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Abstract
The real and imaginary part ofthe vacuum polarization function II(¢?) induced by a massive quark
is calculated in perturbative QCD up to order a?. We combine the information from small and large
momentum region and from the threshold using conformal mapping and Padé approximation. This
leads us to formulae for II(g2) valid for arbitrary m?/q?. Taking subsequently the imaginary part
we get the @(a?) to R = o(ete™ — hadrons)/o(ete™ — ptp~). This extends the calculation by
Kaillén and Sabry from two to three loops.

*Presented by M. Steinhauser.
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1 Introduction

The measurement of the total cross section for electron positron annihilation into hadrons allows for
a unique test of pertubative QCD. The decay rate ['(Z —» hadrons) provides one of the most precise
determinations of the strong coupling constant a;. In the high energy limit the quark masses can often
be neglected. In this approximation QCD corrections to R = o(ete~ — hadrons)/o(ete™ —» ptp™)
have been calculated up to order a2 [1, 2]. For precision measurements the dominant mass corrections
must be included through an expansion in m?/s. Terms up to order a3m?/s [3] and a?m*/s? [4]
are available at present, providing an acceptable approximation from the high energy region down to
intermediate energy values. For a number of measurements, however, the information on the complete
mass dependence is desirable. This includes charm and bottom meson production above the resonance
region, say above 4.5 GeV and 12 GeV, respectively, and, of course, top quark production at a future
electron positron collider.

To order a; this calculation was performed by Ké&llén and Sabry in the context of QED a long
time ago [5]. With measurements of ever increasing precision, predictions in order a2 are needed for a
reliable comparison between theory and experiment. Furthermore, when one tries to apply the O(a)
result to QCD, with its running coupling constant, the choice of scale becomes important. In fact, the
distinction between the two intrinsically different scales, the relative momentum versus the center of
mass energy, is crucial for a stable numerical prediction. This information can be obtained from a full
calculation to order a2 only. Such a calculation then allows to predict the cross section in the complete
energy region where perturbative QCD can be applied — from close to threshold up to high energies.

In this contribution results for the cross section are presented in order o?. They are obtained
from the vacuum polarization TI(¢2) which is calculated up to three loops. The imaginary part of the
“fermionic contribution” — derived from diagrams with a massless quark loop inserted in the gluon
propagator — has been calculated in [6]. All integrals could be performed to the end and the result
was expressed in terms of polylogarithms. In this paper the calculation is extended to the full set of di-
agrams relevant for QCD. Instead of trying to perform the integrals analytically, we use information of
1(¢?) from the large g2 behaviour, the expansion around ¢2 = 0 and from threshold. Only results with-
out renormalization group improvement and resummation of the Coulomb singularities from higher
orders are presented. Resummation of leading higher order terms, phenomenological applications and
a more detailed discussion of our methods will be presented elsewhere.

2 Outline of the Calculation

The different behaviour at threshold makes it necessary to decompose IT according to its colour struc-
ture. It is convenient to write:

2 21\ 2
(g3 = H(o)(q2)+%‘1)CFll(l)(q2)+ (M) n@(g2) +-.-, (1)
™
n® = czn® + cscrl) + CrTn P + Cpri. @

The same notation is adopted to the physical observable R(s) which is related to II(g2) by
R(s) = 127ImlIl(q? = s + ie). (3)

The contributions from diagrams with n; light or one massive internal fermion loop are denoted by
Canll'IEZ) and CFTI'I(,.?), respectively. The purely gluonic corrections are proportional to C% or C4Cr
where the former are the only contributions in an abelian theory and the latter are characteristic for
the nonabelian aspects of QCD.
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All steps described below have been performed seperately for the first three contributions to I12). In
fact, new information is only obtained for Ilf) and II%L since ImIIEZ) is already known analytically [6].
The contribution from a four particle cut with threshold at 4m is given in terms of a two dimensional
integral [6] which can be solved easily numerically, so IIE?) will not be treated in this paper. Also the
contributions to I1(g%) and R(s) which originate from diagrams where the electromagnetic current
couples to a massless quark and the massive quark is produced through a virtual gluon will not be
discussed here. They have been calculated in [7]. In the following the behaviour of I1(g?) in the three
different kinematical regions and the approximation method is discussed.

Analysis of the high ¢ behaviour

The high energy behaviour of Il provides important constraints on the complete answer. In the
limit of small m?/q? the constant term and the one proportional to m?/q? (modulated by powers of
Inp:?/q?) have been calculated a long time ago [8]. For the imaginary part even the m*/q? terms are
available [4]. This provides an important test of the numerical results presented below.

Threshold behaviour

General arguments based on the influence of Coulomb exchange close to threshold, combined with
the information on the perturbative QCD potential and the running of e dictate the singularities and
the structure of the leading cuts close to threshold, that is for small v = /1 — 4m?/s. The C% term
is directly related to the QED result with internal photon lines only. The leading 1/v singularity and
the constant term of R4 can be predicted from the nonrelativistic Greens function for the Coulomb
potential and the O(a;) calculation. The next-to-leading term is determined by the combination of
one loop results again with the Coulomb singularities [10, 11, 12]. One finds

4
RP = 3(;'7—3ﬂ~2+...). (4)

The contributions ~ C4Cr and ~ CgTn; can be treated in parallel. For these colour structures
the perturbative QCD potential [9]

a —2
Vao(d?) = —nCr?AL), )
2 =2
av (@) = a,(/ﬁ)[u%((%c - 3Tm) (—m%ﬁ%)—%@)] ©)

will become important. The leading C4Cr and CrTny; term in R is proportional to Inv and is re-
sponsible for the evolution of the coupling constant close to threshold. Also the constant term can be
predicted by the observation, that the leading term in order o is induced by the potential. The O(a;)
result

.2 2 2
R = 3M(1+CF7=<1_+M&+._.) o
2 2v g

is employed to predict the logarithmic and constant CrCy4 and CrTn; terms of O(a?) by replacing
a, by ay(45? = v2s) as given in Eq.(6). This implies the following threshold behaviour:

2 1. % 31
RY = 32 -1+ |——=mZE3+2 4.,
o 3G+ (~pm=r+ ot ), ®)
2 2
ORGP PRI
Ry = 33(3 v)(l+'u)<4lnu2 12+...). (9)
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This ansatz can be verified for the CrpTn; term since in this case the result is known in analytical
form [6]. Extending the ansatz from the behaviour of the imaginary part close to the branching point
into the complex plane allows to predict the leading term of IT1(g?) ~ Inv and ~ In?v.

Behaviour at ¢2 =0

Important information is contained in the Taylor series of 11(¢%) around zero. The calculation of
the first seven nontrivial terms is based on the evaluation of three-loop tadpole integrals with the help
of the algebraic program MATAD written in FORM [13] which performs the traces, calculates the
derivatives with respect to the external momenta. It reduces the large number of different integrals
to one master integral and a few simple ones through an elaborate set of recursion relations based on
the integration-by-parts method [14, 15]. The result can be written in the form:

3 2\"
@) = = 2 (9
H 1672 nz>00" <4m2> ! (10)

where the first seven moments are listed in [16].
Conformal mapping and Padé approximation

The vacuum polarization function I is analytic in the complex plane cut from ¢2 = 4m? to +oo.
The Taylor series in g2 is thus convergent in the domain |¢2| < 4m? only. The conformal mapping
which corresponds to the variable transformation

1—+/1—¢%/4m? 4 4
1—g¢?/4m’ q w (11)

YTIrVIogAmE T (1+w)?

transforms the cut complex g2 plane into the interior of the unit circle. The special points ¢?> =
0, 4m?2, —oo correspond to w = 0, 1, —1, respectively.

The upper (lower) part of the cut is mapped onto the upper (lower) perimeter of the circle. The
Taylor series in w thus converges in the interior of the unit circle. To obtain predictions for I(g?) at
the boundary it has been suggested [17, 18] to use the Padé approximation which converges towards
II(g?) even on the perimeter. To improve the accuracy the singular threshold behaviour and the large
¢ behaviour is incorporated into simple analytical functions which are removed from I1(?) before
the Padé approximation is performed. The quality of this procedure can be tested by comparing the
prediction with the known result for ImIISZ).

The logarithmic singularities at threshold and large ¢? are removed by subtraction, the 1/v sin-
gularity, which is present for the C}% terms only, by multiplication with v as suggested in [12]. The
imaginary part of the remainder which is actually approximated by the Padé method is thus smooth
in the entire circle, numerically small and vanishes at w =1 and w = —1.

3 Results

After performing the Padé approximation for the smooth remainder with w as natural variable, the
transformation (11) is inverted and the full vacuum polarization function reconstructed by reintroduc-
ing the threshold and high energy terms. This procedure provides real and imaginary parts of 112,
Subsequently only the absorbtive part of II?) (multiplied by 127) will be presented.

In Fig. 1(a) the complete results are shown for 2 = m? with R%), R and R(® displayed
separately. The solid line represents the full correction. The threshold approximation is given by the
dotted curve. In the high energy region besides the corrections containing the m?/s terms (dash-dotted
line) also the quartic (dashed line) approximations are shown. It should be stressed that they are not
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Figure 1: In (a) the complete results (full line) are compared to the threshold approximations and the

high energy approximations including the m?/s (dash-dotted) and the m*/s? (dashed) terms (z =

2m/+/s). In (b) the threshold behaviour of the remainder 6 R for three different Padé approximants is
shown. (The singular and constant parts around threshold are subtracted.)

incorporated into the construction of R(?) but they are evidently very well reproduced by the method
presented here.

Different Padé approximations of the same degree and approximants with a reduced number of pa-
rameters give rise to practically indentical predictions, which could hardly be distinguished in Fig. 1(a).
Minor variations are observed close to threshold, after subtracting the singular and constant parts.
The remainder 6 R for up to ten different Padé approximants is shown in Fig. 1(b). There is a perfect
agreement for Rl(z). It is hard to detect the exact result which is represented by the dotted line. Rsa
seems to converge to the solid line ([4/4],[5/3] and [3/5]) when more moments from small ¢* are
included. The dashed lines are from the [3/3],[4/2], [2/4] and [3/4], the dotted ones from lower order
Padé approximants. The dash-dotted curve is the [4/3] Padé approximant and has a pole very close
to w = 1(1.07...). For the abelian part a classification of the different results can be seen: the dashed
lines are [4/2] and [2/4], the solid ones [3/2],[2/3],[5/3],[3/5] and [5/4] Padé approximants.

To summarize: Real and imaginary part of the vacuum polarization function I1(¢q?) from a massive
quark have been calculated up to three loops for QCD and QED. This result extends the classic
calculations of Kallén and Sabri [5] to next-to-leading order. The imaginary part can be used to
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predict the cross section for production of massive quarks for arbitrary m?/s, wherever perturbative
QCD can be justified — from above the quarkonium resonance region up to high energies.
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