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There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as principal bundle
connection, and the other is to represent gauge field as affine connection. Poincaré gauge theory and metric-affine gauge theory
adopt the first approach. This paper adopts the second. In this approach, (i) gauge field and gravitational field can both be
represented by affine connection; they can be described by a unified spatial frame. (ii) Time can be regarded as the total metric
with respect to all dimensions of internal coordinate space and external coordinate space. On-shell can be regarded as gradient
direction. Quantum theory can be regarded as a geometric theory of distribution of gradient directions. Hence, gauge theory,
gravitational theory, and quantum theory all reflect intrinsic geometric properties of manifold. (iii) Coupling constants, chiral
asymmetry, PMNS mixing, and CKM mixing arise spontaneously as geometric properties in affine connection representation,
so they are not necessary to be regarded as direct postulates in the Lagrangian anymore. (iv) The unification theory of gauge
fields that are represented by affine connection can avoid the problem that a proton decays into a lepton in theories such as S
Uð5Þ. (v) There exists a geometric interpretation to the color confinement of quarks. In the affine connection representation,
we can get better interpretations to the above physical properties; therefore, to represent gauge fields by affine connection is
probably a necessary step towards the ultimate theory of physics.

1. Introduction

1.1. Background and Purpose.We know that in gauge theory,
the field strength and the gauge-covariant derivative

Fa
μν = ∂μA

a
ν − ∂νA

a
μ + gf abcAb

μA
c
ν,

Dμ = ∂μ − igTaAa
μ,

ð1Þ

both contain a coupling constant g, which measures the
strength of interaction. A problem is that why is there a cou-
pling constant g?

If we represent gauge fields by affine connection, we can
obtain a nice interpretation. For example, if we use ΓMNP to
represent gauge potentials, it is not hard to find some
specific conditions to turn the curvature tensor RM

NPQ to

RMNPQ = ∂PΓMNQ − ∂QΓMNP + ΓMHPΓ
H
NQ − ΓH

NPΓMHQ

= ∂PΓMNQ − ∂QΓMNP +GRH ΓMHPΓRNQ − ΓRNPΓMHQ

À Á
:

ð2Þ

Thus, RMNPQ can be used to represent field strength. In
addition, for any ρM , we see that

ρM;P = ∂PρM − ΓH
MPρH = ∂PρM −GRHΓRMPρH : ð3Þ

Equations (2) and (3) mean that the coupling constant g
may have a geometric meaning, which originates from GRH .

This implies that only when affine connection is adopted
to represent gauge field can some physical properties be bet-
ter interpreted. On the other hand, in the general relativity
theory, gravitational field is also described by affine connec-
tion, so it is convenient to describe gravitational field and
gauge field uniformly by affine connection. Therefore, it is
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necessary to study the affine connection representation of
gauge fields. This is the basic motivation of this paper.

There are the following two ways to unify gravitational
field and gauge field.

One way is to represent gravitational field as principal
bundle connection. We can take the transformation group
Gravið3, 1Þ of gravitational field as the structure group of
principal bundle to establish a gauge theory of gravitational
field, the local transformation group of which is in the form
of Gravið3, 1Þ ⊗GaugeðnÞ, e.g., Poincaré gauge theory [1–11]
and metric-affine gauge theory [12–23]. This way can be
interpreted intuitively as

ð4Þ

The other way is to represent gauge field as affine
connection. This is the approach adopted by this paper.
Gravitational field and gauge field can both be described by
affine connection. Besides, we will also establish an affine
connection representation of elementary particles. This
way can be interpreted intuitively as

ð5Þ

1.2. Ideas and Methods. We divide the problem of establish-
ing affine connection representation of gauge fields into
three parts as follows.

(i) Which affine connection is suitable for describing
not only gravitational field, but also gauge field
and elementary particle field?

(ii) How to describe the evolution of these fields in
affine connection representation?

(iii) What are the concrete forms of electromagnetic,
weak, and strong interaction fields in affine connec-
tion representation?

For the problem (i). On a Riemannian manifold ðM,GÞ,
the metric tensor can be expressed as GMN = δABB

A
MB

B
N and

GMN = δABCM
A C

N
B , where BA

M and CM
A are semimetrics or to

say frame fields. It is evident that semimetric is more funda-
mental than metric, so we hope BA

M or CM
A is regarded as a

unified frame field of gravitational field and gauge field,
and the frame transformation of BA

M or CM
A is regarded as

gauge transformation. Hence, we need a more general man-
ifold ðM, BA

MÞ rather than the Riemannian manifold ðM,GÞ.
Next, we put metric and semimetric together to con-

struct a new connection, which is not only an affine connec-
tion, but also a connection on a fibre bundle. In this way,
gravitational field and various gauge fields can be unified
on a manifold ðM, BA

MÞ that is defined by semimetric.
In addition, we notice that in the theories based on prin-

cipal bundle connection representation,

(1) Several complex-valued functions, which satisfy the
Dirac equation, are sometimes used to refer to a
charged lepton field l and sometimes a neutrino field
ν. It is not clear how to distinguish these field func-
tions l and ν by inherent geometric constructions

(2) Gauge potentials are abstract; they have no inherent
geometric constructions. In other words, the Levi-
Civita connection Γ

μ
νρ of gravity is constructed by

the metric gμν; however, it is not explicit what geo-
metric quantity the connection Aa

μ of gauge field is
constructed by

By contrast, in the affine connection representation of
this paper, we are able to use the semimetrics BA

M and CM
A

of internal coordinate space to endow particle fields l and
ν and gauge field Aa

μ with geometric constructions. Thus,
they are not only irreducible representations of group but
also possessed of concrete geometric entities.

For the problem (ii). There is a fundamental difficulty
that time is effected by gravitational field, but not effected
by gauge field. This leads to an essential difference between
the description of evolution of gravitational field and that
of gauge field. In this case, it seems difficult to obtain a uni-
fied theory of evolution in affine connection representation.
Nevertheless, we find that we can define time as the total
metric with respect to all dimensions of internal coordinate
space and external coordinate space and define evolution
as one-parameter group of diffeomorphism, to overcome
the above difficulty.

Now that gauge field and gravitational field are both
represented as affine connection, then the properties that
are related to gauge field, such as charge, current, mass,
energy, momentum, and action, must have corresponding
affine representations. Thus, Yang-Mills equation, energy-
momentum equation, and Dirac equation are turned into
geometric properties in gradient direction; in other words,
on-shell evolution is characterized by gradient direction.
Correspondingly, quantum theory can be interpreted as a
geometric theory of distribution of gradient directions.

For the problem (iii). The basic idea is that on a D

-dimensional manifold, the components Ba
m and Cm

a of semi-
metrics BA

M and CM
A with m, a ∈ f4, 5,⋯,Dg are regarded as

the frame field of electromagnetic, weak, and strong interac-
tions. The other components of BA

M and CM
A are regarded as

the frame field of gravitation.
We take the affine connection as

ΓM
NP ≜

1
2

M
NP

Â Ã
+ M

NP

È ÉÀ Á
= 1
2 CM

A DPB
A
N

À Á
+ M

NP

È ÉÂ Ã
= 1
2 CM

A DCB
A
N

À Á
bCP + M

NP

È Éh i
= 1
2 CM

A
∂BA

N

∂ζC
+ A

BC

À Á
BB
N

� �
bCP +

1
2G

MQ ∂GNQ

∂xP
+ ∂GPQ

∂xN
−
∂GNP

∂xQ

� �� �
= 1
2 CM

A
∂BA

N

∂xP
+ CM

A
A
BP

À Á
BB
N

� �
+ 1
2G

MQ ∂GNQ

∂xP
+ ∂GPQ

∂xN
−
∂GNP

∂xQ

� �� �
,

ð6Þ
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where bCP ≜ ∂ζC/∂xP is a local coordinate transformation, fM
NPg

is Christoffel symbol, GMN = δABB
A
MB

B
N ,

M
NP

Â Ã
≜ CM

A DPB
A
N

À Á
= CM

A
∂BA

N

∂xP
+ CM

A
A
BP

À Á
BB
N ð7Þ

is said to be a gauge connection, and ΓM
NP is said to be a holo-

nomic connection. ð ABPÞ ≜ ð ABCÞbCP .

A
BC

À Á
≜
1
2C

A
A′

∂BA′
B

∂ζC
+ ∂BA′

C

∂ζB

 !
ð8Þ

is said to be a torsion-free simple connection. Thus,

ΓMNP =
1
2 MNP½ � + MNPf gð Þ

= 1
2 δADB

D
M

∂BA
N

∂xP
+ A

BP

À Á
BB
N

� ��
+ 1
2

∂GNM

∂xP
+ ∂GPM

∂xN
−
∂GNP

∂xM

� ��
:

ð9Þ

For the sake of simplicity, we firstly consider the affine
connection representation of gauge fields without gravitation.
That is to say, let

s, i, j = 1, 2, 3 ; a,m, n, l, q = 4, 5,⋯,D ; A, B,M,N , P = 1, 2,⋯,D,
ð10Þ

and consider a D-dimensional manifold ðM, BA
MÞ that

satisfies the following conditions:

(i) Bs
i = δsi , Ba

i = 0, Bs
m = 0

(ii) Gij = δij,Gmn = const,Gmi = 0

(iii) When m ≠ n, Gmn = 0

Thus, fMNPg = 0, ½MNP� ≠ 0 in general. The compo-
nents ΓmnP of ΓMNP = 1/2½MNP� with m, n ∈ f4, 5,⋯,Dg
describe gauge potentials of electromagnetic, weak, and
strong interactions. We also use the affine connection ΓM

NP
to construct elementary particle fields ρMN . The components
ρmn of ρMN with m, n ∈ f4, 5,⋯,Dg describe field functions
of leptons and quarks.

The components Gmn of GMN with m, n ∈ f4, 5,⋯,Dg
describe coupling constants of particle fields ρmn and gauge
potentials ΓmnP. The other components of GMN are the
metrics of gravitational field. The other components of
ρMN and ΓMNP provide possible candidates for dark matters
and their interactions.

1.3. Content and Organization. In this paper, we are going to
show how to construct the affine connection representation
of gauge fields. Sections are organized as follows.

Corresponding to the problem (i), in Section 2, we make
some necessary mathematical preparations and discuss the
coordinate transformation and frame transformation of the

above connection. Meanwhile, in order to make the lan-
guages that are used to describe gauge field and gravitational
field unified and harmonized, we generalize the notion of
reference-system and give it a strict mathematical definition.
The reference-system in conventional sense is just only
defined on a local coordinate neighborhood, and it has only
ð1 + 3Þ dimensions. But in this paper, we define the concept
of reference-system over the entire manifold. It is possessed
of more dimensions but different from Kaluza-Klein theory
[24–26] and string theories [27–39]. Thus, both of gravita-
tional field and gauge field are regarded as special cases of
such a concept of reference-system.

Corresponding to the problem (ii), in Section 3, we
establish the general theory of evolution in affine connec-
tion representation of gauge fields, and in Section 4, we
discuss the application of this general theory of evolution
to ð1 + 3Þ-dimensional classical spacetime.

Corresponding to the problem (iii), in Sections 5–7, we
show concrete forms of affine connection representations
of electromagnetic, weak, and strong interaction fields.

Some important topics are organized as follows.

(1) Time is regarded as the total metric with respect to
all spatial dimensions including external coordinate
space and internal coordinate space (see Definition
2 and Remark 35 for detail). The CPT inversion is
interpreted as the composition of full inversion of
coordinates and full inversion of metrics (see Section
3.7 for detail). The conventional ð1 + 3Þ-dimensional
Minkowski coordinate xμ originates from the general
D-dimensional coordinate xM . The construction
method of extra dimensions is different from those
of Kaluza-Klein theory and string theory (see Section
4.2 for detail)

(2) On-shell evolution is characterized by gradient
direction field (see Sections 3.4–3.6 and 4.3 for
detail). Quantum theory is regarded as a geometric
theory of distribution of gradient directions. We
show two dual descriptions of gradient direction.
They just exactly correspond to the Schrödinger
picture and the Heisenberg picture. In these points
of view, the gravitational theory and quantum theory
become coordinated. They have a unified description
of evolution, and the definition of Feynman propa-
gator is simplified to a stricter form (see Sections
3.8 and 3.9 for detail)

(3) Yang-Mills equation originates from a geometric
property of gradient direction. We show the affine
connection representation of Yang-Mills equation
(see Sections 3.5 and 4.5 for detail)

(4) Energy-momentum equation originates from a geo-
metric property of gradient direction. We show the
affine connection representation of mass, energy,
momentum, and action (see Section 3.6, Definition
37, and Discussion 38 for detail). Furthermore, we
also show the affine connection representation of
Dirac equation (see Section 4.4 for detail)
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(5) Why do not neutrinos participate in the electromag-
netic interactions? And why do not right-handed
neutrinos participate in the weak interactions with
W bosons? In the theory of this paper, they are
natural and geometric results of affine connection
representation of gauge fields; therefore, they are
not necessary to be regarded as postulates anymore
(see Propositions 52 and 63 for detail)

(6) In Section 7, we give new interpretations to PMNS
mixing of leptons, CKM mixing of quarks, and
color confinement. That is to say, in affine connec-
tion representation of gauge fields, these physical
properties can be interpreted as geometric proper-
ties on manifold

2. Mathematical Preparations

2.1. Geometric Manifold. In order to make the languages that
are used to describe gauge field and gravitational field uni-
fied and harmonized, we adopt the following definition.

Definition 1. Let M be a D-dimensional connected smooth
real manifold. ∀p ∈M, take a coordinate chart ðUp, φUpÞ
on a neighborhood Up of p. They constitute a coordinate
covering

φ ≜ Up, φUp

� �n o
p∈M

, ð11Þ

which is said to be a point-by-point covering. For the sake of
simplicity, Up can be denoted by U and φUp by φU .

Let φ and ψ be two point-by-point coverings. For the
two coordinate frames φU and ψU on the neighborhood U
of point p, if

f p ≜ φU ∘ ψ−1
U : ψU Uð Þ⟶ φU Uð Þ, ξA ↦ xM ð12Þ

is a smooth homeomorphism, f p is called a local refer-
ence-system.

If every p ∈M is endowed with a local reference-system
f ðpÞ and we require the semimetrics BA

M and CM
A in Equation

(15) to be smooth real functions on M, then

f : M⟶ REF, p↦ f pð Þ ð13Þ

is said to be a reference-system on M, and ðM, f Þ is said to
be a geometric manifold.

2.2. Metric and Semimetric. In the absence of a special decla-
ration, the indices take values as A, B, C,D, E = 1, 2,⋯,D
and M,N , P,Q, R = 1, 2,⋯,D. The derivative functions

bAM ≜
∂ξA

∂xM
, cMA ≜

∂xM

∂ξA
ð14Þ

of f ðpÞ on Up define the semimetrics (or to say frame field)

BA
M and CM

A of f on the manifold M that are

BA
M : M⟶ℝ, p↦ BA

M pð Þ ≜ bf pð Þ
� �A

M
pð Þ,

CM
A : M⟶ℝ, p↦ CM

A pð Þ ≜ cf pð Þ
� �M

A
pð Þ:

ð15Þ

Let δAB = δAB = δAB = KroneckerðA, BÞ and εMN = εMN =
εMN = KroneckerðM,NÞ. The metric tensors of f are

GMN = δABB
A
MB

B
N ,

HAB = εMNC
M
A C

N
B :

ð16Þ

Similarly, it can also be defined that �b
M
A ≜ ∂ξA/∂xM ,�cAM

≜ ∂xM/∂ξA and corresponding �BM
A , �C

A
M .

2.3. Gauge Transformation in Affine Connection
Representation. ∀p ∈M, f ðpÞ ≜ ρU ∘ ψ−1

U induces local
reference-system transformations

Lf pð Þ : k pð Þ ≜ ψU ∘ φ−1
U ↦ ρU ∘ φ−1

U = f pð Þ ∘ k pð Þ,
Rf pð Þ : h pð Þ ≜ φU ∘ ρ−1U ↦ φU ∘ ψ−1

U = h pð Þ ∘ f pð Þ,
ð17Þ

and reference-system transformations on the manifold M

Lf : p↦ Lf pð Þ, Rf : p↦ Rf pð Þ: ð18Þ

We also speak of Lf and Rf as (affine) gauge
transformations.

(i) Lf and Rf are identical transformations if and only

if ½BA
M� of f is an identity matrix

(ii) Lf and Rf are flat transformations if and only if ∀
p1, p2 ∈M, BA

Mðp1Þ = BA
Mðp2Þ

(iii) Lf and Rf are orthogonal transformations if and

only if δABB
A
MB

B
N = εMN

The totality of all reference-system transformations on
M is denoted by GLðMÞ, which is a subgroup of ⊗ p∈MGL
ðD,ℝÞp, where ⊗ represents external direct product.

2.4. Coordinate Transformation of Holonomic Connection
and Frame Transformation of Gauge Connection. Suppose
there are reference-systems g and g on the manifold M,
denote G ≜ g ∘ g, and ∀p ∈M, on the neighborhood U of p,
gðpÞ and gðpÞ satisfy

U , xM
À Á

⟵
g pð Þ

U , ζA
� �

⟵
g pð Þ

U , βA′
� �

: ð19Þ
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On the geometric manifold ðM, gÞ, we define torsion-
free simple connection D and its coefficients ð ABCÞg by

D
∂
∂ζB

≜ ωg

À ÁA
B
⊗

∂
∂ζA

= A
BC

À Á
g
dζC ⊗

∂
∂ζA

= 1
2 Cg

À ÁA
A′

∂ Bg

À ÁA′
B

∂ζC
+
∂ Bg

À ÁA′
C

∂ζB

0@ 1AdζC ⊗
∂
∂ζA

:

ð20Þ

Then, we can compute the absolute derivative of the
frame field ∂/∂xN

D
∂

∂xN
=D Bg

À ÁB
N

∂
∂ζB

� �
= d Bg

À ÁB
N
⊗

∂
∂ζB

+ Bg

À ÁB
N
D

∂
∂ζB

=
∂ Bg

À ÁB
N

∂ζC
dζC ⊗

∂
∂ζB

+ Bg

À ÁB
N

A
BC

À Á
g
dζC ⊗

∂
∂ζA

=
∂ Bg

À ÁA
N

∂ζC
+ Bg

À ÁB
N

A
BC

À Á
g

 !
dζC ⊗

∂
∂ζA

:

ð21Þ

Thus, it is obtained that

DC Bg

À ÁA
N
=
∂ Bg

À ÁA
N

∂ζC
+ Bg

À ÁB
N

A
BC

À Á
g
: ð22Þ

Denote DP ≜ ðbgðpÞÞCPDC ; thus, we can define on ðM, GÞ
the required gauge connection, which is

M
NP

Â Ã
G
≜ Cg

À ÁM
A
DP Bg

À ÁA
N
= Cg

À ÁM
A

∂ Bg

À ÁA
N

∂xP

+ Cg

À ÁM
A

A
BP

À Á
g
Bg

À ÁB
N
:

ð23Þ

It is important that ½MNP�G is not only an affine connec-
tion on ðM, GÞ, but also a connection on frame bundle.

(i) ½MNP�G as an Affine Connection. Under the coordi-

nate transformation LkðpÞ : ðU , xMÞ⟶ ðU , xM ′Þ,
bMM ′ ≜ ∂xM/∂xM ′ , cM ′

M ≜ ∂xM ′ /∂xM , ðBgÞAM ↦ ðBgÞAM ′

= bMM ′ðBgÞAM , ðCgÞMA ↦ ðCgÞM ′
A

= cM ′
M ðCgÞMA . Conse-

quently, the gauge connection ½MNP�G is transformed
according to

Lk pð Þ :
M
NP

Â Ã
G
↦ M ′

N ′P ′

h i
G
= cM ′

M
M
NP

Â Ã
G
bNN ′b

P
P ′ + cM ′

M

∂bMN ′

∂xP ′
:

ð24Þ

Due to Equation (24), under the coordinate transfor-
mation, the holonomic connection

ΓGð ÞMNP ≜
1
2

M
NP

Â Ã
G
+ M

NP

È É
G

À Á
= 1
2 Cg

À ÁM
A

∂ Bg

À ÁA
N

∂xP
+ Cg

À ÁM
A

A
BP

À Á
g
Bg

À ÁB
N

 !"

+ 1
2 GGð ÞMQ ∂ GGð ÞNQ

∂xP
+
∂ GGð ÞPQ
∂xN

−
∂ GGð ÞNP

∂xQ

� �#
ð25Þ

is transformed according to

Lk pð Þ : ΓGð ÞMNP ↦ ΓGð ÞM ′
N ′P′ = cM ′

M ΓGð ÞMNPb
N
N ′b

P
P′ + cM ′

M

∂bMN ′

∂xP′
:

ð26Þ

(ii) ½MNP�G as a Connection on Frame Bundle. Under the

frame transformation Lk : ðM, GÞ↦ ðM, G ′Þ, ∂/∂
xM ↦ ∂/∂xM ′ = ðBkÞMM ′∂/∂xM ,

ðBgÞAM ↦ ðBg′ÞAM ′ = ðBkÞMM ′ðBgÞAM , ðCgÞMA ↦ ðCg′ÞM
′

A

= ðCkÞM ′
M ðCgÞMA . Consequently, the gauge connec-

tion ½MNP�G is tranformed according to

Lk :
M
NP

Â Ã
G
↦ M ′

N ′P ′

h i
G ′

= M ′
N ′P

h i
G ′
bPP ′

= Ckð ÞM ′
M

M
NP

Â Ã
G
Bkð ÞNN ′ + Ckð ÞM ′

M

∂ Bkð ÞMN ′
∂xP

 !
bPP ′ :

ð27Þ

Equations (24) and (27) show that ½MNP�G is not only an
affine connection, but also a connection on frame bundle.

Apply Equations (24)–(27) to the curvature tensors

M
NPQ

Â Ã
≜
∂ M

NQ

Â Ã
∂xP

−
∂ M

NP

Â Ã
∂xQ

+ M
HP

Â Ã H
NQ

Â Ã
− H

NP

Â Ã M
HQ

Â Ã
,

M
NPQ

È É
≜
∂ M

NQ

È É
∂xP

−
∂ M

NP

È É
∂xQ

+ M
HP

È É H
NQ

È É
− H

NP

È É M
HQ

Â É
,

RM
NPQ ≜

∂ΓM
NQ

∂xP
−
∂ΓM

NP

∂xQ
+ ΓM

HPΓ
H
NQ − ΓH

NPΓ
M
HQ,

ð28Þ

and then, it is obtained that

Lk :
M
NPQ

Â Ã
G
↦ M ′

N ′P′Q′

h i
G ′

= M ′
N ′PQ

h i
G ′
bPP′b

Q
Q′

= Ckð ÞM ′
M

M
NPQ

Â Ã
G
Bkð ÞNN ′

� �
bPP′b

Q
Q′ ,

Lk pð Þ :
M
NPQ

Â Ã
G
↦ M ′

N ′P ′Q′

h i
G
= cM ′

M
M
NPQ

Â Ã
G
bNN ′b

P
P ′b

Q
Q′ ,

Lk pð Þ :
M
NPQ

Â Ã
G
↦ M ′

N ′P ′Q′

h i
G
= cM ′

M
M
NPQ

Â Ã
G
bNN ′b

P
P ′b

Q
Q′ ,

Lk pð Þ : RGð ÞMNPQ ↦ RGð ÞM ′
N ′P ′Q′ = cM ′

M RGð ÞMNPQb
N
N ′b

P
P ′b

Q
Q′ :

ð29Þ
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We see from Equation (29) that the ½MNPQ�G without
gravitation is both a curvature tensor of affine connection
and a curvature tensor on frame bundle, and that the
ðRGÞMNPQ with gravitation is a curvature tensor of affine con-
nection, but not a curvature tensor on frame bundle. In
other words, under the gauge transformation Lk, ½MNPQ�G
and ½M ′

N ′PQ�G ′ represent the same physical state, while

ðRGÞMNPQ and ðRG ′ÞM ′
N ′PQ represent different physical states.

This shows that the gravitational field in ðRGÞMNPQ makes
the gauge frames BA

M and CM
A have physical effects.

3. The Evolution in Affine Connection
Representation of Gauge Fields

Now that we have the required affine connection, next we
have to solve the problem that how to describe the evolution
in affine connection representation.

In the existing theories, time is effected by gravitational
field, but not effected by gauge field. This leads to an essen-
tial difference between the description of evolution of gravi-
tational field and that of gauge field. In this case, it is difficult
to obtain a unified theory of evolution in affine connection
representation. We adopt the following way to overcome
this difficulty.

3.1. The Relation between Time and Space

Definition 2. Suppose M = P ×N and r ≜ dim P = 3. Let

A, B,M,N = 1,⋯,D ; s, i = 1,⋯, r ; a,m = r + 1,⋯,D:

ð30Þ

On a geometric manifold ðM, f Þ, the dξ0 and dx0 which
are defined by

dξ0
� �2

≜ 〠
D

A=1
dξA
� �2

= δABdξ
AdξB =GMNdx

MdxN ,

dx0
À Á2 ≜ 〠

D

M=1
dxM
À Á2 = εMNdx

MdxN =HABdξ
AdξB,

ð31Þ

are said to be total space metrics or time metrics. We
also suppose

dξ Pð Þ
� �2

≜ 〠
r

s=1
dξs
À Á2,  dξ Nð Þ

� �2
≜ 〠

D

a=r+1
dξa
À Á2,

dx Pð Þ
� �2

≜ 〠
r

i=1
dxi
À Á2,  dx Nð Þ

� �2
≜ 〠

D

m=r+1
dxmð Þ2:

ð32Þ

dξðNÞ and dxðNÞ are regarded as proper-time metrics.
For convenience, P is said to be external space and N
is said to be internal space.

Remark 3. The above definition implies a new viewpoint
about time and space. The relation between time and space
in this way is different from the Minkowski coordinates
xμðμ = 0, 1, 2, 3Þ. Time and space are not the components
on an equal footing anymore, but have a relation of total
to component. It can be seen later that time reflects the
total evolution in the full-dimensional space, while a
specific spatial dimension reflects just a partial evolution
in a specific direction.

3.2. Evolution Path as a Submanifold

Definition 4. Let there be reference-systems f , g, f, and g on a
manifold M, such that ∀p ∈M, on the neighborhood U of p,

U , αA′
� �

⟶
f pð Þ

U , ξA
� �

⟶
f pð Þ

U , xM
À Á

⟵
g pð Þ

U , ζA
� �

⟵
g pð Þ

U , βA′
� �

:

ð33Þ

Denote F ≜ f ∘ f and G ≜ g ∘ g; then, we say F and G

move relatively and interact mutually, and also we say that
F evolves in G , or F evolves on the geometric manifold
ðM, GÞ. Meanwhile, G evolves in F , or we say G evolves
on ðM,FÞ.

From Equation (23), we know that in F and G , gauge
fields originate from f and g, and gravitational fields
ðGFÞMN and ðGGÞMN are effected by f and g, respectively.
We are going to describe their evolutions step by step in
the following sections.

Let there be a one-parameter group of diffeomorphisms

φX : M ×ℝ⟶M, ð34Þ

acting on M, such that φXðp, 0Þ = p. Thus, φX determines a
smooth tangent vector field X on M. If X is nonzero every-
where, we say φX is a set of evolution paths, and X is an
evolution direction field. Let T ⊆ℝ be an interval; then, the
regular imbedding

Lp ≜ φX,p : T ⟶M, t↦ φX p, tð Þ ð35Þ

is said to be an evolution path through p. The tangent vector
d/dt ≜ ½Lp� = XðpÞ is called an evolution direction at p. For
the sake of simplicity, we also denote Lp ≜ LpðTÞ ⊂M; then,

π : Lp ⟶M, q↦ q ð36Þ

is also a regular imbedding. If it is not necessary to empha-
size the point p, Lp is denoted by L concisely.

In order to describe physical evolution, next we are going to
strictly describe the mathematical properties of the
reference-systems f and g which are sent onto the evolution
path L.
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Definition 5. Let the time metrics of ðU , ξAÞ, ðU , xMÞ, and
ðU , ζAÞ be dξ0, dx0, and dζ0, respectively. On UL ≜U ∩ Lp,
we have parameter equations

ξA = ξA x0
À Á

, xM = xM ξ0
� �

, ζA = ζA x0
À Á

,

ξ0 = ξ0 x0
À Á

, x0 = x0 ξ0
� �

, ζ0 = ζ0 x0
À Á

:

ð37Þ

Take f for example, according to Equation (37), on UL
we define

bA0 ≜
dξA

dx0
, b00 ≜

dξ0

dx0
, εM0 ≜

dxM

dx0
= b00c

M
0 = bA0 c

M
A ,

cM0 ≜
dxM

dξ0
, c00 ≜

dx0

dξ0
, δA0 ≜

dξA

dξ0
= c00b

A
0 = cM0 b

A
M:

ð38Þ

Define dξ0 ≜ dx0/dξ0dx0 and dx0 ≜ dξ0/dx0dξ0, which
induce d/dξ0 and d/dx0, such that hd/dξ0, dξ0i = 1 and hd/
dx0, dx0i = 1. So we can also define

�b
0
A ≜

dξA
dx0

, �b
0
0 ≜

dξ0
dx0

, �ε0M ≜
dxM
dx0

= �b
0
0�c

0
M = �b

0
A�c

A
M ,

�c0M ≜
dxM
dξ0

, �c00 ≜
dx0
dξ0

, �δ
0
A ≜

dξA
d�ξ0

=�c00�b
0
A =�c0M�b

M
A :

ð39Þ

They determine the following smooth functions on the
entire L, similar to Section 2.2, that

For convenience, we still use the notations ε and δ and
have the following smooth functions.

εM0 ≜ B0
0C

M
0 = BA

0C
M
A , δA0 ≜ C0

0B
A
0 = CM

0 B
A
M , G00 ≜ B0

0B
0
0 =GMNε

M
0 ε

N
0 ,

�ε0M ≜ �B0
0�C

0
M = �B0

A
�CA
M , �δ

0
A ≜ �C0

0�B
0
A = �C0

M
�BM
A , G00 ≜ C0

0C
0
0 = GMN�ε0M�ε

0
N :

ð41Þ

It is easy to verify that dx0 =G00dx
0 and d/dx0 =G00d/

dx0 are both true on L by a simple calculation.

3.3. Evolution Lemma. We have the following two evolution
lemmas. The affine connection representations of Yang-
Mills equation, energy-momentum equation, and Dirac
equation are dependent on them.

Definition 6. ∀p ∈ L, suppose TpðMÞ and TpðLÞ are tangent
spaces, T∗

p ðMÞ and T∗
p ðLÞ are cotangent spaces. The regular

imbedding π : L⟶M, q↦ q induces the tangent map and
the cotangent map

π∗ : Tp Lð Þ⟶ Tp Mð Þ,  γL½ �↦ π ∘ γL½ �,
π∗ : T∗

p Mð Þ⟶ T∗
p Lð Þ, df ↦ d f ∘ πð Þ:

ð42Þ

Evidently, π∗ is an injection, and π∗ is a surjection. ∀d/
dtL ∈ TpðLÞ, d/dt ∈ TpðMÞ, df ∈ T∗

p ðMÞ, df L ∈ T∗
p ðLÞ, if and

only if

d
dt

= π∗
d
dtL

� �
,

df L = π∗ dfð Þ
ð43Þ

are true, we denote

d
dt

≅
d
dtL

,

df ≃ df L:

ð44Þ

Then, we have the following two propositions that are
evidently true.

Proposition 7. If d/dt ≅ d/dtL and df ≃ df L, then

d
dt

, df
� �

= d
dtL

, df L
� �

: ð45Þ

BA
0 : L⟶ℝ, p↦ BA

0 pð Þ ≜ bf pð Þ
� �A

0
pð Þ, CM

0 : L⟶ℝ, p↦ CM
0 pð Þ ≜ cf pð Þ

� �M
0

pð Þ,

�B0
A : L⟶ℝ, p↦ �B0

A pð Þ ≜ �bf pð Þ
� �0

A
pð Þ, �C0

M : L⟶ℝ, p↦ �C0
M pð Þ ≜ �cf pð Þ

� �0
M

pð Þ,

B0
0 : L⟶ℝ, p↦ B0

0 pð Þ ≜ bf pð Þ
� �0

0
pð Þ, C0

0 : L⟶ℝ, p↦ C0
0 pð Þ ≜ cf pð Þ

� �0
0
pð Þ,

�B0
0 : L⟶ℝ, p↦ �B0

0 pð Þ ≜ �bf pð Þ
� �0

0
pð Þ, �C0

0 : L⟶ℝ, p↦ �C0
0 pð Þ ≜ �cf pð Þ

� �0
0
pð Þ:

ð40Þ
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Proposition 8. The following conclusions are true.

wM ∂
∂xM

≅w0 d
dx0

⟺wM =w0εM0 ,

wMdx
M ≃w0dx

0 ⟺wMε
M
0 =w0,

8><>:
�wM

∂
∂xM

≅�w0
d
dx0

⟺�wM = �w0�ε
0
M ,

�wMdxM ≃�w0dx0 ⟺�wM�ε0M = �w0:

8><>: ð46Þ

3.4. On-Shell Evolution as a Gradient. Let T be a smooth n
-order tensor field. The restriction on ðU , xMÞ is T ≜ tf∂/∂
x ⊗ dxg, where f∂/∂x ⊗ dxg represents the tensor basis gen-
erated by several ∂/∂xM and dxM , and the tensor coefficients
of T are concisely denoted by t : U ⟶ℝ.

Let D be a holonomic connection. Consider DT ≜ t;Qd
xQ ⊗ f∂/∂x ⊗ dxg. Denote

Dt ≜ t;Qdx
Q, ∇t ≜ t;Q

∂
∂xQ

: ð47Þ

∀p ∈M, the integral curve of ∇t, that is, Lp ≜ φ∇t,p, is a
gradient line of T. It can be seen later that the above gradient
operator ∇ characterizes the on-shell evolution.

For any evolution path L, let UL ≜U ∩ L. Denote
tL ≜ tjUL

and tL ;0 ≜ t;Qε
Q
0 , as well as

DLtL ≜ tL ;0dx
0, ∇LtL ≜ tL ;0

d
dx0

: ð48Þ

Proposition 9. The following conclusions are evidently true.

(i) Dt ≃DLtL if and only if L is an arbitrary evolution
path

(ii) ∇t ≅ ∇LtL if and only if L is a gradient line of T

Remark 10. More generally, suppose there is a tensor U ≜
uQdx

Q ⊗ f∂/∂x ⊗ dxg. In such a notation, all the indices are
concisely ignored except Q. uQdx

Q uniquely determines a
characteristic direction uQ∂/∂xQ.

If the system of 1-order linear partial differential equa-
tions t;Q = uQ has a solution t, then it is true that Dt = uQd
xQ and ∇t = uQ∂/∂xQ. Thus, in the evolution direction ½L�
= uQ∂/∂xQ, the following conclusions are true.

Dt ≃DLtL, ∇t ≅ ∇LtL, ð49Þ

where DLtL ≜ u0dx
0, ∇LtL ≜ u0d/dx0, and u0 ≜ uQε

Q
0 .

Now for any geometric property in the form of tensor U,
we are able to express its on-shell evolution in the form of ∇t
.

Next, two important on-shell evolutions are discussed in
the following two sections. One is the on-shell evolution of

the potential field of a reference-system. The other is the
one that a general charge of a reference-system evolves in
the potential field of another reference-system.

3.5. On-Shell Evolution of Potential Field and Affine
Connection Representation of Yang-Mills Equation. Table I
of article [40] proposes a famous correspondence between
gauge field terminologies and fibre bundle terminologies.
However, it does not find out the corresponding mathemat-
ical object to the source JKμ . In this section, we give an answer
to this problem and show the affine connection representa-
tion of Yang-Mills equation.

In order to obtain the general Yang-Mills equation with
gravitation, we have to adopt holonomic connection to con-
struct it. Suppose F evolves in G according to Definition 4,
that is, ∀p ∈M,

U , αA′
� �

⟶
f pð Þ

U , ξA
� �

⟶
f pð Þ

U , xM
À Á

⟵
g pð Þ

U , ζA
� �

⟵
g pð Þ

U , βA′
� �

:

ð50Þ

We always take the following notations in the coordinate
frame ðU , xMÞ.

(i) Let the holonomic connections, which are defined by
Equation (25), of geometric manifolds ðM,FÞ and
ðM, GÞ be ðΓFÞMNP and ðΓGÞMNP , respectively. The
colon “:” and the semicolon “;” are used to express
the covariant derivatives on ðM,FÞ and ðM,GÞ,
respectively, e.g.,

uQ:P =
∂uQ

∂xP
+ ΓFð ÞQHPu

H , uQ ;P =
∂uQ

∂xP
+ ΓGð ÞQHPu

H : ð51Þ

(ii) Let the coefficients of curvature tensor of ðM,FÞ
and ðM, GÞ be KM

NPQ and RM
NPQ, respectively, i.e.,

KM
NPQ ≜

∂ ΓFð ÞMNQ

∂xP
−
∂ ΓFð ÞMNP

∂xQ
+ ΓFð ÞHNQ ΓFð ÞMHP − ΓFð ÞHNP ΓFð ÞMHQ,

RM
NPQ ≜

∂ ΓGð ÞMNQ

∂xP
−
∂ ΓGð ÞMNP

∂xQ
+ ΓGð ÞHNQ ΓGð ÞMHP − ΓGð ÞHNP ΓGð ÞMHQ:

ð52Þ

Denote KM
NPQ

:P ≜ ðGFÞPP′KM
NPQ:P′. On an arbitrary evolu-

tion path L, we define

ρMN0dx
0 ≜ π∗ KM

NPQ
:P
dxQ

� �
∈ T∗ Lð Þ: ð53Þ

Then, according to Definition 6 and the evolution

lemma of Proposition 8, we obtain ρMN0 = KM
NPQ

:P
εQ0 and

KM
NPQ

:P
dxQ ≃ ρMN0dx

0: ð54Þ
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Let ∇t = KM
NPQ

:P∂/∂xQ. Then, according to Proposition 9,
if and only if ∀p ∈M, ½Lp� = ∇tj

p
, we have

KM
NPQ

:P ∂
∂xQ

≅ ρMN0
d
dx0

: ð55Þ

Applying the evolution lemma of Proposition 8 again,
we obtain

KM
NPQ

:P = ρMN0�ε
0
Q: ð56Þ

Denote jMNQ ≜ ρMN0�ε
0
Q; then, if and only if ½Lp� = ∇tj

p
,

we have

KM
NPQ

:P = jMNQ, ð57Þ

which is said to be (affine) Yang-Mills equation of F . It
contains effects of gravitation, which makes the gauge frames
ðBf ÞAM and ðCf ÞMA have physical effects. According to
Equation (29), we know Equation (57) is coordinate covari-
ant, and if gravitation is removed, it is also gauge covariant.

Thus, we have the following two results.

(i) The Yang-Mills equation originates from a geomet-
ric property in the direction ∇t. In other words, the
on-shell evolution of gauge field is described by the
direction field ∇t

(ii) We obtain the mathematical origination of charge
and current. We know that the evolution path L is
an imbedding submanifold of M. Thus, the charge
ρMN0 originates from the pull-back π∗ from M to L,
and the current jMNQ originates from ∇t that is associ-
ated to ρMN0

If we let ðM, f Þ be completely flat, i.e., ðBf ÞAM = δAM , ðCf ÞMA
= δMA , then by calculation, we find ρ

M
N0 can still be nonvanish-

ing. This shows that ρMN0 originates from ðM, fÞ ultimately.

Definition 11. We speak of the real-valued

ρMN0 ≜GMHρ
H
N0 ð58Þ

as the field function of a general charge or speak of it as a
charge of F for short.

3.6. On-Shell Evolution of General Charge and Affine
Connection Representation of Mass, Energy, Momentum,
and Action. In order to be compatible with the affine con-
nection representation of gauge fields, we also have to define
mass, energy, momentum, and action in the form associated
to affine connection. We are going to show them in this sec-
tion and Section 4.3.

Let F0 ≜ ρMN0dx
M ⊗ dxN . For the sake of simplicity,

denote the charge ρMN0 of F by ρMN concisely. Let D be
the holonomic connection of ðM, GÞ; then,

DF0 ≜DρMN ⊗ dxM ⊗ dxN , ∇F0 ≜ ∇ρMN ⊗ dxM ⊗ dxN ,
ð59Þ

where DρMN ≜ ρMN ;Qdx
Q and ∇ρMN ≜ ρMN ;Q∂/∂xQ. Accord-

ing to Proposition 9, if and only if ∀p ∈ L, the evolution
direction is taken as ½Lp� = ∇ρMN jp, we have

DρMN ≃DLρMN , ∇ρMN ≅ ∇LρMN , ð60Þ

that is,

ρMN ;Qdx
Q ≃ ρMN ;0dx

0, ρMN ;Q
∂

∂xQ
≅ ρMN ;0

d
dx0

: ð61Þ

Definition 12. For more convenience, the notation ρMN is
further abbreviated as ρ. In affine connection representation,
energy and momentum of ρ are defined as

E0 ≜ ρ;0 ≜ ρ;Qε
Q
0 , pQ ≜ ρ;Q, H0 ≜

dρ
dx0

, PQ ≜
∂ρ
∂xQ

,

E0 ≜ ρ;0 ≜ ρ;Q�ε0Q, pQ ≜ ρ;Q, H0 ≜
dρ
dx0

, PQ ≜
∂ρ
∂xQ

:

ð62Þ

Proposition 13. At any point p on M, the equation

E0E
0 = pQp

Q ð63Þ

holds if and only if the evolution direction ½Lp� = ∇ρj
p
. Equa-

tion (63) is the (affine) energy-momentum equation of ρ.

Proof. According to the above discussion, ∀p ∈M,
½Lp� = ∇ρj

p
is equivalent to

pQdx
Q ≃ E0dx

0, pQ
∂

∂xQ
≅ E0

d
dx0

: ð64Þ

Then, due to Proposition 7, we obtain the directional
derivative in the gradient direction ∇ρ:

pQ
∂

∂xQ
, pMdxM

� �
= E0

d
dx0

, E0dx
0

� �
, ð65Þ

i.e., GQMpQpM =G00E0E0, or pQp
Q = E0E

0.
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Proposition 14. At any point p on M, the equations

pQ = E0 dx
Q

dx0
,

pQ = E0
dxQ
dx0

ð66Þ

hold if and only if the evolution direction ½Lp� = ∇ρj
p
.

Proof. Due to the evolution lemma of Proposition 8, we
immediately obtain Equation (66) from Equation (64).

Remark 15. In the gradient direction ∇ρ, Equation (66) is
consistent with the conventional formula

p =mv: ð67Þ

Thus, in affine connection representation, the energy-
momentum equation and the conventional definition of
momentum both originate from a geometric property in gra-
dient direction. In other words, the on-shell evolution of the
particle field ρ is described by the gradient direction field ∇ρ.

Definition 16. Let P ðb, aÞ be the totality of paths from a to b.
And suppose L ∈P ðb, aÞ, and the evolution parameter x0

satisfies ta ≜ x0ðaÞ < x0ðbÞ ≜ tb. The elementary affine action
of ρ is defined as

s Lð Þ ≜
ð
L
Dρ =

ð
L
pQdx

Q =
ðtb
ta

E0dx
0: ð68Þ

Thus, δsðLÞ = 0 if and only if L is a gradient line of ρ.
In particular, in the case where G is orthogonal, we can

also define action in the following way.
On ðM, GÞ, let there be Dirac algebras γM and γN

such that

γMγN + γNγM = 2GMN , γMγN + γNγM = 2GMN , γMγ
M = 1:
ð69Þ

In a gradient direction of ρ, from Equation (63), we
obtain that

pQp
Q = E0E

0 ⟺ ρ;Qρ
;Q = ρ;0ρ

;0 ⟺GPQρ;Pρ;Q

=G00ρ;0ρ;0 ⟺ γPγQ + γQγP
À Á

ρ;Pρ;Q

= 2ρ;0ρ;0 ⟺ γPρ;P
À Á

γQρ;Q
À Á

+ γQρ;Q
À Á

γPρ;P
À Á

= 2ρ;0ρ;0 ⟺ γPρ;P
À Á2 = ρ;0

À Á2
:

ð70Þ

Take γPρ;P = ρ;0 without loss of generality, and then,
in the gradient direction of ρ, we have

γPρ;Pdx
0 = ρ;0dx

0 = εP0ρ;Pdx
0 =Dρ: ð71Þ

So we can take

s Lð Þ ≜
ð
L
γPρ;Pdx

0 +Dρ
À Á

=
ðtb
ta

γPρ;P + εP0ρ;P
À Á

dx0

=
ðtb
ta

γPρ;P + E0
À Á

dx0:

ð72Þ

Remark 17 and Remark 41 explain the rationality of
this definition. We have sðLÞ = 2sðLÞ in the gradient
direction of ρ, so sðLÞ and sðLÞ are consistent.

Remark 17. In the Minkowski coordinate frame of Section
4.2, the evolution parameter x0 is replaced by ~xτ; then, there
still exists a concept of gradient direction ~∇~ρ. Correspond-
ingly, Equations (68) and (72) present as

~s Lð Þ ≜
ð
L

~D~ρ =
ð
L

~pμd~x
μ =
ðτb
τa

~mτd~x
τ, ~s Lð Þ =

ðτb
τa

γμ~ρ;μ + ~mτ

� �
d~xτ,

ð73Þ

where ~mτ is the rest-mass and ~xτ is the proper-time.

Remark 18. Define the following notations.

ρΓG½ � ≜ ∂ρMN

∂xG
− ρMN ;G = ρMHΓ

H
NG

+ ρHNΓ
H
MG,  ρRPQ

Â Ã
≜ ρMHR

H
NPQ + ρHNR

H
MPQ:

ð74Þ

Then, through some calculations, we can obtain that

f P ≜ pP;0 = E0;P − pQε
Q
0;P + ρRPQ

Â Ã
εQ0 , ð75Þ

which is the affine connection representation of general
Lorentz force equation (see Discussion 38 for further
illustrations).

3.7. Inversion Transformation in Affine Connection
Representation. In affine connection representation, CPT
inversion is interpreted as a full inversion of coordinates
and metrics. Let i, j = 1, 2, 3 and m, n = 4, 5,⋯,D.

Let the local coordinate representation of reference-

system k be x′ j = −δjixi, x′
n = δnmx

m; then, parity inversion
can be represented as

P ≜ Lk : x
i ⟶ −xi, xm ⟶ xm: ð76Þ

Let the local coordinate representation of reference-

system h be x′ j = δjix
i, x′n = −δnmx

m; then, charge conjugate
inversion can be represented as

C ≜ Lh : x
i ⟶ xi, xm ⟶ −xm: ð77Þ

Time coordinate inversion can be represented as

T0 : x
0 ⟶ −x0: ð78Þ
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Full inversion of coordinates can be represented as

CPT0 : x
Q ⟶ −xQ, x0 ⟶ −x0: ð79Þ

The positive or negative sign of metric marks two oppo-
site directions of evolution. Let N be a closed submanifold of
M, and let its metric be dxðNÞ. Denote the totality of closed
submanifolds of M by BðMÞ; then, full inversion of metrics
can be expressed as

T Mð Þ ≜
Y

N∈B Mð Þ
dx Nð Þ⟶−dx Nð Þ
� �

: ð80Þ

Denote time inversion by

T ≜ T Mð ÞT0, ð81Þ

and then, the joint transformation of the full inversion of
coordinates CPT0 and the full inversion of metrics TðMÞ is

CPT0ð Þ T Mð Þ
� �

= CPT: ð82Þ

Summarize the above discussions; then, we have

CPT0 : x
Q ⟶ −xQ, x0 ⟶ −x0, dxQ ⟶ dxQ, dx0 ⟶ dx0,

T Mð Þ : xQ ⟶ xQ, x0 ⟶ x0, dxQ ⟶ −dxQ, dx0 ⟶ −dx0,
CPT : xQ ⟶ −xQ, x0 ⟶ −x0, dxQ ⟶ −dxQ, dx0 ⟶ −dx0:

ð83Þ

The CPT invariance in affine connection representation
is very clear. Concretely, on ðM, GÞ, we consider the CPT
transformation acting on G . Denote s ≜

Ð
LDρ and DPe

is

≜ ð∂/∂xP − i½ρΓP�Þeis; then, through simple calculations,
we obtain that

CPT : Dρ⟶Dρ, DPe
is ⟶ −DPe

−is: ð84Þ

Remark 19. In quantum mechanics, there is a complex
conjugation in the time inversion of wave function T : ψ
ðx, tÞ⟶ ψ∗ðx,−tÞ. In affine connection representation,
we know the complex conjugation can be interpreted as
a straightforward mathematical result of the full inversion
of metrics TðMÞ.

3.8. Two Dual Descriptions of Gradient Direction Field

Discussion 20. Let X and Y be nonvanishing smooth tangent
vector fields on the manifold M. And let LY be the Lie deriv-
ative operator induced by the one-parameter group of
diffeomorphism φY . Then, according to a well-known theo-
rem [41], we obtain the Lie derivative equation

X, Y½ � = LYX: ð85Þ

Suppose ∀p ∈M, YðpÞ is a unit-length vector, i.e., kYðpÞk = 1.
Let the parameter of φY be x0. Then, on the evolution path
L ≜ φY ,p, we have

Y ≅
d
dx0

: ð86Þ

Thus, Equation (85) can also be represented as

X, Y½ � = d
dx0

X: ð87Þ

On the other hand, ∀df ∈ TðMÞ and df L ≜ π∗ðdf Þ, and
due to (86) and Proposition 7, we have hY , df i = hd/dx0, d
f Li, that is,

Y f = d
dx0

f L: ð88Þ

Definition 21. Let H ≜ k∇ρk−1∇ρ = εM0 ∂/∂xM ≅ d/dx0. It is
evident that ∀p ∈M, kHðpÞk = 1. If and only if taking Y =
H, we speak of (87) and (88) as real-valued (affine) Heisen-
berg equation and (affine) Schrödinger equation, respec-
tively, that is,

X,H½ � = d
dx0

X, Hf = d
dx0

f L: ð89Þ

Discussion 22. The above two equations both describe the
gradient direction field and thereby reflect on-shell evolution.
Such two dual descriptions of gradient direction show the
real-valued affine connection representation of Heisenberg
picture and Schrödinger picture.

It is not hard to find out several different kinds of
complex-valued representations of gradient direction. For
examples, one is the affine Dirac equation in Section 4.4,
and another is as follows.

Let ψ ≜ f eisL , where it is fine to take either sL ≜ sðLÞ or
sL ≜ sðLÞ from Definition 16. According to Equation (89),
it is easy to obtain on L that

X,H½ � = d
dx0

X, Hψ = dψ
dx0

: ð90Þ

This is consistent with the conventional Heisenberg
equation and Schrödinger equation (taking the natural units
that ℏ = 1, c = 1)

X,−iH½ � = ∂
∂t

X,  − iHψ = ∂ψ
∂t

, ð91Þ

and they have a coordinate correspondence

∂
∂ ixk
À Á ⟷ ∂

∂xk
,  ∂

∂t
↔ d

dx0
: ð92Þ

We know that ∂/∂t⟷ d/dx0 originates from the
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difference that the evolution parameter is xτ or x0. The
imaginary unit i originates from the difference between
the regular coordinates x1, x2, x3, xτ and the Minkowski
coordinates x1, x2, x3, x0. That is to say, the regular
coordinates satisfy

dx0
À Á2 = dx1

À Á2 + dx2
À Á2 + dx3

À Á2 + dxτð Þ2, ð93Þ

and the Minkowski coordinates satisfy

dxτð Þ2 = dx0
À Á2 − dx1

À Á2 − dx2
À Á2 − dx3

À Á2
= dx0
À Á2 + d ix1

À ÁÀ Á2 + d ix2
À ÁÀ Á2 + d ix3

À ÁÀ Á2
:
ð94Þ

This causes the appearance of the imaginary unit i
in the correspondence

ixk ⟷ xk: ð95Þ

So Equations (90) and (91) have exactly the same
essence, and their differences only come from different
coordinate representations.

The differences between coordinate representations have
nothing to do with the geometric essence and the physical
essence. We notice that the value of a gradient direction is
dependent on geometry, but independent of that the equa-
tions are real-valued or complex-valued. Therefore, it is
unnecessary for us to confine to such algebraic forms as
real-valued or complex-valued forms, but we should focus
on such geometric essence as gradient direction.

The essential virtue of complex-valued form is that it is
applicable for describing the coherent superposition of prop-
agator. However, this is independent of the above discus-
sions, and we are going to discuss it in Section 3.9.

3.9. Quantum Evolution as a Distribution of Gradient
Directions. From Proposition 13, we see that, in affine
connection representation, the classical on-shell evolution
is described by gradient direction. Then, naturally, quan-
tum evolution should be described by the distribution of
gradient directions.

The distribution of gradient directions on a geometric
manifold ðM,GÞ is effected by the bending shape of ðM,
GÞ; in other words, the distribution of gradient directions
can be used to reflect the shape of ðM, GÞ. This is the way
that the quantum theory in affine connection representa-
tion describes physical reality.

In order to know the full picture of physical reality, it is
necessary to fully describe the shape of the geometric mani-
fold. For a single observation,

(1) It is the reference-system, not a point, that is used to
describe the physical reality, so the coordinate of an
individual point is not enough to fully describe the
location information about the physical reality

(2) Through a single observation of momentum, we can
only obtain information about an individual gradient

direction; this cannot reflect the full picture of the
shape of the geometric manifold

Quantum evolution provides us with a guarantee that we
can obtain the distribution of gradient directions through
multiple observations, so that we can describe the full
picture of the shape of the geometric manifold.

Next, we are going to carry out strict mathematical
descriptions for the quantum evolution in affine connection
representation.

Definition 23. Let ρ be a geometric property on M, such as a
charge of F . Then, H ≜ ∇ρ is a gradient direction field of ρ
on ðM, GÞ.

Let T be the totality of all flat transformations Lk defined
in Section 2.3. ∀T ∈T, the flat transformation T : f ↦ Tf
induces a transformation T∗ : ρ↦ T∗ρ. Denote

ρj j ≜ ρT ≜ T∗ρ ∣ T ∈Tf g,  Hj j ≜ HT ≜ ∇ρT ∣ T ∈Tf g:
ð96Þ

∀a ∈M, the restriction of jHj at a are denoted by
jHðaÞj ≜ fHTðaÞ ∣ T ∈Tg.

We say jHj is the total distribution of the gradient direc-
tion field H.

Remark 24. When T is fixed, HT can reflect the shape of
ðM, GÞ. When a is fixed, the extension to jHðaÞj can
reflect the shape of ðM, GÞ.

However, when T and a are both fixed, HTðaÞ is a fixed
individual gradient direction, which cannot reflect the shape
of ðM, GÞ. In other words, if the momentum pT and the
position xa of ρ are both definitely observed, the physical
reality G would be unknowable; therefore, this is unaccept-
able. This is an embodiment of quantum uncertainty in
affine connection representation.

Definition 25. Let φH be the one-parameter group of diffeo-
morphisms corresponding to H. The parameter of φH is x0.
∀a ∈M, according to Definition 4, let φH,a be the evolution
path through a, such that φH,að0Þ = a. ∀t ∈ℝ, denote

φ∣H∣,a ≜ φX,a ∣ X ∈ Hj jÈ É
, φ Hj j,a tð Þ ≜ φX,a tð Þ ∣ X ∈ Hj jÈ É

:

ð97Þ

∀Ω ⊆T, we also denote jHΩj ≜ fHT ∣ T ∈Ωg ⊆ jHj and

φ∣HΩ∣,a ≜ φX,a ∣ X ∈ HΩj jÈ É
⊆ φ Hj j,a,

 φ HΩj j,a tð Þ ≜ φX,a tð Þ ∣ X ∈ HΩj jÈ É
⊆ φ Hj j,a tð Þ: ð98Þ

∀a ∈M, the restriction of jHΩj at a is denoted by
jHΩðaÞj ≜ fHTðaÞ ∣ T ∈Ωg.
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Remark 26. At the beginning t = 0, intuitively, the gradient
directions jHðaÞj of jρj start from a and point to all direc-
tions around a uniformly. If ðM, GÞ is not flat, when
evolving to a certain time t > 0, the distribution of gradient
directions on φjHj,aðtÞ is no longer as uniform as begin-
ning. The following definition precisely characterizes this
kind of ununiformity.

Definition 27. Let the transformation LG−1 act on G ; then, we
obtain the trivial e ≜ LG−1ðGÞ. Now ðM, GÞ is sent to a flat
ðM, eÞ, and the gradient direction field jHj of jρj on ðM,
GÞ is sent to a gradient direction field jOj of jρj on ðM,
eÞ. Correspondingly, ∀t ∈ℝ, φjHj,aðtÞ is sent to φjOj,aðtÞ.
In a word, LG−1 induces the following two maps:

G−1
∗ : Hj j⟶ Oj j,

G−1
∗∗ : φ Hj j,a ⟶ φ Oj j,a:

ð99Þ

∀T ∈T, deonte N ≜ fN ∈T ∣ det N = det Tg. Due to
T ≅ GLðD,ℝÞ, let U be a neighborhood of T , with respect
to the topology of GLðD,ℝÞ.

Take Ω =N ∩U; then,

OΩj j = G−1
∗ HΩj jð Þ, φ OΩj j,a =G−1

∗∗ φ HΩj j,a
� �

: ð100Þ

Let μ be a Borel measure on the manifold M. We know
∀t ∈ℝ,

φ HNj j,a tð Þ ≃ φ ONj j,a tð Þ ≃ SD−1: ð101Þ

Thus, φjHΩj,aðtÞ ⊆ φ∣HN∣,aðtÞ and φjOΩj,aðtÞ ⊆ φjONj,aðtÞ are
Borel sets, so they are measurable. Denote

μa φ HΩj j,a tð Þ
� �

≜ μ G−1
∗∗ φ HΩj j,a tð Þ
� �� �

= μ φ OΩj j,a tð Þ
� �

:

ð102Þ

When U⟶ T , we have Ω⟶ T , jHΩj⟶HT , jHΩ
ðaÞj⟶HTðaÞ, and φjHΩj,aðtÞ⟶ b ≜ φHT ,aðtÞ.

For the sake of simplicity, denote L ≜ φHT ,a. Thus, we
have a = Lð0Þ, b = LðtÞ, and denote pa ≜ ½La� =HTðaÞ, pb ≜
½Lb� =HTðbÞ.

Because μa is absolutely continuous with respect to μ,
Radon-Nikodym theorem [42] ensures the existence of the
following limit. The Radon-Nikodym derivative

WL b, að Þ ≜ dμa
dμb

≜ lim
U⟶T

μa φ HΩj j,a tð Þ
� �

μ φ HΩj j,a tð Þ
� �

= lim
U⟶T

μ G−1
∗∗ φ HΩj j,a tð Þ
� �� �

μ φ HΩj j,a tð Þ
� �

= lim
U⟶T

μ φ OΩj j,a tð Þ
� �

μ φ HΩj j,a tð Þ
� �

ð103Þ

is said to be the distribution density of jHj along L in posi-
tion representation.

On a neighborhood U of a, ∀T ∈T, denote the normal
section of HTðaÞ by NHT ,a, that is,

NHT ,a ≜ n ∈U ∣HT að Þ · n − að Þ = 0f g,

 NHT ,a tð Þ ≜ φHT ,x tð Þ ∣ x ∈NHT ,a
n o

: ð104Þ

Thus, NHT ,a =NHT ,að0Þ and NHT ,b ≜NHT ,aðtÞ. If U ⟶ a,
we have NHT ,a ⟶ a and NHT ,aðtÞ⟶ b ≜ φHT ,aðtÞ. The
Radon-Nikodym derivative

ZL b, að Þ ≜ dμ að Þ
dμ bð Þ ≜ lim

U⟶a

μ NHT ,a
À Á

μ NHT ,b
À Á = lim

U⟶a

μ NHT ,a
À Á

μ NHT ,a tð ÞÀ Á
ð105Þ

is said to be the distribution density of jHj along L in
momentum representation.

In a word, WLðb, aÞ and ZLðpb, paÞ describe the density
of the gradient lines that are adjacent to b in two different
ways. They have the following property that is evidently true.

Proposition 28. Let L be a gradient line. ∀a, b, c ∈ L such that
Lðx0aÞ = a, Lðx0bÞ = b, Lðx0c Þ = c, and x0b > x0c > x0a; then,

WL b, að Þ =WL b, cð ÞWL c, að Þ, ZL b, að Þ = ZL b, cð ÞZL c, að Þ:
ð106Þ

Definition 29. If L is a gradient line of some ρ′ ∈ ∣ρ ∣ , we also
say L is a gradient line of ∣ρ ∣ .

Remark 30. For any a and b, it anyway makes sense to dis-
cuss the gradient line of ∣ρ ∣ from a to b. It is because even
if the gradient line of ρ starting from a does not pass through
b, it just only needs to carry out a certain flat transformation
T defined in Section 2.3 to obtain a ρ′ ≜ T∗ρ; thus, the gra-
dient line of ρ′ starting from a can just exactly pass through
b. Due to ρ, ρ′ ∈ jρj, we do not distinguish them, and it is
just fine to uniformly use jρj. Intuitively speaking, when jρj
takes two different initial momentums, jρj presents as ρ
and ρ′, respectively.
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Discussion 31.With the above preparations, we obtain a new
way to describe the construction of the propagator strictly.

For any path L that starts at a and ends at b, we denote
kLk ≜ Ð Ldx0 concisely. Let P ðb, aÞ be the totality of all the
paths from a to b. Denote

P b, x0b ; a, x0a
À Á

≜ L ∣ L ∈P b, að Þ,  Lk k = x0b − x0a
È É

: ð107Þ

∀L ∈P ðb, x0b ; a, x0aÞ, we can let Lðx0aÞ = a and Lðx0bÞ = b
without loss of generality. Thus, P ðb, x0b ; a, x0aÞ is the totality
of all the paths from Lðx0aÞ = a to Lðx0bÞ = b.

Abstractly, the propagator is defined as the Green
function of the evolution equation. Concretely, the propa-
gator still needs a constructive definition. One method is
the Feynman path integral

K b, x0b ; a, x0a
À Á

≜
ð
P b,x0b ;a,x0að Þ

eisdL: ð108Þ

However, there are so many redundant paths in P ðb
, x0b ; a, x0aÞ that (i) it is difficult to generally define a mea-
sure dL on P ðb, x0b ; a, x0aÞ, and (ii) it may cause unneces-
sary infinities when carrying out some calculations.

In order to solve this problem, we try to reduce the
scope of summation from P ðb, x0b ; a, x0aÞ to Hðb, x0b ; a, x0aÞ,
where Hðb, x0b ; a, x0aÞ is the totality of all the gradient lines
of jρj from Lðx0aÞ = a to Lðx0bÞ = b. Thus, Equation (108) is
turned into

K b, x0b ; a, x0a
À Á

=
ð
H b,x0b ;a,x0að Þ

Ψ Lð ÞeisdL: ð109Þ

We notice that as long as we take the probability ampli-
tude ΨðLÞ of the gradient line L such that ½ΨðLÞ�2 =WLðb,
aÞ in position representation or take ½ΨðLÞ�2 = ZLðb, aÞ in
momentum representation, it can exactly be consistent with
the Copenhagen interpretation. This provides the following
new constructive definition for the propagator.

Definition 32. Suppose jρj is defined as Definition 23, and
denote H ≜ ∇ρ.

Let Lðb, aÞ be the totality of all the gradient lines of jρj
from a to b. Denote

H b, x0b ; a, x0a
À Á

≜ L ∣ L ∈L b, að Þ,  Lk k = x0b − x0a
È É

: ð110Þ

Let Lðpb, paÞ be the totality of all the gradient lines of
∣ρ ∣ , whose starting direction is pa and ending direction is
pb. Denote

H pb, x0b ; pa, x0a
À Á

≜ L ∣ L ∈L pb, pað Þ,  Lk k = x0b − x0a
È É

:

ð111Þ

Let dL be a Borel measure on Hðb, x0b ; a, x0aÞ. In con-
sideration of Remark 41, we let s be the affine action sðLÞ
in Definition 16. We say the geometric property

K b, x0b ; a, x0a
À Á

≜
ð
H b,x0b ;a,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL b, að Þ

p
eisdL ð112Þ

is the propagator of jρj from ða, x0aÞ to ðb, x0bÞ in posi-
tion representation. If we let dL be a Borel measure on
Hðpb, x0b ; pa, x0aÞ, then we say

K pb, x0b ; pa, x0a
À Á

≜
ð
H pb ,x0b ;pa ,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL b, að Þ

p
eisdL ð113Þ

is the propagator of jρj from ðpa, x0aÞ to ðpb, x0bÞ in
momentum representation.

Discussion 33. Now (112) and (113) are strictly defined, but
the Feynman path integral (108) has not been possessed of a
strict mathematical definition until now. This makes it
impossible at present to obtain (e.g., in position representa-
tion) a strict mathematical proof ofð

P b,x0b ;a,x0að Þ
eisdL =

ð
H b,x0b ;a,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL b, að Þ

p
eisdL: ð114Þ

Fortunately, the following two reasons make us believe
that Equation (114) is expected to be regarded as a strict def-
inition of Feynman path integral; that is to say, the integral
on the right-hand side of “=” can be regarded as the strict
definition of the notation on the left-hand side of “=”.

On the one hand, we notice that the distribution densi-
ties WLðb, aÞ and ZLðb, aÞ of gradient directions establish
an association between probability interpretation and geo-
metric interpretation of quantum evolution. Therefore, we
can base on probability interpretation to intuitively consider
both sides of “=” in Equation (114) as the same thing.

On the other hand, on the condition of Proposition 28,
denote Hðx0c Þ ≜ fLðx0c ÞjL ∈Hðb, x0b ; a, x0aÞg; then,

K b, x0b ; a, x0a
À Á

=
ð
H x0cð Þ

K b, x0b ; c, x0c
À Á

K c, x0c ; a, x0a
À Á

dc

ð115Þ

is expected to be provable according to Equations (106) and
(112). However, to obtain a strict proof of Equation (115)
from Equations (106) and (112) is not a trivial mathematical
problem, which is necessary but not easy, and needs more
mathematical research.

Discussion 34. The quantization methods of QFT are
successful, and they are also applicable in affine connection
representation, but in this paper, we do not discuss them.
We try to propose some more ideas to understand the quan-
tization of field in affine connection representation.

(1) If we take
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s =
ð
L
Dρ =

ð
L
pQdx

Q =
ð
L
E0dx

0, ð116Þ

according to Definition 16, where D is the holonomic con-
nection of ðM, GÞ, then consider the distribution of H ≜ ∇
ρ, and we know that

K b, x0b ; a, x0a
À Á

≜
ð
∇ρ b,x0b ;a,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL b, að Þ

p
eisdL,

K pb, x0b ; pa, x0a
À Á

≜
ð
∇ρ pb ,x0b ;pa ,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL b, að Þ

p
eisdL

ð117Þ

describes the quantization of energy-momentum. Every
gradient line in ∇ρðb, x0b ; a, x0aÞ corresponds to a set of
eigenvalues of energy and momentum. This is consistent
with conventional theories, and this inspires us to consider
the following new ideas to carry out the quantization of
charge and current of gauge field.

(2) In an analogous manner, if we take

s =
ð
L
Dt =

ð
L
KM

NPQ
:P
dxQ =

ð
L
ρMN0dx

0, ð118Þ

according to Section 3.5, where D is the holonomic connec-
tion of ðM,FÞ, then consider the distribution of H ≜ ∇t,

K b, x0b ; a, x0a
À Á

≜
ð
∇t b,x0b ;a,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL b, að Þ

p
eisdL,

K pb, x0b ; pa, x0a
À Á

≜
ð
∇t pb ,x0b ;pa ,x0að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL b, að Þ

p
eisdL:

ð119Þ

Denote Hðb, x0b ; x0c Þ ≜ fc ∈Mj∀L ∈Hðb, x0b ; c, x0c Þ, kLk =
x0b − x0cg and take H = ∇t; then, the wave function ψðb, x0bÞ
that is defined by the equation

ψ b, x0b
À Á

=
ð
H b,x0b ;x0cð Þ

K b, x0b ; c, x0c
À Á

ψ c, x0c
À Á

dc ð120Þ

describes the quantization of charge and current. It should
be emphasized that this is not the quantization of the
energy-momentum of the field, but the quantization of the
field itself, which presents as quantized (e.g., discrete)
charges and currents.

4. Affine Connection Representation of Gauge
Fields in Classical Spacetime

The new framework established in Section 3 is discussed in
the D-dimensional general coordinate xM , which is more
general than the ð1 + 3Þ-dimensional conventional Min-
kowski coordinate xμ.

ðdx0Þ2 =∑D
M=1ðdxMÞ2 is the total metric of internal space

and external space, and ðdxτÞ2 =∑D
m=4ðdxmÞ2 is the metric of

internal space.

(i) The evolution parameter of the D-dimensional
general coordinate xMðM = 1, 2,⋯,DÞ is x0. The
parameter equation of an evolution path L is repre-
sented as xM = xMðx0Þ

(ii) The evolution parameter of the ð1 + 3Þ-dimen-
sional Minkowski coordinate xμðμ = 0, 1, 2, 3Þ is
xτ. The parameter equation of L is represented as
xμ = xμðxτÞ

The coordinate xμ works on the ð1 + 3Þ-dimensional
classical spacetime submanifold defined as follows.

4.1. Classical Spacetime Submanifold. Let there be a smooth
tangent vector field X on ðM, f Þ. If ∀p ∈M, XðpÞ =
bA∂/∂ξAjp = cM∂/∂xMjp satisfies that ba are not all zero and
cm are not all zero, where a,m = r + 1,⋯,D; then, we say
X is internal-directed. For any evolution path L ≜ φX,p, we
also say L is internal-directed.

Suppose M = P ×N , D ≜ dimM, and r ≜ dimP = 3. X is a
smooth tangent vector field on M. Fix a point o ∈M. If X is
internal-directed; then, there exist a unique ð1 + 3Þ-dimen-
sional imbedding submanifold γ : ~M⟶M, p↦ p and a
unique smooth tangent vector field ~X on ~M such that

(i) P × fog is a closed submanifold of ~M

(ii) The tangent map γ∗ : Tð ~MÞ⟶ TðMÞ satisfies that
∀q ∈ ~M, γ∗ : ~XðqÞ↦ XðqÞ

Such an ~M is said to be a classical spacetime
submanifold.

Let φX : M ×ℝ⟶M and φ~X : ~M ×ℝ⟶ ~M be the
one-parameter groups of diffeomorphisms corresponding
to X and ~X, respectively. Thus, we have

φ~X = φX j ~M×ℝ: ð121Þ

So the evolution in classical spacetime can be described
by φ~X . It should be noticed that

(i) ~M inherits a part of geometric properties of M, but
not all. The physical properties reflected by ~M are
incomplete

(ii) The correspondence between ~X and the restriction
of X to ~M is one-to-one. For convenience, next we
are not going to distinguish the notations X and ~X
on ~M but uniformly denote them by X

(iii) An arbitrary path ~L : T ⟶ ~M, t↦ p on ~M uniquely
corresponds to a path L ≜ γ ∘ ~L : T ⟶M, t↦ p on
M. Evidently, the image sets of L and ~L are the same,
that is, LðTÞ = ~LðTÞ. For convenience, later we are

15Advances in High Energy Physics



not going to distinguish the notations L and ~L on ~M
but uniformly denote them by L

4.2. Classical Spacetime Reference-System. Let there be a
geometric manifold ðM, f Þ and its classical spacetime sub-
manifold ~M. And let L ≜ φ~X,a be an evolution path on ~M.
Suppose p ∈ L and U is a coordinate neighborhood of p.
According to Definition 5, suppose the f ðpÞ on U and the
f LðpÞ on UL ≜U ∩ L satisfy that

f pð Þ: ξA = ξA xM
À Á

= ξA x0
À Á

, ξ0 = ξ0 x0
À Á

, A,M = 1, 2,⋯,D:

ð122Þ

Thus, it is true that

(1) There exists a unique local reference-system ~f ðpÞ on
~U ≜U ∩ ~M such that

~f pð Þ: ξU = ξU xK
À Á

= ξU x0
À Á

, ξ0 = ξ0 x0
À Á

, U , K = 1, 2, 3, τ:
ð123Þ

(2) If L is internal-directed, then the above coordinate
frames ð~U , ξUÞ and ð~U , xKÞ of ~f ðpÞ uniquely deter-

mine the coordinate frames ð~U , ~ξαÞ and ð~U , ~xμÞ
such that

~f pð Þ: ~ξα = ~ξ
α
~xμð Þ = ~ξ

α
~xτð Þ, ~ξ

τ = ~ξ
τ
~xτð Þ, α, μ = 0, 1, 2, 3,

ð124Þ

and the coordinates satisfy

~ξ
s = ξs, ~ξ

τ = ξτ, ~ξ
0 = ξ0, ~xi = xi, ~xτ = xτ, ~x0 = x0:

ð125Þ

That is to say, ~f ðpÞ is just exactly the reference system in
conventional sense, which has two different coordinate
representations (123) and (124).

We speak of

~f : ~M⟶ REF ~M , p↦ ~f pð Þ ∈ REFp ð126Þ

as a classical spacetime reference-system. Thus, inertial sys-
tem can be strictly defined as follows, no need for Newton's
first law. Suppose we have a geometric manifold ð ~M, ~gÞ. F~g

is a transformation induced by ~g.

(1) If ~δαβ~B
α
μ
~B
β
ν = ~εμν, then ~g is said to be (Lorentz)

orthogonal. In this case, F~g is just exactly a local
Lorentz transformation

(2) If ~B
α
μ and ~C

μ
α are constants on ~M, then ~g is said to

be flat

(3) If ~g is both orthogonal and flat, then ~g is said to be
an inertial-system. In this case, F~g is just exactly a
Lorentz transformation

Remark 35. Due to

d~ξ
τ� �2

= dξ0
� �2

− 〠
3

s=1
dξs
À Á2 = ~δαβd~ξ

α
d~ξ

β

= ~Gμνd~x
μd~xν, ~Gμν ≜ ~δαβ~B

α
μ
~B
β
ν ,

d~xτð Þ2 = dx0
À Á2 − 〠

3

i=1
dxi
À Á2 = ~εμνd~xμd~xν

= ~Hαβd~ξ
α
d~ξ

β, ~Hαβ ≜ ~εμν~C
μ
α
~C
ν
β,

ð127Þ

it is easy to know that ~g is orthogonal if and only if d~ξ
τ = d~xτ,

i.e., ~Gττ ≜ ~B
τ
τ
~B
τ
τ = 1, ~Gττ ≜ ~C

τ
τ
~C
τ
τ = 1. It is only in this case that

we can denote d~ξ
τ
and d~xτ uniformly by dτ; otherwise, we

should be aware of the difference between d~ξ
τ
and d~xτ in

nontrivial gravitational field. No matter whether ~g is an
inertial system or not, and whether there is a nontrivial grav-

itation field or not, ðd~ξτÞ2 = ðdξ0Þ2 −∑3
s=1ðdξsÞ2 and ðd~xτÞ2

= ðdx0Þ2 −∑3
i=1ðdxiÞ2 are always both true in their respective

coordinate frames.

Remark 36. The evolution lemmas in Section 3.3 can be
expressed in Minkowski coordinate as follows:

(i) If d/d~t ≅ d/d~tL and d~f ≃ d~f L, then hd/d~t, d~f i = hd/d
~tL, d~f Li

(ii) The following conclusions are true

wμ ∂
∂~xμ

≅wτ d
d~xτ

⟺wμ =wτ~εμτ , �wμ

∂
∂~xμ

≅ �wτ

d
d~xτ

⟺ �wμ = �wτ
e�ετμ,

wμd~x
μ ≃wτd~x

τ ⟺ ~εμτwμ =wτ, �wμd~xμ ≃ �wτd~xτ ⟺e�ετμ �wμ = �wτ:

ð128Þ

4.3. Affine Connection Representation of Classical Spacetime
Evolution. Let ~D be the holonomic connection on ð ~M, ~GÞ,
and denote ~tL;τ ≜~t;σ~ε

σ
τ ; then, the absolute differential and

gradient of Section 3.4 can be expressed on ~M in Minkowski
coordinate as

~D~t ≜~t;σd~x
σ, ~DL

~tL ≜~tL;τd~x
τ,

∇~~t ≜~t;σ
∂
∂~xσ

, ∇~
L
~tL ≜~tL;τ

d
d~xτ

:
ð129Þ
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Evidently, ~D~t ≃ ~DL
~tL if and only if L is an arbitrary path.

∇~~t ≅ ∇~
L
~tL if and only if L is the gradient line.

Definition 37. Similar to Section 3.6, suppose a charge ~ρ of ~F
evolves on ð ~M, ~GÞ. We have the following definitions.

(1) The geometric properties ~mτ ≜ ~ρ;τ and ~mτ ≜ ~ρ;τ are
said to be the rest mass of ~ρ

(2) ~pμ ≜ −~ρ;μ and ~pμ ≜ −~ρ;μ are said to be the energy-

momentum of ~ρ, and ~E
0 ≜ ~ρ;0 and ~E0 ≜ ~ρ;0 are said

to be the energy of ~ρ

(3) ~M
τ ≜ d~ρ/d~xτ and ~Mτ ≜ d~ρ/d~xτ are said to be the

canonical rest mass of ~ρ

(4) ~P
μ ≜ −∂~ρ/∂~xμ and ~Pμ ≜ −∂~ρ/∂~xμ are said to be the

canonical energy-momentum of ~ρ, and ~H
0 ≜ ∂~ρ/∂

~x0, ~H0 ≜ ∂~ρ/∂~x0 are said to be the canonical energy
of ~ρ

Discussion 38. Similar to Proposition 13, ∀p ∈ ~M, if and
only if the evolution direction ½Lp� = ∇~~ρjp, the directional
derivative is

~mτ

d
d~xτ

, ~mτd~x
τ

� �
= ~pμ

∂
∂~xμ

, ~pμd~xμ
* +

, ð130Þ

that is, ~G
ττ
~mτ ~mτ = ~G

μν
~pμ~pν, or

~mτ ~m
τ = ~pμ~p

μ, ð131Þ

which is the affine connection representation of energy-
momentum equation.

Similar to Proposition 14, according to the evolution
lemma, ∀p ∈ ~M, if and only if the evolution direction
½Lp� = ∇~~ρjp, we have ~pμ = −~mτd~xμ/d~xτ, that is ~E0 = ~mτd~x0/
d~xτ = ~mτdx0/dxτ and ~pi = −~mτd~xi/d~xτ = ~mτð−d~xiÞ/d~xτ = ~mτ

dxi/dxτ = ~E0dxi/dx0. This can also be regarded as the origin
of p =mv.

Similar to Remark 18, denote

~ρeΓω

h i
≜
∂~ρμν
∂~xω

− ~ρμν;ω = ~ρμχeΓχ

νω + ~ρχνeΓχ

μω,

  ~ρ~Rρσ

Â Ã
≜ ~ρμχ~R

χ
νρσ + ~ρχν~R

χ
μρσ: ð132Þ

Then, for the same reason as Remark 18, based on
Definition 37, we can strictly obtain

~f ρ ≜ ~pρ;τ = ~mτ;ρ − ~pσ~ε
σ
τ;ρ + ~ρ~Rρσ

Â Ã
~εστ : ð133Þ

In the mass-point model, ~mτ;ρ and ~εστ;ρ do not make
sense, so Equation (133) turns into

~f ρ = ~ρ~Rρσ

Â Ã
~εστ : ð134Þ

This is the affine connection representation of the force
of interaction (e.g., the Lorentz force f = qðE + v × BÞ or f ρ
= jσFρσ of the electrodynamics).

Similar to Definition 16, let ~P ðb, aÞ be the totality of
paths on ~M from point a to point b. And let L ∈ ~P ðb, aÞ
and parameter ~xτ satisfy τa ≜ ~xτðaÞ < ~xτðbÞ ≜ τb. The affine
connection representation of action in Minkowski coordi-
nates can be defined as

~s Lð Þ ≜
ð
L

~D~ρ =
ð
L

~pμd~x
μ =
ðτb
τa

~mτd~x
τ, ~s Lð Þ ≜

ðτb
τa

γμ~ρ;μ + ~mτ

� �
d~xτ:

ð135Þ

There are more illustrations in Remark 41.

4.4. Affine Connection Representation of Dirac Equation

Discussion 39. Define Dirac algebras γμ and γα such that

γμ = ~C
μ
αγ

α, γαγβ + γβγα = 2~δαβ, γμγν + γνγμ = 2~Gμν
:

ð136Þ

Suppose ð ~M, ~GÞ is orthogonal. According to Remark 35,
~G
ττ = 1. Due to Discussion 38, in a gradient direction of ~ρ
≜ ~ρων, we have

~ρ;μ~ρ
;μ = ~ρ;τ~ρ

;τ ⟺ ~G
μν
~ρ;μ~ρ;ν

= ~m2
τ ⟺ γμ~ρ;μ

� �
γν~ρ;ν
À Á

+ γν~ρ;ν
À Á

γμ~ρ;μ

� �
= 2~m2

τ ⟺ γμ~ρ;μ

� �
γν~ρ;ν
À Á

= ~m2
τ ⟺ γμ~ρ;μ

� �2
= ~m2

τ:

ð137Þ

Without loss of generality, take γμ~ρ;μ = ~mτ, that is,

γμ~ρων;μ = ~mωντ: ð138Þ

Next, denote

geΓμ

h iων
≜〠

σ

~G
νν′eΓν′σμ +〠

κ

~G
ωω′eΓω′κμ, ~D

ων
μ ≜ ∂μ − geΓμ

h iων
:

ð139Þ
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From Equation (138), it is obtained that

〠
ω,ν

γμ~ρων;μ =〠
ω,ν

~mωντ ⟺〠
ω,ν

γμ ∂μρων − ~ρωχeΓχ

νμ − ~ρχνeΓχ

ωμ

� �
=〠

ω,ν
~mωντ ⟺〠

ω,ν
γμ ∂μρων − ~ρων〠

σ

eΓν

σμ − ~ρων〠
κ

eΓω

κμ

 !
=〠

ω,ν
~mωντ ⟺〠

ω,ν
γμ ∂μρων − ~ρων geΓμ

h iων� �
=〠

ω,ν
~mωντ ⟺〠

ω,ν
γμ ∂μ − geΓμ

h iων� �
~ρων =〠

ω,ν
~mωντ,

ð140Þ

that is,

〠
ω,ν

γμ~D
ων
μ ~ρων =〠

ω,ν
~mωντ, ~D

ων
μ ≜ ∂μ − geΓμ

h iων
: ð141Þ

We speak of the real-valued Equations (138) and (141)
as affine Dirac equations.

Discussion 40. Next, we construct a kind of complex-valued
representation of affine Dirac equation. The restriction of
the charge ~ρων to ð~U , ~xμÞ is a function ~ρωνð~xμÞ with respect
to the coordinates ð~xμÞ ≜ ð~x0, ~x1, ~x2, ~x3Þ. Let

~Pων ~x0
À Á

≜
ð

~x1,~x2,~x3ð Þ
~ρων ~xμð Þd3~x: ð142Þ

Suppose a function f ων = f ωνð~xμÞ on ð~U , ~xμÞ satisfies
that

~ρων = f ωνð Þ2~Pων,
ð

~x1,~x2,~x3ð Þ
f ωνð Þ2d3~x = 1, ~ξμτ

∂f ων
∂~xμ

= 0, γμ ∂f ων
∂~xμ

= 0:

ð143Þ

We define ψων and ~Mωντ in the following way.

~yων ≜
ð
L
d~ρων =

ð
L

d~ρων
d~xτ

d~xτ

=
ð
L

d f 2ων
À Á
d~xτ

~Pων + f 2ων
d~Pων

d~xτ

 !
d~xτ

= f 2ων

ð
L

d~Pων
d~xτ

d~xτ ≜ f 2ων~Yων,

ψων ≜ f ωνe
i~Yων , ~mωντ ≜ ~ρων;τ

= f 2ων
À Á

,τ
~Pων + f 2ων~Pων;τ

= f 2ων~Pων;τ ≜ f 2ων ~Mωντ:

ð144Þ

In the QFT propagator, we usually take S in the path
integral

Ð
eiSDψ of a fermion in the form of

−
ð

i�ψγμDμψ − �ψ ~Mτψ
� �

d4~x, ð145Þ

where S and d4~x are both covariant. We believe that the
external spatial integral

Ð
ð~x1,~x2,~x3Þd

3~x is not an essential part

for evolution, so for the sake of simplicity, we do not take
into account the external spatial part

Ð
ð~x1,~x2,~x3Þd

3~x but only

consider the evolution part
Ð
Ld~x

0. Meanwhile, in order to
remain the covariance,

Ð
Ld~x

0 has to be replaced by
Ð
Ld~x

τ.
Thus, in affine connection representation of gauge fields,
we shall consider an action in the form of

−
ð
L

i�ψγμDμψ − �ψ ~Mτψ
� �

d~xτ: ð146Þ

Concretely speaking, denote

~Dωνμ ≜
∂
∂~xμ

− i ~PeΓμ

h i
ων
,  ~PeΓμ

h i
ων

≜〠
σ

~PωνeΓν

σμ +〠
κ

~PωνeΓω

κμ:

ð147Þ

From Equation (135), we have

~sων Lð Þ ≜
ð
L

γμ~ρων;μ + ~mωντ

� �
d~xτ: ð148Þ

And from Equation (140), we know ∑ω,νγ
μ~ρων;μ =∑ω,ν

γμ~D
ων
μ ~ρων. Then, it is obtained that

~s~ρ Lð Þ ≜〠
ω,ν
~sων Lð Þ =

ð
L
〠
ω,ν

γμ~ρων;μ + ~mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

γμ~D
ων
μ ~ρων + ~mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

γμ ∂μ~ρων − geΓμ

h iων
~ρων

� �
+ ~mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

γμ ∂μ~yων − geΓμ

h iων
~ρων

� �
+ ~mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

γμ ∂μ f 2ων~Yων

À Á
− geΓμ

h iων
f 2ων~Pων

� �
+ f 2ων ~Mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

γμ ∂μ~Yων − ~PeΓμ

h i
ων

� �
f 2ων + f 2ων ~Mωντ

� �
d~xτ

=
ð
L
〠
ω,ν

f ωνe
−i~Yωνγμ f ωνe

i~Yων∂μ~Yων − ~PeΓμ

h i
ων
f ωνe

i~Yων

� ��
+ f ωνe

−i~Yων ~Mωντ f ωνe
i~Yων

�
d~xτ

=
ð
L
〠
ω,ν

−�ψωνiγ
μ ei~Yων∂μ f ων + f ωνei

~Yων i∂μ~Yων − i ~PeΓμ

h i
ων
ψων

� ��
+ �ψων

~Mωντψων

�
d~xτ

=
ð
L
〠
ω,ν

−�ψωνiγ
μ ∂μ f ωνe

i~Yων

� �
− i ~PeΓμ

h i
ων
ψων

� ��
+ �ψων

~Mωντψων

�
d~xτ

=
ð
L
〠
ω,ν

−�ψωνiγ
μ ∂μ − i ~PeΓμ

h i
ων

� �
ψων + �ψων

~Mωντψων

� �
d~xτ

=
ð
L
〠
ω,ν

−�ψωνiγ
μ~Dωνμψων + �ψων

~Mωντψων

� �
d~xτ

= −
ð
L
〠
ω,ν

�ψων iγμ~Dωνμ − ~Mωντ

� �
ψωνd~x

τ:

ð149Þ
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Thus, we have obtained a complex-valued representation
of gradient direction of ~ρων.

Remark 41. From the above discussion, we know in the gra-
dient direction of ρων that

−〠
ω,ν

�ψωνiγ
μ~Dωνμψωνd~x

τ =〠
ω,ν

~D~ρων: ð150Þ

This shows that sðLÞ and ~sðLÞ in Definition 16 and
Remark 17 are indeed applicable for constructing propa-
gator by eisðLÞ and ei~sðLÞ in affine connection representa-
tion of gauge fields. Therefore, the idea in Discussion
34 is reasonable.

4.5. From Classical Spacetime back to Full-Dimensional Space

Discussion 42. Now there is a problem. ð ~M, ~FÞ and ð ~M, ~GÞ
cannot totally reflect the geometric properties of internal
space of ðM,FÞ and ðM, GÞ. Concretely speaking, in the
previous section, we discuss the affine Dirac equation γμ

~ρων;μ = ~mωντ on ð ~M, ~GÞ. Similar to Section 3.5, we have the

affine Yang-Mills equation ~K
μ
νρσ  

:ρ = ~ρμνγσ on ð ~M, ~FÞ. Sup-
pose there is no gravitational field, then the remaining non-
vanishing equations are just only

γμ~ρ00;μ = ~m00τ, ~K
0
0ρσ  

:ρ
= ~ρ00γσ: ð151Þ

There are multiple internal charges

ρmn m, n = 4, 5,⋯,Dð Þ, ð152Þ

on ðM,FÞ. We intend to use these ρmn to describe leptons
and hadrons. However, via encapsulation of classical space-
time, ð ~M, ~FÞ remains only one internal charge ~ρ00, and it
falls short. It is impossible for the only one real-valued field
function ~ρ00 to describe so many leptons and hadrons.

On the premise of not abandoning the ð1 + 3Þ-dimensional
spacetime, if we want to describe gauge fields, there is a
method that to use some noncoordinate abstract degrees of
freedom on the phase of eiTaθ

a
of a complex-valued field

function ψ. This way is effective, but not natural. It is not
satisfactory for a theory to adopt a coordinate representation
for external space but a noncoordinate representation for
internal space.

A logically more natural way is required to abandon
the framework of ð1 + 3Þ-dimensional spacetime ð ~M, ~FÞ
and ð ~M, ~GÞ. We should put internal space and external
space together to describe their unified geometry with
the same spatial frame. On ðM,FÞ and ðM, GÞ, there are
enough real-valued field functions ρmn to describe leptons
and hadrons and enough internal components ½mnP� of
affine connection to describe gauge potentials.

Therefore, only on the full-dimensional ðM,FÞ and
ðM, GÞ can total advantages of affine connection repre-
sentation of gauge fields be brought into full play and

thereby show complete details of geometric properties of
gauge field. So we are going to stop the discussions about
the classical spacetime ~M, but to focus on the full-
dimensional manifold M.

Discussion 43. On M, due to ΓMNP = 1/2ð½MNP� + fMNPgÞ,
½MNP� = δADB

D
Mð∂BA

N /∂xP + ð ABPÞBB
NÞ, and GMN = δABB

A
MB

B
N ,

we know that gauge field and gravitational field can both
be described by spatial frames BA

M and CM
A in a reference-

system. Reference-system is the common origination of
gauge field and gravitational field. The invariance under
reference-system transformation is the common origination
of gauge covariance and general covariance.

We adopt the components ½mnP� of ½MNP� with m, n ∈
f4, 5,⋯,Dg to describe the gauge potentials of typical gauge
fields such as electromagnetic, weak, and strong interaction
fields and adopt the components ρmn of ρMN with m, n ∈ f4
, 5,⋯,Dg to describe the charges of leptons and hadrons.
The physical meanings of the other components of ρMN
and ½MNP� are not clear at present; maybe they could be used
to describe dark matters and their interactions.

On orthogonal ðM, GÞ and ðM,FÞ, there are full-
dimensional field equations, i.e., affine Dirac equation and
affine Yang-Mills equation

γPρMN ;P = ρMN ;0,

KM
NPQ

:P = ρMN γQ,
ð153Þ

which reflect the on-shell evolution directions ∇ρ and ∇t,
respectively. Their quantum evolutions are described by
the propagators in Definition 32 or Discussion 34.

Discussion 44. On an orthogonal ðM, GÞ, Equation (149)
presents as a full-dimensional action

sρ Lð Þ =
ð
L
〠
M,N

γPρMN ;P + εP0ρMN ;P
À Á

dx0

= −i
ð
L
〠
M,N

�ψMN γPDMNP + εP0DMNP

À Á
ψMNdx

0:
ð154Þ

If and only if Lk : g⟶ g′ is an orthogonal transforma-
tion, Lk sends sρðLÞ to

sρ′ Lð Þ =
ð
L
〠
M,N

γP ′ρMN ;P ′ + εP ′0′ ρMN ;P ′
� �

dx0′

= −i
ð
L
〠
M,N

ψ′MN γP ′D
MNP ′′ + εP ′0′DMNP ′′

� �
ψMN
′ dx0′ ,

ð155Þ

where ρMN is determined by the reference-system f ∘ f but
not g ∘ g, so ρMN does not vary with the transformation

Lk : g⟶ g′. We see that in affine connection
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representation of gauge fields, the gauge transformations
ψ↦ ψ′ and D↦D′ essentially boil down to the
reference-system transformation Lk.

Remark 45. For a general ðM,GÞ, G is not necessarily
orthogonal, so the corresponding action should be
described by

sMN Lð Þ =
ð
L
B0
0γ

PρMN ;P + εP0ρMN ;P
À Á

dx0: ð156Þ

In this general case, Definition 16 and the method
in Discussion 34 are also available and effective, where
we take

sMN Lð Þ =
ð
L
DρMN : ð157Þ

Remark 46. We see that the real-valued representation
of action is more concise than the complex-valued rep-
resentation of action. Hence, it is more convenient to
adopt real-valued representations for field function, field
equation, and action.

In the following sections, we are going to use ½MNP� to
show the affine connection representations of electromag-
netic, weak, and strong interaction fields and to adopt the
real-valued representation ρMN ;P to discuss the interactions
between gauge fields and elementary particles. They are
based on the following definition.

Definition 47. Let M = P ×N , r ≜ dimP = 3 and D ≜ dimM
= 5 or 6 or 8. Consider F = f ∘ f and G = g ∘ g that are
defined by Equation (33), that is, ∀p ∈M,

U , αA′
� �

⟶
f pð Þ

U , ξA
� �

⟶
f pð Þ

U , xM
À Á

⟵
g pð Þ

U , ζA
� �

⟵
g pð Þ

U , βA′
� �

,

ð158Þ

and furthermore, let

f pð Þ: ξa = ξa xmð Þ, ξs = δsix
i,

f pð Þ: αa′ = αa′ ξa
À Á

, αs′ = δs
′
s ξ

s,

g pð Þ: ζa = ζa xmð Þ, ζs = δsix
i,

g pð Þ: βa′ = βa′ ζa
À Á

, βs′ = δs
′
s ζ

s,

ð159Þ

(s′, s, i = 1, 2, 3 ; a′, a,m, n = 4, 5,⋯,D) and both of F

and G satisfy

ið ÞGmn = const, iið Þwhenm ≠ n,Gmn = 0: ð160Þ

In the above extremely simplified case, we use F and G

to show electromagnetic, weak, and strong interactions
without gravitation.

5. Affine Connection Representation of the
Gauge Field of Weak-
Electromagnetic Interaction

Definition 48. Suppose ðM,FÞ and ðM,GÞ conform to Def-
inition 47. Let D = r + 2 = 5 and both of F and G satisfy

G D−1ð Þ D−1ð Þ =GDD: ð161Þ

Thus, F and G can describe weak and electromagnetic
interactions.

Proposition 49. Let the holonomic connection of ðM,FÞ be
ΓM
NP and ΓMNP. And let the coefficients of curvature tensor

of ðM,FÞ be KM
NPQ and KMNPQ. Denote

BP ≜
1ffiffiffi
2

p ΓDDP + Γ D−1ð Þ D−1ð ÞP
� �

,

A3
P ≜

1ffiffiffi
2

p ΓDDP − Γ D−1ð Þ D−1ð ÞP
� �

,

8>>><>>>:
BPQ ≜

1ffiffiffi
2

p KDDPQ + K D−1ð Þ D−1ð ÞPQ
� �

,

F3
PQ ≜

1ffiffiffi
2

p KDDPQ − K D−1ð Þ D−1ð ÞPQ
� �

,

8>>><>>>:
A1
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP + ΓD D−1ð ÞP
� �

,

A2
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP − ΓD D−1ð ÞP
� �

,

8>>><>>>:
F1
PQ ≜

1ffiffiffi
2

p K D−1ð ÞDPQ + KD D−1ð ÞPQ
� �

,

F2
PQ ≜

1ffiffiffi
2

p K D−1ð ÞDPQ − KD D−1ð ÞPQ
� �

:

8>>><>>>: ð162Þ
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And denote g ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGðD−1ÞðD−1ÞÞ2 + ðGDDÞ2

q
. Thus, the

following equations hold spontaneously.

BPQ = ∂BQ

∂xP
−
∂BP

∂xQ
,

F3
PQ = ∂A3

Q

∂xP
−
∂A3

P

∂xQ
+ g A1

PA
2
Q − A2

PA
1
Q

À Á
,

F1
PQ = ∂A1

Q

∂xP
−
∂A1

P

∂xQ
+ g A2

PA
3
Q − A3

PA
2
Q

À Á
,

F2
PQ = ∂A2

Q

∂xP
−
∂A2

P

∂xQ
+ g A1

PA
3
Q − A3

PA
1
Q

À Á
:

ð163Þ

Proof. Due to Equation (159), it is obtained that the semi-
metric of ðM, fÞ satisfies

Bf

À Ás′
a
= 0,  Cf

À Áa
s′ = 0,  Bf

À Áa′
s
= 0,

  Cf

À Ás
a′ = 0,  Bf

À Ás′
s
= δs

′
s ,  Cf

À Ás
s′ = δss′ : ð164Þ

Then, compute ðABCÞf ≜ 1/2ðCfÞAA′ð∂ðBfÞA′B /∂ξ
C + ∂ðBfÞA′C /∂

ξBÞ, and we obtain

s
BCð Þf= 0,  a

tuð Þf= 0,  a
bCð Þf≠ 0 ; s, t, u = 1, 2, 3 ;

 a, b = 4, 5,⋯,D ; A, B, C = 1, 2,⋯,D: ð165Þ

It is obtained from Equation (159) again that the semi-
metric of ðM, f Þ satisfies

Bs
m = 0, Cm

s = 0, Ba
i = 0, Ci

a = 0, Bs
i = δsi , Ci

s = δis:

ð166Þ

Let s′, t ′, i, j, k = 1, 2, 3 ; a′, b′,m, n, p = 4, 5,⋯,D. Com-
pute the metric of ðM,FÞ, and we obtain

Compute the holonomic connection of F according
to ΓM

NP ≜ 1/2ð½MNP� + fMNPgÞ = 1/2ðCM
A ∂B

A
N/∂xP + CM

A ð ABPÞfBB
NÞ,

and it is obtained that

Compute the coefficients of curvature of F , that is,

Gij = δs′t ′B
s′
i B

t ′
j + δa′b′B

a′
i B

b′
j = δs′t ′δ

s′
i δ

t ′
j = δij,

Gin = δs′t ′B
s′
i B

t ′
n + δa′b′B

a′
i B

b′
n = 0,

Gmj = δs′t ′B
s′
mB

t ′
j + δa′b′B

a′
mB

b′
j = 0,

Gmn = BD−1
m BD−1

n + BD
mB

D
n = const,

8>>>>>>><>>>>>>>:

Gij = δs
′t ′Ci

s′C
j

t ′ = δs
′t ′δis′δ

j

t ′ = δij,

Gin = δs
′t ′Ci

s′C
n
t ′ = 0,

Gmj = δs
′t ′Cm

s′C
j

t ′ = 0,

Gmn = Cm
D−1C

n
D−1 + Cm

DC
n
D = const:

8>>>>>>><>>>>>>>:
ð167Þ

Γi
NP = 0,

Γm
jk = 0,

Γm
nP =

1
2 Cm

a
∂Ba

n

∂xP
+ Cm

a
a
bPð ÞfBb

n

� �
,

Γm
Np =

1
2 Cm

a
∂Ba

N

∂xp
+ Cm

a
a
Bp

� �
f
BB
N

� �
,

8>>>>>>>>>><>>>>>>>>>>:
 

ΓiNP =GiM ′Γ
M ′
NP = Gii′Γ

i′
NP = 0,

Γmjk =GmM ′Γ
M ′
jk =Gmm′Γ

m′
jk = 0,

ΓmnP =
1
2 δabB

b
m

∂Ba
n

∂xP
+ a

bPð ÞfBb
n

� �
,

ΓmNp =
1
2 δabB

b
m

∂Ba
N

∂xp
+ a

Bp

� �
f
BB
N

� �
:

8>>>>>>>>>><>>>>>>>>>>:
ð168Þ

Km
nPQ ≜

∂Γm
nQ

∂xP
−
∂Γm

nP

∂xQ
+ Γm

HPΓ
H
nQ − ΓH

nPΓ
m
HQ, KmnPQ ≜ GmM′K

M′
nPQ =Gmm′K

m′
nPQ, ð169Þ
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and then, we obtain

Hence,

Then, F1
PQ and F2

PQ can also be computed similarly.

Remark 50. Comparing the above conclusion and Uð1Þ × S
Uð2Þ principal bundle theory, we know this proposition
shows that the reference-system F indeed can describe weak
and electromagnetic field.

The following proposition shows an advantage of affine
connection representation, that is, affine connection repre-
sentation spontaneously implies the chiral asymmetry of
neutrinos, but Uð1Þ × SUð2Þ principal bundle connection
representation cannot imply it spontaneously.

Definition 51. According to Definition 11, let the charges of
the above reference-system F be ρmn, where m, n ∈ fD − 1
,Dg = f4, 5g. Then, l ≜ ðρðD−1ÞðD−1Þ, ρDDÞT is said to be an

electric charged lepton, and ν ≜ ðρDðD−1Þ, ρðD−1ÞDÞT is said
to be a neutrino. l and ν are collectively denoted by L. Thus,
1/

ffiffiffi
2

p ð1, 1ÞL is said to be a left-handed lepton, and 1/
ffiffiffi
2

p ð1,
−1ÞL is said to be a right-handed lepton, denoted by

lL ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ + ρDD

� �
,

lR ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ − ρDD

� �
,

8>>><>>>:  

νL ≜
1ffiffiffi
2

p ρD D−1ð Þ + ρ D−1ð ÞD
� �

,

νR ≜
1ffiffiffi
2

p ρD D−1ð Þ − ρ D−1ð ÞD
� �

:

8>>><>>>:
ð172Þ

Denote ðΓGÞMNP by ΓMNP concisely. Then, we define on
ðM, GÞ that

ZP ≜
1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP + ΓDDP

� �
,

AP ≜
1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP − ΓDDP

� �
,

8>>><>>>:  

W1
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP + ΓD D−1ð ÞP
� �

,

W2
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP − ΓD D−1ð ÞP
� �

,

8>>><>>>:
ð173Þ

and say AP is (affine) electromagnetic potential, while ZP ,
W1

P , and W2
P are (affine) weak gauge potentials.

Proposition 52. If ðM, GÞ satisfies the symmetry condition
ΓðD−1ÞDP = ΓDðD−1ÞP, then the geometric properties l and ν

of F satisfy the following conclusions on ðM, GÞ,

K D−1ð Þ D−1ð ÞPQ =
∂Γ D−1ð Þ D−1ð ÞQ

∂xP
−
∂Γ D−1ð Þ D−1ð ÞP

∂xQ
+GDD Γ D−1ð ÞDPΓD D−1ð ÞQ − ΓD D−1ð ÞPΓ D−1ð ÞDQ

� �
,

KD D−1ð ÞPQ =
∂ΓD D−1ð ÞQ

∂xP
−
∂ΓD D−1ð ÞP

∂xQ
+GDD ΓDDPΓD D−1ð ÞQ − ΓD D−1ð ÞPΓDDQ

� �
+ G D−1ð Þ D−1ð Þ ΓD D−1ð ÞPΓ D−1ð Þ D−1ð ÞQ − Γ D−1ð Þ D−1ð ÞPΓD D−1ð ÞQ

� �
,

K D−1ð ÞDPQ =
∂Γ D−1ð ÞDQ

∂xP
−
∂Γ D−1ð ÞDP

∂xQ
+GDD Γ D−1ð ÞDPΓDDQ − ΓDDPΓ D−1ð ÞDQ

� �
+G D−1ð Þ D−1ð Þ Γ D−1ð Þ D−1ð ÞPΓ D−1ð ÞDQ − Γ D−1ð ÞDPΓ D−1ð Þ D−1ð ÞQ

� �
,

KDDPQ = ∂ΓDDQ

∂xP
−
∂ΓDDP

∂xQ
+ G D−1ð Þ D−1ð Þ ΓD D−1ð ÞPΓ D−1ð ÞDQ − Γ D−1ð ÞDPΓD D−1ð ÞQ

� �
:

ð170Þ

BPQ ≜
1ffiffiffi
2

p KDDPQ + K D−1ð Þ D−1ð ÞPQ
� �

= 1ffiffiffi
2

p
∂ ΓDDQ + Γ D−1ð Þ D−1ð ÞQ
� �

∂xP
−

1ffiffiffi
2

p
∂ ΓDDP + Γ D−1ð Þ D−1ð ÞP
� �

∂xQ
= ∂BQ

∂xP
−
∂BP

∂xQ
:

F3
PQ ≜

1ffiffiffi
2

p KDDPQ − K D−1ð Þ D−1ð ÞPQ
� �

= 1ffiffiffi
2

p ∂ΓDDQ
∂xP

−
∂ΓDDP

∂xQ
+ G D−1ð Þ D−1ð Þ ΓD D−1ð ÞPΓ D−1ð ÞDQ − Γ D−1ð ÞDPΓD D−1ð ÞQ

� �� �
−

1ffiffiffi
2

p ∂Γ D−1ð Þ D−1ð ÞQ
∂xP

−
∂Γ D−1ð Þ D−1ð ÞP

∂xQ
+GDD Γ D−1ð ÞDPΓD D−1ð ÞQ − ΓD D−1ð ÞPΓ D−1ð ÞDQ

� �� �
= ∂A3

Q

∂xP
−
∂A3

P

∂xQ

+ g ΓD D−1ð ÞPΓ D−1ð ÞDQ − Γ D−1ð ÞDPΓD D−1ð ÞQ
� �

= ∂A3
Q

∂xP
−
∂A3

P

∂xQ
+ g A1

PA
2
Q − A2

PA
1
Q

À Á
:

ð171Þ
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lL;P = ∂PlL − glLZP − glRAP − gνLW
1
P,

lR;P = ∂PlR − glRZP − glLAP,
νL;P = ∂PνL − gνLZP − glLW

1
P,

νR;P = ∂PνR − gνRZP:

8>>>>><>>>>>:
ð174Þ

Proof. Let H ∈ f1, 2, 3, 4, 5g, h ∈ f4, 5g. It follows from
Equation (168) that

ρmn;P = ∂Pρmn − ρHnΓ
H
mP − ρmHΓ

H
nP = ∂Pρmn − ρhnΓ

h
mP − ρmhΓ

h
nP:

ð175Þ

Then, Equations (172) and (173) lead to Equation (174).

Remark 53. From the above proposition, we see that some
constraint conditions make the general linear group GLð2,
ℝÞ broken to a smaller group S, i.e.,

ð176Þ

so that the chiral asymmetry of leptons arises in Equation
(174) spontaneously.

Remark 54. Proposition 52 shows that

(1) In affine connection representation of gauge fields,
the coupling constant g is possessed of a geometric
meaning that it is in fact the metric of internal
space. But it does not have such a clear geometric
meaning in Uð1Þ × SUð2Þ principal bundle connec-
tion representation

(2) At the most fundamental level, the coupling constant
of ZP and that of AP are equal, i.e.,

gZ = gA = g: ð177Þ

Suppose there is a kind of medium. Z boson and photon
move in it. Suppose Z field has interaction with the medium,
but electromagnetic field A has no interaction with the
medium. Thus, we have coupling constants

~gZ ≠ gA = g, ð178Þ

in the medium, and the Weinberg angle arises.
It is quite reasonable to consider a Higgs boson as a zero-

spin pair of neutrinos, because in the Lagrangian, Higgs boson
only couples with Z field andW field but does not couple with
electromagnetic field and gluon field. If so, Higgs boson would
lose its fundamentality and it would not have enough impor-
tance in a theory at the most fundamental level.

(3) The mixing of three generations of leptons does not
appear in Proposition 52, but it can spontaneously
arise in Proposition 63 due to the affine connection
representation of the gauge field that is given by
Definition 59

6. Affine Connection Representation of the
Gauge Field of Strong Interaction

Definition 55. Suppose ðM,FÞ and ðM,GÞ conform to
Definition 47. Let D = r + 3 = 6 and both of F and G satisfy

G D−2ð Þ D−2ð Þ =G D−1ð Þ D−1ð Þ = GDD: ð179Þ

Thus, F and G can describe strong interaction.

Definition 56. According to Definition 11, let the charges of
F be ρmn, where m, n = 4, 5,⋯,D. Define

We say d1 and u1 are red color charges, d2 and u2
are blue color charges, and d3 and u3 are green color
charges. Then, d1, d2, and d3 are said to be down-type

color charges, and u1, u2, and u3 are said to be up-
type color charges. Their left-handed and right-handed
charges are

d1 ≜ ρ D−2ð Þ D−2ð Þ, ρ D−1ð Þ D−1ð Þ
� �T

,

d2 ≜ ρ D−1ð Þ D−1ð Þ, ρDD

� �T
,

d3 ≜ ρDD, ρ D−2ð Þ D−2ð Þ
� �T

,

8>>>>>><>>>>>>:

u1 ≜ ρ D−2ð Þ D−1ð Þ, ρ D−1ð Þ D−2ð Þ
� �T

,

u2 ≜ ρ D−1ð ÞD, ρD D−1ð Þ
� �T

,

u3 ≜ ρD D−2ð Þ, ρ D−2ð ÞD
� �T

:

8>>>>>><>>>>>>:
ð180Þ
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On ðM, GÞ, we denote

We notice that there are just only three independent ones
in U1

P, U
2
P, U

3
P, V

1
P, V

2
P, and V

3
P. Without loss of generality, let

RP ≜ aRU
1
P + bRU

2
P + cRU

3
P ,

SP ≜ aSU
1
P + bSU

2
P + cSU

3
P ,

TP ≜ aTU
1
P + bTU

2
P + cTU

3
P,

8>><>>:
U1

P ≜ αRRP + αSSP + αTTP ,
U2

P ≜ βRRP + βSSP + βTTP ,
U3

P ≜ γRRP + γSSP + γTTP,

8>><>>:
ð183Þ

where the coefficients matrix is nonsingular. Thus, it is not
hard to find the following proposition true.

Proposition 57. Let λaða = 1, 2,⋯,8Þ be the Gell-Mann
matrices and Ta ≜ 1/2λa the generators of SUð3Þ group.
When ðM, GÞ satisfies the symmetry condition ΓðD−2ÞðD−2ÞP
+ ΓðD−1ÞðD−1ÞP + ΓDDP = 0, denote

AP ≜
1
2

A11
P A

12
P A

13
P

A21
P A

22
P A

23
P

A31
P A

32
P A

33
P

0BB@
1CCA, ð184Þ

where

A11
P ≜ SP +

1ffiffiffi
6

p TP, A12
P ≜ X12

P − iY12
P , A13

P ≜ X31
P − iY31

P ,

A21
P ≜ X12

P + iY12
P , A22

P ≜ −SP +
1ffiffiffi
6

p TP, A23
P ≜ X23

P − iY23
P ,

A31
P ≜ X31

P + iY31
P , A32

P ≜ X23
P + iY23

P , A33
P ≜ −

2ffiffiffi
6

p TP:

ð185Þ

d1L ≜
1ffiffiffi
2

p ρ D−2ð Þ D−2ð Þ + ρ D−1ð Þ D−1ð Þ
� �

,

d2L ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ + ρDD

� �
,

d3L ≜
1ffiffiffi
2

p ρDD + ρ D−2ð Þ D−2ð Þ
� �

,

8>>>>>>>><>>>>>>>>:

d1R ≜
1ffiffiffi
2

p ρ D−2ð Þ D−2ð Þ − ρ D−1ð Þ D−1ð Þ
� �

,

d2R ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ − ρDD

� �
,

d3R ≜
1ffiffiffi
2

p ρDD − ρ D−2ð Þ D−2ð Þ
� �

,

8>>>>>>>><>>>>>>>>:
u1L ≜

1ffiffiffi
2

p ρ D−2ð Þ D−1ð Þ + ρ D−1ð Þ D−2ð Þ
� �

,

u2L ≜
1ffiffiffi
2

p ρ D−1ð ÞD + ρD D−1ð Þ
� �

,

u3L ≜
1ffiffiffi
2

p ρD D−2ð Þ + ρ D−2ð ÞD
� �

,

8>>>>>>>><>>>>>>>>:

u1R ≜
1ffiffiffi
2

p ρ D−2ð Þ D−1ð Þ − ρ D−1ð Þ D−2ð Þ
� �

,

u2R ≜
1ffiffiffi
2

p ρ D−1ð ÞD − ρD D−1ð Þ
� �

,

u3R ≜
1ffiffiffi
2

p ρD D−2ð Þ − ρ D−2ð ÞD
� �

:

8>>>>>>>><>>>>>>>>:

ð181Þ

gs ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−1ð Þ D−1ð ÞÀ Á2 + GDD

À Á2q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−1ð Þ D−1ð ÞÀ Á2 + G D−2ð Þ D−2ð ÞÀ Á2q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−2ð Þ D−2ð ÞÀ Á2 + GDD

À Á2q
:

U1
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−2ð ÞP + Γ D−1ð Þ D−1ð ÞP
� �

,

V1
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−2ð ÞP − Γ D−1ð Þ D−1ð ÞP
� �

,

8>>><>>>:
X23
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−1ð ÞP + Γ D−1ð Þ D−2ð ÞP
� �

,

Y23
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−1ð ÞP − Γ D−1ð Þ D−2ð ÞP
� �

,

8>>><>>>:
U2

P ≜
1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP + ΓDDP

� �
,

V2
P ≜

1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP − ΓDDP

� �
,

8>>><>>>:
X31
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP + ΓD D−1ð ÞP
� �

,

Y31
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP − ΓD D−1ð ÞP
� �

,

8>>><>>>:
U3

P ≜
1ffiffiffi
2

p ΓDDP + Γ D−2ð Þ D−2ð ÞP
� �

,

V3
P ≜

1ffiffiffi
2

p ΓDDP − Γ D−2ð Þ D−2ð ÞP
� �

,

8>>><>>>:
X12
P ≜

1ffiffiffi
2

p ΓD D−2ð ÞP + Γ D−2ð ÞDP

� �
,

Y12
P ≜

1ffiffiffi
2

p ΓD D−2ð ÞP − Γ D−2ð ÞDP

� �
:

8>>><>>>:

ð182Þ
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Thus, AP = TaA
a
P if and only if

A1
P = X12

P , A2
P = Y12

P , A3
P = SP, A4

P = X31
P ,

A5
P = Y31

P , A6
P = X23

P , A7
P = Y23

P , A8
P = TP:

ð186Þ

Remark 58. On the one hand, the above proposition shows that
Definition 55 is an affine connection representation of strong
interaction field. It does not define the gauge potentials as
abstractly as that in principal SUð3Þ-bundle theory but endows
gauge potentials with concrete geometric constructions.

On the other hand, the above proposition implies that if
we take appropriate symmetry conditions, the algebraic
properties of SUð3Þ group can be described by the transfor-
mation group GLð3,ℝÞ of internal space of G . In other
words, the exponential map

exp : GL 3,ℝð Þ⟶U 3ð Þ, Ba
m½ �↦ eiT

m
a B

a
m ð187Þ

defines a homomorphism, and SUð3Þ is a subgroup of Uð3Þ.
Therefore, Definition 55 is compatible with SUð3Þ theory.

7. Affine Connection Representation of the
Unified Gauge Field

Definition 59. Suppose ðM,FÞ and ðM,GÞ conform to Def-
inition 47. Let D = r + 5 = 8 and both of F and G satisfy

G D−4ð Þ D−4ð Þ =G D−3ð Þ D−3ð Þ,G D−2ð Þ D−2ð Þ =G D−1ð Þ D−1ð Þ = GDD:

ð188Þ

Thus, F and G can describe the unified field of electro-
magnetic, weak, and strong interactions.

Definition 60. According to Definition 11, let the charges of
F be ρmn, where m, n = 4, 5,⋯,D. Define

l ≜ ρ D−4ð Þ D−4ð Þ, ρ D−3ð Þ D−3ð Þ
� �T

,

d1 ≜ ρ D−2ð Þ D−2ð Þ, ρ D−1ð Þ D−1ð Þ
� �T

,

d2 ≜ ρ D−1ð Þ D−1ð Þ, ρDD

� �T
,

d3 ≜ ρDD, ρ D−2ð Þ D−2ð Þ
� �T

,

8>>>>>>>>>>><>>>>>>>>>>>:

ν ≜ ρ D−3ð Þ D−4ð Þ, ρ D−4ð Þ D−3ð Þ
� �T

,

u1 ≜ ρ D−2ð Þ D−1ð Þ, ρ D−1ð Þ D−2ð Þ
� �T

,

u2 ≜ ρ D−1ð ÞD, ρD D−1ð Þ
� �T

,

u3 ≜ ρD D−2ð Þ, ρ D−2ð ÞD
� �T

:

8>>>>>>>>>>><>>>>>>>>>>>:
ð189Þ

And denote

lL ≜
1ffiffiffi
2

p ρ D−4ð Þ D−4ð Þ + ρ D−3ð Þ D−3ð Þ
� �

,

lR ≜
1ffiffiffi
2

p ρ D−4ð Þ D−4ð Þ − ρ D−3ð Þ D−3ð Þ
� �

,

8>>><>>>:
νL ≜

1ffiffiffi
2

p ρ D−3ð Þ D−4ð Þ + ρ D−4ð Þ D−3ð Þ
� �

,

νR ≜
1ffiffiffi
2

p ρ D−3ð Þ D−4ð Þ − ρ D−4ð Þ D−3ð Þ
� �

,

8>>><>>>:
d1L ≜

1ffiffiffi
2

p ρ D−2ð Þ D−2ð Þ + ρ D−1ð Þ D−1ð Þ
� �

,

d2L ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ + ρDD

� �
,

d3L ≜
1ffiffiffi
2

p ρDD + ρ D−2ð Þ D−2ð Þ
� �

,

8>>>>>>>><>>>>>>>>:

d1R ≜
1ffiffiffi
2

p ρ D−2ð Þ D−2ð Þ − ρ D−1ð Þ D−1ð Þ
� �

,

d2R ≜
1ffiffiffi
2

p ρ D−1ð Þ D−1ð Þ − ρDD

� �
,

d3R ≜
1ffiffiffi
2

p ρDD − ρ D−2ð Þ D−2ð Þ
� �

,

8>>>>>>>><>>>>>>>>:
u1L ≜

1ffiffiffi
2

p ρ D−2ð Þ D−1ð Þ + ρ D−1ð Þ D−2ð Þ
� �

,

u2L ≜
1ffiffiffi
2

p ρ D−1ð ÞD + ρD D−1ð Þ
� �

,

u3L ≜
1ffiffiffi
2

p ρD D−2ð Þ + ρ D−2ð ÞD
� �

,

8>>>>>>>><>>>>>>>>:

u1R ≜
1ffiffiffi
2

p ρ D−2ð Þ D−1ð Þ − ρ D−1ð Þ D−2ð Þ
� �

,

u2R ≜
1ffiffiffi
2

p ρ D−1ð ÞD − ρD D−1ð Þ
� �

,

u3R ≜
1ffiffiffi
2

p ρD D−2ð Þ − ρ D−2ð ÞD
� �

:

8>>>>>>>><>>>>>>>>:

ð190Þ
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On ðM, GÞ, we denote

Discussion 61. We know from Section 2.3 that the gauge
frame matrix ½Ba

m� ∈GLð5,ℝÞ, ða,m = 4, 5,⋯,8Þ; therefore,
when Ba

m are without any constraints, we can obtain a G
Lð5,ℝÞ gauge theory. In consideration of the fact that
the exponential map

exp : GL 5,ℝð Þ⟶U 5ð Þ, Ba
m½ �↦ eiT

m
a B

a
m ð192Þ

defines a homomorphism and Uð1Þ × SUð2Þ × SUð3Þ is a
subgroup of Uð5Þ. So there must exist some constraint
conditions of Ba

m to make GLð5,ℝÞ reduce to Uð1Þ × SU
ð2Þ × SUð3Þ, i.e.,

constraint conditions of B a

m

U (1) × SU (2) × SU (3)GL (5, )

ð193Þ

More generally, suppose we do not know what the sym-

metry that can exactly describe “the real world” is, we
just denote it by S; then, the map

ð194Þ

makes us be able to turn the problem of seeking for S into
the problem of seeking for a set of constraint conditions of
Ba
m. “To describe S” and “to describe the constraint condi-

tions of Ba
m” are equivalent to each other.

Because gauge potentials ΓmnP and particle fields ρmn are
both constructed from the gauge frame field Ba

m, clearly here,
it is more flexible and convenient “to describe the constraint
conditions of Ba

m” than “to describe S.”
Next, we have no idea what the best constraint condi-

tions look like, but we can try to define a set of constraint
conditions to see what can be obtained.

Definition 62. Similar to Remark 53, we define the constraint
conditions as follows.

g ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−4ð Þ D−4ð ÞÀ Á2 + G D−3ð Þ D−3ð ÞÀ Á2q

,

gs ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−1ð Þ D−1ð ÞÀ Á2 + GDD

À Á2q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−1ð Þ D−1ð ÞÀ Á2 + G D−2ð Þ D−2ð ÞÀ Á2q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G D−2ð Þ D−2ð ÞÀ Á2 + GDD

À Á2q
,

8>>>>><>>>>>:
ZP ≜

1ffiffiffi
2

p Γ D−4ð Þ D−4ð ÞP + Γ D−3ð Þ D−3ð ÞP
� �

,

AP ≜
1ffiffiffi
2

p Γ D−4ð Þ D−4ð ÞP − Γ D−3ð Þ D−3ð ÞP
� �

,

8>>><>>>:
W1

P ≜
1ffiffiffi
2

p Γ D−4ð Þ D−3ð ÞP + Γ D−3ð Þ D−4ð ÞP
� �

,

W2
P ≜

1ffiffiffi
2

p Γ D−4ð Þ D−3ð ÞP − Γ D−3ð Þ D−4ð ÞP
� �

,

8>>><>>>:
U1

P ≜
1ffiffiffi
2

p Γ D−2ð Þ D−2ð ÞP + Γ D−1ð Þ D−1ð ÞP
� �

,

V1
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−2ð ÞP − Γ D−1ð Þ D−1ð ÞP
� �

,

8>>><>>>:
X23
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−1ð ÞP + Γ D−1ð Þ D−2ð ÞP
� �

,

Y23
P ≜

1ffiffiffi
2

p Γ D−2ð Þ D−1ð ÞP − Γ D−1ð Þ D−2ð ÞP
� �

,

8>>><>>>:
U2

P ≜
1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP + ΓDDP

� �
,

V2
P ≜

1ffiffiffi
2

p Γ D−1ð Þ D−1ð ÞP − ΓDDP

� �
,

8>>><>>>:
X31
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP + ΓD D−1ð ÞP
� �

,

Y31
P ≜

1ffiffiffi
2

p Γ D−1ð ÞDP − ΓD D−1ð ÞP
� �

,

8>>><>>>:
U3

P ≜
1ffiffiffi
2

p ΓDDP + Γ D−2ð Þ D−2ð ÞP
� �

,

V3
P ≜

1ffiffiffi
2

p ΓDDP − Γ D−2ð Þ D−2ð ÞP
� �

,

8>>><>>>:
X12
P ≜

1ffiffiffi
2

p ΓD D−2ð ÞP + Γ D−2ð ÞDP

� �
,

Y12
P ≜

1ffiffiffi
2

p ΓD D−2ð ÞP − Γ D−2ð ÞDP

� �
:

8>>><>>>:

ð191Þ
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(1) 1st basic conditions

G D−4ð Þ D−4ð Þ = G D−3ð Þ D−3ð Þ,
G D−2ð Þ D−2ð Þ = G D−1ð Þ D−1ð Þ =GDD:

(
ð195Þ

(2) 2nd basic conditions

Γ D−3ð Þ D−4ð ÞP = Γ D−4ð Þ D−3ð ÞP ,
Γ D−2ð Þ D−2ð ÞP + Γ D−1ð Þ D−1ð ÞP + ΓDDP = 0:

(
ð196Þ

(3) 1st conditions of PMNS mixing of leptons

ΓD−2
D−4ð ÞP = cD−2

D−3Γ
D−3
D−4ð ÞP ,

ΓD−1
D−4ð ÞP = cD−1

D−3Γ
D−3
D−4ð ÞP ,

ΓD
D−4ð ÞP = cDD−3Γ

D−3
D−4ð ÞP ,

8>>><>>>:
ΓD−2

D−3ð ÞP = cD−2
D−4Γ

D−4
D−3ð ÞP,

ΓD−1
D−3ð ÞP = cD−1

D−4Γ
D−4
D−3ð ÞP,

ΓD
D−3ð ÞP = cDD−4Γ

D−4
D−3ð ÞP,

8>>><>>>:
cD−2
D−3 = cD−2

D−4,
cD−1
D−3 = cD−1

D−4,
cDD−3 = cDD−4:

8>><>>:
ð197Þ

(4) 2nd conditions of PMNS mixing of leptons

ρ D−2ð Þ D−3ð Þ = ρ D−2ð Þ D−4ð Þ,
ρ D−1ð Þ D−3ð Þ = ρ D−1ð Þ D−4ð Þ,
ρD D−3ð Þ = ρD D−4ð Þ,

8>><>>:
ρ D−3ð Þ D−2ð Þ = ρ D−4ð Þ D−2ð Þ,
ρ D−3ð Þ D−1ð Þ = ρ D−4ð Þ D−1ð Þ,
ρ D−3ð ÞD = ρ D−4ð ÞD:

8>><>>:
ð198Þ

(5) 1st conditions of CKM mixing of quarks

ΓD−3
D−2ð ÞP = cD−4

D−2Γ
D−3
D−4ð ÞP,

ΓD−3
D−1ð ÞP = cD−4

D−1Γ
D−3
D−4ð ÞP,

ΓD−3
DP = cD−4

D ΓD−3
D−4ð ÞP,

8>>><>>>:
ΓD−4

D−2ð ÞP = cD−3
D−2Γ

D−4
D−3ð ÞP,

ΓD−4
D−1ð ÞP = cD−3

D−1Γ
D−4
D−3ð ÞP,

ΓD−4
DP = cD−3

D ΓD−4
D−3ð ÞP,

8>>><>>>:
cD−4
D−2 = cD−4

D−1 = cD−4
D ,

cD−3
D−2 = cD−3

D−1 = cD−3
D :

(

ð199Þ

(6) 2nd conditions of CKM mixing of quarks

ρ D−2ð Þ D−3ð Þ = ρ D−1ð Þ D−3ð Þ = ρD D−3ð Þ,
ρ D−2ð Þ D−4ð Þ = ρ D−1ð Þ D−4ð Þ = ρD D−4ð Þ,

(
ρ D−3ð Þ D−2ð Þ = ρ D−3ð Þ D−1ð Þ = ρ D−3ð ÞD,
ρ D−4ð Þ D−2ð Þ = ρ D−4ð Þ D−1ð Þ = ρ D−4ð ÞD,

(

ð200Þ

where cmn are constants.

Proposition 63. When ðM,FÞ and ðM,GÞ satisfy the sym-
metry conditions (1), (2), (3), and (4) of Definition 62, denote

l′ ≜ ρ D−4ð Þ D−4ð Þ +
cD−2
D−4
2

ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� ��

+ cD−1
D−4
2

ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �

+ cDD−4
2

ρD D−4ð Þ + ρ D−4ð ÞD
� �

,

ρ D−3ð Þ D−3ð Þ +
cD−2
D−3
2

ρ D−2ð Þ D−3ð Þ + ρ D−3ð Þ D−2ð Þ
� �

+ c
D−1
D−3
2

ρ D−1ð Þ D−3ð Þ + ρ D−3ð Þ D−1ð Þ
� �

+ cDD−3
2

ρD D−3ð Þ + ρ D−3ð ÞD
� ��T

ν′ ≜ ρ D−3ð Þ D−4ð Þ +
cD−2
D−3
2

ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� ��

+ cD−1
D−3
2

ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �

+ cDD−3
2

ρD D−4ð Þ + ρ D−4ð ÞD
� �

,

ρ D−4ð Þ D−3ð Þ +
cD−2
D−4
2

ρ D−2ð Þ D−3ð Þ + ρ D−3ð Þ D−2ð Þ
� �

+ c
D−1
D−4
2

ρ D−1ð Þ D−3ð Þ + ρ D−3ð Þ D−1ð Þ
� �

+ cDD−4
2

ρD D−3ð Þ + ρ D−3ð ÞD
� ��T

ð201Þ

Then, the geometric properties l and ν of F satisfy the
following conclusions on ðM, GÞ.

lL;P = ∂PlL − glLZP − glRAP − gvL′W1
P,

lR;P = ∂PlR − glRZP − glLAP,

νL;P = ∂PνL − gνLZP − glL′W1
P,

νR;P = ∂PνR − gνRZP:

8>>>>><>>>>>:
ð202Þ

Proof. First, we compute the covariant differential of ρmn
of F .

ρmn;P = ∂Pρmn − ρHnΓ
H
mP − ρmHΓ

H
nP = ∂Pρmn − ρ D−4ð ÞnΓ

D−4
mP

− ρ D−3ð ÞnΓ
D−3
mP − ρ D−2ð ÞnΓ

D−2
mP − ρ D−1ð ÞnΓ

D−1
mP

− ρDnΓ
D
mP − ρm D−4ð ÞΓ

D−4
nP − ρm D−3ð ÞΓ

D−3
nP

− ρm D−2ð ÞΓ
D−2
nP − ρm D−1ð ÞΓ

D−1
nP − ρmDΓ

D
nP:

ð203Þ

According to Definitions 60 and 62, by calculation, we
obtain that
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lL;P = ∂PlL − glLZP − glRAP − gνLW
1
P

−
1
2 cD−2

D−4 ρ D−2ð Þ D−3ð Þ + ρ D−3ð Þ D−2ð Þ
� �

+ cD−2
D−3 ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� �h i gffiffiffi

2
p W1

P

−
1
2 cD−1

D−4 ρ D−1ð Þ D−3ð Þ + ρ D−3ð Þ D−1ð Þ
� �

+ cD−1
D−3 ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �h i gffiffiffi

2
p W1

P

−
1
2 cDD−4 ρD D−3ð Þ + ρ D−3ð ÞD

� �
+ cDD−3 ρD D−4ð Þ + ρ D−4ð ÞD

� �h i gffiffiffi
2

p W1
P,

lR;P = ∂PlR − glRZP − glLAP,
νL;P = ∂PνL − gνLZP − glLW

1
P

−
1
2 cD−2

D−4 ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� �

+ cD−2
D−3 ρ D−3ð Þ D−2ð Þ + ρ D−2ð Þ D−3ð Þ
� �h i gffiffiffi

2
p W1

P

−
1
2 cD−1

D−4 ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �

+ cD−1
D−3 ρ D−3ð Þ D−1ð Þ + ρ D−1ð Þ D−3ð Þ
� �h i gffiffiffi

2
p W1

P

−
1
2 cDD−4 ρD D−4ð Þ + ρ D−4ð ÞD

� �
+ cDD−3 ρ D−3ð ÞD + ρD D−3ð Þ

� �h i gffiffiffi
2

p W1
P,

νR;P = ∂PνR − gνRZP:

ð204Þ

Then, according to definitions of l′ and ν′, we obtain that

l′L = lL +
cD−2
D−4
2
ffiffiffi
2

p ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� �

+ cD−1
D−4
2
ffiffiffi
2

p ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �

+ cDD−4
2
ffiffiffi
2

p ρD D−4ð Þ + ρ D−4ð ÞD
� �

+ cD−2
D−3
2
ffiffiffi
2

p ρ D−2ð Þ D−3ð Þ + ρ D−3ð Þ D−2ð Þ
� �

+ c
D−1
D−3
2
ffiffiffi
2

p ρ D−1ð Þ D−3ð Þ + ρ D−3ð Þ D−1ð Þ
� �

+ cDD−3
2
ffiffiffi
2

p ρD D−3ð Þ + ρ D−3ð ÞD
� �

,

νL′ = νL +
cD−2
D−3
2
ffiffiffi
2

p ρ D−2ð Þ D−4ð Þ + ρ D−4ð Þ D−2ð Þ
� �

+ cD−1
D−3
2
ffiffiffi
2

p ρ D−1ð Þ D−4ð Þ + ρ D−4ð Þ D−1ð Þ
� �

+ cDD−3
2
ffiffiffi
2

p ρD D−4ð Þ + ρ D−4ð ÞD
� �

+ cD−2
D−4
2
ffiffiffi
2

p ρ D−2ð Þ D−3ð Þ + ρ D−3ð Þ D−2ð Þ
� �

+ cD−1
D−4
2
ffiffiffi
2

p ρ D−1ð Þ D−3ð Þ + ρ D−3ð Þ D−1ð Þ
� �

+ cDD−4
2
ffiffiffi
2

p ρD D−3ð Þ + ρ D−3ð ÞD
� �

:

ð205Þ

Substitute them into the previous equations, and we
obtain that

lL;P = ∂PlL − glLZP − glRAP − gvL′W1
P,

lR;P = ∂PlR − glRZP − glLAP ,

(
νL;P = ∂PνL − gνLZP − glL′W1

P,
νR;P = ∂PνR − gνRZP:

( ð206Þ

Remark 64. The above proposition shows the geometric
origin of PMNS mixing of weak interaction. In affine con-
nection representation of gauge fields, PMNS mixing arises
as a geometric property on manifold.

In conventional physics, e, μ, and τ have just only onto-
logical differences, but they have no difference in mathemat-
ical connotation. By contrast, Proposition 63 tells us that
leptons of three generations should be constructed by differ-
ent linear combinations of fρpq, ρqpgp=4,5;q=6,7,8. Thus, e, μ,
and τ may have concrete and distinguishable mathematical

connotations. For example, let aμ, bμ, aμ
m
n
, bμ

m
n
, aτ, bτ, aτ

m
n ,

and bτ
m
n be constants; then, we might suppose that

e ≜ l = ρ D−4ð Þ D−4ð Þ, ρ D−3ð Þ D−3ð Þ
� �T

,

νe ≜ ν = ρ D−3ð Þ D−4ð Þ, ρ D−4ð Þ D−3ð Þ
� �T

,

8>><>>:
μ ≜ aμe +

1
2 aμ

D−2
D−4ρ D−2ð Þ D−4ð Þ + aμ

D−1
D−4ρ D−1ð Þ D−4ð Þ + aμ

D

D−4ρD D−4ð Þ,
�
aμ

D−2
D−3ρ D−2ð Þ D−3ð Þ + aμ

D−1
D−3ρ D−1ð Þ D−3ð Þ + aμ

D

D−3ρD D−3ð Þ
�T

,

νμ ≜ bμνe +
1
2 bμ

D−2
D−3ρ D−2ð Þ D−4ð Þ + bμ

D−1
D−3ρ D−1ð Þ D−4ð Þ + bμ

D

D−3ρD D−4ð Þ,
�
bμ

D−2
D−4ρ D−2ð Þ D−3ð Þ + bμ

D−1
D−4ρ D−1ð Þ D−3ð Þ + bμ

D

D−4ρD D−3ð Þ
�T

,

8>>>>>>>>>>><>>>>>>>>>>>:
τ ≜ aτμ + 1

2 aτ
D−2
D−4ρ D−4ð Þ D−2ð Þ + aτ

D−1
D−4ρ D−4ð Þ D−1ð Þ + aτ

D
D−4ρ D−4ð ÞD,

�
aτ

D−2
D−3ρ D−3ð Þ D−2ð Þ + aτ

D−1
D−3ρ D−3ð Þ D−1ð Þ + aτ

D
D−3ρ D−3ð ÞD

�T
,

ντ ≜ bτνμ +
1
2 bτ

D−2
D−3ρ D−4ð Þ D−2ð Þ + bτ

D−1
D−3ρ D−4ð Þ D−1ð Þ + bτ

D
D−3ρ D−4ð ÞD,

�
bτ

D−2
D−4ρ D−3ð Þ D−2ð Þ + bτ

D−1
D−4ρ D−3ð Þ D−1ð Þ + bτ

D
D−4ρ D−3ð ÞD

�T
:

8>>>>>>>>>>><>>>>>>>>>>>:
ð207Þ

Proposition 65. When ðM,FÞ and ðM,GÞ satisfy the sym-
metry conditions (1), (2), (5), and (6) of Definition 62, denote

d′1L ≜
1

2
ffiffiffi
2

p cD−3
D−1 ρ D−4ð Þ D−2ð Þ + ρ D−2ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D−2 ρ D−4ð Þ D−1ð Þ + ρ D−1ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−1 ρ D−3ð Þ D−2ð Þ + ρ D−2ð Þ D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−2 ρ D−3ð Þ D−1ð Þ + ρ D−1ð Þ D−3ð Þ
� �

,

d′2L ≜
1

2
ffiffiffi
2

p cD−3
D ρ D−4ð Þ D−1ð Þ + ρ D−1ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D−1 ρ D−4ð ÞD + ρD D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D ρ D−3ð Þ D−1ð Þ + ρ D−1ð Þ D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−1 ρ D−3ð ÞD + ρD D−3ð Þ
� �

,

d′3L ≜
1

2
ffiffiffi
2

p cD−3
D−2 ρ D−4ð ÞD + ρD D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D ρ D−4ð Þ D−2ð Þ + ρ D−2ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−2 ρ D−3ð ÞD + ρD D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D ρ D−3ð Þ D−2ð Þ + ρ D−2ð Þ D−3ð Þ
� �

,

u′1L ≜
1

2
ffiffiffi
2

p cD−3
D−2 ρ D−4ð Þ D−2ð Þ + ρ D−2ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−2 ρ D−3ð Þ D−2ð Þ + ρ D−2ð Þ D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D−1 ρ D−4ð Þ D−1ð Þ + ρ D−1ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−1 ρ D−3ð Þ D−1ð Þ + ρ D−1ð Þ D−3ð Þ
� �

,

u2L′ ≜
1

2
ffiffiffi
2

p cD−3
D−1 ρ D−4ð Þ D−1ð Þ + ρ D−1ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−1 ρ D−3ð Þ D−1ð Þ + ρ D−1ð Þ D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D ρ D−4ð ÞD + ρD D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D ρ D−3ð ÞD + ρD D−3ð Þ
� �

,

u′3L ≜
1

2
ffiffiffi
2

p cD−3
D ρ D−4ð ÞD + ρD D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D ρ D−3ð ÞD + ρD D−3ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−3
D−2 ρ D−4ð Þ D−2ð Þ + ρ D−2ð Þ D−4ð Þ
� �

+ 1

2
ffiffiffi
2

p cD−4
D−2 ρ D−3ð Þ D−2ð Þ + ρ D−2ð Þ D−3ð Þ
� �

:
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Then, the geometric properties d1, d2, d3, u1, u2, u3 of F
satisfy the following conclusions on ðM, GÞ.
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d1L;P = ∂Pd1L − gsd1LU
1
P + gsd2LV

1
P − gsd3LV

1
P

− gsu1LX
23
P −

gs

2
u2LX

31
P + gs

2
u2LY

31
P

−
gs
2
u3LX

12
P −

gs

2
u3LY

12
P − gu1L′ W1

P,

d2L;P = ∂Pd2L − gsd2LU
2
P + gsd3LV

2
P − gsd1LV

2
P − gsu2LX

31
P

−
gs

2
u3LX

12
P + gs

2
u3LY

12
P −

gs

2
u1LX

23
P

−
gs

2
u1LY

23
P − gu2L′ W1

P ,

d3L;P = ∂Pd3L − gsd3LU
3
P + gsd1LV

3
P − gsd2LV

3
P

− gsu3LX
12
P −

gs

2
u1LX

23
P + gs

2
u1LY

23
P

−
gs
2
u2LX

31
P −

gs

2
u2LY

31
P − gu3L′ W1

P,

d1R;P = ∂Pd1R − gsd1LV
1
P + gsd2LU

1
P − gsd3LU

1
P

+ gsu1LY
23
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2
u2LX

31
P −

gs

2
u2LY

31
P

−
gs
2
u3LX

12
P −

gs

2
u3LY

12
P ,

d2R;P = ∂Pd2R − gsd2LV
2
P + gsd3LU

2
P − gsd1LU

2
P

+ gsu2LY
31
P + gs

2
u3LX

12
P −

gs

2
u3LY

12
P

−
gs
2
u1LX

23
P −

gs

2
u1LY

23
P ,

d3R;P = ∂Pd3R − gsd3LV
3
P + gsd1LU

3
P − gsd2LU

3
P

+ gsu3LY
12
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2
u1LX

23
P −

gs

2
u1LY

23
P

−
gs
2
u2LX

31
P −

gs

2
u2LY

31
P ,

u1L;P = ∂Pu1L − gsu1LU
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P −
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u2LX

12
P −

gs
2
u2LY

12
P

−
gs

2
u3LX

31
P + gs

2
u3LY

31
P − gsd1LX

23
P

+ gsd2LY
23
P − gsd3LY

23
P − gd1L′ W1

P ,

u2L;P = ∂Pu2L − gsu2LU
2
P −

gs

2
u3LX

23
P −

gs
2
u3LY

23
P

−
gs

2
u1LX

12
P + gs

2
u1LY

12
P − gsd2LX

31
P

+ gsd3LY
31
P − gsd1LY

31
P − gd2L′ W1

P ,

u3L;P = ∂Pu3L − gsu3LU
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P −
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2
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31
P −

gs
2
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31
P

−
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2
u2LX

23
P + gs

2
u2LY

23
P − gsd3LX

12
P

+ gsd1LY
12
P − gsd2LY

12
P − gd3L′ W1

P ,

u1R;P = ∂Pu1R − gsu1RU
1
P +
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2
u2RX

12
P + gs

2
u2RY

12
P

+ gs

2
u3RX

31
P −
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2
u3RY

31
P ,

u2R;P = ∂Pu2R − gsu2RU
2
P +

gs

2
u3RX

23
P

+ gs
2
u3RY

23
P + gs

2
u1RX

12
P −

gs
2
u1RY

12
P ,

u3R;P = ∂Pu3R − gsu3RU
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P
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2
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P + gs

2
u2RX

23
P −

gs
2
u2RY

23
P :
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Proof. Substitute Definition 60 into ρmn and consider Defini-
tion 62, then compute them, and then substitute d1L′ , d2L′ ,
d3L′ , u1L′ , u2L′ , u3L′ into them, and we finally obtain the results.

Remark 66. The above proposition shows a geometric ori-
gin of CKM mixing. We see that, in affine connection rep-
resentation of gauge fields, d1L′ , d2L′ , d3L′ , u1L′ , u2L′ , u3L′ arise
as geometric properties on manifold. Detailed equations
of CKM mixing can be obtained on an additional condi-
tion such as

ρ D−2ð Þ D−2ð Þ = a23ρ D−2ð Þ D−3ð Þ + a24ρ D−2ð Þ D−4ð Þ
+ a32ρ D−3ð Þ D−2ð Þ + a42ρ D−4ð Þ D−2ð Þ,

ρ D−1ð Þ D−1ð Þ = a13ρ D−1ð Þ D−3ð Þ + a14ρ D−1ð Þ D−4ð Þ
+ a31ρ D−3ð Þ D−1ð Þ + a41ρ D−4ð Þ D−1ð Þ,

ρDD = a03ρD D−3ð Þ + a04ρD D−4ð Þ + a30ρ D−3ð ÞD
+ a40ρ D−4ð ÞD,

ρ D−2ð Þ D−1ð Þ = b23ρ D−2ð Þ D−3ð Þ + b13ρ D−1ð Þ D−3ð Þ
+ b24ρ D−2ð Þ D−4ð Þ + b14ρ D−1ð Þ D−4ð Þ,

ρ D−1ð Þ D−2ð Þ = b32ρ D−3ð Þ D−2ð Þ + b31ρ D−3ð Þ D−1ð Þ
+ b42ρ D−4ð Þ D−2ð Þ + b41ρ D−4ð Þ D−1ð Þ,

ρ D−2ð ÞD = b23ρ D−2ð Þ D−3ð Þ + b03ρD D−3ð Þ
+ b24ρ D−2ð Þ D−4ð Þ + b04ρD D−4ð Þ,

ρ D−1ð ÞD = b13ρ D−1ð Þ D−3ð Þ + b03ρD D−3ð Þ
+ b14ρ D−1ð Þ D−4ð Þ + b04ρD D−4ð Þ,

ρD D−1ð Þ = b31ρ D−3ð Þ D−1ð Þ + b30ρ D−3ð ÞD
+ b41ρ D−4ð Þ D−1ð Þ + b40ρ D−4ð ÞD:

ð210Þ

Definition 67. A particle is not an existence at the place of
an individual point, and its concept is defined on the
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entire manifold. Concretely speaking, if the reference-
system F satisfies

ρ D−2ð Þ D−2ð Þ = ρ D−1ð Þ D−1ð Þ = ρDD = ρ D−2ð Þ D−1ð Þ
= ρ D−1ð Þ D−2ð Þ = ρ D−1ð ÞD = ρD D−1ð Þ
= ρD D−2ð Þ = ρ D−2ð ÞD = 0,

Γ D−2ð Þ D−2ð ÞP = Γ D−1ð Þ D−1ð ÞP = ΓDDP = Γ D−2ð Þ D−1ð ÞP
= Γ D−1ð Þ D−2ð ÞP = Γ D−1ð ÞDP = ΓD D−1ð ÞP
= ΓD D−2ð ÞP = Γ D−2ð ÞDP = 0,

ð211Þ

we say F is a lepton; otherwise, F is a hadron.

Suppose F is a hadron. For d1, d2, d3, u1, u2, u3, if F
satisfies that five of them are zero and the other one is
nonzero, we say F is an individual quark.

Proposition 68. There does not exist an individual quark. In
other words, if any five ones of d1, d2, d3, u1, u2, u3 are zero,
then d1 = d2 = d3 = u1 = u2 = u3 = 0.

For an individual down-type quark, the above proposi-
tion is evidently true. Without loss of generality, let u1 = u2
= u3 = 0 and d1 = d2 = 0; thus, ρðD−2ÞðD−2Þ = ρðD−1ÞðD−1Þ =
ρDD = 0; hence, we must have d3 = 0.

For an individual up-type quark, this paper has not
made progress on the proof yet. Nevertheless, Proposition
68 provides the color confinement with a new geometric
interpretation, which is significant in itself. It involves a nat-
ural geometric constraint of the curvatures among different
dimensions.

8. Conclusions

(1) An affine connection representation of gauge fields is
established in this paper. It has the following main
points of view

(i) The holonomic connection Equation (6) contains
more geometric information than Levi-Civita
connection. It can uniformly describe gauge field
and gravitational field

(ii) Time is the total spatial metric with respect to all
dimensions of internal coordinate space and exter-
nal coordinate space

(iii) Energy is the total momentum with respect to all
dimensions of internal coordinate space and exter-
nal coordinate space

(iv) On-shell evolution is described by gradient
direction

(v) Quantum theory is a geometric theory of distribu-
tion of gradient directions. It has a geometric mean-
ing discussed in Section 3.9

(2) In the affine connection representation of gauge
fields, some physical objects are incorporated into
the same geometric framework

(i) Gauge field and gravitational field can both be rep-
resented by affine connection. They have a unified
coordinate description. Some parts of ΓM

NP describe
gauge fields such as electromagnetic, weak, and
strong interaction fields. The other parts of ΓM

NP
describe gravitational field

(ii) Gauge field and elementary particle field are both
geometric entities constructed from semimetric.
The components ρmn of ρMN with m, n ∈ f4, 5,⋯,
Dg describe leptons and quarks, and the other
components of ρMN may describe particle fields
of dark matters

(iii) Physical evolutions of gauge field and elementary
particle field have a unified geometric description.
Their on-shell evolution and quantum evolution
both present as geometric properties about gradi-
ent direction

(iv) CPT inversion can be geometrically interpreted as
a joint transformation of full inversion of coordi-
nates and full inversion of metrics

(v) Rest-mass is the total momentum with respect to
internal space. It originates from geometric property
of internal space. Energy, momentum, and mass
have no essential difference in geometric sense

(vi) Quantum theory and gravitational theory have a
unified geometric interpretation and the same view
of time and space. They both reflect intrinsic
geometric properties of manifold

(vii) The origination of coupling constants of interac-
tions can be interpreted geometrically

(viii) Chiral asymmetry, PMNS mixing, and CKM mix-
ing arise as geometric properties on manifold

(ix) There exists a geometric interpretation to the color
confinement of quarks

In the affine connection representation, we can get better
interpretations to these physical properties. Therefore, to
represent gauge fields by affine connection is probably a
necessary step towards the ultimate theory of physics.
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