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Abstract We consider globally regular and black hole solutions in SU(2) Einstein–
Yang–Mills–Higgs theory, coupled to a dilaton field. The basic solutions repre-
sent magnetic monopoles, monopole–antimonopole systems or black holes with
monopole or dipole hair. When the globally regular solutions carry additionally
electric charge, an angular momentum density results, except in the simplest spher-
ically symmetric case. We evaluate the global charges of the solutions and their ef-
fective action, and analyze their dependence on the gravitational coupling strength.
We show, that in the presence of a dilaton field, the black hole solutions satisfy a
generalized Smarr type mass formula.

Keywords General relativity, Mass formula, Electric charge, Angular momen-
tum, Black holes

1 Introduction

In Einstein–Maxwell (EM) theory the Kerr–Newman (KN) solutions represent
stationary asymptotically flat black holes, characterized uniquely by their global
charges: their mass M, their angular momentum J, their electric charge Q, and
their magnetic charge P [1; 2; 3; 4]. Following Wheeler this uniqueness theorem
of EM theory is often expressed as “EM black holes have no hair”. In generalized
Kerr–Newman space-times [5; 6] the horizon becomes singular in conformity with
the black holes uniqueness theorem.
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In many unified theories, including string theory, dilatons appear. When a dila-
ton is coupled to EM theory, this has profound consequences for the black hole
solutions. Not only do charged static Einstein–Maxwell–dilaton (EMD) black hole
solutions exist for arbitrarily small horizon size [7; 8], but also the staticity the-
orem of EM theory [9] does not generalize to EMD theory for arbitrary dilaton
coupling constant γ: at the Kaluza–Klein value γKK =

√
3 stationary non-static

black holes appear, whose horizon is non-rotating [10; 11], and beyond γKK even
counterrotating black holes arise, whose horizon angular velocity and global an-
gular momentum have opposite sign [11].

The EM uniqueness theorem, on the other hand, does not readily generalize to
theories with non-Abelian gauge fields coupled to gravity [12; 13]. The hairy black
hole solutions of SU(2) Einstein–Yang–Mills (EYM) and Einstein–Yang–Mills–
Higgs (EYMH) theory possess non-trivial magnetic fields outside their regular
event horizon and are not uniquely characterized by their mass, their angular mo-
mentum, their electric and magnetic charge [14; 15; 16; 17; 18; 19; 20; 21; 22; 23;
24; 25; 26; 27; 28; 29]. Furthermore, black hole solutions arise, which are static
and not spherically symmetric, showing that Israel’s theorem [1; 2; 3; 4] does not
generalize to non-Abelian theories, either [20; 21; 22; 23; 24].

The coupling to non-Abelian fields not only gives rise to new types of black
hole solutions, but also allows for globally regular solutions, not present in EM
theory either [12; 13; 17; 18; 19; 30]. These are stationary solutions with a spa-
tially localized energy density of the matter fields and a finite mass, and are
referred to as solitons when they are stable, and sphalerons when they possess
unstable modes. The known globally regular solutions of EYM theory represent
sphalerons, whereas the globally regular magnetic monopoles of EYMH theory
are solitons, whose topological charge is proportional to their magnetic charge
[31; 32]. Besides magnetic monopoles EYMH theory contains a plethora of fur-
ther globally regular solutions, representing for instance monopole–antimonopole
pairs, chains, and vortex ring solutions [33; 34; 35].

It is an interesting question whether such globally regular solutions can be
endowed with rotation, like their black hole counterparts can. When EYM black
holes start to rotate, the time component of their gauge potential is excited, as
expected. Surprisingly, however, not only a magnetic moment is induced by the
rotation but also an electric charge [25; 36; 37], and this seems to preclude the
existence of globally regular rotating EYM sphalerons [38; 39].

Globally regular EYMH solutions, on the other hand, can carry electric charge,
and the presence of a time component of the gauge potential renders the solutions
stationary. Together the electric and magnetic fields then give rise to an angular
momentum density, except in the spherically symmetric case [39; 40; 41; 42]. Still,
globally regular EYMH solutions with a non-vanishing global magnetic charge
cannot rotate: their angular momentum vanishes [39; 40; 41; 42]. But globally
regular EYMH solutions with no global magnetic charge do possess a finite angu-
lar momentum. In fact, it is proportional to their electric charge [39], giving rise
to a quantization condition for the angular momentum,
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J = nQ(1−σ), P = nσ , σ =
1
2

[1− (−1)m] , (1)

where m and n are two integers, characterizing the EYMH solutions [33; 34; 35].
Here we derive a mass formula for the stationary globally regular EYMH solu-

tions
in the presence of a dilaton. Then we address the dependence of the global charges
and of the effective action of these solutions on the gravitational coupling strength.
For a given type of solution, typically two branches of solutions arise, which
bifurcate at a maximal value of the coupling, αmax. For static solutions, the mass
M exhibits a “spike” at αmax [18; 19; 33; 34; 35], since there the two branches must
possess the same
tangent w.r.t. α (P. Breitenlohner, private communication). When stationary and
rotating solutions are considered, in contrast, the mass branches may exhibit a
“loop”, when considered as a function of α [42]. Here we show that for station-
ary and rotating solutions it is the effective action Seff which may only exhibit
a “spike” in the vicinity of the maximal value of the gravitational coupling con-
stant. We illustrate this qualitative different behavior of the mass M and the effec-
tive action Seff for several sets of numerically constructed stationary and rotating
solutions.

Turning to black holes again, we recall, that EM black holes satisfy the laws
of black hole mechanics [43] and the Smarr mass formula [44; 45]

M = 2T S +2ΩJ + ψ̃elQ+ ψ̃magP, (2)

where T represents the temperature of the black holes and S their entropy, Ω

denotes their horizon angular velocity, and ψ̃el and ψ̃mag represent their horizon
electric and magnetic potential, respectively.

In the presence of a dilaton an equivalent mass formula for EMD black holes
is [29]

M = 2T S +2ΩJ +
D
γ

+2ψ̃elQ, (3)

with dilaton charge D and dilaton coupling constant γ . Interestingly, this second
form of the mass formula also holds for the known non-Abelian black hole solu-
tions of Einstein–Yang–Mills–dilaton (EYMD) theory [29].

Here we address stationary black holes of EYMH and Einstein–Yang–Mills–
Higgs–dilaton (EYMHD) theory [46; 47; 48]. For these black holes the zeroth
law of black hole mechanics holds [26; 27; 28], as well as a generalized first law
[49; 50]. We derive a mass formula for EYMHD black holes, based on the asymp-
totic expansion of the metric and the matter fields. The analytical mass formula
represents a good criterion for the quality of numerically constructed EYMHD
black hole solutions, also presented.

In Sect. 2 we recall the SU(2) EYMHD action and the equations of motion. We
discuss the stationary ansatz for the metric, the gauge potential, the Higgs field and
the dilaton field, and we present the boundary conditions for globally regular and
black hole solutions. In Sect. 3 we address the physical properties of the solutions.
We present the asymptotic expansion at infinity and the expansion at the horizon,
needed to obtain the global charges and the horizon properties of the solutions. We
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evaluate the mass, the angular momentum and the effective action of the globally
regular solutions in Sect. 4, and discuss the dependence of these quantities on the
coupling constant α . We illustrate these results for a set of numerically constructed
solutions. We then derive the mass formula for the stationary black hole solutions
in Sect. 5, presenting also numerical results. In Sect. 6 we present our conclusions.

2 EYMHD solutions

After recalling the SU(2) EYMHD action and the general set of equations of mo-
tion, we discuss the ansatz for the stationary non-Abelian globally regular and
black hole solutions. The ansatz for the metric represents the stationary axially
symmetric Lewis–Papapetrou metric in isotropic coordinates. The ansatz for the
gauge potential and the Higgs field includes two integers, m and n, related to
the polar and azimuthal angles. For monopole–antimonopole chains the integer m
counts the total number of poles on the symmetry axis, while the integer n gives
the magnitude of the magnetic charge of each pole. As implied by the boundary
conditions, the stationary axially symmetric solutions are asymptotically flat, and
the black hole solutions possess a regular event horizon.

2.1 SU(2) EYMHD action

We consider the SU(2) EYMD action

S =
∫ ( R

16πG
+LM

)√
−gd4x, (4)

where R is the scalar curvature, and the matter Lagrangian LM is given by

LM = −1
2

∂µΨ∂
µ
Ψ − 1

2
e2κΨ Tr(Fµν Fµν)− 1

4
Tr
(
Dµ ΦDµ

Φ
)

−λ

8
e−2κΨ Tr

(
Φ

2− v2)2
, (5)

with dilaton field Ψ , gauge field strength tensor Fµν = ∂µ Aν −∂ν Aµ + ie
[
Aµ ,Aν

]
,

gauge field Aµ = Aa
µ τa/2, Higgs field in the adjoint representation Φ = τaΦa,

gauge covariant derivative Dµ = ∇µ + ie
[
Aµ , ·

]
, and Newton’s constant G, dila-

ton coupling constant κ , Yang–Mills coupling constant e, Higgs self-coupling con-
stant λ , and Higgs vacuum expectation value v.

The nonzero vacuum expectation value of the Higgs field breaks the non-
Abelian SU(2) gauge symmetry to the Abelian U(1) symmetry. The particle spec-
trum of the theory then consists of a massless photon, two massive vector bosons
of mass MW = ev, and a massive Higgs field MH =

√
2λ v. In the limit λ = 0 the

Higgs field also becomes massless. The dilaton is massless as well.
Including a boundary term [51], variation of the action with respect to the

metric and the matter fields leads, respectively, to the Einstein equations
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Gµν = Rµν −
1
2

gµν R = 8πGTµν (6)

with stress-energy tensor

Tµν = gµν LM −2
∂LM

∂gµν

= ∂µΨ∂νΨ − 1
2

gµν ∂αΨ∂
α

Ψ +2e2κΨ Tr(Fµα Fνβ gαβ − 1
4

gµν Fαβ Fαβ )

+
1
2

Tr
(

Dµ ΦDν Φ− 1
2

gµν Dα ΦDα
Φ

)
− λ

8
gµν e−2κΨ Tr

(
Φ

2− v2)2
, (7)

and the matter field equations,

Dµ(e2κΨ Fµν) =
1
4

ie [Φ ,Dν
Φ ] , (8)

2Ψ = κe2κΨ Tr
(
Fµν Fµν

)
− λ

4
κe−2κΨ Tr

(
Φ

2− v2)2
, (9)

where 2Ψ = Ψ
;µ

;µ , and

Dµ Dµ
Φ = λe−2κΨ Tr

(
Φ

2− v2)
Φ . (10)

2.2 Stationary axially symmetric ansatz

The system of partial differential equations, Eqs. (6), (9), (8), and (10) is highly
non-linear and complicated. In order to generate solutions to these equations, one
profits from the use of symmetries, simplifying the equations.

Here we consider solutions, which are both stationary and axially symmetric.
We therefore impose on the spacetime the presence of two commuting Killing
vector fields, ξ (asymptotically timelike) and η (asymptotically spacelike). Since
the Killing vector fields commute, we may adopt a system of adapted coordinates,
say {t,r,θ ,ϕ}, such that

ξ = ∂t , η = ∂ϕ . (11)

In these coordinates the metric is independent of t and ϕ . We also assume that
the symmetry axis of the spacetime, the set of points where η = 0, is regular, and
satisfies the elementary flatness condition

X ,µ X ,µ

4X
= 1, X = η

µ
ηµ . (12)

Apart from the symmetry requirement on the metric (Lξ g = Lη g = 0, i.e.,
gµν = gµν(r,θ)), we impose that the matter fields are also symmetric under the
spacetime transformations generated by ξ and η .

This implies for the dilaton field

LξΨ = LηΨ = 0, (13)
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so Ψ depends on r and θ only. Introducing two compensating su(2)-valued func-
tions Wξ and Wη , the concept of generalized symmetry [39; 52] requires for the
Higgs field

Lξ Φ = ie[Φ ,Wξ ], Lη Φ = ie[Φ ,Wη ], (14)

and for the gauge potential A = Aµ dxµ ,

(Lξ A)µ = DµWξ ,
(15)

(Lη A)µ = DµWη ,

where Wξ and Wη satisfy

LξWη −LηWξ + ie
[
Wξ ,Wη

]
= 0. (16)

Performing a gauge transformation to set Wξ = 0, leaves Φ , A and Wη independent
of t.

By virtue of the Frobenius condition and the circularity theorem, the metric
can then be written in the Lewis–Papapetrou form, which in isotropic coordinates
reads

ds2 =− f dt2 +
h
f

[
dr2 + r2dθ

2]+ sin2
θr2 l

f

[
dϕ− ω

r
dt
]2

, (17)

where f , h, l and ω are functions of r and θ only.
The z-axis represents the symmetry axis. The regularity condition along the

z-axis Eq. (12) requires

h|θ=0,π = l|θ=0,π . (18)

The event horizon of stationary black hole solutions resides at a surface of
constant radial coordinate, r = rH, and is characterized by the condition f (rH,θ) =
0 [25]. The Killing vector field

χ = ξ +
ωH

rH
η , (19)

is orthogonal to and null on the horizon [43]. The ergosphere, defined as the region
in which ξµ ξ µ is positive, is bounded by the event horizon and by the surface
where

− f + sin2
θ

l
f

ω
2 = 0. (20)

For the gauge fields we employ a generalized ansatz [25; 26; 27; 28; 42], which
trivially fulfils both the symmetry constraints Eqs. (15) and (16) and the circularity
conditions,

Aµ dxµ =

(
B1

τ
(n,m)
r

2e
+B2

τ
(n,m)
θ

2e

)
dt +Aϕ(dϕ− ω

r
dt)

+
(

H1

r
dr +(1−H2)dθ

)
τ

(n)
ϕ

2e
, (21)

Aϕ = −nsinθ

(
H3

τ
(n,m)
r

2e
+(1−H4)

τ
(n,m)
θ

2e

)
, (22)
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and the appropriate Ansatz for the Higgs field is then given by [26; 27; 28; 42]

Φ = v
(

Φ1τ
(n,m)
r +Φ2τ

(n,m)
θ

)
, (23)

where n and m are integers. The symbols τ
(n,m)
r , τ

(n,m)
θ

and τ
(n)
ϕ denote the dot

products of the Cartesian vector of Pauli matrices, τ = (τx,τy,τz), with the spatial
unit vectors

ê(n,m)
r = (sin(mθ)cos(nϕ),sin(mθ)sin(nϕ),cos(mθ)) ,

ê(n,m)
θ

= (cos(mθ)cos(nϕ),cos(mθ)sin(nϕ),−sin(mθ)) , (24)

ê(n)
ϕ = (−sin(nϕ),cos(nϕ),0) ,

respectively. Like the dilaton field function Ψ , the gauge field functions Bi and Hi
and the Higgs field functions Φi depend only on the coordinates r and θ .

The ansatz is form-invariant under Abelian gauge transformations U [20; 21;
22; 53; 54]

U = exp
(

i
2

τ
(n)
ϕ Γ (r,θ)

)
. (25)

With respect to this residual gauge degree of freedom we choose the gauge fix-
ing condition r∂rH1 − ∂θ H2 = 0. For the gauge field ansatz, Eqs. (21), (22), the
compensating matrix Wη is given by

Wη = n
τz

2e
. (26)

2.3 Dimensionless quantities

Let us now introduce the dimensionless quantities, beginning with the dimension-
less coupling constants α , β and γ

v =
α√
4πG

, λ = e2
β

2, κ =
√

4πG
α

γ. (27)

The dimensionless coordinate x is given by

r =
√

4πG
eα

x, (28)

the dimensionless electric gauge field functions B̄1 and B̄2 are

B1 =
eα√
4πG

B̄1, B2 =
eα√
4πG

B̄2, (29)

and the dimensionless dilaton function ψ is

Ψ =
α√
4πG

ψ. (30)

Introducing these dimensionless quantities into the EOMs, the resulting equations
depend only on the parameters α , β , and γ . Note, that in the limit γ → 0 the dilaton
decouples and the equations of EYMH theory are obtained.



8 B. Kleihaus et al.

2.4 Boundary conditions

Boundary conditions at infinity
To obtain asymptotically flat solutions, we impose on the metric functions the

boundary conditions at infinity

f |x=∞ = h|x=∞ = l|x=∞ = 1, ω|x=∞ = 0. (31)

For the dilaton function we choose

ψ|x=∞ = 0, (32)

since any finite value of the dilaton field at infinity can always be transformed to
zero via ψ → ψ−ψ(∞), x→ xe−γψ(∞).

The asymptotic values of the Higgs field functions Φi are

Φ1|x=∞ = 1, Φ2|x=∞ = 0. (33)

We further impose, that the two electric gauge field functions B̄i satisfy

B̄1|x=∞ = ν , B̄2|x=∞ = 0, (34)

where the asymptotic value ν is restricted to 0 ≤ |ν | < 1, and that the magnetic
gauge field functions Hi satisfy

H1|x=∞ = 0, H2|x=∞ = 1−m, (35)

H3|x=∞ =
cosθ − cos(mθ)

sinθ
m odd, H3|x=∞ =

1− cos(mθ)
sinθ

m even, (36)

H4|x=∞ = 1− sin(mθ)
sinθ

. (37)

Boundary conditions at the origin
To obtain globally regular solutions, we must impose appropriate boundary

conditions at the origin. Regularity requires for the metric functions the boundary
conditions

∂x f |x=0 = ∂xh|x=0 = ∂xl|x=0 = 0, ω|x=0 = 0, (38)

and for the dilaton function

∂xψ|x=0 = 0, (39)

the gauge field functions Hi satisfy

H1|x=0 = H3|x=0 = 0, H2|x=0 = H4|x=0 = 1, (40)

while for even m the gauge field functions B̄i and the Higgs functions Φi satisfy

[sin(mθ)Φ1 + cos(mθ)Φ2]|x=0 = 0, (41)

∂x [cos(mθ)Φ1− sin(mθ)Φ2]|x=0 = 0, (42)

[sin(mθ)B̄1 + cos(mθ)B̄2 = 0]|x=0 = 0, (43)

∂x [cos(mθ)B̄1− sin(mθ)B̄2]|x=0 = 0, (44)
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whereas for odd m they satisfy B̄i|x=0 = Φi|x=0 = 0.

Boundary conditions at the horizon
The event horizon of stationary black hole solutions resides at a surface of con-

stant radial coordinate, x = xH, and is characterized by the condition f (xH,θ) = 0
[25].

Regularity at the horizon then requires the following boundary conditions for
the metric functions

f |x=xH = h|x=xH = l|x=xH = 0, ω|x=xH = ωH = const., (45)

for the dilaton function

∂xψ|x=xH = 0, (46)

while the Higgs and the magnetic gauge field functions satisfy

∂xΦ1|x=xH = ∂xΦ2|x=xH = 0, (47)
H1|x=xH = 0, ∂xH2|x=xH = ∂xH3|x=xH = ∂xH4|x=xH = 0, (48)

with the gauge condition ∂θ H1 = 0 taken into account [25]. The boundary con-
ditions for the electric gauge field functions are obtained from the requirement
that for non-Abelian solutions the electrostatic potential is constant at the horizon
[26; 27; 28]

Ψ̃el
τz

2
=−χ

µ Aµ |r=rH . (49)

Defining the dimensionless electrostatic potential ψ̃el,

ψ̃el =
√

4πG
α

Ψ̃el, (50)

and the dimensionless horizon angular velocity Ω ,

Ω =
ωH

xH
, (51)

yields the boundary conditions

B̄1|x=xH = nΩ cosmθ , B̄2|x=xH =−nΩ sinmθ . (52)

Boundary conditions along the symmetry axis
The boundary conditions along the z-axis (θ = 0 and θ = π) are determined

by the symmetries. For the positive z-axis they are given by

∂θ f |θ=0 = ∂θ h|θ=0 = ∂θ l|θ=0 = ∂θ ω|θ=0 = 0, (53)

∂θ ψ|θ=0 = 0, (54)

H1|θ=0 = H3|θ=0 = 0, ∂θ H2|θ=0 = ∂θ H4|θ=0 = 0, (55)

B̄2|θ=0 = 0, ∂θ B̄1|θ=0 = 0, (56)

Φ2|θ=0 = 0, ∂θ Φ1|θ=0 = 0. (57)
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The analogous conditions hold on the negative z-axis. We note, that the globally
regular solutions are symmetric w.r.t. the xy-plane. For the black hole solutions,
this symmetry is broken via the boundary conditions of the time component of the
gauge field.

In addition, regularity on the z-axis requires condition Eq. (18) for the metric
functions to be satisfied, and regularity of the energy density on the z-axis requires

H2|θ=0 = H4|θ=0. (58)

3 Properties of regular and black hole solutions

We derive the properties of the stationary axially symmetric solutions from the
expansions of their metric and matter field functions at infinity, at the origin and
at the horizon. The expansion at infinity yields the global charges of the solutions,
the expansion at the horizon yields the horizon properties of the black holes.

3.1 Asymptotic expansion

The asymptotic expansion depends on the integers m and n. Here we restrict to odd
winding number n, since the analysis for the even case seems to be ‘prohibitively
complicated’. We then obtain for β = 0

H1 =−C1 sinθ

x
− C3 sin(2θ)

x2 +O
(

1
x3

)
,

H2 = (1−m)− C1 cosθ

x
− C3 cos(2θ)

x2 +O
(

1
x3

)
,

H3 =
cos(σθ)− cos(mθ)

sinθ
+

C6 sinθ

x
+O

(
1
x2

)
,

H4 =
(

1− sin(mθ)
sinθ

)
− C1 cos(σθ)

x
− C3 cos2 θ +C1C6 sin2

θ

x2 +O
(

1
x3

)
,

B̄1 = ν− Q
x

+
2Q(µ− γD)−νC2

1 sin2
θ +2C7 cosθ

2x2 +O
(

1
x3

)
,

B̄2 =
νC1 sinθ

x
− (C1Q−νC3 cosθ)sinθ

x2 +O
(

1
x3

)
,

f = 1− 2µ

x
+

2µ2 +α2(Q2 +P2)+C4 cosθ

x2 +O
(

1
x3

)
, (59)

h = 1+
C5 cos(2θ)+ [−µ2 +α2(Q2 +P2−D2−C2

2)]sin2
θ

x2 +O
(

1
x3

)
,

l = 1+
C5

x2 +O
(

1
x3

)
,

ω =
2ζ

x2 +O
(

1
x3

)
,
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ψ =−D
x
− γ(Q2−P2)−2C8 cosθ

2x2 +O
(

1
x3

)
,

Φ1 = 1+
C2

x
− C2

1 sin2
θ −2C9 cosθ

2x2 +O
(

1
x3

)
,

Φ2 =
C1 sinθ

x
+

(C1C2 +C3 cosθ)sinθ

x2 +O
(

1
x3

)
,

where σ and P are defined in Eq. (1).
For generic β 6= 0 solutions, the expansions remain valid with C2 = C9 = 0.

At first sight the power law decay of the Higgs field then appears surprising, since
β 6= 0 renders the Higgs massive and should thus lead to an exponential decay.
However, this power law decay represents a gauge artifact and can be removed by
the gauge transformation

U = exp(iΓ τ
n
ϕ/2), (60)

with

Γ =−(1−m)θ +
C1 sinθ

x
+

C3 sin(2θ)
2x2 . (61)

Performing this gauge transformation leads to Φ = vτ
(n,1)
r + O(1/r3) (note that

the integer m has been transformed away). We further obtain trivial gauge field
functions H1 and H2 (up to order O(1/x3)).

3.2 Global charges

The expansion coefficients M, J, Q, P and D correspond to the global charges of
the solutions. The dimensionless mass M and angular momentum J of the solu-
tions are obtained from the asymptotic expansion of the metric

M =
1

2α2 lim
x→∞

x2
∂x f =

µ

α2 , J =
1

2α2 lim
x→∞

x2
ω =

ζ

α2 , (62)

These correspond to the expressions obtained from the respective Komar integrals,
as shown in sections IV and V for the globally regular and black hole solutions,
respectively. Note that M is the mass in units of 4πv/e, whereas µ corresponds to
the mass in units of Planck mass. Likewise, the dimensionless electric charge Q
and dimensionless dilaton charge D are given by

Q =− lim
x→∞

x(B̄1−ν) , D = lim
x→∞

x2
∂xψ, (63)

respectively, while the dimensionless magnetic charge P is given in Eq. (1).
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3.3 Expansion at the horizon

Expanding the metric and matter field functions at the horizon in powers of

δ =
x

xH
−1 (64)

yields to lowest order

H1 = δ

(
1− 1

2
δ

)
H11 +O(δ 3),

H2 = H20 +O(δ 2),

H3 = H30 +O(δ 2),

H4 = H40 +O(δ 2),

B̄1 = n
ωH

xH
cos(mθ)+O(δ 2),

B̄2 = −n
ωH

xH
sin(mθ)+O(δ 2),

f = δ
2 f2(1−δ )+O(δ 4), (65)

h = δ
2h2(1−3δ )+O(δ 4),

l = δ
2l2(1−3δ )+O(δ 4),

ω = ωH(1+δ )+O(δ 2),

ψ = ψ0 +O(δ 2),

Φ1 = Φ10 +O(δ 2),

Φ2 = Φ20 +O(δ 2).

The expansion coefficients f2, h2, l2, ψ0, H11, H20, H30, H40, Φ10, Φ20 are func-
tions of the variable θ . Among these coefficients the following relations hold,

0 =
∂θ h2

h2
−2

∂θ f2

f2
, (66)

H11 = ∂θ H20. (67)

3.4 Horizon properties

With help of the above expansion we obtain the horizon properties of the SU(2)
EYMHD black hole solutions. The first quantity of interest is the area of the black
hole horizon. The dimensionless area AH is given by

AH = 2π

π∫
0

dθ sinθ

√
l2h2

f2
x2

H, (68)
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and the dimensionless entropy S by

S =
AH

4
. (69)

The surface gravity of the black hole solutions is obtained from [43]

κ
2
sg =−1

2
(∇µ χν)(∇µ

χ
ν), (70)

with Killing vector χ , Eq. (19). Inserting the expansion at the horizon, Eqs. (65),
yields the dimensionless surface gravity

κsg =
f2(θ)

xH
√

h2(θ)
. (71)

As seen from Eq. (66), κsg is indeed constant on the horizon, as required by the
zeroth law of black hole mechanics. The dimensionless temperature T of the black
hole is proportional to the surface gravity,

T =
κsg

2π
. (72)

3.5 Electric and magnetic charge

A gauge-invariant definition of the electromagnetic field strength tensor is given
by the ‘t Hooft tensor [31; 32]

Fµν = Tr
{

Φ̂Fµν −
i

2e
Φ̂Dµ Φ̂Dν Φ̂

}
= Φ̂

aFa
µν +

1
e

εabcΦ̂
aDµ Φ̂

bDν Φ̂
c, (73)

where Φ̂ is the normalized Higgs field, |Φ̂ |2 = (1/2)TrΦ̂2 = ∑a(Φ̂a)2 = 1.
The ‘t Hooft tensor yields the electric current jν

el

∇µF µν =−4π jν
el, (74)

and the magnetic current jν
m

∇µ
∗F µν = 4π jν

m, (75)

where ∗F represents the dual field strength tensor.
The electric charge Q is given by

Q =
Q
e

=
1

4π

∫
S2

∗Fθϕ dθdϕ, (76)

where the integral is evaluated at spatial infinity.
To define the magnetic charge, we rewrite the ‘t Hooft tensor as

Fµν = ∂µAν −∂νAµ −
i

2e
Tr
{

Φ̂∂µ Φ̂∂ν Φ̂
}

, (77)
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with Aµ = Tr
{

Φ̂Aµ

}
. Now it follows from Eq. (75) that the magnetic current jσ

m
and the topological current kσ are related by

jσ
m =

i
16πe

ε
σρµν Tr

{
∂ρ Φ̂∂µ Φ̂∂ν Φ̂

}
=

1
e

kσ . (78)

For globally regular solutions the integration of the magnetic charge density re-
duces to a surface integral at spacial infinity which yields

P =
n
e

σ .

For black hole solutions we define the magnetic charge by its value on the horizon
plus a volume integral,

P = PH +
∫
Σ

(− jm µ nµ)dV = PH +
∞∫

rH

j0
m
√
−gdrdθdϕ, (79)

where Σ now denotes an asymptotically flat spacelike hypersurface bounded by
the horizon H, dV is the natural volume element on Σ , and nµ is normal to Σ with
nµ nµ =−1.

In order to define the horizon magnetic charge we consider the normalized
Higgs field at the horizon as a map between two two-dimensional spheres, which
can be characterized by a topological number,

NH =
−i

16π

∫
H

Tr
{

Φ̂dΦ̂ ∧dΦ̂
}

, (80)

and obtain PH = NH/e. For the evaluation of the magnetic charge we note that
the volume integral reduces to a surface integral. Its contribution from the hori-
zon cancels exactly the horizon magnetic charge, and the contribution from the
asymptotic region yields P = σn/e. Note that for odd m the horizon magnetic
charge is either equal to the magnetic charge or to its negative value, depending
on how often the Higgs field function Φ1 changes sign on the symmetry axis. For
even m both the magnetic charge and the horizon magnetic charge are zero.

3.6 Physical interpretation of ν

The quantity ν is related to the asymptotic behavior of the gauge potential A0, and
therefore it is not defined in a gauge-invariant way. To find a physical interpretation
of ν we apply a gauge transformation that leads to an asymptotically trivial gauge
potential (for even m). Such a gauge transformation is given by

U = eiνtτz/2 eimθτ
(n)
ϕ /2.

The transformed gauge potential and Higgs field are found to be

Aµ dxµ =

([
B̄1−ν−n

ω

x
(cos(mθ)−1)

]
τz

2e
+
[
B2 +n

ω

x
sin(mθ)

] τ
(n,νt)
ρ

2e

)
dt

+Aϕ(dϕ− ω

x
dt)+

(
H1

x
dx+(1−H2−m)dθ

)
τ

(n,νt)
ϕ

2e
, (81)
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with

Aϕ =−nsinθ

([
H3 +

cos(mθ)−1
sinθ

]
τz

2e
+
[

1−H4−
sin(mθ)

sinθ

]
τ

(n,νt)
ρ

2e

)
, (82)

and

Φ =
(

Φ1τz +Φ2τ
(n,νt)
ρ

)
, (83)

respectively, where now

τ
(n,νt)
ρ = cos(nϕ−νt)τx + sin(nϕ−νt)τy,

τ
(n,νt)
ϕ = −sin(nϕ−νt)τx + cos(nϕ−νt)τy.

We observe that in this gauge the fields are explicitly time dependent and rotate
in internal space about the τz direction. The quantity ν is exactly the rotation
frequency.

In the presence of magnetic charge, i.e., odd m, the transformed gauge poten-
tial is singular on the negative z axis. However, the physical interpretation of ν

does not change.

4 Stationary globally regular EYMHD solutions

4.1 Global charges

Mass, angular momentum and dilaton charge
We begin by recalling the general expressions [43] for the global mass

M =
1

4πG

∫
Σ

Rµν nµ
ξ

ν dV, (84)

and the global angular momentum

J =− 1
8πG

∫
Σ

Rµν nµ
η

ν dV. (85)

Here Σ denotes an asymptotically flat spacelike hypersurface, nµ is normal to Σ

with nµ nµ =−1, and dV is the natural volume element on Σ [43].
Now we express the Ricci tensor in terms of the Yang–Mills, Higgs and dilaton

fields, using the Einstein equations, the definition of the stress energy tensor and
the Lagrangian

1
8πG

Rµν = ∂µΨ∂νΨ +2e2κΨ Tr(Fµ
α Fνα)− 1

2
e2κΨ Tr(Fρσ Fρσ )gµν

+
1
2

Tr(Dµ ΦDν Φ)+
λ

8
e−2κΨ Tr(Φ2− v2)2gµν . (86)
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Next we replace the third and the last term in Eq. (86) via the dilaton equation

1
8πG

Rµν = ∂µΨ∂νΨ +2e2κΨ Tr(Fµ
α Fνα)+

1
2

Tr(Dµ ΦDν Φ)

− 1
2κ

1√
−g

∂λ (
√
−g∂

λ
Ψ)gµν . (87)

Since ξ and η are Killing vector fields and since η is tangential to Σ , we have

ξ
µ

∂µΨ = 0, η
µ

∂µΨ = 0, nµ
η

ν gµν = 0, (88)

and consequently,

1
8πG

Rµν nµ
ξ

ν = 2e2κΨ Tr(Fµ
α Fνα)nµ

ξ
ν +

1
2

Tr(Dµ ΦDν Φ)nµ
ξ

ν

− 1
2κ

1√
−g

∂λ (
√
−g∂

λ
Ψ)nµ

ξµ , (89)

1
8πG

Rµν nµ
η

ν = 2e2κΨ Tr(Fµ
α Fνα)nµ

η
ν +

1
2

Tr(Dµ ΦDν Φ)nµ
η

ν . (90)

We now define the dilaton charge D via

∫
Σ

1√
−g

∂λ (
√
−g∂

λ
Ψ)nµ

ξµ dV =−4πD . (91)

Making use of the dilaton charge D , we obtain for the mass M

M =4
∫
Σ

{
e2κΨ Tr(Fµ

α Fνα)nµ
ξ

ν

}
dV +

∫
Σ

{
Tr(Dµ ΦDν Φ)nµ

ξ
ν
}

dV +
4π

κ
D , (92)

while the angular momentum J is given by

J =−2
∫
Σ

{
e2κΨ Tr(Fµ

α Fνα)nµ
η

ν

}
dV − 1

2

∫
Σ

{
Tr(Dµ ΦDν Φ)nµ

η
ν
}

dV. (93)

To evaluate the integrals in Eqs. (92) and (93) we use local coordinates (t,r,θ ,ϕ).
In these coordinates

nµ = −
√

f g0µ , ξ
µ = (1,0,0,0), η

µ = (0,0,0,1),

dV =
1√

f
√
−gdrdθdϕ, (94)
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and we obtain

M − 4π

κ
D = IM ≡ −4

∫
Σ

e2κΨ Tr
[
F0µ F0µ

]√
−gdrdθdϕ

−
∫
Σ

Tr
[
D0ΦD0

Φ
]√

−gdrdθdϕ, (95)

J = IJ ≡ 2
∫
Σ

e2κΨ Tr
[
Fϕµ F0µ

]√
−gdrdθdϕ

+
1
2

∫
Σ

Tr
[
Dϕ ΦD0

Φ
]√

−gdrdθdϕ, (96)

defining the integrals IM and IJ .
To evaluate the integrals IM , Eq. (95) and IJ , Eq. (96), we make use of the

symmetry relations, Eqs. (15) [39],

Fµ0 = D̂µ A0, Fµϕ = D̂µ

(
Aϕ −Wη

)
, (97)

where D̂µ ≡ ∂µ + ie[Aµ , · ]. The integrals then read

IM = +4
∫
Σ

e2κΨ Tr
[
D̂µ A0F0µ

]√
−gdrdθdϕ

−
∫
Σ

Tr
[
D0ΦD0

Φ
]√

−gdrdθdϕ, (98)

IJ = −2
∫
Σ

e2κΨ Tr
[
D̂µ

(
Aϕ −Wη

)
F0µ

]√
−gdrdθdϕ

+
1
2

∫
Σ

Tr
[
Dϕ ΦD0

Φ
]√

−gdrdθdϕ. (99)

Adding zero to the above integrals, in the form of the gauge field equation of
motion for the zero component, we obtain

IM = 4
∫
Σ

Tr
[
D̂µ

{
A0e2κΨ F0µ

√
−g
}]

drdθdϕ

+
∫
Σ

Tr
[
ieA0[Φ ,D0

Φ ]−D0ΦD0
Φ
]√

−gdrdθdϕ, (100)

IJ = −2
∫
Σ

Tr
[
D̂µ

{(
Aϕ −Wη

)
e2κΨ F0µ

√
−g
}]

drdθdϕ

−1
2

∫
Σ

Tr
[
ie
(
Aϕ −Wη

)
[Φ ,D0

Φ ]−Dϕ ΦD0
Φ
]√

−gdrdθdϕ. (101)
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Making use of the explicit form of the ansatz, exploiting in particular Eq. (14), we
see, that for both IM and IJ the second integral vanishes identically, leaving only
the first integral to be analyzed further.

Since the trace of a commutator vanishes, we now replace the derivative D̂µ

by the partial derivative ∂µ in the remaining integrals,

IM = 4
∫
Σ

Tr
[
∂µ

{
A0e2κΨ F0µ

√
−g
}]

drdθdϕ, (102)

IJ =−2
∫
Σ

Tr
[
∂µ

{(
Aϕ −Wη

)
e2κΨ F0µ

√
−g
}]

drdθdϕ, (103)

and employ the divergence theorem. The θ -term vanishes, since
√
−g vanishes

at θ = 0 and θ = π , and the ϕ-term vanishes, since the integrands at ϕ = 0 and
ϕ = 2π coincide, thus we are left with

IM = 4
∫

Tr
[
A0e2κΨ F0r√−g

]∣∣∣∞
0

dθdϕ, (104)

IJ =−2
∫

Tr
[(

Aϕ −Wη

)
e2κΨ F0r√−g

]∣∣∣∞
0

dθdϕ. (105)

Since the integrands vanish at the origin, the only contributions to IM and IJ
come from infinity. At infinity the asymptotic expansion yields to lowest order

F0r√−g = Qsinθ
τ

(n,m)
r

2e
+o(1),

A0 = ν̃
τ

(n,m)
r

2e
+o(1), (106)

Aϕ = −nsinθ

[
cos(σθ)− cos(mθ)

sinθ

τ
(n,m)
r

2e
+

sin(mθ)
sinθ

τ
(n,m)
θ

2e

]
+o(1),

where

ν̃ =
eα√
4πG

ν . (107)

The integrals IM and IJ are then given by

IM =
8πν̃Q

e2 , IJ =
4πnQ

e2 (1−σ), (108)

yielding for the mass M and the angular momentum J

M =
4π

κ
D +

8πν̃Q
e2 , J =

4πnQ
e2 (1−σ). (109)

Returning to dimensionless variables, and noting that

M =
√

4πG
eαG

µ, J =
4π

e2α2 ζ , D =
D
e

, (110)
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we obtain the mass formula

µ = α
2 D

γ
+2α

2
νQ⇐⇒M =

D
γ

+2νQ, (111)

and the quantization condition for the angular momentum Eq. (1)

ζ = α
2nQ(1−σ)⇐⇒ J = nQ(1−σ).

4.2 Effective action

To address the dependence of the globally regular solutions on the coupling con-
stant α , we now consider the effective action Seff. In particular, we explain the
qualitatively different dependence of the mass M for static and for stationary so-
lutions. This concerns only such types of regular solutions where two branches of
solutions exist.

For static solutions, the mass M exhibits a “spike” at the maximal value of the
coupling αmax, where the branches merge and end [18; 19; 23; 24; 33; 34; 35].
The tangent of the mass w.r.t. α must be the same for both branches at αmax (P.
Breitenlohner, private communication). In contrast, for stationary solutions, the
mass M exhibits a “loop” in the vicinity of the maximal value of the coupling
αmax [42]. Here the tangent of the mass w.r.t. α diverges at αmax. The loop is
associated with a critical value of α , where the two mass branches cross.

Effective action and mass
Let us begin by defining the effective action S eff,

S eff =
∫ ( R̂

16πG
+LM

)√
−gd3x, (112)

with the gravitational effective Lagrangian

R̂
16πG

=
1

16πG

(
R−

∂µ ∆ µ

√
−g

)
(113)

and the matter Lagrangian LM Eq. (5)

LM = −1
2

∂µΨ∂
µ
Ψ − 1

2
e2κΨ Tr(Fµν Fµν)− 1

4
Tr
(
Dµ ΦDµ

Φ
)

−λ

8
e−2κΨ Tr

(
Φ

2− v2)2
.

The divergence term ∂µ ∆ µ includes all second derivatives of the metric functions
and ensures that the Euler-Lagrange variational equations of the effective action
S eff w.r.t. the functions of the ansatz yields the proper set of field equations. For
our particular ansatz of the metric ∆ µ is given by

∆
µ =

√
−ggµνVν , Vν = ∂ν ln

f
hl

. (114)
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Note that for our choice for Vν the effective Lagrangian and the divergence term
yield finite integrals. This is in contrast to the standard term V ′

ν = gνρ gαβ Γ
ρ

αβ
−

Γ
ρ

νρ (see e.g., [55]), which differs from Vν by 2∂ν lnr2 sinθ .
Reexpressing the curvature scalar R via the Einstein equations,

R
8πG

= ∂µΨ∂
µ
Ψ +

1
2

Tr
(
Dµ ΦDµ

Φ
)
+

λ

2
e−2κΨ Tr

(
Φ

2− v2)2
, (115)

then leads to the effective action

S eff =
∫ (

− 1
16πG

∂µ ∆ µ

√
−g

− 1
2

e2κΨ Tr(Fµν Fµν)

+
λ

8
e−2κΨ Tr

(
Φ

2− v2)2
)√

−gd3x. (116)

Analogously to the derivation of the mass formula, we next replace the two
matter terms in S eff via the equation of motion of the dilaton field and obtain

S eff =− 1
16πG

∫
∂µ ∆

µ drdθdϕ+
1

2κ

∫ 1√
−g

∂λ (
√
−g∂

λ
Ψ)
√
−gdrdθdϕ. (117)

Since in the local coordinates the second integral agrees with the integral for the
dilaton charge Eq. (91) and since the θ -term in the first integral vanishes, the
effective action becomes

S eff =− 1
16πG

∫
∆

rdθdϕ− 4πD

2κ
. (118)

The remaining integral is evaluated with help of the asymptotic expansion of the
metric functions, leading to

S eff =−1
2

(
M +

4πD

κ

)
, (119)

which can be rewritten via the mass formula for the regular solutions Eq. (109)

S eff =−M +
4πν̃Q

e2 . (120)

Defining finally the dimensionless effective action Seff

S eff =
√

4πG
eαG

α
2Seff, (121)

we obtain

Seff =−(M−νQ) (122)

or equivalently

Seff =−
(

D
γ

+νQ
)

. (123)
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Note, that Eq. (122) for the effective action remains true when the dilaton decou-
ples, i.e., Eq. (122) also holds for EYMH solutions.

Dependence of the effective action Seff and the mass M on the coupling
constant α

To address the dependence of the effective action Seff on the coupling con-
stant α we first make the α-dependence more explicit. To this end, we express
all quantities in the effective action in dimensionless quantities. Denoting the by
the divergence term corrected dimensionless curvature scalar R̄ (i.e., R̂ → R̄), the
dimensionless matter Lagrangian L̄M , and the dimensionless determinant of the
metric −ḡ, and we obtain the dimensionless effective action,

Seff =
1

4π

[
1

4α2

∫
R̄
√
−ḡd3x+

∫
L̄M
√
−ḡd3x

]
. (124)

We now take the derivative of Seff w.r.t. α , taking into account that the metric
and matter functions, abbreviated by Xi, implicitly also depend on α . The deriva-
tive has thus two terms

dSeff

dα
=

1
4π

[
− 1

2α3

∫
R̄
√
−ḡd3x

]
+

1
16πα2

∫ {
∂ (R̄

√
−ḡ)

∂Xi
+4α

2 ∂ (L̄M
√
−ḡ)

∂Xi

}
︸ ︷︷ ︸

= 0 equations of motion

∂Xi

∂α
d3x, (125)

where the second term vanishes for solutions of the equations of motion, and we
are left with

dSeff

dα
=− 1

8πα3

∫
R̄
√
−ḡd3x. (126)

From Eq. (126) we conclude, that the effective action Seff must exhibit a
“spike” at the maximal value of the coupling αmax, where the two branches of
solutions merge and end, since the tangent w.r.t. α must be the same for both
branches at αmax. This conclusion holds for stationary solutions, as well as for
static solutions.

Let us now address the mass M, which is related to the effective action via
Eq. (122), i.e.,

M =−Seff +νQ. (127)

Considering the derivative of the mass M w.r.t. α , keeping ν fixed, we obtain

dM
dα

=−dSeff

dα
+ν

dQ
dα

. (128)

Clearly, the crucial difference between the tangent of the mass and the tangent of
the effective action resides in the last term, containing the derivative of the electric
charge Q w.r.t. α . It is this term which allows different tangents on both branches
at αmax. In fact, for stationary (non-static) solutions, we observe that this last term
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diverges at αmax, yielding a divergent tangent also for the mass, as required for
a “loop” associated with both mass branches in the vicinity of αmax. For static
solutions, on the other hand, the mass M always exhibits a “spike” at the maximal
value of the coupling, αmax, since the electric charge Q vanishes.

Note however, that we assumed so far that the value of ν is fixed by a boundary
condition, B̄1|∞ = ν . This is in contrast to the case where the electric charge is kept
fixed by the boundary condition at infinity,

x2
∂xB̄1

∣∣
∞

= Q. (129)

In this case the quantity ν is allowed to vary and its value is adjusted by the numer-
ical procedure. More formally, in the variation of the effective action a boundary
term shows up, which evaluates to Qδν . Therefore the field equations are obtained
from the modified effective action,

δ

(
Seff−Qν

)∣∣∣
Q

= 0 (130)

As a consequence, if α is varied for fixed electric charge Q,

d
dα

(
Seff−Qν

)∣∣∣
Q

=− 1
8πα3

∫
R̄
√
−ḡd3x, (131)

since the variation of the modified effective action with respect to the fields van-
ishes. On the other hand, since Seff−Qν =−M, we find

dM
dα

=
1

8πα3

∫
R̄
√
−ḡd3x. (132)

Thus for fixed electric charge it is the mass that exhibits a spike.

4.3 Numerical results

We solve the set of thirteen coupled non-linear elliptic partial differential equa-
tions numerically [56; 57], subject to the above boundary conditions, requiring
the solutions to be regular at the origin. We employ compactified dimensionless
coordinates, x̄ = x/(1 + x). The numerical calculations, based on the Newton–
Raphson method, are performed with help of the program FIDISOL [56; 57]. The
equations are discretized on a non-equidistant grid in x̄ and θ . Typical grids used
have sizes 100×20, covering the integration region 0 ≤ x̄ ≤ 1 and 0 ≤ θ ≤ π/2.
(See [25; 53; 54] and [56; 57] for further details on the numerical procedure.)

For given coupling constants α , β and γ , the stationary globally regular solu-
tions then depend on the parameter ν , specifying the time component of the gauge
potential at infinity, and on the integers m and n. (In principle, the solutions can
further depend on the node number of the gauge potential functions k, labeling the
radial excitations. However, we here focus on the lowest mass solutions.)

We now illustrate the above relations for the mass and the effective action
with numerical results presented in Figs. 1 and 2. We first consider stationary
gravitating dyon solutions with m = 1. Dyons with magnetic charge n = 1 are
spherically symmetric [58; 59], dyons with higher magnetic charge are axially
symmetric [42].
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Fig. 1 The mass M (a), the scaled mass αM (b), the electric charge Q (c), and the effective action
Seff (d) are shown versus the coupling constant α for dyon solutions with m = 1, n = 1,2,3
and for electrically charged monopole–antimonopole resp. vortex ring solutions with m = 2,
n = 1,2,3 at ν = 0.32, β = γ = 0 (first branch: solid, second branch: dot-dashed)

Fig. 2 The mass M and the effective action Seff of electrically charged monopole–antimonopole
solutions with m = 2, n = 1, ν = 0.32, β = 0 are shown versus the coupling constant α for
dilaton coupling constant γ = 0.4 (a), and versus the dilaton coupling constant γ for coupling
constant α = 0.15 and 0.40 (b)

In Fig. 1a we exhibit the mass M of dyons with magnetic charge n = 1, 2
and 3 at a fixed value of ν versus the coupling constant α (at β = γ = 0). In each
case, a first branch of gravitating dyons emerges from the corresponding flat space
solution at α = 0 and extends up to a maximal value of the coupling constant,
αmax, beyond which no dyon solutions exist. For the n = 1 dyons we observe a
second branch of solutions in the vicinity of the maximal value of α . This second
branch ends at a critical value of α , where the branch of non-Abelian solutions
merges with the corresponding branch of extremal Reissner–Nordström solutions
[18; 19; 58; 59]. For n > 1 dyon solutions, numerical accuracy does not allow us
to discern the existence of two branches.

Besides dyons, we also exhibit in Fig. 1a the mass of electrically charged
monopole–antimonopole pair resp. vortex ring solutions, which have m = 2 and
n = 1, 2 and 3. For these solutions always two branches of solutions exist. Again,
the first branch emerges from the respective flat space solution, and extends up to
a maximal value of α , where it merges with the second branch. But the second
branch now extends back to α → 0. The mass diverges on the second branch in
the limit α → 0. But considering the scaled mass αM instead, exhibited in Fig. 1b,
one realizes, that in the limit α → 0 a globally regular EYM solution [30; 53; 54]
is reached (after rescaling) [33; 34; 35]. Clearly, the electric charge Q, exhibited in
Fig. 1c, also tends to zero on the second branch in the limit α → 0, yielding non-
rotating limiting EYM solutions, in agreement with previous results on globally
regular EYM
solutions [38; 39].

We exhibit the effective action Seff for the same set of solutions in Fig. 1d. As
predicted above, the effective action exhibits a “spike” close to the maximal value
of the coupling constant α , whenever two branches of solutions are present. The
mass, in contrast, exhibits a “loop” for these stationary non-static solutions close
to αmax. At αmax the tangent of the mass diverges, since the tangent of the electric
charge diverges there. If we consider branches of static solutions instead, the mass
exhibits a “spike” close to αmax [18; 19; 33; 34; 35].

While in the solutions of Fig. 1 the dilaton is decoupled since γ = 0, we con-
sider in Fig. 2 the dependence of the solutions on the dilaton coupling constant
γ . In Fig. 2a we exhibit the mass and the effective action of electrically charged
monopole–antimonopole pair solutions (m = 2, n = 1, ν = 0.32, β = 0) versus
the coupling constant α at fixed dilaton coupling constant γ = 0.4. As predicted,
we observe a “spike” for the effective action and a “loop” for the mass. Note, that
the mass of these EYMHD solutions does not diverge on the second branch in
the limit α → 0, since a YMHD solution is approached. We note, that the effect
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Fig. 3 a The energy density of the matter fields for an electrically charged monopole–
antimonopole pair solution (m = 2, n = 1, ν = 0.32, α = 0.3, β = γ = 0). b Also shown are
surfaces of constant energy density

of a dilaton on globally regular solutions is very similar to the effect of gravity
[46; 47; 48]. In [46; 47] it was observed that the mass of the monopole solution in
YMHD theory possesses a “spike” at the maximal value of the dilaton coupling
parameter.

The γ-dependence of the solutions (at fixed α) is illustrated in Fig. 2b for
electrically charged monopole–antimonopole pair solutions with m = 2, n = 1,
ν = 0.32 (β = 0) for α = 0.15 and 0.40. Again we note, that the effective action
exhibits a “spike” while the mass exhibits a “loop”. That this must be the case,
can be shown by an argument analogous to the one employed above for the α-
dependence. Note, that the mass of these EYMHD solutions does not diverge on
the second branch in the limit γ → 0, since EYMH solutions are approached in
this limit.

We illustrate the globally regular solutions with an example in Fig. 3. We here
exhibit the energy density of the matter fields ε

ε =− 2
e2v4

(
T 0

0 −
1
2

T µ

µ

)
(133)

for a monopole–antimonopole pair solution (m = 2, n = 1) carrying electric charge
and angular momentum (ν = 0.32, α = 0.3, β = γ = 0). The maxima of the energy
density are associated with the location of the magnetic poles on the symmetry
axis.

5 Rotating EYMHD black holes

5.1 Non-Abelian mass formula

We now derive the mass formula for stationary axially symmetric EYMHD black
hole solutions

M = 2T̂ Ŝ +2ΩJ +
D
γ

+2νQ+2ψ̃elQ(1−σ), (134)

where T̂ and Ŝ are conveniently scaled dimensionless temperature and entropy,
respectively. The derivation is analogous to the derivation of the expressions for
the mass and the angular momentum of the globally regular solutions.

Again we begin by recalling the general expressions [43] for the global mass

M = MH +
1

4πG

∫
Σ

Rµν nµ
ξ

ν dV, (135)

and the global angular momentum

J = JH−
1

8πG

∫
Σ

Rµν nµ
η

ν dV, (136)
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where Σ now denotes an asymptotically flat spacelike hypersurface bounded by
the horizon H, and the horizon mass MH [43] and the horizon angular momentum
JH are given by

MH = − 1
8πG

∫
H

1
2

εµνρσ ∇
ρ

ξ
σ dxµ dxν = 2T S +2

ωH

rH
JH (137)

JH =
1

16πG

∫
H

1
2

εµνρσ ∇
ρ

η
σ dxµ dxν . (138)

Substituting the horizon mass MH in Eq. (135) and eliminating the horizon angu-
lar momentum JH yields for the global mass M

M = 2T S +2
ωH

rH
J +2

 1
8πG

∫
Σ

Rµν nµ
ξ

ν dV

+
ωH

rH

1
8πG

∫
Σ

Rµν nµ
η

ν dV

 . (139)

Following now the same steps as for the globally regular solutions, we obtain
analogously to Eqs. (95) and (96)

M −2T S −2
ωH

rH
J − 4π

κ
D = I

≡−4
∫
Σ

e2κΨ Tr
[(

F0µ +
ωH

rH
Fϕµ

)
F0µ

]√
−gdrdθdϕ

−
∫
Σ

Tr
[(

D0Φ +
ωH

rH
Dϕ Φ

)
D0

Φ

]√
−gdrdθdϕ, (140)

defining the integral I .
We next note, that formally, we can express the integral I in terms of the

integrals IM Eq. (95) and IJ Eq. (96), keeping in mind, that Σ is here bounded
by the horizon. Thus

M −2T S −2
ωH

rH
J − 4π

κ
D = IM −2

ωH

rH
IJ . (141)

To evaluate I , we proceed again analogously to the globally regular case,
making use of the relations obtained for IM and IJ . Analogously to Eqs. (104)
and (105) we are then left with

I = 4
∫

Tr
[(

A0 +
ωH

rH

(
Aϕ −Wη

))
e2κΨ F0r√−g

]∣∣∣∣∞
rH

dθdϕ, (142)

where the integrand must be evaluated at the horizon and at infinity. Since the
electrostatic potential is constant at the horizon (see Eqs. (49)) and(

A0 +
ωH

rH
Aϕ

)∣∣∣∣
H

=
ωH

rH
Wη =−Ψ̃el

τz

2
, (143)
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the integrand vanishes at the horizon, and the only contribution to I comes from
infinity.

At infinity both expressions have been evaluated in Eq. (108). Thus the mass
formula becomes

M −2T S −2
ωH

rH
J − 4π

κ
D =

8πν̃Q
e2 +

8πΨ̃elQ
e

(1−σ). (144)

Returning again to dimensionless variables, recalling Eqs. (50) and (110), and
noting that

T S =
√

4πG
eαG

T S,
ωH

rH
=

eα√
4πG

Ω , (145)

we obtain the mass formula Eq. (134)

µ = 2T S +2Ωζ +α
2 D

γ
+2α

2
νQ+2α

2
ψ̃elQ(1−σ),

or equivalently

M = 2T̂ Ŝ +2ΩJ +
D
γ

+2νQ+2ψ̃elQ(1−σ),

with scaled dimensionless temperature and entropy, T̂ Ŝ = T S/α2.
This mass formula differs from the EMD and EYMD mass formula Eq. (3)

in two respects. First, the last term is present only for magnetically neutral black
holes. Second, the fourth term is an additional term, not present for EMD and
EYMD black holes. It appears for all electrically charged EYMHD black holes,
and has the gauge potential parameter ν entering together with the electric charge.
We note, that the first two terms and the last term do not appear in the mass formula
Eq. (111) for globally regular solutions. Indeed, when the black hole horizon size
is taken to zero, the first term vanishes, and the second and the last term cancel,
leaving the mass formula Eq. (111) for globally regular solutions.

5.2 Numerical results

The numerical black hole calculations are performed analogously to the calcula-
tions of globally regular solutions [56; 57], except that for black hole solutions we
employ the compactified dimensionless coordinate x̄ = 1−(xH/x), and we impose
boundary conditions at the regular horizon.

For given coupling constants α , β and γ , the rotating non-Abelian black hole
solutions then depend on the horizon radius xH, and on the rotational velocity of
the horizon Ω in addition to the gauge potential parameter ν and the integers m
and n.

We exhibit in Fig. 4 an example of a dyonic rotating black hole, which has
m = 1, n = 1, horizon radius xH = 0.1, horizon angular velocity Ω = 0.5, gauge
potential parameter ν = 0.04 and the coupling constants α = 0.3, β = 0.1, γ = 0.1.
We again exhibit the energy density of the matter fields ε , Eq. (133).
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Fig. 4 a The energy density of the matter fields for a dyonic rotating black hole (m = 1, n = 1,
xH = 0.1, Ω = 0.5, ν = 0.04, α = 0.3, β = 0.1, γ = 0.1). b Also shown are surfaces of constant
energy density

6 Conclusions

We have considered non-perturbative globally regular and black hole solutions of
EYMHD theory. These stationary axially symmetric solutions are asymptotically
flat. The solutions are characterized by two integers, m and n, related to the number
of monopoles and antimonopoles in the solutions, and to the magnetic charge
of the monopoles, respectively [33; 34; 35]. The black hole solutions carry non-
Abelian hair outside their regular horizon.

The globally regular solutions do not rotate, when they carry a global magnetic
charge. Only solutions with no global magnetic charge can possess angular mo-
mentum, which is then quantized in terms of the electric charge [39]. The globally
regular solutions satisfy a simple mass formula

M =
D
γ

+2νQ.

The presence of electric charge enforces stationarity of the solutions, since it gives
rise to an angular momentum density (except for the spherical n = 1 monopole).

The effective action of the globally regular solutions can be expressed in terms
of the mass and the electric charge

Seff =−(M−νQ) =−
(

D
γ

+νQ
)

.

Based on the effective action we have shown, that the mass of stationary solutions
can exhibit a “loop” close to the maximal value of the coupling constant αmax,
whereas the mass of static solutions can only exhibit a “spike” there (for given m,
n, β , γ

and ν).
Rotating EYMHD black hole solutions satisfy the zeroth and the first law of

black hole mechanics. Here we have derived a non-Abelian mass formula for these
black holes, which involves their global charges and their horizon properties

M = 2T̂ Ŝ +2ΩJ +
D
γ

+2νQ+2ψ̃elQ(1−σ).

This mass formula differs from the EMD and EYMD mass formula Eq. (3), since
the last term is present only for magnetically neutral black holes, and further an
additional term is present for all electrically charged solutions, where the gauge
potential parameter ν is entering together with the electric charge. When the black
hole horizon size is taken to zero, the mass formula for globally regular solutions
is recovered.

Whether the presence of the dilaton also allows for a new uniqueness conjec-
ture for hairy black holes remains to be seen. Clearly, when only the mass, the an-
gular
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momentum and the electric and magnetic charges are considered, the black hole
solutions are not uniquely determined by these global charges.

In the numerical calculations we have only began to investigate the large pa-
rameter space for the black hole solutions. Here further investigations might reveal
new phenomena, not encountered previously for non-Abelian black holes. For in-
stance, non-Abelian counterexamples to the staticity theorem might arise as well
as counterrotating black holes [11]. Also, systems of non-Abelian black holes with
regular non-degenerate horizons might exist.
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