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Experimental study of modified
Tavis-Cummings model with directly-coupled
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Abstract: The Tavis-Cummings model is intensively investigated in quantum optics and
has important applications in generation of multi-atom entanglement. Here, we employ a
superconducting circuit quantum electrodynamic system to study a modified Tavis-Cummings
model with directly-coupled atoms. In our device, three superconducting artificial atoms are
arranged in a chain with direct coupling through fixed capacitors and strongly coupled to a
transmission line resonator. By performing transmission spectrum measurements, we observe
different anticrossing structures when one or two qubits are resonantly coupled to the resonator.
In the case of the two-qubit Tavis-Cummings model without qubit-qubit interaction, we observe
two dips at the resonance point of the anticrossing. The splitting of these dips is determined by
∆λ = 2

√︂
g2

1 + g2
3, where g1 and g3 are the coupling strengths between Qubit 1 and the resonator,

and Qubit 3 and the resonator, respectively. The direct coupling J12 between the two qubits
results in three dressed states in the two-qubit Tavis-Cummings model at the frequency resonance
point, leading to three dips in the transmission spectrum. In this case, the distance between the
two farthest and asymmetrical dips, arising from the energy level splitting, is larger than in the
previous case. The frequency interval between these two dips is determined by the difference
in eigenvalues (∆λ = ε1+ − ε1−), obtained through numerical calculations. What we believe as
novel and intriguing experimental results may potentially advance quantum optics experiments,
providing valuable insights for future research.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Generalizing a single two-level atom Rabi system [1], which describes the interaction of a
two-level atom and a single-mode cavity, to N atoms case leads to the well-known Dicke model
[2]. When the cavity and the atoms in the Dicke model are nearly resonant, and the system
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remains in a weak or strong coupling regime, the Tavis-Cummings (TC) model is derived by
employing the rotating wave approximation (RWA) [3]. Enhancing the collective coupling
strength with an increasing number of atoms, following a relationship of G = g

√
N in Ref. [3]

was predicted. Cavity quantum electrodynamics (QED) [4–7] has achieved considerable attention
in the study of atom-cavity interactions, particularly in solid-state semiconductor systems [8–12],
superconducting quantum circuits [13–17], and quantum dot systems [9]. Over the years, the
experimental observations of vacuum Rabi splitting [8–12,18–20] and vacuum Rabi oscillations
[21–23], predominantly manifested in the energy level anticrossing phenomenon between a qubit
and a resonator, which has provided compelling evidence of strong light-atom coupling.

Circuit quantum electrodynamics (Circuit QED), serving as an excellent experimental platform
for superconducting quantum systems, has enabled the realization of the standard Jaynes-
Cummings (JC) model in cavity QED through the strong coupling of superconducting artificial
atoms and a transmission line resonator [24]. An experiment of strong coupling between a
single photon and a superconducting qubit was carried out with a circuit QED system and an
anticrossing phenomena was observed [14]. Furthermore, when one or two photons are strongly
coupled to artificial atoms, the energy level splitting experimental results of the first |1±⟩ and
second |2±⟩ doublet states confirm the nonlinearity of the JC model [25]. Vacuum Rabi splitting,
resulting from the coupling of a multi-level atom to a transmission line resonator, gives rise
to doublets, and the observed sector-shaped anticrossing structures generated by multiphoton
transitions under high driving power follows a

√
n pattern in the JC ladder [26].

The TC model was extensively explored based on circuit QED and waveguide QED. In
multi-qubit TC models, the creation of maximum Greenberger-Horne-Zeilinger entangled states
is deterministically allowed [27], and the strong coupling between the cavity and qubits leads
to the suppression of qubit linewidth [28]. The collective effects of multiple qubits coupled to
a cavity lead to a dispersive frequency shift of the cavity, resulting in an ensemble’s AC Stark
shift [29]. In addition, the effect enables the investigation of quantum critical behavior based
on superconducting circuits [30]. Subsequently, the TC model was studied with an impressive
number of 4300 superconducting qubits in an experiment, and the collective effects of the qubits
have greatly facilitated the significant dispersive frequency shift of the cavity [31].

There are some research on energy level anticrossing using circuit QED system. Considering
qubits without interaction, the JC and TC models of strong coupling between them and the cavity
field, the experimental energy level splittings of these different models revealed a dispersion
of collective atomic coupling strength following a

√
N relationship in Ref. [32]. Two qubits

with adjustable effective distance are coupled to a one-dimensional coplanar waveguide, and
the super- and sub-radiant states are generated in the case of decoupling between the two
qubits. However, when the virtual photon induces indirect coupling between two qubits, the
phenomenon of anticrossing of the qubit energy levels occurs, and the super- and sub-radiant
states disappears [33]. Two transmon qubits are coupled to a one-dimensional waveguide, and
interatomic interactions mediated by virtual photons result in a large collective Lamb shift. This
is reflected in the observation of obvious anticrossing between the two qubits, and the minimum
size of the resonance point separation reaches twice the transition line width [15]. Theoreticians
predicted that the spacing and depth of the two dips of the output spectrum determined by the
modified TC model are influenced by the number of atoms and the coupling strength between
them [34].

Our experiment studied the modified TC model with three tunable Xmon qubits (artificial
atoms) arranged in a chain with direct coupling through a fixed capacitor and strongly coupled to
a one-dimensional transmission line resonator (cavity). In Sec. 2, we presented the system’s
theoretical model and circuit diagram and conducted characterizations of the coupled system. In
Sec. 3, we measured and analyzed the energy level splittings of the system with or without direct
interactions between the atoms, respectively. Finally, in Sec. 4, we gave the conclusion.
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2. Theoretic model and sample characterization

As illustrated in Fig. 1, the device comprises three Xmon qubits, denoted as qubits 1, 2, and 3,
respectively, that are capacitively coupled to a single-mode cavity simultaneously. Meanwhile,
the three qubits are strongly coupled to a one-dimensional transmission line (open space) utilized
for spectrum measurement in the experiment (not illustrated). In the experiment, we studied
the two-qubit TC model without or with direct coupling between the two qubits by selecting
qubits 1 and 3 or 1 and 2 are simultaneously resonant to the cavity, respectively, while keeping
the last qubit far detuned from the cavity. The Hamiltonian describes this system under the RWA,
denoted as

H = ℏωra†a +
3∑︂

i=1
ξiℏ

(︃
1
2
ωiσzi + gia†σ−

i + giaσ+i

)︃
+ ξ2ℏJ12

(︁
σ+1 σ

−
2 + σ

+
2 σ

−
1
)︁
. (1)

Here, σzi and σ+i = |e⟩⟨g| (σ−
i = |g⟩⟨e|) represent the Pauli operators and raising (lowering)

operators of qubit i (i = 1, 2, 3), where |e⟩ and |g⟩ correspond to the excited state and ground
state of the qubit i, respectively. The photon creation (annihilation) operator of the resonator is
denoted by a† (a). The parameter ξi is used to split Eq. (1) into two-qubit TC model of the two
distinct cases, where ξ1 = 1, ξ2 = 0, and ξ3 = 1 (ξ1 = 1, ξ2 = 1, and ξ3 = 0) represents Case 1
(Case 2).
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Fig. 1. (a) Theoretical model. For brevity, this figure illustrates both two-qubit TC models
in Cases 1 (ξ1 = 1, ξ2 = 0, ξ3 = 1) and 2 (ξ1 = 1, ξ2 = 1, ξ3 = 0). Decay rate of
resonator is κ/2π = 22 MHz, and relaxation rates of Qubits 1, 2, and 3 are γ1/2π = 51 MHz,
γ2/2π = 43 MHz, γ3/2π = 41 MHz, respectively. (b) Simplified circuit model of two-qubit
TC system is demonstrated. Red and orange dotted lines represent Cases 1 and 2, respectively.
(c) Simplified diagrams illustrating energy level distribution. State |0⟩ (|1⟩, |2⟩) corresponds
to the photon number state of the resonator. Applying appropriate driving can induce
transitions in the system. Blue and green double-headed arrows indicate transitions in Cases
1 and 2, respectively.
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In Fig. 1(a), the three qubits, with transition frequencies ω1, ω2 and ω3, respectively, are
coupled to a cavity with resonance frequency ωr. The coupling strengths between the cavity
and qubit i are denoted by gi. Qubits 1 and 2 are directly coupled to each other with a coupling
strength of J12. However, there is no direct coupling between qubits 1 and 3. Therefore, the
following two cases are taken into account: 1) ξ1 = 1, ξ2 = 0, ξ3 = 1, where is the original
two-qubit TC model case and corresponds to only qubits 1 and 3 are simultaneously resonant to
the cavity without direct coupling between the two qubits. 2) ξ1 = 1, ξ2 = 1, ξ3 = 0, where is the
modified two-qubit TC model case and corresponds to only Qubits 1 and 2 are simultaneously
resonant to the cavity with direct coupling between the two qubits.

The simplified circuit model is presented in Fig. 1(b). We realized nearest-neighbor coupling
between qubits 1 and 2 through the capacitor C12 and three qubits are strong coupling to the
transmission line resonator through the capacitors C1, C2 and C3, respectively. On-chip control
lines could independently tune the transition frequency of each qubit. Therefore, we achieved
Cases 1 or 2 by adjusting the transition frequency of qubits 2 or 3 to be below 2π × 4 GHz, which
is far detuning from the frequencies of the cavity and the other two qubits. In Cases 1 and 2, we
can implement two TC models to study the influence of direct coupling between two qubits on
energy level anticrossing.

To predict the frequency intervals of energy level splitting in the two cases from a theoretical
point of view, we first analyze the eigensystems in the two cases. Clearly, for Case 1 of the
Hamiltonian in Eq. (1), the conserved quantity of the two-qubit TC model is N = a†a + σz1/2 +
σz3/2. When the conserved quantity is truncated to the single excitation case (N = 1), the basis
is reduced to the three states |1, g, g⟩, |0, e, g⟩, and |0, g, e⟩. The state |0, g, g⟩ represents both
qubits being in the ground state with no photons in the resonator. For convenience, we consider
the case of ω = ωr = ω1 = ω3. The Hamiltonian of Case 1 can be written as a matrix:

H =
⎛⎜⎜⎜⎜⎝
ω g3 g1

g3 ω 0

g1 0 ω

⎞⎟⎟⎟⎟⎠
. (2)

Its corresponding eigenvalues are
ε1− = ω − ḡ,
ε1 = ω,
ε1+ = ω + ḡ,

(3)

where we adopted the following definition

ḡ2 =
(︂
g2

1 + g2
3

)︂
, (4)

and the eigenvectors after normalization are

|ε1−⟩ = −
1
√

2
|1, g, g⟩ +

g3
√

2ḡ
|0, g, e⟩ +

g1
√

2ḡ
|0, e, g⟩,

|ε1⟩ = −
g1
ḡ
|0, g, e⟩ +

g3
ḡ
|0, e, g⟩,

|ε1+⟩ =
1
√

2
|1, g, g⟩ +

g3
√

2ḡ
|0, g, e⟩ +

g1
√

2ḡ
|0, e, g⟩.

(5)

Because an analytical expression for the eigensystem cannot be obtained in Case 2, numerical
methods are employed to solve for the eigenvalues and eigenvectors. Figure 1(c) illustrates the
related transitions of the TC models in Cases 1 and 2, respectively. We introduce two states
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|B⟩ = g1
ḡ |e, g⟩ + g3

ḡ |g, e⟩ and |D⟩ =
g3
ḡ |e, g⟩ − g1

ḡ |g, e⟩ that are only related to the atomic states.
In Case 1, the cavity field is only coupled to state |B⟩ and is decoupled from state |D⟩, which
causes the the eigenstate |ε1⟩ not to exist at the resonance point ω. Therefore, the system exhibits
only two effective eigenstates |ε1−⟩ and |ε1+⟩. In case 2, the interaction between the qubits J12
induces the coupling of states |B⟩ and |D⟩, resulting in a new eigenstate |E1⟩. All three eigenstates
incorporate the single-photon state |1⟩ of the cavity, therefore, the system’s energy spectrum
features three eigenvalues at the cavity frequency degeneracy ω.

Our experiment is carried out in a dilution refrigerator at a base temperature of around
30 mK. From the transmission measurement, the fundamental frequency of the resonator
ωr/2π ≈ 4.285 GHz with decay rate κ/2π ≈ 22 MHz when all qubits are far detuned from the
resonator mode. As illustrated in Fig. 2, a two-dimensional transmission plot of the transmission
amplitude through the transmission line is measured in the frequency range of 4-5.2 GHz with
the magnetic flux bias δΦ1 from −400 to 400 mΦ0 with a vector network analyzer (VNA), where
Φ0 is the flux quantum Φ0 = h/2e. From the data, we extracted the maximum Josephson energy
Ej1,max/h ≈ 321.3 GHz and the charging energy Ec1 ≈ 10 MHz of qubit 1. We performed similar
characterizations for qubits 2 and 3 (not indicated in text) and extracted maximum Josephson
energies Ej2,max/h ≈ 305.4 GHz and Ej3,max/h ≈ 322.6 GHz, charging energies Ec2 ≈ 11 MHz
and Ec3 ≈ 11 MHz, respectively. Furthermore, the maximum transition frequencies of Qubits 2
and 3 are ω2,max ≈ ω3,max ≈ 2π × 5.22 GHz.

(a) (b) (c)

Fig. 2. (a) Transmission spectrum through qubit 1. Transmission amplitude coefficient |t| as
function of magnetic flux bias δΦ1 and probing frequency. Transitions |g⟩ ↔ |e⟩ are revealed
as sharp dips. Maximum transition frequency of qubit ω1,max/2π = 5.06 GHz at δΦ1 = 0.
There are two anticrossings due to coupling to resonator around δΦ1 ∼ ±200 × 10−3Φ0.
(b) Anticrossing in spectroscopy of qubit magnified with dashed green rectangle range in
Fig. 2(a). White dashed curve is theoretical calculations of energy levels. (c) Splitting at
positions indicated by arrows, and coupling strength between qubit and resonator is extracted
as g1 = 2π × 150 MHz.

In Fig. 2(b), it indicates that qubit 1 is resonant with the fundamental mode of the resonator
when the biased flux δΦ1 ≈ 276 mΦ0. At this degeneracy point, the anticrossing in the energy
levels occurs, leading to a split energy spectrum with two curves. We extracted the coupling
strength g1/2π = 150 MHz between qubit 1 and the resonator mode from the fitting of the
anticrossing. Similarly, the coupling strengths between qubit 2 and the resonator mode, and qubit
3 and the resonator mode, are g2 ≈ g3 = 2π × 90 MHz, respectively. The system works in a
regime of strong coupling because the minimum of (g1, g2, g3, J12) is larger than the maximum
of (κ, γ1, γ2, γ3).

3. Splitting of anticrossing in the TC model

After performing basic characterizations on the device, we studied the anticrossing in the energy
levels of the two-qubit TC model system for Cases 1 and 2, respectively. First, we measured
the anticrossing of the coupled system works in Case 1 where qubits 1 and 3 were not directly
coupled. Here, we kept Qubit 3 at degeneracy (ω3 = ωr) and observed the one-photon one-qubit
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doublet (see left of Fig. 3(a)). Here, qubit 2 remained far detuned from the resonator mode for
Case 1 measurement. Qubit 1 is then tuned through the qubit-resonator coupled states from lower
to higher values of biased flux δΦ1. When both qubits and the resonator are exactly in resonance
at the positions (δΦ1 ≈ 278 mΦ0) indicted by arrows in Fig. 3(a), we observed two distinct dips
presented in Fig. 3(b) with a frequency interval between them ∼ 2π × 358 MHz. The two dips
corresponded to the doublet |ε1−⟩ and |ε1+⟩ with eigenenergies ℏ(ωr − ∆λ/2) and ℏ(ωr + ∆λ/2),
respectively.

Fig. 3. (a) Resonator transmission spectrum reveals the coupled system energy level
anticrossing in Case 1. Here, we keep qubit 3 at the degeneracy (ω3 = ωr) and vary the flux
bias of qubit 1. (b) Splitting at positions is indicated by arrows in (a). Frequency interval
between two dips is around ∼ 2π × 358 MHz, indicating splitting of energy levels.

We theoretically calculated the energy levels by diagonalizing the Hamiltonian in Eq. (1) with
the extracted experimental parameters and presented it as the dashed curve in Fig. 3(a). There
was consistency in the experimental and theoretical results. In two sides of Fig. 3(a), it is evident
that there are three dips corresponding to three dressed states of the coupled system when qubit 1
is not biased at degeneracy. According to Eq. (5), when the resonator and the qubits degenerate,
the system’s energy levels split into two dressed states, resulting in two symmetric dips with
equal depth. It is consistent with the results presented in Fig. 3(b). The symmetric nature of
the dips around ωr can be inferred from the relationship (ε1+ + ε1−)/2 = ωr. The difference
determines the splitting interval

∆λ = ε1+ − ε1− = 2
√︃(︂

g2
1 + g2

3

)︂
= 2π × 350 MHz (6)

between the two effective eigenvalues. Notably, it agrees well with the experimental value
2π × 358 MHz.

Next, we carried out measurements for Case 2, where Qubits 1 and 2 were directly coupled
with a fixed capacitor C12 in Fig. 1. In Fig. 4, we fixed the transition frequency of qubit 1 around
4.53 GHz and measured the transmission spectrum through qubit 2 in a frequency range from
4.2 GHz to 4.8 GHz. The dashed curve is the theoretical calculation by diagonalizing the system
Hamiltonian, and we obtained the coupling strength J12 = 2π × 90 MHz between qubits 1 and 2.

As presented in Fig. 5(a), the direct interaction between the two qubits affects the anticrossing
in the spectroscopy of qubits 1 and 2, which are simultaneously resonant to the resonator mode.
Here, we kept qubit 2 at degeneracy and qubit 3 significantly detuned from the resonator mode
for the entire Case 2 measurement. The energy level splitting in the spectroscopy was no longer
symmetrical, and there was a shifted spectral line at degeneracy. Extracting the experimental
data at δΦ1 ≈ 278 mΦ0 from Fig. 5(a), we observed that the frequency splitting size between the
upper and lower, middle and upper, and middle and lower anticrossing levels were approximately
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Fig. 4. Anticrossing in spectroscopy of qubit 2 where qubit 1 is biased atω1/2π = 4.53 GHz.
Dashed lines are theoretical calculations of energy levels, and extracted direct coupling
strength between two qubits is J12/2π = 90 MHz.

380 MHz, 260 MHz, and 120 MHz, respectively, as depicted in Fig. 5(b). Introducing coupling
between the two qubits enhanced the separation between the two dips on the left and right sides.

(a) (b)

380MHz

120MHz 260MHz

Fig. 5. (a) Resonator transmission spectrum reveals the coupled system energy level
anticrossing in Case 2. Dashed curve is theoretical calculation of energy levels. Here,
we keep qubit 2 at the degeneracy (ω2 = ωr) and vary the flux bias of qubit 1. (b)
Two-dimensional representation indicates three dips with different depths and asymmetry.

The dashed curve in Fig. 5(a) is the theoretical simulation by diagonalizing the system
Hamiltonian. According to the theory, three dips are expected to appear at the system’s resonance
point ω because there is a single-photon state |1⟩ of the cavity in the eigenstate |E1⟩, as shown
in Case 2 of Fig. 1(c). From Fig. 5(b), we can observe that, in addition to the two deeper
dips on the left and right sides, there is also a relatively shallower dip in the middle. By
performing numerical calculations, the intervals between the two asymmetrically separated dips
on the left and right sides, right and middle side, and middle and left side were expressed as
∆λ1 = E1+ − E1− ≈ 373 MHz, ∆λ2 = E1+ − E1 ≈ 295 MHz, and ∆λ3 = E1 − E1− ≈ 77 MHz,
respectively. Remarkably, the experimental result of interval between the left dip and right dip is
in good agreement with the theoretical calculation. However, the deviation between theory and
experiment for intervals between the middle and right side, middle and left side may come from
the uncertain position of the middle dip which is affected by background of measurement setup.

By comparing the theoretical results of Cases 1 and 2, we observed that the cavity field is only
coupled to state |B⟩ and has no interaction with state |D⟩ in Case 1. Consequently, only two
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energy level splittings occurred at this point, resulting in two symmetric dips about the resonant
point, which aligned with the observed experimental results for Case 1. In Case 2, the qubit-qubit
interaction allowed state |B⟩ and state |D⟩ are coupled, resulting in eigenstate |E1⟩. This led to
three energy level splittings at the resonant point, manifesting as three asymmetric dips. The
experimental results revealed the presence of three clear dips. The interaction between the qubits
in Case 2 results in a larger energy level splitting scale compared to Case 1, which is evident
from the wider frequency interval between the two farthest dips in Fig. 5(a) compared to the dips
in Fig. 3(a).

4. Conclusion

In conclusion, we studied the energy level anticrossing in the TC models, where two qubits were
coupled to a single-mode cavity in two cases. In the case of the two-qubit TC model without
interaction between the qubits, we observed two dips with equal depth and symmetry about
the degeneracy point. However, if there was interaction between the qubits, we observed an
increase in the distance between the farthest two dips, and the symmetry of the dips was no
longer maintained. In Cases 1 and 2, the frequency interval between the farthest two dips at the
resonance point was found to be equal to the difference between their respective maximum and
minimum eigenvalues, ∆λ = ε1+−ε1−. This observation provides new insights on TC models and
enriches experimental research on quantum optics based on superconducting quantum circuits.
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