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Abstract 
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The real and imaginary part of the vacuum polarization function TI(q2) induced by a massive quark 
is calculated in perturbative QCD up to order a; . We combine the information from small and large 
momentum region and from the threshold using conformal mapping and Pade approximation. This 
leads us to formulae for Il(q2) valid for arbitrary m2 /q2 . Taking subsequently the imaginary part 
we get the O(a;) to R = a(e+e- -t hadrons)/a(e+e- -t µ+µ-) . This extends the calculation by 
Kii.llen and Sabry from two to three loops. 

*Presented by M. Steinhauser. 
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1 Introduction 

The measurement of the total cross section for electron positron annihilation into hadrons allows for 
a unique test of pertubative QCD. The decay rate r(z -+ hadrons) provides one of the most precise 
determinations of the strong coupling constant a,. In the high energy limit the quark masses can often 
be neglected. In this approximation QCD corrections to R = CT(e+e- -+ hadrons)/CT(e+e- -+ µ+µ-) 
have been calculated up to order °'� [l ,  2) . For precision measurements the dominant mass corrections 
must be included through an expansion in m2 / s. Terms up to order o�m2 / s [3] and o;m4 / s2 [4] 
are available at present, providing an acceptable approximation from the high energy region down to 
intermediate energy values. For a number of measurements, however, the information on the complete 
mass dependence is desirable. This includes charm and bottom meson production above the resonance 
region, say above 4.5 GeV and 12 GeV, respectively, and, of course, top quark production at a future 
electron positron collider. 

To order °'• this calculation was performed by Kallen and Sabry in the context of QED a long 
time ago [5]. With measurements of ever increasing precision, predictions in order a; are needed for a 
reliable comparison between theory and experiment. Furthermore, when one tries to apply the O(o) 
result to QCD, with its running coupling constant, the choice of scale becomes important. In fact, the 
distinction between the two intrinsically different scales, the relative momentum versus the center of 
mass energy, is crucial for a stable numerical prediction. This information can be obtained from a full 
calculation to order a; only. Such a calculation then allows to predict the cross section in the complete 
energy region where perturbative QCD can be applied - from close to threshold up to high energies. 

In this contribution results for the cross section are presented in order a; . They are obtained 
from the vacuum polarization II(q2) which is calculated up to three loops. The imaginary part of the 
"fermionic contribution" - derived from diagrams with a massless quark loop inserted in the gluon 
propagator - has been calculated in [6]. All integrals could be performed to the end and the result 
was expressed in terms of poly logarithms. In this paper the calculation is extended to the full set of di­
agrams relevant for QCD. Instead of trying to perform the integrals analytically, we use information of 
II(q2) from the large q2 behaviour, the expansion around q2 = 0 and from threshold. Only results with­
out renormalization group improvement and resummation of the Coulomb singularities from higher 
orders are presented. Resumrnation of leading higher order terms, phenomenological applications and 
a more detailed discussion of our methods will be presented elsewhere. 2 Outline of the Calculation 

The different behaviour at threshold makes it nPcessary to decompose II according to its colour struc­
ture. It is convenient to write: 

rr<ol (q2) + a. (µ2) cF11<1l (q2) + (°'• (µ2 )) 2 
rr<2l (q2) + . . .  IT IT ' 

c}rr�l + CACFII�� + CFTn1rrl2l + CFTrr�l . 

The same notation is adopted to the physical observable R(s) which is related to Il(q2) by 

R(s) = 12IT imll(q2 = s + iE) . 

( 1 ) 

(2) 

(3) 

The contributions from diagrams with n1 light or one massive internal fermion loop are denoted by 
CFTn1IIl2) and CpTII�) , respectively. The purely gluonic corrections are proportional to C} or CACF 
where the former are the only contributions in an abelian theory and the latter are characteristic for 
the nonabelian aspects of QCD. 
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All steps described below have been performed seperately for the first three contributions to II(2l . In 
fact, new information is only obtained for II�) and II�� since ImII�2) is already known analytically [6] . 
The contribution from a four particle cut with threshold at 4m is given in terms of a two dimensional 
integral [6] which can be solved easily numerically, so II�) will not be treated in th.is paper. Also the 
contributions to II(q2) and R(s) which originate from diagrams where the electromagnetic current 
couples to a massless quark and the massive quark is produced through a virtual gluon will not be 
discussed here. They have been calculated in [7]. In the following the behaviour of II(q2) in the three 
different kinematical regions and the approximation method is discussed. 

Analysis of the high q2 behaviour 

The high energy behaviour of II provides important constraints on the complete answer. In the 
limit of small m2 /q2 the constant term and the one proportional to m2 /q2 (modulated by powers of 
lnµ2/q2) have been calculated a long time ago [8] . For the imaginary part even the m4/q4 terms are 
available [4] . This provides an important test of the numerical results presented below. 
Threshold behaviour 

General arguments based on the influence of Coulomb exchange close to threshold, combined with 
the information on the perturbative QCD potential and the running of Cts dictate the singularities and 
the structure of the leading cuts close to threshold, that is for small v = yfl - 4m2 / s. The C} term 
is directly related to the QED result with internal photon lines only. The leading 1/v singularity and 
the constant term of RA can be predicted from the nonrelativistic Greens function for the Coulomb 
potential and the O(as) calculation. The next-to-leading term is determined by the combination of 
one loop results again with the Coulomb singularities [10, 1 1 ,  12]. One finds 

(2) - ( 7r4 2 ) RA - 3 8v - 37r + . . .  . (4) 

The contributions � CACF and � CpTn1 can be treated in parallel. For these colour structures 
the perturbative QCD potential [9] 

4 C av(q2) 
- 7r F-r, 
a.(µ2+ + 

°'
·��2

) 
( (¥cA - �Tn1) (- In �� + �) - �CA) ] 

(5) 

(6) 

will become important. The leading CACF and CpTn1 term in R is proportional to In v  and is re­
sponsible for the evolution of the coupling constant close to threshold. Also the constant term can be 
predicted by the observation, that the leading term in order °'• is induced by the potential. The O(as) 
result 

R = 3 v(3 - v2) ( C 7r2 (1  + v2) °'s ) 2 l + F 2v 7r + . . . (7) 

is employed to predict the logarithmic and constant CFCA and CpTn1 terms of O(a�) by replacing 
°'• by av (4p2 = v2s) as given in Eq.(6). This implies the following threshold behaviour: 

(8) 

(9) 
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This ansatz can be verified for the CpTn1 term since in this case the result is  known in analytical 
form [ 6] . Extending the ansatz from the behaviour of the imaginary part close to the branching point 
into the complex plane allows to predict the leading term of II(q2) � In v and � ln2 v. 
Behaviour at q2 = O 

Important information is contained in the Taylor series of II(q2) around zero. The calculation of 
the first seven nontrivial terms is based on the evaluation of three-loop tadpole integrals with the help 
of the algebraic program MATAD written in FORM (13] which performs the traces, calculates the 
derivatives with respect to the external momenta. It reduces the large number of different integrals 
to one master integral and a few simple ones through an elaborate set of recursion relations based on 
the integration-by-parts method (14, 15]. The result can be written in the form: 

where the first seven moments are listed in (16]. 

Conformal mapping and Pade approximation 

(10) 

The vacuum polarization function IJ(2) is analytic in the complex plane cut from q2 = 4m2 to +oo. 
The Taylor series in q2 is thus convergent in the domain fq2 f  < 4m2 only. The conformal mapping 
which corresponds to the variable transformation 

1 - JI - q2 /4m2 w 
= .,-l-+�..;'=1=-==q2"';"'4"'m"""'2' 

4w 
( 1  + w)2 ' 

( 11 )  

transforms the cut complex q2 plane into the interior of the unit circle. The special points q2 = 
0, 4m2, -oo correspond to w = 0, 1, -1,  respectively. 

The upper (lower) part of the cut is mapped onto the upper (lower) perimeter of the circle. The 
Taylor series in w thus converges in the interior of the unit circle. To obtain predictions for II(q2) at 
the boundary it has been suggested [17, 18] to use the Pade approximation which converges towards 
II(q2) even on the perimeter. To improve the accuracy the singular threshold behaviour and the large 
q2 behaviour is incorporated into simple analytical functions which are removed from IJ(2) before 
the Pade approximation is performed. The quality of this procedure can be tested by comparing the 
prediction with the known result for ImII�2) . 

The logarithmic singularities at threshold and large q2 are removed by subtraction, the l/v sin­
gularity, which is present for the C� terms only, by multiplication with v as suggested in (12]. The 
imaginary part of the remainder which is actually approximated by the Pade method is thus smooth 
in the entire circle, numerically small and vanishes at w = 1 and w = -1 .  

3 Results 

After performing the Pade approximation for the smooth remainder with w as natural variable, the 
transformation (11) is inverted and the full vacuum polarization function reconstructed by reintroduc­
ing the threshold and high energy terms. This procedure provides real and imaginary parts of IJ(2) . 
Subsequently only the absorbtive part of IJ(2) (multiplied by l27r) will be presented. 

In Fig. l (a) the complete results are shown for µ2 = m2 with R�) , R�1 and R�2) displayed 
separately. The solid line represents the full correction. The threshold approximation is given by the 
dotted curve. In the high energy region besides the corrections containing the m2 / s terms (dash-dotted 
line) also the quartic (dashed line) approximations are shown. It should be stressed that they are not 



279 25 16 20 
R(2J 14 15 A 12 10 10 5 8 0 6 -5 4 -10 2 -15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 x v 50 14 40 12 30 10 20 ,,'�/ 8 10 6 

liR
(�A 0 . - · - 4 -10 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 x v 1.2 5 1 0 �-..... � 0.8 -5 0.6 -10 0.4 -15 0.2 liR(�J 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 x v 

(a) (b) 

Figure 1 :  In (a) the complete results (full line) are compared to the threshold approximations and the 
high energy approximations including the m2/s (dash-dotted) and the m4/s2 (dashed) terms (x = 
2m/ ,/S) . In (b) the threshold behaviour of the remainder 8R for three different Pade approximants is 
shown. (The singular and constant parts around threshold are subtracted.) 

incorporated into the construction of R(2) but they are evidently very well reproduced by the method 
presented here. 

Different Pade approximations of the same degree and approximants with a reduced number of pa­
rameters give rise to practically indentical predictions, which could hardly be distinguished in Fig. l (a). 
Minor variations are observed close to threshold, after subtracting the singular and constant parts. 
The remainder 8R for up to ten different Pade approximants is shown in Fig. l (b).  There is a perfect 
agreement for Ri2) .  It is hard to detect the exact result which is represented by the dotted line. R�1 
seems to converge to the solid line ((4/4), (5/3) and (3/5]) when more moments from small q2 are 
included. The dashed lines are from the (3/3) , (4/2), [2/4] and (3/4), the dotted ones from lower order 
Pade approximants. The dash-dotted curve is the (4/3] Pade approximant and has a pole very close 
to w = 1 ( 1 .07 . . .  ) . For the abelian part a classification of the different results can be seen: the dashed 
lines are (4/2] and (2/4), the solid ones [3/2], (2/3), [5/3), (3/5] and [5/4] Pade approximants. 

To summarize: Real and imaginary part of the vacuum polarization function II( q2) from a massive 
quark have been calculated up to three loops for QCD and QED. This result extends the classic 
calculations of Kallen and Sabri (5) to next-to-leading order. The imaginary part can be used to 
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predict the cross section for production of massive quarks for arbitrary m2 / s ,  wherever perturbative 

QCD can be justified - from above the quarkonium resonance region up to high energies. 
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