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Towards a quantum synapse for
quantum sensing

L-F Pau

As a step in the architectural design of a quantum processing or sensing system with control and
signaling, an attempt is made at putting in parallel functional properties of the random flows between
neurons through electrical synapses, and quantum particle flows inside a quantum processing system
mimicking biological processes. Based on a simplified dynamic electrical synapse model, a quantum
synapse circuit design is proposed. This is extended to the case of bidirectional flows through a
synapse, highlighting the possible role of quantum synapse circuits as highly parallel controlled
interfaces crucial in sensing and sensor fusion systems. A short status of the quantum simulation is
provided.
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Whereas quantum physics!, quantum computing’and quantum sensors>?, have grown in importance, an
innovative stream of research has emerged rooted in architectural features mimicking biological elements and
fluxes*®. It has been motivated by three concurrent evolutions ; the first relies in exploiting new particle physics
effects (such as : Moiré patterning on graphene structures’, quantum Hall effect®, magnetic control of quantum
pathways’, etc. ) discovered in some materials ; the second relies on the need for quantum computing to be
able to address less recursive algorithmic computations and in particular embedded uses with sensing and
actuation'%; the third relies on the well-known fact that biological processes (such as: vision analysis, allostatic
load, cortical reflections ) demonstrate amazing sensing and adaptation capabilities reminding of superposition
and entanglement!!, especially so, as such biological processes are triggered by randomness, although of a
biochemical nature very different from quantum particles. This gives the motivation justified in this paper to
attempt to mimic some of these biological processes by suitable quantum circuits, even if the time scales are
completely different.

More recently, it has been shown how signaling and control can be added in quantum computing architectures
inspired by biology, as required in time critical embedded applications, while preserving decidability!?.

Whereas such prior results focused in more detail on the particle physics effects exploited in early realizations®,
as well as on biological experiments supporting the developed architecture!*(such as combined light and sound
excitations on living creatures (Patent [A]), the present paper illustrates how biological processes around a
synapse can lead to the specification of quantum circuits with high relevance in some quantum sensing and
sensor integration applications. To this end, the choice of electrical synapses as a base is driven by their capability
to interface and conduct selective fusion between specialized neurons or specialized quantum sensors. It is to be
recalled, that neurons offer native spatiotemporal integration', correlation!®-"7, as well as gating, interference
filtering, splitting and other functionalities required in sensor signal processing; for an overview in biology see'®.

This research rests on extensive research in biology and on quantum processing architectures inspired by
biology. It is necessary to point out upfront that artificial neural networks and their associated theoretical models,
are out of scope and of little relevance here, although some attempts have been made at conducting the training of
artificial neural networks on quantum computers'. Indeed, the approach is not to exploit mathematical models
for an artificial neuron or synapse, but to embed the biological signal behavior directly into quantum gates.

Research question

The goal of this paper is to propose a quantum circuit design of an electrical synapse, rooted in biological
interaction processes and signals exchanged with neurons, designated under the term “quantum synapse”. This
design is conducted in stages, from a base model used in quantitative neurology, to a quantum model with two-
way flows across the synapse, adding in later the signaling & control functionality. This offers a building block
towards the capability to control a network of synapses®’. One potential application to sensor fusion is presented.
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The intent is not to discuss here in detail a physical quantum synapse implementation with the required
semiconductors, physics, and biology, but to offer a concrete vision of their interdependencies, and relevance,
towards a quantum sensing realization. It should be stressed that such a physical implementation is a special case
of the architecture already provided in detail in°.

The title of this submission starting with “Towards...” stresses that this research is exploratory although
meaningful results have been obtained at theoretical, experimental and simulation stages.

Section Electrical synapse connections between neurons reviews synapse connections between neurons, and
points at some properties transferable at the functional level to quantum processing. For subsequent quantum
circuit specification, section Base model of an electrical synapse (gap junction)provides the dynamic model of
a synapse with two connected neurons. This allows in Section Quantum computing relevance for modelling
an electrical synapseto summarize the relevance of electrical synapse models for quantum processing and
sensing, resting on earlier experimental results'®, leading in Section Quantum synapse to the corresponding
qubit operations and a base quantum synapse circuit specification. Prior results on signaling and control are
applied to this quantum synapse specification in Section Control and signaling in a quantum synapse, which
also addresses a specification of a quantum synapse with bilateral flows. In Section Quantum sensing evaluation
application, the significance thereof in sensor fusion is discussed, as quantum processing power associated to
quantum synapses may remove some fusion bottlenecks, raising issues of scalability in Section Discussion on
scalability.Quantum simulations of the quantum synapse have been carried out, and the approach and tools are
summarized in Section Quantum synapse simulation before a companion paper will appear. After formalizing
the comparison of randomness in neurons and quantum synapse designs, and addressing other open research
issues in Section Limitations, results and open research issues, a Conclusion answers the research question and
further reflects on scalability.

Electrical synapse connections between neurons

The purpose of this Section Electrical synapse connections between neurons is to analyze the electrical flows
to, from and inside synapses, in order to establish the corresponding quantum flows inside a quantum-based
synapse model. The randomness of the activations, and resulting biological signals inside a synapse, result from
biochemical ion interactions summarized below.

Neurons communicate between themselves via synapses (see Fig. 1), playing the role of junctions, in that a
given neuron, once activated by random or nerve control signals, transmits a stimulating or inhibiting message
(called neurotransmitter, to a target neuron (also called postsynaptic neuron) within a binding period called
synaptic delay (0,5- 1 milliseconds)?!. Biology identifies three different classes of synapses: spiking chemical,
non-spiking chemical, and electrical synapses; the synaptic transmission can be either electrical, or chemical, or
both. Each category may have an unlimited number of more specific types, all differing through the quantitative
values of their parameters.

In the electrical synapses, ions flow between the cells. Electrical currents flow from one neuron to another
via a synapse each time (i) there is a membrane potential difference between the two neurons, and (ii) the
electrical junctional synapse conductance is greater than zero. The emitting neuron (also called pre-synaptic
neuron) maintains a rest potential across its cellular membrane (about —60/-70 mV), but can also emit random
nervous spikes, also called action potentials (when membrane potential rises to about —55 mV), whereby it
carries out metabolic processes required by its survival (see Fig. 2). Figure 2 also displays one pre-synaptic spike,
of which a sequence develops to trigger the randomness of the pre-synaptic voltage. The synapses are generally
formed between nervous terminations (called axonal terminations) of the presynaptic neuron and the dendritic
cells of the postsynaptic neuron. A given axonal termination may have several branches, thus allowing it to
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Fig. 1. Electrical synapse connections.
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Fig. 2. Synaptic spikes (Equations 2,5).

establish connections to synapses having different postsynaptic neurons. In this way a given neuron may receive
thousands of synaptic influxes originating in different presynaptic neurons through different synapses.

By the combination of random chemical postsynaptic excitation potentials which depolarize the cell, and
postsynaptic inhibition potentials which lower the membrane potential, a postsynaptic chemical neuron may
add or integrate all excitation flows, to decide to activate or not a binary action potential with some delay and
retain some memory via plasticity?*2. More precisely, calcium ions Ca2 +in the presynaptic neuron access the
synapse through voltage-gated channels, after the depolarization of this presynaptic neuron has happened. This
influx of Ca2 +ions fills sacs with neurotransmitters to move them to the membrane facing the synaptic cleft.
Such sacs fuse with the plasma membrane so that exocytosis takes place, releasing a chemical message which gets
sent to the postsynaptic neurons. Dynamic cell and synapse biophysics result in differential equations to generate
dynamic neurotransmission response models?-%.

The electrical synapses, contrary to chemical synapses®”-*°, realize a direct physical connection between a
given presynaptic neuron and all the postsynaptic neurons, in the form of communication junctions which
allow ions randomly to circulate fast (but not instantly)**°. The electrical synapse has two close membranes
with protein transmission channels (called connexins) allowing for direct passage of current. In those synapses
which are both electrical and chemical, the electrical response occurs before the chemical response. It should be
noted that the communication junctions may carry two-way flows, later studied in Section Control and signaling
in a quantum synapse, so that e.g., the depolarization of a postsynaptic neuron may induce the depolarization
of a presynaptic neuron, and more generally, allowing a synchronization between groups of neurons despite the
randomness. As mentioned, there are many types of electrical synapses, but also parametric structures that may
control the synchronization of the rhythmic activity and spike release in neuronal networks*"*2. In addition,
electrical synapses may function as low-pass filters and transfer spikes after their hyperpolarization. However,
the electrical synapses cannot, like chemical ones, transform an excitation signal in a neuron into an inhibition
signal in another neuron.

It results from the above by correspondence that in an electrical synapse model:

27,28

a. The realization of a quantum electrical synapse model should allow for networked quantum flow distribu-
tion, but at a vastly enhanced speed and with many more flows than with current technologies;

b. Quantum electrical synapses cannot realize a binary function; this is no problem as this functionality is de-
voted to quantum gates for which realizations are described in%

c. If some synapses are devoted to a signaling or control functionality as described in'> they implement in
effect a quantum flow routing functionality in response to presynaptic commands (or their equivalent in the
chosen quantum architecture);

d. By their bursty nature having some properties analog to spike flows (see Section Quantum computing rele-
vance for modelling an electrical synapse), quantum particles in turn may help study random neuron-syn-
apse-neuron interactions, as the retransmission of bursty sequences is essential in cerebellar coding®.

Base model of an electrical synapse (gap junction)

Initial simple model

To model a synapse usually involves a mathematical differential equation description of the transformation of a
presynaptic membrane potential difference into a postsynaptic response, for example as an ionic current®*. The
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presynaptic potential difference serves as the random input impulse/spike sequence (Fig. 2, Eq. (2), Eq. (6)), and
generates as output a dynamic variation in the postsynaptic membrane potential displaying randomness.

The neuron ‘Leaky Integrate and Fire model’ (LIF), provides a simple description of one postsynaptic neuron
with one associated upstream electrical synapse (for parallelism resulting from multiple upstream presynaptic
and postsynaptic neurons, see Section Electrical synapse model ):

Cm(dV/dt) = —gL(V (t) — Vrest) + Input(t) (1)
where :

« C_is the neuronal membrane capacity, approximately 1 pF/cm2%%;

o V(t) is the neurone membrane potential at time t along a given synapse link, and V(0) =membrane voltage
initial value = 70,6837 mV;
V. = (=65) mV is the neurone rest state membrane potential;

o gl =membrane conductance value approximately =0,0551 mS/cm2;

« Input(t) is the synapse current to the postsynaptic neuron, itself modelled as a random sequence of pulses
(Fig. 2):

Input(t) = Zia(t — ti) @)

in which § is the Dirac function, and the ts are random impulse times, and i designates one of the impulses
between times 0 and t;

* Vipres 18 the threshold potential above which V(t) get’s reinitialized to the value V_
50 mV);

so that the potential V(t) achieves an instantaneous rise when a synapse impulsion arrives, followed by an
exponential decrease (Fig. 2).

The electrical synapse is in addition subject to saturation, in that it gets modified after an impulse is received
from the presynapse neurone:

approx. (60,5 mS/cm2,

IP(t) = gs(t)(Es — V(1)) 3)

in that the synaptic current is proportional to the difference between V(t) and the synaptic inversion potential
E, =0,0225 mV, and:

* » gs (1) is the synapse conductance which varies with time and depends on previously received impulses from
the presynaptic neuron. Each time the synapse receives such an impulse, gs(t) will grow until reaching its upper
bound gsMAX, then decrease exponentially:

dgs(t)/dt = —gs(t)/Ts subjectto0 < gs(t) < gsMAX 4)

where :
« Ts=synaptic time constant.

Electrical synapse model
The above initial model of Section Initial simple mode needs to be enhanced to approximate the neurological
behavior of an electrical synapse in view of its quantum computing model. We still assume a biological Hogkin-
Huxley formalism*with two reciprocally connected reticular nucleus TRN neurons (=Thalamic Reticular
Nucleus), and a single electrical synapse between these two neurons. The full model®® is here simplified to
exclude chemical synapses.

The parallelism occurs twice for each given single synapse, due to parallel links to presynaptic TRN neurons
(j) and separate parallel links to postsynaptic TRN neurons. To simplify the readability, additional indexes are
not supplied to represent each postsynaptic link, those being parallel. This approach obviously extends easily to
sets of synapses, and sets of of TRN neurons, which may feed to, and/or or receive random signals from synapses
in highly combinatorial configurations.

Then in Eq. (2), Input(t) must incorporate the ion channels from all synaptic upstream links j to the
postsynaptic neuron and all external presynaptic ionic currents:

m(dV/dt) = —gLZ [(IPj(t) — Vrest) + Inputj(t)] (5)

Input;(t) = Z O(t — tiz) + PresynapticInputs;(t) + Z gelec (Vk(t) = V(¢)) (6)

1
where :

o gelec=electrical synapse conductance =0 to 0,025 mS/cm2, with a resulting coupling coeflicient of 0,2883;
* t;=synapse firing timing from upstream presynaptic neuron i on link j.

Quantum computing relevance for modelling an electrical synapse
As an introduction to this Section, it should again be pointed out that in this research, there is no direct relevance
of simple artificial/computational neuron models as used for example in artificial intelligence, and on the
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contrary are essentially exploited the more precise biological neuron behaviors described in Sections Electrical
synapse connections between neurons & Base model of an electrical synapse (gap junction) above.

One essential property to exploit is the intrinsic theoretical infinite parallelism offered by quantum
mechanics!, which allows to address the large number of upstream and postsynaptic links to a given synapse,
and, beyond that, to mimic the networking of many neurons and synapses. The randomness of biochemical
firings of the neuron links is mimicked by the randomness in qubit particles, of course at a different time
scale, with experimental and theoretical justifications provided below.

The second essential property to exploit is the probabilistic nature of the quantum states which correspond
to elements of randomness in synapse functionality and characteristics (Egs. 2, 6).

The third property to exploit is the signaling and control features in synapses, which, using the signaling and
control features in'%, might allow to introduce signaling and control in a quantum synapse gate model and a
realization thereof (see Section Control and signaling in a quantum synapse).

We here assume that the quantum processing or sensing system incorporating quantum synapses has no
intrinsic decay®®.

Some may question the validity of the “analogy” between the randomness of firings of the neuron links and
the randomness in qubit particles, of course at different time scales. Their argument is that the neural firing
randomness is driven by biochemical processes and stochastic variations, whereas quantum randomness results
in superposition and measurement collapse. However, this argument ignores the randomness in the emissions
at particle level of quantum particles, and also ignores that superposition and measurement / activation collapse
happens as well in some biological processes at the level of specific biological functions like those mentionned
in the Introduction. These processes indeed operate on vastly different principles, and thus cannot be treated
as equivalent in signal processing terms at different time scales. However, with the experiments reported and
analyzed in'3, and further specified by claims of Patent [A], when light or sound stimuli onto living species
are made to follow a modulated Poisson distribution like that of a directly modulated semiconductor laser
source useable as well as a quantum particle source, it was shown one can directly link in a probabilistic way the
information bits carried by these stimuli to the measured titration of 17th ketosteroids in the animals, which
represent a global indicator of neural activity in synapsis biochemical reactants (acetylcholine, adrenaline &
noradrenaline). While very hard to measure, the neuron firing rate distributions are analyzed in*” and linked to
plasticity. So the said probabilistic correspondence is at information level, and this provides a partial justification
to the chosen approach to be explored to design a “quantum synapse”. This issue of “analogy” is further formalized
in Section Limitations, results and open research issues.

In addition, for the further analysis of said biological processes, “quantum synapse” realizations may help
analyze much faster the intricacies of said biological processes.

Quantum synapse

The idea is to represent each of the electrical synapse links as a single component of a quantum state |y>, this
applying respectively to both the upstream links K’ |y UP > to the presynaptic neurons, and to the downstream
links T [yDOWN > to the postsynaptic neurons, thus the quantum system:

[YUP >=3 "ay|[pUPy > )
k
[$YDOWN >= 3 "b [ DOWN, > (®)

1
where:

+ {lyUP,>}, {{[yDOWN,>} are two orthonormalized systems of eigenvectors;

« the values |a,|% and |b)|* are equal to the probabilities that the potentials VUP(t), VDOWN(t) of the presyn-
aptic and postsynaptic neuron membranes, respectively, exceed the threshold potential V, . To simplify the
readability, the corresponding quantum mechanics equations are not provided for these relations, as anyway
the quantum measurements represent probabilities.

It is beyond the scope of this paper to make explicit the biological constraints on electrical potentials, and their
differences, applicable to the synapse membranes, and originating in presynaptic and postsynaptic neuron
potentials. It must only be pointed out that such bounds are stable over time.

The random sequence of presynaptic spikes (Eq. (2) (6)) is provided by the corresponding |yUP > quantum
state’s randomness, and a logical CNOT gate function applied to the presynaptic neuron membrane potential
down each link, the logical comparison being with V,, ..

The parallelism of links of the upstream (k) and postsynaptic (1) neuronal links is embedded in the
dimensionalities of the vectors [yUP>, [yDOWN>.

We exploit both the two |yUP>and |[yDOWN>quantum states’ entanglement, and the quantum
superposition of these states. Entangled states are those states of the quantum system, where qubits interact
with each other, and involve a description of these states in a form wherein the product of wave functions of
independent qubits is impossible.

These two state’s evolutions are described by the time dependent equations:

[ UP > = CNOT (V (t) > Vinres)) 9
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1 0 0 0
CNOT qubit permutation matrix = 8 (1) 8 (1)
0 0 1 0

ih(9|DOWN > /0t) = — (gL/Cm) (V (t) — Vrest) [0 > + ih|[ypyUP > (10 a)

in which:

o h=h/2m is the Planck constant.

e i=V(-1).

to which must be added the following constraints spelled out in Section Initial simple model :
(Constraint on total presynaptic neuron potentials) (10b)
(Constraint on total postsynapti neuron potentials) (10¢)

The logical Controlled NOT (CNOT) functionality XOR’s the first bit to the second bit and keeps the first bit
unchanged. It has different optical or acoustic realizations, may be built from universal reversible gates*, and
may eventually be replaced by using a quantum Bell state’’, where a specific qubit may be measured as having a
specific value with two probabilities adding up to one.

Note that here in (Eq. 10 a) we have V_, and in (Eq. 9) (and definition of the states) we have V,
reinitialization of the membrane potential.

Figure 3. Single quantum synapse circuit, with one presynaptic and one postsynaptic neuron; the processes
are those described in Eqs. 9-10 and Section Initial simple model; it is recalled that V,,  is the threshold
potential above which V(t) get’s reinitialized to the value V, approx. (60,5 mS/cm2, 50 mV).

, due to the

hres

Control and signaling in a quantum synapse
In biology, synapses can be stimulated by brain and nervous commands through neurons, and end up affecting
other nervous effectors or organs. The previous Sections pave the way to specify features whereby to modify the
above quantum synapse model and circuit, so it renders effective a control functionality.

This rests on two properties, one of which is biological, and the other mathematical, applied in the context of
quantum computing, and both with limitations:

« like biological synapses which are also subject to constraints, a quantum synapse can have quantum flows re-
producing a two-way flow of signals, provided the quantum processing architecture itself is modified; this was
mentioned in Section Electrical synapse connections between neurons and is exploited in Section Allowing
for two-way junctions in some synapses;

« that general quantum processing signaling and control features as in'“ can capture control and selection func-
tions by using some of the electrical synapse parameters of Section Quantum synapse as control variables; this
is addressed in Section Implementation of signaling and control synapse qubits.

12

Allowing for two-way junctions in some synapses

It was mentioned in Section Electrical synapse connections between neurons that, under some conditions, a
biological electrical synapse can be transversed by bilateral flows of ions. Whereas the exploitation of two-way
junctions is the theme of this Section, the biochemical description of the initial trigger effect by which ion flows

| yDOWN>
-(gL/ Cm) — 1]
(V(t)-Vrest ) 10>
Vit) ——————— ’
|pup> -
Vthres CNOT

Fig. 3. Single quantum synapse circuit, with one presynaptic and one postsynaptic neuron; the processes are
those described in Eq 9-10 and Section Initial simple model ; it is recalled that V,, . is the threshold potential
above which V(t) get’s reinitialized to the value V__ approx. (60,5 mS/cm2, 50 mV).

rest
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Fig. 4. Quantum synapse circuit with bilateral flows between one presynaptic neuron and one postsynaptic
neuron.

become bidirectional in the synapse, belongs mostly to biochemistry and is outside the scope of this paper?’.
Below we also must make the assumption that the randomness of the downflows to the postsynaptic neuron is
like the randomness of the upstream flows to the presynaptic neuron, so Eq. 6 can be reused.

The bidirectional functionality can be implemented by feeding a parametric part of the postsynaptic quantum
state [yDOWN>, to mix with the input stream |¢yUP >into the same synapse, the open Hermitian quantum
operator K allowing for attenuation as well as phase shift; the resulting combined postsynaptic quantum state
becomes [y DOWN(2)> :

[YUP (2) > =) ai[¢UPx > + K[yDOWN > (11)
k
ih (O|yUP (2) > /0t) = — (gL/Cm) (V (t) — Vrest) + ih|y DOWN > (12)
[¢yDOWN (2) >= 3 "by [¢UP(2), > +| DOWN > (13)
1

where the {b} characterize the postsynaptic electrical neuron membrane potentials, resulting from flows arriving
from elsewhere to these neurons (see Section Quantum synapse).

The formalization and effects of the Hermitian quantum operator K are given in Appendix.

When determined, from measured biological constraints on the potentials mentioned above, the following
corresponding additional constraints must be accounted for, and are here just mentioned for compliance:

(Constraint on total combined presynaptic neuron potentials) (14)

(Constraint on total combined postsynaptic neuron potentials) (15)

The result is a coupled set of equations, synthesized by the quantum gate circuit of Fig. 4. The quantum system
operator K in effect represents in the simplest case a unitary matrix transform, alternatively a Hermitian
matrix weighting, but extensions are possible to render it linked to probabilities of neuron potentials exceeding
thresholds. Indeed, at the biophysical level, parts of potential in the postsynaptic neuron are fed back to add to
the potential of the presynaptic neuron: attenuation, phase shift and possibly some delays may occur when they
transverse the synapse. The so-called connexons, made up of sub-units called connexines (proteins), establish
gap junction channels enabling the bidirectional flow of ions*!. Research in biology has though not yet identified
any cases with amplification; it has however established that electrical synapses with bidirectional flows enhance
the speedy synchronization of potentials and electrical activity between groups of neurons.

This shows, with reference to Section Quantum synapse, that the qubit attributes with complex values {a,},
and {b} can, respectively, be considered to be control parameters to the electrical synapse from presynaptic
neurons, and considered to be the resulting control parameters to postsynaptic neurons. If their absolute values
are equal to zero, the corresponding links to the corresponding neurons are shut down. This property is the key
justification for an embedded quantum synapse used in quantum sensing and control.

Implementation of signaling and control synapse qubits
It was shown in'>!3, both in mathematical terms but also in terms of realization by manipulating magnetism by
electrical fields, that the quantum pathways can be assigned to be linked either to information carrying qubits,
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or to quantum signaling or control gates which have eigenvector attribute tags like {a,} or {b} assigned by a
predecessor quantum gate providing said signaling or control. If furthermore these tags possess the property
of being elements of a colored algebra, decidable quantum signaling can be achieved. This is essential in some
applications. The only drawback is to extend the quantum state space, and, for those quantum gates serving for
control or signaling, to have additional specific quantum gate realizations of those.

This leads to the following idea, for a quantum synapse, to have:

i. a unique mapping of the chemical calcium signaling ion concentration levels, described above and in*>%3,
into unique elements of a colored algebra, so that even binding rules of two Ca2 +ions can map into algebraic
rules for algebraic color change, the chemical details of which are beyond the scope of this paper**;

ii. decompose some of the vector dimensions of the qubits [yUP(2) >and |yDOWN(2)>, to have some of the
corresponding attributes (like {a,}’s or {b}’s) carry said decidable tags.

However, it is not within the scope of the present paper to describe in detail the biochemical properties and the
mix of the ion flows flowing through an electrical synapse.

Quantum sensing evaluation application

One of several application fields, as envisaged for evaluation, is briefly discussed. The author has worked for
a long time on mission critical sensor fusion architectures and specific sensors®>~’, to realize over time the
bottlenecks rooted in geometrical information matching, in real time sensor tuning and adaptation, and in
probabilistic information aggregation, even when using high performance computing. Quantum computing
mimicking biological functions offers vastly superior potential due to computational speed, state superposition,
entanglement, hypothesis refinement and probabilistic assessments, as the split/merge/evaluate functionalities
can be coordinated by a quantum synapse over a high number of quantum flows, largely better than a blackboard
with its read/write/store and synchronization problems. Once the first quantum synapse circuits have been
realized in hardware, a sensor fusion experiment will be conducted, probably on a quantum processing element
itself used for sensor operations optimization (magnetic fields, electrical fields, thermal characteristics, etc....).
Extensive simulations have already been done though.

Discussion on scalability

The proposed quantum synapse models of Sections Quantum synapse & Control and signaling in a quantum
synapse, resting on the base model of Section Base model of an electrical synapse (gap junction) , involves some
quantum gates, each gate processing the quantum state having to operate sequentially if traditional computing
was to be used. Under this last hypothesis, serious scalability concerns could be raised, as each synapse would
require significant time to compute its quantum states. In a biological network of neurons each synapse has
around 10,000 postsynaptic neurons, meaning the computational cost to simulate an entire neuromorphic
system might then be significant. The time required to calculate quantum states and their probabilities for a
large number of synapses would quickly become prohibitive.

However, this paper explores an alternative approach: instead of calculating sequentially all intermediate
quantum states, quantum processing with its parallelism allows to mimic as explained above the spike trains as
random quantum particles, and exploits parallelism, and thus to estimate by quantum measurements the new
synapse states with probabilities as explained in Section Quantum synapse and Allowing for two-way junctions
in some synapses. This largely simplifies the computational requirements and makes the model more feasible for
large-scale applications when using quantum computing.

Quantum synapse simulation

Quantum computing simulations of the two designs (Figs. 3, 4) have been conducted and are under analysis
in view of later optimization for execution on a quantum computer as well as first on an array of eight
multicore FPGA’s. The main simulation tool has been MIMIQ*8based on research at the European center for
quantum sciences, relying on Matrix product states. It enables linked partial differential equations as well as
combinatorics. Students associated with the project in advance get training on the QLM simulator**’with
initial code specified in Python with cross-assemblers. Of special interest, and also quite complex, is the first
understanding and possible exploitation of the superposition and imbrication between the presynaptic neurons
and the postsynaptic neurons. Next, critical is the exploitation of the state of the art for noise and randomness in
biological synapse operations (Eq. (2), Eq. (5)%), and their comparison with the noise and errors in the quantum
computations on a quantum computer; thus much efforts have gone into the design of parametrizations of
random number generators (parallelled with quantum particle source generators). Finally, at this stage of the
research, has been simulated in a limited way the proliferation of presynaptic and postsynaptic neurons for a
single quantum synapse. At all simulation stages, the time-dependent simulation is let to lapse with varying
number of simulation cycles as required by quantum computations, to see how the quantum synapse itself
evolves over time (e.g. for the Example of Section Quantum sensing evaluation application), although the time
scales are obviously completely different than for biological synapses ; this requires very extensive memory
capabilities (32 Tb). Parameters and results will be provided in a companion paper.
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Limitations, results and open research issues

The claim is not for a probabilistic equivalence between synapse firing stochastics, and quantum particle
stochastics; both have stochastic distributions which can be characterized for a given neural condition and a
given quantum physical set-up & particle source. Therefore, should be characterized the approximate matching
between these two classes of stochastic distributions from calibration data with:

« for a synapse, the stochastic distribution of the neuron membrane potential along a given synapse link V(t),
as modelled by Eq. (1);

« for a quantum synapse design Figs. 3 or 4), the stochastic distributions of the values [a,|?, and |b,|* of the
probabilities that the potentials VUP(2)(t), VDOWN(2)(t) of the presynaptic and postsynaptic neuron mem-

branes, respectively, exceed the threshold potential Vipres after traversing a quantum circuit realization .

One limitation in the present “quantum synapse” design is that it does not capture all the details and versatility of
true synapses, realizing that this is not the research goal of this paper (Section Research question ) and that biology
research on such questions is very detailed. Likewise, synapses are not the only cells involved in the interactions
between neurons and nerves. It is e.g., to be recalled that glia cells (astrocytes and oligodendrocytes®!) play a
role in neuro-muscular interfaces, and that they contribute to the spatial distribution of connectivity between
neurons. Such aspects are beyond the scope of this article.

Another limitation is that this article cannot include initial experimental results beyond those stated in'?, and
quantum simulation results from Section Quantum synapse simulation which will be reported in a follow-up
publication. The time scale of the stochastic process of Eq. 2 has obviously been adjusted to fit quantum particle
flows with on-going quantum particle source selection, and the biological parameters reported in Section Base
model of an electrical synapse (gap junction) were adjusted accordingly. It was observed that for some structures
of the open quantum operator K (Eq. 11) remarkably interesting spatiotemporal filtering was obtained.

A remaining research question is to speed up the particle physics realizations and measurements according to
the plan already outlined in®, and to narrow down the functionalities to be built to those outlined here, especially
the quantum paths and their control in a quantum synapse.

Conclusion

This paper has attempted to pave the way towards an initial quantum circuit design for an electrical synapse,
including its dynamics, with a progression from a simple biological model to a quantum processing model and
quantum gate designs, with parametric bi-directional flows and signaling.

The discussion around a quantum sensing application to sensor fusion for quantum processing element
monitoring, demonstrates the capacity of a quantum synapse gate to integrate sensors and quantum sensors.
This quantum synapse can perform bidirectional flows and leverage quantum computing principles such as
superposition and entanglement to enhance sensing capabilities.

Furthermore, the proposed quantum synapse circuits may fit embedded systems architectures with both
control, sensing, and probabilistic computations. This theoretical potential may eventually over time be slowly
scaled against the capabilities of a human brain of 1400 g, with approx. 10 000 synapses per neuron and 85-
100 Billion neurons, whereby each presynaptic neuron potentially interacts with 10 000 postsynaptic neurons™,
so the scaling up of quantum synapses has a long way to go. Consequently, a more interesting goal may be to
analyze and achieve adaptation, thus the need for signaling and control.

It should be highlighted that the chosen approach with LIF synapses contrasts with the training of
neural networks on quantum computers, which is essentially a recursive regression on very simple neuron
approximations without synapse functionalities.

Data availability

This manuscript does not report data generation or analysis other than those reported or from listed references.
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request. Data and Results for the cited quantum simulation of a quantum synapse will appear in a
different article.

Appendix

The quantum operator K from Eq. (11) is in general Hermitian. This means by definition, that this operator K
in a Hermitian space H, obeys the property: U (x, y) € H%, (K(x)|y) = (x |K(y)). Hermitian operators play an im-
portant role in quantum mechanics because they represent physical quantities such as attenuation, phase shift,
delays. The real eigenvalues represent possible values of the relative strengths of variables in [yDOWN>, and
the eigenfunctions (or vectors) represent the associated states thereof. Hermitian operators allow to describe
observables, like voltages and energy (see Section Quantum synapse). They ensure that the measurement values
are real numbers, which is essential for the coherence of physical predictions in the presence of more than a pair
of synaptic links. A set of Hermitian operators which commute amongst them, each associated with several syn-
aptic links, represent a complete set of observables, allowing for the simultaneous measurement of several phys-
ical quantities, here several synaptic link properties. A particular class of Hermitian operators K are quantum
rotation operators R, which allow us here to represent phase differences between several synaptic links. With
every physical rotation R, a quantum mechanical rotation operator ® ( R): H -> H, is the rule that assigns to each
vector in the space H the state vector |a>, = @(R)|a>that is also in H. Furthermore @ (Q, ¢) =exp (-ipQ. J/h)
wherein € is the rotation axis, ¢ the rotation angle, J is the angular momentum operator, and h is the reduced
Planck constant. Such quantum mechanical rotation operators help in the quantum disambiguation: contrary to

Scientific Reports |

(2025) 15:11647 | https://doi.org/10.1038/s41598-025-93113-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

classical rotations in a Euclidian space, quantum rotations are non-commutative, which means that the order by
which the phase shifts are measured affects the final state of the system. At the same time, the quantum rotation
operator maintains rotational symmetry, which is essential to quantify the quantum angular moment, and it
allows to manipulate the spin of an electron. For further theoretical justifications, see e.g.: L.D. Landau and E.M.
Lifshitz: Quantum Mechanics: Non-Relativistic Theory, New York: Pergamon Press, 1985.
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