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Abstract. We investigate isospin mixing effects in the asymmetry as obtained in parity-
violating electron scattering from *He, 2C , %0, “°Ca and %°Ni. The scattering analysis is
developed within plane (PWBA) and distorted wave (DWBA) Born approximations accounting
for nucleon form factors, which are given by the Galster parametrization. We use Walecka’s
Model (QHD), including the o, w, p and § mesons as well as the electromagnetic interaction.
The § meson effects are specially interesting once it should add a contribution for isospin mixing
together with the electromagnetic and p meson fields. Our model includes lagrangians with non-
linear terms as well as lagrangians including density dependent couplings. The model is solved
in a Hartree approximation with spherical symmetry using a self-consistent calculation by means
of an expansion of the nuclear wave functions and potentials in an harmonic oscillator basis.
Results using four different parametrizations are obtained and compared with calculations using
non-relativistic models.

1. Introduction
Although the weak interaction may be dwarfed by the electromagnetic interaction in an electron-
nucleus scattering, the use of a polarized beam can make the effects of the first one stand out.
This is possible since the electromagnetic interaction is independent of the polarization state
of the incident particle. In this way, we can define the asymmetry A as the ratio between the
difference and the sum of the scattering cross-sections for beams with positive and negative
polarizations.
For nuclei with N = Z in a Plane Wave Born Approzimation (PWBA), the asymmetry has
the form [1]
.2 T=0 0.GE
A o sin” Oy [1 + Ry, +F(q)]+[1+RV]G—O. (1)
E
The terms Rg:o and R(‘)/ are radiative corrections originated from higher order corrections in
the Standard Model and Oy is the Weinberg angle. The term I'(q) accounts for the isospin
mixing, i. e., contributions related to differences between proton and neutron distributions in
the nucleus. Finally, G%/ GOE represents the ratio of the strangeness nucleon form factor to the
nucleon isoescalar form factor.
While the nuclei properties for low momentum transfer are satisfactorily explained using u
and d quarks, for higher momentum transfer, excitations like the creation of quark-antiquark

pairs may happen. Those particle-antiparticle pairs may give rise to significant effects in the
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interactions between the probe and the nucleons. The lower mass of the s quark, when compared
with ¢, b and ¢ quarks, should imply in the presence of ss pairs, which originates the strangeness
form factor G°. In an attempt to determine this form factor, measurements have been made
using 'H and “He targets [2, 3].

When interactions that differentiate protons from neutrons are not taken in to account and
the radiative corrections as well as the strangeness content are disregarded, the asymmetry is
directly related to sin? Ay and can be used as a test of the Standard Model. Experiments using
12C with this goal are already completed [4] and new ones using 'H targets are in progress [5].
However, the presence of the electromagnetic interaction makes the isospin symmetry only an
approximated one, and a good understanding of the isospin mixing I'(g) is very important in
order to correctly analyze the asymmetry measurements.

We shall be concerned here on the effects of isospin mixing, based on an relativistic model for
the nucleus, while ignoring any effects due to strangeness content or corrections originated from
higher approximations in the Standard Model. Furthermore, only spherical nuclei with N = Z
in their ground states are considered.

2. Nuclear Model

The model chosen to describe the nuclear structure is based on Walecka’s Model [6]. The
interactions include the exchange of o (scalar), w (vector), p (isovector) and § (isoscalar) mesons
and the electromagnetic interaction. We start from two realistic lagrangians: one including non-
linear terms (NL) and another one which contains density dependent couplings (DD). They are
given by [7, §]
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(2)

with Q,, = 0w, — 0wy, féw = (3“(_); —81,5;“ F,, =0,A,—0,A,, p=/JVJ,and JI = WM,
The Dirac and Klein-Gordon equations of motion are then obtained from the Euler-Lagrange
equation for nucleons and mesons, respectively. Furthermore, we use a mean-field approach,
considering only the static, spherically symmetric case. After those approximations, we obtain
for the barionic field

(1 + 7’3)

AW | () = EV().

(3a)
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As for mesonic fields, we obtain

[=V? +m2]o(r) = —gops(i) — g20°(r) — g3o° () (3b)
(V2 +m§lé(r) = —gsp3(r) (3¢)
(V2 +milw(r) = gupp(F) (3d)
[—V? + m2]bo(r) = gpp3(F) (3e)
—V2A(r) = eplp(7), (3f)
with
ps(7) = VW (4a)
p5(7) = Urg¥ (4b)
pp(F) = V7" (4c)
p3(F) = Uy 30 (4d)
PAGER’ 0127% (4e)
For the DD lagrangean, we obtain
[—id -V +~°(m + T (pp)a(r) + Ts(pp) 38 (r)) ¥ (7)
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and

—V20(r) + mZo(r) = —Ts(py) ps(7) (5b)
—V26(r) + 5(?‘) —Ts(pv) p5(7) (5¢)
—V2w(r) + miw(r) = Tu(p) pB(F) (5d)
—V2b(r) +m2b(r) = Tp(pp) p3(F) (5e)
—V2A(r) = eplp(7). (5f)

Note that the couplings I';(pp) for the DD case are now functions of the barionic density and
are parametrized according to [8].
As we use a Hartree method, the nucleus wave equation is given by a Slater determinant. We

can, in this way, write the equation for the barionic field as an eigenvalue equation h, = E,1,,
with - 0.0)
Inrt\T ¢/§m 67 2
= (. : 6
wa(":‘) <annt(r) (z)—mn(g? <,0)> Ct ( )

Using an expansion of the wave functions gn.(r) and fn.(r) and of the mesonic fields in a
spherically symmetric harmonic oscillator basis, we can solve the system self-consistently from
an initial guess for the mesonic fields.



International Nuclear Physics Conference 2010 (INPC2010) IOP Publishing
Journal of Physics: Conference Series 312 (2011) 092027 doi:10.1088/1742-6596/312/9/092027

3. Asymmetry
The asymmetry can be defined in terms of the electron-nucleus cross-sections as

_doy —do-

A= doy +do_’

(7)

where doy and do_ stands for positive and negative helicity cross-sections. For nuclei with
N = Z in PWBA, assuming that p%(q)/p'3(¢) = N/Z, this expression takes a remarkable

simple form:
V2Gb
 dre

Ao Beq’. (8)
Here G represents the Fermi constant for the weak force, 3% = —2sin? @y, b is a characteristic
electron’s weak interaction constant and ¢ is the momentum transfer.

The Isospin Mixture function I'(¢) can then be defined in such a way that

A= Ap[1 +T(q)] or, equivalently, I'(q) = ;14 - 1. (9)
0

This definition is useful as it exposes the asymmetry dependence on the differences between
neutron and proton distributions.

4. Results

Some numerical results obtained solving the above described model for *He, 2C, 60, 400
and %SNi are shown in Tables 1 and 2. The experimental energies and radii are taken from
References [9, 10, 11]. The PWBA and DWBA asymmetries are displayed for ¢ values from
the first diffraction maximum region on Figures 1 and 2 and compared with non-relativistic
results based on a Hartree-Fock Skyrme interaction calculation [12] for the '2C nucleus. As can
be noted, the first diffraction maximum occurs at lower momentum transfer for heavier nuclei.
Results using NL models for '?C are not displayed, once numerical stability was not achieved
for those calculations and this particular nucleus.

Table 1. Results for binding energy per nucleon and charge radius for non-linear model without
9 (NL3 [7]), with 6 (NL6 [13]), density dependent without 6 (TW [8]) and with 6 (DDHJ¢ [14]).

Energy (MeV) Charge radius (fm)
Nucleus  NL3 NLé TW DDHé Exp. NL3 NLé TW DDH§ Exp.

‘He  -6.932 -6.934 -6.578 -6.578 -7.073 1.972 1.973 1948 1.950 1.696
12¢ —~ - -7.025 -7.026 -7.680 - - 2417 2420 2.471
160 -7.914 -7.927 -7.700 -7.701 -7.976 2.683 2.683 2.642 2.646 2.730
0Ca  -8.491 -8.672 -8.344 -8.346 -8.551 3.454 3.436 3.402 3.408 3.485
56Ni  -8.594 -8.729 -8.477 -8.480 -8.642 3.703 3.684 3.678 3.684 -

5. Conclusions

Asymmetry measurements are a way to obtain unique information about the difference between
neutron and proton distributions in nuclei. As recent experimental results for the strangeness
contributions are consistent with zero [3], the isospin mixture emerges as a very important
contribution, determinant to the understanding of the asymmetry. The calculations of this
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Figure 1. Isospin Mixing for 2C in PWBA (left) and DWBA (right). Full line: Skyrme results

from Reference [12].
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Figure 2. Isospin Mixing for “He and '60. Relativistic DWBA comparing NL (dashed lines)

to DD (dashed-dotted lines) results.
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Table 2. Results for proton skin (difference between proton and neutron distributions radii).
Proton Skin (fm)

Nucleus NL3 NL§ W DDH6

He 0.0140 0.0155 0.0141 0.0186
2¢ - - 0.0253 0.0322
160 0.0276 0.0289 0.0293 0.0360
OCa  0.0485 0.0497 0.0513 0.0617
56Ni  0.0491 0.0514 0.0517 0.0639

term shows small contributions in the region of low momentum transfer and should favor the
measurement of Oy as a test of the Standard Model. Furthermore, our results agree with the
non-relativistic ones in magnitude but the position of the diffraction minima are substantially
different. It should be noted, however, that the '2C is an open-shell nuclei and the model herein
used assumes a spherical, closed-shell nuclei. As can be seen from our results, the differences due
to inclusion of the § meson are more noticeable for the DD case. This can be attributed to the
fact that in this case just minor modifications on the p parameters were made after the inclusion
of the J, while the parameters for the other meson couplings were maintained. For the NL case,
a full re-parametrization was done when the new meson was added. Although the differences
between the various parametrizations are small at low momentum transfer, as ¢ increases they
become very large. According to our theoretical analysis we conclude that the best ¢ windows
to measure those differences depend on the particular nucleus.
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