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As a step in the architectural design of a quantum processing or sensing system with control and 
signaling, an attempt is made at putting in parallel functional properties of the random flows between 
neurons through electrical synapses, and quantum particle flows inside a quantum processing system 
mimicking biological processes. Based on a simplified dynamic electrical synapse model, a quantum 
synapse circuit design is proposed. This is extended to the case of bidirectional flows through a 
synapse, highlighting the possible role of quantum synapse circuits as highly parallel controlled 
interfaces crucial in sensing and sensor fusion systems. A short status of the quantum simulation is 
provided.
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Whereas quantum physics1, quantum computing2and quantum sensors3,4, have grown in importance, an 
innovative stream of research has emerged rooted in architectural features mimicking biological elements and 
fluxes5,6. It has been motivated by three concurrent evolutions ; the first relies in exploiting new particle physics 
effects (such as : Moiré patterning on graphene structures7, quantum Hall effect8, magnetic control of quantum 
pathways9, etc. ) discovered in some materials ; the second relies on the need for quantum computing to be 
able to address less recursive algorithmic computations and in particular embedded uses with sensing and 
actuation10; the third relies on the well-known fact that biological processes (such as: vision analysis, allostatic 
load, cortical reflections ) demonstrate amazing sensing and adaptation capabilities reminding of superposition 
and entanglement11, especially so, as such biological processes are triggered by randomness, although of a 
biochemical nature very different from quantum particles. This gives the motivation justified in this paper to 
attempt to mimic some of these biological processes by suitable quantum circuits, even if the time scales are 
completely different.

More recently, it has been shown how signaling and control can be added in quantum computing architectures 
inspired by biology, as required in time critical embedded applications, while preserving decidability12.

Whereas such prior results focused in more detail on the particle physics effects exploited in early realizations5, 
as well as on biological experiments supporting the developed architecture13(such as combined light and sound 
excitations on living creatures (Patent [A]), the present paper illustrates how biological processes around a 
synapse can lead to the specification of quantum circuits with high relevance in some quantum sensing and 
sensor integration applications. To this end, the choice of electrical synapses as a base is driven by their capability 
to interface and conduct selective fusion between specialized neurons or specialized quantum sensors. It is to be 
recalled, that neurons offer native spatiotemporal integration14, correlation15–17, as well as gating, interference 
filtering, splitting and other functionalities required in sensor signal processing; for an overview in biology see18.

This research rests on extensive research in biology and on quantum processing architectures inspired by 
biology. It is necessary to point out upfront that artificial neural networks and their associated theoretical models, 
are out of scope and of little relevance here, although some attempts have been made at conducting the training of 
artificial neural networks on quantum computers19. Indeed, the approach is not to exploit mathematical models 
for an artificial neuron or synapse, but to embed the biological signal behavior directly into quantum gates.

Research question
The goal of this paper is to propose a quantum circuit design of an electrical synapse, rooted in biological 
interaction processes and signals exchanged with neurons, designated under the term “quantum synapse”. This 
design is conducted in stages, from a base model used in quantitative neurology, to a quantum model with two-
way flows across the synapse, adding in later the signaling & control functionality. This offers a building block 
towards the capability to control a network of synapses20. One potential application to sensor fusion is presented.
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The intent is not to discuss here in detail a physical quantum synapse implementation with the required 
semiconductors, physics, and biology, but to offer a concrete vision of their interdependencies, and relevance, 
towards a quantum sensing realization. It should be stressed that such a physical implementation is a special case 
of the architecture already provided in detail in5.

The title of this submission starting with “Towards…” stresses that this research is exploratory although 
meaningful results have been obtained at theoretical, experimental and simulation stages.

Section Electrical synapse connections between neurons reviews synapse connections between neurons, and 
points at some properties transferable at the functional level to quantum processing. For subsequent quantum 
circuit specification, section Base model of an electrical synapse (gap junction)provides the dynamic model of 
a synapse with two connected neurons. This allows in Section Quantum computing relevance for modelling 
an electrical synapseto summarize the relevance of electrical synapse models for quantum processing and 
sensing, resting on earlier experimental results13, leading in Section Quantum synapse  to the corresponding 
qubit operations and a base quantum synapse circuit specification. Prior results on signaling and control are 
applied to this quantum synapse specification in Section Control and signaling in a quantum synapse, which 
also addresses a specification of a quantum synapse with bilateral flows. In Section Quantum sensing evaluation 
application, the significance thereof in sensor fusion is discussed, as quantum processing power associated to 
quantum synapses may remove some fusion bottlenecks, raising issues of scalability in Section Discussion on 
scalability.Quantum simulations of the quantum synapse have been carried out, and the approach and tools are 
summarized in Section Quantum synapse simulation before a companion paper will appear. After formalizing 
the comparison of randomness in neurons and quantum synapse designs, and addressing other open research 
issues in Section Limitations, results and open research issues, a Conclusion answers the research question and 
further reflects on scalability.

Electrical synapse connections between neurons
The purpose of this Section Electrical synapse connections between neurons is to analyze the electrical flows 
to, from and inside synapses, in order to establish the corresponding quantum flows inside a quantum-based 
synapse model. The randomness of the activations, and resulting biological signals inside a synapse, result from 
biochemical ion interactions summarized below.

Neurons communicate between themselves via synapses (see Fig. 1), playing the role of junctions, in that a 
given neuron, once activated by random or nerve control signals, transmits a stimulating or inhibiting message 
(called neurotransmitter, to a target neuron (also called postsynaptic neuron) within a binding period called 
synaptic delay (0,5 − 1 milliseconds)21. Biology identifies three different classes of synapses: spiking chemical, 
non-spiking chemical, and electrical synapses; the synaptic transmission can be either electrical, or chemical, or 
both. Each category may have an unlimited number of more specific types, all differing through the quantitative 
values of their parameters.

In the electrical synapses, ions flow between the cells. Electrical currents flow from one neuron to another 
via a synapse each time (i) there is a membrane potential difference between the two neurons, and (ii) the 
electrical junctional synapse conductance is greater than zero. The emitting neuron (also called pre-synaptic 
neuron) maintains a rest potential across its cellular membrane (about − 60/−70 mV), but can also emit random 
nervous spikes, also called action potentials (when membrane potential rises to about − 55 mV), whereby it 
carries out metabolic processes required by its survival (see Fig. 2). Figure 2 also displays one pre-synaptic spike, 
of which a sequence develops to trigger the randomness of the pre-synaptic voltage. The synapses are generally 
formed between nervous terminations (called axonal terminations) of the presynaptic neuron and the dendritic 
cells of the postsynaptic neuron. A given axonal termination may have several branches, thus allowing it to 

Fig. 1.  Electrical synapse connections.
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establish connections to synapses having different postsynaptic neurons. In this way a given neuron may receive 
thousands of synaptic influxes originating in different presynaptic neurons through different synapses.

By the combination of random chemical postsynaptic excitation potentials which depolarize the cell, and 
postsynaptic inhibition potentials which lower the membrane potential, a postsynaptic chemical neuron may 
add or integrate all excitation flows, to decide to activate or not a binary action potential with some delay and 
retain some memory via plasticity21,22. More precisely, calcium ions Ca2 + in the presynaptic neuron access the 
synapse through voltage-gated channels, after the depolarization of this presynaptic neuron has happened. This 
influx of Ca2 + ions fills sacs with neurotransmitters to move them to the membrane facing the synaptic cleft. 
Such sacs fuse with the plasma membrane so that exocytosis takes place, releasing a chemical message which gets 
sent to the postsynaptic neurons. Dynamic cell and synapse biophysics result in differential equations to generate 
dynamic neurotransmission response models23–26.

The electrical synapses, contrary to chemical synapses27,28, realize a direct physical connection between a 
given presynaptic neuron and all the postsynaptic neurons, in the form of communication junctions which 
allow ions randomly to circulate fast (but not instantly)29,30. The electrical synapse has two close membranes 
with protein transmission channels (called connexins) allowing for direct passage of current. In those synapses 
which are both electrical and chemical, the electrical response occurs before the chemical response. It should be 
noted that the communication junctions may carry two-way flows, later studied in Section Control and signaling 
in a quantum synapse, so that e.g., the depolarization of a postsynaptic neuron may induce the depolarization 
of a presynaptic neuron, and more generally, allowing a synchronization between groups of neurons despite the 
randomness. As mentioned, there are many types of electrical synapses, but also parametric structures that may 
control the synchronization of the rhythmic activity and spike release in neuronal networks31,32. In addition, 
electrical synapses may function as low-pass filters and transfer spikes after their hyperpolarization. However, 
the electrical synapses cannot, like chemical ones, transform an excitation signal in a neuron into an inhibition 
signal in another neuron.

It results from the above by correspondence that in an electrical synapse model:

	a.	 The realization of a quantum electrical synapse model should allow for networked quantum flow distribu-
tion, but at a vastly enhanced speed and with many more flows than with current technologies;

	b.	 Quantum electrical synapses cannot realize a binary function; this is no problem as this functionality is de-
voted to quantum gates for which realizations are described in5;

	c.	 If some synapses are devoted to a signaling or control functionality as described in12, they implement in 
effect a quantum flow routing functionality in response to presynaptic commands (or their equivalent in the 
chosen quantum architecture);

	d.	 By their bursty nature having some properties analog to spike flows (see Section Quantum computing rele-
vance for modelling an electrical synapse), quantum particles in turn may help study random neuron-syn-
apse-neuron interactions, as the retransmission of bursty sequences is essential in cerebellar coding33.

Base model of an electrical synapse (gap junction)
Initial simple model
To model a synapse usually involves a mathematical differential equation description of the transformation of a 
presynaptic membrane potential difference into a postsynaptic response, for example as an ionic current34. The 

Fig. 2.  Synaptic spikes (Equations 2,5).
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presynaptic potential difference serves as the random input impulse/spike sequence (Fig. 2, Eq. (2), Eq. (6)), and 
generates as output a dynamic variation in the postsynaptic membrane potential displaying randomness.

The neuron ‘Leaky Integrate and Fire model’ (LIF), provides a simple description of one postsynaptic neuron 
with one associated upstream electrical synapse (for parallelism resulting from multiple upstream presynaptic 
and postsynaptic neurons, see Section Electrical synapse model ):

	 Cm(dV/dt) = −gL(V (t) − V rest) + Input(t)� ( 1)

where :

•	 Cmis the neuronal membrane capacity, approximately 1 µF/cm224;
•	  V(t) is the neurone membrane potential at time t along a given synapse link, and V(0) = membrane voltage 

initial value = −70,6837 mV;
•	  Vrest = (−65) mV is the neurone rest state membrane potential;
•	  gL = membrane conductance value approximately = 0,0551 mS/cm2;
•	 Input(t) is the synapse current to the postsynaptic neuron, itself modelled as a random sequence of pulses 

(Fig. 2):

	
Input(t) =

∑
i
δ(t − ti)� (2)

in which δ is the Dirac function, and the ti’s are random impulse times, and i designates one of the impulses 
between times 0 and t;

• Vthres is the threshold potential above which V(t) get’s reinitialized to the value Vrest approx. (60,5 mS/cm2, 
50 mV);

so that the potential V(t) achieves an instantaneous rise when a synapse impulsion arrives, followed by an 
exponential decrease (Fig. 2).

The electrical synapse is in addition subject to saturation, in that it gets modified after an impulse is received 
from the presynapse neurone:

	 IP (t) = gs(t)(Es − V (t))� (3) 

in that the synaptic current is proportional to the difference between V(t) and the synaptic inversion potential 
Es = 0,0225 mV, and:

• gs (t) is the synapse conductance which varies with time and depends on previously received impulses from 
the presynaptic neuron. Each time the synapse receives such an impulse, gs(t)  will grow until reaching its upper 
bound gsMAX, then decrease exponentially:

	 dgs(t)/dt = −gs(t)/τs subject to 0 ⩽ gs(t) ⩽ gsMAX � (4) 

where :
• τs = synaptic time constant.

Electrical synapse model
The above initial model of Section Initial simple mode   needs to be enhanced to approximate the neurological 
behavior of an electrical synapse in view of its quantum computing model. We still assume a biological Hogkin-
Huxley formalism35with two reciprocally connected reticular nucleus TRN neurons (= Thalamic Reticular 
Nucleus), and a single electrical synapse between these two neurons. The full model35 is here simplified to 
exclude chemical synapses.

The parallelism occurs twice for each given single synapse, due to parallel links to presynaptic TRN neurons 
(j) and separate parallel links to postsynaptic TRN neurons. To simplify the readability, additional indexes are 
not supplied to represent each postsynaptic link, those being parallel. This approach obviously extends easily to 
sets of synapses, and sets of of TRN neurons, which may feed to, and/or or receive random signals from synapses 
in highly combinatorial configurations.

Then in Eq.  (2), Input(t) must incorporate the ion channels from all synaptic upstream links j to the 
postsynaptic neuron and all external presynaptic ionic currents:

	
Cm(dV/dt) = −gL

∑
j
[(IP j(t) − V rest) + Inputj(t)]� (5)

 

	
Inputj(t) =

∑
i
δ(t − tij) + P resynapticInputsj(t) +

∑
k ̸=j

gelec(Vk(t) − V (t))� (6)
 

where :

•	 gelec = electrical synapse conductance = 0 to 0,025 mS/cm2, with a resulting coupling coefficient of 0,2883;
•	 tij = synapse firing timing from upstream presynaptic neuron i on link j.

Quantum computing relevance for modelling an electrical synapse
As an introduction to this Section, it should again be pointed out that in this research, there is no direct relevance 
of simple artificial/computational neuron models as used for example in artificial intelligence, and on the 
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contrary are essentially exploited the more precise biological neuron behaviors described in Sections Electrical 
synapse connections between neurons & Base model of an electrical synapse (gap junction)  above.

One essential property to exploit is the intrinsic theoretical infinite parallelism offered by quantum 
mechanics1, which allows to address the large number of upstream and postsynaptic links to a given synapse, 
and, beyond that, to mimic the networking of many neurons and synapses. The randomness of biochemical 
firings of the neuron links is mimicked by the randomness in qubit particles, of course at a different time 
scale, with experimental and theoretical justifications provided below.

The second essential property to exploit is the probabilistic nature of the quantum states which correspond 
to elements of randomness in synapse functionality and characteristics (Eqs. 2, 6).

The third property to exploit is the signaling and control features in synapses, which, using the signaling and 
control features in12, might allow to introduce signaling and control in a quantum synapse gate model and a 
realization thereof (see Section Control and signaling in a quantum synapse).

We here assume that the quantum processing or sensing system incorporating quantum synapses has no 
intrinsic decay36.

Some may question the validity of the “analogy” between the randomness of firings of the neuron links and 
the randomness in qubit particles, of course at different time scales. Their argument is that the neural firing 
randomness is driven by biochemical processes and stochastic variations, whereas quantum randomness results 
in superposition and measurement collapse. However, this argument ignores the randomness in the emissions 
at particle level of quantum particles, and also ignores that superposition and measurement / activation collapse 
happens as well in some biological processes at the level of specific biological functions like those mentionned 
in the Introduction. These processes indeed operate on vastly different principles, and thus cannot be treated 
as equivalent in signal processing terms at different time scales. However, with the experiments reported and 
analyzed in13, and further specified by claims of Patent [A], when light or sound stimuli onto living species 
are made to follow a modulated Poisson distribution like that of a directly modulated semiconductor laser 
source useable as well as a quantum particle source, it was shown one can directly link in a probabilistic way the 
information bits carried by these stimuli to the measured titration of 17th ketosteroids in the animals, which 
represent a global indicator of neural activity in synapsis biochemical reactants (acetylcholine, adrenaline & 
noradrenaline). While very hard to measure, the neuron firing rate distributions are analyzed in37 and linked to 
plasticity. So the said probabilistic correspondence is at information level, and this provides a partial justification 
to the chosen approach to be explored to design a “quantum synapse”. This issue of “analogy” is further formalized 
in Section Limitations, results and open research issues.

In addition, for the further analysis of said biological processes, “quantum synapse” realizations may help 
analyze much faster the intricacies of said biological processes.

Quantum synapse
The idea is to represent each of the electrical synapse links as a single component of a quantum state |ψ>, this 
applying respectively to both the upstream links ‘k’ |ψUP > to the presynaptic neurons, and to the downstream 
links ‘l’ |ψDOWN > to the postsynaptic neurons, thus the quantum system:

	
|ψUP >=

∑
k

ak|ψUPk >� (7)
 

	
|ψDOWN >=

∑
l

bl|ψDOWNl >� (8)
 

where:

•	 {|ψUPk>}, {|ψDOWNl>} are two orthonormalized systems of eigenvectors;
•	 the values |ak|2, and |bl|

2 are equal to the probabilities that the potentials VUP(t), VDOWN(t) of the presyn-
aptic and postsynaptic neuron membranes, respectively, exceed the threshold potential Vthres. To simplify the 
readability, the corresponding quantum mechanics equations are not provided for these relations, as anyway 
the quantum measurements represent probabilities.

It is beyond the scope of this paper to make explicit the biological constraints on electrical potentials, and their 
differences, applicable to the synapse membranes, and originating in presynaptic and postsynaptic neuron 
potentials. It must only be pointed out that such bounds are stable over time.

The random sequence of presynaptic spikes (Eq. (2) (6)) is provided by the corresponding |ψUP > quantum 
state’s randomness, and a logical CNOT gate function applied to the presynaptic neuron membrane potential 
down each link, the logical comparison being with Vthres. .

The parallelism of links of the upstream (k) and postsynaptic (l) neuronal links is embedded in the 
dimensionalities of the vectors |ψUP>, |ψDOWN>.

We exploit both the two |ψUP > and |ψDOWN > quantum states’ entanglement, and the quantum 
superposition of these states. Entangled states are those states of the quantum system, where qubits interact 
with each other, and involve a description of these states in a form wherein the product of wave functions of 
independent qubits is impossible.

These two state’s evolutions are described by the time dependent equations:

	 |ψUP > = CNOT (V (t) > Vthres))� (9) 
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CNOT qubit permutation matrix = 




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




	 ih(∂|ψDOWN > /∂t) = − (gL/Cm) (V (t) − Vrest) |0 > + ih|ψUP >� (10 a) 

in which:

•	 h = h/2π is the Planck constant.
•	 i = √(−1).

to which must be added the following constraints spelled out in Section Initial simple model  :

	 (Constraint on total presynaptic neuron potentials)� (10 b) 

	 (Constraint on total postsynapti neuron potentials)� (10 c) 

The logical Controlled NOT (CNOT) functionality XOR’s the first bit to the second bit and keeps the first bit 
unchanged. It has different optical or acoustic realizations38, may be built from universal reversible gates39, and 
may eventually be replaced by using a quantum Bell state40, where a specific qubit may be measured as having a 
specific value with two probabilities adding up to one.

Note that here in (Eq. 10 a) we have Vrest, and in (Eq. 9) (and definition of the states) we have Vthres, due to the 
reinitialization of the membrane potential.

Figure 3. Single quantum synapse circuit, with one presynaptic and one postsynaptic neuron; the processes 
are those described in Eqs.  9–10 and Section  Initial simple model; it is recalled that Vthres is the threshold 
potential above which V(t) get’s reinitialized to the value Vrest approx. (60,5 mS/cm2, 50 mV).

Control and signaling in a quantum synapse
In biology, synapses can be stimulated by brain and nervous commands through neurons, and end up affecting 
other nervous effectors or organs. The previous Sections pave the way to specify features whereby to modify the 
above quantum synapse model and circuit, so it renders effective a control functionality.

This rests on two properties, one of which is biological, and the other mathematical, applied in the context of 
quantum computing, and both with limitations:

•	 like biological synapses which are also subject to constraints, a quantum synapse can have quantum flows re-
producing a two-way flow of signals, provided the quantum processing architecture itself is modified; this was 
mentioned in Section Electrical synapse connections between neurons and is exploited in Section Allowing 
for two-way junctions in some synapses;

•	 that general quantum processing signaling and control features as in12 can capture control and selection func-
tions by using some of the electrical synapse parameters of Section Quantum synapse as control variables; this 
is addressed in Section Implementation of signaling and control synapse qubits.

Allowing for two-way junctions in some synapses
It was mentioned in Section Electrical synapse connections between neurons that, under some conditions, a 
biological electrical synapse can be transversed by bilateral flows of ions. Whereas the exploitation of two-way 
junctions is the theme of this Section, the biochemical description of the initial trigger effect by which ion flows 

Fig. 3.  Single quantum synapse circuit, with one presynaptic and one postsynaptic neuron; the processes are 
those described in Eq 9-10 and Section Initial simple model ; it is recalled that Vthres is the threshold potential 
above which V(t) get’s reinitialized to the value Vrest approx. (60,5 mS/cm2, 50 mV).
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become bidirectional in the synapse, belongs mostly to biochemistry and is outside the scope of this paper37. 
Below we also must make the assumption that the randomness of the downflows to the postsynaptic neuron is 
like the randomness of the upstream flows to the presynaptic neuron, so Eq. 6 can be reused.

The bidirectional functionality can be implemented by feeding a parametric part of the postsynaptic quantum 
state |ψDOWN>, to mix with the input stream |ψUP > into the same synapse, the open Hermitian quantum 
operator K allowing for attenuation as well as phase shift; the resulting combined postsynaptic quantum state 
becomes |ψDOWN(2)> :

	
|ψUP (2) > =

∑
k

ak|ψUPk > + K|ψDOWN >� (11)
 

	 ih (∂|ψUP (2) > /∂t) = − (gL/Cm) (V (t) − Vrest) + ih|ψDOWN >� (12) 

	
|ψDOWN (2) >=

∑
l

bl
∣∣ψUP(2)l > +

∣∣ ψDOWN >� (13)

where the {bl} characterize the postsynaptic electrical neuron membrane potentials, resulting from flows arriving 
from elsewhere to these neurons (see Section Quantum synapse).

The formalization and effects of the Hermitian quantum operator K are given in Appendix.
When determined, from measured biological constraints on the potentials mentioned above, the following 

corresponding additional constraints must be accounted for, and are here just mentioned for compliance:

	 (Constraint on total combined presynaptic neuron potentials)� (14)

	 (Constraint on total combined postsynaptic neuron potentials)� (15) 

The result is a coupled set of equations, synthesized by the quantum gate circuit of Fig. 4. The quantum system 
operator K in effect represents in the simplest case a unitary matrix transform, alternatively a Hermitian 
matrix weighting, but extensions are possible to render it linked to probabilities of neuron potentials exceeding 
thresholds. Indeed, at the biophysical level, parts of potential in the postsynaptic neuron are fed back to add to 
the potential of the presynaptic neuron: attenuation, phase shift and possibly some delays may occur when they 
transverse the synapse. The so-called connexons, made up of sub-units called connexines (proteins), establish 
gap junction channels enabling the bidirectional flow of ions41. Research in biology has though not yet identified 
any cases with amplification; it has however established that electrical synapses with bidirectional flows enhance 
the speedy synchronization of potentials and electrical activity between groups of neurons.

This shows, with reference to Section Quantum synapse, that the qubit attributes with complex values {ak}, 
and {bl} can, respectively, be considered to be control parameters to the electrical synapse from presynaptic 
neurons, and considered to be the resulting control parameters to postsynaptic neurons. If their absolute values 
are equal to zero, the corresponding links to the corresponding neurons are shut down. This property is the key 
justification for an embedded quantum synapse used in quantum sensing and control.

Implementation of signaling and control synapse qubits
It was shown in12,13, both in mathematical terms but also in terms of realization by manipulating magnetism by 
electrical fields, that the quantum pathways can be assigned to be linked either to information carrying qubits, 

Fig. 4.  Quantum synapse circuit with bilateral flows between one presynaptic neuron and one postsynaptic 
neuron.
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or to quantum signaling or control gates which have eigenvector attribute tags like {ak} or {bl} assigned by a 
predecessor quantum gate providing said signaling or control. If furthermore these tags possess the property 
of being elements of a colored algebra, decidable quantum signaling can be achieved. This is essential in some 
applications. The only drawback is to extend the quantum state space, and, for those quantum gates serving for 
control or signaling, to have additional specific quantum gate realizations of those.

This leads to the following idea, for a quantum synapse, to have:

	i.	 a unique mapping of the chemical calcium signaling ion concentration levels, described above and in42,43, 
into unique elements of a colored algebra, so that even binding rules of two Ca2 + ions can map into algebraic 
rules for algebraic color change, the chemical details of which are beyond the scope of this paper44;

	ii.	 decompose some of the vector dimensions of the qubits |ψUP(2) > and  |ψDOWN(2)>, to have some of the 
corresponding attributes (like {ak}’s or {bl}’s) carry said decidable tags.

However, it is not within the scope of the present paper to describe in detail the biochemical properties and the 
mix of the ion flows flowing through an electrical synapse.

Quantum sensing evaluation application
One of several application fields, as envisaged for evaluation, is briefly discussed. The author has worked for 
a long time on mission critical sensor fusion architectures and specific sensors45–47, to realize over time the 
bottlenecks rooted in geometrical information matching, in real time sensor tuning and adaptation, and in 
probabilistic information aggregation, even when using high performance computing. Quantum computing 
mimicking biological functions offers vastly superior potential due to computational speed, state superposition, 
entanglement, hypothesis refinement and probabilistic assessments, as the split/merge/evaluate functionalities 
can be coordinated by a quantum synapse over a high number of quantum flows, largely better than a blackboard 
with its read/write/store and synchronization problems. Once the first quantum synapse circuits have been 
realized in hardware, a sensor fusion experiment will be conducted, probably on a quantum processing element 
itself used for sensor operations optimization (magnetic fields, electrical fields, thermal characteristics, etc.…). 
Extensive simulations have already been done though.

Discussion on scalability
The proposed quantum synapse models of Sections Quantum synapse & Control and signaling in a quantum 
synapse, resting on the base model of Section Base model of an electrical synapse (gap junction) , involves some 
quantum gates, each gate processing the quantum state having to operate sequentially if traditional computing 
was to be used. Under this last hypothesis, serious scalability concerns could be raised, as each synapse would 
require significant time to compute its quantum states. In a biological network of neurons each synapse has 
around 10,000 postsynaptic neurons, meaning the computational cost to simulate an entire neuromorphic 
system might then be significant. The time required to calculate quantum states and their probabilities for a 
large number of synapses would quickly become prohibitive.

However, this paper explores an alternative approach: instead of calculating sequentially all intermediate 
quantum states, quantum processing with its parallelism allows to mimic as explained above the spike trains as 
random quantum particles, and exploits parallelism, and thus to estimate by quantum measurements the new 
synapse states with probabilities as explained in Section Quantum synapse and Allowing for two-way junctions 
in some synapses. This largely simplifies the computational requirements and makes the model more feasible for 
large-scale applications when using quantum computing.

Quantum synapse simulation
Quantum computing simulations of the two designs (Figs. 3, 4) have been conducted and are under analysis 
in view of later optimization for execution on a quantum computer as well as first on an array of eight 
multicore FPGA’s. The main simulation tool has been MIMIQ48based on research at the European center for 
quantum sciences, relying on Matrix product states. It enables linked partial differential equations as well as 
combinatorics. Students associated with the project in advance get training on the QLM simulator49,50with 
initial code specified in Python with cross-assemblers. Of special interest, and also quite complex, is the first 
understanding and possible exploitation of the superposition and imbrication between the presynaptic neurons 
and the postsynaptic neurons. Next, critical is the exploitation of the state of the art for noise and randomness in 
biological synapse operations (Eq. (2), Eq. (5)37), and their comparison with the noise and errors in the quantum 
computations on a quantum computer; thus much efforts have gone into the design of parametrizations of 
random number generators (parallelled with quantum particle source generators). Finally, at this stage of the 
research, has been simulated in a limited way the proliferation of presynaptic and postsynaptic neurons for a 
single quantum synapse. At all simulation stages, the time-dependent simulation is let to lapse with varying 
number of simulation cycles as required by quantum computations, to see how the quantum synapse itself 
evolves over time (e.g. for the Example of Section Quantum sensing evaluation application), although the time 
scales are obviously completely different than for biological synapses ; this requires very extensive memory 
capabilities (32 Tb). Parameters and results will be provided in a companion paper.
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Limitations, results and open research issues
The claim is not for a probabilistic equivalence between synapse firing stochastics, and quantum particle 
stochastics; both have stochastic distributions which can be characterized for a given neural condition and a 
given quantum physical set-up & particle source. Therefore, should be characterized the approximate matching 
between these two classes of stochastic distributions from calibration data with:

•	 for a synapse, the stochastic distribution of the neuron membrane potential along a given synapse link V(t), 
as modelled by Eq. (1);

•	 for a quantum synapse design Figs. 3 or 4), the stochastic distributions of the values |ak|2, and |bl|
2 of the 

probabilities that the potentials VUP(2)(t), VDOWN(2)(t) of the presynaptic and postsynaptic neuron mem-
branes, respectively, exceed the threshold potential Vthres, after traversing a quantum circuit realization .

One limitation in the present “quantum synapse” design is that it does not capture all the details and versatility of 
true synapses, realizing that this is not the research goal of this paper (Section Research question ) and that biology 
research on such questions is very detailed. Likewise, synapses are not the only cells involved in the interactions 
between neurons and nerves. It is e.g., to be recalled that glia cells (astrocytes and oligodendrocytes51) play a 
role in neuro-muscular interfaces, and that they contribute to the spatial distribution of connectivity between 
neurons. Such aspects are beyond the scope of this article.

Another limitation is that this article cannot include initial experimental results beyond those stated in13, and 
quantum simulation results from Section Quantum synapse simulation which will be reported in a follow-up 
publication. The time scale of the stochastic process of Eq. 2 has obviously been adjusted to fit quantum particle 
flows with on-going quantum particle source selection, and the biological parameters reported in Section Base 
model of an electrical synapse (gap junction) were adjusted accordingly. It was observed that for some structures 
of the open quantum operator K (Eq. 11) remarkably interesting spatiotemporal filtering was obtained.

A remaining research question is to speed up the particle physics realizations and measurements according to 
the plan already outlined in5, and to narrow down the functionalities to be built to those outlined here, especially 
the quantum paths and their control in a quantum synapse.

Conclusion
This paper has attempted to pave the way towards an initial quantum circuit design for an electrical synapse, 
including its dynamics, with a progression from a simple biological model to a quantum processing model and 
quantum gate designs, with parametric bi-directional flows and signaling.

The discussion around a quantum sensing application to sensor fusion for quantum processing element 
monitoring, demonstrates the capacity of a quantum synapse gate to integrate sensors and quantum sensors. 
This quantum synapse can perform bidirectional flows and leverage quantum computing principles such as 
superposition and entanglement to enhance sensing capabilities.

Furthermore, the proposed quantum synapse circuits may fit embedded systems architectures with both 
control, sensing, and probabilistic computations. This theoretical potential may eventually over time be slowly 
scaled against the capabilities of a human brain of 1400 g, with approx. 10 000 synapses per neuron and 85–
100 Billion neurons, whereby each presynaptic neuron potentially interacts with 10 000 postsynaptic neurons52, 
so the scaling up of quantum synapses has a long way to go. Consequently, a more interesting goal may be to 
analyze and achieve adaptation, thus the need for signaling and control.

It should be highlighted that the chosen approach with LIF synapses contrasts with the training of 
neural networks on quantum computers, which is essentially a recursive regression on very simple neuron 
approximations without synapse functionalities.

Data availability
This manuscript does not report data generation or analysis other than those reported or from listed references. 
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request. Data and Results for the cited quantum simulation of a quantum synapse will appear in a 
different article.

Appendix
The quantum operator K from Eq. (11) is in general Hermitian. This means by definition, that this operator K 
in a Hermitian space H, obeys the property: -U  (x, y) ε H2, (K(x)|y) = (x |K(y)). Hermitian operators play an im-
portant role in quantum mechanics because they represent physical quantities such as attenuation, phase shift, 
delays. The real eigenvalues represent possible values of the relative strengths of variables in |ψDOWN>, and 
the eigenfunctions (or vectors) represent the associated states thereof. Hermitian operators allow to describe 
observables, like voltages and energy (see Section Quantum synapse). They ensure that the measurement values 
are real numbers, which is essential for the coherence of physical predictions in the presence of more than a pair 
of synaptic links. A set of Hermitian operators which commute amongst them, each associated with several syn-
aptic links, represent a complete set of observables, allowing for the simultaneous measurement of several phys-
ical quantities, here several synaptic link properties. A particular class of Hermitian operators K are quantum 
rotation operators R, which allow us here to represent phase differences between several synaptic links. With 
every physical rotation R, a quantum mechanical rotation operator Θ ( R): H -> H, is the rule that assigns to each 
vector in the space H the state vector |α>R = Θ(R)|α > that is also in H. Furthermore Θ (Ω, φ) = exp (-iφΩ. J/h) 
wherein Ω is the rotation axis, φ the rotation angle, J is the angular momentum operator, and h is the reduced 
Planck constant. Such quantum mechanical rotation operators help in the quantum disambiguation: contrary to 

Scientific Reports |        (2025) 15:11647 9| https://doi.org/10.1038/s41598-025-93113-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


classical rotations in a Euclidian space, quantum rotations are non-commutative, which means that the order by 
which the phase shifts are measured affects the final state of the system. At the same time, the quantum rotation 
operator maintains rotational symmetry, which is essential to quantify the quantum angular moment, and it 
allows to manipulate the spin of an electron. For further theoretical justifications, see e.g.: L.D. Landau and E.M. 
Lifshitz: Quantum Mechanics: Non-Relativistic Theory, New York: Pergamon Press, 1985.
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