (0.[0..4]222...[04.4])

g O_[O]yo(][()] RC4(—O’[O"']ZOO"‘[O"'])
x1

s l0-1200-.0..]

_ Rc, (g[0~~]r22»-»[0~-]) (_0.[04.4]1004.4[0...]) (4'16)

. _ gl0-y00...[0..] Re,
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Figure 4.3: The orientation of all unitary parts U; for the 6 x 6 toric code.

where the operators S,, and S,, are transformed in a similar way. Thus S,,,
S.., S,, and S., are mapped to S,, = oy, S, = o, Sy, = oy and 5’22 = 0}.
The unitaries Up;_1, ..., Uprio act trivially on all previously obtained B, and B,

operators.

4.3 The Fermion Models

This section focuses on the properties of the models, Hrg and Hpgr, that result
from the transformations (4.3) of the surface and toric code, respectively. Initially
consider the surface code. The plaquette stabilizers are mapped to ¢* operators
on free spins (qubits), which are equivalent to free fermion modes. The excita-
tions of plaquettes can now be encoded by the occupation of isolated dynamic
fermion modes subject to a local chemical potential that encode the correspond-
ing increase of the energy by 2 when the plaquettes are populated. As a result

the Hamiltonian of the transformed model is,

Hys=—Y B, (4.17)
p
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where Bp = 0% = 1 — 2a’a Nielsen (2005), and a' and a are fermionic creation
and annihilation operators, respectively.

Applying Ur to a state of the surface code, |¢)y, gives,

u|¢>sc :|1L>sc- (4-18)

In general for a distance L code, any given state, |7:b)sc, has L? — 1 dynamic
modes, each corresponding to a plaquette of the surface code and one zero mode,
which supports the transformed logical operators, S, and S,. The ground state,
19¢) g Of the original surface code, Hgc, is stabilized by all plaquette operators,
i.e. By |tg)ge = |¥g)gc for all plaquettes p. This relationship is preserved by the
transformation, Ur. Therefore, Bp|1/1~g>sc = WNg>sc for all p, implying the ground
state of this model is a collection of L? — 1 empty free fermion modes, with a
degeneracy of 2 encoded by the logical zero mode. Occupied dynamic modes
indicate the positions of local anyonic excitations in this model.

The transformed L x L toric code, Hrr, has many of the same properties as

Hpg. The Hamiltonian is,

Hpr ==Y B,— Y By,—[[B— [] Bu) (4.19)
b\b1 w\wi b\b1 w\wy

where b\ b; and w \ w; are the sets of all black and white plaquettes, respectively,
minus the plaquettes, b; and wy, that become fermionic symmetry operators over
all other transformed plaquettes of the same colour. These symmetry operators
are P, = JJRYS B, and P, = [T B, in (4.19). The other L? — 2 transformed
plaquette stabilizers have the same form as those in (4.17), Bp =0*=1-2d'a.
Any transformed state has L? — 2 dynamic modes, each corresponding to a
plaquette of the toric code and two zero modes, which support the four trans-

formed logical operators. The ground state, |¢4) 1, of the toric code is stabilized

TC?
by all plaquette operators, i.e. By |tg)po = [tg)rc for all p. Hence, the trans-
formed ground state, \z@TC, is stabilized by all transformed plaquette stabilizers,
including the symmetry operators, BpmﬁTc = ]5b1|¢~g)TC = ﬁwllﬁg)Tc = |1/1~9>TC
for all p, implying the ground state is a collection of L? — 2 empty free fermion
modes, with a degeneracy of 4 encoded by the two logical zero modes. Occupied

dynamic modes indicate the positions of local anyonic excitations in this model.
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A single occupied mode b would result in an increase in energy due to the vi-
olated stabilizer operator B, and symmetry operator S’bl. This reflects the fact
that excitations are created in pairs at the ends of string operators in Hp¢ with
one end of the string at plaquette b and one at b;. The symmetry operators Pbl
and ]5w1 restrict excitations in Hpr to also be created in pairs. A more detailed

discussion of the excitations of Hrg and Hpr is provided in the next section.

4.4 Encoding Anyonic Statistics in Free Fermions

Previous sections have shown that the Zs surface and toric code are unitarily
equivalent to a free fermion model and to free fermions coupled to two inter-
acting fermionic parity operators, respectively. Hence, these models should have
equivalent physical properties. Nevertheless, operators on single fermion modes
cannot account for the anyonic statistics supported by the surface and toric code.
The exotic statistics of the excitations arises due to the commutation and anti-
commutation relations of the ¢® and ¢*’s the string operators are built from.
This section shows how these relations are preserved by the unitary transforma-
tions Us and U and how they are encoded in the action of non-local interacting
operators on the dynamic and logical modes of the system.

The string operators of the surface code O¢s and O%s, introduced in Section
2.2.2, are a product of o} or o} operators, respectively, along the path Cs. They
produce local excitations at their endpoints. Crossings of these strings give rise
to the anyonic statistics through the Pauli commutation relations. These string

operators transform as follows,

UsOSsuUf, = OFs

U (4.20)
UsOTsUL = OFs,

where Ofs and OSS are string operators acting on the dynamical and logical
fermion modes along the path Cs in Hrs.

All commutation relations of operators are preserved by Us. If OSs creates an
excitation at plaquette b, then {09 B,} = 0 = {O% By}. If not, [0, B,] =
0= [OSS, By]. Hence, the endpoints of Cg are the transformed versions of the

plaquettes, which were the endpoints of C's. Paths between endpoints of string
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4.4 Encoding Anyonic Statistics in Free Fermions

operators may change, but the endpoints are fixed at the transformed versions
of the plaquettes. Hence, the paths remain homotopically equivalent to those
of the untransformed operators. The commutation relations of operators with
each other are also preserved, by the mapping Us. Crossings of these strings
may appear in the dynamic or logical modes. Therefore, the anyonic statistics
of excitations of the surface code are encoded in the free model by a mix of the
dynamic and logical modes.

It is more instructive to look at how string operators Og‘s in the free model
Hyg are mapped under the inverse unitary transformation Ll; to string operators
O¢s in the surface code Hgg. A o® operator on a single spin (or a' +a on a single
mode) in the free model transforms to a string operator with one end point at
the plaquette p corresponding to that spin (or mode) and one at a boundary not
associated with a logical degree of freedom. This will be the top boundary if p is
black and the right if p is white. This has to be the case as it is the only type
of operator that anti-commutes with just one plaquette. This also suggests why
there could not exist a unitary transformation from the toric code to decoupled
free fermions without the symmetry operators in (4.19). If each plaquette in
the toric code were mapped to a fermion mode in the free model, any operator
creating a single fermion population would be mapped to one creating a single
plaquette excitation in the toric code. However, all excitations in the toric code
must be created in pairs, as dictated by its periodic boundary conditions. In
other words, the boundary conditions of the surface code are what facilitate such
a mapping.

A string operator with end points on any two plaquettes of the same colour
in the surface code may be obtained by mapping from a product of two o”’s
at the modes corresponding to those plaquettes in Hpg. Consider the string
operators Ogs and Ofs that map to string operators OSs and OYs creating
logical excitations, i.e. those with end points at the bottom and left boundaries,
respectively. These operators contain S, and S., respectively. Any other string
operator OS5 or OYs with the same end points and effect on the logical qubit
as those already mentioned may be obtained by including some combination of

0?’s in the operators OSS or O?S These 0*’s alter the string operator’s path by
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4.4 Encoding Anyonic Statistics in Free Fermions

applying stabilizer operations, thus including a loop around the corresponding
plaquette to the path, Cs.

The string operators of the toric code OST and O¢T, introduced in Section
2.2.2, are a product of o5 or o7 operators, respectively, along the path Cr. These
operators are mapped via the unitary transformation Uy to string operators in a
system of fermion modes coupled to two fermionic parity constraints, in a similar

way to those in the surface code,

UrOS U}, =0CT

o (4.21)
UrOSTUl, =0°T,

where @fT and OgT are string operators acting on the dynamical and logical
fermion modes along the path Cr in Hpr.

The commutation relations of operators are preserved by Up. If OS7T cre-
ates an excitation at a black plaquette b, then {OST, B,} = 0 = {07, B,} and
{OST, P} = 0. If b = by then B, = B,,. If OST does not create an excitation
at any black plaquette then, [097, B,] = 0 = [0S, B,] and [0ST, P,,] = 0 for
all b. Hence, the endpoints of Cr are the transformed versions of the plaquettes,
which were the endpoints of C. Paths between endpoints of string operators may
change, but the endpoints remain fixed. As in the surface code transformation
the commutation relations of operators with each other are also preserved by the
mapping Ur. Crossings of these strings may appear in the dynamic or logical
modes. Therefore, as with the surface code mapping, the anyonic statistics of
excitations of the toric code are encoded in the fermionic model by a mix of the
dynamic and logical modes.

Consider now how string operators OST in the fermion model Hpr are mapped
under the inverse unitary transformation Z/{} to string operators OST in the toric
code Hrg. A 0% operator on a single spin in the free model transforms to a string
operator with one end point at the plaquette p corresponding to that spin and
one at the plaquette that was mapped to the symmetry operator of the same
colour as p. This will be b; if p is black and w, if p is white. This demonstrates
how the symmetry operators ensure excitations are created in pairs in Hgr, as

they are in the toric code.

o8



4.5 Conclusions and Outlook

A string operator with end points on any two plaquettes of the same colour in
the toric code may be obtained by mapping from a product of two ¢*’s at the spins
corresponding to those plaquettes in Hpp. Consider the string operators égT and
OfT that map to string operators OST and OST with strings of 0*’s around a non-
contractible loop of the torus i.e. those which cross the S,, and/or S, operator.
These operators contain le and/or 5}2, respectively. Those mapping to operators
with strings of ¢*’s around a non-contractible loop of the torus i.e. those which
cross the S, and/or S,, operator, contain S,, and/or S.,, respectively. Any other
string operator OST or OYT with the same end points and effects on the logical
qubits as those already mentioned are produced by the same method as those in
the surface code, by including some combination of ¢*’s in the operators OST or
OST. These 0#’s alter the string operator’s path by including a loop around the
corresponding plaquette to the path Cr.

Therefore, although the transformations g and Ur are local the statistics
of both the surface and toric code are encoded by highly non-local interacting
operators acting on the dynamic and logical modes of the resulting fermionic

systems

4.5 Conclusions and Outlook

This chapter has shown that the Z, surface and toric code are unitarily equivalent
to free fermions and free fermions coupled to a fermionic parity constraint, re-
spectively. Moreover, it presents the explicit form of unitary transformations s
and Uy that map these codes to their fermionic counterparts for any system size.
It was demonstrated that the anyonic statistical properties of the surface and
toric code excitations map to the localised excitations of the fermionic models.
The periodic boundary conditions of the toric code introduce the need for non-
local interacting fermionic parity operators in the fermion model. Interestingly,
although the energy spectra as well as any state of the codes can be reproduced
with free fermions, in order to encode the exotic anyonic statistics of the models
highly non-local interacting operators are required.

The ability to map the surface code to free fermions, could have a number

of applications. For example, how the anyonic statistics of the excitations are
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encoded by the unitary transformation allows for an intuitive and unique un-
derstanding of the origins of these statistics. Moreover, the construction and
manipulation of free fermion systems are more efficient than current interacting
descriptions of the surface code Bravyi et al. (2017). Extending the group of
mappings, U, to other topological models in two and higher dimensions, such as
Zon string-nets and Walker-Wang models, could provide valuable insight into the

emergence of exotic statistics in these systems Meichanetzidis et al. (2018).
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Chapter 5

Background 2: The Kitaev model

and Riemann-Cartan Geometry

This chapter is split into two parts. The first part introduces the the Kitaev hon-
eycomb model as presented by Kitaev Kitaev (2006). The second part outlines
the components of (2 + 1)—dimensional Riemann-Cartan geometry. More com-
prehensive introductions are avaliable in Nakahara (2003), Carroll (2003); Reall
(2017); Schutz (2009); Wald (1984). This chapter provide essential background
knowledge for understanding the derivation of the effective geometric description

of the low-energy limit of the Kitaev honeycomb model detailed in Chapter 6.

5.1 Kitaev’s Honeycomb Model

This section introduces the Kitaev honeycomb model as presented by Kitaev Ki-
taev (2006) and gives the continuum limit approximation of the low energy limit
of the model Pachos (2012). In Section 5.1.1 the model is presented in terms of
spins on a honeycomb lattice. Section 5.1.2 then details Kitaev’s fermionisation
procedure redefining the spin model in terms of Majorana fermions. Section 5.1.3
discusses the interpretation of the model as a Z, gauge theory coupled to Ma-
jorana fermions. Section 5.1.4 introduces the continuum limit approximation of
the Kitaev honeycomb model. Section 5.1.5 explores the phase diagram of the

Kitaev honeycomb model. Finally, Section 5.1.6 presents the calculation of the
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5.1 Kitaev’s Honeycomb Model

® Lattice A
O Lattice B

Figure 5.1: The Kitaev honeycomb model in terms of spins showing the three
types of nearest neighbour two-body interactions with strength J,, J, and J..
One of each possible configuration of three-body interactions with strength K is

depicted. The form of the local symmetry operator Vp is also shown.

two-point Majorana correlations, which will be studied in Section 6.2 in order to

verify the geometric description of the model.

5.1.1 Spin Model

The Kitaev honeycomb model is an exactly solvable model of interacting spin-1/2
particles living on the vertices of a honeycomb lattice Kitaev (2006). The lattice
is split into two triangular sub-lattices, A and B, as depicted in Fig 5.1 by full
and empty circles respectively. Links are labelled x, y or z depending on their
orientation. Spins interact via anisotropic nearest neighbour two-body terms, and
three-body terms between nearest neighbour triplets. These interactions do not
commute with each other, making the model difficult to solve. The Hamiltonian

18

H=—-4|J, Z ojoi + J, Z olof +J. Z Jfaj—l—KZUfa;Jai :
(i,5) € x (4,3) €y (4,5) € z (:3,k)

(5.1)

62



5.1 Kitaev’s Honeycomb Model

where (7,7) € a means we sum over all pairs of ¢ and j that form an « link. As
we can see from (5.1) these spins interact via a two-body term ojof, as depicted
in Fig. 5.1. The (7, j, k) sum runs over all triplets of neighbouring spins. If the
pairs (i,7) and (j, k) are connected via a and v links, respectively, the three-
body terms are aiaof o}, where a # 8 # v. J,, J, and J, are nearest neighbour
coupling strengths and |K| < J, (V «) sets the strength of the three-body terms.
Note, In Eq. 5.1 we have introduced a factor of 4 compared to Ref. Kitaev (2006)
in order to simplify the algebra in Chapters 5 and 6.

The three-body terms emerge as a perturbation due to the introduction of an
external magnetic field Kitaev (2006). These terms explicitly break time-reversal
symmetry allowing for topologically non-trivial behaviour as a non-zero Chern
number v # 0 requires broken time-reversal symmetry Kitaev (2006); Pachos
(2012). We can easily see this symmetry breaking by studying the behaviour of
a single Pauil operator under a time-reversal transformation,

TU#TT = —ol (5.2)

7

Therefore, any product of an odd (even) number of Pauli operators will break
(respect) time-reversal symmetry.
Interestingly, all terms in the Hamiltonian (5.1) commute with the local sym-
metry operators Vp associated to plaquettes of the lattice, shown in Fig. 5.1,
Vo = (0103)(0305)(0505)(0105) (0506) (05 07) (5.3)
= ojo50y05080¢.
These operators square to the identity, Vpg = I, so their eigenvalues are V,, = £1.

All VP commute with each other as well as commuting with the Hamiltonian,
Vi Vil = [V, H] = 0. (5.4)

These operators define conserved quantities (generators of the local symmetry),
which makes solving the model much easier. The Hilbert space can be divided
into sectors labelled by specific choices of eigenvalues V}, = £1 for each plaquette
p. We label these physical sectors w. There are N/2 plaquettes on a lattice of N

sites, therefore, there are 2¥/2 unique sectors each with dimensionality 2V/2. Thus
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5.1 Kitaev’s Honeycomb Model

we are able to reduce the Hamiltonian to a specific sector and study the physics
of each independently. This still has not solved the model, but we will see in the
following sections how via Kitaev’s fermionisation procedure the Hamiltonian
for an individual sector becomes a Hamiltonian that is quadratic in terms of

Majorana fermions, hence exactly solvable.

5.1.2 Majorana Fermionisation

The spin model presented in the previous section can be represented by Majorana
fermion operators. This will result in a diagonalisable, quadratic Hamiltonian
describing non-interacting fermions. Let us first define a Majorana fermion. A
fermionic system with n modes can be described by complex fermion annihilation
and creation operators, a; and al, where ¢ = 1,2,...,n. These modes can be

redefined in terms of Majorana operators,
Coi—1 = Q; + CLZ-L, Co; = —’L(CLZ - CLI) (55)

Unlike complex fermions, these real fermions are their own anti-particle. They

obey the following relations,

c=c, =1, {ac¢}=0 (5.6)

7

Kitaev’s fermionisation procedure uses four Majorana operators, ¢;, b?, b? and
b7, to represent one spin—%. This is equivalent to using two complex fermions as
each can be decomposed into two Majoranas. A single complex fermion and a
spin—% particle both have a Hilbert space of dimension two, so the Hilbert space
of the four Majorana operators, L;, is twice as large as that of the spin they are
supposed to represent. To rectify this we define half of the states to be in the
“physical” subspace, LY C L;, and the other half in the “unphysical” subspace,
L; C L;. We say that a state |¥) is in £? if and only if,

D;|¥) = |¥), where D; = biblb;c;. (5.7)

17171

We could have equivalently chosen all —1 eigenstates of D; to be in the physical
subspace. We can represent the Pauli operators of* by operators ¢§* acting on the
full space £;,

o = ibjc;. (5.8)
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We are able to replace 0® with ¢* as the physical subspace is closed under ap-
plication of &%, [D;,6%] = 0 for all «, and they obey the Pauli algebra when
restricted to the physical subspace, [6%,67] = ie*#75*, ()2 = L and (6°)" = 5°.

We now restrict to the physical subspace LP for every site and write the spin

Hamiltonian (5.1) in terms of Majoranas,

H = lz (21]1]@1] + 2K Z ’LAszQAL]W> CiCj = ZZ Az‘jcicj- (59)
k 1,

2%
We have defined link operators,

’&ij - Z'b‘?‘b‘?‘ (510)

1750

where « is determined by the orientation of the link connecting ¢ and j. The
are Hermitian, ﬁ;-rj = 1;; and anti-symmetric, @;; = —u;;. They also square to
the identity, ﬁ?j =1, so they have eigenvalues +1. A useful way to represent the
patterns of #;; eigenvalues is by drawing arrows between sites. The direction of
the arrows determines the ordering of 7, 5 that gives a +1 eigenvalue.
We can define the conserved quantities V, of the model in terms of the eigen-
values u;;,
Vo= [ w (5.11)
(i,5)€0p
where (i, 7) are pairs of neighbouring sites and dp is the boundary of the plaquette
p. Each pattern of V}, can be produced by many configurations of u;;, labelled w.
In the next section we will see how reducing the Hamiltonian to a specific physical
sector w can be achieved by producing an equal weight superposition of all u in
the corresponding equivalence class. We will also use the physical symmetries of
the model to reduce further to a specific u and obtain a quadratic Hamiltonian

from the highly interacting (5.9).

5.1.3 Vortices and Lattice Gauge Theory

Interestingly link operators i,;; commute with the Hamiltonian H, making them
local symmetries of the model. We can split the full Hilbert space into spaces of

states with specific configurations of eigenvalues w;;, L= @, L". Fixing a u and
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restricting to this space results in a quadratic fermionic Hamiltonian that can be
easily solved. However, eigenstates of this Hamiltonian are not physical, they do
not satisfy the equation (5.7), as 4;; and D; do not commute, they anti-commute
{@;;, D;} = 0. Projecting a state |¥,,) of a particular configuration u to a physical

state,
I+ D,

2

W) =PW,) e, P=]] (5.12)

produces a superposition of many different u’s. However, the operators H and
‘A/p do commute with D, hence are invariant under the projection P. In fact the
|U,,) are uniquely characterised by their V,, configuration.

This means the model can be thought of as lattice gauge theory. The eigen-
values u;; are a Zp gauge field coupled to Majorana fermions and the D; are
local gauge transformations. The gauge invariant operators f/p are the Wilson
loops operators and an eigenvalue of V,, = —1 can be thought of as a w-flux or
vortex on the plaquette p. We call different configurations of V,, vortex sectors.
A useful way to visualise the gauge field is by viewing negative eigenvalues of
link operators u;; = —1 as an unphysical strings passing perpendicularly through
the link. Open ends of these strings correspond to plaquettes with V, = —1.
Applying a local gauge transformation D; to a site flips the three surrounding
u;;. This is equivalent to producing a closed loop or deforming a string about a
vertex. This does not change the end points of the strings, so does not change
the vortex sector. The state |¥,,) is then a superposition of all possible loop and
string configurations v in the same vortex sector w.

We are able to restrict to a particular vortex sector by picking a specific con-
figuration u. We can then solve the resultant quadratic Hamiltonian. Although
the states | W, ) are not physical we are allowed to do this as long as all observables
we are interested in studying are gauge invariant, i.e. they are invariant under

projection P to the physical subspace £P. The quadratic Hamiltonian has the

H = ZZ (2‘]1]”1] + 2K Zuzkuk]> CiCj = ZZ Az‘jCiCj, (513)
k

1, 1,3

form

where the J;; term describes interactions between ¢ Majoranas on nearest neigh-

bour sites 7,7 and the K term describes next to nearest neighbour interactions
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@® Llattice A
O Lattice B

Figure 5.2: The Kitaev honeycomb model in terms of Majorana fermions. Ma-
jorana fermions tunnel between nearest neighbouring sites with couplings J,, J,
and J, depending on the direction of the link. Tunnelling between next-to-nearest
neighbouring sites with coupling K is also indicated. The honeycomb lattice com-
prises two triangular sub-lattices, A and B, denoted by full and empty circles,
respectively. The unit cell is taken along the z-links. The translation vectors
between sites of the same sub-lattices are n; = (\/75, 3) and ny = (—‘/73, 2). The
orientations of nearest neighbour tunnellings (from A to B sites) and next-to-

nearest neighbour tunnellings (anticlockwise) are indicated.

between sites 7, j connected by k, these are shown in Fig. 5.2. In order to solve
this model we need only diagonalise the antisymmetric L x L matrix A;;, where
L is the linear system size. The matrix A;; grows polynomially with system size
as opposed to the exponential growth of the spin Hamiltonian.

For the rest of Section 5.1 we will restrict to the no-vortex sector, the sector
with V,, = +1 for all p.

5.1.4 Continuum Limit

This section presents the continuum limit, or low energy limit, of the Kitaev hon-
eycomb model with isotropic, homogeneous couplings, i.e. J, = J, = J, = J and

0,J = 0,K = 0 with p € (¢, 2,y). The notation set up in this section will be used
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in Chapter 6. Consider the no-vortex sector, which contains the lowest energy
states of the model Lieb (1994). Specifically restrict to the trivial u configuration,
where u;; = +1 for all links oriented from sub-lattice A to B, as shown in Fig. 5.2
for an z, y and z link. Similar to graphene Castro Neto et al. (2009); DiVincenzo
& Mele (1984); Semenoff (1984) this model has a continuum limit given in terms
of a Dirac Hamiltonian with a linear energy-momentum dispersion relation. To
see this we consider the low energy limit of the model where long wavelengths are
dominant, lattice spacing is negligible and the continuum limit approximation is
most applicable. In this low energy regime the Kitaev model can be effectively
described by by a quantum field theory of relativistic Majorana fermions.

Chapter 6 presents a description of the low energy limit of the generally
anisotropic, inhomogeneous Kitaev honeycomb model in terms of massless Ma-
jorana spinors obeying the Dirac equation embedded in a (2 + 1)—dimensional
Riemann-Cartan spacetime which is locally Lorentz invariant. This differs to the
Dirac equation of the isotropic, homogeneous case presented here which is em-
bedded in flat (2 + 1)—dimensional Minkowski spacetime. However, the initial
part of the continuum limit calculation is identical for both coupling regimes and
will be referred back to in Chapter 6. For now restrict to the isotropic case when
studying the low energy behaviour of the model.

The Hamiltonian (5.13) can be split into two parts,
H = H, + H,. (5.14)
H, contains the nearest neighbour interactions,

H1 =1 Z 2Jijuijcicj, (515)

]

and H, contains the next to nearest neighbour interactions,
H2 =1 Z 2K Z Uik U5 CiCy . (516)
] k

The Honeycomb lattice contains two triangular sub-latices A and B, repre-

sented in Fig 5.2 by black and white dots respectively. The vectors n; = (‘/75, %)

and ny = (—‘/73, 3) generate the sub-lattices A and B. The unit cell of the lattice
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contains two sites. We take them to be two sites connected by a z link, also shown
in Fig 5.2. We label two Majorana operators in the same unit cell by ¢ and cb,
where the superscript determines which sub-lattice they act on and the subscript
describes the real space position of the unit cell. Note that the introduction of
vortices changes the unit cell of the lattice. The following calculations can be
easily reworked by redefining the unit cell of the lattice if vortices are introduced

in a regular, periodic fashion. Here we focus only on the no-vortex sector.

Diagonalising H;
We can rewrite the nearest neighbour interactions as,

H, = ZZ 20 (JoCl i, + JyCoin, + Joct) + hc, (5.17)

where r sums over all unit cells in the lattice. We diagonalise the Hamiltonian

by Fourier transforming,

/b = Z e_iq'rcg/b (5.18)
q
Substituting (5.18) into (5.17) gives,

H, = 222252(”*‘1 (Joe™P™ + Jye P 4 J,) el + hc.

(5.19)
—ZZ (Jpe 0™ 4 Jedm2 4 )b cqCtq +he
q
From (5.18) we see that c_q = ¢}. Then,
Hy =) (—if(q)cgcy +if*(q)cycy), (5.20)
q
where,
f(q) =2(J.e" ™ + J,e' 0™ + J,). (5.21)
Diagonalising H,
The next to nearest neighbour interactions become,
ZK Z C r+n1 + Cr—i-ng + C’I‘-‘r’nl nz) _'_ C ( 177'—&-71,1 - Cl7)‘+n2 - C?’—l—nl—ng) + h'C'
(5.22)
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We Fourier transform again to produce

T

Hy=iK Y ) e /Prar [_emipm 4 gmipmz y emiptmmm)] (ot — cheh) 4 he
bgq

= 2K Z [—sin(q - ny) + sin(q - n2) +sin(q - (ng — ng))] (CZTCZ — ci’;c’;).

q
(5.23)
Therefore we have
Hy = Z A(q)(chcg - czchI) (5.24)
q
where
A(q) = 2K[—sin(q - ny) + sin(q - ny) + sin(q - (ng — n2))]. (5.25)

Total Hamiltonian H = H; + H,

If we define the two-component spinor ¢ = (c icZ)T, then the Hamiltonian
(5.14) becomes

H=H+H =Y 9in(q), (5.26)
q

with the single particle Hamiltonian h(q) given by,

_( Alg)  —f(q)
h(q>_(—f*(q) —A<q>) (5.27)

Eigenvalues of the single-particle Hamiltonian are given by

E(q) = £/ A%(q) + | f(q)]> (5.28)

Taylor expanding about the Fermi points

In the low energy limit wavelengths increase, lattice spacing becomes negligible
and we may use the continuum limit approximation. The points in the Brillouin
zone for which energy E(q) is a minimum are the Fermi points. The spectrum for
K =0 is plotted in Fig. 5.3. We see that the system has two independent Fermi
points P.. We will produce a continuum limit approximation of the low-energy

behaviour of the model by substituting g = P, + p for small p and Taylor
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Figure 5.3: The dispersion relation E(q) for the honeycomb Hamiltonian when
Jy = J,=J,=Jand K =0. The Fermi points are the points where E(q) = 0.
The two inequivalent Fermi points within the Brillouin zone are given by P and
P_.

expanding h(q) in (5.27) around the Fermi points up to first order in p. For
convenience we define the Hamiltonians hy(p) = h(P+ + p). We now restrict to
the isotropic coupling regime, where J, = J, = J, = J. Chapter 6 explores the
anisotropic case.

Let us first find the Fermi points of the system with K = 0. In this case
E(q) = £|f(q)|. This is at a minimum when

flq) =2J(e" "™ 4 €9™ + 1) =0, (5.29)

giving the equations
cos(g-mny)+cos(g-mny)+1=0 (5.30)
sin(q - my) + sin(q - ny) =0, (5.31)

which have two solutions

P.=4 (%,0) . (5.32)

Taylor expanding (5.21) about P, remembering that f(Py) = 0, gives

f(Py+p)=Vf(Ps) p=-3J(£p, +ip,) + O(p°). (5.33)
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Now let us take K # 0 and expand (5.25) about Py. As V(A(PL)) vanishes at

P we are left with,
A(Py +p) = A(Py) = F3V3K + O(p?). (5.34)

This has no linear momentum contribution, so does not change the Fermi point.
It does shift the energy of the Fermi point and produces a gap A = 3v/3K in the
dispersion.

Using (5.33) and (5.34) we can expand the single particle Hamiltonian (5.27)
to give

B A(Py+p) —f(Ps+p)
hi(p) = h(Pi +p) = (—f*(Pi:t _|_pp) —A(Pi +1;7))

5.3
_( F3VBK  3J(£p, +ip,) o) (5.35)
3J(£p, — ip,) +3v3K
or equivalently
h(p) =3J(+0"p, — o¥p,) F3V3Ko* + O(p?), (5.36)
which acts on the spinors ¢ = (c% ic},)" and ¢p_ = (¢ ic® )T, respectively, where
ci/ b= c‘ll)/i.

Weyl (chiral) basis

Now consider the two Hamiltonians h(p); and h(p)_ simultaneously. The two
Fermi points can be treated as pseudo-spin or chiral degrees of freedom by defining

a Dirac-like spinor

Ct
b

v, = zg,‘f , Ul = (4 —idl —adt M, (5.37)
c“_

Taking the direct sum of h(p),; and h(p)_ in their respective bases defined by
(5.37) gives the complete 4 x 4 Hamiltonian

hiotal(P) = 3J(0° ® 0%p, — 0* @ 0¥p,) — 3V3KI, ® o7, (5.38)
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5.1 Kitaev’s Honeycomb Model

where [; is the d dimensional identity matrix. Note that a ¢® rotation is applied
to h_(p) before direct summing with h, (p).

The low energy limit Hamiltonian (5.38) takes the form of a Dirac operator
with Dirac o and 8 matrices

. o 0 2 i 0 ]IQ oz
a—(o U)—a R0, 5—(]12 O)—a ® I, (5.39)

where o = (0%, 0Y,0%) are the Pauli matrices. The corresponding gamma matri-
ces are defined by v° = 8 and v = '«

v = (3 _OU) ——i'®o (5.40)

These gamma matrices satisfy the flat space Clifford algebra {7¢,7%} = 2%,
where the Latin indices a,b,... € (0,1,2,3) and 7* = diag(1,—1,—1,—1) is
the (3 + 1)—dimensional Minkowski metric. Although the Kitaev model is (2 +
1)—dimensional, we have a four dimensional representation of the gamma ma-
trices so are able to define an extra matrix +3. The fifth gamma matrix is then

given by
75 — —/i()él()é2@3

= i7"yl (5.41)
=" ®RI,.
Note that (7°)? = 1,.

The charge conjugate of a Dirac spinor V is defined by ¥(©) = CU*, where C
is the charge conjugation operator C' defined as a matrix which satisfies CTC' =1
and CTy2C = —(7%)* for all a. In the Weyl or chiral basis of gamma matrices
(5.40) the charge conjugation matrix is given by

(0 oY

C=-0"®0c%=1 (—ay O> . (5.42)
This clearly satisfies the condition CTC' = I. It also satisfies the second condition
for v* with i € (1,2,3)

C~iC = (=o' ® Jy)T(—z'ay ®0")(—0¥ ® aY)
= —ioY0%0Y @ oYc'c?
: (5.43)
= —(—io?®o")*

= -,
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where we have used the fact that o¥c'c? = —(o*)*. Similarly for 7"
CTy'C = (0" @ 0") (0" @ Iy)(—0" ® 0”)
=oY0"0" @ d¥d"
=—(0"®l)"
=—(")"
To prove that the spinor ¥, in (5.37) is a Majorana spinor we must show that

it satisfies the neutrality condition \Ifg,c) = W,. The charge conjugation matrix

(5.44)

(5.42) is given explicitly in the Weyl basis as

0 0 0 1
0 0 -1 0
C= 0 -1 0 0 (5.45)
1 0 0 0
The fourier transformation of a Majorana mode (5.18) implies that (CZ/ b)* = ci/; ,
00 0 1\ [\~ ct
0 0 -1 0 ich ict
(C) —= + —= + —=
v 0 -1 0 0 ic ich v (5.46)
1 0 0 0 c c?

Hence, the spinor (5.37) is indeed a Majorana spinor.

Using the gamma matrices (5.40) the total Hamiltonian (5.38) becomes
hiotat (P) = 37 (7*7'pe — 7*7°py) — i3V3K4'5”. (5.47)

Note (5.47) is independent of the choice of 3, it is completely fixed by o' and a?.

The low energy limit many-body Hamiltonian is then given by

Htotal - /dzplp;r)h(p)totallpp- (548)

Therefore, the low energy limit of the isotropic Kitaev honeycomb model is given
by Majorana spinors (5.37) obeying a Dirac equation (5.47) embedded in flat
(2 4+ 1)—dimensional Minkowski spacetime. This Dirac Hamiltonian has a linear
energy dispersion relation, much like graphene, and a K-term that gives rise to
an energy gap at the Fermi points. It is shown in Chapter 6 that the K-term
is proportional to the completely anti-symmetric part of the torsion tensor in
2 + 1 dimensions. Hence, a non-zero K couples the Majorana spinors (5.37) to a

non-trivial torsion field.
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Jo = Jy+ J.

Figure 5.4: The phase diagram of the anisotropic KHLM, where the couplings are
normalised as J, + J, + J. = 1. The isotropic case with J, = J, = J, is denoted
by a dot in the centre of the triangles. The quantum spin liquid topological phase
that supports Majorana fermions, denoted as B, sits in the centre of the diagram.
The topological phases A; correspond to the Toric Code phase. The boundaries
between the A; and B phases are defined by (5.49).

5.1.5 Phases and Anyonic Excitations

This section explores the phase diagram of the Kitaev honeycomb model. For
certain values of the couplings {J;} and K, the ground state of the Kitaev honey-
comb model exhibits topological order due to long-range entanglement Lahtinen &
Pachos (2009b, 2010); Lahtinen et al. (2012), which can lead to excitations that
behave as Abelian or non-Abelian anyons Kitaev (2006). Consider the model
with K = 0. It is clear from (5.21) and (5.28) that the model is only gapless if

Jpe' ™ + Je'd™ 4 J, =0 for some q. This has solutions when
| Je| < |yl + [ L], (Tl S AT+l || < [ Je| + [y (5.49)

Fig. 5.4 shows the phase diagram of the no-vortex sector of the Kitaev honeycomb
model, where J; > 0 and J, + J, + J, = 1. The central B phase in Fig. 5.4
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is the gapless quantum spin liquid topological phase Balents (2010); Knolle &
Moessner (2019); Savary & Balents (2017) defined by (5.49). Taking K # 0
opens a gap in the spectrum. The model in this phase is a p+ip superconductor
in the D class with a non-trivial Chern number v = 1 Chiu et al. (2016). In the B
phase sufficiently separated vortices, of the type discussed in Section 5.1.3, bind
Majorana zero modes Dusuel et al. (2008); Kitaev (2003); Otten et al. (2019);
Schmidt et al. (2008); 7. These Majoranas behave like Ising anyons o Lahtinen
& Pachos (2009b) sharing the same anyonic statistics as the excitations of the
SU(2)y string-net Bonderson (2007).

The A; phases in Fig. 5.4 are gapped phases with Chern number v = 0 Kitaev
(2006). The phase transitions between the B and A; phases are defined by the
boundaries of the region (5.49). For example, the transition between the B and
A, phase is defined by J, = J, + J,. Due to the rotational symmetry of the
lattice the three A; phases are the same up to some permutation of the z, y, and
z links. The A; phases of the Kitaev honeycomb model are actually equivalent
to the toric code Kitaev (2006), reviewed in Section 2.2. Vortices in these phases

behave like the Abelian e and m anyons of the toric code.

5.1.6 Two-Point Majorana Correlations

The two-point Majorana correlations are the expectation values (¢;c;) = tr(pc;c;)
of Majorana operators at different lattice sites. The Majorana correlation ma-
trix can be easily found through exact diagonalisation of the Kitaev honeycomb

Hamiltonian (5.13) given here for convenience

N
H=1 Z Aijcicj) (550)

i,j=1

where N is the number of sites in the lattice. This section presents the calculation.
A;; is an anti-symmetric matrix with purely imaginary eigenvalues that occur in

positive/negative pairs, +ie,. Therefore, A;; can be diagonalised with complex
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matrices as follows,

A=UDU!
w\’ fiek 0 0 0 ..\ [(u)
uj 0 —ie O 0o ... (up)f 551
— | w 0 0 deg 0 ... (uy)T 7 (5:51)
u; 0 0 0 —ie (u3)T
where U is a unitary matrix. The Hamiltonian then becomes
1 1
H = ZcT(z'A)c = ZCTU(iD)UT c, (5.52)

where c is a column vector of Majorana operators. This gives the complex fermion
representation of the normal modes, g = \%U fe,

9 :EUT . (5.53)

Using (5.52) and (5.53) the Hamiltonian (5.50) can be rewritten as,

N/2

1
k=1

Taking the outer product of ¢ with ¢? gives a matrix of correlation operators.
Using (5.53) gives

ciC1 C1Co ... g;rgl 0 Ce
e G2 ...l =20 0 qugg ... | U (5.55)

The right hand side of this equation becomes a linear sum of elements of gg. As
the expectation value of a linear sum of operators is equal to the linear sum of
the expectation values, each element in gg' can be replaced by its expectation

value,
1 (ae) ... (g 0 ...
() 1 ol =ov| 0 (gl ...|UT. (5.56)
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The expectation value (gzT gj) at zero temperature is then given by the Fermi-Dirac
distribution with a Fermi energy of zero. This result is used in Section 6.2.2 to
analyse the behaviour of the Majorana correlations for different coupling regimes
of Kitaev’s honeycomb model in order to verify the accuracy of the effective

geometric description of the model.

5.2 Riemann-Cartan Spacetime in 2+ 1 Dimen-

sions

Section 5.1 shows the continuum limit of the Kitaev honeycomb lattice model
is described by Majorana spinors obeying a Dirac Hamiltonian on a flat (2 +
1)—dimensional Minkowski spacetime. This section considers Majorana spinors
on a curved spacetime. The notation introduced in this section will be used in
Chapter 6. The first half of the section introduces the tools needed to trans-
form from a flat space to a curved space. Specifically, Section 5.2.1 introduces
the dreibein and metric and Section 5.2.2 discusses the covariant derivative, the
connection of a spacetime and the contorsion tensor. Section 5.2.3 then considers
the idea of parallel transport and how this pertains to the curvature and torsion
of a spacetime. Curved spacetimes that support torsion are of particular inter-
est, as in Chapter 6 it will be shown that the K term in the Kitaev honeycomb
model couples the majorana spinors to a non-trivial torsion. Such spacetimes are
called Riemann-Cartan spacetimes Carroll (2003); Nakahara (2003); Reall (2017).
Finally, Section 5.2.4 presents the form of the Dirac action and Hamiltonian of
spinors on a (2 + 1)—dimensional Riemann-Cartan spacetime. The form of the
Hamiltonian is specific to a static spacetime Schutz (2009); Wald (1984).

5.2.1 Dreibein and Metric

Consider a (2+1)—dimensional spacetime (M, g) with coordinate system (¢, x,y).
M is a differentiable manifold and ¢ is a metric tensor. At every point p in M
we have a tangent space which is the space of vectors tangent to functions in
M passing through the point p. The coordinate basis vectors {e, = 0,} of a

tangent space give the rate of change of the corresponding functions in M as you
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move along a coordinate vector x, of M. The dual basis vectors {e' = da*} are
defined such that e*(e,) = 0¥. The metric tensor ¢ is a function which defines
the inner product of two tangent vectors v and w at a point p in M and produces
a real scalar g(v,w). This defines idea of distances on a manifold. Greek indices
ranging over t,x,y are used to represent components of tensors with respect to
the coordinate basis.

To work with spinors on a general spacetime we need to define an orthonormal
basis with respect to the metric tensor g. The dreibein basis is a set of orthonormal
basis vectors given by {e, = e e, } with a corresponding dual basis {e® = e? e/},
which satisfies g(eq, €5) = 14 and e%(e,) = 05, where 7n,, = diag(1l, —1, —1) is the

Minkowski metric. In components, these relations read
Guwed'ey” = na, €8 =0y, (5.57)

where g(e,,€,) = g, are the components of the metric with respect to the co-
ordinate basis. Note the choice of dreibein basis is not unique. Latin indices
ranging over 0, 1,2 are used to represent components of tensors with respect to
the dreibein basis.

The components of the dreibein e/ themselves are sometimes called the
dreibein, while the components of the dual dreibein e?, are called the inverse
dreibein as they allow one to invert the expressions in (5.57). This thesis adopts
the convention of calling them both the dreibein. The dreibein allow us to trans-
form components between frames (basis representations), i.e. for a (0, 1) tensor
A we have A, = e? A, and A, = e/ A,, for a (0,2) tensor we need only look
at the example of the metric tensor in (5.57) and so on for higher rank tensors.
The metrics g, and 74 and their inverses g"” and n® lower and raise Greek and

Latin indices, respectively.

5.2.2 Spin Connection

Differentiation is the process of comparing a tensor at two infinitesimally sep-
arated points on the manifold M. This presents a problem, tensors defined at
different points are exist in different spaces. In order to compare tensors consis-

tently we define the covariant derivative which can be viewed as the basis (or
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frame) independent generalisation of the partial derivative at all points on M.
Unlike the partial derivative of a tensor the covariant derivative transforms via
a covariant transformation under a change of basis, retaining certain identifying
properties in the same way that a tensor does. This is because the covariant
derivative of a tensor is also a tensor. The covariant derivative of a rank (1,1)

tensor A* in the coordinate basis is given by
VoAt = 0, A4, + TV AP, —T7, At (5.58)

where ' are the components of the connection. This definition can be extended
to arbitrary rank tensors with a factor of I'. for each index of the tensor.

The covariant derivative is defined by the choice of connection. A metric
compatible connection is one for which the metric is covariantly constant Vg = 0.

Any metric compatible connection has the form
r,=r,+K,, (5.59)

where fpw/ are the components of the unique torsion free metric compatible con-
nection also known as the Levi-Civita connection or the Christoffel symbols, and

K?,, is the contortion tensor. The contortion tensor is given by

1

K’ = §(TPW +T,°,+T,°,). (5.60)
where %, = ZFEM is the torsion tensor. Square brackets denote anti-symmetrisation
over indices within the bracket, i.e. Ffw} = 5(I%, —T%,). The Levi-Civita con-

nection is completely defined by the metric

. 1.

Fp;w = §gp (augm/ + augcm - aogw/)7 (5‘61)
and is symmetric on exchange of p and v. This is why we called the Levi-Civita
connection "torsion free”, as T7, = QFfW] =01 17, = fﬁy. Torsion and the

torsion tensor will be discussed in more detail in Section 5.2.3.

The covariant derivative can be written in terms of the dreibein basis. The
covariant derivative of a (1,1) tensor A% in the dreibein basis has a similar form
to the coordinate basis in (5.58)

VA% = 9,A% + W A% — W A (5.62)

ub*+ ¢
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where wf, are the components of the spin connection given by
wly = e (9ue,” +T%,e,”). (5.63)

Besides defining the covariant derivative in the driebein basis, the spin connection
allows one to take covariant derivatives of spinors. This will be discussed further
in Section 5.2.4.
Metric compatible connections given by (5.59), result in spin connections of
the form
Wiy = Wiy + K, (5.64)

where wy, is the Levi-Civita spin connection obtained by substituting the coordi-
nate Levi-Civita connection from (5.61) into (5.63). The contortion tensor in the
dreibein basis is K}, = e ¢,” K* . Note, although the Levi-Civita connection is
unique the Levi-Civita spin connection is not as the dreibein basis is non-unique.
There is a unique Levi-Civita spin connection for each choice of driebein.

It can be shown that if the connection is metric compatible as in (5.59) then
Ve =0, where we have taken the dreibein e * to be the components of a (1, 1)

tensor. This is sometimes called the dreibein postulate or the tetrad postulate.

5.2.3 Curvature and Torsion

The connection defines the curvature and torsion of a spacetime. It is beneficial
to first discuss the geometrical meaning of these quantities. To do this we need to
introduce the idea of parallel transport. Parallel transport can be crudely defined
as the act of transporting a tensor A along a curve defined on the manifold M
while keeping its relative orientation to the manifold constant. The components
of a (1,1) tensor A* for example, vary with the basis vectors e, and e” to keep the
relative orientation constant. More concretely the condition for parallel transport
of a tensor is the components of the covariant derivative of the tensor vanish, i.e.
VA=0or fora(1,1) tensor

VA%, = 0. (5.65)

With this definition let us now discuss the geometrical meaning of torsion. Take

the point p with coordinates {z”} and the infinitesimal vectors X = e”e, and
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Y = ¢6”e,. Parallel transporting X along the infinitesimal displacement defined
by Y to the point s with coordinates {z” + 6”} and vice versa for Y to ¢ with
coordinates {x” + €} results in two vectors sr; and gry respectively. These are
defined as sry = € + (9,€”)0” and qro = 6 + (9,0”)e*. The vectors X, Y, sry
and qre do not in general define a closed parallelogram as the points r; and r, do

not necessarily coincide. The vector ry7s is given by

T2 = Ppq + qra — ps — STy

(5.66)
=T%,,e"s",
where T%, is the torsion tensor which has already been defined as
v, = ZFFM, (5.67)
with respect to the coordinate basis. Hence, the torsion tensor gives a measure
of the separation of r; and ro. Note in (5.66) we have used 0,¢” = —F”We“ and
0,07 = —I'?, 6" which can be derived from the definition of parallel transport
(5.65).

We now discuss the geometrical meaning of curvature. Parallel transporting
a vector from a point p to r along two different paths will in general result in
two different vectors. The difference in the resulting vectors is due the Riemann
tensor, sometimes called the Riemann curvature tensor. Take a parallelogram
pqrs with coordinates {z*}, {2 + €}, {2” 4+ €/ + 6*} and {z” + §”}, where €”
and ¢” are infinitesimal displacements. A vector V, defined at p will result in
the vector V. when parallel transported along C' = pgr and the vector V! when
parallel transported along C’ = psr. From the definition of the parallel transport

(5.65) one finds the difference between these vectors is

V) =V, = VIRE e, (5.68)

opuy

where V)7 are the components of V, and R, are the components of the Riemann

tensor which gives the curvature of a connection and is defined as
A A
Ry, =07, — 0,17, + pr\F vo = LI (5.69)

From the Riemann tensor, we can define two more geometric quantities, the Ricct

tensor R, and the Ricci scalar R

R,, =R’ R=R". (5.70)

pov? Ju
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In terms of a full metric compatible connection Iy, = f”’W—i—K # » the Riemann

tensor is given by

D - A
Ry = RO + 20,7, + 207 K

ouv v]o

P TA P A

v]o»

(5.71)

where lfipaw is defined by replacing all I'; , in (5.69) with the Levi-Civita connec-
tion fo‘ﬁ”. The square bracket notation Ay, B, denotes anti-symmetrisation over

w1 and p, leaving v unchanged. The corresponding Ricci scalar can be written as
R=R— K,, K™, (5.72)

where it is assumed that the contortion is completely anti-symmetric. This as-
sumption is made because spinor fields on Riemann-Cartan geometry only couple
to the completely anti-symmetric part of the contorsion and torsion tensors. This
will be discussed in more detail in Section 5.2.4. The Ricci scalar gives the scalar

curvature of spacetime.

5.2.4 Spinor Fields on Riemann-Cartan Geometry

The Dirac Action

The action for a spin—% particle ¢ of mass m defined on a general (2+1)—dimensional

Riemann-Cartan spacetime (M, g) is given by Nakahara (2003)

Sue = 5 | @*lalel (99D, = Dyt 2imi) . (573

where {y#} are the curved space gamma matrices. These matrices obey the
Clifford algebra {y*,7"} = 2¢"” and are related to the flat space gamma matrices
{7} defined in (5.40) via v* = e #*~*, which obey the flat space Clifford algebra
{7%,7%} = 2n?®. The gamma matrices obey (72)7 = 7%924°. The object |e| =
| det[e ]| which from (5.57) obeys [e| = V/|g], where g is the determinant of

the metric. The flat space gamma matrices are used to define the Dirac adjoint
) =iy’
The covariant derivative of a spinor v is given by
D = 0,90+ w,, (5.74)
D, = (D))" = 0,0 — dw,, (5.75)
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where w,, is given by

1
ab ab
w = Eu}#abz s 2 =

7

4

w

), (5.76)

and wyq, = nacwzb are the components of the spin connection defined in (5.63).
The notation D, is used instead of V, to distinguish between the covariant deriva-
tive of a spinor and that of a tensor. The rest of this thesis will refer to w,, as the
connection as well.

To quantise this theory the curved space anti-commutation relations are im-

posed on the spinors

{th(t? 113), W‘(ta wl)} = {?ﬁi(t? CU), wg (t7 wl)} = Oa
(0L (t, @), Vs(t, @)} = —0,36@ (@ — @),

le]

(5.77)

where a, 3 label the components of the spinors and 6 (z — «') is the two dimen-
sional Dirac delta function.

As shown in Section 5.1.4, the continuum limit of the Kitaev honeycomb
model can be described with a single-particle Hamiltonian (5.47) expressed with
respect to a spinor field ¥ obeying flat spacetime anti-commutation relations i.e.
(5.77) with |e| = 1. Chapter 6 focuses on comparing the single particle Kitaev
and quantum field theory Hamiltonians. This means the corresponding spinors
of each must satisfy the same anti-commutation relations. Hence, the spinors 1

of the Riemann-Cartan theory in (5.73) are renormalised by defining

x = Vlel¢, (5.78)

which indeed obeys the flat spacetime anti-commutation relations, {x1 (¢, x), x5(t, ')} =
10030? (x — 2'). The identification ¥ = x can then be made between the spinors
of the Kitaev model around the Fermi points (5.37) and those of the Riemann-
Cartan theory (5.78).
Substituting the new spinor x into the Dirac action (5.73) and explicitly ex-
panding out the covariant derivatives gives
i

Src = 5/ d**le (XVM uX — auX'YMX + X{Vuawu}X) ) (5'79)
M
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where m = 0 is taken until the end of this section in order to tidy up the algebra.

Integrating by parts to remove 0, X gives

Src = /d2+1xx (i'y“au + %{7“,(@} + %%7") X- (5.80)

It can be shown that in (2+1)—dimensional spacetime {v%, [y®, 7]} = 4e®¢y0y1~2

where ¢

is the Levi-Civita symbol. The Levi-Civita symbol is totally anti-
symmetric on exchange of any two indices. Hence, the second term in the inte-

grand can be written as

1 C a 1 aoc
{7 wut = —geuaie 0" T = —5waee™ Y (5.81)
where wape = ef'wyue. The action is then given by
Sre = /dQHx)‘( (Wau - iwabce“bc’yovlﬁﬁ + %@ﬁ“) X- (5.82)

The Hamiltonian

To produce a Riemann-Cartan Hamiltonian comparable to the Hamiltonian of
the Kitaev honeycomb model (5.48) one must first restrict to the appropriate
type of spacetime. A static spacetime is one which is constant in time and time-
reversal invariant Schutz (2009); Wald (1984). These conditions are both true for
the Kitaev honeycomb model with couplings that are constant in time. Hence,

(M, g) is restricted to be a static spacetime with M taking the form
M=RxY (5.83)

with the coordinate system (¢,z"), where R corresponds to time and X is a two
dimensional “spacial” curved surface. In this way, only the purely spatial part
of spacetime is curved with an orthogonal “temporal” vector field which can be
viewed simply as some parameter. This corresponds to the geometric description
of the Kitaev model as time remains unaffected by the distortion of the system’s
couplings.

The metric tensor g takes a block-diagonal form in this coordinate system

1 0 0
Guv = 0 Gzz  Jzxy (584)
0 Gzy  Gyy
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and is constant in coordinate time, 0,g,,, = 0, as long as the system’s couplings

are similarly constant. The dreibein that corresponding to this metric take the

form
1 0 0 1 0 O
e, =10 e, ey ], ef=1[0 ¢" "], (5.85)
0 €, ¢, 0 e e

where the convention taken is that the index a runs down the columns while the
index p runs along the rows.

From the definition (5.61), it is clear that all time components of the Levi-
Civita connection pr will vanish, T = I¥,, =TI”,=0. This along with the
definition (5.63) means the time components of the corresponding Levi-Civita
spin connection will also vanish, wfj = ngb = wyp = 0. The contortion of the spin
connection remains unaffected. Expanding out the spin connection term in the

action (5.82) gives

1
abc ~ abc abc abc
Wabc€ = Wabc€ + Kabce = 57—‘abc6 s (586)

where the contortion is replaced with torsion using the definition (5.60) and the
fact that @gp.c™ = 0 on a (2+1)—dimensional static spacetime is used. This can
be easily derived by observing that € = 0 if any of the indices a, b, and ¢ are
equal. However, if the indices are unique then Wy, = 0 as one must necessarily
be the time component in 2 + 1 dimensions.

Due to (5.86), the spinor field only couples to the completely anti-symmetric
part of the torsion Tp;. or contorsion K.. For this reason, without loss of gen-

erality, the torsion can be taken to to be completely anti-symmetric

1
Tabc = g ¢€abca (5 87)

where ¢ is referred to as the torsion pseudoscalar. This is the assumption made
to produce (5.72).
Using (5.86) and (5.87), the action (5.82) reduces to the simple form

Src = / Ay (w"aﬂ — §¢7°7172 + 507 ) X

(5.88)
= / d2+1aj‘£Rc,
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5.3 Summary

where Lgrc is the Lagrangian density.
With a static spacetime, the Hamiltonian can be defined from the Lagrangian

density via a Legendre transformation as

HRC = /d217 (agjzcx — ERC) = /dQZ‘XThRCx, (589)

where hgrc is the single-particle Hamiltonian given by
hrc = €,v°v"pi + §¢7172 + 5@6;707& +mA’, (5.90)

where the mass m has be reintroduced and p; = —i0; is the canonical momentum
operator. Hence, (5.89) gives the form of a Hamiltonian of spinors on a static
Riemann-Cartan spacetime.

The formulas presented here are used in Chapter 6 to determine the effec-
tive curvature and torsion of the Kitaev honeycomb model with various coupling
parameters. The geometric meaning of the couplings of the Kitaev model are
derived through comparison of the single particle Hamiltonian (5.90) with a gen-
eralised version of (5.47). The behaviour of the two-point correlations and vortex
excitations of the Kitaev honeycomb model are numerically studied showing a

strong agreement with the Riemann-Cartan description.

5.3 Summary

This chapter introduced the basics of the Kitaev honeycomb model. A Dirac
Hamiltonian describing the continuum limit behaviour of the model is derived
from its original definition as a model of interacting spin-1/2 particles on a lattice.
This chapter also presents the components of (2 4+ 1)—dimensional Riemann-
Cartan geometry and uses them to define a Hamiltonian of spinors on a spacetime
with curvature and torsion.

The next chapter brings these two topics together to produce an effective geo-
metric description of the Kitaev honeycomb model, relating coupling parameters
of the Kitaev honeycomb model to components of (24 1)—dimensional Riemann-
Cartan geometry. The accuracy of this description is studied numerically by

analysing the response of physical observables to variations in the couplings.
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5.3 Summary

Specifically the spacial profiles of two-point correlations and vortex excitations

are studied.
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Chapter 6

Geometric description of the

Kitaev honeycomb lattice model

This chapter studies the continuum limit of the Kitaev honeycomb model in a
variety of coupling regimes deriving a geometric description of the model in terms
of Majorana spinors obeying the Dirac equation embedded in a Riemann-Cartan
spacetime. Moreover, the Majorana spinors are coupled to a non-trivial torsion.
This geometry emerges purely from distortions in the couplings of the system and
not from the geometry of the lattice itself. Note, this description is numerically
verified by studying the behaviour of the spacial distribution of the quantum
correlations in the ground state of the model. As the couplings are varied the
numerically observed geometric distortion of the two-point Majorana correlations
agrees faithfully with the stretching of space theoretically predicted by the metric
of the geometric description. Hence, the Riemann-Cartan description can be
employed to accurately describe the behaviour of the Kitaev honeycomb model
in a quantum field theory language. This opens up the exciting possibility to
theoretically study dynamical or response properties of the model, such as the
energy-momentum currents and momentum densities Golan & Stern (2018) as a
function of coupling distortions or temperature gradients, in a quantitative way.

The continuum limit of the Kitaev honeycomb model is compared to the
dirac equation in (2 + 1)—dimensional Riemann-Cartan spacetime. and coupling
parameters of the model are identified with components of the spacetime. The

nearest neighbour interactions define the non-trivial dreibein and metric. While
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6.1 Riemann-Cartan geometry from the Kitaev model

the next to nearest neighbour interactions couple the Majorana spinors of the
theory to a non-trivial torsion. These spinors become massive when a Kekulé
distortion is introduced to the nearest neighbour interactions.

The chapter is organised as follows. Section 6.1 demonstrates that the low en-
ergy limit of the Kitaev honeycomb model can be faithfully described by massless
Majorana fermions propagating on a Riemann-Cartan background, with geomet-
ric characteristics fully determined by the coupling constants of the model. It is
broken down into three parts each studying a different coupling regime. Section
6.1.1 looks at the isotropic regime, where J, = J, = J, = 1. For this case it
is also shown that a Kekulé distortion of the nearest neighbour couplings gener-
ates mass in the continuum limit. Section 6.1.2 studies the generally anisotropic
regime, where all {J;} are independent of each other. Section 6.1.3 then restricts
to a specific case of the anisotropic coupling regime, where J, = J, = 1 and
0 < J, < 2. Section 6.2 is broken down into two parts. Section 6.2.1 determines
the specific form of the effective stretching predicted by the non-trivial metric for
the specific anisotropic coupling regime studied in Section 6.1.3. Section 6.2.2
then presents a numerical investigation comparing this stretching to the observed
distortions of the two point Majorana correlations for various coupling configu-
rations within this regime, thus verifying the non-trivial description of the model
in terms of the metric. Finally, Section 6.3 presents the conclusions and outlines

possible areas of future research based on this work.

6.1 Riemann-Cartan geometry from the Kitaev

model

This section compares the continuum limit single particle Hamiltonian of the
Kitaev honeycomb model in a variety of coupling regimes to the Riemann-Cartan
Hamiltonian given in (5.90). An effective geometric description of the model is
formed and several components of the corresponding spacetime are identified with
couplings of the microscopic model.

The non-trivial geometric features of a Riemann-Cartan theory are encoded in

the dreibein e/ and torsion pseudoscalar ¢. These quantities are found to corre-
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6.1 Riemann-Cartan geometry from the Kitaev model

spond to the nearest and next to nearest neighbour interactions of the microscopic
model, respectively. The curvature of the geometric theory is fully determined
by the dreibein and torsion pseudoscalar. In order to achieve non-trivial curva-
ture the couplings of the model are upgraded to space dependent parameters. It
is assumed that the Fourier transformation (5.18) at each point in space is still
approximately valid for space dependent couplings that vary slowly with respect
to the overall magnitude of J and K. Hence, the continuum limit of the model is
taken to be of the same form as the model with constant parameters, where the
couplings have been simply upgraded to slowly varying space dependent func-
tions. For this reason the d;e,” term of the general Riemann-Cartan Hamiltonian
(5.90) is set to zero. The mass m of the Riemann-Cartan theory is identified
with a Kekeulé distortion of the original Kitaev honeycomb model as presented
in Yang et al. (2019).

This section is broken down as follows. Section 6.1.1 compares the continuum
limit of the isotropic Kitaev model to the Riemann-Cartan theory. Section 6.1.2
derives the continuum limit of the generally anisotropic case, where the {J;}
couplings are taken to be independent from one another. The K term is also
modified in an anisotropic manner, such that the Fermi points still depend solely
on the nearest neighbour couplings. Section 6.1.3 studies the geometric properties
of a specific coupling regime within the generally anisotropic case, where J, =
Jy =1 and 0 < J, < 2. The accuracy of the effective geometric description of
this specific case is probed numerically in Section 6.2 by studying the response

of two point Majorana correlations to variations in J,.

6.1.1 The isotropic J, = J, = J, = J model

Consider the Kitaev honeycomb model with isotropic nearest neighbour cou-
plings, J, = J, = J. = J. The corresponding single particle continuum limit
Hamiltonian for which J is a constant is given in (5.47) and repeated here for

convenience

hxar(P) = 3J (Y07 pe — 1°9°p,) — i3V3K A2 (6.1)
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6.1 Riemann-Cartan geometry from the Kitaev model

This can be interpreted as a Riemann-Cartan Hamiltonian of the form (5.90) and

the corresponding dreibein, metric, curvature and torsion of the model can be
identified.

Dreibein and Metric

A direct comparison of the isotropic continuum limit (6.1) with the Riemann-

Cartan Hamiltonian (5.90) reveals that the dreibein of the model are given by

1 0 0 1 0 0
a 1
e, =0 3J 0 |, €e,=10 5 O1 , (6.2)
0 0 =-3J 0 0 —5;
with the corresponding metric
1 0 0
G = e“#ebynab =10 —# 0 ) (6.3)
0 0 —#

We see that the J term alone determines the metric of the model and is unaffected
by the K term. The time components of the dreibein and metric are fixed by the

assumption of a static spacetime (5.83).

Curvature and Torsion

For a static spacetime of the form M = R x X, the metric, after diagonalisation,

takes the form

1 0 0

gw=10 F 0

0 0 G

where F' = F(z,y) and G = G(z,y) are arbitrary functions of space only.

, (6.4)

The curvature of a spacetime can be derived as in (5.71) from the Riemann
tensor of the Levi-Civita connection and the contorsion tensor.

From (5.61) the metric (6.4) gives the components of the Levi-Civita connec-

tion as ] ]
I, =-=0,F, T% =1% = -——0,F
X 2Fa ’ Ty yT 2Fay ’
. 1 . 1
Ly = _ﬁaﬂfG’ Ly = ﬁayG> (6.5)
- . 1 ~ 1
v =Tv = _— [Y, = ——0,F
Y yx QGaIG’ Tx QGay )
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6.1 Riemann-Cartan geometry from the Kitaev model

where all of the time components vanish.

With a Levi-Civita connection of the form (6.5), the corresponding Ricci scalar

. 1[, [(0.G 0,F\ 0°G+02F
P (A RERC A PR CAT i R

Evaluating (6.6) for the isotropic case F' = G = —# given in (6.3), by upgrading

is given by

the parameter J to an arbitrary function of space yields the Ricci scalar
R=120"InJ, (6.7)

where 9% = ¢"9,0, is the Laplacian operator.

All of the time components of the Levi-Civita connection vanish. Thus all of
the time components of the corresponding curvature will also vanish. This means
it is sufficient to study the curvature of the two dimensional spatial hypersurface
Y. It can be shown from its definition (5.69) that the Riemann tensor of a two
dimensional torsion free space satisfies the symmetries Rijkl = —.fijik.l, Rijkl =
_Eijlk and R[ijk}l = 0. As before, square brackets denote anti-symmeterisation
over all indices within the bracket. From these symmetries and the definitions
of the Ricci tensor and scalar (5.70) it can further be shown that the Riemann

tensor in a two dimensional space has only one independent component given by

Riju = ER(gikglj — GiJkj); (6.8)

where R is the Ricci scalar and 4, j, k, [ denote spatial components. Hence, the
Riemann tensor is completely determined by the Ricci scalar (6.3) and the metric
(6.7).

In order to obtain non-zero curvature from the Levi-Civita connection, the
coupling constant J must be position dependent as 9;J = 0 implies R = 0. How-
ever, the continuum limit of the Kitaev honeycomb model was derived in Section
5.1.4 with the assumption that the couplings are constant d,J = 0 and the system
is homogeneous. It is proposed here that upgrading J to a position dependent pa-
rameter that varies slowly with respect to the overall magnitude of the couplings
J and K means the Fourier transformation (5.18) at each point in space still
holds approximately and the obtained effective curvature of the geometric pic-

ture is still valid. No specific numerics testing the accuracy of (6.8) are presented
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6.1 Riemann-Cartan geometry from the Kitaev model

in this thesis. Possible probes of the curvature may be bulk fermionic energy
currents and momentum densities induced by a spacial derivatives of the Ricci
scalar. These observables are studied theoretically in detail in Golan & Stern
(2018) for a system of spinless fermions on a two dimensional square lattice.
Comparison of the Hamiltonians (6.1) and (5.90) reveals that the torsion

pseudoscalar ¢ and mass m are given by
¢ =—24V3K, m=0. (6.9)

From ¢, via the relation (5.87), the corresponding components of the torsion and

contortion in the dreibein basis are given by
Tope = _4\/§K€abc> Kabc = _2\/§K€ab07 (610)

The contorsion tensor K. also determines the total Ricci scalar via (5.72) which
is given by
R=20InJ — T2K? (6.11)

where the identity €..€? = 6 is used. The total Ricci scalar R is non-zero even
when 0;J = 0 due to the contribution from the torsion pseudoscalar ¢. Note that
although (6.8) does not hold for spacetimes with torsion, the Riemann tensor is
still completely defined by the Levi-Civita connection (6.5), the corresponding
Ricci scalar (6.7) and the contorsion tensor (6.10) through the relation (5.71).

In summary, the continuum limit of the isotropic Kitaev honeycomb model
describes massless Majorana fermions on a curved spacetime with torsion propor-
tional to the next to nearest neighbour K term. The nearest neighbour J terms
become the kinetic terms defining non-trivial dreibein. Both the J and K terms
contribute to the curvature of the model.

The K term is inserted into the Kitaev honeycomb model as three-spin inter-
actions which generates an energy gap and gives rise to a well defined non-Abelian
topological phase discussed in Section 5.1.5. This energy gap is the microscopic

signature of torsion in the continuum limit, not mass.
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6.1 Riemann-Cartan geometry from the Kitaev model

= Strong bonds
—— Weak bonds

Figure 6.1: The Kekulé distortion in the couplings of the honeycomb lattice
model, as described by Eqns. (6.12) and (6.13), which generate a mass term in
the Hamiltonian. Strong and weak tunnelling couplings are indicated as thick and
thin bonds, respectively, between lattice sites. This configuration of couplings
is periodic with respect to a unit cell with six sites, as shown. The vectors
s1 = (0,—1), 85 = (¥, 1) and s3 = (=%, 1), used in (6.12) and (6.13), which

272 202
translate between lattices A and B are also depicted.

Mass from Kekulé distortion

The natural question now arises as to what term could be introduced to the
microscopic Kitaev Hamiltonian (5.13) to give rise to mass in the continuum
limit. One such term is a Kekulé distortion of the nearest neighbour couplings of
the Majorana fermions as studied in Yang et al. (2019). This type of interaction
has been theoretically studied in graphene for complex fermions and shown to
generate a mass gap in Hou et al. (2007).

A Kekulé distortion is produced by introducing a term to the microscopic

Hamiltonian of the Kitaev honeycomb model (5.13) of the form

3
0H=iY Yy 8Jucch s +he, (6.12)

i€A k=1
where the sub-lattice A is defined in Fig. 5.2 and the vectors s; = (0, —1), 83 =

(‘/75, 3) and s3 = (—‘/75, 1) are shown in Fig. 6.1. The J; couplings for i € (z,y, z)
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6.1 Riemann-Cartan geometry from the Kitaev model

are effectively inhomogeneously distorted by
M . )
§J; = ?elP*SkeZ(PVPf)'” + c.c., (6.13)

where M = m + tm; is a complex constant number and P are the Fermi points
of the model given in (5.32). This is a Kekulé distortion of the J couplings shown
in Fig. 6.1.

The Kekulé distortion expands the unit cell of the lattice to include six sites
rather than the original two, causing the Brillouin zone to fold three times com-
pared to the undisturbed case. Fourier transforming and restricting to low en-
ergy contributions near the Fermi points (6.12) gives, up to first order in mo-
menta, Yang et al. (2019)

§H = U (74"m + 4°9°m;) 0. (6.14)
The contribution to the single-particle Hamiltonian (5.47) is
B = mA° +4°v°m;, (6.15)

where 7° and +° are given in (5.39) and (5.41) respectively. The first term is
equivalent to the mass term in (5.90). Hence, the Majoranas fermions in the
geometric description of the Kitaev honeycomb model acquire a mass from a
non-trivial real Kekulé distortion. The second term takes the form of an imag-
inary mass or pseudoscalar term present in the ”tachyonic” Dirac Hamiltonian
Jentschura (2012).

When M = 0, the K term produces an energy gap due to a non-zero torsion
and breaks time reversal and chiral symmetry. The model is in the B phase in
Fig. 6.4 in Section 5.1.5, a p+ ip superconductor in the D class with a non-trivial
Chern number v = 1 Chiu et al. (2016). On the other hand, when K = 0 the
Kekulé distortion creates an energy gap in the Kitaev model proportional to a
non-zero mass My, where M = Mye'®. Time reversal and chiral symmetry of
the model are no longer broken. This phase of the system belongs to the BDI
class with a trivial Chern number v = 0 Chiu et al. (2016). Upgrading ¢ to
a space dependent parameter can produce vortices, which trap chiral Majorana
zero modes Jackiw & Rossi (1981); Yang et al. (2019).
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Figure 6.2: Phase diagram of the KHLM with its energy gap AFE varying as a
function of the K coupling and the mass, m. By increasing the Kekulé distortion
a first order phase transition is induced from the gapped topological phase of the
KHLM with Chern number v = 1 that belongs in class D to a gapped Kekulé
phase with Chern number v = 0 that belongs in class BDI. Both of these phases
support vortices that bound Majorana zero modes. The red dashed line denotes

the analytically obtained phase transition boundary.

There is a phase transition between the BDI and D class of the extended
Kitaev model. The phase diagram of the model for varying m and K is plotted in
Fig. 6.2, where m; = ¢ = 0. The quantum field theory description of the isotropic
homogeneous model is given by the single particle Hamiltonian (5.90), where
¢ = —244/3K and d;e’. = 0. The phase transition occurs when the energy gap is at
a minimum, so the Hamiltonian is studied exactly at the Fermi points p; = 0. The
Hamiltonian becomes a sum of two commuting terms [iv'y2,~7°] = 0. Therefore,
the phase transition should occur when the coefficients are equal m = 3v/3K.
This is in agreement with Fig. 6.2, where the red dotted line marks out this
relation between m and K. As the terms commute this is a first order phase
transition due to an energy level crossing.

Section 6.1.2 performs a comparable investigation to that of the isotropic case
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6.1 Riemann-Cartan geometry from the Kitaev model

Figure 6.3: The anisotropic KHLM is given by choosing the couplings J,, J, and
J, to be unequal, giving rise to an anisotropic model. In order to have the K-term
contribute purely to an energy gap the couplings K, K, and K, are chosen to

be also anisotropic and functions of J;’s, as given by (6.28).

in this Section and Section 5.1.4 for the generally anisotropic case. That is for
the Kitaev model with J,, J, and J, couplings all independent of each other.
The K term is also modified in an anisotropic manner. Mass producing terms
are not studied for any of the other cases considered in this chapter, although it

is predicted that they will be similar in form to (6.12).

6.1.2 The generally anisotropic J coupling case

This section considers the Kitaev honeycomb model with anisotropic J couplings
where all {J;} are independent of each other. The next to nearest neighbour
Majorana interactions are also modified, producing anisotropy in the K terms
taking values K, K, and K, depending on the orientation of the links, as shown
in Fig. 6.3. This is to ensure that the Fermi points remain independent of K.
This will be discussed in more detail later in this section. This case is referred to

as the generally anisotropic case.

98



6.1 Riemann-Cartan geometry from the Kitaev model

Continuum Limit

The continuum limit of the isotropic model was presented in Section 5.1.4. This
calculation is repeated here for the generally anisotropic case with constant cou-
plings. The Hamiltonian can be written as a sum of the nearest neighbour in-
teractions given in (5.17) and next to nearest neighbour interactions, shown in
Fig. 6.3, taking the modified form

Hy =K > (=K, + Ky + Koy ) (6.16)
b b b b |
+ (Kl oy, — Kychin, — K. ) +he

r+1n1 Y-r+no r+1n1—n2

The continuum limit Hamiltonian in momentum space takes the familiar form

H = [ &qplh(q)vq from (5.26), where 1hg = (cg ich)", and the single-particle

Hamiltonian h(q) is given by

_( Al —flq)
o= (5% Xm) (6.17)

where
f(q) = 2(J%e ™ + J¥eiam2 4 J*), (6.18)
as in (5.21) and

A(q) =2[ — K,sin(q - n) + K, sin(q - ny) (6.19)
+ K. sin(g - (ny — n»))] '
as can be seen from a modified (5.25).
Consider the Fermi points of the system for the case K; = 0 for all 7. As in
the isotropic case E(q) = £|f(q)|. This is at a minimum when f(q) = 0, giving

the equations for the real and imaginary parts of (6.18)

Jycos(q-my)+ J,cos(q-ny)+ J, =0, (6.20)
Jysin(q - ny) + Jysin(q - ng) = 0. (6.21)

These have two solutions corresponding to the two Fermi points located at

L?, (Sgn(Jy) arccos(a) + sgn(J;) arCCOS(b))) 7 (6.22)

_ (5
Fem ( 3 (sgn(J,) arccos(a) — sgn(J;) arccos(b))
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where
el A L .
HT A T A o

Taylor expanding to first order about these points gives

f(PL+p)=f(Ps)+p - V(Ps)+ 0, (6.24)
A(Py +p)=A(Py)+p- VA(PL) + O(p?). (6.25)

The first order terms are given by

V(PL) =2 [Jx <a + zm) n

(6.26)

+J, (b Tiviz b2) nQ},
VA(PL) =2 [ — Kyan, + K,bn, oo
6.27

+K, (ab — m\/l——b2> (ng — ng)].

Section 6.1.1 shows that in the continuum limit of the isotropic case f(p) cor-
responds to the kinetic term and defines the Fermi points while A(p) produces
an energy gap at these Fermi points. To keep this separation of the kinetic and
gap producing terms A(p) must not shift the Fermi points. Hence, the couplings
{K;} are chosen such that (6.27) vanishes

K, = AKb (ab Az bg> |

K, = 4Ka (ab VI—&Viz 62> , (6.28)
K. — 4Kab,

where K € R determines the overall magnitude of the couplings and the factor
of 4 ensures the gap agrees with the one obtained in the isotropic case.

The energy gap at each Fermi point is given by A(P+) = £A, where

A =8K+/(1—a?)(1-0?)(aV1—b2+bV1—a?). (6.29)

Note, at the isotropic point, J, = J, = J, = J, (6.23) gives a = b= —1/2, (6.26)
reduces to (5.33) and (6.29) reproduces the corresponding gap A = 3v/3K, all in

agreement with the isotropic Hamiltonian (6.30).
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6.1 Riemann-Cartan geometry from the Kitaev model

Using (6.26) and (6.29) the single particle Hamiltonian (6.17) is expanded
about the Fermi points as in (5.35) to give

hi(p) = (£A0” + Bo¥)p, + Co¥p, T Ac® + O(p?), (6.30)

where

VR,
A= sgn(Jm)sgn(Jy)\/BJ% -3~ 72 ,

(J2 = J2) (6.31)
B=+3"% "% T

C =-3J..

To consider the Fermi points simultaneously in the Weyl (chiral) basis as in

Section 5.1.4 the four component spinor ¥ = (¢4 ic% ic® ¢*)T is defined (5.37),

i/ b= caP/i are now defined at the new Fermi points (6.22). Taking the

where ¢
direct sum of the Hamiltonians h (p) and h_(p) with respect to the basis defined

by ¥ yields the final generally anisotropic Hamiltonian

hkuim = (Ao®* ® 0° + Bo® ® 0¥) p,

(6.32)
+Co*®ao’p, + Al ® o”.
This can be written in terms of gamma matrices defined in (5.40), to give
hicm = (AY°Y' + BY°Y?)pe + C%%py +iAy'?, (6.33)

This reduces to the original isotropic continuum limit given in (5.47) when J, =
Jy=J,=J.

The Metric and Torsion

Direct comparison of the generally anisotropic continuum limit Hamiltonian (6.33)
with the general Riemann-Cartan Hamiltonian (5.90) for constant parameters

shows the dreibein of the model are given by

1 0 0 1 0 0
e =10 A 0], e, =(0 % 0 (6.34)
0 B C 0 —% &
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with the corresponding metric

1 0 0
a 2
G =€ “ebynab =0 —— 5= 2= |- (6.35)
0o B A9
AC? c?

The torsion pseudoscalar and mass are easily identified as
¢»=8A, m=0. (6.36)

From ¢, via the relation (5.87), the corresponding components of the torsion and

contortion in the dreibein basis are given by
4 2
Tabc = _gAeabca Kabc = _gAeabca (637)

Interestingly, the singularities of the metric (6.35), when A = 0 or C' =
0, correspond to the well studied phase transitions of the Kitaev honeycomb
model Kitaev (2006) detailed in Section 5.1.5. The condition A = 0 is equivalent

to the couplings satisfying one of the following relations

Jo+Jy+J. =0,
Jy—Jy—J. =0,
Jy = Jy+J. =0,
Jo+Jy—J. =0.

(6.38)

If the assumption is made that J; > 0 for all ¢ then (6.38) reduces to J, =
Jy +Js Jy = Jp + J. or J, = Jp + J,. These conditions define the phase
boundaries between the gapless non-Abelian phase B and the gapped Toric Code
Browne (2014); Kitaev (2003); Resende (2017) phases A;, as shown in Fig. 6.4.
The condition C' = 0 corresponds to the case where J, = 0. This coupling
configuration is located along the base of the large triangle in Fig. 6.4 where
the model becomes a set of disentangled one dimensional chains with zero energy
gap Kitaev (2001). Therefore, the geometric description of the Kitaev honeycomb
model within the B phase is entirely non-singular and the singular regions coincide
with the phase transitions of the model.

In summary, the continuum limit of the generally anisotropic Kitaev honey-

comb model describes massless Majorana fermions on a curved spacetime with
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6.1 Riemann-Cartan geometry from the Kitaev model

Figure 6.4: The phase diagram of the anisotropic KHLM, where the couplings
are normalised as J, + J, + J, = 1. The isotropic case with J, = J, = J,
is denoted by a dot in the centre of the triangles. The quantum spin liquid
phase that supports Majorana fermions, denoted as B, sits in the centre of the
diagram. The topological phases A; correspond to the Toric Code phase. The
singularity condition of the metric (6.38) defines the boundaries between the A4;
and B phases. The dashed line corresponds to the specific anisotropic change of

couplings in the B phase considered in Section 6.1.3.

torsion proportional to the next to nearest neighbour term. The nearest neigh-
bour terms become the kinetic terms defining non-trivial dreibein. These dreibein
define a metric with singularities at the well known phase transitions of the model.
Note that although all necessary components are present in (6.35) and (6.36) in
order to obtain the connection of space, Ricci scalar, Riemann tensor, etc. these
term are not explicitly calculated here.

A possible mass producing term for the generally anisotropic case could be
a Kekulé distortion anisotropically modified in a similar way to the K term in
(6.16), such that the Fermi points of the model are not shifted. The specific form

of such a coupling is not studied here.

103



6.1 Riemann-Cartan geometry from the Kitaev model

Section 6.1.3 studies a specific case of the anisotropic Kitaev honeycomb model
in more detail. Section 6.2 then numerically investigates the accuracy of the
geometric description of this specific case by observing the response of two point

Majorana correlations to variations of the couplings within this regime.

6.1.3 The anisotropic case with J, =J,=1and 0 < J, <2

This section considers a particular anisotropic case of the Kitaev honeycomb
model, where J, = J, =1 and 0 < J, < 2. This coupling configuration corre-
sponds to the dotted vertical line in Fig. 6.4. The two points J, = 0 and J, = 2
correspond to phase transitions of the model. This case is referred to as the

anisotropic case.

The Metric

By fixing J, = J, = 1 in (6.29) and (6.31) the continuum limit Hamiltonian of

the anisotropic case can be obtained from (6.33) as

hicriy =v/12 — 3J29%'p, — 3J.4°4*p,

5 (6.39)
— KJ.(4 — J?)2iy"42
Using (6.34) the dreibein of the model are given by
1 0 0 1 0 0
er=[0o viz=32 o |, =0 msm O (6.40)
0 0 —3J. 0 0 _3}J
with the corresponding metric from (6.35)
1 0 0
g = |0 3,{]3;_12 0 ) (6.41)
0 0 —g=

When J, = 1 these equations agree with the isotropic case presented in 6.1.1 for

J =1
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6.1 Riemann-Cartan geometry from the Kitaev model

Curvature and Torsion

The metric (6.41) is a diagonal metric of a static spacetime taking the form (6.4).

Hence, direct substitution of

! G-t (6.42)

= -
3J2 — 12 9.J2

into the general formula (6.6) yields the Ricci scalar R of the Levi-Civita connec-

tion as

N 4 8 —J 4 8J2
— _ 9 2 ——_112 2 z z 2 2
R 3{( 7 + Jz) o, + <J22 ) (0:J,)° + (3—@2 — 1y + ) J.0,J.

J — 5T —12 3
+ (4w + —J) + 4J§) m(asz)Q} :

z

(6.43)
It is clear from this messy expression that the Ricci scalar is non-zero and space
dependent when J, is allowed to vary in space. This coupling may be upgraded
to a position dependent parameter, varying slowly with respect to the overall
magnitude of the couplings J and K, without diminishing the validity of the
geometric description of the model as discussed in Section 6.1.1. The Ricci scalar
(6.43) fully determines the Riemann tensor of the Levi-Civita connection via the
relation (6.8).
From the gap at the Fermi points A = —K.J.(4 — J2)2 and equation (6.36)

the torsion pseudoscalar and mass are given by

3
2

¢=—-8KJ.(4—JH2, m=0. (6.44)

From (5.87) the torsion pseudoscalar fully determines the components of the

torsion and contorsion tensor in the dreibein basis

3
2

4
Tape = 2Kape = =3 KT (4 = J2)? €ape- (6.45)
The Ricci scalar of the full model is then given via equation (5.72) as

R=R- §K2Jf(4 — J%)3, (6.46)

Section 6.1.1 showed that the torsion of the isotropic case (6.10) is completely
determined by K and is independent of J. On the other hand, in this anisotropic
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6.2 Spatial distribution of quantum correlations

case, the torsion in (6.45) has a dependence on J,. This is due to the fact that
the K term has been modified as in (6.16) and the next to nearest neighbour
interactions now depend on J, via (6.28). However, the relative scale of the
torsion compared to the kinetic terms of the continuum limit is still determined by
K and it will vanish if K = 0. Hence, the next to nearest neighbour interactions
are still the source of torsion in the model, while the kinetic terms are defined by
the nearest neighbour interactions. It just so happens that in this special case of
the model these two types of interactions are interdependent.

In summary, the continuum limit of this specific case of the anisotropic Kitaev
honeycomb model describes massless Majorana fermions on a curved spacetime
with torsion proportional to the next to nearest neighbour interaction terms. The
nearest neighbour terms become the kinetic terms defining non-trivial dreibein.
Note that as in the isotropic case all of the components necessary to obtain the
full spacetime connection (5.59) and Riemann tensor (5.71) are provided.

Section 6.2 numerically investigates how faithfully the metric (6.41) predicts
the stretching and squeezing of the “spacial profile” of the two point Majorana
correlations induced by varying the strength of the J, and K couplings within this
regime. What is meant by the spacial profile of these quantities will be discussed

in Section 6.2.

6.2 Spatial distribution of quantum correlations

This section numerically studies the Kitaev honeycomb lattice model with peri-
odic boundary conditions and anisotropic J couplings, such that J, = J, =1
and 0 < J, < 2. Specifically the accuracy of the effective geometric picture is
assessed by comparing the stretching of space predicted by the metric (6.41) to
the observed distortions of the two point Majorana correlations of the Hamilto-
nian of the microscopic model (5.13), with the modified K term given in (6.16).
From the correlation strength between two points on the lattice for a particular
coupling configuration the correlation strength of these points for any other con-
figuration can be determined by considering the spatial transformation described

by the corresponding change of metric.
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6.2 Spatial distribution of quantum correlations

It is shown that the geometric description of the Kitaev honeycomb model
holds very well, particularly for smaller values of K as this is when the cor-
relation length is largest. Hence, the discrete lattice effects become negligible
and the behaviour of the model more closely resembles that of the continuous
approximation.

Section 6.2.1 determines the specific form of the effective stretching predicted
by the metric (6.41). Section 6.2.2 then compares this predicted stretching to
the observed distortions of the two point correlations of the Kitaev honeycomb

model with different coupling configurations.

6.2.1 Effective Stretching

The metric (6.41) describes how the effective distance of the geometric picture in
the x and y direction changes as .J, varies, for the homogeneous anisotropic case
where J, = J, = J, =1 and 0 < J, <2, as in Fig. 6.4. The spacial distance d

between two points on the the two dimensional curved space ¥ is given by

where AX" is the difference in spacial coordinates between each point and g;; are
the spatial components of the metric. The principle axes d, and d, along the x

and y directions, respectively, are deformed according to the relations

de = —Goe = V3T, dy= /=gy = /4 — J2 (6.48)

If points on X are portrayed as fixed in space, shapes will appear to deform in the
inverse way to the change in effective distance. Take a line [ of length d; between
two points A and B on the surface X. If the effective distance between these
points is scaled by a factor of a the length of the line will appear to scale by a
factor of a=! to keep the effective length of the line fixed. This is the case in the
numerical investigation presented in Section 6.2.2. The lattice sites are portrayed
as fixed in space, while the effective distance between them varies with J..
Section 6.2.2 investigates how faithfully the deformation of the spacial profiles

of two-point Majorana correlations Kitaev (2006) are described by the ratio

d, 3.,
== V3L (6.49)

y A= T2
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6.2 Spatial distribution of quantum correlations

The spacial profiles are approximately circular at J, = 1 and are deformed into
ellipses when J, # 1. As J, decreases the ellipse appears to stretch and contract

along the z and y axis, respectively, and vice versa as J, increases.

6.2.2 Two Point Quantum Correlations

Two point Majorana correlations are the expectation value of a product of two
Majorana operators at different sites with respect to the ground state |¢y), i.e
i(cicj) = (Yolicic; o). They are an important quantity as any other property
of the model can be deduced from them as the model is effectively free Me-
ichanetzidis et al. (2018). As the system is gapped the two-point correlations
will decrease exponentially fast with respect to the distance |r; — r;|, where r; is
the position of site 7. The correlation matrix of the Kitaev honeycomb model is
calculated via exact diagonalisation of the Hamiltonian (5.13) in Section 5.1.6 as
(5.56). Taking the i-th row or column of the correlation matrix gives a discrete
spacial profile of the two-point correlations of each site with respect to a central
reference site 4, as shown in Fig. 6.5(a).

To study the effect of varying J, on this spacial profile a continuous approx-
imation is produced by replacing the two point correlation data at each lattice
point with a two dimensional Gaussian centred at the site,

. . {cjci) _Ir=ril®
i{cje(r)) = Zz(cjcz) ) — Z e : (6.50)

, 2me
K

where € is taken to be of similar magnitude as to the lattice spacing so that
the Gaussians of neighbouring sites overlap. Fig. 6.5 illustrates this substitution.
This continuous approximation reduces the discrete lattice effects and allows the
stretching and squeezing of the correlations predicted by (6.49) to be measured.

From the continuous spacial profile of the correlations the set of points is
numerically identified where i{coc(r)) ~ 1073 for some reference site 0. This
‘boundary’ line is drawn for the correlations at the isotropic point of the model
in Fig. 6.5(b). At the isotropic point the boundary is approximately circular.
When J, is increased above the isotropic point J, > 1 the boundary should be
stretched in the = direction and vice versa when decreased to J, < 1. It is worth

noticing that as the two point correlations are local they are strongly influenced
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6.2 Spatial distribution of quantum correlations

(@) (b)
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Figure 6.5: The two-point correlations and their continuous profile. (a) The
two-point correlations i(cyoc;) between each site ¢ and a central reference site
0, marked with a red cross. (b) A continuous approximation i(coc(r)) of the
two-point correlations is constructed using two dimensional Gaussians centred on
each lattice site, as described by (6.50). The size and shape of the correlations are
characterised by finding the set of points where i{coc(r)) &~ 1073, as illustrated.
Notice that even for large system sizes the hexagonal geometry of the lattice
influences the spatial distribution of the correlations. The model parameters
used here are J, = J, = J, = 1, system size 36 x 36, K = 0.1 and € = 1.

by the lattice structure of the system. Hence, even though the correlations in the
continuum limit at the isotropic point are expected to be rotationally invariant,
the honeycomb lattice structure is still evident in the continuous approximation,
even for large system sizes. Fig. 6.6 demonstrates how the correlation length
and the rotational invariance of the continuous profile of the correlations both
decrease with increasing K.

To compare the changing shape of the boundary to the distortion predicted
by the metric (6.41) the ratio between the height and width of the boundary
w,/w, is compared to the ratio of the principle axes of the ellipse d,/d,, given
in (6.49). At the isotropic point the width and height of the boundary are ap-

proximately circular, with w,/w, ~ 1. Fig. 6.7 plots the comparison of w,/w,
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6.2 Spatial distribution of quantum correlations

I T *
107 1075 103 10-1
i{coc(r))
Figure 6.6: The rotational invariance of the boundary and the correlation length
decrease, while the impact of discrete lattice effects on the continuous profile
i{coc(r)) become more significant with increasing K = 0.05,0.1,0.15 (Left, Mid-
dle, Right).

to d,/d, for different values of J,. An increase (decrease) in J, corresponds to a
decrease (increase) in the effective distance d, between lattice sites along the y
axis, resulting in stronger (weaker) correlations along that axis. This results in
an apparent stretching (squeezed) of the correlations in that direction, i.e. an in-
crease (decrease) in w,/w,. The ratio w,/w, converges to d,/d, with decreasing
K.

Figs. 6.6 and 6.7 both demonstrate a closer agreement between the micro-
scopic model and the Riemann-Cartan geometric description with decreasing K.
This is due to an increase in the correlation length, seen in Fig. 6.6. When the
correlation length becomes large compared to the lattice spacing discrete lattice
effects become negligible and the correlations approximate the behaviour of those
in a continuous system.

The effective geometric description of the Kitaev honeycomb model in terms
of the metric is found to be a faithful representation of the distortion experienced
by the correlations of the system. As the metric is used to define many other
geometric quantities, such as the curvature, these are expected to be faithfully

reproduced as well. This is an interesting area of investigation for future work.
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6.2 Spatial distribution of quantum correlations
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Figure 6.7: Verifying the metric from the continuous approximation of the corre-
lations. The dots in the main panel plot the ratio between the height and width
of the ‘boundary’ w,/w, for J, = J, = 1, € = 1, system size 36 x 36 and a
range of K. Also plotted with a dashed line is the theoretically predicted ratio
d./d, = \/3J,/\/4— J2 from Eq. (6.49). The numerical data converges to the
theoretical line as K decreases. Below are illustrative examples of the boundaries
at various J, and K = 0.1. At the isotropic point, J, = 1, the ratio is w,/w, = 1.
As J, deviates from the isotropic point the ratio w,/w, can become larger or

smaller than one.
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6.3 Conclusions

6.3 Conclusions

This chapter has expanded upon the known result that the low energy limit, or
continuum limit, of the Kitaev honeycomb lattice model is described by massless
Majorana fermions obeying the Dirac Hamiltonian embedded in a Minkowski
spacetime. By investigating the model in a variety of coupling regimes it was
found that the continuum limit could produce a non-trivial Riemann-Cartan ge-
ometry with curvature and torsion defined by the non-trivial dreibein e and
spacetime connection I, = fpw + K”,,. These quantities are in turn com-
pletely determined by the coupling parameters of the Kitaev honeycomb model.
The dreibein define a metric, which describes a non-trivial stretching of space.
This stretching was numerically verified by studying the response of two point
Majorana correlations to variations of the metric. The couplings of the model
are upgraded to space-dependent parameters which vary slowly compared to the
overall magnitude of the couplings. This results in a more general Riemann-
Cartan continuum limit than would otherwise be obtained with contributions to
curvature from both the nearest neighbour {J;} and next to nearest neighbour
{K;} couplings.

It was shown theoretically that the single-particle Hamiltonian of a massless
Majorana field in a Riemann-Cartan spacetime hgrc, (5.90), can be identified with
the continuum limit Hamiltonian of the Kitaev honeycomb lattice model hxyrwm,
(6.32), with general space dependent {J;} and {K;} couplings, where the later
are anisotropically modified to depend on the former as in (6.28). The nearest
neighbour terms of the microscopic Hamiltonian become kinetic terms in hxprum
while the next to nearest neighbour terms generate an energy gap at the Fermi
points. Via direct comparison of hxprv and hre the kinetic terms are identified
with the non-trivial dreibein while the gap producing terms are identified with a
non-trivial torsion 7%, or contorsion K* , in the Riemann-Cartan theory. From
this the metric g,, = e“uebynab is fully determined in terms of {.J;}. The Levi-
Civita connection and contorsion tensor of the total connection I, =1 +K? ,
are determined by {.J;} and {K;}, respectively. These relations are sufficient to

determine the curvature R’ of the Riemann-Cartan theory in terms of the

g

couplings of the microscopic model.
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6.3 Conclusions

Even for the simple case of homogeneous isotropic couplings, where J, = J, =
J, = J, the continuum limit has trivial dreibein, but a non-trivial torsion yielding
a non-trivial spacetime connection and curvature which depend on the param-
eter K. If the coupling parameters are take to be inhomogeneous the dreibein
become non-trivial and the spacetime connection and curvature now also have a
dependence on J. Although this case has been well studied previously the super-
conducting gap term was never identified with torsion in Minkowski spacetime
Kitaev (2006); Pachos (2012). When the torsion is dominant the system is a topo-
logical superconductor in class D Chiu et al. (2016). It was also demonstrated
that the Majorana spinors can be given a non-zero mass by introducing a Kekulé
distortion to the model. When the mass term is dominant over the torsion the
system is in class BDI. This topological phase transition was studied numerically
and found to take the form predicted by the geometric description of the model.

The metric (6.41) of the specific anisotropic coupling configuration, where
Jy = Jy =1and 0 < J, < 2, describes a non-trivial distortion of space. This
stretching of space is shown numerically in Fig. 6.7 to accurately describe the
response of the spacial profile of two point Majorana correlations to varying .J,.
The accuracy of the geometric description clearly improves with increasing cor-
relation length. This can also be seen from Fig. 6.6. As expected, in the limit of
large correlation length discrete lattice effects become negligible and the model
strongly resembles its continuous description.

This work verifies that Majorana spinors obeying the Dirac equation embed-
ded in a Riemann-Cartan spacetime can faithfully describe the microscopic Ki-
taev honeycomb lattice model. Thus demonstrating the power such field theoretic

descriptions have in predicting the behaviour of these microscopic models.
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Chapter 7

Conclusions

This thesis has studied multiple equivalent representations of different topological
systems focusing on their individual uses and benefits in terms of solvability and
ability to provide accurate descriptions of the behaviour of physical observables.
This chapter concludes the thesis by reviewing the original results of Chapters 3,
4 and 6. Possible future areas of research are then discussed.

In order to quantify the role of interactions in topological states of matter
Chapter 3 calculated the interaction distance Dz of the entanglement spectra
of a wide range of Abelian and non-Abelian (2 4+ 1)—dimensional string-nets
and (3 4+ 1)—dimensional Walker-Wang models. Specifically, partitions of all
eigenstates of Zy Abelian string-nets and Walker-Wang models are studied. It
was shown that the interaction distance of these Abelian models depends not only
on the group Zy, but also on the size of the partition boundary |0A|. Abelian
string-nets and Walker-Wang models with the same N and |0A| are found to have
equivalent Dx for all eigenstates regardless of the geometry and topology of the
partition.

One focus of this investigation was identifying states with D = 0 that have
free fermion representations. The class of Zy» models, where n € N, were iden-
tified as having Dr = 0 for all |0A|. Therefore, the states of these models are
representable in terms of free fermions. These findings were used in Chapter
4 when discussing the signatures of the Z, surface and toric codes, equivalent

to the Z, string-net, which suggest they have representations in terms of free
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fermions. By studying the distribution of interaction distance P(Dx) for a vari-
ety of partition sizes |0A| it was demonstrated that not only do all partitions of
Zy string-nets and Walker-Wang models, with N # 2" have Dz # 0, but they
also maximise Dx for a large fraction of partitions.

It was shown that for non-Abelian Walker-Wang models the topology of the
boundary becomes relevant to the calculation of Dx. This is due to the entan-
glement spectrum encoding information about the non-trivial braiding of non-
Abelian anyonic charges. All boundaries in 2 + 1 dimensions are topologically
trivial, so this has no effect on string-nets. The interaction distance was found
numerically to be Dz # 0 for the non-Abelian SU(2); string-nets and Walker-
Wang models for levels 2 < k& < 20, boundary size |0A| = 3 and any boundary
topology. This seems to suggest that interactions are necessary for the emergence
of excitations with non-Abelian anyonic statistics.

Chapter 4 presents unitary transformations g and Uz from the Z, surface
and toric code, respectively to equivalent fermion models. Analysis of the inter-
action distance of the eigenstates of the Z, string-net in Chapter 3 along with the
thermal interaction distance D% of their energy spectra, discussed in Chapter 4,
shows that the individual states and energy spectra are free. However, an investi-
gation of the stabilizer groups structure of the models showed that the fermionic
representation of the toric code must also include two interacting fermionic par-
ity operator to ensure that the group structure is preserved and excitations are
created in pairs.

The transformations Us and Ur were presented explicitly for any system size.
It was demonstrated that the e and m anyonic excitations of the codes, created
at black and white plaquettes, respectively, map to excitations of distinct black
and white dynamical local modes of the fermionic models. In the case of the
toric code, excitations of a particular black and white plaquette are mapped
to excitations of the two parity operators with support on all black and white
fermion modes, respectively. This is necessary in order to give rise to the non-
trivial topological order Yao & Qi (2010). The logical operators of the codes
were mapped to fermionic zero mode operators. It was also demonstrated that

although all states and the energy spectra are free, some non-local interactions
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acting on both the dynamic and zero modes were still necessary to encode the
anyonic statistics of the excitations.

These mappings provide an intuitive and unique understanding of the origins
of the exotic statistics of these topological models. Extending the family of map-
pings U to other topological models, such as Zon string-nets and Walker-Wang
models, could provide valuable insight into the emergence of exotic statistics in
these systems. This would require a larger and more complete investigation of
the interaction distance, including thermal interaction distance and an analysis of
the group structure Hung & Wan (2012); Walker & Wang (2012) of a wide range
of topological phases of matter. This could prove useful in identifying models
with possible fermionic representations, which may be employed to solve these
quantum Hamiltonians.

Chapter 6 showed analytically that the low energy limit, or continuum limit,
Hamiltonian of the microscopic Kitaev honeycomb lattice model hxprv can be
identified with the single-particle Hamiltonian of a massless Majorana field in
a non-trivial Riemann-Cartan spacetime hrc with curvature and torsion. The
curvature and torsion, defined by the non-trivial dreibein e * and spacetime con-
nection [, = ff’wj + K*,, are associated to the general space-dependent nearest
neighbour {.J;} and next to nearest neighbour {;} couplings of the Kitaev hon-
eycomb model, which vary slowly compared to their overall magnitude. The {K;}
couplings are modified from the usual next to nearest neighbour terms to depend
on the {J;} couplings.

The nearest neighbour {J;} terms are shown, by direct comparison of hxmrm
and hrc, identified with kinetic terms defining the dreibein and a metric, which
describes a non-trivial distortion of space. This stretching of space was numeri-
cally verified for the specific anisotropic coupling configuration, where J, = J, =
1 and 0 < J, < 2, by studying the response of two point Majorana correlations
to variations of the metric. The accuracy of the geometric description was shown
to improve with decreasing K, or equivalently increasing correlation length. It
was demonstrated that in the limit of large correlation length the discrete lat-
tice effects become negligible and the model strongly resembles the continuous
geometric description. The next to nearest neighbour {K;} terms are shown to

generate an energy gap at the Fermi points of the continuous description hxpp.
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This equates to a non-trivial torsion 7%, or contorsion K? , in hrc. The cur-
vature of the Riemann-Cartan theory then depends on both the {.J;} and {K;}
couplings of the microscopic model. It was also demonstrated that introducing
a Kekulé distortion produces a gap in hrc due to a non-zero mass term. The
phase transition between the torsion dominated class D Chiu et al. (2016) phase
and the mass dominated class BDI phase was shown numerically to agree with
the form predicted by the geometric description of the model.

This field theoretic description could be used to investigate a variety of prop-
erties of the microscopic model. Energy-momentum currents and momentum
densities due to effective curvature in the geometric description of a lattice model
of superconducting complex fermions were studied analytically in Golan & Stern
(2018). These quantities could be investigated numerically in the Kitaev hon-
eycomb model in terms of specific coupling configurations corresponding to non-
trivial curvature. The geometric description of superconductors used to obtain
the thermal transport coefficients from response theory as employed in Luttinger
(1964) can also be realised in the Kitaev honeycomb model with a perturbation
of the couplings around the isotropic and homogeneous configuration.

Another direction of investigation is the study of chiral gauge fields such as
those considered in graphene in Jackiw & Pi (2007). In fact fluctuations of the
Kitaev model’s Z, gauge field as well as the addition of twists Petrova et al.
(2013, 2014); Willans et al. (2011) have been shown in Horner et al. (2020) to
produce chiral gauge fields and hence provide a more complete quantum field
theory description of the model. Fluctuations of these chiral gauge fields in the
continuum limit are shown to produce Majorana zero modes in the discrete model.

The Kitaev honeycomb model with a time-dependent Hamiltonian Kaib et al.
(2019) could also be probed using the formalism developed here by upgrading
the static spacetime (5.83) to a dynamical spacetime. Alternatively, the response
of the model to time-dependent geometric perturbations including quenches Liu
et al. (2018) could be considered.

The methods and ideas presented here are not restricted to the Kitaev honey-
comb model. Geometric descriptions of other topologically ordered systems are
already being investigated de Juan et al. (2013); Golan & Stern (2018); Jackiw &
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Pi (2007); Wagner et al. (2019). These types of geometric representations can po-
tentially provide accurate descriptions of the behaviour of physical observables.
It will be interesting to see where these approximations break down and how
much they can tell us about the properties of these complex microscopic models.

Experiments have found that some but not all features of the Kitaev honey-
comb model are recognised in experimentally realisable materials, such as complex
iridium oxides Chaloupka et al. (2010); Choi et al. (2012); Jackeli & Khaliullin
(2009) or ruthenium chloride Banerjee et al. (2016). Fully realising topologically
ordered materials experimentally is an open problem and would be a huge step to-
wards achieving topological quantum computation. It will be exciting to see how
topological materials may be utilised in the development of quantum technologies

in the near and distant future.
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