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There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as principal bundle
connection, and the other is to represent gauge field as affine connection. Poincaré gauge theory and metric-affine gauge theory
adopt the first approach. This paper adopts the second. In this approach, (i) gauge field and gravitational field can both be
represented by affine connection; they can be described by a unified spatial frame. (ii) Time can be regarded as the total metric
with respect to all dimensions of internal coordinate space and external coordinate space. On-shell can be regarded as gradient
direction. Quantum theory can be regarded as a geometric theory of distribution of gradient directions. Hence, gauge theory,
gravitational theory, and quantum theory all reflect intrinsic geometric properties of manifold. (iii) Coupling constants, chiral
asymmetry, PMNS mixing, and CKM mixing arise spontaneously as geometric properties in affine connection representation,
so they are not necessary to be regarded as direct postulates in the Lagrangian anymore. (iv) The unification theory of gauge
fields that are represented by affine connection can avoid the problem that a proton decays into a lepton in theories such as S
U(5). (v) There exists a geometric interpretation to the color confinement of quarks. In the affine connection representation,
we can get better interpretations to the above physical properties; therefore, to represent gauge fields by affine connection is
probably a necessary step towards the ultimate theory of physics.

RMNPQ = aPFMNQ - aQFMNP + FMHPFZQ - FZPFMHQ

1. Introduction

L.1. Background and Purpose. We know that in gauge theory,
the field strength and the gauge-covariant derivative

— abc 4 b
Fi = 9,A% ~ 0,A% + gf AL A, "
D, =0, - igT"A%,

both contain a coupling constant g, which measures the
strength of interaction. A problem is that why is there a cou-
pling constant g?

If we represent gauge fields by affine connection, we can
obtain a nice interpretation. For example, if we use I'yyp to
represent gauge potentials, it is not hard to find some
specific conditions to turn the curvature tensor Ry, to

= aPFMNQ - aQFMNP + G (FMHPFRNQ - FRNPFMHQ)'

(2)

Thus, Ryypq can be used to represent field strength. In
addition, for any p,,, we see that

Pump = OpPy — FI\H/IPPH =0ppyr — GRHFRMP/)H' (3)

Equations (2) and (3) mean that the coupling constant g
may have a geometric meaning, which originates from G*.

This implies that only when affine connection is adopted
to represent gauge field can some physical properties be bet-
ter interpreted. On the other hand, in the general relativity
theory, gravitational field is also described by affine connec-
tion, so it is convenient to describe gravitational field and
gauge field uniformly by affine connection. Therefore, it is
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necessary to study the affine connection representation of
gauge fields. This is the basic motivation of this paper.

There are the following two ways to unify gravitational
field and gauge field.

One way is to represent gravitational field as principal
bundle connection. We can take the transformation group
Gravi(3,1) of gravitational field as the structure group of
principal bundle to establish a gauge theory of gravitational
field, the local transformation group of which is in the form
of Gravi(3, 1) ® Gauge(n), e.g., Poincaré gauge theory [1-11]
and metric-affine gauge theory [12-23]. This way can be
interpreted intuitively as

be i ated int
gravitation theory M | the framework of gauge theory. ‘
(4)

The other way is to represent gauge field as affine
connection. This is the approach adopted by this paper.
Gravitational field and gauge field can both be described by
affine connection. Besides, we will also establish an affine
connection representation of elementary particles. This
way can be interpreted intuitively as

be i ted int
gauge theory m) ‘ the framework of gravitation theory. ‘
(5)

1.2. Ideas and Methods. We divide the problem of establish-
ing affine connection representation of gauge fields into
three parts as follows.

(i) Which affine connection is suitable for describing
not only gravitational field, but also gauge field
and elementary particle field?

(ii) How to describe the evolution of these fields in
affine connection representation?

(iii) What are the concrete forms of electromagnetic,
weak, and strong interaction fields in affine connec-
tion representation?

For the problem (i). On a Riemannian manifold (M, G),
the metric tensor can be expressed as G,y = 8,5B5,B% and
GMN = §A8CMCN | where B4, and CY! are semimetrics or to
say frame fields. It is evident that semimetric is more funda-
mental than metric, so we hope B}, or CY is regarded as a
unified frame field of gravitational field and gauge field,
and the frame transformation of BY; or C is regarded as
gauge transformation. Hence, we need a more general man-
ifold (M, BY;) rather than the Riemannian manifold (M, G).

Next, we put metric and semimetric together to con-
struct a new connection, which is not only an affine connec-
tion, but also a connection on a fibre bundle. In this way,
gravitational field and various gauge fields can be unified
on a manifold (M, Bf,) that is defined by semimetric.

In addition, we notice that in the theories based on prin-
cipal bundle connection representation,
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(1) Several complex-valued functions, which satisfy the
Dirac equation, are sometimes used to refer to a
charged lepton field  and sometimes a neutrino field
v. It is not clear how to distinguish these field func-
tions [ and v by inherent geometric constructions

(2) Gauge potentials are abstract; they have no inherent
geometric constructions. In other words, the Levi-
Civita connection Iy, of gravity is constructed by
the metric G however, it is not explicit what geo-

metric quantity the connection A}, of gauge field is
constructed by

By contrast, in the affine connection representation of
this paper, we are able to use the semimetrics B4, and C)f
of internal coordinate space to endow particle fields [ and
v and gauge field A} with geometric constructions. Thus,
they are not only irreducible representations of group but
also possessed of concrete geometric entities.

For the problem (ii). There is a fundamental difficulty
that time is effected by gravitational field, but not effected
by gauge field. This leads to an essential difference between
the description of evolution of gravitational field and that
of gauge field. In this case, it seems difficult to obtain a uni-
fied theory of evolution in affine connection representation.
Nevertheless, we find that we can define time as the total
metric with respect to all dimensions of internal coordinate
space and external coordinate space and define evolution
as one-parameter group of diffeomorphism, to overcome
the above difficulty.

Now that gauge field and gravitational field are both
represented as affine connection, then the properties that
are related to gauge field, such as charge, current, mass,
energy, momentum, and action, must have corresponding
affine representations. Thus, Yang-Mills equation, energy-
momentum equation, and Dirac equation are turned into
geometric properties in gradient direction; in other words,
on-shell evolution is characterized by gradient direction.
Correspondingly, quantum theory can be interpreted as a
geometric theory of distribution of gradient directions.

For the problem (iii). The basic idea is that on a D
-dimensional manifold, the components B and C" of semi-
metrics By, and C) with m,a € {4,5,---,D} are regarded as
the frame field of electromagnetic, weak, and strong interac-
tions. The other components of By, and C}! are regarded as
the frame field of gravitation.

We take the affine connection as

22
II>

[Ne] + {Np}) = [CQA(DPB?*JV{%PH
CY (DB bS +{NP}]

o (aBA n BB>bC L1 o (aGNQ , 3G _ aGNPﬂ

N\»— N = N = N =
— ——
/\

oxP oxN 0xQ

L gp)33> N % o <aGNQ , 9rg _ BGNP>]’

A 0xP oxP oxN 0xQ

(6)
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where b§ 2 9°/0x" is a local coordinate transformation, { ¥, }
is Christoffel symbol, G,y = 8,45B4B%,

. 0B
(3] 2 Y (DoY) = CY S 4 C () BE ()

is said to be a gauge connection, and I'}Y; is said to be a holo-
nomic connection. (4,) 2 (4.)b5.

aval 4 (0B  9BY
(BC)_ECA' aCC + a(«B (8)

is said to be a torsion-free simple connection. Thus,

1
Tynp = 5([MNP] +{MNP})
1 0BA
=3 [(SADBJ?/I (a—xl;\w] + (QP)B§> 9)
+ 1 0Gyy | 0Gpy  0Gyp
2\ oxP oxN oxM |

For the sake of simplicity, we firstly consider the affine
connection representation of gauge fields without gravitation.
That is to say, let

s,,j=1,2,3; a,mnl,g=4,5-,9D; A,B,M,N,P=1,2,---,D,

(10)

and consider a ®-dimensional manifold (M, B,) that
satisfies the following conditions:

(i) B{=5;, B! =0,B;, =0

(i) G; =9, G, = const, G,,; =0

(iii) When m #n, G,,, =0

Thus, {MNP} =0, [MNP] #0 in general. The compo-
nents I',,p of I'yyp=1/2[MNP] with m,ne{4,5,- D}
describe gauge potentials of electromagnetic, weak, and
strong interactions. We also use the affine connection I/,
to construct elementary particle fields p,,. The components
Pn Of pasy with m, n e {4,5,---,D} describe field functions
of leptons and quarks.

The components G™ of GMN with m,n e {4,5,--, D}
describe coupling constants of particle fields p, , and gauge
potentials I, . The other components of GMN are the
metrics of gravitational field. The other components of
Py and I'yyp provide possible candidates for dark matters
and their interactions.

1.3. Content and Organization. In this paper, we are going to
show how to construct the affine connection representation
of gauge fields. Sections are organized as follows.
Corresponding to the problem (i), in Section 2, we make
some necessary mathematical preparations and discuss the
coordinate transformation and frame transformation of the

above connection. Meanwhile, in order to make the lan-
guages that are used to describe gauge field and gravitational
field unified and harmonized, we generalize the notion of
reference-system and give it a strict mathematical definition.
The reference-system in conventional sense is just only
defined on a local coordinate neighborhood, and it has only
(1 +3) dimensions. But in this paper, we define the concept
of reference-system over the entire manifold. It is possessed
of more dimensions but different from Kaluza-Klein theory
[24-26] and string theories [27-39]. Thus, both of gravita-
tional field and gauge field are regarded as special cases of
such a concept of reference-system.

Corresponding to the problem (ii), in Section 3, we
establish the general theory of evolution in affine connec-
tion representation of gauge fields, and in Section 4, we
discuss the application of this general theory of evolution
to (1 + 3)-dimensional classical spacetime.

Corresponding to the problem (iii), in Sections 5-7, we
show concrete forms of affine connection representations
of electromagnetic, weak, and strong interaction fields.

Some important topics are organized as follows.

(1) Time is regarded as the total metric with respect to
all spatial dimensions including external coordinate
space and internal coordinate space (see Definition
2 and Remark 35 for detail). The CPT inversion is
interpreted as the composition of full inversion of
coordinates and full inversion of metrics (see Section
3.7 for detail). The conventional (1 + 3)-dimensional
Minkowski coordinate x* originates from the general
®-dimensional coordinate x™. The construction

method of extra dimensions is different from those

of Kaluza-Klein theory and string theory (see Section

4.2 for detail)

(2) On-shell evolution is characterized by gradient
direction field (see Sections 3.4-3.6 and 4.3 for
detail). Quantum theory is regarded as a geometric
theory of distribution of gradient directions. We
show two dual descriptions of gradient direction.
They just exactly correspond to the Schrédinger
picture and the Heisenberg picture. In these points
of view, the gravitational theory and quantum theory
become coordinated. They have a unified description
of evolution, and the definition of Feynman propa-
gator is simplified to a stricter form (see Sections
3.8 and 3.9 for detail)

(3) Yang-Mills equation originates from a geometric
property of gradient direction. We show the affine
connection representation of Yang-Mills equation
(see Sections 3.5 and 4.5 for detail)

(4) Energy-momentum equation originates from a geo-
metric property of gradient direction. We show the
affine connection representation of mass, energy,
momentum, and action (see Section 3.6, Definition
37, and Discussion 38 for detail). Furthermore, we
also show the affine connection representation of
Dirac equation (see Section 4.4 for detail)



(5) Why do not neutrinos participate in the electromag-
netic interactions? And why do not right-handed
neutrinos participate in the weak interactions with
W bosons? In the theory of this paper, they are
natural and geometric results of affine connection
representation of gauge fields; therefore, they are
not necessary to be regarded as postulates anymore
(see Propositions 52 and 63 for detail)

(6) In Section 7, we give new interpretations to PMNS
mixing of leptons, CKM mixing of quarks, and
color confinement. That is to say, in affine connec-
tion representation of gauge fields, these physical
properties can be interpreted as geometric proper-
ties on manifold

2. Mathematical Preparations

2.1. Geometric Manifold. In order to make the languages that
are used to describe gauge field and gravitational field uni-
fied and harmonized, we adopt the following definition.

Definition 1. Let M be a D-dimensional connected smooth
real manifold. Vp € M, take a coordinate chart (Up, ¢y;,)

on a neighborhood U, of p. They constitute a coordinate
covering

(o)), @

which is said to be a point-by-point covering. For the sake of
simplicity, U, can be denoted by U and ¢, by ¢y,

Let ¢ and y be two point-by-point coverings. For the
two coordinate frames ¢, and y, on the neighborhood U
of point p, if

fpé(PUol//Zfl Yy (U) — 9y(U), & o M (12)

is a smooth homeomorphism, f, is called a local refer-
ence-system.

If every p € M is endowed with a local reference-system
f(p) and we require the semimetrics Bf; and C%! in Equation
(15) to be smooth real functions on M, then

f:M—REF, pw f(p) (13)

is said to be a reference-system on M, and (M, f) is said to
be a geometric manifold.

2.2. Metric and Semimetric. In the absence of a special decla-
ration, the indices take values as A,B,C,D,E=1,2,---,D
and M,N,P,Q,R=1,2,--,D. The derivative functions

, 0! . 0xM
o G A "
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of f(p) on U, define the semimetrics (or to say frame field)
B4, and CY of f on the manifold M that are

A

Bjy:M—R, p—By(p)2 (bf(p)) (p)s

" (15)

CM—R, p=Clp)2 (erp) ().

Let 8, = 0% = 8% = Kronecker(A, B) and ¢, = "N =
M = Kronecker(M, N). The metric tensors of f are

Gy = 0,45BYBY,
MN = OapPyPyN (16)
H,p = eynCy Gy -
Similarly, it can also be defined that 524 208 ,10x,, T3
2 0x,,/0&, and corresponding I_SAM, Cz?/r
2.3.  Gauge Transformation in Affine Connection

Representation. NpeM, f(p)2pyeyy induces local
reference-system transformations

Ly  k(p) 2yy o9y = pyogy =f(p) o k(p),

(17)
Ryt h(p) 2 9y o py = 9y o vy =h(p) o f(p),

and reference-system transformations on the manifold M

Li:p—=Lpy, Rp:pe Ry (18)

We also speak of L; and R; as (affine) gauge
transformations.

(i) Ly and Ry are identical transformations if and only
if [BY;] of f is an identity matrix
(ii) Ly and Ry are flat transformations if and only if V
P1> P2 € M, By (py) = By (p,)
(iii) Ly and Ry are orthogonal transformations if and
only if 8,5 B4 BE = en
The totality of all reference-system transformations on

M is denoted by GL(M), which is a subgroup of ® ,¢,GL
(D,R) ,» where ® represents external direct product.

2.4. Coordinate Transformation of Holonomic Connection
and Frame Transformation of Gauge Connection. Suppose
there are reference-systems g and g on the manifold M,
denote & = go g, and Vp € M, on the neighborhood U of p,

g(p) and g(p) satisty

(U, M) M(U,(A) ﬁ(U,ﬁ’“). (19)



Advances in High Energy Physics

On the geometric manifold (M, g), we define torsion-
free simple connection D and its coefficients (%) o by

0 . 0 0
D¥= (wg);caw = (ﬁc)gdcc‘% @
1 3(B.)*  a(B,)" s @0
= (G, (a(g?:B + (aé‘,zc dCC®F~

Then, we can compute the absolute derivative of the
frame field 9/0xN

0 0 0 0
Doge=D((8)}05) =(B,)} 0 o+ ()1D =5

_ 9(B, )i 9 B 9

= 5 dcc ®¥+(Bg) (BC) el ®¥
a(B.)* 3

- (5 i, e 2

(21)

Thus, it is obtained that

D¢ (B,)s = 9(By)y + (Bg)z(gc)g. (22)

Denote Dy, 2 (bg(p))ISDd thus, we can define on (M, &)
the required gauge connection, which is

[AN/IP]g = (G, fDP(Bg)z = (Cg)A ToxP (23)

It is important that [%], is not only an affine connec-
tion on (M, &), but also a connection on frame bundle.

(i) [Xplg as an Affine Connection. Under the coordi-
(U, £,

byir 2 0xM/9xM, A £ 0xM joxM, (B,) — (B,)},

A M M' ! M
:bﬁ,(Bg)M, (Cy)y — (Cy)y =M (Cy),; - Conse-
quently, the gauge connection [3,], is transformed
according to

nate transformation L, : (U, M) —

L[ MU= ) B CMabe,
Lk(P) : [NP]ZH [N’P’]?_ M [ }z ot Sop

N "P oxP
(24)

Due to Equation (24), under the coordinate transfor-
mation, the holonomic connection

5
(T2 5 (] + {},)
1 a(B.)"
o (G SN
3(Gg)yo  0(Gg)p
N %(GZ)M% Golva , XB0)ra _ a(gjgwﬂ
(25)
is transformed according to
L (T o = (T = 0 (T b0+ 0 O P
(26)

(ii) [Nplg as a Connection on Frame Bundle. Under the
frame transformatlon L, (M%)~ (M), 0/0

M- 9/0xM —( k)M,a/ax ,

By, = (By )L, = (BOM (B, (C)" v (C,)Y

= (Ck)%,(Cg)f. Consequently, the gauge connec-

tion 4], is tranformed according to

CTM M _ M P
Ly [NP]? = [N’P’}g: = |:N’P:| ?;bp’

, 3B, (27)
) (‘%% [l (B + (Gl G )bﬁ"

Equations (24) and (27) show that [ AN/IP]? is not only an
affine connection, but also a connection on frame bundle.
Apply Equations (24)-(27) to the curvature tensors

2 9Nol _OINe] | raqra g _rHqru
[Nea] = P 9xQ + [1e] [vo] = [we] [
M 0 M
(thoy2 Qiak OUNeh ey gy,
ory, ory
R%PQ a;\;Q axNP F%PFZQ FII\-I;PF%Q’

and then, it is obtained that

= M [M] N D60

¢ N “P'7qQ"”

= M [ M) N 060

g N'Vp' V"

|

= ((COA [Neal o (BN ) U6
)
)

Lk(P) : (R?)AN/IPQ (R?)N P'Q’ CM ( )AN/IPQbN bi bQ .

(29)



We see from Equation (29) that the [Ypg], without

gravitation is both a curvature tensor of affine connection
and a curvature tensor on frame bundle, and that the

(Rg)%PQ with gravitation is a curvature tensor of affine con-

nection, but not a curvature tensor on frame bundle. In
: M

other words, under the gauge transformation Ly, [Npql,

and [%’PQ]Z’

(R?)?\I/IPQ and (R?')AN/I'PQ
This shows that the gravitational field in (Rg)%PQ makes

represent the same physical state, while

represent different physical states.

the gauge frames By, and C) have physical effects.

3. The Evolution in Affine Connection
Representation of Gauge Fields

Now that we have the required affine connection, next we
have to solve the problem that how to describe the evolution
in affine connection representation.

In the existing theories, time is effected by gravitational
field, but not effected by gauge field. This leads to an essen-
tial difference between the description of evolution of gravi-
tational field and that of gauge field. In this case, it is difficult
to obtain a unified theory of evolution in affine connection
representation. We adopt the following way to overcome
this difficulty.

3.1. The Relation between Time and Space
Definition 2. Suppose M =P x N and r 2 dim P =3. Let

A BM,N=1,--,9; am=r+1,-,D.

(30)

S)izla"')r;

On a geometric manifold (M, f), the d&” and dx° which
are defined by

OF

(@)’ 2

M

(a*) ? 28, gdE A dE = Gy M,

A

|
—_

(dx™)? = eydx™dx™ = H ,pd&* de?,

M

=
I

(31)

are said to be total space metrics or time metrics. We
also suppose

(dap))Z s i (45, (d§<N>)2 . i -~
Sjl 2 a:;+1 (32)
( ) < Z > (dx(N>) 2 Z (dxm>2.

i=1 m=r+1

d&™ and dx™) are regarded as proper-time metrics.
For convenience, P is said to be external space and N
is said to be internal space.
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Remark 3. The above definition implies a new viewpoint
about time and space. The relation between time and space
in this way is different from the Minkowski coordinates
x#(u=0,1,2,3). Time and space are not the components
on an equal footing anymore, but have a relation of total
to component. It can be seen later that time reflects the
total evolution in the full-dimensional space, while a
specific spatial dimension reflects just a partial evolution
in a specific direction.

3.2. Evolution Path as a Submanifold

Definition 4. Let there be reference-systems f, g, f,and gon a
manifold M, such that Vp € M, on the neighborhood U of p,

(0:0) 2 (08) 200 22 (0:07) (0.5,

(33)

(U, ) £

Denote F2fof and & 2 go g; then, we say F and &
move relatively and interact mutually, and also we say that
F evolves in &, or & evolves on the geometric manifold
(M, ©). Meanwhile, & evolves in %, or we say & evolves

n (M, %).

From Equation (23), we know that in & and &, gauge
fields originate from f and ¢, and gravitational fields
(Gg)yn and (Gg),,y are effected by f and g, respectively.
We are going to describe their evolutions step by step in
the following sections.

Let there be a one-parameter group of diffeomorphisms

¢y - MxR—M, (34)

acting on M, such that ¢y (p, 0) = p. Thus, ¢, determines a
smooth tangent vector field X on M. If X is nonzero every-
where, we say ¢, is a set of evolution paths, and X is an
evolution direction field. Let T € R be an interval; then, the
regular imbedding

Lpéq)X)p T— M, t—oy(p,t) (35)

is said to be an evolution path through p. The tangent vector
d/dt=[L,] =X(p) is called an evolution direction at p. For

the sake of simplicity, we also denote L, = L,(T) ¢ M; then,

m:L,— M, q—q (36)

is also a regular imbedding. If it is not necessary to empha-
size the point p, L, is denoted by L concisely.

In order to describe physical evolution, next we are going to
strictly describe the mathematical properties of the
reference-systems f and g which are sent onto the evolution
path L.
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Definition 5. Let the time metrics of (U, &%), (U, x™), and
(U, %) be d&°, dx°, and d(°, respectively. On U, 2 U nL,
we have parameter equations

fAzsA(xO)’ xszM(£0)’ (AZCA(XO))

(37)
=g (XO)) 50 = 50 (EO)’ o= (xO).

Take f for example, according to Equation (37), on U
we define

, d&’ , d& . dxM M M
bg:ﬁ’ bg:W’ 834=W=bgo=b3A,
L dxM L dx® L d&t "
Ch K L

For convenience, we still use the notations ¢ and § and
have the following smooth functions.

M 2 R0 M _ pA M A a ~0pA _ ~MpA 2 pOR0 _ M_N
g =ByCy =ByCy, 8y =GBy =Cy'By,  Goo = ByBy = Gyney & »
20 2 p0A0 _ 50~ S0 2 A0R0 _ =0 pM 00 2 ~0~0 _ ~MNZ0 20
&), 2BICY, =BSCy, 8, 2CoB, =CYBY, GY2C0Ch=GMNE,.

(41)

It is easy to verify that dx, = Gy,dx’ and d/dx, = G"d/
dx" are both true on L by a simple calculation.

3.3. Evolution Lemma. We have the following two evolution
lemmas. The affine connection representations of Yang-
Mills equation, energy-momentum equation, and Dirac
equation are dependent on them.

Definition 6. Vp € L, suppose T,,(M) and T,(L) are tangent
spaces, T, (M) and T, (L) are cotangent spaces. The regular
imbedding 7 : L — M, q+— q induces the tangent map and
the cotangent map

m, : T,(L) — T,(M),

o T;(M) — T; (L),

il [reys

(42
df = d(f o).

~—

Define d&, 2 dx"/d&dx" and dx, 2 d&°/dx°dE’, which
induce d/d&; and d/dx,, such that (d/d&y, d&;) =1 and (d/
dx,, dx,) = 1. So we can also define

70 & dEA 70 & ng -0 a dxM _ 700 _70_

a2 g bo® g R =hey =ity
EO a dxM 0 a dxo <0 A dEA _OE() _ 0 EM
M df() > 0 df(), A dgo 0YA MYA -

They determine the following smooth functions on the
entire L, similar to Section 2.2, that

(40)

Evidently, 7z, is an injection, and 7r* is a surjection. Vd/
dt € T,(L),d/dt € T,(M),df € T,(M),df €T,(L), if and
only if

(43)
df, =n"(df)
are true, we denote
d 5 d
dt — dt;’ (44)
df =df,.

Then, we have the following two propositions that are
evidently true.

Proposition 7. If d/dt = d/dt; and df = df, then

)= G 42

(45)



Proposition 8. The following conclusions are true.

MaxiM zw()% =uwM =uw'e),
wydM =wydx" SwyeE) =w,,
0 __ d o,
Wy, o =w, &, Wy = WeEy (16)
wMdx,, =w'dx, =" =u’

3.4. On-Shell Evolution as a Gradient. Let T be a smooth n
-order tensor field. The restriction on (U, x™) is T =¢{0/0
x®dx}, where {0/0x ® dx} represents the tensor basis gen-
erated by several 0/0x and dx™, and the tensor coefficients
of T are concisely denoted by ¢t : U — R.

Let D be a holonomic connection. Consider DT = ¢,,d
x?® {0/0x ® dx}. Denote

0
2 Q 2
Dt=todx<, Vt= t;QE. (47)

Vp € M, the integral curve of V¢, that is, L, = ¢y, , is a
gradient line of T. It can be seen later that the above gradient
operator V characterizes the on-shell evolution.

For any evolution path L, let U, £UNL. Denote

tp=tly and t,= t;ng, as well as
d
a 0 a
Dyt; =t gdx’, Vit 2t Pt (48)
0

Proposition 9. The following conclusions are evidently true.

(i) Dt =Dt if and only if L is an arbitrary evolution
path

(ii)) Vt =V, t, if and only if L is a gradient line of T

Remark 10. More generally, suppose there is a tensor U =
uodx? ® {0/0x ® dx}. In such a notation, all the indices are
concisely ignored except Q. u,dx? uniquely determines a
characteristic direction u,0/0x,.

If the system of 1-order linear partial differential equa-
tions £, = ug, has a solution ¢, then it is true that Dt = qu
x? and Vt =u,0/0x,. Thus, in the evolution direction [L]
= 1u0/0x, the following conclusions are true.

Dt=D;t;, Vt=V,t, (49)
where Dy t; 2 ugdx®, V, t; £ uyd/dx,, and uy 2 ueg.

Now for any geometric property in the form of tensor U,
we are able to express its on-shell evolution in the form of V¢

Next, two important on-shell evolutions are discussed in
the following two sections. One is the on-shell evolution of
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the potential field of a reference-system. The other is the
one that a general charge of a reference-system evolves in
the potential field of another reference-system.

3.5. On-Shell Evolution of Potential Field and Affine
Connection Representation of Yang-Mills Equation. Table I
of article [40] proposes a famous correspondence between
gauge field terminologies and fibre bundle terminologies.
However, it does not find out the corresponding mathemat-
ical object to the source J [’f . In this section, we give an answer

to this problem and show the affine connection representa-
tion of Yang-Mills equation.

In order to obtain the general Yang-Mills equation with
gravitation, we have to adopt holonomic connection to con-
struct it. Suppose F evolves in & according to Definition 4,
that is, Vp € M,

(U,ocA') ﬁ(U,£A> 12 (1, 1 @(U,CA) &(U,ﬁ”).
(50)

We always take the following notations in the coordinate
frame (U, x™).

(i) Let the holonomic connections, which are defined by
Equation (25), of geometric manifolds (M, %) and
(M, %) be (I's)xp, and (I'y)V,, respectively. The
colon “:” and the semicolon “” are used to express
the covariant derivatives on (M, %) and (M, %),
respectively, e.g.,

(ii) Let the coefficients of curvature tensor of (M, %)
and (M, ) be K\p, and Ry, respectively, ie.,

L 0Te)Ng o(I)™

KIISIPQ = a;PNQ - a:QNP + (Fg)zQ(Fg)AH/IP - (Fg)ﬁp(rg)g@
L Te)Ng AN

Rlfpg 2 N0 OCENE | (1 (), (1) ()

(52)

Denote KMp," 2 (G5)"" KM

NPQP'" On an arbitrary evolu-

tion path L, we define
P dx & 7t (K%PQ:deQ) €T (L). (53)

Then, according to Definition 6 and the evolution
ipe . :P
lemma of Proposition 8, we obtain pi,, = KII‘\,/IPQ e and

K%PQ:deQ = pidx®. (54)
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Let Vt = K3, 7 9/0x4. Then, according to Proposition 9,
if and only if Vp e M, [L,] = Vt|p, we have

:P a d
K%pQ EEP%IOT%' (55)

Applying the evolution lemma of Proposition 8 again,
we obtain

:P i
K%IPQ = PAN/Ioe%’ (56)

Denote jii, 2 pi€ys then, if and only if [Lp]:Vt|p,

we have

P .
K]\J\J/IPQ =]AN/IQ’ (57)

which is said to be (affine) Yang-Mills equation of #. It

contains effects of gravitation, which makes the gauge frames

(Bf)’; and (Cf)f have physical effects. According to

Equation (29), we know Equation (57) is coordinate covari-

ant, and if gravitation is removed, it is also gauge covariant.
Thus, we have the following two results.

(i) The Yang-Mills equation originates from a geomet-
ric property in the direction Vt. In other words, the
on-shell evolution of gauge field is described by the
direction field V¢

(ii) We obtain the mathematical origination of charge
and current. We know that the evolution path L is
an imbedding submanifold of M. Thus, the charge
pM originates from the pull-back 7* from M to L,
and the current jz‘l\,/fQ originates from V't that is associ-

ated to pXl,

If we let (M, f) be completely flat, i.e., (Bf)]/; =8, (CI)AM
= 8%/, then by calculation, we find p2, can still be nonvanish-
ing. This shows that pX], originates from (M, f) ultimately.

Definition 11. We speak of the real-valued

Parno = GurPio (58)

as the field function of a general charge or speak of it as a
charge of F for short.

3.6. On-Shell Evolution of General Charge and Affine
Connection Representation of Mass, Energy, Momentum,
and Action. In order to be compatible with the affine con-
nection representation of gauge fields, we also have to define
mass, energy, momentum, and action in the form associated
to affine connection. We are going to show them in this sec-
tion and Section 4.3.

Let By 2 p,vodx™ ®dx". For the sake of simplicity,
denote the charge p,,\, of & by p,,y concisely. Let D be
the holonomic connection of (M, ); then,

DF,2Dp,, ®dx ®dx", VE,2Vp,  ®dx™®dx",

(59)

where Dpyy 2 pyniodx? and Vp,, 2 pyy.00/0x. Accord-
ing to Proposition 9, if and only if Vp € L, the evolution
direction is taken as [L,] = Vp,y| , we have

p

Dpyn =Drpyn>  VPun =ViPun (60)

that is,

0 d
dx? = dx’, = — . (61
PMN;QAX ™ = PuNo9X PMN;Q axg PMnN;o dx, (61)

Definition 12. For more convenience, the notation p,, is
further abbreviated as p. In affine connection representation,
energy and momentum of p are defined as

d 0
A, 2 Q 2 2 ap . Op
B2 po2potts Po=Po Ho o5 Po®s5 o
0 & 0 . dp op
E02 02 5Q 0’ Q-2 ,Q’ HY 2 , pR=a )
Preptie PREP dx, 0xq

Proposition 13. At any point p on M, the equation
E,E’ =PQPQ (63)

holds if and only if the evolution direction [L,] = Vp|P. Equa-
tion (63) is the (affine) energy-momentum equation of p.

Proof. According to the above discussion, VpeM,
[L,)= Vp|p is equivalent to
0 d
Q. 0 -
podx= =Eydx’, pq E =E, e (64)

Then, due to Proposition 7, we obtain the directional
derivative in the gradient direction Vp:

0 M\ _ d 0
<pQ%,pde > = <E0d—xo,E0dx >, (65)

ie., G™Mpopy, = GPEE,, or pop? = E E°. O
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Proposition 14. At any point p on M, the equations

dx
Q_ 10
p - 7
dx?
I (66)
=F, 9
pQ 0 dxo

hold if and only if the evolution direction [L,| = Vp|P.

Proof. Due to the evolution lemma of Proposition 8, we
immediately obtain Equation (66) from Equation (64). [

Remark 15. In the gradient direction Vp, Equation (66) is
consistent with the conventional formula

p=mv. (67)

Thus, in affine connection representation, the energy-
momentum equation and the conventional definition of
momentum both originate from a geometric property in gra-
dient direction. In other words, the on-shell evolution of the
particle field p is described by the gradient direction field Vp.

Definition 16. Let (b, a) be the totality of paths from a to b.
And suppose L € P(b,a), and the evolution parameter x°
satisfies ¢, = x°(a) < x°(b) £ t,,. The elementary affine action
of p is defined as

ty
3(L)2 J Dp= J podx? = J E,dx". (68)
L L t

a

Thus, §8(L) =0 if and only if L is a gradient line of p.

In particular, in the case where & is orthogonal, we can
also define action in the following way.

On (M, %), let there be Dirac algebras y™ and yy
such that

M _ 5 GMN M =1

(69)

My + Ny s YmYn T YNYum = 2Guns

In a gradient direction of p, from Equation (63), we
obtain that

PP =EE’ & pop @ =pop” = Gpppg
=Gpopy = (VY 1Y) P
=2p5p0 = (V'Pp) (19P0) + (¥%P0) (v Pp)
=2pp0 & (YPP;P)Z = (po)™

(70)

Take y"p,, =p,, without loss of generality, and then,
in the gradient direction of p, we have

V' ppdx” = podx’ = g5 ppdx” = Dp. (71)
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So we can take

1y
s(L) = J (¥'ppdx’ + Dp) = J (VP +e0pyp) dx’
L t,
. (72)
= J (ypp;P + Eo)dxo.

t

a

Remark 17 and Remark 41 explain the rationality of
this definition. We have s(L)=28(L) in the gradient
direction of p, so 8(L) and s(L) are consistent.

Remark 17. In the Minkowski coordinate frame of Section
4.2, the evolution parameter X0 is replaced by X'; then, there
still exists a concept of gradient direction Vp. Correspond-
ingly, Equations (68) and (72) present as

" diE, S(L) = J (15, + i) di,

T, T,

3(L)= LD[) = JLf)Mdfcf‘ = J

(73)
where 7, is the rest-mass and X" is the proper-time.

Remark 18. Define the following notations.

. 0p
[PI'g) = TMGN “PMNG ™ pMHFgG

[PRpq] = pMHRII:IIPQ + PHNRI\H/IPQ'
(74)

H
+Punt Mo

Then, through some calculations, we can obtain that

fp=Ppo=Eop _st(?;P + [PRpq & (75)

which is the affine connection representation of general
Lorentz force equation (see Discussion 38 for further
illustrations).

3.7. Inversion Transformation in Affine Connection
Representation. In affine connection representation, CPT
inversion is interpreted as a full inversion of coordinates
and metrics. Let i,j=1,2,3 and m,n=4,5, -+, D.

Let the local coordinate representation of reference-
system k be x" = —Sfx", x"= d,,x™; then, parity inversion
can be represented as

P2l x' — —x', x" — & (76)

Let the local coordinate representation of reference-

1j jion .
system h be x'/ = &)x, x" = —8" x™; then, charge conjugate
inversion can be represented as

C2L,:x'—x,x" — —x". (77)
Time coordinate inversion can be represented as

Ty x° — —xO. (78)
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Full inversion of coordinates can be represented as
CPT, : x? — x4 x" — —x°. (79)

The positive or negative sign of metric marks two oppo-
site directions of evolution. Let N be a closed submanifold of
M, and let its metric be dx™). Denote the totality of closed
submanifolds of M by B(M); then, full inversion of metrics
can be expressed as

T 2 dx(N)—>—dx<N>) : (80)
NEB(M)

Denote time inversion by
T27MT, (81)

and then, the joint transformation of the full inversion of
coordinates CPT, and the full inversion of metrics T™) is

(CPT,) (T<M>) = CPT. (82)

Summarize the above discussions; then, we have

CPT, : x¥— —x4 x° — —&0, dx? — dx?, dx® — dx°,
T 2 xQ 5 xQ 30— 0, dxQ — —dxQ, dx® — —dx®,
CPT : x¥ — —xQ 2 — =2, dx? — —dx? dx" — —dx".

(83)

The CPT invariance in affine connection representation
is very clear. Concretely, on (M, &), we consider the CPT
transformation acting on €. Denote s2 [, Dp and Dpe®
2 (0/0xP — i[pI'p])e’; then, through simple calculations,
we obtain that

CPT : Dp— Dp, Dpe® — —Dpe™. (84)
Remark 19. In quantum mechanics, there is a complex
conjugation in the time inversion of wave function T : v
(x,t) — y*(x,—t). In affine connection representation,
we know the complex conjugation can be interpreted as
a straightforward mathematical result of the full inversion
of metrics T™),

3.8. Two Dual Descriptions of Gradient Direction Field

Discussion 20. Let X and Y be nonvanishing smooth tangent
vector fields on the manifold M. And let L, be the Lie deriv-
ative operator induced by the one-parameter group of
diffeomorphism ¢,. Then, according to a well-known theo-
rem [41], we obtain the Lie derivative equation

X, Y] = LyX. (85)

11

Suppose Vp € M, Y(p) is a unit-length vector, i.e., | Y (p)| = 1.
Let the parameter of ¢, be x°. Then, on the evolution path
L= ¢y ,, we have

Y=_—. (86)

Thus, Equation (85) can also be represented as

[X,Y]= %X. (87)

On the other hand, Vdf € T(M) and df; £ n*(df), and
due to (86) and Proposition 7, we have (Y, df) = (d/dx°,d
f1), that s,

vi= Soh (59)

Definition 21. Let H2 ||[Vp||'Vp = eMa/ox™ = d/dx". Tt is
evident that Vp € M, ||[H(p)|| = 1. If and only if taking Y =
H, we speak of (87) and (88) as real-valued (affine) Heisen-
berg equation and (affine) Schrédinger equation, respec-
tively, that is,

XH) = X Hf= (59)

Discussion 22. The above two equations both describe the
gradient direction field and thereby reflect on-shell evolution.
Such two dual descriptions of gradient direction show the
real-valued affine connection representation of Heisenberg
picture and Schrédinger picture.

It is not hard to find out several different kinds of
complex-valued representations of gradient direction. For
examples, one is the affine Dirac equation in Section 4.4,
and another is as follows.

Let y = fe™, where it is fine to take either s; 2s(L) or
s; 28(L) from Definition 16. According to Equation (89),
it is easy to obtain on L that

d dy
X, H|= 75X, Hy= 5. (90)

This is consistent with the conventional Heisenberg
equation and Schrédinger equation (taking the natural units
that hi=1,c=1)

. 0 , oy
[X,—iH] = aX, —iHy = FTa (91)

and they have a coordinate correspondence

0 0 0 d

— = . 92
o) Tk ot dxd 62)

We know that 0/0t «— d/dx° originates from the
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difference that the evolution parameter is x* or x°. The
imaginary unit i originates from the difference between
the regular coordinates x!,x% x*,x” and the Minkowski

coordinates x',x?,x°,x°. That is to say, the regular

coordinates satisfy
(dx®)” = (dx')* + (dx?)* + (dx®)* + (dxT)2,  (93)
and the Minkowski coordinates satisfy

(dx)? = (dx°)? — (dx")® = (dx?)” - (dx*)?
(dx)* + (d(ix'))* + (d(ix))* + (d(ix*)) .

This causes the appearance of the imaginary unit i
in the correspondence

ik ¥, (95)

So Equations (90) and (91) have exactly the same
essence, and their differences only come from different
coordinate representations.

The differences between coordinate representations have
nothing to do with the geometric essence and the physical
essence. We notice that the value of a gradient direction is
dependent on geometry, but independent of that the equa-
tions are real-valued or complex-valued. Therefore, it is
unnecessary for us to confine to such algebraic forms as
real-valued or complex-valued forms, but we should focus
on such geometric essence as gradient direction.

The essential virtue of complex-valued form is that it is
applicable for describing the coherent superposition of prop-
agator. However, this is independent of the above discus-
sions, and we are going to discuss it in Section 3.9.

3.9. Quantum Evolution as a Distribution of Gradient
Directions. From Proposition 13, we see that, in affine
connection representation, the classical on-shell evolution
is described by gradient direction. Then, naturally, quan-
tum evolution should be described by the distribution of
gradient directions.

The distribution of gradient directions on a geometric
manifold (M, &) is effected by the bending shape of (M,
©); in other words, the distribution of gradient directions
can be used to reflect the shape of (M, €). This is the way
that the quantum theory in affine connection representa-
tion describes physical reality.

In order to know the full picture of physical reality, it is
necessary to fully describe the shape of the geometric mani-
fold. For a single observation,

(1) It is the reference-system, not a point, that is used to
describe the physical reality, so the coordinate of an
individual point is not enough to fully describe the
location information about the physical reality

(2) Through a single observation of momentum, we can
only obtain information about an individual gradient
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direction; this cannot reflect the full picture of the
shape of the geometric manifold

Quantum evolution provides us with a guarantee that we
can obtain the distribution of gradient directions through
multiple observations, so that we can describe the full
picture of the shape of the geometric manifold.

Next, we are going to carry out strict mathematical
descriptions for the quantum evolution in affine connection
representation.

Definition 23. Let p be a geometric property on M, such as a
charge of #. Then, H £ Vp is a gradient direction field of p
on (M, %).

Let < be the totality of all flat transformations L, defined
in Section 2.3. VT € Z, the flat transformation T : f — Tf
induces a transformation T* : p +— T*p. Denote

lp|2{pr 2T*p| T €T}, |H|2{H;2Vp,|T eI}

(96)

Va € M, the restriction of |H| at a are denoted by
|H(a)| ={H(a) | T € Z}.

We say |H| is the total distribution of the gradient direc-
tion field H.

Remark 24. When T is fixed, H; can reflect the shape of
(M, %). When a is fixed, the extension to |H(a)| can
reflect the shape of (M, ¥).

However, when T and a are both fixed, H(a) is a fixed
individual gradient direction, which cannot reflect the shape
of (M, ¥). In other words, if the momentum p; and the
position x, of p are both definitely observed, the physical
reality & would be unknowable; therefore, this is unaccept-
able. This is an embodiment of quantum uncertainty in
affine connection representation.

Definition 25. Let ¢, be the one-parameter group of diffeo-

morphisms corresponding to H. The parameter of ¢, is x°.

Va € M, according to Definition 4, let ¢, , be the evolution
path through a, such that ¢, (0) =a. Vt € R, denote

Pira = {Pxa | X €H} Pira(t) = {pxa(t) | X €|H[}.
(97)

VQ C T, we also denote |Hy)| 2 {H; | T € Q} C |H| and
Pttpha = {Pxa | X € [Hol} Qg0
Pitipha(t) = {Pxa(t) | X € [Ho|} S @y o(t). (98)

Va € M, the restriction of |Hp| at a is denoted by
[Ho(a)| = {Hr(a) | T € Q}.
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Remark 26. At the beginning t =0, intuitively, the gradient
directions |H(a)| of |p| start from a and point to all direc-
tions around a uniformly. If (M,¥) is not flat, when
evolving to a certain time ¢ > 0, the distribution of gradient
directions on ¢ ,(¢) is no longer as uniform as begin-
ning. The following definition precisely characterizes this
kind of ununiformity.

Definition 27. Let the transformation L1 act on &; then, we
obtain the trivial e 2 Ly-1(%). Now (M, &) is sent to a flat
(M, e), and the gradient direction field |H| of |p| on (M,
Z) is sent to a gradient direction field |O| of |p| on (M,
e). Correspondingly, Vt€R, ¢ ,(f) is sent to ¢y ,(1).
In a word, Lyt induces the following two maps:

g, [H—0),

-1 .
G P P0far

VT €¥, deonte N2{NecZT|det N=detT}. Due to
T = GL(D, R), let U be a neighborhood of T, with respect
to the topology of GL(D, R).

Take Q=N N U; then,

00l =2 (Hal), 90,10= %ot (9psa)-  (100)

Let p be a Borel measure on the manifold M. We know
VteRR,

gD\Hm\’“(t) = (P\Oml,u(t) =S¥ (101)

Thus, (P\HQ\,u(t) S (P\HmLa(t) and (P\OQLa(t) < (P|Om\,a(t) are
Borel sets, so they are measurable. Denote

Ha (‘P\Hn\,a(t)> = l‘(gli (?‘Hd,a(ﬂ)) = ‘“(‘P|oﬂ\,a(t))'

(102)

When U — T, we have QO — T, |Hy| — Hy, |Hg
(a)| — Hy(a), and @y, (1) — b2 g, (1)

For the sake of simplicity, denote L = ¢y .. Thus, we
have a=1L(0),b=L(t), and denote p,2[L,|=H(a),p, 2
[Ly] = Hy (D).

Because 1, is absolutely continuous with respect to y,
Radon-Nikodym theorem [42] ensures the existence of the
following limit. The Radon-Nikodym derivative
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2 Wy & ‘uﬂ<q)\HQ\,u( ))

W (b,a)2 Hy = #<(P|Hﬂ‘a(t))
= lim H(?;i (SD‘Hﬂl’a(t))) (103)

is said to be the distribution density of |H| along L in posi-
tion representation.

On a neighborhood U of g, VT € ¥, denote the normal
section of Hy(a) by Ny_,, that is,

Ny a2 {n €Ul Hy(a)- (n-a)=0},

Nitya(t) 2 {u () XNy} (104)

Thus, Ny _, =Ny ,(0)and Ny, 2Ny ,(t).1fU-—a,
we have Ny ,—a and Ny ,(t) —b=¢y (). The
Radon-Nikodym derivative

a) 2 d:"l(a) 2 lim M(NHTM) - lim #(NHT,a)
ZL(b: ) d‘u(b) l}*m M(NHT,b) U—sa V(NHT,a(t))
(105)

is said to be the distribution density of |H| along L in
momentum representation.

In a word, W (b, a) and Z, (p,, p,) describe the density
of the gradient lines that are adjacent to b in two different
ways. They have the following property that is evidently true.

Proposition 28. Let L be a gradient line. Va, b, ¢ € L such that
L(x%) =a, L(x)) =b, L(x?) = ¢, and x) > x? > x; then,
Wi(b,a)=W,(b,c)W(c,a), Z;(b,a)=Z;(b,c)Z;(c, a).

(106)

Definition 29. If L is a gradient line of some p' € |p |, we also
say L is a gradient line of |p|.

Remark 30. For any a and b, it anyway makes sense to dis-
cuss the gradient line of |p| from a to b. It is because even
if the gradient line of p starting from a does not pass through
b, it just only needs to carry out a certain flat transformation
T defined in Section 2.3 to obtain a p’ 2 T, p; thus, the gra-
dient line of p’ starting from a can just exactly pass through
b. Due to p, p' €|p|, we do not distinguish them, and it is
just fine to uniformly use |p|. Intuitively speaking, when |p|
takes two different initial momentums, |p| presents as p
and p', respectively.
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Discussion 31. With the above preparations, we obtain a new

way to describe the construction of the propagator strictly.
For any path L that starts at a and ends at b, we denote

|L|| £ [,dx" concisely. Let (b, a) be the totality of all the

paths from a to b. Denote

P(b,xy;a,x) = {LILe2(b,a), |L| =x,—x0}. (107)

VL € P(b,x);a,x0), we can let L(x)) =a and L(x)) =b

without loss of generality. Thus, 2(b, x{ ; a, x3) is the totality

of all the paths from L(xJ) =a to L(x)) = b.

Abstractly, the propagator is defined as the Green
function of the evolution equation. Concretely, the propa-
gator still needs a constructive definition. One method is
the Feynman path integral

K(b,xy;a,x,) éJ e“dL. (108)

@(b,xﬂ;a,xg)

However, there are so many redundant paths in P(b
,x);a,x0) that (i) it is difficult to generally define a mea-
sure dL on P(b,x};a,x2), and (ii) it may cause unneces-
sary infinities when carrying out some calculations.

In order to solve this problem, we try to reduce the
scope of summation from P(b,x);a,x%) to H(b,x); a,x2),
where H(b,x);a,x2) is the totality of all the gradient lines
of |p| from L(x%) =a to L(x)) =b. Thus, Equation (108) is
turned into

¥ (L)e dL.
H ( h,xg;u,xg )

(109)

K(b,xy;a,x,) :J

We notice that as long as we take the probability ampli-
tude ¥(L) of the gradient line L such that [¥'(L)]* = W, (b,
a) in position representation or take [¥(L)]*=Z,(b,a) in
momentum representation, it can exactly be consistent with
the Copenhagen interpretation. This provides the following
new constructive definition for the propagator.

Definition 32. Suppose |p| is defined as Definition 23, and
denote H 2 Vp.

Let Z(b, a) be the totality of all the gradient lines of |p|
from a to b. Denote

H(b,x)5a,x)) 2 {L|Le Z(b,a), ||L|=x)-x)}. (110)

Let Z(p,, p,) be the totality of all the gradient lines of
|p |, whose starting direction is p, and ending direction is
p,- Denote

|IL]| =, x5}
(111)

H(pb’x(b) ;Pu’xg) = {L | Le g(pb’pa)’
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Let dL be a Borel measure on H(b,x);a,x%). In con-
sideration of Remark 41, we let s be the affine action s(L)
in Definition 16. We say the geometric property

K(b,xy;a,x,) éJ

W, (b, a)e*dL (112)

H(b,xg;a,xg)
is the propagator of |p| from (a,x2) to (b,x)) in posi-
tion representation If we let dL be a Borel measure on
H(py,x);p,» %), then we say

Z,(b,a)e"dL

H (P X3 Do %5) 2 (113)

J H(pysp,x3)

is the propagator of |p| from (p,,
momentum representation.

x2) to (p,,x)) in

Discussion 33. Now (112) and (113) are strictly defined, but
the Feynman path integral (108) has not been possessed of a
strict mathematical definition until now. This makes it
impossible at present to obtain (e.g., in position representa-
tion) a strict mathematical proof of

J ésdL = J
@(b,xo;a,xg) H(l’a,xn

b b

W, (b,a)e"dL.  (114)

;a,xg)

Fortunately, the following two reasons make us believe
that Equation (114) is expected to be regarded as a strict def-
inition of Feynman path integral; that is to say, the integral
on the right-hand side of “=” can be regarded as the strict
definition of the notation on the left-hand side of “=".

On the one hand, we notice that the distribution densi-
ties W, (b,a) and Z,(b,a) of gradient directions establish
an association between probability interpretation and geo-
metric interpretation of quantum evolution. Therefore, we
can base on probability interpretation to intuitively consider
both sides of “=” in Equation (114) as the same thing.

On the other hand, on the condition of Proposition 28,
denote H(x?) = {L(x°)|L € H(b, x{ ; a,x°)}; then,

K(b,x};a,x)) =J

K(b,xp56x))K(c,x] 5 a4, X)) de
H(x)

(115)

is expected to be provable according to Equations (106) and
(112). However, to obtain a strict proof of Equation (115)
from Equations (106) and (112) is not a trivial mathematical
problem, which is necessary but not easy, and needs more
mathematical research.

Discussion 34. The quantization methods of QFT are
successful, and they are also applicable in affine connection
representation, but in this paper, we do not discuss them.
We try to propose some more ideas to understand the quan-
tization of field in affine connection representation.

(1) If we take
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Q:J Dp:J dexQ:J E,dx’, (116)
L L L

according to Definition 16, where D is the holonomic con-
nection of (M, &), then consider the distribution of H=V
p, and we know that

K(bxpsa,x)) 2 J W, (b,a)e®dL,

Vp(b.x0a,x0
(sa) -

a

‘%(pb’x(b) ;pa’xg) -

J V2, (b, a)e®dL
Vo (Puipa?)

describes the quantization of energy-momentum. Every
gradient line in Vp(b,x};a,x%) corresponds to a set of
eigenvalues of energy and momentum. This is consistent
with conventional theories, and this inspires us to consider
the following new ideas to carry out the quantization of
charge and current of gauge field.

(2) In an analogous manner, if we take

3= J Dt = J KM, dx? = J pMdx’,  (118)
L L L

according to Section 3.5, where D is the holonomic connec-
tion of (M, %), then consider the distribution of H £ V¢,

VW, (b,a)e®dL,

K(b,xp;a,x)) éJ
Vt(b,xg;a,xg)

(119)

\/Z,(b,a)e®dL.

T (pysp0t) 2 |
Vt(Pb)xi;meﬂ)

Denote H(b,x);x?) £ {ce M|VL e H(b,x; ¢,x?), ||L|| =
%9 —x%} and take H = V; then, the wave function y(b, x))
that is defined by the equation

K(b,xy;6x)y(exl)de  (120)

v(o.40)= |
H (b,xg;x?)

describes the quantization of charge and current. It should

be emphasized that this is not the quantization of the

energy-momentum of the field, but the quantization of the

field itself, which presents as quantized (e.g., discrete)

charges and currents.

4. Affine Connection Representation of Gauge
Fields in Classical Spacetime

The new framework established in Section 3 is discussed in
the ®-dimensional general coordinate x™, which is more
general than the (1+ 3)-dimensional conventional Min-
kowski coordinate x*.
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(dxo)2 =y (dxM )? is the total metric of internal space

and external space, and (dx")* = Zi ,(dx™)? is the metric of
internal space.

(i) The evolution parameter of the D-dimensional
general coordinate xM(M=1,2,---,®) is x°. The
parameter equation of an evolution path L is repre-
sented as xM = xM(x?)

(i) The evolution parameter of the (1+ 3)-dimen-
sional Minkowski coordinate x*(y=0,1,2,3) is
x". The parameter equation of L is represented as
Xt = xH(x7)

The coordinate x# works on the (1 + 3)-dimensional
classical spacetime submanifold defined as follows.

4.1. Classical Spacetime Submanifold. Let there be a smooth
tangent vector field X on (M,f). If VpeM, X(p)=

bAa/a£A|P =cMa/9xM |, satisfies that b are not all zero and

c™ are not all zero, where a,m=r+1,---,D; then, we say

X is internal-directed. For any evolution path L =¢, , we
also say L is internal-directed.

Suppose M =P x N, D 2dimM, and r2dimP=3. X is a
smooth tangent vector field on M. Fix a point 0 € M. If X is
internal-directed; then, there exist a unique (1 + 3)-dimen-
sional imbedding submanifold y : M — M, p+>p and a
unique smooth tangent vector field X on M such that

(i) Px {o} is a closed submanifold of M

(i) The tangent map y, : T(M) — T (M) satisfies that
VgeM,y, : X(q) — X(q)

Such an M is said to be a classical spacetime
submanifold.

Let ¢y : MXxR— M and @5 : MxR— M be the
one-parameter groups of diffeomorphisms corresponding
to X and X, respectively. Thus, we have

Px = x| g (121)

So the evolution in classical spacetime can be described
by ¢x. It should be noticed that

(i) M inherits a part of geometric properties of M, but
not all. The physical properties reflected by M are
incomplete

(ii) The correspondence between X and the restriction
of X to M is one-to-one. For convenience, next we
are not going to distinguish the notations X and X
on M but uniformly denote them by X

(iii) An arbitrary path L : T — M, t + p on M uniquely
corresponds to a path L2yoeL : T — M, t+ p on
M. Evidently, the image sets of L and L are the same,
that is, L(T) = L(T). For convenience, later we are
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not going to distinguish the notations L and L on M
but uniformly denote them by L

4.2. Classical Spacetime Reference-System. Let there be a
geometric manifold (M, f) and its classical spacetime sub-
manifold M. And let L2 ¢5. be an evolution path on M.
Suppose pe L and U is a coordinate neighborhood of p.
According to Definition 5, suppose the f(p) on U and the
f1(p) on U, 2 U N L satisty that

Thus, it is true that

(1) There exists a unique local reference-systemf(p) on
U 2 UNM such that

U,K=1,2,3,1.
(123)

(2) If L is internal-directed, then the above coordinate
frames (U,&Y) and (U, xX) of f (p) unlquely deter-

mine the coordinate frames (U, £ ) and (U,%*)
such that

~ = o a =TT

F) & =8@)=8@), &=8F) ap=0123
(124)

and the coordinates satisty

Fop Fop Pop ¥ox, wew, B-4
(125)

That is to say, f(p) is just exactly the reference system in
conventional sense, which has two different coordinate
representations (123) and (124).

We speak of

f:M—REFy, pw f(p)€REF, (126)
as a classical spacetime reference-system. Thus, inertial sys-
tem can be strictly defined as follows, no need for Newton's
first law. Suppose we have a geometric manifold (M, 3). F
is a transformation induced by g.

(1) If SaﬁBZBf =¢,, then g is said to be (Lorentz)
orthogonal. In this case, F; is just exactly a local
Lorentz transformation

Advances in High Energy Physics

2) If Bz and CQ‘ are constants on M, then g is said to
be flat

(3) If g is both orthogonal and flat, then g is said to be
an inertial-system. In this case, F; is just exactly a

Lorentz transformation
Remark 35. Due to

() - (') -

=G, dx*dx", G,

(dE")? =3, gt dE’

M

Il
—_

L 28,488,

™M

di")? = (dx°)’ = Y (dx)’ =&, dx*dx”
()(),1()” (127)

- Hpdt dE B, 28,0 C

itis easy to know that g is orthogonal ifand only if dE = dx",
ie, G, 2B.B.=1,G" £C.C. =1.1tis only in this case that
we can denote d€ and di” uniformly by dr; otherwise, we

o1 o
should be aware of the difference between dé and dx* in
nontrivial gravitational field. No matter whether g is an
inertial system or not, and whether there is a nontrivial grav-

itation field or not, (d&) = (&)’ - Y., (d&")? and (di")?
= (dx*)? -Y3, (dx')” are always both true in their respective

coordinate frames.

Remark 36. The evolution lemmas in Section 3.3 can be
expressed in Minkowski coordinate as follows:

(i) If d/di = d/dt, and df = df,, then (d/di, df) = (d/d
t.dfy)

(ii) The following conclusions are true

.0 . d w_ocw - 0 __d o
—z=u— =Su'= — EW,—— S W, =
W =W o w=w'd, , %, W W, =W.E,,
~ ~ ~ =T _ —
w,dxt = w dx" = &w,=w, w'dx,=w'dx e =w"

(128)

4.3. Affine Connection Representation of Classical Spacetime
Evolution. Let D be the holonomic connection on (M, €),
and denote f,, 27 &% then, the absolute differential and

50 >
gradient of Section 3.4 can be expressed on M in Minkowski
coordinate as

(2t dx’, Dt 21, dx7,
.. 2 .. d (129)
\ 2= Vot 2, =
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Evidently, Df = D, {, if and only if L is an arbitrary path.
V~t=V~,t, if and only if L is the gradient line.

Definition 37. Similar to Section 3.6, suppose a charge p of &
evolves on (M, €). We have the following definitions.

a

1>

(1) The geometric properties 7"
said to be the rest mass of p

p* and m, =p, are
AU a 5 oA _ = : _

(2) p"=-p* and p, = p;PiOare said to~be the energy
momentum of p, and E 2 p° and E, 2 p, are said
to be the energy of p

(3) M" 2dp/dx, and M, 2dp/dx* are said to be the
canonical rest mass of p

(4) P"£-0p/0x, and P, 2—0p/0x* are said to be the
canonical energy-momentum of p, and j2 g op/o

%, Hy 2 0p/0x° are said to be the canonical energy
of p

Discussion 38. Similar to Proposition 13, Vp € M, if and
only if the evolution direction [L,]=V~p|,, the directional

derivative is

d 0 .
- o\ _ "
<m, dNT,dex > <‘D"_a5c#’p”dx >, (130)
that is, GTTmTfnT = Gw[)’uﬁv, or
i i = p,p, (131)

which is the affine connection representation of energy-
momentum equation.

Similar to Proposition 14, according to the evolution
lemma, VpeM, if and only if the evolution direction
[L,] = V"pl,, we have p, =~ dx,/dx,, that is E, = rin,dX,/
dx, =m_dxyldx, and p, = - dx;/dx, = m (—dX;)/dx, =,
dx;/dx, = Eydx;/dx,. This can also be regarded as the origin
of p=mv.

Similar to Remark 18, denote

= 7. 0P SR~ X
[pl"w} - ﬁ =P = Puplvo Py
-5 1a= X - X
[PRpo] - PMXRvpa + vaRypa' (132)
Then, for the same reason as Remark 18, based on
Definition 37, we can strictly obtain

fpéi)p;rzrhr;p_i)ogg;p"' [pRpo}ég' (133)

In the mass-point model, 7, and &, do not make

P
sense, so Equation (133) turns into
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fo= (PR, |E]. (134)

This is the affine connection representation of the force
of interaction (e.g., the Lorentz force f=q(E+vxB) or f,

=j°F,, of the electrodynamics).
Similar to Definition 16, let 2(b,a) be the totality of

paths on M from point a to point b. And let L € 2(b, a)
and parameter X" satisfy 7,2 X" (a) <x"(b) 2 7, The affine
connection representation of action in Minkowski coordi-
nates can be defined as

~ ~ Tp Ty
3(L)2 J Dp= J p,di = J i, 3(L)2 J (y“ﬁw + rh1>d5cT.
L L T,

(135)

There are more illustrations in Remark 41.

4.4. Affine Connection Representation of Dirac Equation

Discussion 39. Define Dirac algebras y* and y* such that

POy, yy B yPy =28 iy gty =26,
(136)

Suppose (M, €) is orthogonal. According to Remark 35,
G =1. Due to Discussion 38, in a gradient direction of p
= p,» We have

Without loss of generality, take y#p,, = ., that is,

yﬂi)wv;‘u = ﬁ/leT‘ (138)

Next, denote

’ ’

~ v, ~ '~ ~ ww' ~ WV =~ eV
[gfﬂ} 2y G Tyt Y G Ty D20, - [gl“y} .
o K

(139)
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From Equation (138), it is obtained that
Zyﬂpwv;y = thwv‘r = ZyM (aﬂpwv - pwxfﬁ‘u - ﬁxvff)y)

- me‘/f = ZYM ( #pwv - i)wvzf;u - ﬁwvzf:,;>

Y = X (8uPun = Pun[9T] )
2 s = ) V" (9= (o] ") Pun =2 e
(140)

that is,

D VD, Py = mew C éay—[gfﬂrv. (141)

We speak of the real-valued Equations (138) and (141)
as affine Dirac equations.

Discussion 40. Next, we construct a kind of complex-valued
representation of affine Dirac equation. The restriction of
the charge p,, to (U, ") is a function Py (%) with respect
to the coordinates (¥*) 2 (X%, X', %, %°). Let

lswv '%0 é pwv(gﬂ)d?’%
( ) J(Xl Xz X3)

(142)

Suppose a function f_, =f, (%) on (U,x") satisfies
that

(fwv)2d3ic:1 Eﬂafwv_o Mafwv:O.

Puv= U P |

(xl xZ X3) ’ T a)’zﬂ ’ a.;C‘u
(143)
We define v, and M, in the following way.
- - dp
2(d & dx"
ywv JL P(JJV J d"’ X
d(fen) 5 . d13
— wv P ~T
_fwvj o de Afwv wv?
1?[/(0'\/ é eiYwV é /‘BwviT
= (fwv) T wv +fwv wv;T (144)

wa wv;T fvava

In the QFT propagator, we usually take S in the path
integral [ €2y of a fermion in the form of

- J(IWYHDMV’ - IZ/MTW) d45€’ (145)
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where S and d*% are both covariant. We believe that the
external spatial integral f PP d’% is not an essential part

for evolution, so for the sake of simplicity, we do not take
. . 3~
into account the external spatial part J‘(Ecl,fcz,a?)d X but only

consider the evolution part dech. Meanwhile, in order to
remain the covariance, dech has to be replaced by [, dx".

Thus, in affine connection representation of gauge fields,
we shall consider an action in the form of

—JL (ilj/y”DMy/ - wmrw) dx’. (146)

Concretely speaking, denote

~ R 0 == ~~ R ~ o~y ~  ~w
Do 5 —z[PFH} s [PFH} e ;mew + ;Pwrw.

From Equation (135), we have

(D)2 | (PP e ). (148

And from Equation (140), we know Y ¥ Parvy = )
VD, P Then, it is obtained that

W,V

550) £ T5u1) = [ 3 (1P )5

w,v

J

[ S0 -7 ) o
p
J
J

V(8= [T P ) + e 5

<

(P (ulinT) = [o] FosPn) S ) 57
(7 (T [PRL] Moy + Fiine) 2
[ E o 0T 1] p)

iy iV, ~T
+fwve o va’[fwve “"/)dx

= szv (Fani?* (7S + Fane™ 0, ¥ =[P, 9,
Mo, ) 45°

[ Ztr Qulfn™=) < P, )
VMoV )45

3o o ]t )

w,v

- sz (V¥ DaoVn + VMV ) 45°
= —J.Lgv%v (iV“DW

Moy ) Vi 5"

(149)
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Thus, we have obtained a complex-valued representation
of gradient direction of p,..

Remark 41. From the above discussion, we know in the gra-
dient direction of p_, that

_lewviy‘ubwvyw“wd&r = prwv' (150)

This shows that s(L) and S(L) in Definition 16 and
Remark 17 are indeed applicable for constructing propa-
gator by () and () in affine connection representa-
tion of gauge fields. Therefore, the idea in Discussion
34 is reasonable.

4.5. From Classical Spacetime back to Full-Dimensional Space

Discussion 42. Now there is a problem. (M, %) and (M, €)
cannot totally reflect the geometric properties of internal
space of (M, %) and (M, ¥). Concretely speaking, in the
previous section, we discuss the affine Dirac equation y#
Pavi = M ON (M, €). Similar to Section 3.5, we have the
affine Yang-Mills equation K’:pg * =phy, on (M, 97) Sup-

pose there is no gravitational field, then the remaining non-
vanishing equations are just only

- - =0 P
yMPOO;,u = mOOT’ KOpa = Pg))a' (151)
There are multiple internal charges
pmn(m’n:4’ 5’”"®)’ (152)

on (M, F). We intend to use these p,, to describe leptons
and hadrons. However, via encapsulation of classical space-
time, (M, %) remains only one internal charge p,,, and it
falls short. It is impossible for the only one real-valued field
function p,, to describe so many leptons and hadrons.

On the premise of not abandoning the (1 + 3)-dimensional
spacetime, if we want to describe gauge fields, there is a
method that to use some noncoordinate abstract degrees of
freedom on the phase of e7s%" of a complex-valued field
function y. This way is effective, but not natural. It is not
satisfactory for a theory to adopt a coordinate representation
for external space but a noncoordinate representation for
internal space.

A logically more natural way is required to abandon
the framework of (1 + 3)-dimensional spacetime (M, %)
and (M, %). We should put internal space and external
space together to describe their unified geometry with
the same spatial frame. On (M, %) and (M, &), there are
enough real-valued field functions p,, to describe leptons
and hadrons and enough internal components [mnP]| of
affine connection to describe gauge potentials.

Therefore, only on the full-dimensional (M, %) and
(M, %) can total advantages of affine connection repre-
sentation of gauge fields be brought into full play and
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thereby show complete details of geometric properties of
gauge field. So we are going to stop the discussions about
the classical spacetime M, but to focus on the full-
dimensional manifold M.

Discussion 43. On M, due to I'y;yp = 1/2([MNP] + {MNP}),
[MNP] = 06,pByy (0By/0x" + (4p)BY), and Gy = 0,5By By,
we know that gauge field and gravitational field can both
be described by spatial frames By, and CX' in a reference-
system. Reference-system is the common origination of
gauge field and gravitational field. The invariance under
reference-system transformation is the common origination
of gauge covariance and general covariance.

We adopt the components [mnP] of [MNP] with m, n €
{4,5,---,D} to describe the gauge potentials of typical gauge
fields such as electromagnetic, weak, and strong interaction
fields and adopt the components p, . of p,, with m,n € {4
,5,-,D} to describe the charges of leptons and hadrons.
The physical meanings of the other components of p,\
and [MNP] are not clear at present; maybe they could be used
to describe dark matters and their interactions.

On orthogonal (M,¥) and (M, %), there are full-
dimensional field equations, i.e., affine Dirac equation and
affine Yang-Mills equation

YPPMN;P = Punio
(153)

M P M
KNpq =PnYo

which reflect the on-shell evolution directions Vp and Vt,
respectively. Their quantum evolutions are described by
the propagators in Definition 32 or Discussion 34.

Discussion 44. On an orthogonal (M, &), Equation (149)
presents as a full-dimensional action

s,(L) = J z (YPPMN;P + ‘SgPMN;P) dx’

LM,N

= _iJ Z Vun (YPDMNP + eoPDMNP)‘//MNde-

LMN

(154)

If and only if L, : g — g’ is an orthogonal transforma-
tion, Ly sends s,(L) to

i

Z (yP,pMN;P' + 85” PMN;P’)de

LMN

/ -_—
Sp(L) _j
. - P~ P~ li o
= —IJ Z 1// MN ()/ DMNP, + SO,DMNP,)WMNdx 5
LM,N
(155)

where p,y is determined by the reference-system fo f but
not geg, so p,,y does not vary with the transformation

L,:g—g'. We see that in affine connection
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representation of gauge fields, the gauge transformations
vy’ and D+ D' essentially boil down to the
reference-system transformation L.

Remark 45. For a general (M,¥), & is not necessarily

orthogonal, so the corresponding action should be
described by
sun(L) = J (BoY" Pasnip + €0 Paanip) 4% (156)
L

In this general case, Definition 16 and the method
in Discussion 34 are also available and effective, where
we take

sun() = | Doy (157)

Remark 46. We see that the real-valued representation
of action is more concise than the complex-valued rep-
resentation of action. Hence, it is more convenient to
adopt real-valued representations for field function, field
equation, and action.

In the following sections, we are going to use [MNP] to
show the affine connection representations of electromag-
netic, weak, and strong interaction fields and to adopt the
real-valued representation p,\., to discuss the interactions
between gauge fields and elementary particles. They are
based on the following definition.

Definition 47. Let M =P x N, r2dimP =3 and D 2 dimM

=5o0r6or8. Consider F=fof and &=gog that are
defined by Equation (33), that is, Vp € M,

(U(xA> (UE)f(P (UxM)g(p)(UC)

(08).

(158)

Bp

11>
~

1
V2

Ap

1>
~~

1
ﬁ

A})QT( @-1op T Lo@-1)p )
Ap2 ﬁ(r(m 1D ‘Fs(:s-l)P)>

F'ypp + F(®-1)(m-1)p)> Bpq

T'ypp - F(®—1)(®—1)P)’ F?’Q
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and furthermore, let

flp ) ("), & = 0x,
f(P 0(“ (Ea)) _65 ES
g(p): ¢ =0 (x"), " =83,

ap): B =B (). B =8¢,

(159)

(s',s,i=1,2,3;a’,a,mn=4,5,---,9) and both of F

and @ satisfy

(1)G (160)

= const, (ii) whenm # n,G,,, = 0.

In the above extremely simplified case, we use # and &
to show electromagnetic, weak, and strong interactions
without gravitation.

5. Affine Connection Representation of the
Gauge Field of Weak-
Electromagnetic Interaction

Definition 48. Suppose (M, F) and (M, &) conform to Def-
inition 47. Let D =r + 2 =5 and both of # and & satisfy

GE@-1(@-1) _ G2

(161)

Thus, # and & can describe weak and electromagnetic
interactions.

Proposition 49. Let the holonomic connection of (M, F) be
'Y, and Tyyp. And let the coefficients of curvature tensor
of (M, F) be Kijp, and K yypq. Denote

a

—_
/N

Koopq + K(%—l)(@—l)PQ))

V2

a

—_
/N

Keopq — K(®—1)(®—1)PQ)>

=

FIIJQ = — (K(Q—I)QPQ + KQ(%—])PQ)’
(162)

F%’Q 2 — (K(Q—I)SPQ - K@(@—l)PQ)'
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And denote g2 \/(GD) 4 (GSOV. Thus, the (=0 (B) =8, (C=61 (169

following equations hold spontaneously.

Then, compute (gc)r £ 1/2(Cf)j:,(a(Bf)2,/BEC + B(Bf)2,/8

b0 = _gig _ %, EB), and we obtain
0AY  0A3 (50):=0,  (4):=0, (4):#0;5 s tu=1,2,3;
3 _ Q P 142 241 BC > tu > bC > > b >4
Fro= 55 ~ gya +9(Apdq—4pdg), . ' f '
1 1 (163) a,b=4,5-,9D; ABC=12-9D. (165)
1 _aAQ_aAP AZA3 — A342
PQT 3P T 3xQ +9(ApAg — ApA0),

It is obtained from Equation (159) again that the semi-

2
2 04y 0A7

e Al 4 metric of (M, f) satisfies
PR 9xP 0xQ

+ g(A;Ag - A;Aé).

B, =0, C"=0, B'=0, C\ =0,

Proof. Due to Equation (159), it is obtained that the semi-
metric of (M, f) satisfies

B=6&, C =¢.
(166)

Lets',t',i,j,k=1,2,3;a",b",m,n,p=4,5,---,D. Com-

(Bf); =0, (¢ ?’ =0, (Bf)? =0, pute the metric of (M, %), and we obtain

Compute the holonomic connection of % according
to I'\p 2 172([3p] + {¥p}) = 1/2(C4 0By /0x" + C%(J[S}P)rBEJ’
and it is obtained that

. M/ .
I'yp=0, Iinp =Gy I'yp =Gy I'yp =0,

m _ M’ _ "
F]k 0’ ijk - GmM’ij - Gmm'[‘;’lz - 0’

m 1 m aBZ m(a b 1 0B
Ip=5 (Ca 57+ Ca (bp)Ba |> Tp = EéahB’,; (W + (gp)fBﬁ),

1 OBy B 1 0By
m — m m [ a b a
Np 2 (Ca OxP + Ca (Bp) TBN) > FmNp = Eé\ame (a—xgr + <BP> fBI%) .

Compute the coeflicients of curvature of &, that is,

. 0T ol

a H H a M _ !
KnmPQ - W ax—Q + FﬂanQ - FnPFzQ’ KmnPQ - GmM'KnPQ - Gmm'KnmPQ’

Gyyj=08,, B B +6,,BY B =8,,88" =8,, [ G/=5""C.C), =6""6.8, =7,
Gy =08, B Bl +8,,BY B! =0, G"=6""'Ci\Ch =0,

G,y =0, By BL +8,1,BL B =0, G =6"" CnC), =0,

Gy = BX'BY! + BYB® = const, G" =Cg_,Ca_, + CgCa = const.

(167)

(168)

(169)



22

and then, we obtain

K _ aF(Qfl)(Qfl)Q ar(®71)(®71)p
(D-1)(D-1)PQ ~ oxP - 72
o) N )
_ (D-1)Q D(D-1)P DD
Ko@po=—5— "~ 16
K _ o 9o O (p-nor
(D-1)DPQ = 5P 350
aF@mQ ar%%P D-1)(D-1
Kampg = —5op =~ + G
Hence,

1 a<F®®Q + F(s—l)(g—l)o)
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+G™® (F(Q—I)QPFQ(%—I)Q - F%(%—I)Pr(®—1)®Q>’
(r% r -T r ) + G D@ (F r -T r )
plo@-10 ~ L o@-1)p! 990 o@-1)pl (@-1)@-110 ~ L (@-1)@-1)p! D(®-1)0 )

+G%® (F@—l)wrme - F%PF<3—1)M> +GEED (T@-l)@-l)pf(@-l)mo - F(@—I)SPF(Q—I)(Q—I)Q>’

(F$($—1)Pr(®—l)®0 - T(%—I)QPFQ)(Q—I)Q)
(170)

1 a(r®®P+F(®—1)(®—1)P> 0B, 0By

A 1
Bro 5 (Kewra* K@) = 5= "G BT Cae e
1 1 /oI or
3 a _ DDQ DDP D1)(D-1
Fpq = NG (KQSPQ - K@fl)(%fl)PQ) VG ( o o2 T GEIE (I‘%(%fl)P[‘(fbfl)%Q - F(®1)@pf®(s1>q))

1 (o e L@ ner | oo 0Ay 04}
~ 7 ( 5P - 520 +G (F(Q—I)QPFQ(Q—I)Q - F@(Q}—l)PF@—l)@Q)) = 5P T 350
0AY A3
+ Q(Tg@q)zaf@fl)%o - T(@*l)%PFQ(Qfl)Q) = W‘f - W{i +g(ApAG — ApAg).

Then, Fp, and Fp, can also be computed similarly. []

Remark 50. Comparing the above conclusion and U(1) x S
U(2) principal bundle theory, we know this proposition
shows that the reference-system % indeed can describe weak
and electromagnetic field.

The following proposition shows an advantage of affine
connection representation, that is, affine connection repre-
sentation spontaneously implies the chiral asymmetry of
neutrinos, but U(1) x SU(2) principal bundle connection
representation cannot imply it spontaneously.

Definition 51. According to Definition 11, let the charges of
the above reference-system & be p,, , where m,n € {D -1
, D} ={4,5}. Then, 12 (P(®71)(®71)> P@@)T is said to be an
electric charged lepton, and v = (pg 5 ), p(gfl)Q)T is said
to be a neutrino. [ and v are collectively denoted by L. Thus,

1/v/2(1,1)L is said to be a left-handed lepton, and 1/+/2(1,
—1)L is said to be a right-handed lepton, denoted by

(171)

113

S-Sl

1>

(P(@q)(mq) + P®®>’ VL (pﬁ(ﬁ—l) + P(mq)m)»

113

S-Sl

—
=
>
<
=

(P@(@q) - P(sH)@)-
(172)

(P(@q)(@q) - P@@)’

Denote (I'y),np DY I'ywp concisely. Then, we define on
(M, @) that

N
Il>
S-Sl

(F(s—l)(s-l)P + Fssp): wpe — (F(®-1)®P + F@(%—I)P)’

S
o
113

(F(SD—I)(SD—I)P - T@w)» Wie — (F(Q—I)QP - F%(SD—I)P)’

(173)

and say A, is (affine) electromagnetic potential, while Z,,
W}, and W2 are (affine) weak gauge potentials.

Proposition 52. If (M, &) satisfies the symmetry condition
I'o_nopr =Lo@-1)p then the geometric properties | and v
of F satisfy the following conclusions on (M, %),
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lyp=0ply — gl Zp — glgAp — gvy, W}I»
lR;P =0plg — glxZp — gl Ap,

} (174)
Vip =0pVy — gviZp — gl Wh,

Vrp = OpVr — gVrZp-

Proof. Let He€{1,2,3,4,5}, he{4,5}. It follows from
Equation (168) that

pmn;P = aPpmn - pHnFIr;lIP - PmHF?P = appmn - PhnrilnP - pmhrﬁP'
(175)

O

Then, Equations (172) and (173) lead to Equation (174).
Remark 53. From the above proposition, we see that some

constraint conditions make the general linear group GL(2,
R) broken to a smaller group S, ie.,

Go_1nw-1=Goo, Io-nop=Iom-1)P

GL(2,R) S,

(176)

so that the chiral asymmetry of leptons arises in Equation
(174) spontaneously.

Remark 54. Proposition 52 shows that

(1) In affine connection representation of gauge fields,
the coupling constant g is possessed of a geometric
meaning that it is in fact the metric of internal
space. But it does not have such a clear geometric
meaning in U(1) x SU(2) principal bundle connec-
tion representation

1>

QU
1>

T
2 (P(@-n(m—w P@@)’

1>

d; (Pms» P(%—z)(mfz))T’

We say d, and u, are red color charges, d, and u,
are blue color charges, and d; and u; are green color
charges. Then, d,, d,, and d; are said to be down-type

T
d, (P(@-z)(g—zy P(@—l)(g—l))> U
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(2) At the most fundamental level, the coupling constant
of Z, and that of A, are equal, i.e.,

92=94=9 (177)
Suppose there is a kind of medium. Z boson and photon
move in it. Suppose Z field has interaction with the medium,
but electromagnetic field A has no interaction with the
medium. Thus, we have coupling constants
97%91= 9 (178)

in the medium, and the Weinberg angle arises.

It is quite reasonable to consider a Higgs boson as a zero-
spin pair of neutrinos, because in the Lagrangian, Higgs boson
only couples with Z field and W field but does not couple with
electromagnetic field and gluon field. If so, Higgs boson would
lose its fundamentality and it would not have enough impor-
tance in a theory at the most fundamental level.

(3) The mixing of three generations of leptons does not
appear in Proposition 52, but it can spontaneously
arise in Proposition 63 due to the affine connection
representation of the gauge field that is given by
Definition 59

6. Affine Connection Representation of the
Gauge Field of Strong Interaction

Definition 55. Suppose (M, %) and (M, %) conform to
Definition 47. Let © = r + 3 = 6 and both of # and & satisfy

G@2(D-2) _ G@®-1)(@-1) _ DD

(179)
Thus, # and & can describe strong interaction.

Definition 56. According to Definition 11, let the charges of
F be p,,., where m,n=4,5, ---,D. Define

II>

T
(P(m—z)(g-ly P(@—l)(g-z))>

T
U = (P(m-nm’ P@(s—l)) » (180)

a

us (/—’9(5}—2)’ P@fz)m)T-

color charges, and u;, u,, and u; are said to be up-
type color charges. Their left-handed and right-handed
charges are
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. 1 !
dy = 7 (P(mfz)(mfz) + P(@q)(@q)) dig = 7 (P(gfz)(gfz) - P(@—l)(fb—l))’
s 1 L1
dy = 5 (p(f_‘)—l)(ﬁ—l) + sz)» dr = 5 (P(@q)(@q) - P®®)>
s 1 L1
dy = 7 (Psm + P(sb—z)(sb—z>)’ dip = NG (ng - P(@-z)@—z))’
(181)
1 1
Uy = 7 (P(%—Z)(%—l) + P(%—l)(@-z)) Ur= 7 (P(@-z)(@—u - P@—l)(g-z))’
. 1 !
Uy = 7 (P(®—1>® + P@@—n)’ U = 7 (P(g D ~ P 1))
. 1 !
Uz = NG (P@(@—z) + P(®—2)®>’ Usp = 5 (P@@—z) P(g-z)g)
On (M, &), we denote
a _ — 2 2 _ — 2 _ _ 2
9,21/ (G D) 4 (GP) = \/(G@” D)2 4 (GO-DDD)? \/(G@ 2)(D- 2) + (G:m)
1 2 1 23 a 1
Up= Vi (F(Q—Z)(®—2)P + F(S)—l)(i)—l)P)) Xp = 7 (F(S—Z)(S—I)P + F(S)—l)(i‘)—z)P)’
Vléi(r ) Y23éi(r T )
P= 5\ @ @-r el | Ip 5 U e2@np ~Hen@-ar)
Uz_i(r +T ) X“éi(r +T ) 182
P= (@-1)(@-1)p T L ooP P 5 U @-nor T ha@-ne (182)
2 & 1 31 & 1
VP_iz(F(Sl)Ql Fawp) YP:*Z(F®1)®P FS)@]P)’
3 a 1 12 & 1
UP:_Z(F®®P+F®Z)®2P)’ sz—z(Fg(sszJfF@zgp))
3 2 1 12 & 1
Vp:—2<F®®P P)’ Yp_—z(Fg(sz F(@z@p)
We notice that there are just only three independent ones Al A;)Z Aff
in UL, U2, U3, VL, V3, and V3. Without loss of generality, let 1
p Up Up Vi Vp P u 8 ty Ap2 - | AZAZAZ |, (184)
2
Rp 2 agUp + baUs + cxUs, [ Up 2 agRp + agSp+arTp, AV ATAT
Sp 2 agUp + bsUp + ¢sUp, Up £ BrRp + BsSp + Br T,
where

Tp2apUp+bpUp+crUs, | Up 2ypRp +ySp +y1Tps

(183)

where the coefficients matrix is nonsingular. Thus, it is not
hard to find the following proposition true.

Proposition 57. Let A,(a=1,2,--,8) be the Gell-Mann
matrices and T,21/2A, the generators of SU(3) group.
When (M, ©) satisfies the symmetry condition I' (o 5 _sp
+ F(%*])(Q*I)P + F%@P = 0, denote

1
Ap =S+ 7 Tp, AR 2 X —iYF, AP 2 X3! —iY3),

1
T ,A23 éx23 _ iY23,
\/g p>4ip P p

31 a 31 , 31 43258 v23 , :v23 4335
Ay =Xy +iYy Ay = XY +iY P, A =

AP EXPHIYE, AT 2 -Sp +

27
Ve "
(185)
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Thus, Ap = T,A} if and only if

AhL=XP, Ap=YF, A} =Sp, Ab=X3),

5 _ 3l A6 _ 23 A7 _y23 48 (186)
A=Yy, Ap =Xy, Ap =Yy, Ay =T)p.

Remark 58. On the one hand, the above proposition shows that
Definition 55 is an affine connection representation of strong
interaction field. It does not define the gauge potentials as
abstractly as that in principal SU(3)-bundle theory but endows
gauge potentials with concrete geometric constructions.

On the other hand, the above proposition implies that if
we take appropriate symmetry conditions, the algebraic
properties of SU(3) group can be described by the transfor-
mation group GL(3,R) of internal space of €. In other
words, the exponential map

exp : GL(3,R) — U(3), [B%] +> €T« (187)

defines a homomorphism, and SU(3) is a subgroup of U(3).
Therefore, Definition 55 is compatible with SU(3) theory.

IIl>

P(@-1)(®-4) T P(2-3) 93))

(e
<p .

II'>

P>- 3)(9—3)))

IID

P®2®2+P®1(®1))

IID

P@-1)(>-1) +Pm>>

II!>

Pa> T P(2-2) @2))

Uy =

IID

&IH&IH&\H&P&IH&IH §|~§\~

P12t Pp>- 1))

a

(
(
(
(Pe-aion*Aionen)
(P
(

Uy, P$®2+sz®)
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7. Affine Connection Representation of the
Unified Gauge Field

Definition 59. Suppose (M, F) and (M, &) conform to Def-
inition 47. Let D =r+ 5= 28 and both of # and & satisfy

GD-9(D-4) _ G(D-3)(D-3) 5(D-2)(D-2) _

GO-D(@-1) _ GO

(188)

Thus, # and & can describe the unified field of electro-
magnetic, weak, and strong interactions.

Definition 60. According to Definition 11, let the charges of

Z be p,,,, where m,n=4,5,---,9. Define
T T
1= (P(®-4)(s>-4)’P(g—s)(®—3)) > vE <P(® 3)(D-4)° P(D-4)(D- 3)) g
T T
dy = (P(ﬁ) 2)(D-2) P(@*l)(i)—l)) s | i = (P(@—z)(@—l)’P(@—l)(@—z)) >
T T
dy = (P(m—l)(S—l)’ng) > u, = (P(@—l)@)P@(@—l)) >
T T
ds = (Pmm’P - 2)(@-2)) > u = (Pm(m-zyﬂg-z)%) :
(189)
And denote
2 5 (P )
NG o-4) T P(@-4)(2-3)
A )
NG P@-4)(2-3) )>
L 1
dig = 7 P@-2)(@-2) ~ P@—l)(g-n)»
L 1
dyp = 7 P@-1)(-1) Pm@)
(190)

Po> ~ P@fz)(safz)))

—_
e Y e e U

Uip = > P(@-2)(@-1) _p(®—1)(®—2))’
L 1

U = NG P@-no ~ Po@ 1))
L1

Usp = 7 Po(@-2) ~ P 2)23)
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n (M, &), we denote
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g 2 \/(G@—l)@—l)y + (G = \/(Gwl)(%—l))z + (G222

- \/(G(®—2><®—2))2 + (G®®)2’

Discussion 61. We know from Section 2.3 that the gauge
frame matrix [BS] € GL(5,R), (a,m=4,5,---,8); therefore,
when B}, are without any constraints, we can obtain a G
L(5,R) gauge theory. In consideration of the fact that
the exponential map

exp : GL(5,R) — U(5), [B%] +> €T«

(192)

defines a homomorphism and U(1) x SU(2) x SU(3) is a
subgroup of U(5). So there must exist some constraint
conditions of B? to make GL(5 R) reduce to U(1)xSU
(2) xSU(3), ie.,

constraint conditions of B,

GL(5,R)

U (1) x SU(2) x SU (3).
(193)

More generally, suppose we do not know what the sym-

L 1
w2 7 (r(®—4><® 3p + (3 p)’
) 1
Wp = —z(r(@ y@-3p ~ @32 4P)’
1
Xffé—(l“@ p@-1p @1 2p>’
2 (191)
L1
Y?: —Z(F(sv 2)(D-1)P F(@ 1)(D- 2p>’
L 1
X3 2 7 (F(m—mvp + F®(®-1)p>’
L1
Y; 2 7 (F@Amp F@(@q)p))
12 & 1
Xp = 7 (Fg(g-z)p + F(@—z)sp)’
2. 1
Yp = % (Fm(m—z)P - F(@-z)gp)
metry that can exactly describe “the real world” is, we
just denote it by S; then, the map
constraint conditions of B
GL(5,R) m_, g (194)

makes us be able to turn the problem of seeking for S into
the problem of seeking for a set of constraint conditions of
Bg,. “To describe $” and “to describe the constraint condi-
tions of B}~ are equivalent to each other.

Because gauge potentials I',,, , and particle fields p,,, are
both constructed from the gauge frame field By, , clearly here,
it is more flexible and convenient “to describe the constraint
conditions of Bf,” than “to describe S.”

Next, we have no idea what the best constraint condi-
tions look like, but we can try to define a set of constraint
conditions to see what can be obtained.

Definition 62. Similar to Remark 53, we define the constraint
conditions as follows.
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(1) 1st basic conditions
G@4)(D4) _ G(D-3)(D-3)
(195)

G@2)(®-2) _ G@®-)(@-1) _ DD

(2) 2nd basic conditions

{ r (D-3)(D-4)P = r (D-4)(D-3)P>

Iio2y@-2p + Io-1)@-1p + T'pop = 0-
(196)

(3) 1st conditions of PMNS mixing of leptons
- D2 D - D2 D
F($>—24)P = C®—§F($}—34)P’ F(S}—ZS)P = cg,iF@i)P, c
- D-1 2 D-
F(®—14)P = Cm-ér(mi)w

D-1 D-17D-4
Iin3p =l (@55)p  ©

) D o
Fipgp= c®,31"(g,34)p,

(4) 2nd conditions of PMNS mixing of leptons
P@-2)(2-3) = P(@-2)(d-4) | P(@-3)(-2) = P(-4)(D-2)
P@-1)(®-3) = P(@-1)(D-4)> | P@-3)@-1) = P(-4)(D-1)

Po(®-3) = Po(D-4)° P(@-3D = P-4

(198)
(5) 1st conditions of CKM mixing of quarks
D- D4 D - D3 D
F(afm = %éf(gfza)w F(ng)P = %ir(gfs)}» o4 o4 o4
D3 DD o4 DD Cp2=Cp1=Cp >
(@-1)p = Co-11 (D-4)P> @-1P= 11 (3P a5 o3 o3
D3 _ D4pD-3 D4 _ D3pDA 22717 %
Tep’ = Tig gp T'ep = TiaSsp
(199)

(6) 2nd conditions of CKM mixing of quarks

{ P@-2)(®-3) = P(@-1)(®-3) = Po(D-3) { P@-3)(®-2) = P(@-3)(2-1) = P(@-3)>

P(@-2)(®-4) = P(@-1)(D-4) = P (D-4)

(200)

where ¢/ are constants.

P(@-4)(®-2) = P(@-4)(-1) = P(@-0)>>
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Proposition 63. When (M, %) and (M, %) satisfy the sym-
metry conditions (1), (2), (3), and (4) of Definition 62, denote

P33t 5 <P(972)(®73) + P(@—S)(@—Z))
D-1 2
T (P(gfz)(zm) + P(@%)(%)) + % (P®(®—3) + P@fs)m))

33
v = (P(fb—3)(®—4) = (P(&z)(@zx) +P@74)(®72)>

P93 * 5 <P(972)(s>73) + P(@—S)(%—Z))

D
- (P(gfz)(zm) + P(@%)@q)) + % (P®(®—3) + P@fs)m))
(201)

Then, the geometric properties I and v of F satisty the
following conclusions on (M, ).

lL;P =0ply — gl Zp - glrAp - g"i W%n

lop=0ply — glnZp — gl Ap,

Rp = Oplr = g'rLp — gl12p (202)
Vip =0pVy — gV Zp = gl£ Wp,

VRrp = OpVg = gVrZp-

Proof. First, we compute the covariant differential of p,
of #.

o
pmn;P = aPpmn - PHnFZP - pmHFfP = aPpmn - p(®—4)nFmP4

- P(®—3)nrgn>};3 - P(@—z)nrﬁgz - P(s>71)n1%1;1
- Pi‘)nriP - Pm($—4)rngi’_4 - Pm(:r;fs)rns‘i;3
- Pm(&z)rg;z - pm(g—l)rn@P_l - quvrn%'

(203)

According to Definitions 60 and 62, by calculation, we
obtain that
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lip=0ply = gl Zp = glrAp — gvy, W;l>
% [C% i(P(@—z)(%—a) + P@fa)(gfz)) +c33 (P(m 2)(@-4) T P(D-4) @2 )} % W
%[Cg (P(Q*l)(%ﬁ) +P(®73>(971)) +c3) (P@ D(@-4) T P@-4)(®-1 )} % Wp
’% [c%% (Pm(:sfs) + P(st)m) +as (P®(®74) T P-4y )] NG Wi,
Ipp = Oplg = glxZp = gl Ap,
Vip=0pVy — gV Zp— gl Wp
—% [c%’i (P(s 2)(@-4) T P(D-4) (- 2)) +ogpo 3(P(® 3)@-2) T P@-2)@ 3))} \%W;)
’% [Cg_}t (P@ )(®-4) T P@-4)(>- 1)) + 3 (P(Qv-s)(m-l) + P(%—l)(%—S))} % Wp

(204)

Then, according to definitions of / "and v, we obtain that

D-1
o ( )

== + + =22 +

2o (P@fz)@%) P(®—4)(®—2)) 22 P@-1)(@-4) T P(@-4)(>-1)

2 22

+i<P®(974)+P@ 9D ) 2\/—( (@-2)(2-3) T P(2-3)(- z))

2
m(P($1)(®3+P93®1) 3—( $3+P$3)

21
vi=v, ﬁ(l’@z)(®4+l)m4®2)+ 3—( (®-1) 94)+P®4$1))

-2
22 (Pm(®-4) + P(®-4)®) + % (P(m-z)@-s) + P(m-3)(®-z)>

+%(P(® N®-3) T P@-3)(>- 1)+ ;f/i( D= 3>+P("D‘3>m)'

(205)

Substitute them into the previous equations, and we
obtain that

lip=0ply = gl Zp = glpAp - gvin >
Ipp = Oply = glpZp — gl Aps (206)
Vip = 0pVy — gViZp = glin >
Vrp = 0pVR — GVrZp.
O

Remark 64. The above proposition shows the geometric
origin of PMNS mixing of weak interaction. In affine con-
nection representation of gauge fields, PMNS mixing arises
as a geometric property on manifold.

In conventional physics, e, y, and T have just only onto-
logical differences, but they have no difference in mathemat-
ical connotation. By contrast, Proposition 63 tells us that
leptons of three generations should be constructed by differ-

ent linear combinations of {p,., p qP}p:4,5;q:6,7,8' Thus, e, u,

and 7 may have concrete and distinguishable mathematical
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. m m m
connotations. For example, let a,, b,, a,”, b,", a,, b, a.}],
and b, be constants; then, we might suppose that

a

T
e=l= <P(®74)(®74)’P(@%)(@%)) ’

a

v, 2v= (P(s—n(%%)’p@"‘)@’S))T’
uEaety (G350 HGa ooy g Paiey
“ngf’@-z)(ﬁm) + “@iﬁp(g-l)(g_g,) + a;;—;l%(s—ﬁ) T»
v, 2b,v, + % (b/@ 3P (@-2)(>-4) bﬂijp(g_l)(s_@ + béqu(@-@,
bm Do) bygif’(mq)(mm + byg—‘;%(s&)) T,
taus ! (argjp(g_z;)(s—z) + a,%iip<m_4><s>-1> + argf4p(®—4>®,
a,33P(®-3)®-2)  Gra3P-3)oo1) + a’%'3p(®_3)g) T’

R 1 D2 D1 >
v =bv, + 3 (b‘r‘b—Sp(Q—@(%—z) + br®73P(974)(971) +big 3P4y

T
D- D- >
brng(g-g@-z) + brsfil’@—s)@-n + 5,5,4,0(9_3)9) :

(207)

Proposition 65. When (M, F) and (M, %) satisfy the sym-
metry conditions (1), (2), (5), and (6) of Definition 62, denote

1
d, 22 ( + ) c®:3( + )
iL 2\/— 21 (P@-9®2 T P29 2\/2 -2\ P@-4)@-1) T P(@-1)(-9)

1
*2\/5% 1(/’('3 -3)(2-2) T P(@-2)(2- 3) 2\[% 2( P(®-3)(@-1) +P<9-1)(®-3))»

s c®’3(p +p )+—1 c"D’S(p +p )
2= 5 5% Pt Pene) 5 5\ Pegs Py

1

1 oy D4
+ mcm (P@a)@—z) + P(%—I)(mfa)) + mfzm (P(sfs)g + P®(®73)>>

!

1
a D-3 D-3
dy = 27\/5%—2 (P@%)m + Pm@%)) + IV Cp (P(mﬂg(mfz) + P(syz)(m%))

I sy I oy
+ m%—z (P(m-s)m + P®(®-3)> * mcm (P@-s)(@-z) + P(g—z)(®-3)>’

I a

I = . + L o +
F 2| P(@-4)(@-2) T P(@-2)(D-4) 27\/5%72 P(@-3)(-2) T P(@-2)(2-3)
I oy
2\/—59 1( P(@-a)(@-1) T P(@-1)(D-4 ) + mcmq (P(®—3)(®—1) +P<®—1)(®73)>’
12 + L +
22 P@-4(@-1) T P(@-1)(®-4) 2\/5 -1\ P@-3)(@-1) T P(@-1)(®-3)

+ % 3’ (P(Q'H)m + Pm(m%)) 2\/— <P(s 5t Pmmz))’

PR >-
U= 27\/— » (P($-4)® + P9(®—4)) + 27\/— g <P(S>—3)® + P®(®—3))
c + ) 2 ( + )
2\/—92(®4(®2 P(@-2)(>-4) 2\/—92 P@-3@-2) t P@-2)(@-3)

(208)

Then, the geometric properties d,, d,, ds, u;, Uy, u; of F
satisfy the following conclusions on (M, %).
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g g g
+?SUIRY31 25 2Rx23 25 2RY23

Proof. Substitute Definition 60 into p,,, and consider Defini-
tion 62, then compute them, and then substitute d,;, d;,,

di;, ), Uy, sy into them, and we finally obtain the results.
O

Remark 66. The above proposition shows a geometric ori-
gin of CKM mixing. We see that, in affine connection rep-
resentation of gauge fields, dlL, dzp d3L, ”1L’ ”2L> u3L arise
as geometric properties on manifold. Detailed equations
of CKM mixing can be obtained on an additional condi-
tion such as

Po-nm2) =0 Pt 8 Py
a7 P04 Pl
Po-n@1 =4 Pt Panoy
Py T4 Py
Poo = “03/323(973) + “04PQ>($74) + a”p@%m
+ “4OP(§>74)®
P@-2)@-1) = bzsP@—z)@-s) + bBP(m—n(m—s)

+ b24P D2)(D-4) T bMP D-1)(D-4)’
(D-2)(D-4) (D-1)(D-4) (210)

P2 = b Posyo) T 7 P
0P s B Posyoey
P22~ b23P(@72)(®73) + me:@(%—s)
+ b24P(®72)(Q>74) + b04Ps>(s>74)s
P-1n> = bwl’(s—n(@—s) + bospg(s—s)
+ b14P(971)(§>74) + b04P$(s74)’
Po(o-1) = b31P(®—3)(®—1) + bSOP@-s)m

+ b41P(®—4)(®—1) + b4OP(®—4)®-

Definition 67. A particle is not an existence at the place of
an individual point, and its concept is defined on the
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entire manifold. Concretely speaking, if the reference-
system F satisfies

P@-2)(@-2) = P(@-1)(@-1) = P = P(2-2)(®-1)

=P@-1)(2-2) = P@-1)D = Po(2-1)

= Pa@-2) = P29 = 0>
F(@-z)@-z)P = F(®—1)(®—1)P =I'pop = F(@-z)(m—mp
= F(Q—l)(Q—Z)P = F(@—l)@P = F@(Q—I)P

=I'y@ 2p =L 22p =0,
(211)

we say F is a lepton; otherwise, & is a hadron.

Suppose & is a hadron. For d,, d,, d;, uy, uy, us, if F
satisfies that five of them are zero and the other one is
nonzero, we say & is an individual quark.

Proposition 68. There does not exist an individual quark. In
other words, if any five ones of d;, d,, d;, u;, u,, us are zero,
thend;=d,=d;=u; =u,=u;=0.

For an individual down-type quark, the above proposi-
tion is evidently true. Without loss of generality, let u; = u,
=u;=0 and d, =d, =0; thus, p(s )0 2) = P>-1)(®1) =
Pas = 0; hence, we must have d; =0.

For an individual up-type quark, this paper has not
made progress on the proof yet. Nevertheless, Proposition
68 provides the color confinement with a new geometric
interpretation, which is significant in itself. It involves a nat-
ural geometric constraint of the curvatures among different
dimensions.

8. Conclusions

(1) An affine connection representation of gauge fields is
established in this paper. It has the following main
points of view

(i) The holonomic connection Equation (6) contains
more geometric information than Levi-Civita
connection. It can uniformly describe gauge field
and gravitational field

(if) Time is the total spatial metric with respect to all
dimensions of internal coordinate space and exter-
nal coordinate space

(iii) Energy is the total momentum with respect to all
dimensions of internal coordinate space and exter-
nal coordinate space

(iv) On-shell
direction

evolution is described by gradient

Advances in High Energy Physics

(v) Quantum theory is a geometric theory of distribu-
tion of gradient directions. It has a geometric mean-
ing discussed in Section 3.9

(2) In the affine connection representation of gauge
fields, some physical objects are incorporated into
the same geometric framework

(i) Gauge field and gravitational field can both be rep-
resented by affine connection. They have a unified
coordinate description. Some parts of I'y, describe
gauge fields such as electromagnetic, weak, and
strong interaction fields. The other parts of I'\,,
describe gravitational field

(ii) Gauge field and elementary particle field are both
geometric entities constructed from semimetric.
The components p,, of p, with m,n e {4,5,-,
D} describe leptons and quarks, and the other
components of p,,, may describe particle fields
of dark matters

(iii) Physical evolutions of gauge field and elementary
particle field have a unified geometric description.
Their on-shell evolution and quantum evolution
both present as geometric properties about gradi-
ent direction

(iv) CPT inversion can be geometrically interpreted as
a joint transformation of full inversion of coordi-
nates and full inversion of metrics

(v) Rest-mass is the total momentum with respect to
internal space. It originates from geometric property
of internal space. Energy, momentum, and mass
have no essential difference in geometric sense

(vi) Quantum theory and gravitational theory have a
unified geometric interpretation and the same view
of time and space. They both reflect intrinsic
geometric properties of manifold

(vii) The origination of coupling constants of interac-
tions can be interpreted geometrically

(viii) Chiral asymmetry, PMNS mixing, and CKM mix-
ing arise as geometric properties on manifold

(ix) There exists a geometric interpretation to the color
confinement of quarks

In the affine connection representation, we can get better
interpretations to these physical properties. Therefore, to
represent gauge fields by affine connection is probably a
necessary step towards the ultimate theory of physics.
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