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Abstract

This thesis is concerned with the formulation of superstring theory within the WZW model
on PSL(2|2). This approach naturally yields a formulation of string theory on AdSsz x S3
that is manifest space-time supersymmetric. The primary goal of the present work is to
investigate how physical string states can be identified within the algebraic framework set

by the PSL(2|2) WZW model.

As an important preparation, known results on the representation theory of psl(2]2) are
extended to include representations relevant in the context of string theory, namely those
that are infinite-dimensional with respect to the s[(2) subalgebra describing the space-time
Anti-de-Sitter part. Then, motivated by recent insights into the structure of logarithmic
conformal field theories, our understanding of these representations is used to give a pro-
posal for the full space of states of the logarithmic conformal field theory underlying the
PSL(2]|2) WZW model. We furthermore present an appropriately generalised cohomolog-
ical characterisation of the subsector of massless physical string states on this full space
of states. Both the spectrum of massless states that is independent of the choice of the
compactification manifold as well as the massless spectrum specific to compactifications

on the four-torus T are confirmed to agree with the supergravity answer.

Motivated by this success, the massive string spectrum in AdS3 x S? backgrounds is
investigated. In particular, the physical state constraints of the hybrid formulation of
string theory are applied to appropriately chosen vertex operators in order to extract
information how massive physical string states can be identified in the PSL(2|2) WZW
model. It is shown that the appropriate characterisation of physical string states at the first
mass level is a natural generalisation of the description at the massless level. On these
grounds, we propose that this naturally extended algebraic characterisation of physical
string states holds at every mass level and confirm the proposal at the first two mass

levels.



Zusammenfassung

Diese Arbeit beschiftigt sich mit der Darstellung von Superstringtheorie in AdS3 x S3
im Rahmen des PSL(2]2)-WZW-Modells. Eine derartige Herangehensweise fiithrt auf
natiirliche Weise zu einer Formulierung dieser Stringtheorie, die manifest supersym-
metrisch in der Raumzeit ist. Das primére Ziel der vorliegenden Arbeit ist die Beant-
wortung der Frage, wie die physikalischen Zustdnde des Strings durch die algebraischen
Mittel des PSL(2|2)-WZW-Modells identifiziert werden kénnen.

Als wichtige Vorbereitung werden zunichst bekannte Resultate zur Darstellungstheorie
von psl(2]2) in einer Weise erweitert, dass auch die fiir Stringtheorie relevanten Darstellun-
gen behandelt werden kénnen. Diese Darstellungen sind unendlich-dimensional beziiglich
der sl(2) Lie Unteralgebra, die den Anti-de-Sitter-Anteil der Raumzeit beschreibt. Mit
Kenntnis der Eigenschaften dieser Darstellungen und motiviert durch kiirzlich errungene
Erkenntnisse zur Struktur logarithmischer konformer Feldtheorien ist es moglich, einen
Zustandsraum fiir jene logarithmische konforme Feldtheorie zu konstruieren, die dem
PSL(2|2)-WZW-Modell unterliegt. Des Weiteren wird eine verallgemeinerte kohomolo-
gische Charakterisierung der physikalischen masselosen Zustdnde des Strings auf diesem
Zustandsraum eingefithrt. In dieser Beschreibung wird sowohl das Spektrum bestimmt,
das unabhéngig von der genauen Wahl der Kompaktifizierung ist, wie auch das Spektrum
im Falle von Kompaktifizierungen auf dem vier-dimensionalen Torus T%. Es stellt sich

heraus, dass beide mit dem jeweiligen Supergravitationsspektrum iibereinstimmen.

Nach der erfolgreichen Beschreibung des masselosen Untersektors widmet sich die Ar-
beit dann der Untersuchung des massiven Stringspektrums in AdSz x S? Gravitations-
hintergriinden. Im Detail werden die Bedingungen an physikalische Zustéinde im Rah-
men des sogenannten Hybridformalismus auf sinnvoll ausgewéahlte Vertexoperatoren ange-
wandt. Auf diesem Wege konnen wichtige Erkenntnisse gewonnen werden, in welcher
Weise massive Zustédnde im Rahmen des PSL(2|2)-WZW-Modells zu identifizieren sind.
Es ergibt sich, dass die Identifizierung der leichtesten massiven Zustinde eine naturliche
Erweiterung der Beschreibung masseloser Zusténde darstellt. Dies begriindet die Vermu-
tung, dass in der Tat das gesamte Spektrum durch eine derartige natiirliche Erweiterung
beschrieben werden kann. Diese Vermutung kann durch Vergleich des resultierenden Spek-
trums mit dem Spektrum des RNS-Strings auf erster und zweiter Massenstufe bestatigt

werden.
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CHAPTER 1

Introduction

1.1 String Theory and Supersymmetry

Even though quantum field theory, in particular Yang-Mills theory, has a long record
of success in describing particle physics at today’s accessible energies (see e.g. [5,46] for
a very recent experimental justification of the standard model), various reasons exist why
one should expect a more fundamental guiding principle underlying the standard model
of particle physics [154]. First of all, it does not include gravity, and even if one tries to
treat gravitation in a quantum field theoretic way, a nonrenormalisable theory is obtained.
But a fundamental theory is expected to describe gravity as well as the other fundamental
forces, so that it is possible to investigate physical systems in which both gravitational
and quantum aspects become important, e.g. near the horizon of black holes. Another
noteworthy point is that the standard model has several free parameters which hopefully
should be fixed by some underlying scheme. Furthermore, typical quantum field theoretic
treatments of particle physics introduce a set of different energy scales like the electric-
weak symmetry breaking scale, possibly the GUT scale and the Planck scale, which differ

by many orders in their magnitudes.

Among several approaches to overcome these difficulties and formulate a theory that
not only includes gravity but is also valid at all energy scales, string theory is often
considered to be the most promising candidate. Roughly speaking, on the classical level
it describes the dynamics of a one-dimensional object, the string, moving in space-time.
Although originating from an attempt to effectively describe hadrons in particle physics
[174], it was soon realised that the theoretical formulation quite naturally gives rise to
a spin two particle that allows for an interpretation as graviton [164,193] and hence
string theory might serve as a theory of quantum gravity. In fact, demanding that the
symmetries of the classical theory stay intact after quantisation requires the space-time
to satisfy Einstein’s equations of general relativity to lowest order. In this sense, general
relativity is incorporated in string theory as the low energy effective theory. However,
there are drawbacks to string theory in this purely bosonic formulation. First of all, it
turns out that the spectrum contains a tachyonic state which renders the vacuum of the
theory unstable. Furthermore, it does not give rise to any fermionic states, thus seemingly
excluding it to be an UV completion of the well established standard model of particle
physics. Fortunately, there exists a quite natural solution to these problems as we will

now explain.
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Figure 1.1: A possible embedding of the string world sheet (shaded area) into the space-
time. X* indicates the embedding function. In this example, the world sheet has the
topology of a torus (the sides of the rectangle with the same number of arrowheads are
supposed to be identified). The crosses on that torus indicate the insertion points of the
incoming and outgoing string states from the point of view of the field theory living on
the world sheet.

The path the string takes in the space-time defines a two-dimensional surface which
in analogy to a particle moving in Minkowski space is referred to as the world sheet (see
Fig. 1.1). The embedding function of the world sheet into the space-time contains all
dynamics of the string and thus string theory is basically given by a field theory in two
dimensions with the fields taking values in the space-time manifold. The solution to the
inconsistencies encountered before is then not to consider bosonic string theory but rather
a supersymmetric version of the two-dimensional field theory on the world sheet called
Ramond-Neveu-Schwarz or RNS string theory, for short [146,147,160]. This is achieved
by adding fermionic fields to the action that serve as supersymmetric partners of the
embedding fields. As a matter of fact, the inclusion of fermions to the world sheet theory
also adds space-time fermions to the theory and the spectrum of the new theory can be
truncated in such a way that the tachyonic state is removed from the physical spectrum.
This truncation is an important element of RNS superstring theory which is called the
GSO projection [100,101]. Not only does it eliminate the tachyon from the spectrum but
also renders the physical spectrum space-time supersymmetric. It is due to these findings
that string theory is nevertheless considered to be a reasonable candidate to describe real

world physics.

Although space-time supersymmetry can be obtained in the RNS formulation of string
theory, it is not manifest as a symmetry of the classical action but only occurs after
imposing the GSO projection. Nevertheless, a string theory with manifest space-time

supersymmetry is desirable as supersymmetry typically imposes powerful constraints on
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physical quantities, thus hopefully simplifying calculations. A straightforward way to
achieve this is by not adding a supersymmetric structure to the world sheet but to the
space-time manifold instead. If the space-time manifold is flat Minkowski space, a geomet-
ric way of doing so is known from supersymmetric field theories, which can be formulated
as “usual” field theories defined on superspace [183], a generalised version of Minkowski
space that also includes fermionic, i.e. Grassmann-valued directions. Hence, in order to
obtain a manifest space-time supersymmetric formulation of string theory, one could just
consider a string moving in superspace rather than Minkowski space. A classical string
action can be formulated in that setting which gives rise to the so called Green-Schwarz-
or GS-string [109]. Even though space-time supersymmetric by construction, it is not
known how to covariantly quantise the theory. It can, however, be quantised in light cone
gauge and be shown to give the same spectrum as the RNS string in a flat gravitational

background.

Let us summarise that there are two equivalent formulations of string theory so far.
On the one hand, there is the RNS string that can be nicely treated with well-known
techniques of conformal field theory, but lacks manifest space-time supersymmetry. On
the other hand, the GS string yields a manifest space-time supersymmetric formulation,

but it is difficult to quantise in a covariant manner.

In order to overcome these difficulties and combine the advantages of the RNS and
GS description, yet another formulation of string theory was proposed that now goes under
the name of pure spinor string theory [20,21]. Its world sheet matter content resembles the
one of the GS string in that it describes an embedding of the world sheet into superspace.
However, there are additional world sheet fields, most importantly a field transforming
as Majorana-Weyl spinor in ten dimensions. This field is subject to the pure spinor
constraint!, where this framework obtained its name from. The pure spinor description
comes together with a BRST operator, which is proportional to the pure spinor field, and
whose cohomology defines the physical subspectrum. Although being only a well motivated
proposal originally, its equivalence to the other string theories in a flat ten-dimensional
gravitational background has been shown by now [23-26]. Furthermore, physical quantities
have been calculated [22,27] and checked to agree with the results of the other formulations.
Unfortunately, there are certain drawbacks to the pure spinor string. For us the most
important is that compactifications to lower dimensions are yet not well understood [12]
(see [44,45] for recent developments in that direction). But as will be explained in detail
later in this chapter, string theory has to be compactified in order to make contact to our
four-dimensional physics. It has been attempted to bypass this problem by discussing the
possibility of noncritical pure spinor superstrings [1,106,148,192], i.e. pure spinor string
descriptions that are a priori formulated in lower dimensions. However, apart from the
analysis in [94], it is not clear whether these noncritical formulations describe the same

string as the RNS or GS formulation compactified to lower dimensions.

LA spinor A% is a pure spinor if it satisfies A%y XY = 0, where 4™ are the Pauli matrices in ten
dimensions.
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1.2 The AdS/CFT Correspondence

In recent years, string theory in Anti-de-Sitter gravitational backgrounds has attracted
a lot of interest, the reason being the discovery of the correspondence of these string
theories to superconformal theories on the boundary [139] (for a comprehensive review
the reader is referred to [2]). One can argue for such a correspondence by the following
construction: starting with string theory in a flat Minkowski background, one adds some
parrallel D3-branes at the origin. D-branes are solitonic states in string theory which, from
a geometric perspective, describe hypersurfaces in the space-time on which the end points
of open strings are restricted to lie [53,135]. They also serve as sources of RR flux [156],
but the most important property for us is that at low energies the open strings living on
the D-branes become gauge bosons. In fact, if we have a stack of N D3-branes, the low
energy effective action yields an N’ = 4 U(N) Super-Yang-Mills theory which is located
on the hypersurface defined by the D-branes [189]. Apart from the gauge theory on the
brane, there are also closed string states living in the bulk, which give rise to a supergravity

theory at low energies.

Following [2], we may consider this setup from another perspective. Since the D-branes
are massive objects and charge flux in the normal space-time directions, they influence
the space-time geometry. In fact, the space-time becomes AdSs x S° in the near horizon
limit [116]. When massive states are integrated out, two classes of states survive: massless
states propagating in the bulk and any kind of string excitations located in the AdSs
throat. The former gives rise to a supergravity theory at low energies, which we have
already encountered before from the point of view of a gauge theory living on the stack
of D3-branes. As both descriptions are based on the same model, the remaining elements
should be identified, i.e. string theory (of type IIB) on AdSs x S® is dual to V' = 4 U(N)
SYM theory [139].

The above construction serves as good motivation of the validity of the correspondence
but heavily depends on elements of string theory, particularly on D-branes which are non-
perturbative stringy objects. However, it is believed that the correspondence holds in
a more general setting in that any quantum theory of gravity in an AdS background is
dual to some CFT on the boundary [190]. Roughly speaking, the correlation functions
of the dual CFT living on the boundary should coincide with the partition sum of the
bulk theory of quantum gravity subject to certain boundary conditions [111,190]. In
fact, it has been recently attempted to constrain possible quantum gravities using this

correspondence [191].

There is a lower dimensional analogue of this correspondence. It has been known for
quite some time that the asymptotic symmetries of three-dimensional Anti-de-Sitter space
AdSs3 are appropriately described by a Virasoro algebra whose central charge depends on
the radius of the space as well as the gravitational constant [40]. Since the Virasoro algebra
describes the symmetries underlying conformal field theories (cf. section 3.1), this strongly

suggests that a duality of gravity theories on AdS3 and two-dimensional conformal field
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theories exists. In particular, the AdS/CFT correspondence becomes notably accessible
in this case basically due to two reasons: first of all, two-dimensional conformal field
theories contain infinite many conserved currents and are thus fairly restrictive. Secondly,
gravity in three dimensions does not contain any propagating degrees of freedom and hence
the analysis on the gravity side is simplified. For example, a noteworthy success is the
calculation of the entropy of the BTZ black hole [6] using the AdS3/CFT5 correspondence
(see e.g. [132]). When the theory of quantum gravity in question is chosen to be string
theory, one can perform a construction similar to the one before using D1- and D5-branes
[59] which yields a correspondence of superconformal field theories at the boundary and
string theory on AdS3 x S2. In this sense, although interesting in its own right, the
AdS3/CFTy correspondence can be seen as a toy model for the larger, more complicated
AdS;/CFTy correspondence.

1.3 String Compactifications to AdS;x S?

Anomaly cancelation in superstring theory requires the space-time to be ten-dimensional
and these string theories are then said to be critical. In order to make contact to our four-
dimensional physics, one is forced to dimensionally reduce the theory such that an effective
four-dimensional theory is obtained. In more geometric terms, one considers critical string
theories but takes six of the ten dimensions to be compactified, i.e. one assumes that the
space-time takes the form R3! x M, where M is some six-dimensional, so called internal
manifold. The low energy dynamics of the effective four-dimensional theory constrain the
geometry of M, e.g. the existence of N' = 1 supersymmetry in the low energy effective

theory requires the compactification manifold to be a Calabi-Yau manifold [41,184].

However, since in this work we are primarily interested in contributing to the under-
standing of string theory on AdSs x S2, we will not consider compactifications to four but
rather to six dimensions. More concretely, we will assume that the space-time is of the
form AdSs x S? x M, where M is now a four-dimensional compactification manifold. As
for the case of compactifications down to four dimensions, unbroken supersymmetry in
six dimensions requires M to be Calabi-Yau. Apart from the four-torus T4, there is only
one such smooth space up to diffeomorphisms known as the K3 surface. These are the
most common compactifications to six-dimensional space-time considered in the literature.
When speaking of string theory on AdS3 x S3, we will always implicitly mean critical string

theory compactified appropriately.

String theory on AdSz x S? has been an active topic of research in the recent years.
Not only does it play a crucial role in understanding the AdS3/CFTq correspondence, but
it also serves as a traceable example of a string theory that is not defined in flat Minkowski
space-time. The main reason for this is that AdSs allows one to introduce a consistent
group structure on the manifold. In fact, as a differentiable manifold, it is isomorphic to
the special linear group SL(2,R). From the world sheet perspective, string theory on AdSs

can then be seen as a two-dimensional field theory whose fields take values in SL(2,R)
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[10,114,153] (of course, since we are considering critical string theory, one has to take care
of the remaining dimensions as well, e.g. by compactification). More generally, it can be
argued that string theory on group manifolds is closely connected to a well understood
construction in conformal field theory, the Wess-Zumino-Witten models [92, 186]. Using
conformal field theory techniques, many important results concerning string theory on
AdSs have been obtained, e.g. it has been shown that the physical spectrum does not
contain states of negative norm [65,120], a crucial requirement for the consistency of
string theory. For the bosonic string moving on AdSs, this result has amongst other

important insights been extended to all unitary SL(2,R) representations in [140-142].

As for string theory in flat backgrounds, one expects that string calculations become
simpler if one could make space-time supersymmetry manifest. Starting from the RNS
formulation for strings moving on AdSs x S, it is possible to define such a manifest space-
time supersymmetric framework, which now commonly goes under the name of the hybrid
formulation [17-19,30] (see also [125] for clarifications in the case of compactifications to
four dimensions). It is discussed in detail in chapter 5 and the basic idea is to redefine
the RNS world sheet fields in such a way that they behave like fields that embed the
world sheet in six-dimensional superspace, therefore yielding a Green-Schwarz string like
description. The name hybrid string originates from the fact that only the six uncom-
pactified dimensions, i.e. eventually the degrees of freedom describing the AdSs x S? part,
have a Green-Schwarz like description while the compactification manifold is still modeled
by RNS variables.

In flat space-time, the Green Schwarz formulation of the superstring was based on
the idea of lifting space-time to its superspace version rather then the world sheet, hence
introducing a manifest supersymmetric structure to the target space of the embedding
fields. For curved space-times, in particular AdSs, one could wish to take a similar path
and might wonder what the correct lift to “superspace” is. In general, this is an involved
problem if we want this supersymmetric structure to be globally defined. Fortunately,
for some space-time geometries including AdSs x S3, there exists an algebraic way of
determining the supersymmetric version. We have indicated before that AdSs x S3 is
diffeomorphic to (a real form of) the Lie group SL(2) x SL(2). Locally, the Lie group is
appropriately described by the associated Lie algebra. It is possible to add anticommuting
generators to the Lie algebra, which can be thought of as the supercharges. However, the
extension of the Lie bracket to also include these generators is subject to severe consistency
constraints [121,122]. The resulting algebraic structure is called Lie superalgebra and it
can be lifted to a so called Lie supergroup by the exponential map as it is known from the
theory of purely bosonic Lie groups. The Lie supergroup, interpreted as a Grassmannian
manifold, 7.e. a manifold with both bosonic and fermionic directions, can then be seen
as a supersymmetrised version of the space one started with. In the case of AdS3 x S3,
the correct Lie supergroup to consider is called PSL(2|2). It is then not unreasonable to
expect that superstrings moving on AdSsz x S? can be described by a nonlinear o-model on
PSL(2|2), possibly a Wess-Zumino-Witten model. In fact, one can argue that the physical
spectrum of supergravity on AdS3 x S? can be arranged in representations of PSL(2|2) [54],
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indicating an underlying connection. It has further been shown that there is a whole family
of nonlinear o-models on PSL(2|2) that define conformal field theories [33] and one has to

ask how to interpret these moduli from a string theoretic perspective.

We have already said that in string theory, AdS3 x S? can be obtained as the gravita-
tional background by using a system of D1- and D5-branes. However, instead of D5-branes,
we might also have used so called NS5-branes that can be thought of as the magnetic ana-
log of the fundamental string [143]. While the D5-brane sources RR flux, the NS5-brane
sources NSNS flux, under which the fundamental string is electrically charged. Hence,
from a string theory perspective, given an AdS3 x S geometry, there is a two-dimensional
moduli space of vacuum configurations, parameterised by the number of D5- and NS5-
branes we used. At each point in the moduli space, it turns out that the corresponding
hybrid formulation gives rise to a nonlinear o-model whose target space is the supergroup
PSL(2[2) [30]. Although string theory on AdS3 x S* with RR flux has been analysed on a
classical level [144,150,152,159], a particular interesting point in the moduli space is the
one where there is NSNS flux only, since this configuration is accessible in perturbative
string theory. In fact, at this point in moduli space the string theory can be formulated as
a WZW model using RNS variables [56], which in turn can be used to clarify the role of
string theory in the AdS3/CFT, correspondence [99,133,134]. Using this approach, many
detailed checks of the correspondence have been performed, e.g. three-point functions have
been compared [42,52,55,84,98,149,175]. From the perspective of the hybrid formulation,
this point is special because the nonlinear o-model on PSL(2|2) becomes a Wess-Zumino-
Witten model [30], which implies that the symmetry currents become holomorphic and
powerful tools of conformal field theory can be used. So the moduli of nonlinear o-models

encountered before correspond to different vacuum configurations with NSNS and RR flux.

1.4 Conformal Field Theories with Supergroup Target Spaces

In the last decade, conformal field theories whose matter fields take values in some
supergroup attracted a lot of interest. We already motivated how these models might
appear in the context of string theory as some kind of Green-Schwarz string analogue in
curved space-times that can be equipped with a group structure. However, they possess a
much broader range of application in modern day physics. First of all, there are interesting
from a fundamental point of view since Wess-Zumino-Witten models with supergroup
target generically give rise to explicit examples of so called logarithmic conformal field
theories [161,162,167]. In a loose sense, logarithmic conformal field theories can be thought
of as rational conformal field theories but with the possibility of the two-point-functions
having a logarithmic dependence on the distance of the inserted operators. In general, this
yields a degeneration of conformal vacuum states [79,82,83,86]. Furthermore, they appear
in the context of statistical mechanical models. For example, the Wess-Zumino-Witten
model on the Lie supergroup called SU(2|1) is closely connected to a supersymmetrised
version of the Ising model [31,34,163].
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Due to their correspondence to string theory on AdSs x S2, especially nonlinear o-
models on PSL(2|2) were intensely explored in the literature recently [3,4,104,105,178].
Although noteworthy successes have been achieved in understanding string theory on
AdS3 x S? in a space-time supersymmetric manner using the hybrid formulation, e.g. the
vertex operators associated to massless string states have been identified and shown to
coincide with the supergravity spectrum [61,62], the analyses so far were mostly based
on the point particle limit of string theory, where vertex operators become superfields in
the target space. Furthermore, even in that case, the logarithmic nature of the conformal
field theories associated with these models has not yet been included properly. But to
gain insights into the complete AdS3/CFT2 correspondence, a full string theoretic under-
standing of these issues in backgrounds that contain not only NSNS flux but also RR flux
is of major importance. The commonly accepted strategy to obtain this can be described
as follows: one starts by investigating the PSL(2|2) WZW model, which is the most ac-
cessible point in moduli space, and then uses nonrenormalisation theorems specific to Lie

supergroups [33] to marginally deform the theory to include RR flux as well [105].

It is the subject of the present work to contribute to the first step in this program, in
particular to deepen the understanding of the connection between string theory in a pure
NSNS flux background on the one hand and the PSL(2|2) Wess-Zumino-Witten model
on the other. More concretely, by using the mathematical theory of representations and
modules as well as applying tools of conformal field theory, an algebraic identification of
the physical string spectrum within the full space of states of the logarithmic conformal
field theory underlying the PSL(2|2) WZW model is obtained.

1.5 Overview

This work is organised as follows. We start off quite technically by reviewing the
mathematics of Lie superalgebras and their representations in chapter 2. When discussing
representations of Lie superalgebras, we usually take the modern point of view on repre-
sentations in terms of module theory, which for illustration purposes is discussed in the
context of Lie algebras in appendix A. This is closely connected to the notion of the BGG
category, which loosely speaking is the set of all accessible Lie algebra representations,
finite- and infinite-dimensional. Important notions introduced in this chapter are projec-
tive covers, which play an important role in the description of the massless string spectrum
within the PSL(2]2) WZW model due to the logarithmic nature of the associated current
algebra [105,167]. For the use in later chapters, the projective covers of psl(2]2) and the

homomorphisms between them are constructed explicitly.

We turn back to the physics in chapter 3. Basic concepts of conformal field theory as
well as string theory are recalled, including Wess-Zumino-Witten models on Lie groups
and the BRST quantisation of string theory. The reader familiar with these subjects is
invited to skip this part.

Chapter 4 discusses important basics and developments on the interplay of supersym-
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metry and string theory. In particular, superconformal algebras in two dimensions are
discussed with particular emphasis on their significance as a world sheet symmetry in
string theory. Special attention is given to the question how supersymmetry can be in-
troduced in WZW models. As has been explained above, there are basically two ways
this can be achieved: either one chooses to make the world sheet CFT supersymmetric
by introducing fermionic superpartners of the currents, or one substitutes the Lie group
target space of the WZW model by an appropriately chosen Lie supergroup, thus making
the WZW model manifestly target space supersymmetric. Both possibilities are discussed
in section 4.3 in general terms as well as applied to the case of string theory on AdS3 x S3,
which is described by a WZW model on SL(2) x SU(2).

In chapter 5, the hybrid formulation is discussed in quite some detail. In the first part
of this chapter, it is argued that string theory is connected to the PSL(2]2) WZW model
if an appropiate A/ = 2 superconformal structure is added to the world sheet. The form
of the associated superconformal algebra, which is crucial in order to identify the physical
string states, is given explicitly in terms of normal ordered products of the 13/;[(2\2)k current
algebra and the so-called po-ghosts. Secondly, the physical state conditions of string theory
quantised in the BRST framework are reformulated using the superconformal algebra. A
first step is done towards an algebraic characterisation of physical massless string states
in the PSL(2]2) WZW model by evaluating these physical state constraints on vertex
operators in the hybrid formulation. We find that there are two distinguished kinds of
states; those that depend on the choice of the compactification manifold and those that
do not. The latter are thus called compactification-independent while the former are
the compactification-dependent states. It is argued that the compactification-independent
massless string spectrum is described by the cohomology of an appropriately chosen BRST
operator [30,62]. For toroidal compactifications, the compactification-dependent states are

shown to be described by the so-called socle of an indecomposable representation.

Motivated by recent results in logarithmic conformal field theory, we propose a de-
tailed description of the spectrum of the logarithmic conformal field theory associated to
the PSL(2]|2) WZW model in chapter 6. Using the results in chapter 2, in particular those
in section 2.2 on the representations of psl(2|2) and the corresponding projective covers,
we explain how to construct the full space of states of that logarithmic conformal field, fol-
lowing recent ideas of [86,87]. We then explain how the BRST operator on massless string
states that are independent of the compactification can be formulated in our language,
and study its cohomology. It is shown that this BRST cohomology reproduces precisely
the physical spectrum of A/ = 2 supergravity in six dimensions [54,57]. Finally, a similar
analysis is performed for compactification-dependent states for toroidal compactifications,
which again agrees with supergravity result. The results obtained in this chapter are based

on the publication [80].

After having discussed the massless case, we generalise our analysis to the massive
spectrum that is independent of the compactification in chapter 7. First, we restrict our-
selves to states at the first mass level. Following the same arguments as in the massless

case, the physical state constraints in the hybrid formulation are evaluated on appropri-
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ately chosen vertex operators. An algebraic characterisation of the physical string states
within the PSL(2]2) WZW model is obtained, which nicely resembles the one found in the
massless case. The resulting spectrum agrees with the RNS spectrum if one takes into
account contributions from the twisted N = 4 superconformal field theory describing the
internal manifold. We close this chapter by conjecturing a generalisation to all mass levels
and collect evidence for it by comparing the implied spectrum to the RNS spectrum at

the second mass level. The results of this chapter were published in [93].

Appendix A gives an overview of the theory of Lie algebras and their representations
in the context of the BGG category. Although not strictly necessary for this thesis, it is
instructive to see how notions like projective covers, duality and BGG reciprocity show up
in the well known context of semisimple Lie algebras. Exemplarily, the ideas introduced
in this appendix are applied to representations of s[(2). In appendix B we present an
important formal construction of projective representations of Lie superalgebras that is

often used in the literature.

Appendix C summarises our choice of a basis for the Lie superalgebra ps((2|2), technical
details on OPE calculations are presented in appendix D and appendix E contains the

spectrum of compactification-independent RNS string states at the first few mass levels.



CHAPTER 2

Lie Superalgebras and Their

Representations

2.1 Lie Superalgebras

The importance of Lie algebras in physics originates form the fact that they describe
continuous symmetries of physical theories and thus serve as underlying principles that
constrain the moduli spaces of theories and make the analysis thereof more accessible. At
least with the introduction of supersymmetry as a possible symmetry in high energy par-
ticle physics [103,179,182], it became apparent that one should extent the mathematical
theory of Lie algebras to include generators with symmetric Lie bracket or anticommu-
tators as well. These new generators are referred to as fermionic while the generators
with an antisymmetric Lie bracket are called bosonic. Motivated by its supersymmetric
origin the resulting algebraic structure was named a Lie superalgebra. A Lie superalgebra
always contains a Lie algebra as a subalgebra, called the bosonic (Lie) subalgebra, by re-
stricting to the bosonic generators. In fact, extending some Lie algebra, say g(©, to a Lie
superalgebra g that has g(9) as its bosonic subalgebra can be thought of as introducing a
supersymmetric structure to Lie group that corresponds to g(®) by applying the exponen-
tial map. We now give a constructive definition of Lie superalgebras that closely resembles

this physical intuition. Let us also mention that a concise overview can be found in [68].

A short comment on the notation: In the following and the remainder of this work,
we will mostly denote commutators as well as anticommutators by square brackets, |-, -].
The grading of the Lie bracket should be clear from the context. However, when we wish
to emphasize the grading, we will add the corresponding subscript to the Lie bracket, i.e.

[+, -]- denotes the commutator while [-, -]+ denotes the anticommutator.

2.1.1 Generalities

Let us assume we are given some semisimple Lie algebra g(®). As explained in the
introductory remarks, we add a set of fermionic generators that span a vector space gV
and consider the vector space g = g(© @ g") where g(®) inherits the original Lie algebraic
structure. The Lie bracket [-, -] on g(®) is now extended to cover the whole vector space

g by first letting g™ transform in some representation p of g(®) under the adjoint action
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of g0, So, if {t*la = 1,...,n} is a basis of g(®©) and {s#|u = 1,...,m} is a basis of gV,
the extended Lie bracket reads

[t s"] = p(t*)H,s", peRepg?. (2.1)

Even though not strictly necessary, one usually requires p to be completely reducible and
Lie superalgebras with that property are called classical. Since Lie superalgebras that are
not classical are fairly complicated to deal with, it will always be tacitly assumed that
the considered Lie superalgebra is classical. The crucial step is the introduction of a Lie
bracket of two fermionic generators consistent with the structure we obtained so far. The
conditions we impose on the Lie bracket are rather restrictive; it should be symmetric
and should map to the Lie algebra g(®) we started with. Since g*) transforms in some
representation p, we are hence looking for a symmetric bilinear mapping p x p — adj,
where adj refers to the adjoint representation of g(®). Furthermore, our intuition from the
theory of Lie algebras suggests that there should be an analogue of the Jacobi identity.
In the context of Lie algebras, the Jacobi identity can be understood as an invariance

condition on the Lie bracket seen as an antisymmetric map adj x adj — adj,

[[t“,tb],tC} + [tb,[ta,tC]} - {a&i(t“)tb,tc] + [tb,zld(ta)tC}

— ad(1)[t%, 1] = [ta, [tb,tc]} . (22)

Thus it seems reasonable to require the symmetric bilinear map px p — adj that ultimately

defines the anticommutator of fermionic generators to be invariant as well,

(112,571,874 [ 187,81 = [p(%)"5, "] + [, p(t7)" "]

= ad(t?)[s*, s"] = [ta, [s“,s"]} . (2.3)

This yields the generalised Jacobi identity for Lie superalgebras. In fact, it turns out that
for generic choices of the representation p such a bilinear map does not exist. In those

cases in which it exists, the constraints are so restrictive that it is mostly unique.

We summarise that a Lie superalgebra g is completely defined by the following data:
a Lie algebra g(©) that serves as the Lie subalgebra of g, a g(®)-representation p realised
on the vectorspace g(!) and a symmetric bilinear invariant map p x p — adj that lifts
to the anticommutator of fermionic generators. Like Lie algebras, Lie superalgebras can
be classified [122] (see section 2.1.2). By construction, g allows for a grading that will be
denoted | - | defined by
0 ifxeg?,

|| = (2.4)
1 ifzegh.

As an example, let us consider the simplest nontrivial Lie superalgebra, which is s[(2]1).
Its bosonic subalgebra is g(®) ~ s[(2) @ u(1). With respect to the adjoint action of g(®,

the fermionic generators arrange themselves in the representation 2_; @ 2.
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The Lie superalgebra g can be lifted to its universal enveloping algebra U(g) defined

as a quotient of its tensor algebra,

Ug) = T(0)/{r oy — ()" Mly 0z —[r,y]). (2.5)

It is also possible to prove an analogue of the Poincare-Birkhoff-Witt theorem for Lie
superalgebras [50] along the same lines as for semisimple Lie algebras. Loosely speaking,
it makes sure that once we specify an arbitrary order of the basis generators of g and
impose that the tensor product of two fermionic generators vanishes, the accordingly
ordered tensor products generate a basis of U(g). The importance of the theorem is due

to the fact that it gives us an explicit form of the basis of U(g).

Let us try to generalise important concepts in the theory of Lie algebras to Lie super-
algebras in order to eventually define a Killing form on Lie superalgebras. The adjoint
representation ad (-) is defined as in the Lie algebra case, namely it associates with each

element of a Lie superalgebra, say g, a linear map from g to itself:
ad (z) = [z, -], Vzeg. (2.6)

Let us emphasize that |-, -| denotes the graded Lie bracket rather than the purely anti-
symmetric commutator. We can define a graded Lie bracket among the linear maps ad (),

x € g, using the composition of linear maps,
[ad (2) , ad ()] = ad (x) 0 ad (3) — (=)“I¥lad (y) o ad () . (2.7)
Then ad (-) becomes a homomorphism of Lie superalgebras, i.e.

ad ([z,y]) = [ad (z) ,ad (y)] - (2.8)

As for Lie algebras, this is in fact the defining property of Lie superalgebra representations
(hence in retrospect justifying the name adjoint representation), which will be in detail

discussed later.

The next ingredient we will need is a Lie superalgebra analogue of the trace. Recall
from linear algebra that the trace (over some vector space V') is invariant in the sense
that try([A, B]-) = try(AoB—BoA) =0, where A and B are linear maps of V' to itself.
Thus we may expect that the analogue in the Lie superalgebra case satisfies a similar
invariance condition using the graded Lie bracket instead of the commutator. Indeed, a

so called supertrace (over g)' can be defined satisfying the condition
strg([ad (z) ,ad (y)]) = str g(ad (z) 0 ad (y)) — (—)W¥lstr y(ad (y) 0 ad (x)) =0.  (2.9)

Using the linear map ~(z) = (—1)1*lz, 2 € g, we can express the supertrace over g of a

linear map A from g to itself in terms of the ordinary trace over the vector subspaces g(®)

'In this context the Lie superalgebra g should be treated as a Zy-graded vector space, g = g(0> @ g(1>.
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and gV as
strg(A) = trg(y o A) = tr o) (A) — tr ;o) (A4). (2.10)

In principle, it is possible to define a supertrace over any Zs-graded vector space, not
only g, and we will reconsider this issue later in section 2.1.3 when discussing general

representations of Lie superalgebras.

In analogy with the ordinary Lie algebra case, we can define a Killing form on g using

the supertrace over the adjoint representation,
k(z,y) =strg(ad(z)oad(y)) =try(y cad(z) oad(y)) . (2.11)

In the Lie algebra case, the Cartan criterion states that the Killing form is always nonde-
generate if and only if the Lie algebra is semisimple. This is not true for Lie superalgebras.
For example, for the Lie superalgebra which is of particular interest in the present work,
psl(2]2), the Killing form vanishes identically or, phrased differently, the dual Coxeter
number is equal to zero. However, it can be shown [122,165] that if g is simple, any
invariant bilinear form is either zero or nondegenerate and any two invariant forms are
proportional to each other. The question whether a bilinear form like that exists at all is
more subtle in the general case. At this point, we just state that it exists in all cases of

interest to us, particularly for ps((2]2).

By construction via the supertrace, the Killing form is invariant and supersymmetric,
k(x,y) = (—1)*IWk(y, 2). There is another quite handy property of the Killing form that

should be mentioned. It is consistent (with the Zs-grading), which means that
k(z,y) =0 ifxeg®, yegl). (2.12)
This is actually quite easy to see if one writes
str g(ad (z) 0 ad (1)) = tr yo (ad (z) 0 ad (y)) — tr ;o (ad () o ad (y)) (2.13)
since by our constructive definition of Lie superalgebras it is clear that
ad (z) ad (y) : g — gV and ad (z)ad (y) : g — g© (2.14)

if z € g and y € g(V). Hence both traces vanish identically. Looking ahead, the
consistency of the Killing form in the above sense will be of great importance in the

context of Wess-Zumino-Witten models on Lie supergroups in section 4.3.2.

It is possible to define roots pretty much the same way as it is done for Lie algebras
(see appendix A.1 for a review). In fact, for basic Lie superalgebras, i.e. those that allow
for an invariant bilinear form (see section 2.1.2), the Cartan subalgebra h of g coincides
with the CSA of the bosonic subalgebra g(®) and hence it is unique up to conjugation.
However, one should now distinguish two sets of roots: those that correspond to roots
of the bosonic subalgebra g(® and those that correspond to fermionic generators. The

earlier roots are usually said to be even while the latter are odd roots. Hence the root
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system decomposes as A = A U A®M into the set of even and odd roots, respectively.
The roots of basic Lie superalgebras share many of the properties of Lie algebra roots.

Their properties include amongst others (see [122] for a complete list)

1. if a is a root then —a is a root as well,

2. except for psl(2|2), the root spaces g, are one-dimensional,

3. [8a,08] # 0 if and only if o, 8,0+ f € A,

4. (ga,98) = 0 for a+ 5 # 0, where (-, -) is the invariant form on g, and

5. if a # 0 then na € A for n # +£1, if and only if « is an odd root of nonzero length,
i.e. « € AW and (a,a) # 0. In this case, n = £2.

We used that the invariant form restricted to b induces a bilinear form on its dual h*
by (a, ) = (ha,hg), where hq is defined by (hq,-) = a(-). Property 5 is specific to Lie
superalgebras and, in contrast to the Lie algebra case, allows for roots that are multiples
of other roots. From property 2 it is already suggestive that psl(2]2) is special among
basic Lie superalgebras. In fact, this can be observed in quite several contexts, e.g. when
considering automorphisms of Lie superalgebras. The root system of ps((2|2) is explicitly
constructed in section 2.2.1. Instead of reviewing roots of Lie superalgebras here in detail,
we rather stress one important difference: two Borel algebras may not be conjugate to each
other in contrast to the case of Lie algebras and hence there are several non-equivalent
choices of positive roots AT. For example, we will see in section 2.2.1 that there are three
non-equivalent possible positive root systems for psl(2]2). Each of these gives rise to a
different simple root system A;, ¢ € 1,...,n, where simple roots are defined to be those
positive roots that cannot be written as a sum of positive roots. In order to ensure that
there is one-to-one correspondence between conjugacy classes of simple root systems and
basic Lie superalgebras, we have to pick one simple root system that is special in some
way. The usual choice is to consider the distinguished simple root system Ag, which is
defined to be the up to conjugacy unique simple root system that contains the simple root
system A(()O) of the bosonic subalgebra g(o) as a subset. Equivalently, it is the simple root

system that has the maximal number of even roots.

It is possible to define Dynkin diagrams for Lie superalgebras as well, where one has to
define different nodes for even and odd roots. Even roots are represented by a white node.
It turns out useful to distinguish two set of fermionic roots with different properties. First,
there are odd roots a of nonzero length with respect to the invariant form, («,«) # 0.
In that case, 2a is a root as well. These roots are commonly represented by a black
node and finally, the odd roots of zero length are represented by a gray node. Given the
Dynkin diagram for a distinguished simple root system, the Dynkin diagram of the bosonic
subalgebra can be obtained by simply removing all nodes associated to odd roots and the

lines connecting them to other nodes.
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2.1.1.1 Lie supergroups

We conclude this section by presenting the analog of the exponential map for Lie
superalgebras which yields the notion of a Lie supergroup [14,121,122]. Let us start by
looking at some Lie superalgebra g of dimensions n + m and superdimension n — m and
introduce real coordinates z,, a = 1,...,n and Grassmann-valued coordinates 0,,, ;1 =
1,...,m. Since 0,0, = —0,0,, we see that elements 0,s" and 6,s” satisfy commutation

relations rather than anticommutation relations in the sense that
[0us",0,8"]— = 6,0,[s",s"]+, (2.15)

Recall that the 4+ subscripts indicate whether we mean the commutator or anticommuta-
tor, [z,y]+ = zy + yr. Hence the direct sum of vector spaces g = g(® @ g(¥), where g(!
should now be seen as a vector space over the Grassmann numbers, carries a Lie algebra
structure rather than the structure of a Lie superalgebra. This means it is possible to act
with the exponential map

9(x,0) = exp (z,t" + 6,5") . (2.16)

The set of g(x,0) has group-like structure and is called a Lie supergroup. From our defini-
tion of g(x, @), we see that, like a Lie group is a differentiable manifold, a Lie supergroup is
a Grassmannian manifold. From a physicist’s perspective, this manifold might be thought
of as a possibly curved analog of superspace. Note that results like the Campbell-Baker-

Hausdorff-Dynkin formula hold for Lie supergroups as well.

2.1.2 Classification

In this section, an overview of the classification of Lie algebras is given. Since this is a
rather vast subject, we refer the interested reader to the literature [121,122,165]. In the

following, the Lie superalgebra g is always assumed to be simple.

Up to now we thought of a Lie superalgebra as a Zs-graded vector space g = g(o) @ g(l)
with a (generalised) Lie bracket [-,-] that respects that Zs-grading. However, this is a
pretty general point of view and it should be possible to further categorise these Lie

superalgebra.

As has already been indicated, the first restriction one usually imposes is that the
g(O)-representation the elements of g(!) transform in is completely reducible. These are
the classical Lie superalgebras and those are at the time of writing the ones that are
mainly considered in the literature. However, for completeness, let us state that the Lie

superalgebras that are not classical are referred to as Cartan type Lie superalgebras [166].

Looking at classical Lie superalgebras only, we can actually take two paths of classifying
them further. Since we already discarded not completely reducible g(®)-representations
for g, we may ask if g") is reducible as a g(®-representation. If this holds, the Lie
superalgebra is said to be of type I. Then it can be shown that g*) decomposes in two

direct summands gtV = g_; @g, 1, where each of the summands yields a g(?)-representation
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Figure 2.1: Diagrammatic presentation of the classification of simple Lie superalgebras.

on its own and [g4+1,9+1] = [g-1,9-1] = 0. Note that this defines a Z-grading of g in the

sense that
type: g=g0@g®, gM =g ®g_y, suchthat [g;,g;]Cgivy,  (2.17)

where g; = 0 for |¢7| > 2. If g™ is irreducible as a g(®-representation then it is called a Lie

superalgebra of type II. In this case, a more complicated grading of vector spaces holds,
type I: g =go@gro®an, g =g @g1, suchthat [g;,0;]Cgirj. (2.18)

In contrast to type I Lie superalgebras, g+1 and g_; in (2.18) are not 9O _representations

individually. However, they both form representations of the Lie subalgebra go C g(®.

Another path would have been to ask if for a given Lie superalgebra a non-degenerated
invariant bilinear form exists. If it exists, the Lie superalgebra is called basic and strange
otherwise. As a matter of fact, most Lie superalgebras are basic, the only strange ex-
ceptions are two series of Lie superalgebras denoted P(n) and Q(n). Of course, all Lie
superalgebras for which the Killing form is not identically equal to zero are basic since
then the Killing form serves as a non-degenerated invariant bilinear form. In fact, the only
basic Lie superalgebras of type I for which the Killing form is vanishing are those that are

based on the Lie algebra g(®) = sl(n) @ sl(n), which are denoted psl(n|n).

2.1.3 Representations

We now turn to the question how to define representations of Lie superalgebra. Since in
the remainder of this work we are only interested in Lie superalgebras of type I, particularly
psl(2]2), we restrict our discussion to these and circumvent the problems that arise for type

IT Lie superalgebras.

We start by introducing one explicit Lie superalgebra that is particularly accessible
and generalises the concept of matrix representations of Lie algebras. Let V' be a finite-

dimensional Zy-graded vector space, V = V() @ V(1) and consider the associated gradu-
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ation of the space of endomorphisms, i.e. linear maps from V' to itself, given by
Endi(V) = {A € End(V) | AV®) c V) vs e 25} . (2.19)
the space of endomorphisms becomes a Lie superalgebra if we define a Lie bracket as
[A,B] = AB — (—1)IIBIBA . (2.20)

In view of its bosonic analog, the resulting Lie superalgebra is often called gl(m|n) where m
and n are the dimensions of V(©) and V(1) respectively. By definition, the bosonic subalge-
bra is g(® = Endy (V). Being a finite-dimensional vector space, V' is naturally isomorphic

to R™ @ R™ and therefore, given a choice of basis, gl(m|n) has a matrix representation,

Amm Bin
A= ’ o (2.21)
Cn,m Dn,n

where the subscripts indicate the dimension of the matrix, e.g. Cp  is a n x m matrix.
Note that the adjoint action of Endg(V') acts on By, , with A,, , from the left and with
—D,, , from the right,

( Am,m ‘ 0 ) ’ ( 0 ‘ Bm,n )] _ ( 0 ‘ Am,mBm,n B Bm,nDn,n ) , (2‘22)
0 | Dun )7\ 0] 0 0 0

and vice versa for ), ,,. Hence the matrices A,, ., and D, ,, give representations of bosonic

subalgebra Endy(V') acting on the vector space End;(V), as it should be by the general

constructive definition of a Lie superalgebra.

Following our intuition gained form Lie algebras, we now define (finite-dimensional)
representations of Lie superalgebras. In particular, a (linear) representations of Lie su-

peralgebras is a homomorphism 7 of Lie superalgebras from g into gl(m|n).

At this point it makes sense to reconsider the supertrace. In fact, gl(m|n) allows for a

quite natural definition of the supertrace,
str A = tr Ay — tr Dy s (2.23)

which can be checked to satisfy the invariance condition, str [A, B] = 0, due to the invari-
ance of the trace with respect to the usual commutator, tr [A, B]- = 0. Hence, given a

representation 7 of a Lie superalgebra g, we can pull back the supertrace on gl(m|n) to g,
str - (z) = str [r(x)] , rTEQ. (2.24)

This generalises the concept of the supertrace as the trace over the adjoint representation,
strg(ad (x)).
Even though the above approach to representations of Lie superalgebras is quite intu-

itive, it only works for finite-dimensional representations. However, when we wish to talk
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about infinite-dimensional representations, the above approach does not readily apply. As
in our discussions of Lie algebras in appendix A, it is then more sensible to think about

representations more abstractly in terms of U(g)-modules.

Having a notion of the universal algebra at hand, the definition of representations can
actually be phrased analogously to the one for Lie algebras. By definition, Lie superalge-
bras of type I allow for a grading decomposition of the form g ~ g_; & g(®© & g,1. By the

Poincaré-Birkhoff-Witt theorem for Lie superalgebras, we know that we can write

Ulg) =~ Ug-1) U U(g41) - (2.25)

Now suppose we are given a highest weight (g(?))-module V(A) of highest weight A.
When we define b = g(®) @ g1, we can lift V(A) to become a U (b)-module by letting
elements in gy act trivially on V(A), i.e. g1V (A) = 0. A representation of g can now be
obtained from V(A), which should be viewed as at /(b)-module, by letting the generators
of g_1 act freely on V(A) modulo commutation relations. More formally, an ¢/(g)-module
K(A) is obtained from V(A) by

K(A) = IndSV(A) = U(g) @y V(M) = U(g—1) @ V(A). (2.26)

The representation IC(A) is called the Kac module of highest weight A [123]. It can be
considered as the most elementary representation in the theory of Lie superalgebras. For
completeness, let us state that in full generality, we could have started with any U(b)-
module instead of V(A), say M. Then the ¢(g)-module IndgM is said to be induced from
the U (b)-module M. In this sense, the Kac module IC(A) is induced from V(A) treated as
an U(b)-module.

If V(A) is finite-dimensional, so is the Kac module K(A) because U(g_1) is also finite-
dimensional. But K(A) might be reducible. In fact, it can be shown [123] that

K(A) is irreducible & (A+p,a) #0 Yae AT, (2.27)

where p is constructed as follows. Let py denote half the sum of all even positive roots,

and p; half the sum of all odd positive roots,

po =1 Z a, p1=1 Z Q. (2.28)

acA0)+ aceAD)+

Then p = py — p2 is the Weyl vector. A Kac module that is irreducible and its associated
highest weight are called typical. If it is reducible, it is indecomposable by construction.
It is then possible to identify a maximal submodule within IC(A) and to take the quotient
with respect to it in order to obtain an irreducible representation denoted L£(A). The
highest weight A for which IC(A) is reducible as well as the Kac module K(A) itself is
referred to as being atypical. It is quite common to call all modules atypical that either
contain an atypical Kac module as a submodule or can be understood as a quotient module

of an atypical Kac module, e.g. £(A) is said to be an atypical irreducible U (g)-module.
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Projectivity

Projectivity in the category of Lie superalgebra representations can be defined the same
way as in the case of semisimple Lie algebras (see appendix A.3 for a concise discussion
of projectivity in that context). The property of a module, say P, to be projective means
that for any surjective homomorphism A — B and any homomorphism 7 : P — B, there

exists a homomorphism P — A such that the diagram

P (2.29)

A—=B

commutes. A representation P is the projective cover of B if it is projective, and if there
exists a surjective homomorphism 7 : P — B such that no proper subrepresentation of
P is mapped onto B by m.2 In the present work, particularly chapter 6, the situation
for atypical representations are of special interest, i.e. B = L(A) — for the typical case,
where IC(A) = L(A), the projective cover is simply P(A) = L(A). Any representation M
with head £(A) can be mapped onto L£(A), and the projectivity property for P(A) then
implies that for any such M we have a surjection P(A) — M. Thus the projective cover
P(A) is characterised by the property that any representation M ‘headed’ by L(A) can
be obtained by taking a suitable quotient of P(A) with respect to a subrepresentation.
Hence the projective cover P(A) of the irreducible representation £(A) is in some sense
the largest indecomposable g-representation that has £(A) as its head. Note that this last

condition depends on which category of representations we consider.

A quite general construction of projective Lie superalgebra representations, which is

often used in the mathematical literature, is presented in appendix B.

2.2 The Lie Superalgebra psl(2|2)

Having discussed generalities about Lie superalgebra and their representations, we
will now look at the specific example of ps((2]|2). This superalgebra will accompany us
throughout the whole work, its physical relevance being due to the fact that it can be

thought of as the tangent space of the superspace version of AdS3 x S3.

2.2.1 The Lie superalgebra

In order to introduce the Lie superalgebra we will almost exclusively deal with in this
thesis, let us start with the Lie superalgebra gl(2]|2). As we have said in section 2.1.3,
this space is represented by 4 x 4 matrices and hence allows for a natural definition of
the supertrace. Since the supertrace is invariant, the matrices with vanishing supertrace

close among themselves under the action of the (graded) Lie bracket and thus define a

2A surjective homomorphism 7 with this property is sometimes also called essential. For more details
on the use of projective modules and covers in representation theory see [117].
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subalgebra,
sl(2]2) = {A € gl(2]2) | str A =0}. (2.30)

The name of this subalgebra is again borrowed form the similar notation in the case of
Lie algebras. However, this Lie superalgebra is not yet simple as it contains an ideal
spanned by the identity 1. This is specific to Lie algebras of type sl(n|n). To get a simple
Lie algebra we have to take the quotient with respect to this ideal. This yields the Lie
superalgebra psl(2]2),

psl(2|2) = sl(2]2) /(1) . (2.31)

Why should physicists care about this, at this point, fairly abstract algebraic construct?
To see this, let us investigate what the bosonic subalgebra reads. By construction it is
the bosonic subalgebra of gl(2|2), which is gl(2) @ gl(2) subject to the constraints that
the supertrace as well as the trace vanishes. If A is a matrix in gl(2|2) which lies in the

bosonic subalgebra, i.e. it is of the form
Al O

A= , A/ Begl2)), 2.32

(ﬁ) 9l(2) ( )

strA=trA—trB=0, trA=trA+trB=0 = trA=trB=0. (2.33)

the constraint imply

So the bosonic subalgebra is g(®) = s[(2) @ sl(2) which lifts, after choosing an appropriate
real form of the Lie algebra, to the Lie group SL(2,R) x SU(2). This Lie group is in turn
isomorphic to AdS3 x S? as differentiable manifolds. So the Lie superalgebra ps((2[2),
or rather the corresponding supergroup PSL(2]2), can be understood as introducing a
supersymmetric structure to AdSz x S3. In other words, PSL(2|2) is in some sense the

superspace analog of AdS3 x S3.

Coming back to the algebraic properties of g = psl(2|2), we extract right from the
definition that it has six even and eight odd generators, so its dimension is 14 while
its superdimension equals -2. In fact, g(!) decomposes into two representations that are
conjugate to each other (the two “off-diagonal” matrices). Both transform in the (2,2) of

9 as the two-dimensional representation of 5[(2) is self-conjugate.

There are typically two choices for the generators found in the literature. The one that
is more convenient from an algebraic perspective could be referred to as the Chevalley-Serre
basis. Here, one starts from the Chevalley-Serre generators for each of the two s[(2) that
constitute the bosonic subalgebra. These are denoted J°, J* and K9 K, respectively.
The Cartan subalgebra b is spanned by J° and K°. The fermionic generators, denoted by
Sy # with «, B, = =+, are chosen such that they are eigenvectors of the adjoint action of

b,
10,897 =asg?, [KO,857] = psg? (2.34)

Hence they correspond to the fermionic roots of psl(2|2). The index ~ gives the grading
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of the generator,
S € g, (2.35)

where the gi; are defined as in (2.17). The second possibility is to make use of the
isomorphism s[(2) @ s[(2) ~ s0(4). The generators of so(4) are usually written as K =
— K% with a,b,c=1,...,4. The two sets of fermionic generators transform in the vector
representation 4 under the adjoint action of g(®) and are denoted SY. Again, the subscript
~ tells us the grading of the fermionic generator. Although both choices are equivalent
in that they describe the same (complex) Lie superalgebra, it turns out that it is often
more convenient to write expressions in this so(4)-basis. The complete set of commutation
relations of ps((2]2) in the two basis choices and how they can be converted into each other

is in detail described in appendix C.

As has been indicated before, a drawback in the analysis of psl(2]2) is the fact that
the Killing form vanishes identically. However, there does exists an invariant form which
in the so(4)-basis reads [105]

(B KoT) = et (82,8%) = —eapd®®,  (K,85) =0. (2.36)

Note that it is not only invariant but also supersymmetric and consistent in the sense of
eq. (2.12). Furthermore, by our general discussion of simple Lie superalgebras, it is unique
up to scalar multiplication. In particular the property of being consistent will be extremely
important when constructing affine models based on ];5\[(2|2) k in section 4.3.2. According
to the classification of Lie superalgebras, the properties we observed so far make psl(2|2) a
classical basic Lie superalgebra of type 1. However, ps((2|2) is special among all the basic
Lie superalgebras since it is the only one for which the odd roots have multiplicity higher
than one. This is mainly due to the fact that the 2 of sl(2), which the fermionic generators

transform in, is self-conjugate.

It is actually very instructive to look at the roots and the simple roots in some detail,
not only to understand ps((2]|2) but also to gain an impression how to work with roots in
the context of Lie superalgebras. The CSA b of g = psl(22) is the span of J% and K°. In
order to lift the multiplicity of odd roots, we extend h by an generator Y such that

[y’ 9(0’] =0 and [YV,z]=4z Vo€ gy, (2.37)

In other words, the adjoint action of Y is nothing but the Z-grading of Lie superalgebras
of type I. Let us denote the extended CSA by h and introduce the standard basis {€,0,7}
on the dual space h* by setting

e(J) =6(K°) =~v(Y)=1 (2.38)

and letting all other actions of the dual basis elements on generators of h* vanish. The

roots of psl(2]2) are then given by table 2.1.
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even roots A0 +e, +0

odd roots AW | £1(e+ )+, £3(e—8) +, £ (e+6) — 7, £i(e—d) -~

Table 2.1: The roots of psl(2|2) after extending the CSA to include the Z-grading.

Note that A© is just the root system of the bosonic subalgebra g(®. Picking a set of
positive roots corresponds to choosing a Borel algebra of g. As it has been explained in
section 2.1.1, different choices of Borel algebras of Lie superalgebras are not necessarily
conjugate to each other in contrast to the case of Lie algebras. For the bosonic subalgebra
we always pick € and § to be positive, which defines the unique (up to conjugation) postive
even root system A+ However, there are three non-equivalent possibilities to pick the
positive odd root system denoted by AZ(-I)’+ c AW 1 < i< 3. They are given explicitly
in table 2.2.

AN +1(e+ )+, £h(e—8) +7
Agl)’+ Se+08) L7, s(e—08) £y
A:())l)’Jr Se+d8) £y, £3(e—0)—~

Table 2.2: The three possible choices of positive odd root systems AZ(-I)’+, 1=1,2,3.

The complete positive root systems Aj are then obtained by combining each of these
possible choices with the positive even root system, A;r = A+ Agl)’Jr. After the
projection onto the original CSA b as been performed, they can be depicted as in Fig. 2.2.
Note that some odd roots have the same image under this projection, and thus some of

the positive root systems in Fig. 2.2 contain roots with multiplicity two.

JO JO JO

KO KO KO

Figure 2.2: The different possible positive root systems A} for i = 1,2,3 of ps((2]2). Odd
roots with simple multiplicity are drawn dotted while odd roots with multiplicity two are
drawn dashed.
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Given a positive root system, we can ask for the set of simple roots. Clearly, the
different positive root systems give rise to distinct simple root systems and it is interesting
to see that they differ by the number of even roots (and, as a consequence, by the number
of odd roots). The simple root systems A; o C Af corresponding to the respective choices
of positive odd roots as well as their Dynkin diagrams are listed in table 2.3 and depicted
in Fig. 2.3. Recall that by definition the distinguished simple root system is the one which
contains the simple root system of the bosonic subalgebra g(©) as a subset. It is not difficult
to see that in the case of psl(2|2), the distinguished simple root system is Aj ¢ in table 2.3,
which from now on we will simply denote by Ag. Note that, not surprisingly, we recover

the Dynkin diagram of the bosonic subgroup if we cut out the odd root.

AN €90, —%(e—i—é)—i—’y O—@——0O

AQO 5, %(6—5):&’)’ . O .

Az e+8)+7, £3(e—0) —~ 0 0

Table 2.3: The simple root systems A; o and the corresponding Dynkin diagrams for each

of the three choices of positive odd root systems Agl)’+ in table 2.2. As introduced by
Kac [122], even roots are associated to white nodes and gray nodes denote odd simple

roots of zero length. A1 is the distinguished simple root system also denoted by Ay.

K° K° K°

Figure 2.3: The different possible positive simple systems A; ¢ for i = 1,2, 3 of psl(22).

Having an invariant form at hand, it is straightforward to construct the quadratic
Casimir Cy (cf. appendix C). It is an interesting property of psl(2]2) that Cy does not
generate the whole center of the Lie superalgebra Z(psl(2|2)). In fact, there is an element of
order six, denoted Wg, in the universal enveloping algebra U (psl(2]2)) that does commute
with all elements in psl(2]2) (naturally embedded into the universal enveloping algebra).
Both together generate the center Z(ps((2|2)) = (C2, Ws) [33,170]. Although we have
constructed Wg during this work, its length forbids to give its explicit form here. Looking
ahead, in the affine model, i.e. the WZW-model on PSL(2|2), the operator Wj is associated
to a conformal field Wi(2) pretty much the same way as Cs is substituted by the Sugawara
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tensor T'(z). Both together yield an extension of the conformal symmetry called a W(2, 6)-
symmetry [35,38,39,194] (cf. section 4.3.2).

2.2.2 Kac modules and irreducible representations

For comparison to string theory on AdS3 x S* we will mainly be interested in represen-
tations whose decomposition which respect to the bosonic subalgebra g = sl(2) @ sl(2)
leads to infinite-dimensional discrete series representations with respect to the first s((2)
(that describes isometries on AdSs3), and finite-dimensional representations with respect
to the second sl(2) (that describes isometries to S*). As in [105] we shall label them by
a doublet of half-integers (j1,72) where j; < —i and jo > 0. The cyclic state of the

2
corresponding representation is then characterised by

JOUg1sd2) = gilnge) s KPljn,g2) = ja ljns g2)
. (2.39)
TH 11 g2) = K |, jo) = (7)) [jn, ja) = 0.
Here J, J* are the generators of the first s[(2) with commutation relations
[JO, J%] = £J%F | [Jt,J]1=2J°, (2.40)

while K% K¥* are the generators of the second s[(2) that satisfy identical commutation
relations. We denote the corresponding highest weight representation of g(» = s[(2) ®sl(2)
by V(ji1, ja)-

Recall from (2.26) that for each representation V(ji, j2) of g(® we can induce a repre-
sentation of the full Lie superalgebra, the Kac module K(j1, j2), by taking all the modes in
g+1 to act trivially on all states in V(j1, j2), g+1V(j1,72) = 0, and by taking the modes in
g_1 to be the fermionic creation operators. The dual construction, where g1 are taken to
be the fermionic creation operators while g_; are annihilation operators, defines the dual
Kac module KV (j1,j2). The Kac module as well as the dual Kac module can be in turn
decomposed in representations of the bosonic subalgebra, which is illustrated in Fig. 2.4.
There we defined the weights

X =(1+%.52+2), (2.41)

so e.g. AT = (j1 + %,jz — %) and AT = (j1 + 1,72). In fact, this set of weights will be

encountered several times throughout this work.

The grading p of the universal enveloping algebra U(g) induces a grading on the Kac
module, where we take all states in V(j1, j2) to have the same grade, say g € Z. If we want
to stress this grade assignment, we shall sometimes write ICy(j1, j2). The states involving
one fermionic generator from g_; applied to the states in V(j1, j2) then have grade g — 1,

etc.

The characters of Kac modules have been discussed in [105]. However, in this work, we

will be only interested in the highest weight states with respect to the bosonic subalgebra
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/ V()\)O \
A V(AD)-1 V(AD)-1 V(AL)

V(

-1

V( -3

)\t)_3 \V()\M y V(/\I)
V(A)-4

Figure 2.4: Decomposition of the Kac-module KC()\) into g9-representations. The lines
indicate the action of the fermionic generators g).

g ~ 50(2) @ sl(2). Let us define the branching function® of a Kac module K(\) as
0 0 70
Ky(z,y) = Trl(c())\) (;1:‘] yx ) , (2.42)

where the trace Tr() is taken over highest weight states with respect to g(® only. Using

Fig. 2.4, it is straightforward to evaluate the trace and we obtain
g 11 11 11 211 1 1
Ky(z,y) :a:ﬂy”(2x2y2 +2x2y 2422 2y2 422 2y 244+ +y+y +4>
, . 2 2
= ghimlyi2—t (x% + y%) (:L‘%y% + 1) . (2.43)
Note that

:cllbe,\(x,y) = Ky (z,y) with N = (j1 + 11,72 +12) . (2.44)

We can use the criterion (2.27) to find the values of j; and js for which this is the case.
Due to the symmetry of the distinguished positive odd roots of psl(2|2), we clearly have
p2 = 0 and thus the Weyl vector is p = %(e + 0). So using to (2.27) with A = jie + j20,
we find that K(j1,j2) is atypical if and only if

(1 + e+ (Go+2)8,3(e+8) =0 = j1—j2=0 (2.45)
or ((j1+3)e+ (J2+3)5,4(e—8) =0 =ji+j+1=0. (2.46)

We conclude that, in the case at hand, i.e. for j; < 0 and jo > 0, the Kac module K(j1, j2)
is atypical if and only if [105]
Ji+j+1=0. (2.47)

3Technically, one would rather refer to the function K(z,%) as the generating function of branching
rules for the decomposition of () into g% -representations.
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This condition is equivalent to the condition that the quadratic Casimir Cy vanishes on the
Kac module. We shall denote atypical Kac modules by a single index, K(j) = K(—j—1, j).
The corresponding irreducible representation £(j) = £(—j — 1,7) is then the quotient of
K(j), where we devide out the largest proper subrepresentation M; of K(j)

L) = K(G)/My . (2.48)

Atypical representations will play an important role in chapter 6, since these are the only
representations that matter for the massless string states. The structure of the corre-
sponding irreducible representations (with respect to the action of the bosonic subalgebra
9) is described in Fig. 2.5.

Vo(—j — 1,5) Vo(—1,0)

_— ~_ N
Lo(G>3): Va(—i—357-3%) Va(-j—3i+3)  £Lo(0): Voi(—3%,3)

~_ _— /

V_o(—j—1,7) V_2(—1,0)

Figure 2.5: The decompostion of atypical irreducible g-representations into g(©-
components.

The atypical Kac modules are reducible but not completely reducible. In order to
describe their structure it is useful to introduce their composition series. This keeps track
of how the various subrepresentations sit inside one another. More precisely, we first
identify the largest proper subrepresentation M; of K(j), so that L£(j) = K(j)/M; is
irreducible; we call the irreducible representation £(j) the head of IC(j). Then we repeat
the same analysis with M; in place of KC(j), i.e. we identify the largest subrepresentation
My of My such that My /Ms is a direct sum of irreducible representations. The composition

series is then simply the sequence
L(j) = K(j)/My — My/My — My/Mz — - = My_1/M, . (2.49)

We shall write these composition series vertically, with the head of IC(j) appearing in the
first line, M7 /M> in the second, etc. The representation that appears in the last line of
the composition series will be called the socle. It is the intersection of all (essential)?*
submodules. The composition series for the atypical Kac modules are shown in Fig. 2.6.
Note that for the case of the atypical Kac modules K(7), both the head and the socle are
isomorphic to the irreducible representation £(j). Finally, the composition series of the

dual Kac module KV (j) only differs by inverting the grading.®

We should stress that the Kac module (or dual Kac module) for j = 0 is special in the

sense that the trivial one-dimensional representation 1 = (0,0) appears in its composition

4A submodule U is essential if U NV = 0 implies V = 0 for all submodules V. In the cases of interest
to us, this will always be the case.
®Note that the irreducible representations are self-dual, i.e. £} (j) = Lg—2(j).
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series. It is important to note that this irreducible representation has grade —2, even
though compared to the structure of the Kac module for the other values of j, one could

have guessed that it has grade —1. The operator of grade zero that maps 1_5 to £_2(0)

is simply J~.
Lo(j) Lo(0)
e N N\
Ko(G>3): La(G—3) La(+3) Ko(0) : 1 L1(3)
N e NS
L_2(j) L_5(0)

Figure 2.6: Compostion series of Kac modules. The representation 1 appearing in K(0) is
the trivial, i.e. the one-dimensional, representation of psl(2|2).

2.2.3 Projective covers

For the construction of the space of states of the underlying conformal field theory the
projective covers defined in the general context in section 2.1.3 play an important role. As
indicated there, the notion of a projective cover depends on the category considered, which
we therefore need to specify: we will only work with representations that are completely
decomposable under the action of g(®). This condition excludes, in particular, the Kac

module K(0), since the arrow between 1, 5 and £4_2(0) is induced by J~.

The projective cover of an irreducible £(j) can be constructed by using a generalised
BGG duality [95,195], which basically states that the multiplicity of the Kac module
K(5') in the Kac composition series® of P(j) equals the multiplicity of the irreducible
representation £(j') in the composition series of K(j). However, two complications arise.
First, the generalised BGG duality only holds in situations where the multiplicities with
which L£(j) appears in K(j) is trivial. This problem was solved in [178,195] by lifting
psl(2]2) to gl(2|2), thereby making ¢ an additional quantum number. Then the two copies
of £(j) in K(j) can be distinguished. Additionally, the generalised BGG duality has only
be shown for finite-dimensional modules so far. In this work, however, we shall assume
that it also holds in the infinite-dimensional case, at least as long as j is sufficiently large
(j > 1). This assumption will, a posterori, be conﬁrmed by the fact that our analysis
leads to sensible results. On the other hand, for j < 3 , we cannot directly apply BGG
duality since IC(0) is not part of our category. The projective covers for j < % will be
constructed in Section. 2.2.3.2, using directly the universal property of projective covers

described above.

Applying the BGG duality to the projective covers of P(j) with j > 1, and observing

that g_; generates the states within a Kac module (so that the arrows between different

SFor the Kac composition series we successively look for submodules such that M;/M;.; is a direct
sum of Kac modules (rather than a direct sum of irreducible modules).
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Kac modules must come from g41), we obtain from Fig. 2.6 (compare [105])
Pq(J) : Kg(0) = Kgi1(G — 3) @ Kgi1(G + 3) = Kgr2(j), 7>1, (2.50)

where g denotes again the Z-grading introduced before, with the head of Py(j) having
grade g. In terms of the decomposition into irreducibe representations we then find (again
using Fig. 2.6) the structure described in Fig. 2.7. Note that the projective cover P(j)
covers both the Kac module K(j), as well as the dual Kac module KV(j), since both of
them are headed by the irreducible representation £(j).

Figure 2.7: The projective cover Py(j) for j > 1 in terms of irreducible components. Solid
lines correspond to mappings decreasing the grading by 1, while dashed lines increase it
by 1. Note that the Z-grading lifts almost the entire degeneracy except for the middle
component L£(j) with multiplicity 2.

2.2.3.1 Homomorphisms

Before we come to discuss the projective covers for small j, let us briefly describe the
various homormorphisms between different projective covers. In some sense the ‘basic’ ho-
momorphisms (from which all other homomorphisms can be constructed by composition)

are the homomorphisms (with o = £1)
ss P = PG+S), (2.51)

where the superscript & indicates to which of the two irreducible representations £(j + )
the head of P(j) is mapped to, see Fig. 2.8 for an illustration of the map sil. We shall
denote the image of this map by M* (),

MG () = 55 (P()) - (2.52)
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L)) JoLG L) LG+ L) LG+

i/

~—

E( J+ %
Figure 2.8: Illustration of the maps st : P(j) — P(j + %) using the example of sil.

Note that it follows from Fig. 2.8 that the kernel of s is isomorphic to MZ(j — $). Thus

we have the exact sequence
+
0— MZ(j = 5) = P(j) = M5 () — 0, (2.53)
where ¢ denotes the inclusion MZ(j — §) = P(j).

2.2.3.2 The projective covers for j < %

The cases of P(5) with j = 0, 3 5 need to be discussed separately, since then BGG duality
would give rise to a Kac composmon for P(j) that contains K(0); however, as we have
explained before, IC(0) is not completely reducible with respect to g(®, and hence should
not arise in our category. We therefore have to work from first principles, and construct

P(j) by the property that any representation with head £(j) has to be covered by P(5).”

Our strategy to do so is as follows. Since we have already constructed P (1), we know

that the subrepresentations of P(1) are part of our category. In particular, this is the case

"Note that the projective covers for j = 0 and j = % that were suggested in section 2.4.2 of [105] do
not seem to be consistent with these constraints: for their choices of projective covers it is not possible
to cover both subrepresentations generated from £+1(0) at the first level of P($) by P(0). Indeed, P(3)
predicts that there is a map from each £+1(0) to the trivial representation in the middle line of P(3), but
according to their P(0), there is only one arrow from £(0) to the trivial representation at the first level,
and this arrow cannot cover both maps in P(%)
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for the two subrepresentations whose head is E(%) at the first level (and that we shall call
Mil(%) by analogy to the above). The condition that both of them have to be covered
by P(3) puts then strong constraints on the structure of P(3). Assuming in addition that
the projective covers are all self-dual then also fixes the lower part of the P(%), and we
arrive at the representation depicted in Fig. 2.9(a). Note that this just differs from the
naive extrapolation of Fig. 2.7 by the fact that the left most irreducible component in the

middle line is missing.
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(a) The projective cover P(3) of L(3). (b) The projective cover P(0) of L£(0).

Figure 2.9: The projective covers P(3) and P(0).

The same strategy can be applied to determine the projective cover P(0) of £(0). Now
P(3) contains the two subrepresentations generated by £(0) in the second line, and P(0)
has to cover both of them. Again, assuming self-duality then leads to the projective cover
depicted in Fig. 2.9(b). There is one more subtlety however: in P(0) it is consistent to
have only one copy of £(0) at grade zero in the middle line. In order to understand why
this is so, let us review the reason for the multiplicity of 2 of the corresponding L(j)
representation for j > % Let us denote the maps leading to and from the relevant £(75)
representation in P(j) (with 7 > 1) by qbil and qz_bil, see Fig. 2.10. It now follows from

the fact that P(j + 3) covers the subrepresentations generated by £(j + 1) that
¢ j0¢p ;=0 and o0t =0, (2.54)

since P(j + 1) does not contain the representation L£(j — 3) at grade £2. The same
argument applied to the two subrepresentations generated by £(j + 3) leads to

5;1 0o, =0 and J’il o ¢]Lrl =0. (2.55)

Now suppose that there was only one £(j) component at grade zero in the middle line of
+

o

from the above that it would be annihilated by all four ¢*. Thus the actual P(j) would

not have any of the four lines represented by ¢F, and as a consequence would not be

P(j). Since this one L(j) representation is in the image of all four ¢F, it would follow
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Figure 2.10: The maps ¢=, and ¢5; in P(j) with j > 1.

self-dual. On the other hand, if the multiplicity is 2, there is no contradiction — and

indeed multiplicity 2 is what the BGG duality suggests.

It is clear from Fig. 2.9(a) that the situation for P(3) is essentially identical, but for
j = 0 things are different since we do not have the analogues of qﬁl and q@fl any longer,
see Fig. 2.9(b). Thus the constraints (2.54) and (2.55) are automatically satisfied, and do
not imply that the multiplicity of £(0) at grade zero in the middle line of P(0) must be
bigger than one.

By construction it is now also clear how to extend the definition of s& in (2.51) to
j =3 and j = 0 (where for j = 0 obviously only o = +1 is allowed). Similarly we extend
the definition of MZ(j) as in (2.52).

2.3 The Affine Lie Superalgebra ];5\[(2\2)k

The affine version of psl(2[2) at affine level k is denoted by g = 13/5\1(2\2)k and its
commutation relations are listed in Appendix C. The zero modes of g define a psl(2|2)
subalgebra within g, commonly referred to as the horizontal subalgebra. In abuse of
notation, the horizontal subalgebra will also be called g. It should be clear from the
context whether it refers to the Lie superalgebra ps((2]|2) or the horizontal subalgebra of
psl(2[2).

Affine Lie superalgebras allow for a decomposition into eigenspaces with respect to
the adjoint action of the Virasoro zero-mode Lg which is obtained from the Sugawara

construction. It is the so-called level decomposition, which should not to be confused with
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the affine level k of the affine Lie superalgebra g,

g~ P, (2.56)

nez

where g, is the vector space spanned by all modes of mode number n. FEach direct
summand transforms in the adjoint representation £1(%) under the adjoint action of the

horizontal subalgebra gy = g.

Representations of g are most easily generated in a similar way as Kac modules are
generated in the case of Lie superalgebras. We start with a set of states that transform
as a Kac module () under the action of the horizontal subalgebra g. These states are
called the affine ground states and /C(\) is the affine ground state representation. In order
to expand the set of affine ground states to a representation of the full affine algebra g, we
let all positive modes annihilate the states in K(\), g, C(A) = 0 for n > 1. The negative
modes act freely on the affine ground states modulo commutation relations. The resulting
representation is called an affine Kac module of weight A, I/C\(A) It contains additional
singular vectors if the weight A\ = (j1,j2) satisfies j1 — jo € kZ or j1 + jo + 1 € EZ [104].
As we have explained, for applications to string theory, we are interested in the case where
< —% and js € %N . Furthermore, consistency of string theory requires the spin values
to be bounded by —% —1 < j; [65] and jo < % So for k > 3, the only remaining condition
for the appearance of singular vectors is j1 + jo + 1 = 0, which means that already the
ground state representation contains singular vectors. It has been argued that in this
case all affine submodules are generated from singular vectors in the affine ground state
representation [104]. Since for massive string states we will see that j; + jo + 1 # 0, all
affine Kac modules that we will encounter in chapter 7 are irreducible. Therefore we will

restrict to these in the remainder of this section.

Like the affine Lie superalgebra g itself, affine Kac modules E(A) allow for a level

decomposition as well,
KO ~ @™, (2.57)

neN

where K™ ()\) is the Lo-eigenspace of eigenvalue 2-C2(X) +n. Note that 5-C2() is the
Lo-eigenvalue of the ground state representation. Because of [Lg,g] = 0, each direct
summand yields a representation of the horizontal subalgebra g. Clearly, IE(O)()\) ~ IC(N)
as g-representations. Since g; transforms in the adjoint representation, the first level of

the Kac-modules decomposes under the action of g as

K57 (0 L= L) © K

~ 2K\ @ Ko(ATH) @ Ko(A™ ) @ Ko(Ait) ® Ko(A—)

& P (Ka(g)eka(rg) . (2.58)
a,f==+

Here we have added subscripts to the modules keeping track of the grading for later
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use. The above result on the tensor product of an finite-dimensional with an infinite-
dimensional representation of g agrees with the expectation one might have gained from the
analysis of tensor products of finite-dimensional representations [104]. Further evidence
for the decomposition in (2.58) can be obtained by considering the characters of the

representations on both sides of the equation. Let chl:( )(x, y) and chy(y)(7,y) denote the

1
2

characters of £(3) and K(\), respectively:

chey(zy) = Yty (2.59)
(n1,12)€A(L(5))

J1 —J2 _ g d2+1 2
chiy (2,9) = fm,l b 1 _Z; ) (ﬂf% +yE a4 y’%) : (2.60)

=chy(»)(z,y)

where A (E( %)) denotes the set of weights of E(%) including multiplicities, i.e. the eigen-
values of the psl(2|2) generators in appendix C under the adjoint action of J° and K.

These characters satisfy the relation

cheycheoy = D ek - (2.61)
weA(Z ()

which implies a decomposition of the form (2.58) assuming that £(1) @ K(A) is fully
reducible. This will be the case if the quadratic Casimir Cy(\) is a non-zero integer, since
then j; is generically not a half-integer, and therefore j; + jo + n # 0 for all n € Z.
Then all weights appearing in the decomposition (2.58) are typical, which in turn implies
full reducibility. We also constructed the cyclic states of any Kac module in the direct

summand explicitly.®

The g-representations appearing at the second level can be found by noting that these
states are generated from the affine ground states by either acting with bilinears of elements
in g; or a single element of gs, where the latter is again transforming in the adjoint
representation L’(%) of g. Bilinears of elements in g; transform as the symmetric part® of
the tensor product representation £(3) ® £(3), which is [104]

Sym(ﬁ(%)@ﬁ(%)) ~ KO,1)@K1,0) a1, (2.62)

where 1 denotes the trivial representation of g, associated to the trace. Hence the decom-
position of the states at the second level into g-representations is given by

/€<2>(A)] ~ [(K(O, 1) & K(1, o)) ® IC()\)] DK @ [L’(%) ® IC()\)] . (2.63)

g

8In order to find the cyclic states in E(l)()\)7 we have decomposed 16(1)()\) into weight spaces with
respect to the zero modes J§ and K. In contrast to the full space IE(I)()\), these weight spaces are finite-
dimensional and hence it is possible to write down an explicit basis for each of them. It is then just a
matter of linear algebra to evaluate the cyclic state conditions JS"L/) = Kg'w = Si*ﬁ) = 0 on each of these
weight spaces.

9Since the representations contain fermionic as well as bosonic states, the symmetric part of the tensor
product should be understood as the antisymmetric combination whenever both entries are fermionic.
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The tensor products on the right hand side can, of course, be evaluated if necessary. For

example, the first direct summand decomposes as
(IC(O, 1) K(1, 0)) KN ~ 12K\ @ KO @ KO @ K(har) & K(As)

® 6 (IC(/\++) KN T)BKAy) @ IC(/\__))

o2 @ KO |os| @B KA. (269

la|+|B|=4 o,f==%
lal,18]121

The decomposition of the remaining tensor product in (2.63) has already been given in

(2.58). In a similar fashion, the decomposition at higher level can be determined.
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CHAPTER 3

Conformal Field Theory
and BRST Quantisation

In this chapter, we will review some aspects of superstring theory and conformal field
theory that will become important in the later chapters. It is not intended to present
a complete treatment of this vast subject and we rather refer to the standard literature
[107,108, 154, 155]. However, aspects relevant for later discussions will be discussed in

detail and notation will be set.

3.1 Conformal Field Theory

We start by reviewing conformal field theory and thereby introducing important tools
that will be helpful in the following. Needless to say that in this work, we usually have in
mind its application in the context of string theory. Therefore, we specify our discussions

to two-dimensional conformal field theories living on the complex plane C.

The literature on conformal field theory is vast. Apart from rather comprehensive
treatments [58], there also exist reviews on conformal field theory that aim especially at
applications in the context of statistical mechanics [43,97] or string theory [36]. In fact,
most recent textbooks on string theory contain more or less thorough introductions to
conformal field theory [128,154,155,177]. Approaches that shed more light on the algebraic

and axiomatic structure of conformal field theories can be found in [78,81,102, 168].

When considering conformal field theories in this thesis, we will usually work in two-

dimensional Fuclidean space and choose complex coordinates defined by

z:%(:c—l—iy), ézﬁ(x—iy), (3.1)

where z,y are Euclidean coordinates in R? ~ C. It makes sense to think of z and Z as
being independent and set z* = Z if necessary, where -* denotes complex conjugation. The

metric in the new coordinates reads

92z = 9zz = 17 9zz = Gzz = 0. (32)
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The partial derivatives take the form

0=0.= (0, —i0y), 0=0:= (9, +1i0y) (3.3)

V2 V2

such that 0z = 0z = 1 and 0z = 0z = 0. Sometimes the partial derivative with respect
to z is called the holomorphic derivative and the one with respect to z is called the

antiholomorphic derivative.

3.1.1 Conformal transformations

In general, conformal transformations are maps M — M, where M is a differentiable
manifold, that locally preserve the metric g, up to a scalar factor Q(x) # 0, sometimes

called the conformal factor,
G (T) — giux('@ = QUz)gw(z), z€M. (3.4)

In particular, conformal transformations are angle-preserving and they form a group. If
we choose M to be flat space, possibly with mixed signature (m,n), the conformal group
consists of the Poincaré group, i.e. rotations SO(m,n) and translations, as well as the
scaling operation x# — Az*, A # 0, and the special conformal transformations. The latter
are given by

zH — bhg?

P be R .
. }_}1—2b~x+b2:1:2’ < (3.5)

If we define the inversion i on R(™™\{0} to be a local scaling of the form i: z# s z*/x2,
the special conformal transformation is the composition tot_jo4, where t_; is a translation

ot — P — bH.

In two Euclidean dimensions, the conformal group as described above takes a nice

form, as it coincides with the Mobius group given by the transformations

az+b a b
—_ L(2 Zs . .
ch—i—d’ <c d)ES(,(C)/Q (3.6)

These are the conformal transformations that are globally defined in that they describe
invertible mappings from the complex plane to itself. However, locally one finds an infinite-
dimensional space of generators of conformal transformations. This phenomenon is specific

to two dimensions. Explicitly, infinitesimal local conformal transformations are
/

22 =z+ef(2), z— 72 =z+eh(2) (3.7)

with a meromorphic function f(z) and an antimeromorphic function h(z). Indeed, using
the metric in (3.2), it is easily checked that

921z = gzz =0, Gzrz = gz = 1 — e(f/(z) + h/(i)) = Q(Zv 5) . (3-8)

Following [58], in order to uncover the Lie algebraic structure associated with local con-
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formal transformations, let us now consider a complex function ¢ : C — C. Under local

conformal transformations, it behaves as
¢ (2, 2)=¢(2,2) = ¢(2,Z) —ef(2)d(2, Z) — eh(2)0 (2, 7). (3.9)

Performing a Laurent expansion of f and g, the change in the scalar field under local

conformal transformations has the form
6= € (calnd(2,2) + Enlnd(2, 7)) . (3.10)

The ¢, can be interpreted as the parameters of the infinitesimal conformal transformations

whose generators are
ln=—2""9, I,=-2""9. (3.11)

By construction, this gives us a representation of a Lie algebra, the conformal algebra,

and it is straightforward to calculate the corresponding commutation relations,

Uy ] = (n—m) Lygn [ln,lm] =(n—m)lnin, [ln,lm] =0. (3.12)

The conformal algebra therefore consists of two copies of a simple but infinite-dimensional
Lie algebra called Witt algebra. It is instructive to note that it contains an s[(2) subalgebra
spanned by {l,,|n = 0,£1}. This is exactly the Lie algebra that corresponds to global
conformal transformations in (3.6). The extension to a larger symmetry algebra in the
local case is special to two dimensions and demanding invariance under these symmetries

turns out to put strong restrictions on quantum field theories.

3.1.2 Conformal Ward identities and the operator product expansion

After getting an impression of what conformal transformations are, we are now in a
position to ask what one means by a field theory, and ultimately a quantum field theory,
to be invariant under such transformations [13]. Let us assume for the moment that our
theory has an action S. Under infinitesimal transformations the action functional changes

as

5S:/d2x 05 dguw = /dza:T‘“’égW, (3.13)
Yo

possibly times a constant subject to convention. By the definition of conformal transfor-
mations, dg,, is proportional to the original metric g,,, and hence the variation of S under
conformal transformations is proportional to the trace of the energy momentum tensor.
We conclude that a theory is conformally invariant at the classical level if the trace of the

energy momentum tensor vanishes,

65 =0 under conformal transformations <« T%, =0. (3.14)
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In complex coordinates z,Zz, the traceless condition translates to the vanishing of the
off-diagonal components,
ng = TgZ == 0 . (315)

Since the energy momentum tensor is the Noether current associated to translations, it is
conserved. With the vanishing of the off-diagonal components, we find that the remaining

components are holomorphic and antiholomorphic, respectively,
T (z)=0T(z) =0, (3.16)

where we introduced the simplified notation T'(z) = T..(z, 2) and T(2) = Ts:(2,2) to

emphasize that T,, and T35 are respectively independent of Z and z.

Let us now go one step further and consider conformally invariant theories at the
quantum level. The dynamics of a quantum field theory is determined by a set of fields
and the correlation functions between them. Again, for the sake of the argument, let us
assume that we have a classical action S that is invariant under some symmetry, which

we will eventually take to be the conformal symmetry. Then the correlation functions are

given by the path integral including insertions of the fields at the points z1,zo, ..., Ty,
(@ (21)Bo(2) . .. By () = /H [dD;] D1 (21)Do(22) . .. By ()12 (3.17)
i=1

If we further assume that the path integral measure is invariant under that symmetry as
well, we immediately see that the correlation function inherits the same behavior under
global symmetry transformations as the product of the classical fields. However, under
local symmetries, the classical action changes as S[®] 4+ % J d’x jH0u€, where j# is the
classically conserved current. In addition, the fields might transform as ®;(z) — ®/(z),

so at the insertion points we have
O (z2;) — (1) = e(x) (69;)(2) 6(x — ;) . (3.18)

We may now ask how the complete correlation function changes. Plugging in our variations

into (3.17), we obtain at first order in e,

1

5 Ould" () @1(21) 2 (x2) ... ()

n

== 8(z — ;) (@1 (21)P2(w2) ... (0Pi)(2) ... Pn(wn)) . (3.19)

i=1
This is the Ward identity associated with the classical symmetry generated by j*. So far,
this holds for quantum field theories in arbitrary dimensions. Let us now focus on the case
of a two-dimensional field theory and impose that j is not only classically conserved but
also holomorphic. After integrating both sides of the Ward identity over some subset of

the complex plane X C C such that only xz; € X, and using Stokes’ theorem, we obtain
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in complex coordinates

1 ) _ _ _
5 dz (j(z)P1(z1,21) ...) = —((6P1)(21, 21)Pa(22, Z2) . . .) . (3.20)
T Jox
Since this holds independently of the field insertions at points away from (z1,Zz1), it is

common to write
1

i P dzj(2)®1(z1,21) = —(091) (21, 21) , (3.21)
which has to be understood as an operator equation in the sense that the equality holds in
any correlation function. In fact, this might be seen as a part of a more general concept in
quantum field theories, the one of operator product expansion or OPE for short. Loosely
speaking, the OPE basically tells us what happens when two field insertions approach each
other within correlation functions in that the two approaching fields can be substituted

by a sum of single fields located at one of these points,
(Bi(2,2)®j(w, @) ...) =Y _ Cli(z—w,z— 0){(Pk(w,m)...), (3.22)
k

where the fields ®; might also be derivatives of some primary fields. The operator product
expansion is commonly written without stressing that it should be interpreted as being a

part of a correlation function,

(2, 2)®;(w, ) = > Cfi(z —w, 2 — 0)Pp(w, ). (3.23)
k

Due to the existence of powerful tools in complex analysis, the concept of operator product
expansions is particularly important in two dimensions and therefore is one of the major
elements of two-dimensional conformal field theories. Since the field insertions in corre-
lation functions are taken to be radial-ordered, it should not make a difference in which
order we write down the fields in the OPE,

@i(z,f)q)j(w,u_)) = eijfbj(w,w)q)i(z,z) . (3.24)

Here we introduced the possibility of the fields being Grassmann-valued by adding a
factor €;; which takes the value —1 if both fields of the OPE are Grassmann-valued and
1 otherwise. Going back to our discussion of symmetries at quantum level, we note that
(3.21) actually allows us to make a statement about the OPE of j with ®;. The contour
integral just extracts the residue of the OPE, that is the first order pole. Hence we know

something about the structure of the OPE,
j(z)@l(w,w):...+M+... . (3.25)

z—w

After this general discussion of symmetries, we can finally investigate how the con-
formal symmetry shows up at the quantum level. The analysis will be restricted to the

holomorphic current T'(z) since the analysis for the antiholomorphic component is similar.
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We know that z"T'(z) is a classically conserved current for any n. For n = 0, we find the
current associated with translation invariance. Under infinitesimal translations any field
behaves as d®(z,z) = —edP(z, z). By our argumentation above, this fixes the first order
pole of the OPE of T'(z) with ®(w,w),

+ 8@1('[1), 'lD) +

T(z)@l(w,u?) =... —w

(3.26)

The rotations and dilatations are more interesting since they correspond to the current
2T(z). Due to the additional factor of z multiplying 7'(z), actually the second order
pole of the OPE is picked out by the contour integral in (3.21) plus some contributions
from the first order pole. Since we already know the first order pole and because the field
®(w, w) transforms under scaling of the complex coordinate as (§®)(w, w) = —h ®(w,w)—
wo®(w,w), h € R, we obtain the OPE

h®(w,w) 0P (w,w)

T(2)®1(w, @) = ...+ G- w)? + w + (terms nonsingular for z — w). (3.27)

In principle we could continue this way and determine the poles order by order. However,
the family of fields for which all higher poles vanish is especially important and these field
are called Virasoro primary fields. Summarising, ®(w, w) is Virasoro primary of conformal

weight h if its OPE with the energy momentum tensor is

h ®(w,w) n 0P (w,w)

(2 —w)? z2—w

T(2)®(w,w) (3.28)
Here we wrote ~ instead of an equality sign to indicate that we are ignoring nonsingular
terms of the OPE.

One may wonder whether the energy momentum tensor itself is a primary field. In
order to answer this question, we will argue for the most general form of the OPE of T'(z)
with itself. First, we note that 7'(z) has conformal weight two. According to (3.27), this
already fixes the poles of order one and two. Furthermore, it can be shown that unitarity
of a conformal field theory requires all fields of the theory to have positive conformal
weight (except for the vacuum which has h = 0) [36]. Then, since z~! has conformal
weight one, the highest order pole in the OPE is maximally quartic, which in general can
be multiplied by a constant. So the TT-OPE reads

5 2T (w) 0T (w)

T(z)T(w) ~ G —Qw)4 + ) + o (3.29)

No pole of third order appears because it would not be consistent with the symmetry
T(2)T(w) = T(w)T(z). The only possibility for a pole of third order to be consistent with
this symmetry would be that it is proportional to the derivative of a field of conformal
weight zero. But the only such field is the vacuum Q(z), which is translation invariant
and thus 0€2(z) = 0 holds. The parameter c is called the central charge and is possibly

the most important parameter in the characterisation of a conformal field theory.
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Figure 3.1: Illustration of the change of contour in (3.32).

Let us close this section with some final but crucial remarks on the operator product
expansion and its connections to Laurent modes. Suppose that we are given a meromorphic

field, say ¥(z). Then one can perform a Laurent expansion,

U(z) = Wz (3.30)

neL

where hg denotes the conformal weight of ¥. The modes can be extracted from ¥(z) by

an appropriate contour integral,
v, = fdz 2=l (7)) (3.31)

where we suppressed a factor of (27)~! as will be often done in the following. One might
just consider the definition of the contour integral to contain such a factor. What happens
if we insert a mode like this in the correlation function? In particular, let us look at the

correlation function

([T, ®(w, @)]...) = (U ®(w,@)...) — (B(w,@)T,...)

= j{dz 2L () O (w, W) .. ) — fdz 2T U(2)®(w, @) ),
c> C<

where C~ is a contour around z = 0 with |z| > |w| and similar the contour C'< is a contour

around z = 0 with |z| < |w|. The contour has to be chosen like this in order for the mode

insertion to be on the left and right side of ®(w,w), respectively, since the correlation

function is radial-ordered by definition. By a change of contour (cf. Fig. 3.1), this can be

written as

([T, B(w, @)]...) = 7{ dz 2" () B(w, D) . ) (3.32)

The contour is now taken around w and it is assumed that no other insertion points than
w are surrounded by the contour. Hence, in an operator sense, the following relationship

is obtained:

ad (U,) B(w, F) = [y, B(w, @)] = f{ dz LG (), 7). (3.33)

w
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Note that this basically defines for every mode ¥,, a map from the space of fields to itself,
which has been denoted ad (¥,,). If the reader feels uncomfortable inserting a Laurent
mode in the correlation function, he can just treat this as the definition of the adjoint
action of the Laurent mode ¥,, applied to the field ®(w,w). If ® is itself meromorphic, it
can be expanded in a Laurent series as well and so does the new field ad (¥,,) ®(w). By
linearity of ad (¥,,), we find

[Wm@m%:mMW@®m:iédwme@AMMWMQQM

= Y{dwwnﬂ'hq’_lf dz 2" 1w ()@ (w) . (3.34)
0 w

This way, if all fields are meromorphic, we can extract a Lie algebraic structure from the
OPEs.

As a quite important example, we can ask what kind of Lie algebraic structure the
Laurent modes of the energy momentum tensor describe. The Laurent modes are typically
denoted L,. Since both fields are meromorphic, we can use the formalism developed in

(3.34) to extract this structure. A straightforward calculation yields

mm? = 1)8mn - (3.35)

[Lm> Ln] = (m —n)Lmin + 12

This Lie algebra is referred to as Virasoro algebra. Note that for ¢ = 0, we recover the Witt
algebra (3.12) that describes infinitesimal conformal transformations on the complex plane,
so the Virasoro algebra can be considered as a central extension thereof. Like the Witt
algebra, the Virasoro algebra also contains an s[(2) subalgebra spanned by {Lg, L+1}. That
means that the Lie algebra of global conformal transformations is not centrally extended

at the quantum level and stays unchanged.

3.1.3 Vertex operator algebras and the operator-state correspondence

At this point, it makes sense to introduce another concept familiar from quantum field
theory. The fields of a quantum field theory are in general assumed to be in one-to-one
correspondence with states in some space ‘H, possibly a Hilbert space, in that fields applied
to the vacuum (at infinite past) yield the corresponding state. In this spirit, a conformal
field in the complex plane, say ®(z, z), evaluated at the origin, generates the associated
state ® from the vacuum €,

O = lim P(z,2)Q. (3.36)

z,Z2—0
This is a quite general and important concept in two-dimensional conformal field theory
called operator-state correspondence. When we now restrict ourselves to consider mero-
morphic conformal field theories, which are the most relevant in the following chapters,
it is indeed often useful to think of them as a space of states H and a map V(-, z) from
‘H to operator-valued fields on C such that V(®,z) = ®(z) is the conformal field associ-
ated with ® € H. The field V(®, z) is also called the vertex operator of ®, a notation

that originates from string theory. By the operator-state correspondence, the operator
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product expansion (3.23) induces an algebraic structure on A, which is called a vertex
algebra. If we further assume the existence of a state w that corresponds to a conformal
Noether current 7'(z) with an OPE as in (3.29), the algebra is called a vertex operator al-
gebra [88,90,124], sometimes abbreviated by VOA. Let us mention that we implicitly also
assumed that H contains a single vacuum state ) that is invariant under global conformal
transformations and hence corresponds to the identity via the operator-state correspon-
dence, Q(z) = V(£2,2) = 1. For the sake of a concise but clear notation, we stress that
®(z) always denotes a conformal field, but when we omit the argument and just write ®,

we mean the corresponding state.

Performing a Laurent expansion of ®(z) and using (3.36), it is not difficult to convince
oneself that
O=0_5,,Q and ®_p,4,2=0 foralln>1. (3.37)

The latter requirement is necessary in order for the limit in (3.36) to be well-defined.
The vacuum itself should be invariant under automorphisms of the complex plane, i.e.
under global conformal transformations. Hence L, = 0 for n = 0,£1. It is possible to

show [78,102] that the operator product expansion can be written as

U(2)®(w) = > (U@} (w)(z —w) """, (3.38)
n<hg

where {U,,®}(z) denotes the conformal field associated to the state ¥, ®. In VOA notation,
{U,,2}(2) = V(¥,®P,2). Thus from the point of view of vertex operator algebras, the
OPEs just encode the action of the various modes of ¥ on the vertex operator ®(w).
However, it is often necessary to know the modes of the vertex operator {¥,®}(w) as
well. Luckily, this has been worked out [37]. After introducing a shorthand notation
@ (n) = Pp—ng+1, the result reads

m+1—1 el
(V) @} m) = Z( z > (¥ (n®@mn) + €wa (1)@ Pp)]
1>0
(3.39)
where egp = —1 if both ¥ and ® are fermionic and eye = 1 otherwise.

An important application of this lemma appears in the context of normal-ordered
products. The normal-ordered product, denoted as (-), of two meromorphic fields is defined

as the nonsingular part of the OPE,
(U(2)®(w)) = ¥ (z)®(w) — (terms singular in the limit z — w) . (3.40)
After taking the normal ordered product, clearly the limit z — w is well-defined. We write

(TP)(w) = lim (V(2)®(w)). (3.41)

Z—w

Using (3.38), we immediately see that (¥®)(w) = {¥_p, P} (w). What state in H does

this correspond to? This is where formula (3.39) comes in. Since (¥®)(w) must have
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conformal weight hg + hy, the state associated with (V®)(w) is
(UD) o Q= (W 4y @) pyny Q= T, &, Q. (3.42)

So the normal-ordered product of two vertex operators corresponds to the multi-particle

state with two excitations of the respective corresponding states.

With our discussion in 3.1.3 in mind, we can apply the techniques introduced in this
section to give an interpretation of Virasoro primary states in terms of representation
theory. Let ®(w,w) be a conformal field, not necessarily meromorphic. Using (3.38) and
the defintion of Virasoro primaries in terms of its OPE with the (meromorphic) energy
momentum tensor 7'(z) in (3.28), we conclude that the fields {L,,®}(w,w) vanish for all
n > 1, which is equivalent to saying that L,, annihilates ®. Furthermore, Lo® = h®.
Hence, by the operator-state correspondence, a Virasoro primary field is associated with

a highest weight state of conformal weight h with respect to the Virasoro algebra in H,
®(w,w) is Virasoro primary < Lop=h®, L, 2=0 Vn>1 (3.43)

Due to this correspondence, we will refer to these states as Virasoro primaries as well. Vi-
rasoro primary states may serve as generating states of a Verma module over the Virasoro
algebra, which we will call a Virasoro module for short. In fact, one can expect that the

space of states H decomposes into representations of the Virasoro algebra.

Of course, there is much more to say about conformal field theory and the interested
reader is referred to the literature in the beginning of this section and references therein.
For the present purposes, we stop at this point and present a popular example of a con-

formal field theory.

3.2 Wess-Zumino-Witten Models

An important source of two-dimensional non-linear o-models are Wess-Zumino-Witten
(WZW) models [92]. The advantage of WZW models in contrast to generic non-linear o-
models is that the target manifold is equipped with a group structure which can be used

to highly simplify calculations.

3.2.1 The classical theory

Let us start with an embedding ¢(z,z) of some Riemannian manifold W without
boundaries into the Lie group G. The derivative d,g(z,Z) yields a vector in the tangent
space Ty, )G at the point 9(z,Z). Tt can be pulled back to the tangent space at the
identity by applying the group inverse g~!(z,z) either from the left or from the right,

which yields two currents

Tu(z,2) = g_l(z, Z)0u9(2, 2), ‘7‘:(2, Z) = 0ug(2, Z)g_l(z, Z) (3.44)
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Since the tangent space at the identity is nothing but the corresponding Lie algebra g,
both currents are g-valued. The associated g-valued one-forms are in complex coordinates
given by

J = J.dz + Jzdz, J' = Jldz + Jldz . (3.45)

From a geometric point of view the current J can be considered as the pullback of the
Maurer-Cartan form onto W. We are now in the position of writing down a kinetic term

Skin for the non-linear o-model that respects the Lie group symmetry:
Skin[g] = ’7/ d*2Tr (9999~ ' 0g) = 7/ Tr(J A*T) = 7/ Tr (7' AxT') , (3.46)
w w w

where Tr refers to the trace with respect to some unitary representation of g such that the
trace is real. The overall constant v € R is yet to be determined. By using the cyclicity
of the trace and that

ANgg™ ) =(09)g ' +g'0g=0 = g '=-g(0g)g" (3.47)

we can write the kinetic term in a more compact form,

Snlg) =7 [ =T (9905 7") (3.49)
Varying this action we obtain

dSkin(g] = /d2z Tr [dg (gfl(?gggfl — 85971)] (3.49)
and hence the equation of motion becomes
g~'99g — (999~ ")g = d(g~"0g) + d(g~'0g) = 0. (3.50)
In terms of the differential form 7 the equation of motion reads
oT. + 0Tz =0 & d«J =0. (3.51)

We would like the field theory we are considering to factorise into a holomorphic and an
antiholomorphic part, thus extending the Lie group symmetry to a full G ® G-symmetry
locally. The symmetry can be thought of as the left and the right action of G on the
embedding field g(z). This means that the two terms in (3.51) have to vanish separately,
which is equivalent to additionally demanding that J is closed, dJ = 0. However, this is

generically not the case because J is subject to the Maurer-Cartan equation [113],
dJ+I NJT =0, (3.52)

and hence dJ # 0 for non-Abelian groups G. In [186] it has been shown that this problem

can be overcome by adding an additional topological term to the action, now commonly
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called the Wess-Zumino-term,

kSWZg =~ [ 1y (j AT A j) . (3.53)
247 Jp
Here B is a three-dimensional manifold with 0B = W, J = g—laug dx*, where g is the
extension of g to B, i.e. glgp = ¢, and the z* are local coordinates on B. The free
parameter k, called the level, multiplying S} #[g] should be restricted to be an integer as
we will argue now. For the sake of the argument, let us assume that W ~ S? and thus
B ~ D3, the three-dimensional disc, and suppose that we are given two extensions §; and
go, both mapping B to G. Since we are interested in the dynamics of g only, the physics
should be independent of which extension §; we are considering. This is the case if they

contribute equally to the path integral measure, i.e. if

GRSE 2] _ ikSY )y Gk(SW () -SW 7 g)) _ 1 | (3.54)

Now consider two copies of B, labelled by subscripts 1 and 2, and let g; map B; to G.
Demanding the B; to have opposite orientation, we can glue them together by identifying
their boundaries 9B; = 0By. The resulting space is B; — By ~ S3. Since gilop, = g for
both i = 1 and i = 2, they induce a continuous map § from the three-sphere S? to the Lie

group G by demanding g|p, = g;- Hence, we can write
Sk Zlon) - S5 7 [92] = 8557 [d] (3.55)

It can be shown that the latter expression yields the winding number of the map ¢ multi-
plied by 27, hence Sg{z [g] = 27v with v € Z [89,180]. Loosely speaking, Sg;fz [g] counts
the number of times the image of § wraps the nontrivial three-cycle in G. So (3.54) only
holds if & € Z as well. Thus the full action reads

SWIW — G + kSVZ | ke, (3.56)

where we simplified the notation by dropping the arguments as well as the subscript in
the WZ term. This action has two free parameters, v and k. Demanding invariance of the

whole action under the variation ¢ — g + d¢g yields the equation of motion
dxT+—d7 =0 (3.57)
7 167 Y '

%, we find that the equation of motion becomes 07 = 0. The

nonlinear o-model defined by the action

So, if we choose v =

k k ~ =~ =

SWZW:/ Tr(j/\*j)—i—/”[‘r(j/\j/\j) (3.58)
167 w 241 B

is called the Wess-Zumino- Witten (WZW) model. Of course, the Maurer-Cartan equation

(3.52) still holds, hence 0.7, cannot be set to zero as well. So is there no conserved

holomorphic current? Well, we have neglected up to now the one-form 7’. In fact, J>
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being antiholomorphic implies that 7, is holomorphic because
0Tz = 0(g~'g) = —g~'dgg ' dg + g 009 = g7'0(9gg g = g7 '0Tlg.  (3.59)

We observe that 07 and éjz’ are connected to each other by an inner automorphism of
g. Thus J/ is a conserved holomorphic current whenever J; is conserved. From now on
we drop the index of the current and simply refer to Jz and J, as the holomorphic and

antiholomorphic current, respectively, denoted by
J(z) = —-kJ\(2), J(2) = —kJT=(2). (3.60)

Note that we also rescaled the currents for later convenience.

3.2.2 The current algebra and the Sugawara construction

We have defined two conserved g-valued currents, one of which is holomorphic and one
antiholomorphic. After choosing a basis {t*|la = 1,...,dim g} for the Lie algebra g, the

currents can be expanded in that basis

dim g dim g

J(=) =Y T @rat’,  TE) = T2 kat’, (3.61)
a=1 a=1

where k% = (t2,1%) are the matrix elements of the Killing form and k. are the matrix
elements of its inverse, which exists since g is semisimple by assumption. The currents
generate locally the left and right action of G on the Lie group embedding function g(z, z)
[58]. Since the argument is similar for J(z) and J(Z), let us look at the holomorphic

current only. In its infinitesimal form, the transformation of g generated by J%(z) reads
9(2,2) = ¢'(2,2) = (1 + €a(2)t")g(2, 2) . (3.62)
Hence, the holomorphic current itself changes as

0F = —k5(8g)g_1 = —k@(eatag)g_l + k(@g)g_leat“
= —kOegt? + €t T — Teqt® = —kdeqt® + €,[t*, JI|, (3.63)

where we suppressed the coordinate dependence for readability. Expanding J in the

chosen Lie algebra basis, we obtain
0T = —kdeyk™ + ey f20. T, (3.64)

where fabc are the structure constants of g, [t%,t°] =i fabctc, and Lie algebra indices are

raised and lowered by the Killing metric. We may now use the Ward identity (3.21) to
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conclude that the associated current algebra reads

ko100 N ifabcjc(w)

T (2)T"(w) oo e (3.65)
Kab i ab 7c 0

F @) ~ s+ T, (3.66)

T 2)JT"(w) ~0. (3.67)

Here we also included the result one obtains for the antiholomorphic currents. Let us
now concentrate on the holomorphic current J(z) again. Performing a Laurent mode

expansion, J%(z) = Y., J22""!, we see that the commutator of the modes is

[jﬂ‘ib,j,ﬂ = j{dwwm}l{ dz 2" T42) T (w)
0 w
= if"™ T+ kmbmin - (3.68)

Therefore the current algebra is equivalent to the commutation relation of the affine Lie

algebra g.

In order to uncover the conformal symmetry of the WZW model, we have to find the
conserved current associated to it. Indeed, given the current algebra, an energy momentum
tensor can be constructed [130]. A reasonable guess would be to postulate that the energy
momentum tensor structurally agrees with the classical one but with the product of the

classical currents substituted with the normal ordered product,
T(z) = o ke (J T ) (2), (3.69)

with a constant « possibly subject to quantum corrections to be determined. In order to
fix the constant, we demand that J is a Virasoro primary field of conformal weight one.
The singular part of the OPE of J%(z) with T'(w) is

ab 7c - rab dc c pde Te
ja(z)ﬁbc(jbjc)(w)’\/ﬁ:bc% dx (kﬁlﬁ J (w) if d|: kr +zf ej (w)

wT—w\ (z—1x)2 z—x (:c—w)Q' x—bwd
(o)) + BT AT ))

_ 2RI (W) = Ko f T f 1T W) | if [(T0T°) (w) + (T°T7) (w)]

(z —x)? zZ—w

(3.70)

The first order pole vanishes because it is a contraction of an antisymmetric with a sym-

metric tensor. Making use of the Lie algebraic relation

— na (1£4) (1) = roaf %, f%, = —2h" dimg, (3.71)

where hY is the dual Coxeter number, i.e. the quadratic Casimir element of the adjoint
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representation divided by two, the OPE simplifies to

J(2)

a \%

Therefore we see that in order for J%(z) to be a (Virasoro primary) field of conformal
weight one, we have to set o = (2k + 2hY)~!. Hence,

T(2) jbjc> . (3.73)

1
20k + hV)“bC(
However, we still have to check that T'(z) generates a Virasoro algebra to uncover the
claimed conformal symmetry. Indeed, using that we fixed a such that J%(z) is primary
and therefore its OPE with T'(z) becomes rather simple, one can show along the same
lines that [58]

5 2T (w) oT (w)
T(2)T(w) ~ —2 3.74
W) ~ 2o+ o+ (3.74)
with central charge ¢ = % . The energy momentum tensor we have constructed out of

the currents is often referred to as Sugawara tensor. We conclude that the WZW model
yields indeed a conformal field theory with additional G ® G symmetry. The Sugawara
tensor is a holomorphic field and thus one can perform a Laurent expansion as usual for

the energy momentum tensor of a conformal field theory,

T(z) = Lpz "2 (3.75)

neL

However, using (3.39), we can give a explicit expression of the Virasoro modes in terms of

affine modes,
1
Ly=—" ab T Tl 3.76
s £ o it o7

where :-: denotes creation-annihilation ordering, i.e. the modes are arranged according to

their mode number in increasing order. For example, :/1J-1:= J-171.

3.2.3 Primary states

Up to now, we have only discussed the symmetries of the WZW model and their
respective currents. However, in general there are more fields contributing to the spectrum
of the theory. Since the symmetry currents of the WZW model in (3.65) - (3.67) are
either holomorphic or antiholomorphic, we locally have a g, ® g, symmetry underlying
the WZW model. Thus the space of states should take the form

H = @ Myj H; ® 7:[3‘ s (3.77)

]

where H; and 7-_Lj are unitary representations of gy, respectively. The matrix m;; encodes

the multiplicities and should be chosen such that the theory is modular invariant [58].
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For now, we will consider the holomorphic sector only. Let {t*|a = 1,...,n} denote
the generators of the Lie algebra g. A state ®, in the holomorphic sector of the WZW
model on G is defined to be primary if

Tib, =0,  Tgo = pli")B,, (3.78)

for n > 1 and any representation p of g. By the operator-state correspondence of a
conformal field theory, this can be equivalently written as
t®,(w
TR w) ~ A0 (3.79)
z—w
where ®,(z) is the vertex operator associated to ®,. The definition of primary states
implies that they transform in representations of g with respect to the action of the zero
modes. A g-module is generated from such a primary g-representation by the action of the
negative modes. When we decompose the affine algebra as a vector space into negative,
positive and zero-modes, § = g<~ @ g° ® g, and choose a highest weight representation

V(\) of g°, we can write the associated g-module My as
MV()\) = U(ﬁ) ®U(gOEBg>) V(A) ) (380)

where we have taken V() to be annihilated by all positive modes, g~ V(\) = 0.

When we think of the current algebra (3.65) as an affine Lie algebra, we note that the
modes of the Sugawara tensor are actually elements of the universal enveloping algebra
U(g) of the affine Lie algebra g. So due to (3.80), the g-module M can be decomposed
into Virasoro modules. In particular, basically by construction of the Sugawara tensor,
the primary states are also Virasoro primaries. This is clear from the expression of the
Virasoro modes (3.76). Let us also note that the action of Ly on primary states becomes
quite simple,

1
Lo®voy = 5 ( C2(N) Py 5 (3.81)

k+hY)
where Ca(A) is the eigenvalue of the quadratic Casimir evaluated on the g-representation

V(A). Hence the conformal weight of @y, is WCQ()\).

3.2.4 The SU(2) WZW model

As an example, let us consider the SU(2) WZW model. From the point of view of
nonlinear o-models, this corresponds to strings moving on S?, which is isomorphic to SU(2)
as differentiable manifolds. It is possibly the best understood non-Abelian WZW model
and hence serves as a good example of the power of an additional affine symmetry in
a conformal field theory. The reason that makes this WZW model particularly easy to
handle is the fact that SU(2) is compact and hence the unitary representations are finite-

dimensional. We will loosely follow the discussion in [36] in this section.
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In an appropriate basis of su(2), the current algebra takes the form

P ) ~ EO ) ~ P 2w,
k
JO(Z)JO(w) -~ m, (3.82)

and thus the corresponding commutation relations of su(2); are
[Jo JEl = 2T 0 [Th dn] =200+ kmbmin,  [J0, Jo] = Embpin. (3.83)

The central extensions as given above are consistent with the Jacobi identity. The Killing

form and its inverse are given by

00

=k =1, =1, kp=2 (3.84)

K
with all other matrix elements vanishing. Since the quadratic Casimir of a spin j rep-
resentation of su(2) is given by 2j(j + 1) and the adjoint representation is the spin 1
representation, we conclude that the dual Coxeter number is hY = 2. Alternatively, one
could have used (3.71) to determine h", where one has to be careful about the appearances
of imaginary units. Now it is straightforward using (3.73) to give the energy momentum

tensor,

1

"= 5w

[2(J°0%) () + (JTT7)(2) + (J-JT)(2)] . (3.85)

With the affine algebra su(2) in (3.83) at hand, let us discuss allowed representations.

According to our definition of primary states, we are looking for states
J0®; = JE®; =0 forn>0. (3.86)

With respect to the zero modes, the primary states form a representation of su(2). In the
end, we are interested in unitary representation and it is known that all unitary repre-
sentations of su(2) are finite-dimensional. And since all finite-dimensional representations
are highest weight representations, we can further restrict our search for primary states

to su(2) highest weight states by demanding
S =jo;,  JFP; =0 (3.87)

with j € %N. The whole zero mode representation generated from ®; is then primary.

Apart form the su(2) spanned by the zero modes, there are further su(2) subalgebras

given by the family
nk

? 9

with n > 1. Any representation has to be unitary with respect to any su(2) embedded in

I =Jgt, 1=J;, I°=J)- (3.88)

s1(2) and hence the eigenvalues of J§ have to be half-integers. Since all states in the affine

module generated from ®; have half-integer eigenvalues with respect to Jg , we conclude
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that unitarity requires k£ to be an integer in agreement with the geometric analysis in
section 3.2.1. Obviously, I~ ®; = 0 and thus ®; generates a lowest weight representation
with respect to the su(2) spanned by {I*,I1°}. In order for this representation to be

unitary, its I{-eigenvalue has to be nonpositive. We conclude that

(3.89)

1\3\??

k
j—%SO forall n>1 = j <

Therefore admissible representations for the SU(2) WZW model at level k € N are affine
51(2), highest weight modules of highest weight 0 < j < % The conformal weights of the

primary states are
j+1)
k(k +2)

Having identified the set of admissible $ug(2) representations, we have to combine the

h(®;) = E >0. (3.90)

holomorphic with the antiholomorphic sector in order to obtain the full WZW spectrum.
This requires the matrix of multiplicities m;; in (3.77) to be chosen such that the full
theory is modular invariant. A natural and consistent choice is the diagonal theory where
m;; = 0;;. However, there also exist nondiagonal choices which are consistent with modular

invariance [58].

Comments on the SL(2,R) WZW model

The SL(2,R) WZW model is a close relative of the SU(2) WZW model. It is of
particular interest as it also plays an important role in string theory on AdSs3 due to
the diffeomorphism AdSs ~ SL(2,R). Hence the SL(2,R) WZW model typically appears
in analyses of string theory on this space (cf. e.g. [65,99,134,140-142]). However, it is
noncompact, which makes the analysis more complicated even though the current algebra

is similar.

Representations of s?[(2)k are generated from representations of s[(2) as has been ex-
plained in the general context. The spectrum of unitary sl(2) representations is known [60].
Apart from the trivial representation, there are four types of unitary representations de-
noted Dj.[, 1/o4is and &' with j > 0 and s € R. It was argued in [140] that the latter
does not contribute to the spectrum of the WZW model. The structure of the argument
is quite instructive. The limit & — oo corresponds to large string tension and hence the
theory reduces to quantum mechanics on AdSs. Thus the Hilbert space should agree with
the space of square-integrable functions £2(AdSs3), which decomposes with respect to the
global SL(2,R) x SL(2,R) symmetry into Di ® Di with j > 1/2 and Clratis @ Clois
So we discard £ and only discuss the remaining representations. The representations
D“-—L are called discrete series representations and are basically irreducible Verma modules

Wlth highest weight —j or lowest weight j. The representations C& s € R, are called

1/241is’
continuous series representations and are special since the are neither highest nor lowest
weight representations [173]. The present work we will be mainly concerned with the
discrete series representations, in particular those that are highest weight representations,

i.e. Dj .
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As has been indicated, the SL(2,R) WZW model can be used to define a consistent
theory of strings moving on AdS3 x M, where M is some additional manifold necessary to
make the string theory critical [92,140]. In that case physical string states should arrange
in representations of SL(2,R) x SL(2,R). However, string theory induces more constraints
on the type of representations that are allowed. In particular, in order to avoid ghost
states, i.e. physical states of negative norm, it is necessary to bound the weight of primary
fields by j < £ [65].

3.3 BRST Quantisation of String Theory

In this section we review the BRST quantisation procedure in string theory to fix
diffeomorphism invariance and Weyl rescaling. The gauge fixed string obtained by this

procedure serves as the starting point for a definition of the hybrid string in chapter 5.

3.3.1 The bc system

One conformal field theory which will be of great importance in the following is the so
called be system. It contains two holomorphic primaries: a field b(z) of conformal weight

A and a field ¢(z) of conformal weight 1 — A. The action in conformal gauge reads
Sbe = /d2zbac. (3.91)

Their OPEs read

b()e(w) ~ —— . e(2)b(w) ~ —— (3.92)

Z—w Z—w

where we left the statistics of b and ¢ undetermined. For fermionic statistics one must
choose ¢ = 1 while ¢ = —1 gives b and ¢ bosonic statistics. Demanding that b and ¢ are

primary, it is easy to find their infinitesimal behaviour under conformal transformations

e(2):

db = —edb — A\(Oe)b,
dc = —edc— (1 — X)(0¢)c.

By using Noether’s trick, we can then determine the energy momentum tensor of this

system:
7% = (9b)c — Ad(be) . (3.93)

In order to check the correct conformal weights of b and ¢, note that depending on the
chosen statistics, the normal ordering statisfies (bc)(z) = —e (¢b)(z). Using the OPEs in
(3.92), it is straightforward to determine the OPE of the energy momentum tensor with
itself,

—e[6BAN — 1) + 1] N 27 (w) N o1 (w)

4 2 z—w

be be _
T°(2)T"(w) = G—w) —w) (3.94)
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from which one easily extracts the central charge of the bc system,

Che = —€[122\(A—1) + 2] . (3.95)

The anticommuting bc system, i.e. ¢ = 1, is actually equivalent to the conformal field
theory of a free boson with background charge. To see this, note that the OPE of the
normal ordered product (be) with itself,

1 (be) + (cb) 1

(be)(z)(be) (w) ~ Cowrt aw S G owR (3.96)

mimics the OPE of an Abelian current i0H (z), where H(z) is a boson satisfying the OPE
H(z)H(w) ~ —In(z —w). This suggests that one can identify (bc) = i0H. But the
conformal field theory is not complete without giving an expression for the appropriate
energy momentum tensor. In general, it is not simply the energy momentum tensor of the
free boson —% (6H 2) since then the OPE of the energy momentum tensor with the current
i0H, and hence equivalently with (bc), would not have a pole of third order. But this is
in contrast to the observation in the original theory that the OPE is given by

20 -1 n (be) n d(bc)

T (2) (be)(w) ~ - > (3.97)

(z—w)? (z—w)? z—w’

In particular, the current (bc) is not a Virasoro primary. However, we can introduce a so
called screening charge A to the energy momentum tensor to take care of that third order
pole,

T z) = —%(8H2) + AO’H . (3.98)

Using that 0?H (2)0H (w) ~ 2 (z — w)~3, we find the correct screening charge for the be
system, .
A= %(1 —2)). (3.99)

Note that, if we chose to bosonise (cb) instead of (bc), the screening charge would differ by
a sign. Indeed, the ghost current in bosonic string theory is usually defined as —(bc) [154].
One could have asked why this argument does not work for commuting bc systems, i.e.

e = —1. A counterexample will be presented in section 3.3.3.

As b and ¢ are meromorphic functions, there exist Laurent expansions
b(z) = Z bpz "N, c(z) = Z cpz VAL (3.100)
n n

Depending on the chosen statistics, i.e. the value of £, we obtain the following (anti)commu-

tators of the modes

(b, cn] = 7{ dw w"_Aj{ dz 2™ 1b(2)e(w) = e0mn , (3.101)
w=0 Z=w

[em., bn] :j{ dw w”“‘lj{ dz 2™ e(2)b(w) = Gpman - (3.102)
w=0 Z=w
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Thus we see, as expected, that the modes anticommute if € = 1 and commute if ¢ = —1.

Let us now consider the radial ordered product b(z)c(w), i.e. let |z| > |w|. By inserting

the mode expansions from above, we obtain the following equality:

b(z)c(w) = Z bnCrz ™ M HAL

_ Z byey ™Ay HAT 4 Z (—enbm + )z~ ™ A1

m<n m>n
= Z byt 2 M AL Z L=\ 0) yn+HA+e)—1
m,n n>0
(ot n (+o-1 1
w w w
=:b(z)c(w): L e (—) =:b(2)c(w): +¢ (;) —

n>0

where ¢ = 0 for an expansion in integer modes and ¢ = % for an expansion in half integer
modes. Here :-: denotes creation-annihilation-ordering, which for the zero modes is defined
as :bgcg:= —ecoby. We want this ordering to be consistent with the normal ordering defined
by subtracting singular terms of the OPE. We find that

Ao—1
(&) -1

Z—w

(b(2)c(w)) =:b(z)c(w): +e (3.103)

By definition, (b(z)c(w)) has no singular terms when taking the limit z — w. In particular,

Ato—1
(&)™ -1 1-0-2

lim (3.104)
Z—w zZ —w w
and thus we find for the be-number current j be — _1im, ., (b(2)c(w)) the following charge:
1
bc __ .be B ) )
NP = % d’U)j ('UJ) = — Z .b_ncn. +5QCOb0 + 5()\ +0— 1) . (3_105)

n#0

Hence the normal ordering constant is a* = e(A + o — 1).

Conformal Fermions

The arguably most important bc-system is the one with A = % and € = 1. In this case,
both fields b(z) and ¢(z) have conformal weight £ and they obey fermionic statistics. In
fact, this is just the theory of (complex) fermions in two dimensions commonly denoted

as U(z) = b(z) and ¥(z) = ¢(z). The energy momentum tensor is

TV = (00)¥) - L(0(TW)) = L((09)¥) - §(T0W). (3.106)

We may also express this conformal field theory in terms of real fermions by writing
U(z) = %(@Z)O +it) and WU(z) = %(1/}0 —tp!). In that notation the energy momentum
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tensor becomes

TV =T = —L (¢29y° + lay!) | (3.107)

which is just the well-known energy momentum tensor of two real fermions in two dimen-
sions with Euclidean metric. Note that since the complex fermions have A = %, there is
no need to introduce a screening charge when bosonised. Hence the complex fermion is
equivalent to one real boson, as is also suggested by the central charge of the associated

Virasoro algebra, which is one in both cases.

3.3.2 Covariant gauge fixing and physical string states

Let us now review one important place where be-systems appear in the context of string
theory, namely the gauge-fixing of local diffeomorphism invariance on the world sheet.
Treating the invariance under diffeomorphisms as a gauge symmetry of the action, fixing
it requires us to perform the Faddeev-Popov procedure and hence including appropriate
functional determinants in the path integral [74,119,126]. Following the general Faddeev-
Popov procedure, these determinants can be written in such a way that they add (2, —1)

be-systems to the classical action. The exposition below follows [72].

The Polyakov action of the bosonic string is given by
S = / Pz V/—hh*P 9, X 95X, (3.108)

which is invariant under local diffeomorphisms and Weyl rescaling of the world sheet metric

h®P. At the quantum level, one rather considers the generating functional or partition

sum [157],
Z—/[dX]V[dh]eS, (3.109)

where V' is the volume of the gauge orbit of equivalent metrics under diffeomorphisms and

Weyl rescalings. If we wish to fix diffeomorphism invariance,
6hzz - szz ’ 5h52 - VECE 5 5hz§ - vZCz + VZC27 (3110>

in such a way that the worldsheet metric coincides with the conformal metric h, which
satisfies

how = hzz =0, (3.111)
we need to insert delta distributions §(h..) and 6(hzz) into the path integral, but Z should
stay unchanged. This describes exactly the setting of the Faddeev-Popov method. For
better readability, let us adopt the notation ¢ = ¢, and ¢ = ;. The crucial observation
in this procedure applied to our case is that (see e.g. [181] for a proof)

g Ol
J1acisin. hzz)det[ ;.

. ¢
= /[dé]é(hzz — hS,) det [5(};52] =1, (3.112)

where h. and fzgg are the gauge transformed metric components, i.e. hS, = h.. + V(¢
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and ﬁgg = ﬁgg + ng , and det[-] denotes the functional determinant. So we can just insert

unity represented by the integral in (3.112) into the generating functional

g OIS o i e léﬁéz] et [MC] ST

% 8¢ 5C
-/ [dX][dc)[dd) dh-] [5%1 ot lahgz
&

efs[x,iziz,fz;,hzz] ) (3.113)

% 5C

| IS

The generating functional_can be further simplified by replacing the integration variables
X and hs; by X6 and hSS

zZz )

[dX¢<] [dhgjg] = [dX][dh,z]. Using the gauge invariance of the classical action,

respectively, and assuming the gauge invariance of the measure

S[XSC, RS, hS

zzr'%Z2»

WSS) = S[X, has, sz, has] = S[X, 0,0, ) | (3.114)

the generating functional becomes

(dx](dq)dclldh.z] o [0S ] o, [oRE: ] —spnes
Z = det det | —== L 3.115
/ Vv s |9 e | € (3:115)
Using (3.110) we can evaluate the functional derivatives. The functional determinants
become " ¢
det légg'zl = det[V.], det [5(};52 = det[V:]. (3.116)

Here, it is important to keep in mind that in this case V, denotes the covariant derivative
that maps rank one tensors to rank two tensors, while Vz maps tensors of rank —1 to
tensors of rank —2.1 After inserting these expressions for the functional determinant, we
have no dependence on the gauge parameters ¢ and ¢ any more. Therefore we can evaluate
the path integral over ¢ and ¢ to give the volume of the gauge orbit of diffeomorphisms.
The generating functional simplifies to
[dX][dh.z] _SIXhas

Z = / T det [V,] det [V5] e SXhez] (3.117)

where V' is now the volume of the gauge orbit of Weyl rescaling only. It is a useful fact

that functional determinants have a representation in terms of path integrals. In fact, if

O is a differential operator, the functional integral can be written as

det O = / [db][dc]e | #bO¢ (3.118)

LFor the definition of the rank of an tensor in complex coordinates in two dimensions see [71]. Basically,
a tensor t with n lower z-indices, t,.... or with n upper z-indices, t**** has rank n. Similarly, a tensor ¢
with n upper z-indices, t** or with n lower z-indices, tzz... has rank —n. The rank coincides with the

difference of chiral conformal weights, h — h.
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where b and ¢ are Grassmann-valued fields. So we can write the generating functional as

P / [dX][db)[dc][db][de][dhzz] _sx,p. b

V/
with & =5+ / 02z (b, Vs + b7V ,¢). (3.119)

Since V3 is a mapping from rank —1 tensors to tensors of rank —2, the c-ghost has to
be a tensor of rank —1 as well, hence the notation ¢*. In order for the overall rank to
vanish, the b-ghost must be a rank two tensor. Similar arguments hold for V. Since we
have imposed the conformal metric with k., = hzz = 0, the only non-vanishing Christoffel

symbols are I'?, and I'Z;, which in turn implies that Vsc = dc. The covariant derivative

zZ%
V.c, reads in the conformal metric V,c, = h*?*0h.zc,. Let us introduce the short-hand

notation

b=b,,, c=c*, b

b**h** and ¢ = h.sc, . (3.120)

The equation of motions deduced from the gauge fixed action S’ tell us that b and ¢ are
holomorphic fields while b and ¢ are antiholomorphic. As the rank of a tensor is nothing
but the difference of chiral weights, h — h, we find that both ¢ and ¢ have conformal weight
—1 while b and b have conformal weight 2. Hence they yield be-systems with A = 2, one

being chiral, the other one being antichiral.

Note that we have not fixed the metric completely since h, is still a dynamical field,
sometimes called the Liouville field. This implies that there is an equation of motion

associated to it, which forces us to set

55’
Ohz

-0 = T..=0, (3.121)

which means that the theory associated to the action S’ is classically conformally invariant.

In the case of the superstring, the classical action does not only depend on the embed-
ding fields X but also on their superpartners 1. Indeed, to conserve supersymmetry after
gauge fixing, we have to introduce superpartners of b and ¢ as well, which are commonly
denoted by  and 7. Since b and c¢ are anticommuting, 8 and v are commuting fields.
Furthermore, their conformal weight will differ by %, so (B has conformal weight % and ~
has conformal weight —%. Hence 8 and ~ add a commuting bc-system with A = % to the
action. It is also possible to obtain these systems by a gauge-fixing procedure as above
and the interested reader is referred to [72]. Note that demanding the central charge
to vanish in the covariant gauge-fixed theory yields directly the critical dimension of the
string. According to (3.95) the conformal ghosts b, ¢ with A = 2 have a central charge
of ¢y = —26, which is canceled by the central charge of 26 free bosons. Hence bosonic
string theory is critical in a 26-dimensional space-time. If the fermionic superpartners are
included, the superconformal ghosts 3, v also contribute to the total central charge with

cgy = 11 and each supersymmetric free boson/fermion pair contributes another % to the
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central charge. The critical dimension D thus satisfies
SD+cpe+cgy=3D+15=0. (3.122)

So criticality of the superstring is obtained in ten dimensions.

As in Yang-Mills theory, the complete gauge-fixed action S’ still has a residual symme-
try that originates from the original gauge symmetry, in our case the local diffeomorphism
invariance. It is called the BRST symmetry [11,67]. Loosely speaking, even though we
imposed some gauge-fixing condition, we are still free to choose that condition any way

we want. The associated conserved current is [155]
jBRST = ’YGmatter + C(Tmatter - %/68’7 - %785 - bac) - bfyz + 8(057) + 826 (3123)

in the case of the superstring. The BRST current of the bosonic string is easily recovered
by setting 5 = v = 0, where usually another term %826 is added to the current in order to
make sure that it transforms as a tensor. Here, Thatter is the energy momentum tensor of
the original action S but with the world sheet metric fixed, h = h. Since we are considering

N =1 superstrings, we have a supercurrent as well, which has been denoted by Guatter-

Any matrix element between physical states should be independent of the choice of
the gauge-fixing condition, which implies that physical states are invariant under the
BRST symmetry. Hence the zero-mode of the BRST current, which generates the BRST sym-
metry, truncates the space of states H to the physical sector in that the BRST operator

Q= dejBRST(Z) (3.124)

annihilates physical states. It can be checked that the BRST operator is nilpotent of
second order, Q? = 0, if we are considering the string in its critical dimension, i.e. D = 26
for the bosonic and D = 10 for the superstring. Due to the nilpotency, states in the image
of @ are always physical. However, they have vanishing inner product with any physical

state including themselves because

(@l (@) = (9l Q") ) = 0. (3.125)

We assumed that @ is hermitian, which seems reasonable because otherwise Qf would
generate another symmetry and there is no candidate for it [154]. States in the image
of ) are sometimes referred to as spurious states. Since they do not contribute any
nontrivial matrix elements between physical states, they should be discarded from the
spectrum. Hence the physical subsector within the space of states H coincides with the
Q-cohomology,

HBRST = HQ(H) . (3.126)

However, to obtain the physical spectrum with correct multiplicities, note that states will
transform in representations of the zero-modes of the bc ghosts and, in the R sector, in

representations of By and . In order to pick one of the states in these representations,
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one imposes the additional constraints

boy = Boy = 0. (3.127)

This is sometimes called the Siegel gauge. Since the ghost vacuum is taken to be annihi-
lated by all positive ghost modes, the Siegel gauge can be rephrased in a more algebraic

way using (3.105),

—%¢ in the R sector,

Nty =, NPV = (3.128)

—1p  in the NS sector.

By the commutation relations [@,b,]+ = L, and [Q, 5,]— = G, where L,, and G, are the
modes of Tiatter and Gatter, respectively, this implies that physical states have conformal
weight zero and, in the R sector, are annihilated by Gp. It can be shown that the subsector
of physical states obtained by the BRST procedure does not contain any ghost states, i.e.
states of negative norm [69,70,176].

3.3.3 Bosonising the superstring ghost fields

As we have just seen, one of the most important superconformal theories in superstring
theory is the combination of the (2, —1) and the (%, —%) bc system. This system is added
to the original superstring action by the usual Faddeev-Popov procedure when gauge fixing
the superdiffeomorphism invariance. More concretely, when fixing the world sheet metric
to be conformal, the Faddeev-Popov procedure introduces the conformal ghosts b and ¢
described by a (2, —1) be system. When going to the superconformal version of it, we need
to introduce the supersymmetric partners of these fields as well, denoted by 8 and . The
latter is described by a (%, —%) bc system. We will now discuss the bosonisation of both

systems.

First we recall the OPEs of the fields:

Note the extra minus sign in the 8y OPE since these are commuting fields. The OPEs of
the number currents (bc) and (f7) follow directly from the OPEs above:

(be)(2)(be)(w) ~ =gz and (B)(2)(BY)(w) ~ — =z - (3.129)

The conformal ghosts are easily bosonised by introducing a scalar boson o with the OPE
o(z)o(w) ~ —In(z—w) such that (bc) = —ido. The sign of the current is chosen such that
the antighost b has ghost number —1 and ¢ has ghost number +1. Then the conformal
ghosts are given by

b=e" and c=¢". (3.130)
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It is straightforward to verify that these exponentials satisfy the correct OPE.

The superconformal ghosts are tricky to bosonise [72,129]. Due to the extra minus
sign in the gy OPE, the OPE of the number current with itself gains a minus sign as well.
Introducing a scalar boson ¢ with the usual OPE ¢(z)¢(w) ~ —In(z — w), the current is

(B7) = 0¢ (3.131)

with no imaginary unit in front. Due to this missing unit, the would-be bosonised super-

conformal ghosts e~? and e? do not have the correct OPEs, e.g.

e ?(2)e? (w) ~ (z — w), e?(2)e®(w) ~ L. (3.132)

zZ—w

In order to resolve this problem, additional fields n and & are included, which have non-

singular OPEs with ¢. Then the superconformal ghosts are assumed to take the form

8= ((%e*qb) and = <ne¢) ) (3.133)

Demanding that these normal ordered products satisfy the correct 8y OPEs yields

0€(2)n(w) ~ — =gz, M(2)0E(w) ~ = (3.134)

and therefore

n(2)(w) ~ A5 and  E(2)n(w) ~ L. (3.135)

The third-order pole in the OPE

T7(2)(B7)(w) = ((887) — 30(87)) (2)(B7)(w)

—2
= ———+0((z—w)? 3.136
o 0w (3.136)
fixes the screening charge of the energy momentum tensor 7¢ of ¢ to be A? = —1 such
that the energy momentum tensor reads
T¢ = —1(9¢)* — 0%¢, (3.137)

and thus determines the conformal weights of the exponentials,
h (e”¢¢> — —1n2 —ny. (3.138)

Using the known conformal weights of 5 and «y, one determines the conformal weights of
n and & to be A" = 1 and h® = 0, respectively. This identifies the n¢ system as a (1,0)

bc system.

For a complete bosonisation of the superconformal ghost system we have to bosonise
the n€ system as well. But having integer conformal weights, this is easily done along the

lines of the conformal ghosts b and c. Thus we introduce a scalar boson x and write n and



64 Chapter 3. Conformal Field Theory and BRST Quantisation

£ as
n=2e* and ¢£=e ", (3.139)

The known conformal weights of n and ¢ determine the screening charge in its energy
momentum tensor,

TF = —3(0K)* — £0%k. (3.140)

This way we can find the conformal weights of the corresponding exponentials:

h(e"") = —in2 — Lin, . (3.141)

This completes the bosonisation process of the superconformal ghosts. The energy
momentum tensor of the whole bosonised ghost system is just the sum of the individual

ones, yielding
T7% = —1(90)? + 30%(ic) — 3(9¢)* — 9%¢ — L(0K)* — 10%(ir) . (3.142)

The central charge can easily be determined by recognising that for a general holomorphic

scalar boson X with screening charge A the following OPE holds:

T ()T (w) = (~3(0X)? + AD*X)(2)(—3(0X)* + AD* X)) (w)
1+ 12A%2  2T%(w) = 0T (w)

2wt —w)? | z—w (3.143)

Hence the the central charge is cé‘( = 12A2% + 1. Since we know the screening charges of

the bosonised ghosts, it is easy to see that the individual central charges are
ce = —26, cy = 13, Cr = —2. (3.144)

We see that the central charge of the o boson fits the central charge of the conformal be
ghost system as it should. Furthermore, ¢4 + ¢, = 11, which similarly fits the central
charge of the superconformal 5+ ghost system. This provides a check that our bosonised

conformal field theory is equivalent to the original one.

In the bosonised theory, the physical state conditions have to be reformulated in terms
of the new bosons. An important observation is that physical states should be independent
of the zero mode of £&. The reason for this is that the S and = ghosts just inherit a
dependence on the derivative of & but not on & itself. In order for the bosonisation
procedure to be invertible, we have to make sure that physical states are independent of

that zero mode or, phrased differently, restrict ourselves to the kernel of 7,

notp = 0. (3.145)

This is the small Hilbert space in contrast to the large Hilbert space that also allows
dependences on &;. In fact, the BRST cohomology on the large Hilbert space is trivial.
The B~ ghost number in terms of bosonised ghosts follows directly from (3.131). It turns
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out to be useful to define the so called ghost picture or picture-counting operator,

== §dz (06) — 06] =  dz [(ng) — (5] = N — NP7, (3.146)

The intuitive definition of the ghost number would be to count both bc and S+ ghosts,
Nbe + NP7, However, it turns out that it is convenient to shift the ghost number such
that it is independent of whether we are considering the R or the NS sector. Hence, let us

define the ghost number to be
Jghost = N + NP7V + 2= N¥ 4 N (3.147)

With the ghost picture and ghost number operator at hand, one could rephrase the physical

state conditions on the small Hilbert space H as

-1 in the R sector,

peHQH), Jgosth =0, Ev=q > (3.148)
—1p  in the NS-sector.

Looking a little ahead, the ghost number current as defined above will later serve as the

U(1) current of an N' = 2 superconformal algebra [17].

The way the physical state conditions in the bosonised theory have been derived here
suggests that only in the —1 and —% ghost picture one can obtain the correct string
spectrum. These ghost pictures are referred to as the canonical ghost pictures. However,
the correct spectrum can actually be obtained in any ghost picture because there exist
isomorphisms, called the picture changing operators, that map the n ghost picture to the
n £ 1 ghost picture [138]. The nice property of the canonical ghost picture is that the
target space supersymmetry generators take a particularly nice form, but they do carry
ghost picture themselves. Hence restricting ourselves to one ghost picture breaks manifest
target space supersymmetry. Later, we will fix the ghost picture in a way that circumvents

this problem.
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CHAPTER 4

String Theory and Supersymmetry

4.1 Superconformal Algebras in Two Dimensions

In order to introduce a supersymmetric structure on the string world sheet, an under-
standing of the superconformal algebras in two dimensions is essential. Here we review

these algebras and their properties as well as their relevance in the context of string theory.

4.1.1 The N = 1 superconformal algebra

Bosonic string theory is unstable as its spectrum contains a space-time tachyon [107,
154]. Furthermore, the spectrum does not contain space-time fermions at all. One way to
overcome these problems is adding fermionic fields on the world sheet [96, 146, 147, 160].
These free world sheet fermions 1*(z) have conformal weight % We recall the relevant

OPEs

v Lob(w w
P () ~ T ~ 220 2

z—w (z—w)?  z—w

(4.1)

Note that T'(z) here refers to the energy momentum tensor of the full theory including
the fermions. The supersymmetric structure is then easily obtained by realising that one
can construct an additional field of weight % by taking the normal ordered product of the
matter fields,

G(2) = L (,0X"). (4.2)

It is not difficult to check that G(z) is primary,

%G(w) N 0G (w) .

T ~ 4.
(2)G(w) ~ 2o + A (4.3)
Using the explicit realisation of G(z) in (4.2), we can also determine the GG-OPE,
D
2 T(w)
~ 2 4.4
G(2)Gw) ~ g + (44)

At this point, we left the number of space-time dimensions D undetermined. Now the
important thing to note is that 7'(z) and G(w) close among each other. Hence, they
define an algebraic structure independent of their explicit realisation. In our derivation,
we just discovered it in the context of string theory, but the structure itself is valid on its

own. In fact, it may be considered more fundamental since the world sheet fields transform
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in representations of that algebra.

Leaving the string theory point of view and just considering the current algebra defined
by T'(z) and G(z), it seems that one could have two free parameters; the central charge ¢
of the conformal algebra in the OPE of T'(z) with itself and a possibly different constant
multiplying the third order pole of the GG-OPE. However, our string theoretic discussion
suggests that they are connected because in that example, both are proportional to the
number of space time dimensions D. In particular, expressed in terms of ¢, the third order
pole in the GG-OPE should be £. Indeed, this relation between the two superficially free
parameters does not only hold in the context of string theory but in general. To see this,

one simply imposes the Jacobi identity on the algebra generated by T'(z) and G(z).

The algebra generated by T'(z) and G(w) is referred to as the N' = 1 superconformal
algebra and implies the existence of supersymmetry on the world sheet. The parameter
N counts the number of supersymmetries and in the case at hand, G(z) is the only

supersymmetry. To summarise, we write down the algebra in terms of OPEs,

c 2T (w) oT (w)
(z —w)? (z—w)2+z—w’

T()G(w) ~ 2oy + S (1.5
G2)G(w) ~ (z —gw)?’ zT(—wvj)
as well as the set of implied commutation relations of the modes,
(L L] = (m = 1) L + T5m(m? = Do
[Lim, Gr] = (5 = 7) Gmgr (4.6)

C
(Gr, Gs] = Lyys + 5(7"2 - i)&%s .

Clearly, m,n € Z, but we have not yet addressed what kind of moding the supercur-
rent possesses. It being a fermionic field, we can impose antiperiodic (Neveu-Schwarz or
NS sector) or periodic (Ramond or R sector) boundary conditions’ on G(z). The mode

expansions for each of these boundary conditions read

G(z) = Z G,z "3 with ¢ (4.7)
0

reZ+o

Recall that the Virasoro algebra contains a Lie subalgebra sl(2) spanned by Ly; and L.

Looking at (4.6) with antiperiodic boundary conditions (i.e. the NS sector), we note that

L1, Lo, G,1 close among each other, hence generating a Lie superalgebra. The theory
2

of Lie superalgebras and their representations has been the subject of chapter 2 and in

Here we mean the boundary conditions that are imposed on the SCFT when defined on the cylinder. If
mapped to the complex plane, a branch cut is introduced that interchanges the boundary conditions [155].
That is why G(2) in (4.7) is actually periodic in the NS sector in the sense that G(e*"™'2) = G(z) and vice
versa for the R sector.
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the classification of Lie superalgebras, the above Lie superalgebra goes under the name
osp(1]2).

We have seen that by introducing world sheet fermions, the conformal symmetry is
naturally extended to a superconformal symmetry. However, even though supersymmetry
on the world sheet is manifest as a symmetry of the action, it is not at all evident that
we obtain space-time supersymmetry that way. In the RNS formulation of string theory,
the fermionic zero modes in the Ramond sector generate an SO(1, D — 1) Clifford algebra
and the Ramond vacuum has to transform in a representation thereof. This gives rise
to states that transform as fermions with respect to the space-time Poincaré group. But
space-time supersymmetry is not obtained until one truncates the spectrum, which is
called the Gliozzi-Sherk-Olive or GSO projection [100,101]. From the perspective of the
superconformal symmetry on the world sheet, it turns out that the emergence of spacetime
supersymmetry is closely connected to a further extension of the world sheet NV = 1

superconformal algebra, which is the subject of the following section.

4.1.2 The N = 2 superconformal algebra and target space supersymme-
try

If an U(1) current J(z) is added to the N' = 1 superconformal algebra such that the
supercurrent G(z) separates into two parts of opposite charge, G(z) = G*(2) + G~ (2),
then it is enhanced to an N' = 2 superconformal algebra. The defining OPEs are (taken
from [138])

3¢ N 2T (w) +8T(w)

T(2)T(w) ~ z—w? (z—w? z-w’
T(2).J(w) (Z']_(“;U))z iGN I~y (48)
T(2)G*(w) ~ A + 0G*(w) J(2)GF(w) ~ + G*(w) :

(z —w)? z—w z—w

¢ N J(w) N T(w) + 30J(w) .

(z—w)? (2 —w)? z2—w

GT(2)G™ (w) ~

Here we set ¢ = %c. Written in terms of modes, the corresponding affine algebra reads

(L, Ln] = (m — 1) Lgsn + Em(mz — DOt s (Lo, Jn] = —nTmin s

[Lm,GE] = (2 —7) GE,,, [y Jn] = EMOman,  (4.9)
e

GGl = ) (TQ - %) Orts + %(T —8)Jrqs + Lrts [T Gﬂ = iGi-&-rv

where n,m € Z and r, s € Z+ o with 9 = 1 (NS sector) or ¢ = 0 (R sector) as usual. As for
the N' = 1 superconformal algebra, the A/ = 2 algebra also contains a subset of modes that
close among each other and thus generate a Lie superalgebra. These modes are Lg, Li1,
Jo, G;f and G*, and the Lie superalgebra they generate is called osp(2[2) [107,171]. Let

NI
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us also note that in the literature, the anticommutation relation of the supercurrent modes
sometimes takes a different form. However, the versions of anticommutation relations just

differ by a rescaling of G

The importance of the N/ = 2 superconformal algebra in string theory is due to its
relation to target space supersymmetry. In fact, the extension of ' = 1 to N = 2
supersymmetry on the world sheet, i.e. the existence of an U(1) current J(z) such that the
supercurrent decomposes as above, implies N' = 1 target space supersymmetry [155,185].
The converse holds as well. Given the target space supercharges, an U(1)-current with

the appropriate properties can be constructed [8].

4.1.2.1 The chiral ring and chiral primaries

In an N' = 2 superconformal theory (super)primary fields are defined by Virasoro
primaries that are also primary with respect to the supercurrents. That means, |h,q) is

(super)primary if
Lnlh,q) = GEh,q) = Ju|h,qg) =0 Vn,r>0, (4.10)

where h and ¢ are the conformal weight and the U(1)-charge of |h, q), respectively, i.e.
Lo |h,q) = h|h,q) and Jy |h,q) = q|h, q). Of special interest is the subsector of (anti)chiral
primaries. In the NS sector, they additionally to (4.10) satisfy the conditions

Gt |h,q) =0 (chiral), G~ |h,q) =0 (antichiral). (4.11)
2 2

This subsector is notable since, as we will see soon, it naturally carries a ring structure.

But first we note that in unitary theories we have the following property of primary states:
0 < (1al GTG*, Ind) = (hual [6T.6%, | g
2 2 2 2

Since h—2 > 0 and h+2 > 0 hold simultaneously, this in particular implies that h— % > 0.
Thus the conformal weight of primary states with U(1) charge ¢ is always bounded from
below, h > %‘. Equality in (4 12) is obtained for chiral states and antichiral states; in
these cases we find that h = £ and h = —5,
for which equality in (4.12) holds, we have found a simple characterisation of the chiral

respectively. Since these are the only cases

and antichiral subsector.

Using this simple characterisation, we next have a look at their OPEs. Suppose ¢,(z)

and ¢p(2) are chiral primary fields. Their most general OPE reads

9" P
Z Z Z _ :iJrhb) he—n (413)

c n>0

as it follows by conservation of the conformal weight. We stress that the field ¢. is not
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a chiral primary a priori. Using the conservation of the U(1)-charge ¢ and eq. (4.12), we
find that

Gat @ _ Joe|l _ g ol _ (4.14)
2 2 2 2

Thus the OPE in eq. (4.13) does not contain any singular terms. Thus the limit z — w

ha"'hb_hcg

is well defined and we can define a product between the fields ¢,(z) and ¢p(2) by

(b 81)(w) = lim Gu(z)dp(w) (4.15)

This is just the normal ordered product for fields with nonsingular OPE. A few comments
on this product are in order. First, terms with A, + hy — he — n < 0 vanish in the limit
z — w. Since n > 0 and eq. (4.14) holds, we see that only the terms with n = 0 and
he = & survive. This implies that the product as defined in eq. (4.15) of two chiral
primaries again gives a chiral primary. Therefore the product in eq. (4.15) induces a ring
structure on the subsector of chiral primaries, the so called chiral ring. This algebraic

structure makes this subsector so important and accessible [136,137] .

4.1.2.2 Spectral flow

There exists a continuous family of automorphisms of the affine algebra in (4.9) which
is commonly called the spectral flow and denoted by SFy. The modes of the N =2 SCA

are mapped according to the following rules [36]:

2
SFp Ly = Ly + 0J,, + %één : (4.16)
SFp Jy = Jn +0E6,, (4.17)
SFy G = GE,,. (4.18)

Here 6 € R. It is easily checked that the spectral flowed modes satisfy the commutation
1
2
moding of the supercurrents G* is replaced by integer moding and vice versa. In other

relations in (4.9). In particular, choosing 6 = 35, we see from (4.18) that half-integer

words, the boundary conditions on the supercurrents are changed by spectral flow.

As we have said before, in the RNS formulation of string theory, space-time fermions
arise in the R sector while space-time bosons come from the NS sector. The spectral flow,
however, connects both sectors. In particular, as it is an automorphism of the N' = 2
superconformal algebra, there is an equal number of fermionic and bosonic space-time
degrees of freedom. This shows again the deep connection between space-time supersym-
metry and the extension of the N' =1 to the N’ = 2 superconformal current algebra on
the world sheet [110].
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4.1.2.3 Twisting the AN/ = 2 superconformal algebra

We can redefine the energy momentum tensor of the N/ = 2 superconformal algebra

by performing a twist of the algebra with parameter y:
TX(z) :==T(z) + x0J(z) . (4.19)

This essentially means that the conformal weight of fields is changed proportionally to its

U(1) charge weighted by the parameter x. The operator algebra in eq. (4.8) is changed to

P ~ G280, 2t o
()G () (izx_)g;w) 8fi($)’
TX(2)J (w) ~ (Z__fo )3+(ZJ_(12)2+8Z‘]_(12, (4.20)

and all other OPEs, which do not involve the energy momentum tensor, are left unchanged.
From these OPEs it is clear that the case x = % is special. First of all, we see that the
quartic pole in the T'T" OPE vanishes. In other words, the energy momentum tensor is
primary after the twist. Furthermore, the d.J term in the first order pole in the GTG~
OPE vanishes. This property will turn out to be useful later when we discuss the N' = 4

superconformal algebra and the definition of physical states in that context.

However, we are paying a price for this. In fact, the T'J-OPE tells us that after twisting
the algebra, the U(1) current J is not primary anymore. In particular, its third order pole
is exactly given by ¢, which corresponds to introducing a global U(1) background charge
to the theory. From the gauge theory perspective, this is equivalent to twisting the U(1)
gauge bundle which means a change of the bundle topology. Therefore this twist of the
superconformal algebra by a parameter xy = % is referred to as topological twist [187,188].
We will denote the topologically twisted energy momentum tensor by T'W(z). In the
following, when we refer to a twisted algebra, we always mean an algebra on which the
topological twist x = % has been performed. The twist with parameter y = —% is the
inverse topological twist.

As implied before, the topological twist changes the conformal weight of the fields.
More concretely, the conformal weights of the superconformal currents all become positive
integers as summarised in table 4.1. Thus we only have an integer mode expansions for all
currents. In particular, note that G*(z) is a nilpotent current of order two and thus can
be considered as a BRST current with BRST operator G [145]. Indeed, we will see that
the N' = 1 gauge-fixed superstring can be considered as a twisted N’ = 2 ¢ = 2 string [29].
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conformal weight w.r.t. || Tt")(2) | GH(z2)
T(z) 2
T 2) 5

rofroed !
w
SN—
<
—
w
N—

= Nl

Table 4.1: Change of conformal weights by topologically twisting the N' = 2 superconfor-
mal algebra.

4.1.3 The N = 4 superconformal algebra

The N = 2 superconformal algebra gives rise to an N’ = 4 superconformal algebra by
lifting the Abelian current J(z) to a non-Abelian su(2) current algebra. Demanding that
both G and G~ are components of independent doublets under the zero mode algebra

su(2) then adds new fermionic currents as we will see below [29].

We will now construct the N = 4 superconformal algebra from eq. (4.8). First, we add
two currents Jt(z) and J~7(z) of U(1) charge +2 such that the following OPEs hold:

T T w) ~ 20 e () ~

z—w (z —w)

k N J(w)

5 (4.21)

z—w
These currents lift .J(z) to an s1(2); current algebra. The level k is determined by demand-

ing the consistency of the operator algebra. In order to see this, note that the J-modes
fulfill

[ijm] :néén—&—ma [Jm*]nizi] =+2 Js:fm’
A (4.22)
[J;r+, I 7] = Jmtn + 1k Opgm -

Using the Jacobi identity, we find that

lé(sk-‘,-n—i-m = [Jl) [J'r—z’——‘rv Jr;_]]

= _[Jrziv [Jl7 JrJLrJrH - [']rJLrJr? [J’I;Li? Jl]] = 2l%l5k+n+m

and thus k = ¢/2. For now we simply presume that we are given such currents J*+ and

J~ 7 satisfying the OPEs in (4.21) and postpone the discussion of their existence.

Having constructed the consistent su(2) ; current algebra, we need to specify the re-
maining OPEs. This is easily done by specifying the su(2) representation 7(z) and G*(2)
transform in. It is a natural choice to choose the smallest one possible. As T'(z) carries
zero U(1) charge, we say that it transforms in the 1 of su(2). G*(z) having charge +1

can be taken to be the highest weight state of a 2, whose lower component is

G (z) = [J; G (2)] = — 74 dw J—— ()G (2) (4.23)

- 2mi
Similarly, we take G~ (2) to be the lower component of a 2 with upper component

G (2) = -G (2)] = —% dw JH (w)G(2). (4.24)

™
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This way we obtain four supercurrents. The remaining OPEs are now easily determined
from the ones in eq. (4.8). For example, we find that

~ 1

GG ) = o 1{ do JH (2)GF ()G (w)

¢ . J(w) +T(w)+%8J(w)

IO G,
de J7 (x) (z—w)?  (z2—w)? Z—w

2w Jy,

27 w) | 9T (w)

(z —w)? z—w

The other OPEs are found along the same lines:

GH2)G(w) ~ GT(2)G (w),

2J " (w oJ (w
(w) | 04~ (w).

G~ ()G (w) ~ (4.25)

(z —w) zZ—w

Having the complete set of OPEs, we can determine the associated infinite-dimensional
Lie superalgebra generated by the modes using the standard procedure. Similar to the
superconformal algebras with N'=1 and N = 2 supercurrents, there exist a finite subset

of modes in the NS sector that close among each other. These are

Lo, L1, Jo, J&5, G; G*,, GF and G*,. (4.26)

2 2

N

They generate a Lie superalgebra that plays a prominent role in this thesis, namely ps((2]2)
[171].

Of course, the N/ = 4 superconformal algebra that we have just constructed may be
twisted as well. However, it is important to note that with respect to the twisted energy

momentum tensor, J* and J~~ have conformal weight zero and two, respectively, as it

is easily seen from the OPE

T™W (2)JE (w) = (T(2) + %&](z))Jﬁ[(w)

N (1F1)J*(w)  0JFE(w)
5 :

(4.27)

(z —w) z—w

Therefore one can deduce that G and G~ have conformal weight one and two with respect
to the twisted energy momentum tensor. Note that the former zero mode of J*+ becomes
the n = 1 mode Jfr * after twisting and similarly the former zero mode of J~~ becomes

the n = —1 mode J—; . Thus, after twisting, we have

G (2) =V, G7(2)], (4.28)
Gt (z)=—[JfT,G(2)]. (4.29)
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4.1.4 An example: RNS string theory on T*

As an example, let us consider RNS strings on T%. This is an A" = 1 SCFT with
four bosonic embedding fields X7(z) and their fermionic partners ¥7(z). The former
have conformal dimension one while the latter have conformal dimension % For later

convenience, we define their complex version by

Xi(z) = L (X% +z‘X2j+1) LX) = L (X X (4.30)
Wh(2) = g5 (9% gt . (4.31)

The coefficient in front of the linear combinations is chosen such that the OPEs are

5Tk 59k

X7 ()X (w) ~ ~ WL (2) Uh (w) ~

(z —w)?’ + z—w

(4.32)

and all other OPEs are non-singular. We know explicit realisations of the energy momen-
tum tensor T" and the supercurrent G that satisfy the commutation relations of the N’ = 1,

¢ = 2 superconformal algebra in terms of the matter fields,

T(z) = —0XI9X,; — W 0(W_); — 309 9(w,);, (4.33)
G(2) = V2 (0XT, +0XT_) . (4.34)

This makes manifest that (90X, ol ) and (0X7, \I/ﬂ) each give one N’ = 1 supermultiplet

each in the sense that
{G_%\I/{L}(z) = V20X/(2), {GiX'}(2) = V2U7 (4.35)

and similarly for X7 and R

It is well-known that there exists an U(1) current, the fermion number current, that
is defined by
J(z) = (VLU_;)(2). (4.36)

With this definition, the complex fermionic fields ‘I’Zt have fermion number 41 while the
bosonic fields are neutral. Furthermore, T is neutral as well but the supercurrent splits in

two components, one with negative and one with positive fermion number,

GT(2) = V2(0XIT, ;)(2), (4.37)
G™(2) = V2(0XIT_ ;)(z2). (4.38)

This new set of currents generate an N' = 2, ¢ = 2 superconformal algebra.

To further extend the algebra, we define two normal ordered products of fields as

follows:

JHH(2) =i(WLod)(2), T () =i(WLU2)(2). (4.39)

It is not difficult to see that both of these fields are currents in the sense that they have
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conformal dimension one. Furthermore, one notes that one of them has fermion number

+2 while the other has fermion number —2. Finally, the OPE between them reads

1 J(z
LG

JTH(2) T (w) ~ (4.40)

(z—w)? z—-w’

Hence we lifted the fermion current to a full affine su(2) algebra with level k¥ = 1. In
order to obtain an N' = 4 superconformal algebra, we define further fields to complete the

representations G and G~ sit in,

G~ (2) == {Jy "GT}(z) = —V2i ¢, (0XTT* )(2), (4.41)
GT(2) = {JSTGT}(2) = V2i e (0XITE ) (2) . (4.42)

By construction, we have uncovered the N' = 4 ¢ = 2 superconformal algebra within
string theory on T%. The matter fields arrange themselves in representations of the Lie
superalgebra psl(2|2) spanned by the modes in (4.26) as depicted in Fig. 4.1. We see that
the matter fields make up two small N' = 4 supermultiplets.

X2 oxX!

Figure 4.1: The N = 4 multiplets of string theory on T*

Finally, we perform a topological twist. As this just means to add background charge
changing the conformal weight of the fields proportional to their charge, it implies that the
fields U/ become “currents” (h=1) while the \II‘Zr have vanishing conformal weight now.
Of course, according to table 4.1, the supercurrents have now integer conformal weight as
well. Hence it makes sense to consider the action of the horizontal subalgebra only, that
is, the action of the zero modes. The multiplet structure with respect to the zero modes
is depicted in Fig. 4.2. This mimics the multiplet structure before twisting, but with the
fields \IifF replaced with G\Ifi. This is necessary as the zero mode action does not change the
conformal weight, but the \IffF have vanishing conformal weight after twisting. The partial
derivative, or equivalently the action of the Virasoro mode L_i, takes care of this. With
respect to the full A/ = 4 zero mode action the \I/?F are singlets, 7.e. they are annihilated by

all zero modes, except the fermion number. The twisted conformal field theory presented
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0X?

OX?2 ox!

Figure 4.2: The N = 4 multiplets of string theory on T* after the topologically twist
considering the zero-mode action only.

here will play an important role later on when considering compactification-dependent

physical states of string theory compactified on T%.

4.2 Space-Time Fields

We have discussed the superstring in terms of its world sheet description, i.e. we have
introduced supersymmetry on the world sheet by adding fermionic partners to the world
sheet conformal field theory. Since actually we are interested in space-time fermions, as
those are the ones appearing in effective low energy theories, one expects also the existence
of fields in the spinor representation of the space-time Lorentz group SO(9,1) (or rather
its Lie algebra s0(9,1)). In the following we will show how the world sheet fermions give

rise to space-time Lorentz generators and representations thereof.

In the Ramond sector, the zero modes of the world sheet fermions act on the Ramond

vacuum like the ten-dimensional gamma matrices because

(W6, ¢6) =1 (4.43)

If one has a representation of the Clifford algebra, a representation of the corresponding
Lorentz group comes basically for free. In general, the corresponding Lorentz generators
are given by

= [, ¥gl- - (4.44)

Therefore we expect the Lorentz currents in the superstring world sheet theory also to be

bilinears in the fermions.

Instead of the Lorentz group SO(9,1) we will be discussing its Wick-rotated version
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SO(10). First, we pair the ten fermions into five currents. A common choice [47] is
IOH® = (2t (4.45)

There is no need to introduce screening charges for the H* as has been argued in section

3.3.1. Having defined bosons H®, we can define vertex operators?

5
et where o-H = ZaaHa. (4.46)

a=1

The conformal weights of these operators are easily found to be h® = %Za a = %oﬂ.

The SO(10) space-time symmetry corresponds to a Noether current on the world sheet,

+i

i.e. a world sheet field of conformal weight 1. Furthermore, since e** gives rise to the

fermions and we are considering normal ordered products of them, we also recognise that
aq = 0,£1. Using eq. (4.46) then yields the conditions

=2, a,€{-1,0,1}. (4.47)

But this is just a description of the Dj root system, i.e. the root system of the Lie algebra
50(10). Indeed, recalling the OPEs

e H () H ()~ (2 — w)*PelletBH (5) - if B# —a,

‘ ' (4.48)
G ()M ()~ 2
we see that the modes
E; = fdz 2Metel (7) (4.49)

fulfill the commutation relations of the Kac-Moody algebra $0(10); at affine level one:

EXE ifa-B=—1,
(B3, B =S népyn + - 0H ifa-f=-2, (4.50)
0 otherwise .

The horizontal subalgebra, i.e. the subalgebra spanned by the zero modes, gives a real-
isation of the space-time Lorentz symmetry so(10). It is then possible to define states
transforming in any representation of the space-time symmetry so(10). We just need to
specify the highest weight state by giving a weight vector w in the D5 weight lattice Ap,.

By the above construction, this yields a vertex operator of the form

Su(z) = e« H(z), (4.51)

2In order to ensure the correct commutation relations of the vertex operators e'®* cocycle factors

should be included in the definition as well [131]. However, here and in the following, we assume that
a consistent choice of cocycles exists and they are implicitly included in the definition of these vertex
operators.
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which, by the operator-state-correspondence, is associated with a state
lw) = 5,(0)$2. (4.52)

This is the highest weight state of the representation specified by w. In order to obtain
space-time fermions, we need states in the 165. Therefore we choose one of the following
weight vectors:

w= (£33, £ £ +1) e L (27)°, (4.53)

where Z* = {—1,+1} is the group of units of Z. The weight vectors with an even number
of minus signs are the states of the 165, while those with an odd number of minus signs
give rise to the conjugate representation 16.. In the following, we will sometimes just
write S, where a denotes the spinor index of the 164, and .S, in the case of the conjugate

spinor representation 16..

However, we note that the fields S%(z) that correspond to the weight vector w have
conformal weight % This can be healed by using the ghost fields of section 3.3.3. Recalling
the conformal weight of e™¢? from eq. (3.138), we see that h (e_%‘f’) = %. So the actual

vertex operator we need to consider is

€298, (2). (4.54)

1
5.
In fact, (4.54) can be interpreted as the target space supersymmetry generating current

This fits with our earlier observation that physical Ramond states have ghost number —

in the —% ghost picture.

4.3 Introducing Supersymmetry in WZW Models

Like in flat space, there are basically two ways of extending WZW models on G to
include supersymmetry. FEither fermionic partners of the embedding fields in the non-
linear o-model action are added, which yields N' = 1 supersymmetry on the world sheet
in string theory terms; or one tries to achieve target space supersymmetry by choosing G
to be a Grassmannian manifold, the analogue of superspace in the flat case. In algebraic
terms, one would rather say that G should be a Lie supergroup instead of a Lie group.
Even though the first approach seems to be straightforward, there are some subtleties to
be dealt with [99,134].

4.3.1 Supersymmetric WZW models

The first objective in this section is to explain how to introduce world sheet supersym-
metry to the game. This might be thought of as the WZW analogue of going from bosonic
string theory to the RNS superstring. The resulting theory will be called a supersymmetric
WZW model, which has to be distinguished from the WZW model on Lie supergroups

that have target space supersymmetry rather than world sheet supersymmetry.
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So suppose we are given some current algebra J%. In the same way as fermionic degrees
of freedom are introduced in the transition from the bosonic string to the superstring, we
can introduce fermionic partners of the currents J¢. Because the supercurrent transforms
in a singlet with respect to the zero mode subalgebra of the current algebra, the fermionic
partners transform in the same representation as the currents, i.e. they transform in
the adjoint representation as well. So let us denote the fermionic partner of J¢ by °.
Including the new fields, the OPEs become

Je 00 ifabcjc(w)

T(2) T (w) ~ el aw (4.55)
i ab ,/,c w

T (2)0" (w) ~ fzf’u()) (4.56)
k‘liab

V()0 (w) ~ ——. (4.57)

It is possible to redefine the bosonic currents in such a way that their OPEs with the

fermions become nonsingular. From the OPE

2k ye(w)

zZ—w

P (80°) (2) () (4.58)

it is evident that one can linearly combine f9 (wbwc)(z) with J in such a way that the

fermions become free. Hence we define new currents
T2 = T + o 4 (V06°) (2) (4.59)

Using the Jacobi identity, one can check that these currents generate the same current
algebra as the J¢ except for a shift in the affine level due to the OPE between the bilinears

in the fermionic fields,

(k _ h\/),{ab N Z'fabcjc(w)
(z —w)? z—w

T 2) T (w) ~ (4.60)
where h" is the dual Coxeter number introduced in (3.71). Hence we see that the super-
symmetrised g current algebra is isomorphic to a g,_pv current algebra plus free fermions.
It is straightforward to write down the energy momentum tensor for the latter using the
Sugawara construction,

T() =~ o(7°%) - e o (veout) (4.61)

2k 2k ' '

Of course, one can always trade the new currents J® for the original ones J using
definition (4.59) in order to obtain the energy momentum tensor of the supersymmetric
WZW model. Using our result for the central charge of WZW models, we immediately
get the central charge of the supersymmetric WZW model,

(k—hY)dimg N dimg 53k —hY

? 5 ? dimg. (4.62)

g =
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In order to uncover the world sheet supersymmetry, we have to find a current that ex-

changes the supersymmetric partners J% and ¥“. A suitable current is

6() = 1 [ran(704) - e (woute)] (4.63)

which can be checked to define an A/ = 1 superconformal algebra together with T'(z).

For application to string theory on AdSs x S3, the supersymmetric version of the
sl(2), ® su(2)p current algebra is of particular interest [99]. Due to the automor-
phism of affine Lie algebras 5A[(2)k ~ §u(2)_y, this current algebra is the same as the
sU(2)_g @ su(2) current algebra. The $1(2) current algebra has been discussed at length
in section 3.2.4, where we also determined its Sugawara tensor, which we denote by T(;(2).
Hence the Sugawara tensor of the complete s(2), ®$1(2), current algebra can be written
as T(_p)(2) + T4y (2) and the total central charge of the associated Virasoro algebra is just

the sum of the central charges of the individual current algebras,

o . _ 2 2

Cal @@ (2) = @) T e, = T T (4.64)
Criticality of string theory on AdS3 x S3 requires the central charge to be ¢ = 9, which
yields the relation k = &/ when imposed on (4.64). So when having string theory in mind,
one has to make sure that the affine levels of the current algebras associated with the
AdSs3 and the S? part coincide.

For later use, the important point to keep in mind from this discussion is that the
RNS string on AdSs x S? x M with NSNS flux only, where M is some compactification
manifold, has an isomorphic description in terms of an SL(2) x SU(2) WZW model plus a
conformal field theory of six free fermions plus some internal CF'T on M. The existence
of such a description is crucial in order to reformulate RNS string theory in a manifest

target space supersymmetric way in chapter 5.

4.3.2 WZW models on Lie supergroups

The discussion of WZW models and its symmetries has been limited to Lie groups so
far. However, one might wonder whether WZW models can be defined on supergroups
as well. And indeed, it is possible, but one needs to take care in order to get the signs

straight. The arguments are basically the same as in the Lie group case in section 3.2.

The first problem in the Lie supergroup case is that there might be no Killing form.
However, we assume that there exists at least some supersymmetric invariant bilinear

form, which we will also denote by k45, defined by the supertrace
w8 = str (tAtB) , (4.65)

where the t4 are the generators of g in some representation such that 42 is not vanishing.

We will assume that this bilinear form inherits all properties of the Killing form, i¢.e.
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invariance, supersymmetry and consistency (cf. section 2.1.1). Here capital letters A, B, . ..
describe indices of the bosonic as well as of the fermionic generators. We introduce a

grading of indices by

0 iftdeg?®
|A| = , |A+ B| = (|A] +|BJ) mod 2, (4.66)
1 if t4 e g

where the Lie superalgebra was decomposed in a bosonic and a fermionic part g = g(o) @
g, Supersymmetry of the bilinear form implies that k48 = (—1)I4IBIgxBA We define

the inverse kap by
kapkP¢ = (—1)“4‘51?; =  kparPC = kapr®P = 52. (4.67)

The latter equality holds due to the consistency of the invariant form. In the Lie superal-

gebra case, the structure constants are defined by

[t4, 18] = i fAB1C . (4.68)
By definition, they are antisupersymmetric in the first two indices, fABC =—(-1) |AllB| BAC.
We further define
fABC = pAB_ .DC (4.67) AB _ (ABD 4
= Dk = f c= f KCD - ( .69)

The structure constants with only upper indices are completely antisupersymmetric be-

cause

ifABC = str ([t4,t51t) = str (t24519) — (—1) AWBlstr (£5144°)
— str (tCtAtB) (_1)|CHA+B| N (_1)|A||B|(_1)\B\|A+C\Str (tAtCtB)
= —(—1)lAlcl [str (t44CP) — (—1)IBlIC sty (tCtAtB)}

= —(—1)AClgr ([tA,tC]tB) = —(=1)lAllCl; pACB

After these preliminary remarks on the appropriate supersymmetric generalisation of
the Killing form and the structure constants, we now turn to the actual discussion of the
WZW model. Let g(z,z) take values in some Lie supergroup G with an associated Lie
superalgebra g that is simple. In the same way as a Lie group is a differentiable manifold,
G is a Grassmannian manifold and hence, from a string theoretic perspective, one might
think of the WZW model as a string moving in superspace, which then makes target space

supersymmetry manifest.

The classical theory can be constructed using the same arguments as in section 3.2.1
only with the supertrace replacing the usual trace in the action. Instead of repeating
the above discussion, we rather turn our attention immediately to the discussion on the

quantum level, i.e. the current algebra.
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The currents are defined as in the non-supersymmetric case. In particular, the holo-
morphic current is J(z) = —kdgg~!. As before, it generates the local left action of G.

The variation of the current is

5J = —kaEAtA + [eAtA) j],
= —kaeAtA + GAJCKCB [tAa tB]

= —kdeat™ + ieaf PrkopICtP (4.70)

where €4 is Grassmann-valued if and only if A is a fermionic index. We indicated one
commutator with a subscript minus to emphasise that this is an actual commutator in
contrast to the graded commutator [, -], which becomes an anticommutator if both entries
are fermionic. Using the Ward identity (3.21), we obtain

JATB _ (—1)IBIgAB  j(—1)IBIA+ICD pAB_ jC |

G- w) P (4.71)
This looks like a current algebra that corresponds to an affine Lie algebra except for some
unusual signs. Let us have a closer look at those signs. First we note that everything
works out if |B| = 0, i.e the bosonic part of the Lie algebra yields a current algebra as
expected. If |B| = 1, we have to distinguish two cases. Let us first assume that |A| = 0.
Then |C| = 1 because [g(9, g)] ¢ g(!). So the sign in front of the first order pole vanishes.
Furthermore, the second order pole vanishes completely since k48 = 0 if A and B have
opposite grading. We are left with the case |A| = |B| = 1. In that case, the OPE gets
an overall minus sign. This minus sign can be dealt with in both type I and type II Lie
superalgebras, but in view of the main subject of the rest of this work, we restrict to the
type I case. Recall that in type I Lie superalgebras the fermionic part further decomposes

as

gV =gi1 ®@g_1 suchthat [ger,g41] =0, [g(o)agil] C g+1- (4.72)

In other words, the fermionic part g*) is reducible as a g(®)-representation. But this means
that the OPE of two fermionic currents is only nonsingular if one of them corresponds to
an element in g,; and the other one to an element in g_;. Thus in order to take care
of the overall minus sign, we should rescale the currents J A, 744t ¢d € g+1- To

summarise, after the rescaling we recover the usual form of the current algebra

AB fAB 1C

A 7B K if ")
= 4.73
I (z —w)? z—w (4.73)

in the Lie superalgebra case. A Sugawara tensor can be defined by
1 A 7B

T(2) = ——+— : 4.74
(2) 2(k+hv)(J J7)kBaA (4.74)

Note the unusual order of indices in k4. The reason for this lies implicitly in the definition

of the inverse in (4.67). As in the Lie group case, we wish the currents J“(z) to be primary



84 Chapter 4. String Theory and Supersymmetry

with respect to T'(z). A calculation along the lines of (3.70) yields

ifABCKCB 2thA(w)
(z —w)? (z —w)?
k [k BkopT C (w) + (—1)AIBIgAC ko g T B (w)]

Z—w

TH)(TPTC) (w)kep =

A few comments on that expression are in order. The pole of third order vanishes due to
the symmetry properties of the bilinear form and the structure constants. The factor of
(—1)IAIIB in the second term of the first order pole comes from the fact that the fermionic

currents are Grassmann-valued and hence anticommuting. Furthermore, note that
(—D)AIBIAC g = (—1)AIC1AC kg = (—1)ICNIBIAC Kk (4.75)

Now it is clear why we chose the fairly unusual order of indices in the definition of 7'(z).
Only with this choice, the terms in the first order pole sum up to give the Kronecker delta

and hence the OPE for primary fields is reproduced.

Along the same lines, it can be checked that T'(z) indeed generates conformal trans-
formations. Since this calculation is a little tedious, let us here only derive the central
charge, which is given by the fourth order pole of the 77 OPE. Using that the J4 are

Virasoro primary, we obtain

T w) ~ 5 i ) ?{U @ fxw)?) <(zk iAj)? e —Qj)i;w_ w)) +0(-w)

B 1 krAB
C2(k+RY) (2 —w)

S+ O((z - w)*3) (4.76)

and so the central charge of a WZW-model based on a Lie supergroup with Lie superal-
gebra g is
_ kw*Prpa _ k(—1)lAls4 _ ksdimg
k+ hY k+ hV kE+hY -~

It is instructive to emphasise the importance of the correct choice of the order of indices in

(4.77)

the definition of the Sugawara tensor. The additional sign in the definition of the inverse
in (4.67) was crucial in order to be able to define a current algebra in the first place. This
minus sign required us to define the Sugawara tensor (4.74) with that unusual order of
indices in x such that the currents are Virasoro primary. In terms of the central charge we
observe that due to our choices the central charge of the Virasoro algebra is proportional

to the superdimension rather than to the dimension of g as a vector space.

4.3.3 The PSL(2|2) WZW model

Of particular importance in this work is the PSL(2|2) WZW model. From a string
theoretic point of view the interest in this model originates from the important work by
Berkovits, Vafa and Witten [30], which is reviewed in detail in chapter 5. Loosely speak-
ing, they succeeded to show that superstring theory on AdSs x S with NSNS flux only
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can be appropriately described by a PSL(2|2) WZW model equipped with an additional
superconformal structure on the world sheet, i.e. a set of fields living on the world sheet
that generate a (twisted) superconformal algebra. It is suggestive that the first step in
understanding superstring theory on AdSs x S? in a way that target space supersym-
metry is manifest would be to ignore the superconformal structure and investigate the
PSL(2|2) WZW model alone. A lot of progress has been made in this direction in the last
decade, which is reviewed in the present section [33,51,104, 105].

As has already been indicated in the last section, the Lie superalgebra psl(2|2) has
the property that its Killing form and hence the dual Coxeter number vanishes, h"Y = 0.
This has particularly remarkable consequences. The first one is the form of the Sugawara

tensor, which becomes

(T2TP)kpa . (4.78)

This agrees with the classical form of the energy momentum tensor, i.e. the constant
multiplying the normal ordered product is not subject to quantum corrections. Indeed,
the vanishing of the dual Coxeter number implies that double contractions of two structure
constants always vanish. This has the remarkable effect that the nonlinear o-model on
PSL(2|2) is conformally invariant even without including the Wess-Zumino term [33]. The
model with £ = 0, which corresponds just to the kinetic term of the WZW action, is often
referred to as the principal chiral model. However, the currents are only holomorphic and
antiholomorphic, respectively, if we consider the theory at the WZW point in moduli space
and it is only at this point where the powerful tools of complex analysis and vertex operator
algebra are directly applicable. Hence a common strategy in attacking the problem of
understanding the whole moduli space of conformal field theories with p/s\[(2|2) & Symmetry
is to first understand the theory at the WZW point and then deform this theory to
other points in the moduli space, hoping that the vanishing of double contractions of
structure constants might imply non-renormalisation theorems [105]. From a string theory
perspective, the WZW point corresponds to the case of a pure NSNS flux background which
can be treated in the RNS formulation as well. The deformation away from the WZW
point is then equivalent to adding RR flux to the background.

In the present work, we will try to contribute to the first step of the above strategy,
i.e understanding the PSL(2[2) WZW model and its connection to string theory with
NSNS flux only. Hence let us concentrate on the WZW point. Another effect of the

vanishing dual Coxeter number is that the central charge is independent of the level,

_ ksdimg
N k

c =sdimg. (4.79)
It actually coincides with the superdimension of ps((2|2) which equals —2. Conformal
field theories with ¢ = —2 are known and are closely connected to the topic of logarithmic
field theories [82,86,127]. Indeed, it has been argued that the PSL(2|2) WZW model
gives rise to a logarithmic field theory [105] like many other WZW models on supergroups
(see e.g. [163,167]). The properties of logarithmic conformal field theories, namely the

appearance of reducible but indecomposable representations, have a strong influence on
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the massless sector of the theory, which will be the topic of the next section.

4.3.4 The spectrum of the LCFT underlying the PSL(2|2) WZW model

Ultimatively, we want to describe the conformal field theory whose BRST cohomology
describes the physical string states on AdSs x S2. For the case where we just have pure
NSNS flux, this is the WZW model based on the supergoup PSL(2|2) [30]. Non-linear
o-models with supergroup targets lead to logarithmic conformal field theories [105, 163,
167]. We can therefore apply the general ideas of [86,87] in order to construct their
spectrum. This is best described as a certain quotient space of the tensor products of

projective covers as we will explain now.

The spectrum of the WZW model based on the supergroup PSL(2|2) can be described
in terms of representations of the affine Lie superalgebra based on psl(2|2). As is familiar
from the usual WZW models, affine representations are uniquely characterised by the
representations of the zero modes that simply form a copy of psl(2]2); these zero modes act
on the Virasoro highest weight states. In order to describe the spectrum of the conformal
field theory, we therefore only have to explain which combinations of representations of
the zero modes appear for left- and right-movers. In fact, in this section we shall only
study these massless ‘ground states’, and thus the affine generators will not make any
appearance. The massive spectrum (for which the affine generators will play an important

role) will be discussed in detail in chapter 7.

The structure of the ground states H(?) should be determined by the harmonic analysis
of the supergroup. This point of view suggests [158] that #(?) is the quotient of H by a

subrepresentation N

HO =H/N,  where H= D Plir.j2) © P(1.2) » (4.80)
(J1.J2)

and the sum runs over all (allowed) irreducible representations £(j1, j2), with P(j1, jo) the
corresponding projective cover. The relevant quotient should be such that, with respect

to the left-moving action of ps((2|2), we can write

HO = P P, d2) © L1, j2) (4.81)

(J1,42)

and similarly with respect to the right-moving action. Furthermore, the analysis of a
specific class of logarithmic conformal field theories in [86, 87] suggests, that the subrep-
resentation N has a general simple form that we shall explain below. This ansatz was
obtained in [86] for the (1, p) triplet models by studying the constraints the bulk spectrum
has to obey in order to be compatible with the analogue of the identity boundary condition
(that had been previously proposed). In [87] essentially the same ansatz was used in an
example where a direct analogue of the identity boundary condition does not exist, and
again the resulting bulk spectrum was found to satisfy a number of non-trivial consistency

conditions, thus justifying the ansatz a posteriori. Given the close structural similarity
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between the projective covers of [87] and those of the atypical representations above, it
seems very plausible that the ansatz of [87] will also lead to a sensible bulk spectrum in

our context, and as we shall see this expectation is borne out by our results.

In the following we shall only consider the ‘atypical’ part of HO) | since, using the
mass-shell condition, these are the only representations that appear for the massless string
states. Actually, it is only for these sectors that the submodules A are non-trivial (since
for typical (j1, j2), the projective cover P(j1, j2) agrees with the irreducible representation
L(j1,72), and hence N has to be trivial).

Following [86,87] we then propose that the subspace N by which we want to divide

out H, is spanned by the subrepresentations
NEG) = (steid-ide () (PG -5 eP0)) | (4.82)

+

where s7

was defined in section 2.2.3.1, and j > max{0, $} with o = £1. It is easy to see

from the definition of s, see Fig. 2.8, that the dual homomorphism equals
(sF) =sT . (4.83)

Together with (2.52), we can then write the two terms as

$ el (PG-5ePy) =M -5 ePh)C (PU)eP))

ides?, (PG -3)8P0) =Pli-HeMLG)C(Pl-5ePi-3),
(4.84)
and therefore the two subrepresentations in (4.82) are individual subrepresentations of

different direct summands of . Dividing out by N therefore identifies

(PG @P() D> MF(i=5)@PG) ~ Pli-§) @M () c(P(i-5eP(-9).
(4.85)
Note that this equivalence relation does not preserve the Z-grading: for example, by

considering the corresponding heads, we get the equivalence relation

(PH@PG)) D Laa(f— %) ®@Lo(d) ~ Lo(j—§)@Ls1(d) C(PG-5)RPG—9)) -

(4.86)
We shall sometimes denote the corresponding equivalence classes by [ - |. It is not difficult
to see that this equivalence relation leads to a description of H(? as in eq. (4.81). Indeed,
iteratively applying the above equivalence relation we can choose the representative in
such a way that the right-moving factor, say, is the head of the projective cover; this is
sketched in Fig. 4.3.

Before concluding this subsection, let us briefly comment on possible generalisations
of our ansatz to WZW models on other supergroups, for example those discussed in [158].

Let us label the irreducible representations by A, and their projective covers by P(\).
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P(j) @ P(5) 5P +%)
P(i+5)©PG+5) j+ ) 9P+ )

Figure 4.3: Schematic presentation of the equivalence relation. Each big square represents
a projective cover P, and the shaded regions describe the subrepresentations MZ of P.
The red dots mark exemplary equivalent irreducible components £ ® L in P(j) @ P(j)
and P(j + §) ® P(j + §), respectively. Note that by applying the equivalence relation,
the right-moving irreducible is lifted by one level, while the left-moving one is lowered one
level, until the right-moving irreducible is at the head of some projective cover.

Thus the analogue of (4.80) is

=H/N , where  # = @P(A) 2P\ . (4.87)
A

In order to construct A it is again sufficient to concentrate on the atypical sectors since
otherwise P(\) = L()) is irreducible and the intersection of A" with P(\) ® P(\) must be
trivial. If A is atypical, on the other hand, P(\) is only indecomposable, and it contains a
maximal proper submodule that we denote by M(A). Its head is in general a direct sum
of irreducible representations £(u;). Each direct summand generates a submodule M (u;)
of P(A) which is covered by the projective cover P(u;). Thus we have the homomorphisms
Su; 1 P(pi) = P(A) via

S P(i) = M) = PV) | (4.88)

The dual homomorphism are then of the form s : PY(\) — PY(u;), where the dual
representation MV is obtained from M by exchanglng the roles of g+ and g_;. If we
assume the projective covers to be self-dual, PV (u) = P(u), the dual homomorphisms are
of the form

Sy, P(A) — P(ua) - (4.89)

It is then again natural to define N as the vector space generated by

Ny = (s @ T —id 0 57) (P(ui) @ POV) - (4.90)
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By the same arguments as above, the resulting quotient space H(9) then has the desired
form [158]
1O =PPrn oLl (4.91)
A

with respect to the left-action. Thus it seems natural that our ansatz for the bulk spectrum
will also apply more generally to WZW models on basic type I supergroups, provided that
the projective covers are all self-dual PY(\) =~ P()).
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CHAPTER 5

The Hybrid String

In this chapter, we will review the construction of the hybrid string. The hybrid formalism
allows one to redefine the RNS worldsheet fields in such a way that A/ = 1 space-time su-
persymmetry in the noncompactified dimensions is made manifest. First applied to string
compactifications to four dimensions [15], the idea was soon extended to be applicable to
compactifications to six dimensions as well [29]. Shortly afterwards, it was shown that this
concept can be used to discuss superstrings moving on an AdS3 x S? x M? gravitational
background with RR-flux [30]. Furthermore, it was argued that in the case of vanishing
RR-flux, superstrings on AdSz x S® x M* are appropriately described by an PSL(2|2)
WZW model.

5.1 The Gauge-Fixed Superstring as an N = 4 Topological
String

Superstring theory on some target space is described by a nonlinear o-model on the
world sheet. This o-model needs be quantised and a convenient and covariant method for
doing so is given by the BRST procedure; the superdiffeomorphism invariance of the world
sheet is fixed, thereby introducing two be-systems whose generalities were discussed in sec-
tion 3.3.1. Namely, these are a (2, —1) bc-system, whose doublet of fields are consequently
called b and ¢, and a (%, %) be-system with fields denoted by 8 and . A residual gauge
invariance survives by choosing the gauge parameters to be proportional to the c-ghost.
The current generating this residual gauge symmetry is the BRST-current jgrst. The
spectrum of the theory is then given by the cohomology of the zero mode of jgrsT and
demanding that physical states have ghost number +1. In addition, the ghost-picture has
to be fixed.

This is all standard string theory in the RNS formalism. The interesting fact is that,
even though the superdiffeomorphism invariance has been fixed, one can identify a set
of fields within the gauge-fixed symmetry that gives rise to an N' = 2 superconformal
algebra. By the construction in 4.1.3 this can be extended an N = 4 structure. We will

see how the fields have to be chosen and which form the physical state conditions take.

First, let us give the set of fields satisfying the OPEs of the N' = 2 superconformal
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algebra [16,17,28]:
T=Tyx-1, G'=jerst, G =b, J=Jghost =cb+nt, (5.1)
where the BRST current jprst is explicitly given by
FBRST = YGmatter + ¢(Timatter — 3807 — 3708 — bdc) — *b + 9%c + d(cn) . (5.2)

A few comments on the notation are in order. Txn—1 = Thatter + Tghost and G =
Gmatter + Gghost are the energy momentum tensor and the supercurrent of the gauge-
fixed N' = 1 superstring theory, respectively, and Jgnost is the ghost number current. Note
that the algebra as given above does not give the OPEs of an N’ = 2 superconformal al-
gebra but rather a twisted version of it, e.g. note that G™ and G~ have conformal weight
one and two, respectively, and by construction the TT-OPE has no anomalous term since
the superconformal ghosts have been included. Of course, the algebra can easily be un-
twisted by adding a term %&] to T. For a proof that the fields in (5.1) indeed generate
a topologically twisted A/ = 2 superconformal algebra the interested reader is referred to

appendix D.1.

The physical state conditions in the BRST quantisation of the superstring can directly
be rewritten in terms of the twisted N' = 2 superconformal generators. From the point
of view of the RNS formulation, G and J are nothing but the BRST current and ghost

number current, respectively, and hence physical states have to satisfy
Gi®=(Jo—1)®=0  up toa BRST invariance d~d+GIA. (5.3)

Furthermore, physical states are independent of the zero mode of ¢ as it has been discussed
in section 3.3.3. This is not yet covered by the conditions above. Recall that we have to
restrict to the so called small Hilbert space which is given by the kernel of ng. Thus we
see that physical states of the gauge-fixed N' = 1 string in its critical dimension cannot be
characterised using only the N/ = 2 superconformal algebraic structure. But noting that
the composite fields

T =(en), T =(0¢) (5.4)

together with the ghost current J generate an affine su(2) algebra, we can lift the N' = 2
superconformal algebra to an A/ = 4 superconformal algebra. The additional (twisted)

super currents are given by [30]

Gt =n, (5.5)
G~ = b(e”Grater + ne**0b — cOE)
— &(Tmatter — 3807 — 3798 + 2b0c — cdb) + &€ (5.6)

Then restricting to the small Hilbert space can be written as the condition CNJ(T P =ny® =0.

Since the ng-cohomology is trivial, we may also write the gauge parameter A as noA’. Doing
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so, the physical state conditions in the N' = 4 context read

GioT =GioT = (Jy—1)d" =0, OT~ T +GIGTN (5.7)

We have added a superscript + to ® in order to indicate that this state has J-charge one.
These are exactly the conditions on physical states of the ' = 4 topological string [29]. So
we have seen that the gauge-fixed NV = 1 superstring inherits the structure of an N' = 4
topological string such that the tools of topological string theory can be used to gain

results in critical N' = 1 string theory.

The physical state conditions in (5.7) can be written in a more compact form as the
(G, C:’ar)—cohomology of the kernel of Jy — 1. By the (G{, @3)—Cohomology we mean the
intersection of the kernels of Gar and @ar modulo states in the image of the product Gg G’g .
Therefore, we denote the spectrum of physical states of the N' = 4 topological string, and
hence of the A/ = 1 superstring, by

gphysical _ H?czg,ég) (ker(JO — 1)) (5.8)

5.2 Redefinition to Superspace Variables

In the previous section we uncovered the structure of an A" = 4 topological algebra
within the gauge-fixed N/ = 1 string theory in its critical dimension. In this section, we
will give a redefinition of the world sheet fields of the latter in Green-Schwarz-like variables
such that target space supersymmetry in six dimensions is manifest. Rewriting the NV = 4
superconformal generators in these variables then gives us a way to determine the physical

spectrum in a manifestly target space supersymmetric manner.

5.2.1 Six-dimensional superspace embedding fields

Starting from the field content of the RNS world sheet theory, we will now define the
world sheet fields of the hybrid string. Since the process of redefining the world sheet
fields is technical and lengthy, the reader is advised to use fig. 5.1 to keep track of the

various steps and fields.

In section 3.3.3 we discussed the physical state conditions in the RNS formulation. In
particular, we argued that a copy of the physical spectrum exists for any integer multiple of
the ghost picture and one should pick one picture to determine physical states. However,
picking a ghost picture breaks space-time supersymmetry because the space-time super-
symmetry currents carry ghost picture themselves (We will soon give an explicit form of
the space-time supersymmetry currents). Hence space-time supersymmetry is only recov-
ered after applying the necessary number of ghost picture raising and lowering operators

in order to end up in the chosen ghost picture.

Let us assume the world sheet CFT separates into a bosonic current algebra J¢, free
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fermions ¥® and the ghost systems. The examples to keep in mind are RNS string theory on
a flat Minkowski background where J* = i0X* and on an AdS3 x S? background [65,99].

The fermions are supposed to be normalised as

nab

YO ()9 (w) ~

P (5.9)
We saw above how to construct fields corresponding to states that transform in spinor
representations of the space-time symmetry in section 4.2. In particular, we found fields
S, transforming in the 165 and 16, representations of SO(10). We can break these spinors
down to spinors in six dimensions by fixing the last two entries in w to be e.g. —{—%, so w takes
the form w = (i%, i%, i%, —1—%, —i—%) where the number of minus signs depends on whether
we are consider chiral or antichiral Weyl spinors. This way, we break the Majorana-Weyl

representations of SO(10) down to representation of SO(6) ~ SU(4) as follows:

16 — 2 (4s B 4de) , 16 — 2 (4B 4,) . (5.10)

Demanding CPT invariance, the pseudo-real nature of 4. requires the six-dimensional
supersymmetry generators to transform in a doublet of two 4.’s [172]. Using (5.10), we
can break down the ten-dimensional supersymmetry generators transforming in the 165 to
six dimensions and identify the appropriate doublet. The six-dimensional supersymmetry

generators in the —% ghost picture read

& = 7{(12 <6—%¢+36.H15H§NS>(Z) : (5.11)

where € = (4, £,+) with an even number of minus signs and, for flat compactifications,
H, gNS = H* + H®. If we are considering nontrivial compactification manifolds M?, i.e. if
M? is not the four-torus T4, it can be shown that N = 1 space-time supersymmetry in

six dimensions requires the internal CFT to contain a boson HgNS whose OPE is
H(P}NS(Z)HESNS(UJ) ~ —2In(z —w) (5.12)

such that the space-time supersymmetry generators still take the form in (5.11) [8]. This
is closely connected to the extension of the A/ = 1 superconformal algebra on the world
sheet in the RNS formulation to an extended superconformal algebra, which will be im-
portant later in this work when determining the massive RNS spectrum of states that are
independent of the choice of M?*.

But coming back to our present discussion, the generators in (5.11) have been defined
in the —% picture, but an equivalent expression can be found in any n — % picture with
n € Z by applying picture raising and lowering operators. Since our intention is to make
space-time supersymmetry manifest, we should fix the ghost picture in such a way that

acting with a supersymmetry generator on any state followed by its hermitian conjugate!

'Here, by the hermitian conjugate of a supersymmetry generator ¢ we mean the supersymmetry gener-
ator ¢ such that the anticommutator is proportional to the translation operator, [q:;, @+ x oty Py
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does not change ghost picture. Otherwise we would need to make use of the picture raising

1
2

picture, i.e. it takes the form in (5.11), while ¢ lives in the —|—% picture, ¢ — ¢ = Zq,

and lowering operators to recover the original state. Hence, we pick ¢g_ to be in the —

where Z denotes the picture raising operator. The new rather complicated expression for
¢} and a check that they indeed give rise to a supersymmetry algebra in six dimensions
can be found in [30].

Having fixed the ghost picture of the space-time supersymmetry generators in a con-
sistent way, we could make its action manifest by constructing fields that transform in
appropriate representations under the supersymmetry algebra. One should have the su-
perspace formulation in mind, where supersymmetry generates translations in the odd
directions?, [¢%, 9;]+ = 5555. Indeed, using the RNS fields, one can construct fields trans-
forming like this as follows [17,30]:

0 (z) = exp (3¢ + %ele + %HENS) , (5.13)
05 (2) = exp (—3¢ + e H' — SHENS) (5.14)

where € now has an odd number of minus signs®

. In other words, with respect to the
six-dimensional Poincaré group, it transforms in the 45. Here a subtlety shows up as
6 and 0 are not independent fields [17,30], so not both can be assumed to be free
fields. Following the literature, we will work with 6 = 6 and discard 6. This breaks
half of the supersymmetry charges, however, they can be recovered by using harmonic

variables [18,19,94].

The conjugated momentum to ¢ denoted by p. is defined such that the following OPE

holds: 5
pe(2)0°(w) ~ ——. (5.15)

zZ—Ww

A explicit construction of the conjugated momentum of basic RNS fields can be given by
pe(2) =exp (—5¢— be;H' — & gNS) (5.16)
because the OPE is easily seen to be

el — SHEN) exp (3¢ + 5&H' + §HEN))
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|
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—w ) . (5.17)

Note that even though p, has a lower spinor index, its index € has an odd number of minus
signs due to the additional minus in the definition in (5.16). Thus, since €, € = (£3) with
an odd number of minus signs, we know that € - € = 3 implies that ¢ = € and in turn

e-€ = —1 implies € # €. Using this equivalence, (5.15) follows and thus verifies the explicit

2The Kronecker delta of spinor indices e should be read as 6% =1 if ¢ = —e and zero otherwise.

3Usually, an upper € index implies an odd number of minus signs while a lower € index means that it
contains an even number of minus signs. However, the conjugated momentum p. is an exception to that
rule.
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form of p,.

We have defined fermionic embedding coordinates €. However, our goal is to have a
world sheet description of string theory that consists of two non-interacting CFTs - one
being manifest target space supersymmetric in six dimensions and the other described by
usual RNS fields in the remaining four dimensions. In order to achieve that both CFTs do
not interact with each other we have to make sure that the OPEs between fields of the two
CFTs are nonsingular. But due to the appearance of HCRNS in the fermionic embedding
coordinates, this will not be the case whenever the RNS field in the compactified directions,
say XENS, carries non-vanishing U(1)-charge with respect to the current i(‘)HgNS. We can
take care of this singularity realising that #¢ and p. both come with a contribution of the
ghost field ¢ as well. The idea is to add a ¢ contribution to XgNS in such a way that the
singular part of the OPE is canceled. This is done by redefining the fields of the internal
CFT as

S B = (e ES) = (). 519

This makes sure that the OPEs are nonsingular, where we assumed that the U(1)-charge
of XgNS is n. The appearance of ix seems a little arbitrary at this point but must be
included, so that there exists a linear combination of the fields ¢, x and HENS that has
nonsingular OPEs with all other fields defined so far. This linear combination, called p,
will be discussed in detail later. More abstractly, (5.18) can be written as a similarity
transformation of the superconformal theory that describes the internal manifold M gen-
erated by R = §dz (¢ + m)JgNS, where JCRNS = i@HgNS. This means that every field
of the superconformal field theory describing M, say VCENS, is transformed by the adjoint

action of R:
o0

VES = Ad(R)VENS = efVINSe R =3 " Lad(R)VENS (5.19)
n=0
where ad(R)VENS(w) = [R,VANS(w)]. This defines the so called Green-Schwarz like
variables denoted by a GS superscript. Let us consider what the similarity transformed
fields look like for fields BN of U(1)-charge n with respect to JENS, i.e. for fields that
satisfy the following OPE:

RNS
TENS () BNS 1) o PXC 1), (5.20)
z—w
Because
ad (e (G ) 1)(2)) S (@) = nlin + 000w (520
the Green-Schwarz like field associated with x2S (w) reads
X&) = D g nlis + o)™ xS (w) = e ES (w), (5.22)

which reproduces (5.18) as required. In particular, the transformation (5.18) holds for the

supercurrents C%RNS, which will be important later.
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Let us stop a moment and look at what we have done so far. We took the fermions that
are added to the world sheet current algebra and, assuming they are free fields, partially
redefined them to obtain fermionic superspace embedding coordinates in six dimensions
plus RNS fields describing the internal manifold. The latter have been similarity trans-
formed such that they have a nonsingular OPE with the superspace embedding fields. But
we did not yet take care about the bosonised superconformal ghosts ¢, k. After the re-
definitions and similarity transformations performed so far, they will have singular OPEs
with both the superspace embedding fields and the RNS fields in the four compactified
dimensions. However, we might look for a combination of the bosons in our description
which does have nonsingular OPEs with the remaining fields. Let us denote the general
linear combination by

p({ai}) = a1 + agirk + azi HENS | (5.23)

The relevant OPEs of dp({c;}) with the other fields are

R

n K n(—Oé]_ + oo + a3) en(¢+iH)XRNS (w)
Op(2) (e (¢t )X%NS) (w) ~ ( C ) ,

Z—w

from which we conclude that they are nonsingular if and only if oy = 2as = 2a3. Further
demanding the standard normalisation of bosons, p(z)p(w) ~ —In(z — w), fixes ag = 1.

This finally defines the unique free boson
p=—20—ir—iHZNS (5.24)

which has nonsingular OPEs with the superspace embedding fields as well as the internal
superconformal field theory. The contribution of p to the full energy momentum tensor
is computed by determining the conformal weight of €™”. For convenience, we recall the

conformal weights of the linear combined bosons:
h (e"¢¢) = —%ni —ng, h(e™*)=—-In2 - Lin,, h (e"HHgNS) =—n%. (5.25)

Recall that ngNS can be seen as a sum of two bosons and thus the conformal weight
of en#Hins is twice the usual conformal weight —%n%[ that is obtained when bosonising

complex fermions. Thus
h(e™) = —1(—2n) — (—2n) — 1(=in)? — Li(—in) — (—in)?
=—in’+3n. (5.26)

Having found the conformal weight of the exponentials of p, we can easily write down its

energy momentum tensor:
T = —%(8,0)2 + %02p. (5.27)

We are still not done since we have ignored the conformal ghosts b and ¢ up to now.
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In the hybrid formulation, the conformal ghosts are bosonised in the standard way,
b=e and c=¢", (5.28)

hence adding yet another boson ¢ to the theory, whose OPE is nonsingular with any other
field of the hybrid formulation by construction. The known conformal weights of both b
and ¢ can be used to determine the energy momentum tensor in the bosonised form, which
is

T° = —%(80)2 + %82(2’0) . (5.29)
Furthermore, since the OPEs of p and o with all other fields and among each other are
nonsingular by construction, the energy momentum tensor of the complete po-system is

just the sum of the individual energy momentum tensors,
TP = —% ((9p)* + (90)%) + 30%(p + io) . (5.30)

This concludes the definition of fields involved in the hybrid formulation. If the 10-
dimensional target-space M!? decomposes as M% x M? in such a way that M5 is maxi-
mally supersymmetric, it consists of

1) a current algebra J® describing the geometry of M6,

2) 444 anticommuting bosons p. and 6¢ that can be understood as the fermionic coor-

dinates in the superspace version of M9,
3) a topologically twisted N' = 2 ¢ = 2 superconformal field theory on M* and

4) two additional free bosons p and o from now on referred to as the po-system.

The equivalence of the hybrid description and the RNS formulation of string theory in

a flat Minkowski background is shown by complete bosonisation in section 5.2.3.
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5.2.2 Superconformal constraints

Starting from the field content of the covariant gauge-fixed superstring, we have defined
new fundamental world sheet fields such that space-time supersymmetry becomes manifest.
However, there is more to string theory than just the matter content of conformal field
theory on the world sheet. It also comes with a description of which string states should
be considered to represent nonequivalent physical states. As we have seen, this description
can be formulated using the N' = 4 extension of the N’ = 2 superconformal algebra in
(5.1). Thus in order to identify RNS string theory within the larger manifestly space-time
supersymmetric theory, this algebra has to be formulated in terms of the new fundamental
fields. Once that is done, we can extend it to its N/ = 4 version and then look for physical

string states by using the cohomological characterisation in (5.8).

Let us start with the energy momentum tensor in the new fundamental fields. Having
determined the energy momentum tensors of the p- and o-systems above, we can use the
fact that we are mostly dealing with free fields to obtain the whole energy momentum

tensor in the hybrid formulation,
T =Ty — p.0o — % ((0;))2 + (80)2) + %OQ(p +i0) + TSS, (5.31)

where T'7 is the energy momentum tensor of the bosonic embedding coordinates and Tg’s
is the (similarity transformed) energy momentum tensor of the SCFT in the compactified
space. As a side remark, we can extract a severe restriction from this energy momentum
tensor on the possible current algebras generated by J¢ and hence on possible geometric
backgrounds of string theory. Since T'(z) as given in (5.31) is just a reformulation of
critical string theory including the superconformal ghosts, the associated central charge is
supposed to vanish. But calculating the central charge from (5.31) directly yields a central
charge of ¢y + cp9 + c,o in a hopefully obvious notation. Note that the superconformal
field theory on M is topologically twisted, hence it does not contribute to the total central
charge. The po system contributes a central charge of two (cf. eq. (3.143)) while the central
charge of the Grassmann-valued fields is —8. Thus the total central charge only vanishes if
the central charge associated with T'7 is ¢ = 6. Therefore allowed background choices are
flat Minkowski space, where the central charge is the same as the number of dimensions,
and sl(2), @ su(2)r ~ AdSs x S? provided that k = k" (cf. section 4.3.1).

But let us come back to the question how to express the N' = 2 superconformal
algebra in terms of the manifest space-time supersymmetric fields. The G~ -current is

easily reformulated as it coincides with the b-ghost. Hence G~ = €. The U(1)-current is
J = cb+né = ido +idk = d(p +io) + JS (5.32)

where we used the definition of p in (5.24) and JENS = i@Hg{NS to show that in Green-

Schwarz like variables one has

JES = Ad [(ir + ¢) JENS] JENS = JENS 1 29(p + ir) . (5.33)
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It is important in this calculation to keep in mind that the OPE of HENS with itself has
an additional factor of two (cf. (5.12)).

The hardest but arguably most important part is expressing G* in hybrid variables.
For this, we recall the form of it in RNS variables from (5.1):

G" = (YGmatter) + ¢(T7 + TPV + 3T%) — (7%b) + 9%c + d(ctn) , (5.34)

where TP7 and TP are the energy-momentum-tensors of the respective ghost systems.
Following [30], we first note that

— (¥%0) = —(e7*7 P), (5.35)

where P is the antisymmetrised normal ordered product of all four p.. To see this, we use
that

P i= (4 0P Pt P ) = (720750 (5.36)

to evaluate the normal ordered product
(e_Qp_iU P) = <62(¢+m)_i‘7> = (726) . (5.37)

In order to rephrase the term ¢(77 +T77+1T") in hybrid variables, we note that 777 +7"%7
coincides with the full hybrid energy-momentum tensor without the o-contributions since
those come from 7. Furthermore, we have to realise that (¢T%) = (—2cbdc) as ¢ =0

due to the anticommuting nature of ¢. Using this and (5.31) we can rewrite

o(Ty + TP + LT%) = ¢ic (TJ — pdO° — L ((9p)? — (90)?)

+102(3p +io) + TgS) . (5.38)
Finally, the last term 0%c + 9(c&n) can be expressed as
%c+ 0(ctn) = 9*(e) + d(e (Ap + JEP)). (5.39)

The most interesting term is (7Gmatter) as it depends on the specific model considered. For
example, in flat space the supercurrent Gatter in the RNS formulation is of the form v, J™,
while there is an additional trilinear term in the fermionic fields if we are considering string
theory on AdSgz x S3 x M (cf. eq. (4.63)). In order to analyse this term, let us separate
Gmatter i a six-dimensional hybrid part, say G®, and a four-dimensional compactified

part, Gmatter = GO + GgNS. For example, in flat Minkowski space, we have

5 9

GO =Y " (T") and GEN =" (T*yy). (5.40)

n=0 =06

The part of (7Gmatter) that corresponds to the internal supercurrent G%NS can be written
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as

(GES) = (1GE™T) + (1620) = T 4 (e Pac™) . (5

The first term in the above equation follows directly from the definition of Green-Schwarz
like variables, G+GS G+RNS The second term, on the other hand, is more involved.
Using that GC = _ngRNS and (5.36), one obtains

( ,QPPG_GS> B ( 2¢+2mG—GS> ( G—GS> < GERNS), (5.42)

Let us now turn to yG% and within that term to the universal part Gﬂat P J™ that
corresponds to the RNS supercurrent in flat space. In order to obtain how this may be

expressed in hybrid variables, we first determine the OPE of two p.’s:

i HRNS

Pe(2)pe(w) = (2 = w) 57 (T30 3HHHES () boms IS HES )} (5.43)
Let us assume that € # €. Then we extract from the OPE the normal ordered product
_h—sgRNS _ 2
(pepe)(2) = (€07 HES =3O IT) () (5.44)

The nice fact about the normal ordered product above is that %(e + €) has one component

equal to £1 while all other components vanish. Thus the second exponential in (5.44)

reproduces the RNS fermion fields in the six uncompactified dimensions times a factor
—Cb—iHRNS .

e ¢ . We obtain

_

71HRNS

((pepe)T?) = (7% bm ™). (5.45)

2
Here we made use of the bispinor representation of vectors in six dimensions, so we can
write the current J" as J = —J¢. The latter is normalised such that the above relation
holds. Apart from the factor including the ghost fields, the right-hand side coincides with
the matter supercurrent in the RNS formulation. This additional factor can be taken care

of by taking the normal ordered product with e™7,

= )T = (g™ = (16h) (5.46)
as the OPE satisfies e_p(z)e_¢_iHCRNS (w) = O(1). For flat target spaces, this would be it.
However, we are ultimately interested in nontrivial target space geometries, in particular
AdS3 x S3. Here additional trilinears in the fermions in G% arise and we will now argue
that they can be expressed in terms of p. as well. In order to do that, let us consider the
case € = € such that e¢-€ = 3. Then, according to (5.44), pe(z)pe(w) = O(z —w) and hence
(pz)(z) = 0. But by taking the derivative of the OPE with respect to w we can obtain a

nontrivial normal ordered product, in particular

(pe0p)(=) = — (707 HE el ) (2) (5.47)

This is a normal ordered product of three RNS fermion fields in the six uncompactified
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dimensions times factor e~%e~H"". It is convenient to distinguish the RNS fermion

fields in the six uncompactified dimensions. Let 1" denote the superpartners of the sl(2)-
currents and x” the superpartners of the su(2) currents corresponding to AdSz and S3,

respectively. It is also assumed that we are working in Euclidean AdS3 such that

57‘5 57’8
" 5 ~ " s ~ . 5.48
PP~ XN w) ~ (5.45)
Then we can construct complex fermions by defining
Ut = L i), (5.49)

J V2

with the bosonisation scheme i0H" = (VW) and U = ", Summing over all chiral

spinor indices then yields
4 _:77RNS .
> (pedpe) = —\/5(6 e HET (POt + X0X1X2)>

e

= ‘? (72 8 e (i g’ + XXX (5.50)
Hence, when the normal ordered product of conjugated momenta ). (pOp.) is expressed
in RNS variables, the structure constants of s0(4) ~ su(2) & su(2) pop up due to com-
binatorical reasons. In particular, in the case of RNS string theory on AdSs x S2, the
supercurrent has an additional term that is proportional to a product of three fermions
contracted with the structure constant. So when we express the supercurrent in terms
of hybrid variables, we can take care of that trilinear term in the fermions by adding an

appropriate multiple of Y__ (pedpe). Hence, the term vG® may be expressed as

(vG°) = 2\1/E (e"’ [(pep€)j€€ + VZpec‘)pE] ) ; (5.51)

where v € C depends on the particular normalisation of the structure constants in the
su(2) @ su(2) current algebra J™. The flat case corresponds to the choice v = 0. This
finally concludes our discussion of the reformulation the A/ = 2 constraints. In order to
cover both cases simultaneously whenever possible, we will denote (’yGﬁ) = (e PQ), where

the field @) takes the general form above, namely

Q = 2\1/E ((Pepg)jeg +v Z;pﬁ]k) (552)
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To summarise so far, we have found the N/ = 2 constraints in hybrid variables:
T =Tz — pb° — L ((0p)* + (90)?) + 30%(p +io) + TS®, (5.53)

Gt = e %Py erQ
+ ¢ (T +pedb — 5 ((9p)* = (90)*) + 5% (3p + i) + TEP)

+02(e7) — 0(e (Dp + IS5)) + GLZ + e PGP (5.54)
G = cio (5.55)
J=0(p+io)+ JSS, (5.56)

where normal ordering has been supressed for readability. The last step will consist of
yet another similarity transformation generated by R = ¢ dz (ei" GEGS> in order to put
these constraints in a nicer form. Recall that a superconformal generator, say V(w), is

transformed by the adjoint action of R:

Ad(R) = eV (w)e F = i Lad(R)V(w), (5.57)
n=0

where ad(R)V (w) = [R,V(w)] = §,_dz (eiaGaGs) (2)V(w). The normal ordered product

(ei"GEGS> is a conformal field neutral under J of conformal dimension one. Thus

o ~_GS i~ GS <€ioG5GS)
(e Go )(z)J(w) ~0, (e Gz )(z)T(w) ~ e (5.58)
and hence ad(R)T = ad(R)J = 0. For the G~ -constraint we obtain
N G(;GS ifn=1
ad®(R)G~ = (5.59)

0, ifn > 2,

so the similarity transformation adds a term GEGS to the G™-current. But the similarity
transformation has the most drastic effect on the GT-current. We will now analyse the

adjoint action of R on those summands on which it acts nontrivially. We obtain

ad(R) (2 7P) = (*P).
ad(R) (engS) _ (eziaGEGS)’
ad(R) GJCCGS = _32€ia+a(eianS)_(eings>, (5.60)
ad?(R) GE*° = 2?6 ™)

After this similarity transformation we arrive at the N' = 2 superconformal structure of
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the hybrid formulation:

T =Ty — pd0° — 1 ((9p)* + (90)?) + 10%(p + o) + TS®, 5.61
Gt = —e 7 Pre Q4T + G5 5.62

— — —GS
G =€ ZU"‘GC 5

J=0(p+io)+ IS5,

5.63
5.64

~—~~
~— ~— ~—

where the fields appearing in the G'-current are defined by

P = (p(+7+7+)p(+7_7_)p(_7+7_)p(_7_7+)) ) (565)
1 ~
=_—F pe) T + Ope | 5.66
Q 2\/%<(pp) Vzejp p) (5.66)
T =Tg + (pe00°) — 3J* + 30 . (5.67)

By applying the similarity transformation generated by R, we were able to decouple
the generators of the N’ = 2 world sheet superconformal symmetry into a six-dimensional
target-space supersymmetric part and an additional part that consists of the generators

of a four-dimensional N' = 2 superconformal field theory.

5.2.3 Equivalence to the RNS string in a flat background

At this point in our derivation we have two formulations of the superstring - the original
RNS string and the hybrid string that has manifest supersymmetry in six dimensions. We

want to show that both formulations are equivalent.

Ignoring the bosonic embedding coordinates and the conformal ghosts, which are the

same in both formulations, we are left with two energy momentum tensors:

5

TRNS _ % 3" (0GH®)? — 1(96)% — 8% + § (9(ir))? + L6%(ir)

a=1
I 1<
THybrld _ 5 Z ((8(1)\&))2 + 5 ZGQ(i)\a)
a=1 a=1

2
1 J—— 2 1 27170 1 2 3 2
#3 |5 0HE) 37| — 500 + 30

Here we bosonised all fields. In particular, we bosonised all RNS worldsheet fermions
by introducing a set of bosons H® and the superspace embedding coordinates p, and 6%
were bosonised in favour of four bosons A®. It is important to note that the complex
fermions in the compactified directions, \Tlés and \Ifés, have conformal weight 1 and 0 as
the internal CFT is topologically twisted. Thus they are bosonised as an (1,0) be-system,
introducing a screening charge of % Our goal is to show that both energy momentum

tensors are identical by choosing an appropriate linear combination of the bosons in the
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RNS formulation.

For convenience, we define two 7-tuples of fields,
(ST = (AL N2 N i il il p) (5.68)
(SRNS)T (z’Hl iH2 iH® iHY iHS ik ¢) . (5.69)
The energy momentum tensors can then be written as
TRNS _ %(88RNS)TM88RNS + (ABNS)Tg2GRNS
hybrid _ %( ASWPYT n1aShyd | (AbYD)TH2,ghvb

where M = diag(1,1,1,1,1,1,—1) and the As are 7-tuples of the respective screening
charges. The latter read

(Ahyb>T:(; 131319 (5.70)
2 2 2 2 2 2 2)> :
T
(A" =(0 0 000 § -1). (5.71)
Now assuming that there is a matrix A such that
Sb — A SRNS (5.72)

the equality of both bosonised energy momentum tensor yields the following constraints
on the matrix A:
ATMA =M,  ATAWD = ARNS, (5.73)

The first condition in (5.73) tells us that A € SO(6,1) by definition of SO(6,1). Then
AT € SO(6,1) as well. Therefore a sufficient condition for the existence of a matrix A is

that AP and ARNS have the same norm squared,
T
(AR)" ArAMD — (ARNS)T prpRNS (5.74)

and indeed it is easy to check that this is the case for the screening charge tuples in (5.70)
and (5.71). This finishes the proof of the equivalence of the RNS and hybrid string in

their bosonised forms.

5.2.4 The hybrid string on AdS3; x S* and the PSL(2]2) WZW model

We have defined the hybrid string in six-dimensional backgrounds that are maximally
supersymmetric, namely flat Minkowski space as well as AdS3 x S?. From a differential
geometric point of view, the latter is isomorphic to the Lie group SL(2) x SU(2). We have
seen in section 2.2 that there is an algebraic construction of the supersymmetric analog
of that group by extending its Lie algebra to a Lie superalgebra. Loosely speaking, this

results in a superspace version of the target space and one might guess that the corre-
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sponding nonlinear o-model describes strings moving on AdSs x S? such that target space
supersymmetry is manifest. However, at first sight it is not obvious that this nonlinear
o-model will describe the “same” string as is described by the RNS formulation. For
example, there is more than one supergroup whose bosonic subgroup is isomorphic to

AdS; x S? as differential manifolds. So which one is the correct one to look at?

Above we have shown that the critical RNS string can be formulated in a way that
the free world sheet fermions give rise to Grassmann-valued embedding coordinates and
their canonical momenta, which we called the hybrid formulation of string theory. Thus
at the end of the day, the hybrid string is a nonlinear o-model whose target space is a
Grassmannian manifold (plus an additional N’ = 2 supersymmetry structure on the world
sheet). The crucial observation [30,105,158] is that the hybrid string can be understood
as a free field realisation of the PSL(2]2) WZW model as long as there is NSNS flux only
(cf. section 4.3.3)

Following [9, 30, 105], let us denote the currents of the SL(2) x SU(2) WZW model
describing AdS3 x S? by j%(z), where a,b,c,... = 1,...,4 are so(4)-indices. Similar, we
change the basis such that the Grassmann coordinates and their conjugated momenta read

0% and p, respectively. The OPEs of the currents in that basis are [105]

Leabed + 25a[05d]b
(2 —w)?

N i(&aCjbd(w) _ 6adjbc(w) — 5bcjad(w) + 5bdjac(w)) , (575)

zZ— W
b
O

zZ— W

§(2)j N (w) ~ —

Pa(2)0°(w) ~ (5.76)

and all other OPEs vanishing. In particular, the Grassmann-valued coordinates and mo-
menta have nonsingular OPEs with the WZW currents. From the hybrid perspective, this
is not surprising since the derivation required us to start with a model for the RNS string
in which the world sheet fermions are free. From these fields, we can construct PSL(2|2)

WZW currents the following way:

Kb = jab _ z‘(e[apb}) , (5.77)
S = koo + %eabcd (9" [jcd _ i(@cpd)D , (5.78)
S =p. (5.79)

Here the so0(4)-indices are raised and lowered with the metric §?° and thus p® = p,. It can

be checked that these currents give a psl(2|2) current algebra.

Formulation of the N' = 2 superconformal generators in terms of the WZW currents

An important aspect that distinguishes the pure PSL(2|2) WZW model from the hybrid
string is the additional N = 2 supersymmetric structure (5.61) - (5.64) on the world
sheet. In order to perform string theoretic analyses within the PSL(2|2) WZW model, it
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is necessary to rephrase this current algebra in terms of the WZW currents. Since apart
from the po ghosts the ' = 2 currents only involve j* as well as the conjugated momenta
Daq, the substitution of the WZW currents is straightforward. The only problematic term is
the field @ since we have to determine the parameter v in (5.52). In order to make contact

o (5.50), we first have to choose a basis of the WZW currents 5% in (5.75) such that the
su(2) structure constants are proportional to the Levi-Civita tensor in three dimensions,

€rst- We achieve this by defining the currents

1 — i 212 -34 2 _ { .14 .23 3 ) .94 13
j(l):ﬁ(ﬂ +3) J(l):E(J +3%) J(l):ﬁ(g %), (5.80)
1 , 1, . 1, ,
~7(12) = NG (72 =7, j(22) = NG (=3 + %) . \7(32) = 7 (2 +5%) . (5.81)

The normalisation of the currents was chosen such that the second order poles of their
OPEs resemble the one in (4.55) with k% = §%°. For this choice of k® the results in section
5.2.2, particularly the bosonisation scheme for the fermions, apply after performing an
additional rescaling of the fermions ¢ — v’ = ﬁw. The OPEs between the currents J(’;.)

read

(k+2)6m V2o

Ty T) ~ 2L 222 (5.8
bo2ge VAT

Ty Tyt ~ 200 - B2, (5.89

Tt ()T (w) ~ 0, (5.84)

where r,s,t,u = 1,2,3. The currents j(’"l) give an su(2) current algebra at level k + 2
describing the AdSs part while j(g) generate an su(2) current algebra at level k — 2
associated with the sphere S3. It is then possible to extract the su(2) structure constants,
if ) = —\/2e,q for the AdSs part and if 2 = —iy/2eq for the S3 part. With these fys

we can write the equality (5.50) as

4
>~ (padpa) = (e—%—iH?NS(fTS Gt L) (5.85)
a=1

The supercurrent in (4.63) can then be written as (recall that the fermions were rescaled

according to ¢ — ¢’ = fiﬁ)

(vG) = \}E [(wﬂ(ﬁ)) + <v xrj(g)) f’gt) (vy"yyt) — 'fz:) (v xrxsxt)]
= \}% [(7%\7{1)) + <7xm7(2> ZGZ: (¢7"Padpa) ]

4
= 2\1/% [(6 ?(papv) ) 2i ) (¢ padpa ] (5.86)

a=1
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Comparing this expression to (5.51), one indeed finds that v should be set to —2i such

that @) reads
1

2vk
where summation over repeated indices is understood. Before writing this in terms of the
WZW currents, we note that

> (paps)(2) (p“0b> (w) = _ 3(pa(2)pa(w))

zZ— W
1<b<4
b#a

Q= = | ((Paps)i™) = 2i(patipa)| - (5.87)

= (apo) (pa") ) (w) = 3 (pu8pa) . (5.88)

Since j% = K% 4 i(p[aeb]), the field @ reads in terms of the WZW currents

Q= 2\1@ (5282 ) Kap) -+ 4i(s2082)] - (5.89)
The order in which the normal ordered product is evaluated on the triple of fields is
crucial since the normal ordered product is neither commutative nor associative for non-
Abelian current algebras. The factor of 4i multiplying (Sﬁ 85&), or equivalently the choice
v = —2i, can also be justified a posterori since only this choice will yield agreement of the
physical hybrid string spectrum at the first mass level with the one obtained in the RNS

formulation. For completeness, we also state that
P=(51525°8%) and Ty + pcd° = Tosp (a2 - (5.90)

We now have expressions for all generators of the N' = 2 superconformal algebra in terms
of the PSL(2]|2) WZW currents and the po ghosts.

5.3 Physical state conditions on the massless states

At this point we have two equivalent description of the superstring both on flat space-
time as well as in an AdS3 x S% x M?* background: the usual RNS formulation and
the hybrid formulation. The latter has the advantage of having manifest target space
supersymmetry as the six uncompactified directions are nicely described by a WZW model
on PSL(2|2). However, a drawback is the amount of additional structures required: a
topological twisted superconformal field theory on M?*, two ghost fields p and o as well
as a N = 2 superconformal algebra on the worldsheet which is essential in the definition

of the physical subsector.

The aim of this section is to obtain physical state conditions on the Hilbert space
of the WZW model only. Our approach is to evaluate the physical state constraints on
hybrid vertex operators until we are left with constraints formulated in terms of the WZW
currents and normal ordered products thereof. We will first concentrate on the massless

ground states.
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Let us start by first writing down the form of the most general vertex operator that

carries no affine excitations. It looks like

V = (¢mm €™ T 1) (2) . (5.91)

Here ¢y, is vertex operator of the supergroup WZW model. It is neutral under the
U(1)-charge of the ' = 2 superconformal algebra. ™" specifies the p and o charge
of V. Derivatives of p and o are not allowed at this point because they would correspond
to affine excitations. Similarly, the WZW vertex operators ¢,,, correspond to affine
ground states of representations of 55[(2|2)k, thus excluding affine excitations in the WZW
model. Finally, 15 is a vertex operator of the twisted superconformal field theory on the
compactification manifold M. It is restricted to be a groundstate of that SCFT as we
are discussing the massless sector. This means that its conformal weight is zero. Since
the SCFT on M is twisted, the N' = 4 superconformal algebra on M contains fields of
vanishing conformal weight apart from the vacuum 2, namely the su(2) current J*+.
Depending on the choice of M there might be additional matter fields of conformal weight

zero, e.g. for M = T% the complex fermions ¥ are relevant as well.

We can restrict V' even further. We have shown above that the energy-momentum
tensors of the hybrid string and the RNS string are equivalent, at least in flat backgrounds.
In the RNS formulation it is well-known that the Siegel gauge by = 0 together with
the BRST-kernel condition implies that Tpy) = [Qo,bo]+? = 0. Here we denoted the
Virasoro zero-mode of the full hybrid formulation as 7j in order to distinguish it from the
Virasoro zero-mode of the pure PSL(2|2) WZW model that is denoted by Lg. Due to the

equivalence, we can impose the same condition on states in the hybrid formulation,
[Ty, V] =0. (5.92)

This condition holds after the other physical state conditions (5.7) have been imposed. But
a solution to (5.92) can only exist if a sufficiently high power of T, say T}, for some p > 1,
annihilates V' before applying the constraints (5.7). Note that Ty does not necessarily
act diagonally due to the possible appearance of atypical representations of psl(2[2) as
discussed in section 2.2.2. Indeed, since we are interested in the massless groundstates
at the moment, we demand that ¢,,,, sits in such an atypical representation, which are
characterised by L{¢m, n = 0 for some r > 1. We further note that ad”(7p)V = 0 implies
that m and n have to be chosen such that the conformal weight of €™+ vanishes. If V
carries charge ¢ with respect to the superconformal U(1)-current, we obtain the following

constraints on possible values of m and n,

h (emerino') _ _%(mZ _ Tl2) + %(m _ n) = h=0, (593)
1

These are solved by m = n for neutral V and m = 5(3 —¢q), n = %(3 + ¢q) for charged

po-vertex operators. Note that in the case of non-vanishing conformal weight, h #£ 0, we
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must have m # n, i.e. all U(1)-neutral po-vertex operators have zero conformal weight.
For completeness, let us add that for general conformal weight i (and ¢ # 0, of course),

m and n are given by

3¢ — 2h — ¢? 3q — 2h + ¢>
(m’n): .

2 ) % (5.95)

In the following, we will assume that ¢, , are states in atypical Kac modules K(j).
In that case Lj is diagonalisable and annihilates the complete Kac module. Due to this
assumption the derivation of appropriate constraints on physical string states below sim-
plifies significantly and it can then be seen as a reformulation of the derivation of physical
state constraints in [30]. In chapter 6, the resulting conditions will be generalised to
atypical representations on which L is not diagonalisable, namely projective covers, thus
making contact to our previous discussion of the spectrum of the PSL(2[2) WZW model

in section 4.3.4.

5.3.1 The compactification-independent spectrum

Independent of the choice of the internal manifold M, in the hybrid formulation the
string dynamics on M are always modeled by a superconformal field theory on the world
sheet. So even without specifying the matter content of it, we know that there are at
least two vertex operators that have vanishing conformal weight, J** and the vacuum .
According to our ansatz for ground state vertex operators (5.91), this means that we may

set Y = Q or Yo = JTT. This yields in principle two families of valid vertex operators

(¢m7nem+in09) — (¢m,n em—i—ino) ,

(5.96)

(d;m,n em+ino J—H—) - (Qf;m,n emp—I—ina—i-ngS) ]
Recall that ¢y, , and q;m,n are vertex operators of the WZW model. In comparison to the
ansatz (5.91) we have added a hat to one of the WZW vertex operator only to distinguish
both families. However, we can use the condition that physical vertex operators must
have unit U(1) charge (cf. eq. (5.8)) to single out one vertex operator in each family.
By construction, the WZW vertex operators are U(1) neutral. Therefore, because € has
vanishing U(1) charge and J** has U(1) charge 2, the exponentials must carry U(1) charge
g =1 and ¢ = —1, respectively. Then using (5.93) and (5.94), we can fix m and n and

obtain two allowed compactification-independent vertex operators, namely
(¢17261+2i0) and (@’1 62p+icr+ngS> . (5.97)

Here we dropped the hat from the second WZW vertex operator quJ since there remains

no ambiguity.

The next step is to check for which vertex operators of the WZW model, ¢2 1 and ¢1 2,
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the above hybrid vertex operators are physical. First, the OPE

CH(2)(f12 €°T27) (w) = ePHHE (2) (¢ 2 7127 ) (w)

_ Z(z N w)—l-‘rd (8d(ep+ngS) ¢1’2 €p+i20> (5.98)

d>0

implies that the first order pole only vanishes if ¢1 o = 0. Hence the first vertex operator in
(5.97) contains no physical degrees of freedom and thus does not contribute to the on-shell
spectrum. For the second vertex operator in (5.97), one checks that the C;’(J{ = 0 condition
is satisfied. Therefore, all that is left is to check is the Gar condition on the second vertex

operator in (5.97).

Since each term in G comes with its own exponential of p- and o-ghosts, we can

consider them independently. We obtain the following set of OPEs:

(eiUT)(Z) (¢271 62p+ia+ngS) (w)
_ Z Z 1+d+l (8d i {L 9 l¢2 1}€2P+10+1HG5) (w) 7

d>0

(e77Q)(z) (¢2,1 €2p+w+ngS) (w)
- Z Z w)ZHeH (3%*/) {Q—3—1¢2,1}€2p+w+mgs> (w),

>0
(e727"P)(2) (¢2,1 €2p+w+ngS) (w)
_ ZZ 3+d+l (8d —2p—io {P . l¢2 l}ep+220+zHGS) (w) .

d>0

Demanding that the first order pole to vanish implies that,

Lopr2=Qad12=PFPip12=0 Vd>0. (5.99)

Most of these conditions are satisfied by construction, e.g. ¢1 2 was chosen to be annihilated

by all positive affine modes and Lg ¢1,2 = 0 by assumption. However, the conditions

Qodr2=Pyp12=0 (5.100)

are nontrivial. Note that neither the ghosts nor the fields of the topological twisted SCFT
make any appearance in this physical state condition. It defines a subsector in the space
of states in the PSL(2|2) WZW model only.

We still have to figure out which states are C;‘(T Gg -trivial. To perform this analysis, it is
helpful to realise that éar G(T is of U(1) charge two. This restricts the possible form of the
preimage if we require the image to coincide with the second vertex operator in (5.97). In
fact, the pre-image vertex operator should be of the form (¢9,1€2°7%7), where 121 is again
a vertex operator of the supergroup WZW model associated with an affine ground state

(as for ¢p, n, the subscripts of 121 indicate the number of po ghosts is the corresponding
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exponential). For the sake of readability, let us apply the different summands that G (z)

consists of individually. From the first summand we obtain

(e—2p—iUP)<z) (¢2’1€2p+i0> ('LU)
= Z Z (z — w)3+l+d(éad(e—Zp—ia)e2p+iU{P_4_l¢2,1}>
1

d>0
1st order pole ) )
— > (éf‘?d(e2’””)62"“"{&%,1}) . (5.101)
d>0

The second summand contributes

(e77Q)(2) (o1 (w)
= Z Z (z —w)HHd %ad(e_p)espHo{Q—l—:ﬂ%J})

=X <
(

1st order pole

éad(e”’)e%*”{(o)dwa,l}) (5.102)

while the third summands gives us

(E7T)(2) (2267 ) (w)
- Z Z(Z - w)1+l+d(%ad(e_p)€2p+w{L—l—2¢2,1})

I d>0
1st order pole . )
Y 70U )P Ly} (5.103)
d>0
where we used that
(e7(=57% + §0) ) ()% (w) ~ 0. (5.104)

Combining these results, the full first order pole reads

{Ga— <w2’162p+i0> }(z) _ Z I: o %8d(672p7i0)€2p+w{sz/u’l} + %8d(efp)€2p+ia{de2vl}

d>0

+ iad(ei")GQ”“"{dez,l}} (5.105)

Next the action of C;’g has to be evaluated on this first order pole. In order to simplify the
calculation, we may use that 19 1 is an affine groundstate and thus annihilated by positive

modes. The pole then simplifies to

{G(T (w’lerHa) }(z) = —{Potha} + "7 { Qoo } + €T Lopan} . (5.106)
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It is not difficult to determine the first order pole with Gt = ePTiHE®  One obtains

{é(—)‘r{GS— <w2,162p+i0'> }} — <62p+g+ngs{Q0¢271}> + (a(p + ngS)ei‘}P‘f‘QiU{LOle}) )
(5.107)
The second term vanishes by assumption since o1 has vanishing quadratic Casimir.
Hence, if we take 121 to be a state of an atypical groundstate representation of an affine
Verma module, i.e. all positive modes annihilate on 121 and Lot 1 = 0, the trivial states

read

{C?*(T {GSF (w2’162p+ia> }} _ (620+J+ngS{QO¢2’1}) (5.108)

As the consequence, states in the PSL(2|2) WZW model are physical if they satisfy (5.100)

up to the gauge freedom
P21 ~ P21 + Qoo - (5.109)

Putting everything together, we can identify the physical massless string spectrum
Hid that does not dependent on the choice of compactification within the PSL(2|2)
WZW model. Tt coincides with the union of the (Qgp-cohomology evaluated on the ground

state representation, which is an atypical Kac module /C(j), with the kernel of Py,

Hi ~ Ho, (K(j)) Nker(jy Po - (5.110)

The representation theory of psl(2|2) has been discussed in chapter 2. It will allow us to
compute the Qp-cohomology explicitly even on projective covers P(j) in chapter 6, yielding
agreement with the supergravity answer. In fact, we will see there that it is sufficient to

determine the QQg-cohomology as it is completely annihilated by Fp.

5.3.2 The massless compactification-dependent states on AdS; x S3 x T*

In the case of compactifications on T%, we can give an explicit realisation of the N = 4
topologically twisted superconformal field theory with ¢ = 2 and it has been discussed in
detail in section 4.1.4. We have seen there that after the topological twist there were four
fields of vanishing conformal weight, the vacuum field Q, the su(2)-current J** and two
complex fermions W%, a = 1,2. As has been discussed, the first two fields exist in every
admissible topologically twisted N' = 4 SCFT. However, the additional fermion fields are
specific to the compactification manifold chosen, i.e. to T%. In order to make contact with
the the hybrid field H, gs = H3?+ H*, we recall that the complex fermions can be bosonised
as

o = (5.111)

Hence, in addition to (5.97) there are two supplementary vertex operator that may con-

tribute to the physical spectrum,

Vie= > (¢mem(p+”>\1}i) -y (q&mem(P*if’)*iH“) : (5.112)

meZ meZ
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Note that the complex fermions have U(1)-charge one such that the exponential in p and
o must be neutral under the U(1) current, which in turn implies m = n and that the
exponential has vanishing conformal weight. This fits nicely with our assumption that
the WZW vertex operators ¢, correspond to states in atypical Kac modules K(j) since
then the whole vertex operator Vs has conformal weight zero. Because vertex operators
like Vipa depend on the choice of the compactification manifold M = T%, they are called

compactification-dependent.

We can now evaluate the physical state conditions Gif = C:’(’)L = 0. The latter gives rise
to the OPE

Gt (2) Z (¢ om(ptio) HHa) Z ep+zHG < (p+’ia)+iHa> (w)

meZ meZ
_ Z (z — w)lfm (ep+ngs (Z)¢mem(p+ia)+iH’l (w)> .
meZ
(5.113)

The summands with m < 1 do not contribute to the singular part of the OPE. For m > 2,
demanding the first order-pole to vanish yields ¢,, = 0. After imposing this result on the
vertex operators in (5.112), the OPE with G (z) reads

G () Y (e T () = 37 (2 w)m”<[ 7(HL-2-16m}

m<1 m<1
>0

+e P(2){Q-3-10m} — € 7 (2){P_a_i1¢m }} (prio)+ill® (4, )) (5.114)

such that the first order pole reads

Z [((8dei0)ep+ia+iH“ {Ladn }>

d>0
+ ((6deia)€iHa {Ld—l(bo}) + ((ade—p)epﬂ‘o—i—iH“{Qd_l¢1}>
+ Z ((adeia)e(mfZ)(p+iU)+iHa{Lm+d_3¢m_2})

m<1

+ ((ade*P)e<m*1>(p+io)+iH E{Qm+d73¢m—1})

_ ((ade—QlJ—iJ)em(P-l-iU)-‘riHa{Pm+d_3¢m})] '
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This pole vanishes if the following conditions on ¢ are satisfied:

Lag1 = (5.115)

L_1¢0+Q-191 =0, (5.116)

Lapo = Qa¢1 =0, (5.117)

Lyp—3¢m—2 + Qm-3¢m—1 — Pm—30m =0, (5.118)
Lyp—2¢0m—2 — Pr—2¢m =0, (5.119)
Qm—20m—1—2Pmn_2¢m =0, (5.120)

Qm-1+dPm-1 = Pn—144®Pm = Lin—14d4¢m—2 =0 (5.121)

for d > 0 and m < 1. We did not yet use our assumption that ¢,, sits in the ground
state representation of an affine representation, i.e. the ¢,, are annihilated by the positive
modes of the supergroup currents. In this case, we observe from (5.121) that for any
m< -3

P ipyy=0 = ¢, =0 (5.122)

since the negative modes act almost freely? on ¢,,. Let us try to make this a little more
explicit. Suppose @ is some state in the affine ground state representation, i.e. it is

annihilated by all positive psl(2]2); modes. Then P_;® can schematically be written as

P_4(I> = Z Wmnkl €abed Sg,me—,nSi,kSil(I) (5.123)
m+n+k+l=—4
m<n<k<Ii<0

with some appropriately chosen coefficients w1 € C. Now, any individual state con-
tained in the above sum is linearly independent of the others, so they have to van-
ish independently. In particular, we can choose m = n = k = [ = —1 such that
€abcd557,153,,1Si,,lsi,l‘l) = 0, which in turn implies that ® = 0 because the (—1)-
modes act freely on ®. Intuitively, from a more physical perspective, one may think of
P_4 as the operator that generates the state associated with the field P from the vac-
uum as P has conformal weight four. But adding a particle to some state in the vacuum

representation should not vanish. Hence & = 0.

Therefore, at this point we already know that ¢, # 0 only for —2 < m < 1. This
observation can be imposed on (5.119) for m = —2 and along the same lines as before one
obtains

P ypo0=0 = ¢_o=0. (5.124)

Similarly, (5.118) yields
Py 1=0 = qb,l =0. (5.125)

So only ¢ and ¢ are non-vanishing and might carry physical degrees of freedom. However,

4The action of the negative modes is called “almost free” since they are subject to an equivalence
relation induced by the nontrivial commutation relations. The action of elements in ¢/ (n™) instead is free.
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they are still subject to the residual physical state conditions

Log1 = Lopo = Qop1 = Qodo = Pog1 = Podo =0, (5.126)
and additionally
Py =0, (5.127)
P sdo =0, (5.128)
P_opr —Q-2¢9 =0, (5.129)
L_1¢0+ Q_1¢1 =0. (5130)

Now we make use of the fact that psl(2]2) is a Lie superalgebra of type I, which implies
that it has a decomposition of the form g ~ g_; @ g @ g+1. Recall that the field P is
actually defined to be the normal ordered product of all currents associated to g_1 (not to
be confused with the vector space of affine (—1)-modes, that is denoted by g_1). Hence if
applied to affine 13/5:[(2\2) « ground states, condition (5.128) tells us that every physical state
must be annihilated by any element of g_;. Again, this can be seen from an argument
similar to our argument for (5.122). For any affine ground state, which we call ® as before,

P_3® can be written as

Ps®= > WnniEapeaS® ,S" 5% ;57 @ (5.131)
m+n+Il=—3
m<n<I<0

with some coefficients wy,,; € C. Due to the linear independence of the summands, they

have to vanish independently. We can choose m =n = [ = —1 such that
€abcd5’g7,15:,1Si,,ISg’O‘P == O, (5132)

which in turn implies that SiO(I) =0foranyd=1,...,4.

In view of our discussion in section 4.3.4, these constraints should be ultimately applied
to projective covers P(j), which will be done in the next chapter. However, as a first
instructive step, we may apply these constraints to (atypical) Kac-modules IC(j). Then
eq. (5.128) tells us that ¢y coincides with the “lowest” s[(2) @ s[(2)-representation V(j)
in K(j). Furthermore, using similar arguments as before, eq. (5.127) demands that valid
states ¢ are annihilated by any combination of three fermionic generators in g_;. This
basically reduces the Kac modules, viewed as a vector space, to its (13-dim) “lower half”
as depicted in figure 5.2. Then evaluating eq. (5.130) on this subspace and using ¢g
as determined above reduces the subspace to the submodule £(j), i.e the socle of K(j).
This can be shown by performing a calculation using an explicit construction of the Kac
module. Although cumbersome, a calculation of this sort is quite accessible due to the

fact that Kac modules are induced modules by definition.

To summarise, if the hybrid physical state conditions for compactification-dependent

massless string states in the case of compactifications on T4 are applied to an atypical Kac



118 Chapter 5. The Hybrid String
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V(A)_4

Figure 5.2: The “lower half” of a Kac module as it is determined by (5.127).

module K(j), they can be equivalently formulated from the point of view of the PSL(2|2)
WZW model by saying that the physical states coincide with the socle of K(j).

’Hg4 ~socK(j) ~ L(7)]. (5.133)

We will see in chapter 6 how to generalise this result to cover projective covers as well.



CHAPTER 6

The Massless String Spectrum
within the PSL(2|2) WZW Model

We have shown in the previous chapter that RNS string theory with pure NSNS flux has
an equivalent description in terms of a supergroup WZW model, which in turn defines a
logarithmic conformal field theory, or LCFT for short (see section 4.3.3). Let us remind the
reader that, using ideas that had been developed before for the analysis of the logarithmic
triplet models, we have made a detailed proposal for the spectrum of this LCFT in section
4.3.4. Indeed, by employing our detailed knowledge of the structure of the projective
covers from section 2.2.3, we gave a natural proposal for how the left- and right-moving
projective representations have to be coupled together, leading to a description of the
full spectrum as the quotient space of the direct sum of tensor products of the projective
representations. This fixed the spectrum of the underlying world sheet CFT, from which

one can then obtain the string spectrum as a suitable BRST cohomology.

In this section, in order to check our proposal (4.80), we calculate the BRST coho-
mology for the massless string states. For this case the BRST cohomology was previously
studied in terms of the vertex operators in [62]. We explain how the BRST operators of
section 5.3 can be lifted to act on the projective covers (from which the LCFT spectrum
can be obtained by quotienting). It is then straightforward to determine their common
cohomology, and hence the massless physical string spectrum. We find that the result-
ing spectrum agrees precisely with the supergravity prediction of [54,57], including the

truncations that appear for small momenta.

6.1 The Compactification-Independent Spectrum

Since we have constructed the spectrum of the underlying LCFT in section 4.3.4 we
need to define the BRST operator. For the massless sector, the cohomological description
of the physical sector (5.8) can be simplified to (5.110), and we can identify the BRST
operator with a suitable operator in the universal enveloping algebra of psl(2]2). There
is a subtlety about how this BRST operator can be lifted to the direct sum of projective
covers, see section 6.1.1, but once this is achieved, it is straightforward to determine its
cohomology. As has already been said, we find that the cohomology agrees precisely

with the supergravity spectrum, see section 6.1.2. This generalises and refines the recent
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analysis of [178]; in particular, we explain in more detail how left- and right-moving degrees
of freedom are coupled together, and we are able to obtain also the correct spectrum for
small KK-momenta. (Naively extending the analysis of [178] to small momenta would not

have correctly reproduced the expected result.)

6.1.1 The BRST-operator and its cohomology

In this chapter we are only interested in massless physical states. As we have argued
in section 5.3, these appear as ground states of affine representations for which the ground
state representation is atypical, and hence we can restrict ourselves to the corresponding
projective covers in H (see (4.80)). Because we are only interested in the ground states,

we can ignore the affine excitations.

In section 5.3.1, we have further argued that the cohomological description of the string
spectrum in (5.8) simplifies on ground state representations of vanishing quadratic Casimir
and reduces to the cohomology (5.110) of the BRST operator Quybria = KapS® St as well
as its right-moving analogue. Because the so(4) indices are all contracted, Quybria com-
mutes with g(9), and it follows from a straightforward computation that it also commutes

with g_1. For the following it will be convenient to define more generally
Qo = KupS2S%, a=+, (6.1)

with Q- = Quybria- Note that Q, has Z-grading 2a.

From now on we shall work with the basis of generators of g given in Appendix C, for

which we have
Qo = —i[S1, ST, (JO + K%) + 55, 55, (J° — K?)
+ S5 ST KT+ 85, 851, JT + 51, S50 K~ + 51,55, 77 . (6.2)
Using the commutation relations of Appendix C, we find by a direct calculation
[Siﬁv Q] = igﬁvsiv Co Qh =530, (6.3)

where Si = Sy 5551 S1,, and Cs is the quadratic Casimir of psl(2|2). Thus if the
quadratic Casimir vanishes on a given representation R, C2(R) = 0, the operator Q is
nilpotent and commutes with the full psl(2|2) algebra on R, i.e. it defines a nilpotent
psl(2]|2)-homomorphism from R to itself. In particular, the cohomology of Q, on R then
organises itself into representations of psl(22).

An important class of representations on which the quadratic Casimir vanishes are
the atypical Kac modules K(j) with j > % For each KC(j) there are two non-trivial
homomorphisms K(j) — K(j): apart from the identity we have the homomorphism ¢_

that maps the head of K(j) to its socle and that has Z-grading —2. Since the identity
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operator is not nilpotent, we conclude that the BRST operators Q4+ must be equal to

on K(j):  Qi=0, Q =g . (6.4)

Similarly, on the dual Kac module, KV (), the BRST operator Q_ is trivial, while Q4 now
agrees with the non-trivial homomorphism ¢, that maps the head of KV (j) to its socle
(which has now grade +2)

on KV(j):  Qy=aq+, Q-=0. (6.5)

Figure 6.1: The action of the BRST operators Q. (blue, dashed arrows) and Q_ (red,
dotted arrows) on the projective cover P(j) for j > 1. The irreducible representations
that generate the common cohomology of Q1 and Q_ have been circled.

Next we need to discuss the relation between Kac modules and the full CFT spectrum
H© proposed in (4.80). Using similar arguments as in section 4.3.4, it is not difficult to

see that, as a vector space, H() is isomorphic to

1O = @ K(j1,72) ® K(j1, j2) - (6.6)
(.jlva)

On the atypical representations (that correspond to the massless states) the BRST oper-
ators Q4 (defined as acting on the two Kac modules) are then indeed nilpotent. However,
this definition of Q4 does not agree with the usual zero mode action on H(?) since (6.6) is
only true as a vector space, but not as a representation of the two superalgebra actions.
(Indeed, with respect to the left-moving superalgebra, say, the correct action is given by
(4.81)). In order to define the BRST operators on the full space of states it is therefore
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more convenient to lift Q4+ to the projective covers. This requires a little bit of care as
the operators Q.+, as defined above, are not nilpotent on P(j). In fact, the quadratic
Casimir does not vanish on P(j) since it maps, for example, the head of P(j) to Ly(5)
in the middle line, see Fig. 2.7. However, the projectivity property guarantees that there

exist nilpotent operators
Qu:P(j) > PG), QL=0,  [psl(212), Qxl|p; =0 (6.7)

For example, for the case of Q_, we apply (2.29) with A = P(j) and B = K(j), and thus
conclude that there exists a homomorphism Q_ : P(j) — P(j) such that

P@) o Q- =Q_omg, (6.8)
97 Q-omg
P(j) —> K(j)

where 7y is the surjective homomorphism from P(j) to K(j). Furthermore, it follows
from the structure of the projective cover, see Fig. 2.7 and Fig. 2.9(a), that there is only
one homomorphism on P(j) of Z-grading —2, namely the one that maps the head Ly(j)
of P(j) to L_2(j) in the middle line. Its square vanishes (for example, because there is
no homomorphism of Z-grading —4), and thus we conclude that Q_ is nilpotent. The
argument for Q4 is analogous. The resulting action of Q_ and Q4 on P(j) with j > 1
is depicted in Fig. 6.1. For j = %, the analysis is essentially the same, the only difference

being the absence of the left-most irreducible representation in the middle line.

For j = 0 we can argue along similar lines, however with one small modification. Recall
that for j = 0 the Kac module K(0), see Fig. 2.6, is not part of our category (and a similar
statement applies to the dual Kac module KV (0)). However, our category does contain an

analogue of the Kac module for j = 0, which we shall denote by I@(O) It is the quotient

of the projective cover P(0) by the subrepresentation M7, (3) (see section 2.2.3.1 for a

definition), and likewise for the dual Kac module; their diagrammatic form is given by

£(0) £(0)
“ .
K(0) L(3) £Y(0) £l
% ,
£(0) £(0)

The quadratic Casimir vanishes on K(0) and KY(0), and thus Q. are nilpotent homo-
morphisms on K(0) and £V (0). By the same arguments as above, we can then lift Q4 to

nilpotent homomorphisms Q+ on P(0), and their structure is given in Fig. 6.2.

6.1.2 The physical spectrum

According to section 5.3.1, the (massless) physical states of the string theory are de-

scribed by the common cohomology of Q_ and Q_, where Q4 are the corresponding
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(a) The BRST operator Q+ acting on the projective (b) The BRST operator Q_ acting on the projective
cover P(0). cover P(0).

Figure 6.2: The action of the operators Q4 on P(0).

right-moving BRST operators. Since Q_ and Q_ commute with one another, the com-
mon cohomology simply consists of those states that are simultaneously annihilated by

Q_ and Q_, modulo states that are either in the image of Q_ or Q_.

Given the explicit form of the various BRST operators, see Fig. 6.1 and Fig. 6.2, it is

clear that on the actual space of states (4.80), we have the equivalences
Q) ®id = id® O . (6.9)

We may therefore equivalently characterise the (massless) physical string states as lying
in the common BRST cohomology of Q_ and Q.. Note that since Q_ and o_ obviously
commute, the same must be true for Q_ and Q. ; this can be easily verified from their

explicit action on the projective covers.

Since these two BRST operators now only act on the left-movers, we can work with the
representatives as described in (4.81). From the description of the BRST operators, see

in particular Fig. 6.1, we conclude that the common cohomology of Q4 equals for j > 1
HY(PG) ~LG-D@2LG)@ LG+, =1, (6.10)

For j = %, the only difference is the absence of the left-most irreducible representation in

the middle line, and we have instead
HO (P() ~2L(3) & £(3) . (6.11)
while for j = 0 we get from Fig. 6.2
H® (P(0)) ~ L£(0) ® L£(1) . (6.12)

Here both £(0) and £(1) appear in the middle line of P(0), and £(0) is the middle of the
three £(0)’s.
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The actual cohomology of interest is then simply the tensor product of these BRST
cohomologies for the left-movers, with the irreducible head coming from the right-movers;

thus we get altogether

Hows = | (£0) 8 £0) 2 L0)| @ [(260) @ £(3)) @ £(3)]
o @ [(cU-ne2up)eLi+1) @ L()]

7>1

The spectrum for j > 1 fits directly the KK-spectrum of supergravity on AdSz x S? [54,57).
It therefore remains to check the low-lying states. In order to compare our results with
[54,57], we decompose the physical spectrum with respect to the su(2) @ su(2) Lie algebral
corresponding to the bosonic Lie generators K and K“; the relevant representations are
therefore labelled by (j2,72). For the first few values of (j2,72), the multiplicities are
worked out in Tab. 6.1. The multiplicities of the last column reproduce precisely the

results of [54], see eq. (6.2) of that paper with np = 1.

(jo,J2) | psl(2]2)-rep | # in psl(2]2)-rep | #in H | 3

£(0) ® £(0) 4 4
(0,0)ss L) oLd) 1 s | °
£(0) ® £(0) 2 2
0.9)ss | £() @ L) 2 4 8
£(0)® L(1) 2 2
£(0) ® £(0) 1 1
L(3)® L(3) 1 8
(3:3)s8 | £(0)® L£(1) 1 1|13
L(1) ® L£(0) 1 1
L(1) ® L(1) 1 2
£(0)® L(1) 4 4
0, D)ss | £(H)® L) 1 2 7
L(3)®L(2) 1 1

Table 6.1: Decompostion of Hpyys under so(4). The first column denotes the so(4) repre-
sentations, the second enumerates the irreducible ps((2|2) representations which contain
the relevant so(4) representation. The third column lists its multiplicity within the ps((2|2)
representation, and the fourth its overall multiplicity in Hphys. Finally, the last column
sums the multiplicities from the different ps((2|2) representations.

!These generators span the isometry group s0(4) = su(2) @ su(2) of S%.
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6.2 The Compactification-Dependent Spectrum on T*

In section 5.3.2 we have argued that massless compactification-dependent states, if
the internal manifold is T*, are of the form (¢ e”™*7W%)(z) with a = 1,2. In contrast to
the physical state condition on compactification-independent states, which can be written
from the point of view of psl(2|2) representation theory as taking the cohomology of Qq,
the physical state conditions on compactification-dependent states (5.127) - (5.130) are a
little more complicated to handle. We have already argued in section 5.3.2 that when these
conditions are applied to atypical Kac modules K(j), only the socle of the Kac module
survives, i.e. the minimal submodule within K(j). The socle of I(j) is isomorphic to the

irreducible representation £(7).

But in view of our discussion of the spectrum of the PSL(2]2) WZW model in section
4.3.4, one should rather think of projective covers at the massless level than Kac modules.
So the constraints (5.127) - (5.130) should rather be evaluated on projective covers P(j).
However, the reason why these constraints could be evaluated on Kac modules before
was that they are induced modules and thus comparatively easily accessible by direct
computations. Unfortunately, this is not the case for projective covers, so we have to pick
a different strategy: knowing that the physical states within Kac modules are those that
lie in the socle of K(j), we will try to appropriately generalise these concepts to include

projective covers.

6.2.1 Lifting the physical state constraints to projective covers

In order to find out which states satisfy the physical state constraints for compactifi-
cation-dependent states on T?, we have to reduce the projective cover to Kac modules.
This would allow us to use our previous results from section 5.3.2 to draw conclusion
for projective covers. Let us define two Borel algebras b+ = g(® @ gi;. Note that the
operators in question, i.e. those appearing in (5.127) - (5.130), are all elements of U(b™).
Hence, the physical state constraints single out the same states independent of whether
we treat the projective cover P(j) as a full U(g)-module or as an U (b~ )-module. But as

an U (b~ )-module, the projective cover is not simple. In fact, it takes the following form:

P() T 2K(5) u(bf)@ K@i+ 3) u(hf)@ K(j

D[
N—

. 6.14
Uu-) ( )
The physical state constraints are easily evaluated on the right hand side of (6.14) since it
is just a direct sum of atypical Kac modules. Because only the socle of IC(j) statisfies the

physical state constraints, we obtain that the physical spectrum within P(j) is given by

— 1 ) 1
)u(b_)@ L(j Q)M(b_) (6.15)

D=

PhysP(5) u(b—): 2L(j) ® LG+

Here we denoted the subspace of P(j) that satisfy (5.127) - (5.130) by Phys P(j) and used
that according to section 5.3.2, Phys K(j) = soc K(j) = L£(j). We can bring the right hand
side of (6.15) in a nicer form by noting that the dual Kac module KV (j) treated as an
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L(7) ; .
_— ~_ o .
KG): LG —3) LG+3) KY(G): LG-3) L+ 3
\L )/ e

(j

Figure 6.3: The decomposition of the atypical Kac module K(j) and its dual K" (j) into
irreducible components. Solid arrows decrease the grading by 1 while the dashed one
increase the grading by one. So loosely speaking, solid lines correspond to elements in
U(b™), and dashed line are associated with elements in U(b™).

U(b~)-module decomposes into a direct sum as well,
B LU D)y ® LG D)y (6.16)
This can be seen from the decomposition depicted in fig. 6.3. Hence we can write
Phys P(j ‘ = KY(j ‘ . 6.17
ys P(j) (o) () (6.17)

This strongly suggests that, if we consider the full ¢(g)-module structure, the physical

states transform as a dual Kac module,

PhysP(j) = KY(j) . (6.18)

In the following, we will assume that this holds. Fig. 6.4 shows where these states are
situated within the projective cover P(j). Comparing fig. 6.4 to fig. 6.1, one sees that the
submodule of P(j) consisting of compactification-dependent states on T can actually be

equivalently characterised as the image of the BRST operators Q_,
Phys 77(]) = imp(j) Q_ . (619)

This also holds for Kac modules in the sense that Phys KC(j) = imyc(;) Q. However, it is not
in general true that for any module the compactification-dependent states on T are given
by the image of Q_, take e.g. the atypical irreducible representation £(j): The physical
state constraints vanish on the full module, thus Phys £(j) = L(j), but Q_(L(j)) = 0.

So far, we have only discussed the action of the physical state constraints on atypical
projective covers. However, to get a hand on the full string spectrum, we have to take the
right movers into account as well as the quotient in (4.87). The full space H is simply a
direct sum of products of left- and right-moving degrees of freedom and thus the physical
state constraints can be evaluated on each factor independently. But these states are
subject to the equivalence relation induced by taking the quotient with respect to the
submodule N (cf. section 4.3.4). At this point in our analysis, the characterisation (6.19)

of the physical compactification-dependent states in P(j) as the image of Q_ becomes
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Phys P(j) : KY(j —
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Figure 6.4: The submodule of P(j) that satisfies the physical state constraints for
compactification-dependent states on T*. For comparison, we also indicated the action
of Q_ showing that Phys P(j) = imp(;y Q.

extremely useful. We have already argued in the previous section (cf. (6.9)) that on the

actual space of states #(?) we have the equivalences
Q. ®id & id® O . (6.20)

So working with the representatives (4.81), the submodule of compactification-dependent

states on T* are given by the images of

Q_®id for left-movers, (6.21)
Q, ®id for right-movers . (6.22)

Thus, as in the case of compactification-independent states, the compactification-dependent
states on T can be characterised by the action of the BRST operators Q4 on the left-

moving factor only.

6.3 The Full Massless Physical String Spectrum
on Ang X S3 X T4

At this point in our discussion, we have found two classes of physical states: those that
are independent of the particular choice of compactification manifold and those specific
to a torodial compactification. This allows us to give an expression for the full physical
string spectrum on AdSz x S? x T4 by combining these two classes. However, we have
to be a little careful when gluing left- and right-moving degrees of freedom together. In
fact, there are four possibilities how to combine them: either both left- and right-movers
are compactification-independent, or one of them is compactification-dependent and the
other one is not, or both are specific to compactifications on T?. In this section, we will
explain how the physical state conditions found in sections 6.1 and 6.2 should be applied

to each of these possible combinations.

For simplicity, we denote compactification-independent states by ¢~ and compactifi-
cation-dependent states by ¢2, a = 1,2. Each set of states is assumed to arrange in

projective covers P(j). Putting left- and right-moving degrees of freedom together, we
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thus find a direct sum of nine P(j) ® P(j) summands associated to states of the form

¢ R, d@d, ¢ @, . (6.23)
with individually are subject to the equivalence relation (4.87) discussed before. Recall
that this relation allows us to pick a gauge in which each one of the direct summands takes
the form (4.91), which in the following we will assume. The physical state conditions on
the full spectrum may differ on every summand depending on whether compactification-

dependent states are involved. So in the chosen gauge, the spectrum can be written as

D ([P, o2 [Pi)eLG)] @2 [PH) L) 4 [Pi)eL0)], ).
J
(6.24)

where the subscript on each summand indicates whether one is considering compactification-
dependent (d) or compactification-independent (i) states with respect to the left- or right-
movers, e.g. the direct summand [77( Jj)® m] ; Teans that the left-movers are taken to
be compactification-dependent while the right-movers are compactification-independent.
We will now consider each direct summand for given j seperately. The multiplicities of
the direct summand are due to the fact that there are two distinguished complex fermions
¥4, a = 1,2, of conformal weight zero on the four-torus T4. So the direct summands with

subscript di and id appear twice while the dd-summand has multiplicity 2% = 4.

If both left- and right-moving states are compactification-independent, we already
found that both the Q_- and Q. -cohomology has to be evaluated on the left-moving
factor, which is the projective cover in our gauge. This leaves us with a physical spectrum

of the form
bhys = ED (LG = 1) @ 2L()) @ L(j + 1)) ® L)) (6.25)

J
Now let us consider states whose left-moving part is compactification-dependent, i.e. we
ask for the physical states that sit within [73( Jj)® m} . in (6.24). This direct summand
corresponds to states of the form ¢? ® ¢—. Since the right-moving degrees of freedom
are compactification-independent, we have to evaluate the Q_-cohomology on the right-
moving factor, which is equivalent taking the Q,-cohomology on the left-moving factor

(cf. eq. (6.9)). Hence, in the gauge (4.87), we are interested in the cohomology
Ho, (P(j)) =K(j —3) @K+ 5)- (6.26)

On the resulting representation content one has to evaluate the compactification-dependent
physical state conditions, i.e. the image of @_ should be identified with the physical states.
So the physical spectrum reads

Q- [Ho, (P()] ~Q-(K(i-3)@Q- (K(i+3)~LG-5)&LG+3), (627)

where we made use of im(;) Q- = L(j), as has been argued before (see Fig. 6.3). A similar

argument applies if we consider states that are compactification-independent with respect
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to the left-movers and compactification-dependent with respect to the right-movers. How-
ever, in this case we have to look for the image of Q. applied to the Q_-cohomology. We

obtain
Q. [Ho (P(i)] =+ (KV(i—3) @9+ (KY(+3)=LG-3)@LG+3). (628

Due to the multiplicity of two for the di- and id-summand in (6.24) they add four physical
multiplets (£(j — 3) + £(j + 1)) ® L£(j) to the physical spectrum. Therefore the physical
spectrum originating from states where either the left- or the right-movers are chosen to

be compactification-dependent is

J
The last case to consider are those states where the left- as well as the right-movers are
compactification-dependent, i.e. the direct summand [P(j) ® E(j)} » in (6.24). In this
case, we have to look at the image of Q_ o0 Q, = Q4 o Q_. No cohomology has to be
taken at all. It is not difficult to see that the image is identical to the socle of P(j),

Q- (24 P(j)) = Q-K(j) = L(j) = s0cP(j). (6.30)

Again, as there are two relevant fermionic fields on the torus T4, states of this form come

with a multiplicity of four. So their contribution to the physical spectrum is
Wi = P 4L£06) ® L) (6.31)
J

Putting it all together we obtain the full massless physical spectrum for string theory
on AdSz x S3 x T4,
thys - thys H

oHY o HY

phys phys phys
= @[( G-L@2L(j )@C(j+1)) @4(£(j— %)@E(j)@ﬁ(j+;)):| ® L(3)
compactlﬁcatlon independent compactiﬁcat‘i,on—dependent

_@ G- @4LG -3 S6LG) ®ILG+3) LG +1)) ®L(>),

in agreement with the supergravity spectrum of type II string theory compactified on T*
in [54].
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CHAPTER 7

Massive Hybrid States

In this chapter, we give a description of the compactification-independent massive string
spectrum within the PSL(2|2) WZW model. In the first section, we identify the vertex
operators that correspond to physical string states at the first mass level in the hybrid
formulation; the resulting string spectrum is then shown to agree with the RNS spectrum
in section 7.2. Based on this result and those obtained in the previous chapters, we present
a conjecture for an algebraic characterisation of the full string spectrum in section 7.3,
which is then checked to hold at the second mass level. Apart from the results presented
here, the reader should be aware of appendix D.2, where an examplary calculation of a
relevant OPE is given, and appendix D.3, which lists OPEs of vertex operators of the
po system; the latter are of particular importance when evaluating the physical state

constraints in section 7.1.

7.1 Compactification-Independent String States
at the First Level

In this section, we will analyse the lightest massive string states in the hybrid for-
mulation that are independent of the choice of the compactification manifold M. As for
the massless case, our goal is to find a description that allows us to identify these physi-
cal compactification-independent massive string states within the PSL(2|2) WZW model.
This would imply that it is not necessary to work with the complicated N' = 2 supercon-
formal structure (5.61) - (5.64), which plays an important role in the hybrid formulation,
in order to determine the physical string spectrum. Rather we only have to understand

the algebraic structure of the affine Lie superalgebra ];5\[(2]2) and its representations.

Our strategy to achieve this is similar to the one applied in section 5.3.1: we start in
the hybrid formulation and note that the hybrid vertex operators factorise into a vertex
operator of the PSL(2|2) WZW model, and a vertex operator containing the ghost fields
p and o as well as fields of the N/ = 4 superconformal algebra on the compactification
manifold. Evaluating the physical state conditions (5.8) on these vertex operators result
in conditions on the PSL(2]|2) WZW vertex operator alone, thus reducing the hybrid
description to an algebraic description in the context of the PSL(2|2) WZW model.
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7.1.1 Evaluation of the hybrid physical states constraints

Our goal is to find an appropriate description of the massive string states within the
PSL(2]2) WZW model. From the hybrid formulation we know that physical states have
vanishing conformal weight, so the quadratic Casimir Co(\) of the horizontal subalgebra
of psl(2]|2) has to be negative on the ground state representation. We will be considering

here states at the first level, whose ground states therefore satisfy

1

—Co(\)=Lo=—-1. 7.1
55, 2(A) = Lo (7.1)
Hence any affine descendant has conformal weight greater or equal to zero. Note that

(7.1) defines a set of allowed weights for affine Kac-modules.

Recall that in the massless case (see section 5.3.1), the vertex operators of compactifi-

cation-independent physical states were of the form
Vo™ = (b21 € T0IET) = (fo0 ¥ (7.2)

where ¢9 1 is a vertex operator of the target space supersymmetric theory in six dimen-
sions, i.e. of the PSL(2|2) WZW model. The guiding principle in arguing for this ansatz
is that it must have vanishing conformal weight, unit U(1) charge and it must be mass-
less from the point of view of the six-dimensional theory, i.e. Lgvzwgb = 0. The reader
might wonder why VZ)JF should be considered compactification-independent even though it
apparently involves excitations on the internal manifold M, namely the field Jng. The
reason for this is that, independent of the choice of M, there is always a topologically
twisted N' = 4 superconformal field theory associated with it. Hence the field Jg+ ex-
ists independently of the choice of the internal manifold. Following this philosophy, we
generalise the vertex operator in (7.2) to include the first affine excitations of the WZW
currents and of the scalar bosons p, ¢ and H = HgNS. Thus our ansatz to describe

compactification-independent states on the first massive level is
vVt = (¢1,oep+m) + ((¢2,1 + dp ¢§71 + 0o ¢34 +i0H ¢£{1)e2p+i”+m) . (7.3)

Here ¢ 1 is a vertex operator of the PSL(2|2) WZW model of zero conformal weight while
?1,0 gbg’l, ¢35 1 and gbfl are associated to affine ground states of the PSL(2|2) WZW model
of conformal weight —1.1 Tt is easily checked that VT has U(1)-charge one and vanishing

conformal weight, as required by the physical state conditions in the hybrid formulation.

We will now evaluate the physical state conditions (5.8) on V+. Both G and G have
conformal weight h = 1, so the action of their zero-modes on V' is given by the first order
pole of the respective OPE. Since the first order pole of any OPE, say ¢(z)1(w), coincides
with the residue of that OPE at the singular locus, we will denote it by Res ¢(z)9(w).

!Following section 5.3.1, the subscripts of the WZW vertex operators, say ¢m,n, associate it with the
corresponding exponential in the po ghosts, e™?Tmo+H "¢ g the subscripts of ¢o,1 imply that the vertex
operator is part of the normal ordered product involving the exponential e??T*7 T in the ansatz (7.3).
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The C;’(')" condition

We first check what constraints on the ¢’s are imposed by the Gi = 0 condition.
Recalling that Gt = ertil we can determine the residue of the OPE with each summand.
The evaluation of the residues, although straightforward, is in some cases cumbersome.
The reader interested in the technical details of the calculation is referred to appendix
D.2, where the rather involved calculation of the residue in (7.11) is presented in detail.

The relevant residues for the C;’(T condition are

Res e T (2) (¢17oep+iH) (w) =0, (7.4)

Res et (2) (¢271€2p+ia+1H) (7.5)
Res e’ T (2) (qﬁ%liaae%“”“}]) (7.6)
Res ep-l—iH(Z) (¢g7lap62p+io‘+zH) <¢p 3p+ia+2iH) (w), (7.7)
Res P il (2) (¢g718p62p+i0+2H) ¢H 3p+w+22H) (w). (7.8)

Hence we conclude that physical states have to satisfy

¢h1 =265 (7.9)
in order for the full residue to vanish. In the following, this relation is imposed on V.

The Gar condition

We now turn to the second kernel condition G&" = 0. The calculation can be simplified

mp+ino+iH

by noting that the terms proportional to some exponential e in the first order

pole of the OPE have to vanish independently. Hence we will consider them separately:

Terms proportional to e*P+2io+iH .

2p+2ic+iH

Note that normal ordered products proportional to e only appear in the OPE of

(¢T) with summands of V' proportional to e?* T  Thus the residue of this OPE

has to vanish separately. One obtains
Res(e7T) (2) (¢2,1€” ) (w)
= (i00{L1¢a,1 }e* T2 H) (w), (7.10)
Res (e T) (2) (i ¢3 1 Fo T ) ()
—(({L-1081} +20(p +io)$3,) T2 HH ) (w) (7.11)
Res(e7T) (2)(0(2p + iH) 5!, e T+ ) (w)

—(0(2p + iH ) gyl 2T (w) . (7.12)
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The full residue therefore vanishes if

¢3, =05, =0 and (7.13)
Lig21 =0. (7.14)

Condition (7.13) together with (7.9) tells us that all ghost excitations at the first affine
level are unphysical. As a consequence, we only have to look at the space of states of the
WZW model. The second condition further restricts the physical sector to include only
Virasoro primaries up to the first level. Of course, the field ¢ o has not yet been restricted
in any way except for being an affine ground state; it is therefore a Virasoro primary by

construction. Hence we reduced physical vertex operators to be of the form
vt = (¢1,06p+iH) + (¢2,1€2p+w+iH) (7.15)

with Virasoro primaries ¢10 and ¢g 1.

Terms proportional to ePtio+i

The next step is to look at those terms of the residue proportional to e’ These may
come from the OPE of (e°7T) with terms in (¢1,0e”™) and from the OPE of (e™"Q)
with (¢2’162p+i0' +il ) Their residues read

Res(¢'T) (2) (610”1 (w)

= (({L-1¢1,0} +i00{Log1,0} + Op +i0)$1,0) "7 ) (w)

= (({L-1610} + Dpdi) e ) (w), (7.16)
Res(e Q) (2) (g2, T+ ) (w)

= (({Qog2.1} — 0p{Q1¢2.1}) e 7T H ) (w) (7.17)

where we have used that Lo¢1 0 = —¢1,0. Again, we demand the full residue to vanish.
We find that ¢; g is determined by ¢2 1,

P10 = 1921, (7.18)

and that ¢ 1 is subject to the constraint,

Qo211+ L1910 = (Qo+ L_1Q1)p21 =0. (7.19)

Note that (7.18) implies that ¢1 9 does not carry physical degrees of freedom even though
it is non-vanishing. Thus it is enough to know all the physical degrees of freedom contained
in ¢o,1. Apart from the condition that it has to be a Virasoro primary with respect to the
WZW model, it also lies in the kernel of Qg — L_1Q;.
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Terms proportional to et

Finally, we take a look at terms of the residue uncharged with respect to p as well as o. In
other words, we consider terms proportional to e/ originating from the OPE of (e~*Q)
with (cZ)Loe””H) and the OPE of (e_Qp_wP) with (¢2,162p+i”+m),

Res (e*pQ) (2) (cbl,ge"’HH) (w)
= (({Q-1010} = 9p{Qod1,0}) ) (w), (7.20)

Res (e—2p—iap) (Z) (¢2’162p+ia+iH) (w)
= (({Pop21} — 0(2p + io){Pipa1}) ) (w). (7.21)

From those and the identification in (7.18) we see that ¢ 1 is also subject to the constraints
(Po — Q-1Q1)d2,1 = QoQ1¢2,1 = Prp21 = 0. (7.22)

Terms proportional to e P~ +i .
There is still one OPE left to consider, namely the OPE of (e‘zp_iUP) with (d)l’oep“H).

Its residue is
Res(e 27" P)(z) (¢1,0e” ) (w)
= (({P-1¢10} — 02 + io){Pogr0}) e P~ 7+ ) (w) . (7.23)

So we must demand

P_1Q1¢21 = PyQi¢2,1 =0. (7.24)

in order to exploit the kernel condition completely.

Let us summarise our results so far. We have seen that the compactification-independent
physical spectrum of the hybrid string can be identified within the PSL(2[2) WZW model
alone, at least up to the first level. The physical hybrid string states within the full

WZW-spectrum are subject to the following kernel conditions

Li¢ = (Qo+ L-1Q1)¢ = (P — Q-1Q1)¢ = QoQ1¢ = P_1Q1¢ = PyQ1¢ = P1¢ = 0.
(7.25)
The interpretation of the first constraint is simply that physical hybrid string states have to
be Virasoro primary as already said above. We will see later that apart from the restriction
to be Virasoro primaries, the only significant condition to impose is the second one in
(7.25), namely (Qo + L_1Q1)¢ = 0. All other kernel conditions are then automatically
satisfied, at least at the first level.
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Gauge degrees of freedom

Having found a set of kernel conditions on physical states, eq. (7.25), we may now
investigate which of these are gauge trivial. In particular, we are interested in the gauge
freedoms of the WZW vertex operator ¢ 1 as it is the only one carrying physical degrees
of freedom.

Recall that gauge trivial states in the hybrid formulation are of the form éar G(J{ A= In

2p+io+iH

order for that vertex operator to be of the same form as ¢ 1€ , a sensible ansatz

for A™ is
AT = ALoep + A2,162p+i0 R (726)

where A1 and A are vertex operators associated to WZW states that lie in an affine
Kac module of lowest conformal weight —1. In particular, A; o has conformal weight —1,
i.e. it corresponds to an affine ground state, and As; has vanishing conformal weight so
that A~ has conformal weight zero as well. As before, the terms in éar G§ A~ can again be
distinguished by the exponential in the po-ghosts, which can be considered individually.

Terms proportional to e3r+2io+iH .

First, we look at terms proportional to €312+ — They only arise from the OPE of
(e7T) with (Ag1€?%%7). From eq. (7.10) we can immediately extract that

Res (ewT) (2) (A271 62”“”) (w)
= (iaO—{LlAZl}e?P-i-ZiJ-HH) (w). (7.27)

Applying C;’g to this first order pole, we obtain the required terms proportional to e3¢+ +iH

Since such terms do not appear in VT, we have to require that these terms vanish. So the
gauge parameter As 1 has to be annihilated by L. In other words, it has to be a Virasoro
primary.

Terms proportional to e?Ptiotifl .

Next, we take a look at the terms proportional to 2T+ These may be regarded as
the most important ones because they describe the gauge freedom of ¢ 1. As before, they

arise from the OPE of (e7) with terms in (A1,0e?T) and from the OPE of (¢*Q)
with (Ag1e?P T H) From eq. (7.16) and (7.17) we know that

Res(ew’T) (2)(A1p€”)(w) + (e7"Q) (z)(Ag,lesz")(w)
= ({L-1A10} +{QoA21} + (A1o — {QiA21})0p) T ) (w) . (7.28)

We have to demand that A1 = Q1A2 since otherwise G’g applied to the first order pole

above yields a vertex operator involving p-ghost excitations. Substituting Ao, we then
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obtain a gauge freedom of ¢ 1,

P21~ P21+ (Qo+ L1Q1)As;1. (7.29)

Note that the operator that acts on the gauge parameter Aj; is exactly the deformation

of Qo that appears in the kernel conditions (7.25) suggesting a cohomological description.

Terms proportional to ePTH :

The terms proportional to e?**H in Gf G A~ arise from the OPE of (e ?Q) with (A ge”)
and the OPE of (e=2/7"7 P) with (Ag,1e***7). Using (7.20) and (7.21), we obtain

Res (e—pQ) (Z) (ALoep)(w) _ (e—2p—i0P) (2) (A27162p+i0) (w)
= ({Q-1A10} — {FPoA21} + 9(2p +io){PiA21} — Op{QoA10})(w) = F(w). (7.30)

We temporarily denote this first order term by F(w). Note that it involves no exponential
in the po ghosts at all. Hence when we determine the first order pole with Gt = eptifl

the first two terms vanish. In the end, it simplifies to
Res e’ (2) F(w) = ((2{P1A2.1} — {QoA10}) e’ ). (7.31)
Therefore, the gauge parameter As; induces a change of ¢ g as

$1,0 ~ ¢10 + (2P1 — QoQ1)A21 . (7.32)

But ¢1 carries no independent physical degrees of freedom since it descends from ¢o 1
by applying Q1. Now using that LiAs; = 0 because of (7.27) and Ag; € Ia(l)()\) with A

chosen such that LoAs 1 = 0, one can show that

(2P — QoQ1)A21 = Q1(Qo + L_1Q1)A21 (7.33)

and hence the change in ¢ in (7.32) descends from the gauge freedom of ¢ as one
would have hoped. We conclude that physical states ¢ are only well defined up to a gauge
freedom,

¢ ~ ¢+ (Qo+L_1Q1)A  with L;A=0. (7.34)

Thus we have arrived at a classification of the physical spectrum at the first level in terms

of the algebraic structure of psl(2|2).

7.1.2 The hybrid vertex operator () and its properties?®

Before we proceed to further evaluate the physical state conditions found in the pre-
vious section, let us emphasize the particular importance of the hybrid vertex operator

in the formulation of these conditions. This should come as no big surprise as it already

2The reader willing to take some algebraic properties of @ for granted may skip this section.
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served as the BRST operator for the massless spectrum (see sections 5.3.1 and 6.1). How-
ever, as soon as one leaves the affine ground states, the situation becomes more involved
as e.g. the order of normal ordered product in the definition of () becomes crucial. In this
section, we want to address these subtleties and present some properties of the modes @,

that will be particularly useful in the following.
The field Q as defined? in (5.89),

0= 2\1% [(Kab(SﬁSi)) + 4¢(Si65ﬁ)] , (7.35)

can be easily written in terms of modes using general results on the mode expansion of
the normal ordered product of two vertex operators [37,85]. Specifically, if ¢(z) and x(w)

are two vertex operators, the n-th mode of the product equals

(WX = D (Vohy—LXnthy 4L + € Xnthy—1-LY—hyt14L) (7.36)
L>0
where h,, is the conformal weight of ). Here ¢ = —1 if both v and x are fermionic and

€ = 41 otherwise. With this result it is straightforward to write down a mode expression

for the n-th mode of ). For the individual summands of ) we get

(S22 ) = 30 (K182 08 s + K% 18 1152,

m,1>0
+ Sg,flflsbf,nfm+l+1K%b + Si,n,mfngleﬂ
- Z K25 1S s (7.37)
m,lEZ

where >, [K2, SﬁleLH] = 0 was used, and

(5°05%)n =Y ((—n—m—2)8" _,, 1Sy +(n—m+1)S", .8 )

m>0

_Z _n_lsgmsgn m_Z(_ _l)Sgn mng (738)

MmEZL meZ

An important property of @) is its commutation relation with operators in g1,

[Qo, S% o] = —ivVE(S2TVEY) (7.39)
where «, 8 = +1. This relation can be proven by noting that

[ i,Oa Q(w)] = {Si,o Q*3Q} (w) ) (740)

where €2 is the conformal vacuum annihilated by all non-negative modes of the WZW-

3Recall that whenever s0(4)-indices a, b, c, . .. appear twice within a term, summation is understood.
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currents. The state associated to the field ) by the operator-state-correspondence is

Q_30 = 2\1/E {(Kb (s2st)) o+ 4@'(5“85“)3Q]

1
= = (KiblSﬁlSﬁl + 42'52155) Q. (7.41)

=

It is straightforward to evaluate the commutators of S§ ; with Q_3. First, we consider

the commutator
S St | =208 48T 8% | —Letefse KU, K| +E,. (7.42
G0 K P 1| = 2057 154 19 1 — 3€ ¢ K%, KTy + B85, (7.42)

The auxiliary operator Z¢ 5 collects all residual terms that involve elementary commutators
of the modes of the WZW currents and its explicit form will be discussed later. The
anticommutator [K%, K o ]+ can be considered as a tensor 79¢/ with the symmetry
properties

qabef _ _baef _ _rpabfe _ mefab (7.43)

For such tensor, the following identity holds
geabeadbe _ _ 1 abefrabef 5. (7.44)
So the commutator (7.42) simplifies to
¢ 0 K5t 5t ,1] ——ise <i5“b€fKﬁbl,Kef ~25% 5 ,1> FEC,. (7.45)

The term in brackets should be recognised as the state that corresponds to the Sugawara
energy momentum tensor LYAWQ multiplied by 2k. So in order for (7.39) to be valid,
one would hope that the the residual term =25 is canceled by the commutator of S%

with the remaining term in Q_3{2. Evaluating =¢ 5, we obtain

[1]

33: z cbefSa |: ab Kef}—QZ {Sa,h 1}5771
- Z-gcbef [Kgblasg,—l} Kil + %‘ECGEfKilb |:KiflaSi»— ]

=-2 sc‘waﬁv_lefQ +2 5C“efof15Z,_2 , (7.46)
which is indeed canceled by the commutator
(S ,4i8%,8%,] = —2e/ K59 _, 4 2e0¢0 g0 | K, = —=¢,. (7.47)

Therefore acting with S¢ ; on Q32 yields

S 0Q-50 = (—eabea KB K + 84180 — 82 8% 1) 0

\F — 71
=iVkS® | LyQ=iVk(SeTVW)_.Q, (7.48)
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and we conclude that

(5% 0, Qw)] = iVE(S2TV V) (w), (7.49)
which in particular implies the commutation relation (7.39).

The right-hand side of (7.39) can be expanded in modes by using (7.36),

(SeTWVAW) =) L .80, (7.50)
nez
Recall that : - : refers to creation-annihilation-ordering. Note that there is no ordering

ambiguity for the zero-modes since Ly commutes with Sf%. From (7.50) we see that the
commutation relation (7.39) implies the particularly interesting fact that when acting on
the subspace of Virasoro primary states of conformal weight zero, Q9 commutes with g4

up to terms that are Virasoro descendants.

From the explicit realisations of the normal ordered products (7.37) and (7.38) in terms
of modes, we can draw further conclusions. From (7.37) and the commutation relations
Ly Tn) = —nTpntn, where J may denote any current of the PSL(2|2) WZW model, one

obtains
[Ln,, (Kab (stﬁ))n] — (@20 —n) (Kab (SESE))HMI . (7.51)

Therefore (Kab (SE SE)) is a Virasoro primary field of conformal weight 3. The additional
term (7.38) of @ spoils this property. Indeed, we find

2 (s2051) ] = 3 (UL ) (e 0SS (752

— m—+1

However, if restricted to K1) ()), i.e. states at the first affine level, and choosing n = 0

and n’ = 1, the above commutator simplifies to

(L, (s20s") |

Combining this with (7.51), we obtain

1
— _ a a _ _9Qa a a b
. z::( 2m) §% 1 Se = —25% (S | = (S,as,)l. (7.53)

m=0

[L1, Qo]

= . . 4
R0y 20, (7.54)

This commutation relation will be important in (7.62).

7.1.3 Cohomological description of physical string states

So far we have worked in the hybrid formulation and reduced the physical state con-
ditions to algebraic requirements on states in the WZW factor. We will now have a closer
look at the algebraic constraints (7.25) and (7.34). Recall that WZW vertex operators
¢2.1(z) and Ay 1(z) correspond to states of the WZW model at the first level of vanishing

conformal weight, hence from a representation theoretic point of view, we are looking
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for ¢, A € le(l)()\) with A\ chosen such that Lg¢ = LoA = 0. This is exactly the case if

Cy(A\) = —2k. In the following we will assume that A has been chosen in this manner.

Let us first consider some of the kernel conditions (7.25) in detail. The condition
Li¢ = 0 implies that physical string states are Virasoro primaries. We can define a

projection IIY) onto the kernel of Ly, by
Y =14 10.41,. (7.55)

Note that we are working at the first level with the ground states having conformal
weight —1. Furthermore, any affine ground state |A) € KM ()) satisfies IV L_y [A) = 0.
This implies that the first level decomposes as 16(1)()\) =ker Ly ®@im L_;. Thus restricting
Ie(l)()\) to the g-submodule of Virasoro primaries is, morally speaking, equivalent to iden-
tifying the submodule of Virasoro descendants and removing it from the decomposition in
(2.58). Note that L_; applied to the ground state representation E(O)(A)’g ~ IC(A) yields
a copy of it at the first level,

imL_, ~ KO < KD, (7.56)

Therefore the subspace of Virasoro primaries at the first level decomposes into g-represen-
tations as (recall that the subscript denotes the grading of the cyclic state of the respective

Kac-module)

kergoy oy La| = Ko(h) @ Ko(X*) & Ko(A™) ® Ko(Ars) & Ko(A—-)

e P (/cg(Ai) & K, @ Ky(A7) ea/cg(A:)). (7.57)
g==1

The next condition of interest is the deformation of Q) in (7.25), namely Qo+ L_1Q1.
In order to get some insight into the meaning of this operator we can proceed as follows.
Having the projection (7.55) onto ker L; at hand, we can project Qo onto ker L simply by
multiplying II") on both sides. The projected operator is denoted as QOH = oWQeIW.
Since the Virasoro modes L, commute with the horizontal subalgebra of 1;;[(2|2)k, the
projection II)) commutes with it as well. Thus we can use the commutation relation (see

section 7.1.2 for a proof)

Q0. $%] = —ivk (SQBTWZ"V)O = —iVEY 5 Ly (7.58)

ne’l

to calculate the commutation relation

(@8, 59%] = [V, s55] =1 [Qo, 57%] T
= —ivEk (s L + WL 59 4 mWs*? pm®y, (7.59)

where LIl = MWL, TW is a shorthand notation for the projected Virasoro modes. Because
IIWL_; = 0 when applied to affine ground states in £(©(\) and L;TIM = 0 on KD (N),
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the last two terms in (7.59) vanish. Hence
[QOH, Si{fo] — —iVES* LY. (7.60)

It is easy to check that the zero mode Ly commutes with II(") using the commutation
relations of Virasoro modes. Since this implies that Lg[ =TIM Ly, the above commutator
vanishes when applied to the kernel of Lg, i.e. to states of zero conformal weight. Because
X is chosen such that K(V()) is annihilated by Lo, i.e. C2(\) = —2k, we obtain

[QOH,S%} —0 on KD). (7.61)

Since both Qo and I commute with the g(® ®g_; as well, we conclude that Q(r)[ commutes

with the full horizontal algebra g of g and hence induces a g-homomorphism on le(l)()\).

As soon as we have imposed the physical state condition L;¢ = 0, II() obviously acts

on the remaining states like the identity. The action of QOH can be evaluated on ¢ € ker Ly,

Qe =TIWQIM ¢ = (1 + 3L_1L1)Qo¢ = (Qo + L-1Q1)s, (7.62)

where we used (7.54). But the last expression in (7.62) coincides exactly with the operator
in (7.25). Thus we have obtained a nice algebraic interpretation of one of the operators
appearing in (7.25). Namely, it is simply @ appropriately corrected such that it induces
a g-homomorphism on ker L; C /€(1>(>\).

Before we continue analysing the kernel conditions, a discussion of the gauge degrees of
freedom (7.34) is in order. The gauge parameter A has to be Virasoro primary as well and
hence according to our discussion before, the gauge freedom can be equivalently written
as

¢ ~ ¢+QFA  with L;A=0. (7.63)

In other words, physical states are only defined up to states in the image of the g-
homomorphism induced by Q. Clearly, this is only well-defined if (Q{')? = 0. Indeed,
note that (Qf)? is a g-homomorphism of grading —4. But the decomposition in (2.58)
implies that no nontrivial g-homomorphism mapping I/C\(l)()\) — 16(1)(/\) of grading —4
exists. Hence the g-homomorphism induced by QOH is nilpotent and the Qg—cohomology

is well-defined on the submodule of Virasoro primaries.

The spectrum of Virasoro primaries has been given in (7.57). Since QOH is an operator of
grading —2, we can immediately state that all Kac-modules of zero grading will contribute
to the Q{-cohomology. Unfortunately, just by considering the grading of Q}l, we cannot

make any statement on the remaining Kac-modules in (7.57) because the g-homomorphism
Qr: Ku(Ag) —Ka(0g), o f=+, (7.64)

might be nontrivial. Using the explicit realisation of Qg in (7.37) and (7.38), one can show
that the induced homomorphism from K;1(A3) to K_1(AF) is indeed nontrivial for any
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combination of o and 3. In this sense, the action of QOH is maximal. Hence we conclude
that

Hgp (ker Ly) = Ko(A) @ Ko @ KoM ) @ Ko(Ayy) @ Ko(A__) . (7.65)

We now turn our attention to the other conditions in (7.25). We want to show that they
are all automatically satisfied once ¢ is taken to be an element of the Q{}-cohomology (7.65).
We begin by showing (Py — Q-1Q1)¢ = 0. As for Qo, the zero-mode Py commutes with
g_1 ® g, but a priori does not commute with gy;. However, taking into account the

correction term —(@Q_1(Q)1, we find that at the first level the commutation relation

[Po—Q-1Q1, Si,ﬁo]
= Z\/E (Sg,ﬁo(QO +Q L1 +L Q1)+ (Q,lsf’i + 52/78,1@1)[/0) (7.66)

holds. When acting on states that are annihilated by both Ly and L;, the above commu-

tation relations simplify to

[Po — Q-1Q1, Si',go]

= iVRS(Qo+ LaQu) = VRS QY| (rem)

ker LiNker Lg ker L1

where we have made use of (7.62). So after restricting to the subspace of Virasoro primaries
within L) (M) and imposing the physical state condition QIDIQS = 0, the deformed operator
Py— (@ _1Q1 induces a g-homomorphism of grading —4 on the resulting subspace. But since
the QOH—kernel only involves Kac-modules of grading 0 and —1, it is clear that Py — Q_1Q1
annihilates all states in that kernel. Thus the (Py — @-1Q1)-kernel condition is trivially
satisfied once we reduced the physical subspace to be a part of the le—kernel. Hence the
(Py — Q-1Q1)-kernel condition may be discarded.

The two operators P_1Q; and PyQ; commute with the bosonic subalgebra g(® of g
and hence induce homomorphisms of g(o)—representations. However, these operators have
grading —6 and hence they induce trivial homomorphisms because the QOH-kernel as well
as the affine ground states IE(O)(/\) only involve g(®-representations that have gradings

between 0 and —5.

The remaining operators in (7.25), QoQ1 and P;, cannot be deduced to be trivial
simply by an analysis of their gradings. However, using their explicit realisation in terms
of modes, one finds that they indeed vanish on the direct summands of 16(1)()\) given in

(7.65) that are neither in the kernel nor in the image of Q.

Thus we have shown that physical string states at the first level in the
PSL(2]|2) WZW model can be described by the le—cohomology evaluated on the sub-

space of Virasoro primaries of conformal weight zero,

(1),PSL

Honys =~ Hen (kerIE(l)(,\) Ll) (7.68)

with the weight A chosen such that Ly = 0 is satisfied. Note that this is the same
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description of physical states as in the case of the massless sector. There the physical
sector was given by the Qg-cohomology (see eq. (5.110)). But Q' reduces to Qo on affine
ground states as they are all Virasoro primaries. Hence (7.68) can be considered as the

natural generalisation of the description of the massless sector.

7.2 Comparison with the RNS String Spectrum

In the previous section we have succeed to give a description of the physical states of
the hybrid formulation within the PSL(2|2) WZW model. Next we want to show that
our result is in agreement with the spectrum one obtains for the RNS string theory on
AdSs3 x S? [65,99]. In fact, we will be considering the full string spectrum not restricted
to the first massive level. This will allow us to deduce that the massive compactification-

independent physical spectrum fits into representations of g at all mass levels.

Let us assume that the NS vacuum has s[(2) ®sl(2) quantum numbers A = (51, j2). The
generating function of physical sl(2) @ s[(2) highest weight states of the RNS-string [77]
on AdS3z x S? in the NS and R sector are, respectively,

FNS(z,y|q)

n—1i -1, n—1 n—2 -1, n—1
:leyquﬁ02<x>—§n(1+$q )1+ a7 g =) (L +yg" 2)(A 4y ¢"72) (7.69)

et (1—2q")(1—271¢")(1 —yg")(1 —y~'q")

F®(z,y|q)

R 1+z¢") 1+ 2 ¢ (1 4+ yg") (1 +y g™ )
— iyt T ¢ . (7.70
i ema— i wma =gy - @7

n>1

In order to apply the GSO-projection later, we also have to determine the generating

functions with the insertion of (—1)"; they read

FNS(z,y|q)

ko T (L= 2d" ) (L =27l 7)1~ yq" 7)1~ y~'q"?)
::EhthﬁCz()\)*g H - —— " — , (7.71)
et (1 —zq")(1 —z71¢")(1 —yg")(1 —y~'q")
FR(z,ylq)
— oty ] 1—z¢")(1 -2 ¢" (A —yg")(L —y~'¢"™")
Lt (L—agm) (=27 1g") (1 —yg") (1 —y~'q")

— :L‘j1+%yj2+%(l _ x_l)(l — y—l)qﬁ(&()‘)_i . (7.72)

We are interested in the spectrum of compactification-independent states, i.e. the subsec-
tor of physical states that are always present independent of the choice of M. However, the
choice of M is restricted to manifolds that yield target space supersymmetry in six dimen-
sions. The existence of supersymmetry in a six-dimensional spacetime requires the A" = 1

superconformal symmetry of the non-linear o-model with target space M to be extended



7.2. Comparison with the RNS String Spectrum 145

to an N' = 4 superconformal symmetry [7,169]. Hence the fields generating the N' = 4
superconformal algebra are always present and should be considered as compactification-
independent, even though they correspond to excitations on the compactification manifold.
The character for some representation D of the A/ = 4 superconformal algebra is defined

as
XN=a(2lq) = Trp (¢7027) (7.73)

where Jp is the U(1)-charge of the superconformal algebra. In [63], the characters have
been determined for large classes of representations. For the compactification-independent
spectrum only the vacuum representations in the NS and R sector are of interest. Their

respective characters are

z4m+1 274m71

1 i93,(2]q) 2
R () = gi — Y10 Z < _ ) 2m?+m 774
X/\/74( |(]) q 1911(22‘Q)773<Q) = (1 + z—lq_m)2 (1 + zq—m)2 q ( )

Z4m+1 Z—4m—1

NS 1 2'19(2)0(Z|Q) 2m2+m
XN=a(zlg) = qF o—— 5 = - q (775
N=4 ’ 1911(22‘(1)773((1) mz;Z (1+qu+%)2 (1+Z*1qm+%)2 ( )

The first factor containing theta functions® is the character of the corresponding Verma
module while the infinite sum encodes the singular (and redundant) vectors within that

Verma module. Note that the characters of the two sectors are connected by spectral flow,

1 1
XN_a(zlq) = 2q1 XN a(2q2 |q) . (7.76)

Since the supercurrents have odd U(1)-charge and the bosonic currents of the N' = 4 su-

perconformal algebra have even U(1)-charge, the insertion of (—1)F

is easily implemented
by substituting z by —z. The partition sum of compactification-independent physical
states in each sector is then given by the GSO-projected product of the AdS3 x S? string
partition sum with the respective N' = 4 superconformal vacuum character. Thus the full
compactification-independent generating function including both the NS- and the R-sector

is given by

. 1 —
27 ylg) = 5 (FN(,yl0) ALa(zla) — PNyl 3a(—lo)) |

+ % (FR(% yla) X_(2lq) — FR(x, l/|Q)X/F\{/:4(—Z|Q)) L:o . (1)

4Q0ur conventions for the theta functions are

Yoo(zlq) = H (1-¢™1+ zqm*%)(l + Z*lqu%)’

m>1
D10(zlg) = 4% (22 +273) [T (1 — g™ (1 +2¢™) (A +27"¢™),
m>1
1 1 _1 m m -1 m
D11(zlg) =igs (22 —272) [ (1 = ¢™) (A = 2¢™) (1 - 27 '¢™).
m>1

They satisfy the relations ¥10(z|q) = qéz%ﬁoo(z’q% lg) and 911 (23|q) = —qu%ﬁ11(22q|q).
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Expanding it in powers of ¢, we obtain

Zindep(x’ y\q) _ Z .An(CL‘, y)qn+i02(>\) ) (778)
neN

The coefficient functions A, (x,y) can be understood as the generating functions of the
physical states at the n-th mass level that are highest weight states with respect to g(o);

for the massless level, i.e. n = 0, the coefficient function is for example
a1 1\ 2
Ao(z,y) = 27y <x2 + y2> (zy +1). (7.79)

It turns out that the coefficient function A, (z,y) for n > 1 seems to factorise into a factor
K)(z,y) and a residual polynomial factor. This factorisation property of the coefficient

functions has been checked explicitly up to mass level n = 6. Hence we can write

4n
An(z,y) = Kx(z,y) Z (An)rs xginy%ﬂ% (7.80)

r,s=0

where the A, are (4n + 1) x (4n + 1) matrices. Since the function z1y"2 Ky (z,v) is just
the branching function for (A + (I1,12)), we see that the massive states of the RNS string
on AdS3 x S? can be arranged into a direct sum of Kac modules with respect to g. Then
the matrices A, have the interpretation of encoding the multiplicities of Kac modules at
the various mass levels. The explicit form of the matrices A, with n = 1,...,6 can be
found in appendix E. For the case n = 1 that is of primary interest to us, the relevant

coefficient function is

Ai(z,y) = Kx(z, )@ ' +2+y " +y+1).
= Kx(z,y) + Ky++ (2, y) + Ky (2,y) + Ky, (z,y) + Kx__(z,y).  (7.81)

The associated matrix A; can be easily extracted from this expression and it is found to
be

00100
00000

Al=| 10101 (7.82)
00000
00100

Hence the physical compactification-independent RNS string states on AdSsz x S? can be

uniquely arranged in the following direct sum of psl(2|2) representations:

HOENS o () @ KO @ KO T) @ K(Aps) © K(A__). (7.83)

Eq. (7.83) should now be compared with our result obtained in the hybrid formulation
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in (7.68). Indeed, the spectra on first level agree nicely,

(1),PSL
phys

(1),RNS
phys

M = A (7.84)

This is a good consistency check of our analysis.

7.3 A Conjecture and its Confirmation at the Second Affine

Level

With our previous results in mind, it seems natural to expect that the cohomological
characterisation of physical string states in the PSL(2|2) WZW model generalises to all
mass levels. In particular, at level n, we conjecture that the space of physical states is
given by

phys

1

Hyn (Vir/€<”>(A)) , (7.85)

where A is chosen such that Ca(\) = —n, and Vir K™ ()) denotes the g-submodule of

Virasoro primaries within I/C\(”)()\), i.e.
VieK®(\) = {qs e KM ‘ L =0 Ym> 1} . (7.86)

Furthermore II is the projection onto the subspace of Virasoro primaries. We assume that
any state can be uniquely decomposed into a Virasoro primary and a Virasoro descendant.
In other words, our assumption is that IE()\) can be written as a direct sum of the space of
Virasoro primaries and the space of Virasoro descendants. This is true since any Verma
module with respect to the ¢ = —2 Virasoro algebra of highest weight h < —1 is irreducible
[66]. Hence the space of Virasoro descendants does not contain Virasoro primaries since
they would generate a subrepresentation. In the rest of this section, we confirm the
conjectured characterisation of physical compactification-independent string states in the
PSL(2|2) WZW model at the second level.

We start by defining the modified branching function of 16()\), which is

Xy (@, ulg) = Tr,(gz(k) (u%JOyKOqLO_ﬁCQ(A)) : (7.87)
where the trace Tr(® is only taken over highest weight states with respect to the bosonic
subalgebra g(©) of the horizontal subalgebra g. We have furthermore introduced a chemical
potential u that keeps track of the grading of these states. Cs()\) is the value of the
quadratic Casimir evaluated on the ground state representation K(\); by subtracting
ﬁCg()\) from the Lg-eigenvalue the branching function has no poles in ¢. Evaluating the

trace yields

@ ﬂ [e3 B
[Topesi(I+uzzyzg")(1+utezyzq" ")
—z7lg")(1 —2g")(1 —y~tg")(1 —yg™)(1 — ¢™)? "

n>1
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Loosely speaking, the factors in the numerator correspond to the fermionic generators of g
while the factors in the denominator are associated to the bosonic ones. The first step on
the way to determine the claimed space of physical states is then to identify the subspace
of Virasoro primaries. By our assumption that 16()\) decomposes into Virasoro primaries
and descendants, it is sufficient to eliminate the Virasoro Verma module generated by
the affine ground states. This is most easily achieved by multiplying the character XR()
with q_in(q), the inverse of character of the Virasoro Verma module . The spectrum of
Kac modules that are Virasoro primary can be extracted form the resulting character by

expanding it as
_ 1
Xvir ko (@ U5 ulg) = ¢ 20(q) Xy (7, v, ulg)

4n
= Ky(z,y) Z Z (D7), TR T L (7.89)

9€Z r,s=0
neN

In analogy to the matrices Cy, defined below eq. (7.79), the matrices Dy encode the
multiplicities of the various Kac-modules of grading g at level n that are Virasoro primaries.
Clearly, D8 =1 and Dg =0 for all g # 0. For n =1 we get

00100 00000
00000 01010

Di=l10101]|, Diy=lo00000], (7.90)
00000 01010
00100 00000

which agrees with (7.57). We have seen that all Kac modules of grading +1, which are
counted by D}rl, are mapped by QOH to Kac modules of grading —1, which are counted by
D!,. Since D!, = D!, none of them survive in the cohomology. Thus D} encodes the

physical string spectrum at first level in agreement with (7.65) and (7.68).

Expanding Xy, 8y to second order in ¢, we obtain the following set of matrices:

i~}
Il
S O O O = O O o o
SO O O O O o o o o
S O N O = O N O O
S O O O O o o o o
(S < B SO o S0 I o B S o SR
SO O O O O o o o o
S O N O = O N O O
S O O O O o o o o
SO O O O = O O o o
=
&
Il
S O O O O o o o o
SO O O = O = O O O
S O O O O O o o O
S = O O o = O
S O O O O o o o o
S = O = O == O = O
S O O O O O o o O
O O O = O = O O O
S O O O O o o o o
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0000O0O0O0GO0O
0000O0O0O0O0O
000010000
0000O0O0O0O0O
Di,=]1 001020100
0000O0O0O0O0O
000010000
0000O0O0O0O0O
0000O0O0O0O0O

We will need the projection operator onto the Virasoro primaries up to second level. It is

realised in terms of Virasoro modes as
O3 =1+ 100+ L2 L3+ LD oL+ &5 (L2 Ly + Lo L) . (7.91)
Note that
2 ~
(H(Q)) =1?% 4+ (terms annihilating states in K™ (X\) for n =0,1,2),  (7.92)

and that (]l — H(2)) clearly maps to Virasoro descendants. Furthermore, eq. (7.37) and
(7.38) give an explicit realisation of Qg as an infinite sum of products of g-modes. When
applied to states at the second level, this infinite sum truncates to a finite number of
terms. Thus, using (7.91), we can work with an expression for Qg that has only finitely
many terms. After identifying the cyclic states of the Kac modules at the second level
K@ (X) of £(N), it is possible to check with this realisation of QU that

e the homomorphism induced by Qg[ satisfies (Q0H)2 = (0 and hence the Qg[—

cohomology is well defined,

e no Kac module of grading +2 lies in the kernel of Qg[, i.e. the Kac modules in D3_2

do not contribute to the cohomology and neither does their image in D2,

e every Kac module of grading —2 lies in the image of Qf', i.e. the Kac modules in

D?, do not contribute to the cohomology and neither does their preimage in Dg .

The Kac modules of odd grading are less intuitive as the action of QOH is not maximal
in the sense that not every Kac module in Dil is mapped to one in D?,. In fact, by a
brute force calculation using the explicit realisations of the Kac modules as well as the
operators Qo and II, one finds that four Kac-modules in D?H are in the kernel of QOH As

a consequence, the same set of Kac modules does not lie in the image of QOH in D2_1. In
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our matrix notation the states that survive in cohomology can be encoded as

0000O0O0OTO0O OO
0000O0O0OTO0TO 0O
0000O0O0OTO0O 0O
000101000

Di, =1 00000000O0][,
000101000
0000O0O0OTO0TO 0O
0000O0O0O0O 0O
0000O0O0OTO0TO OO

and hence the spectrum of Kac module surviving in cohomology is encoded in the matrix

D2 -D%*,— D%, + D2, + D2, = (7.93)

O O O O O O o o o
O O O O O o o o o
O O N O NO N OO
S O O N O N O O O
O O N O O N O O
O O O N O N O O O
SO O N O N N OO
O O O O O O O o O
O O O O O O o o o

This matrix is the same as the matrix As in appendix E, which tells us the multiplicities
and g-quantum numbers of physical Kac modules in the RNS formulation. We therefore

conclude that our conjecture holds at the second level.
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Conclusions and Outlook

In the last decades, string theory has been an active and fruitful topic of research and
has influenced a variety of areas: among other things it offers resolutions of short-comings
of the standard model in particle physics and addresses the challenge of formulating a
consistent theory of quantum gravity. It also has had a notable impact in abstract mathe-
matics, most impressively in the context of the monstrous moonshine conjecture [48] and in
algebraic geometry by inspiring the concept of mirror symmetry of Calabi-Yau manifolds
(see [115] and references therein). In recent years, however, a particular class of string
theories has made its way into the literature; these are string theories in which the string

lives in an Anti-de-Sitter gravitational background.

The interest in string theories on Anti-de-Sitter space-times is twofold: from the point
of view of elementary particle physics, string theory is considered to be a promising can-
didate for a consistent UV completion of the standard model, which also naturally incor-
porates gravity. As such it is a theory of quantum gravity. However, actually quantising
string theory in nontrivial geometric backgrounds, i.e. curved space-times, is a difficult ex-
ercise. In this regard, Anti-de-Sitter backgrounds are particularly compelling because, due
to their large amount of symmetry, they provide string backgrounds in which string theory
can be quantised. Thus, even though our universe most certainly is not Anti-de-Sitter!,
it serves as a class of toy models from which we can gain insights into the quantisation of

the string.

From a more conceptual point of view, these theories are important due to the role they
play in the context of the AdS/CFT correspondence, which conjectures that string theo-
ries, or quantum gravities in general, on Anti-de-Sitter spaces are equivalent to conformal
field theories living on the boundary of that Anti-de-Sitter space. Since it thus connects
quantum field theories to theories of gravitation, it might be considered as a quite fun-
damental concept in physics, even entering application-oriented areas such as quantum
chromodynamics [64] and condensed matter physics [112]. Therefore, it is desirable to
gain deeper insights into the correspondence, collect more evidence for its consistency and
eventually, possibly in a simplified setting, give a proof of it. But this certainly requires
a well-established understanding of quantum strings living on Anti-de-Sitter gravitational

backgrounds.

This thesis succeeded in making progress in understanding string theory on Anti-de-

'Recent measurements [151] suggest a small but positive value of the cosmological constant while Anti-
de-Sitter space-times are solutions to Einstein’s equations with negative cosmological constant.
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Sitter spaces as it was concerned with the question how string theory on AdSs x S? can
be identified within the larger context of the PSL(2[2) WZW model. The close connection
of these conformal field theories has been first noticed in [30], where a reformulation of
RNS string theory, now commonly called hybrid string theory, was shown to give rise to
nonlinear o-models on PSL(2|2). The WZW point in moduli space of nonlinear o-models

is associated with string theory in a background with pure NSNS flux.

In more detail, we started with the discussion of representation theory of Lie superal-
gebras, in particular the representation theory of ps((2]|2). In section 2.2.3 we were able to
determine the composition series of projective covers in the case of small s[(2) eigenvalues
(in an appropriately chosen category), thus extending previous results on projective covers
of psl(2|2) representations [95,104,105,195].

Then, after reviewing important concepts in conformal field theory and string theory
as well as the derivation of the hybrid string, we have given a detailed description of
the PSL(2|2) WZW model that underlies the hybrid formulation of AdSz x S? for pure
NSNS flux in section 4.3.3. Following recent insights into the structure of logarithmic
conformal field theories [86,87,105,163,167,178] one expects that the space of states has
the structure of a quotient space of a direct sum of tensor products of projective covers.
We have worked out the details of this proposal: in particular, we have given a fairly
explicit description of all the relevant projective covers and explained in detail how the

quotient space can be defined.

In chapter 6, we discussed how the physical spectrum of massless string states can be
identified within the full space of states of the logarithmic conformal field theory underlying
the PSL(2|2) WZW model. For the subspectrum of massless states that is independent of
the choice of the internal manifold, we argued that the known characterisation originating
from the hybrid formulation in terms of BRST operators [30,62] must be appropriately
adjusted in order to be applicable to the logarithmic CFT. We have described the structure
of the resulting BRST operators in detail and determined their common cohomology.
The resulting massless compactification-independent string states reproduce precisely the
supergravity prediction of [54,57], including the truncation at small KK momenta. We then
specified our analysis to toroidial compactifications in section 6.2. Using the physical state
constraints for compactification-dependent states as they arose in the hybrid formulation in
section 5.3.2, we identified the physical massless string states specific to compactifications
on T* within the full space of states of the logarithmic CFT. We observed that they
coincide with the image of the BRST operators whose common cohomologies describe
the compactification-independent massless spectrum. This yields an intriguingly simple
characterisation of the compactification-dependent spectrum which again is consistent

with the supergravity analysis of [54,57].

We have also succeeded to evaluate the physical state constraints of the hybrid for-
mulation at the first mass level in chapter 7. We have found a surprisingly accessible
and elegant description of the physical compactification-independent string spectrum in
the context of the PSL(2|2) WZW model. In particular, we showed that the physical
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string states can be identified within the PSL(2|2) WZW model by taking an appropriate
cohomology of the full WZW spectrum at the first affine level. This cohomological de-
scription of the physical states reduces to the one known for the supergravity spectrum
when applied to the affine ground states. Hence it yields an appropriate generalisation of
the description of compactification-independent physical string states in the massless sec-
tor. This strongly suggests that the description of physical states we found can be further
extended to describe also the physical states at any mass level. A possible generalisation
to all mass levels was conjectured and we checked that it agrees at the second level with

the on-shell RNS string spectrum.

Having a simple algebraic characterisation of physical string states within the PSL(2|2)
WZW model at hand, it would be desirable to calculate correlation functions between
these states in the PSL(2]|2) WZW model and compare them to the known correlation
functions [42,84,175] in the RNS formulation. This may give further insights into the
connections of string theory on AdS3 x S3 to the PSL(2|2) WZW model.

Within the program of understanding the string theory side of the AdS3/CFTy corre-
spondence, the natural next step would be to investigate how our description of physical
string states changes if the PSL(2|2) WZW model is marginally deformed such that RR
flux is included to the string background. Even though no RNS description of string the-
ory exists in that case, from the point of view of the hybrid formulation this is equivalent
to leaving the WZW point in moduli space. In general, calculations away from the WZW
point are difficult to perform due to the fact that the currents are not holomorphic any-
more, which forbids the application of complex analytic tools. But since there exists a
non-renormalisation theorem specific to the PSL(2|2) WZW model [33], one may expect
that it is possible to keep track of how the description of physical states changes along
any path in the moduli space that starts at the WZW point. In particular, one should be
able to gain a deeper understanding of the non-renormalisation theorem of [55] in a target
space supersymmetric setting and possibly embed it into a larger scheme that also includes
massive states. Although this seems like a challenging task, success in that respect would
be a major step forward in mastering string theory in RR backgrounds and thus working

out the AdS3/CFTs correspondence in much greater detail.
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APPENDIX A

Lie Algebras and the BGG
Category O

In this appendix we mainly set notation and introduce concepts of representation theory

of Lie algebras which are similarly obtained in the Lie superalgebra case.

A.1 A Very Short Review on Lie Algebras

Let us start by recalling basic facts on Lie algebras. Lie algebras play an important
role in theoretical physics since infinitesimally small symmetry transformations usually
give rise to such Lie algebraic structures (see e.g. [49,73,91]). As a consequence, physical
entities (quantum mechanical states, fields etc.) transform in representations thereof. So
understanding Lie algebras and eventually their extension to Lie superalgebras turns out
useful in analysing symmetric theories since they put strong restrictions on the physical

entities. This section is mainly based on the standard literature [76,118].

Formally, a Lie algebra g is a vector space equipped with an antisymmetric bilinear
map

[]:gxg—g. (A1)

By definition, this bilinear form, called Lie bracket, is also required to satisfy the Jacobi
identity,
[, [y, 2]] = [[z, y], 2] + [y, [z, 2]] - (A2)

A quite intuitive realisation of a Lie algebra is given by the space of linear maps from some
finite-dimensional complex vector space V' to itself, denoted End(V') for endomorphisms.
As V is finite-dimensional, it is isomorphic to some R™ and End(V) ~ gl(n). It becomes
a Lie algebra if we define [z,y] = xy — yx for all matrices x,y € gl(n). If we mean the
associated Lie algebra rather then the algebra of matrices, we write gl(n). It is suggestive
that any finite-dimensional Lie algebra can be represented as matrices if we just take
n large enough. Indeed, a linear (finite-dimensional) representation of g is defined as a

homomorphism of Lie algebras 7 : g — gl(n).

It is actually quite easy to see that any finite-dimensional Lie algebra has at least one
finite-dimensional representation in the above sense. By the defintion of a Lie algebra, g is

a vector space. Furthermore, the Lie bracket defines a map from g to End(g) by mapping
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any ¢ € g to m(x) = [z,:]. Due to the Jacobi identity, it can be shown to be a homo-
morphism of Lie algebras, [7(z),7(y)] = 7([z,y]). This is a very special representation
which exists for any Lie algebra called the adjoint representation and denoted ad (+). Since
everything is finite-dimensional, we can identify g ~ RU™9 and End(g) ~ Rdimexdima jf
we wish to write everything in terms of matrices. For later purposes, let us emphasize that
the notation of the adjoint representation is not restricted to finite-dimensional Lie alge-
bras. However, in that case the adjoint representation will be infinite-dimensional as well.
Infinite-dimensional representations of finite-dimensional Lie algebras will be discussed in
sect. A.2.

We call a representation 7 of g reducible if 7(g) there exists a proper subspace W of V
that is invariant under the action of 7(g). Loosely speaking, starting from an element in
W, we will never recover the whole vector space V' by just acting with m(g). This implies
that the restriction of m to W is a representation of g itself, called a subrepresentation. If
7 has no subrepresentation, it is said to be irreducible. Furthermore, if 7 can be written

as a direct sum of irreducible representations, it is called completely or fully reducible.

By construction, the adjoint representation is intrinsically connected to the structure
of the Lie algebra itself. A Lie algebra is said to be simple if the adjoint representation is
irreducible. If it is reducible, the subspace I C g such that ad () |7 is a subrepresentation
is called an ideal of g. So a Lie algebra being simple is equivalent to saying that it has no
other ideal than zero. Simple Lie algebras are particular nice since they might be thought

of as containing no smaller “building blocks”.

From now on, we restrict ourselves to simple Lie algebras. Given any Lie algebra

g, we can look for a subset h of linearly independent elements or generators' such that

ad(h)h = [h,h] = 0. If b is maximal, then it is called the Cartan subalgebra (CSA).

The elements of h in the adjoint representation, ad (z) for = € b, can be simultaneously

diagonalised by choosing an appropriate basis of g. So it is sensible to look for eigenvectors
eq of the adjoint action,

ad (h) eq = a(h)eq , heb. (A.3)

The linear functional o € h* maps any h to the associated eigenvalue of e, under the
adjoint action of A and is called a root. The root system denoted A is the set of all roots
that do not equal zero. Since the set of eigenvectors e, together with the generators of

the CSA yield a basis of g, we obtain the Cartan decomposition of the Lie algebra,

=00 P, 8a={reg|ad(h)z=a(h)}. (A.4)
acA

Roots have the following properties (see e.g. [76]):

1. It follows from the Jacobi identity that [ga,gs] C ga+s-

I There is different definitions of generators in the literature. In some cases, generators refers to a set of
elements of a Lie algebra such that the whole Lie algebra can be obtained by evaluating successively the
Lie bracket thereof and then considering the linear span. However, in the present work, generators will
refer to basis elements of g.
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2. It can also be shown that all so-called root spaces are one-dimensional, i.e. dimg, =
1 for all a € A.

3. If a« € A, then na € A only for n = +1.

Point 3 suggests that we can separate the roots in two sets of postive and negative roots
by requiring that if « is a positive root then —« is negative. Furthermore, for consistency,
we should also demand that postivity is conserved under addition, ¢.e. if o and (3 are
positive roots and a + 8 € A then a + ( is a positive root as well. The set of positive
(resp. negative) roots is denoted by A™* (resp. A™). Another important notion is that of
a simple root which is a positive (negative) root that cannot be written as the sum of two
positive (negative) roots. The set of simple roots is denoted by A (Ay). For later use,
we further define

nt = @ Ja (A.5)

aEAE

such that the Cartan decomposition becomes

The Lie subalgebra b™ = h @ n™ is called the Borel algebra. Of course, the positive root
system is not unique and therefore, the Borel subalgebra is not uniquely defined. However,
it can be shown [76] that any two Borel subalgebras, say b and b’, are conjugated to each
other, i.e. there exists an inner automorphism of g such that b is mapped to b’ (the same

holds for the CSA). Looking ahead, this is not true for Lie superalgebras.

If we take any representation p of g instead of the adjoint one, the associated vector

space V' can be decomposed in eigenspaces under the action of p(bh),
V=PV, W={veV|phw=Ahpn}, (A7)
A€A

where A € h*. The linear functionals A are called weights, V) are the associated weight
spaces and A is the set of all weights. In that sense, the roots are just the weights of the

adjoint representation.

Apart from the Lie bracket, there are additional algebraic operations defined on g.
This becomes clear, if one considers the Lie algebra gl(n). Since elements thereof are just
n X n matrices, e.g. the trace is well-defined. So given a representation p, the notion of

the trace can be pulled back to g,

trp(z) =tr (p(x)), ze€g. (A.8)

The pullback of the trace has the valuable property that it vanishes on the commutator,

trp([z,9]) = tr (p([z,y])) = tr ([p(2), p(y)]) = tr (p(2)p(y)) = tr (p(y)p(x)) =0, (A.9)

where we used that p is a homomorphism of Lie algebras, and thus preserves the Lie
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bracket, and the cyclicality of the trace. Therefore tr,(-) defines an invariant? linear
functional on g. We can further construct a symmetric bilinear form using the trace in
the same manner since tr (zy) surely defines a symmetric bilinear form on gi(n). Hence
tr (p(z)p(y)) defines a symmetric bilinear form on g that can be checked to be invariant
by a simple calculation using again that p preserves the Lie bracket. At first sight, this
seems to give a whole family of invariant symmetric bilinear forms. However, it can be
shown [76] that if g is simple any two invariant symmetric bilinear forms are proportional
to each other. Hence up to a multiplying constant, the form is unique. In fact, there is
a natural choice for p which is the adjoint representation of g since it exists for any Lie

algebra. Therefore the Killing form is defined as

(r,y) =tr (ad(x)ad(y)), =z, y€g (A.10)

which can be shown to be non-degenerate on semisimple Lie algebras (Cartan criterion for
semisimplicity). Its restriction to the CSA yields a symmetric bilinear form on § which in

turn induces a bilinear form on the dual space h* and hence on the root space.

Up to now we only discussed finite-dimensional representations. If we wish to include
infinite-dimensional representations as well, it makes sense to reexamine the notion of a
representation. Note that the definition of a representation as a homomorphism of Lie
algebras from g to gl(n) is specific to finite-dimensional representations. However, let us
try to extract the important aspects of this definition that eventually might allow for a

generalisation.

Note that in making gl(n) a Lie algebra it was crucial that gl(n) has the structure of an
associative algebra since the Lie bracket was defined in terms of the algebra multiplication,
[z,y] = zy — yz. In fact, any associative algebra, not necessarily finite-dimensional, can
be made into a Lie algebra this way. For example, given a vector space V we can look at
its tensor algebra T'(V') and define the Lie bracket to be [z,y] = 2 ® y — y ® x. However,
we cannot simply substitute gl(n) in our defintion of a representation by some associative
algebra because we also have to make sure that there exists a homomorphism of Lie
algebras mapping g to that associative algebra. Since g is a vector space, let us consider
the tensor algebra T'(g) with a Lie bracket as defined before. T'(g) has a natural grading
by “counting the number of tensor products”, T,,(g) = @, g. Furthermore, there is a
natural vector space homomorphism v from g to 7'(g) by identifying g ~ T3 (g), but it is

not a homomorphism of Lie algebras because

v(g),v(9)] C Ta(g) while v([z,y]) € Tr(g). (A.11)

2In general, assume that we are given n + 1 representations of g, say p;, with associated vector spaces
Vi. A multilinear map
fVix...xVy,—=Vyn

is said to be invariant if

Zf(vl,...,pi(x)vi,...,vn) = pnt1(x)f(v1,...,0n) Vv, €V, z€g.
i=1
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However, this problem can be dealt with by simply identifying elements of the form
v(z) @ v(y) —v(y) @ v(z) in Tr(g) with the elements of the form v([z,y]) in T1(g). The

resulting algebra is
Ulg)=T(g) / ([z,y] —z@y+y@a) (A.12)

and it is called the universal enveloping algebra. In the following, the tensor product will

be suppressed such that xy =z ® y.

Having found a generalisation of gl(n), it should be asked how the vector space V/
has to be appropriately generalised. In fact, the vector space V just served as something
that gl(n) could act on and in that sense should be rather seen as a gl(n)-module. Hence
after substituting gl(n) by the universal enveloping algebra, we should think about rep-
resentations as U(g)-modules. This may be the most general meaning one could give to
the notion of a representation of a Lie algebra and in the following we will use the no-
tions of representation theory and module theory interchangably. For example, irreducible

representations will be identified with simple U(g)-module.

A.2 The BGG-Category 0

The category of representations, i.e. the category of (left) U(g)-modules U(g)-Mod,
is yet not well enough understood to extract interesting structures. However, there is a
certain subcategory called the Bernstein-Gelfand-Gelfand-category or BGG-category for
short. Its objects are U(g)-modules M that satisfy the following three axioms [117]:

(01) M is finitely generated.

(02) M is semisimple with respect to the CSA of g, i.e. it decomposes into weight spaces:
M = @)\eg* M/\.

(03) M islocally U(n™")-finite, which means that the subspace U (n*) v is finite-dimensional
for every v € M.

Although this definition is fairly abstract, all conditions are natural as they apply to the
most common representations and building blocks thereof. For example, highest weight
representations are objects in €. These are by definition U(g)-modules M that are gen-
erated from a mazimal vector vt € M, i.e. a vector satisfying U(n™) - v™ = 0. Since M
is generated by v™, any element of M, say v, in M can be written as v = ¢g - v for some
g € U(g). Abstractly, we can thus write M = U(g) - v™. If X is the weight of v, it is
called the highest weight of M.

A very important construction is the so called Verma module V. It is constructed as
follows: Take some weight A € h* and let the vector vy satisfy hvy = A(h)vy for every
h € h. Then vy can be interpreted as a left U(h)-module. It is easily lifted to a U(b™)-
module by letting vy be annihilated by every element of n™. We can further lift vy to
a left U(g)-module by simply letting elements in U(n~) act freely on vy. Because the
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universal enveloping algebra U(g) has naturally the structure of an U(g)-bimodule, this

can be written more formally as taking the tensor product of ¢ (b™)-modules,
V(/\) = Indg+v>\ = Z/l(g) O(b+) VA - (A.13)

This defines the Verma module of weight A. Formally, Ind}, — = U(g) ®yp+) — is a functor
from U(b™)-Mod to U(g)-Mod. Note that v = 1 ® vy € V()\) is an nontrivial element
of V()\) annihilated by nt and is thus maximal. Furthermore, it generates V(\). We

conclude that every Verma module is a highest weight module and hence an object in &.

In general, the Verma module is not irreducible as further maximal vectors of weight
p < A might appear within V(). For example, if n = (\,a) € ZT, where " = 2a/(a, @)
is the coroot of a, then (e_o)" ™ ot is a maximal vector of weight 1 = A\ — (n + 1)a.
Therefore, there is a monomorphism V(u) — V(A). The two weights p and A are called
linked. An irreducible representation, i.e. a simple module, can be obtained from the
Verma module V() by identifying the maximal proper submodule, say M, and taking the
quotient
LN =V(\)/M. (A.14)

Note that L()) is simple by construction.

A further important concept is the block decomposition of € that we will now explain.
In order to do this, we need to introduce the center of a semisimple Lie algebra, denoted

by Z(g), which consists of all elements in /(g) that commute with g:

Z(g) ={z €U(g)|[2,9] = 0}. (A.15)

It is clear that the center forms a subalgebra of ¢(g). An important element of Z(g) is
given by the quadratic Casimir Co which is constructed as follows; let (-,-) denote the
Killing metric of g and furthermore take t*, i = 1,...,n to be a basis of g. The coefficients
of the Killing metric are k% = (¢!,#/), with r;; being its inverse. The quadratic Casimir

can then be written in an explicit form as
02 = K,ijtitj. (Alﬁ)

This implies that Z(g) is always nontrivial since it at least contains Cy. However, usually

more elements will generate Z(g).

The action of Z(g) on highest weight modules is particular interesting. Let M be a
highest weight module with maximal vector v*. Using the definition of the center we

obtain for every h € §

h-(z-v")=z-(h-v")=Ah)z-v", 2€Z(g). (A.17)
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Because the highest weight space is one-dimensional, we conclude that z - v = y,(2)v™

with xx(z) € C. It is the central character associated to A. Note that since
2 M=z (Ug) v") =U)(z v") = xa(z)M (A.18)

the element z acts diagonally on M with the same scalar and thus x) is specific to the
highest weight module M with highest weight A.

For general modules M the situation is more complicated. However, it can be shown

that every module in & allows for a filtration
ocMycMyc...cM,=M (A.19)

such that M;1/M; is a highest weight module [117]. Therefore we conclude that an
element z € Z(g) acts as a scalar (within each quotient) plus a nilpotent part (which
maps e.g. M;11 to the submodule M; divided out). Thus, given some central character
X(z), we can define an independent submodule of M, i.e. it appears as a direct summand
of M, by defining

Ml ,={meM]|(z- X(2))"®m =0 for some positive integer n(z)}. (A.20)

For fixed x the full subcategory of &' consisting of objects M |, as above is called a block
O,. This generalises the Casimir decomposition of finite-dimensional representations of
semisimple Lie algebras into a direct sum of irreducible representations. Of particular
importance is the principal block Oy for the trivial central character y = 0. The BGG

category decomposes as

0=> 0. (A.21)

A.3 Projective Modules and Covers

We will now introduce the categoric concept of projective objects in the category
theoretic framework and then specialise it to the case of &'. Suppose one is given an
epimorphism mapping an object onto another M — N — 0 and a homomorphism P — N.
The object P is called projective if there exist a homomorphism P — M such that the

diagram
M—N——0

commutes. One of many equivalent definitions is that the functor Hom(P, —) to the
category of Abelian groups Ab is exact. A category is said to have enough projectives if

for each object IV there exists a projective object P and a homomorphism 7 : P — N.

Let us now specifiy to the BGG-category ¢, so our objects are now given by U(g)-
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modules obeying axioms (€'1) — (€'3). The projective objects are referred to as projective
modules and epimorphisms coincide with surjections. Indeed, it can be shown that & has
enough projectives. In fact, for every M € & there exist a projective module P(M) with
an essential homomorphism 7 : P(M) — M.3 A homomorphism being essential means
that no proper submodule of P(M) is mapped onto M. The tuple (P(M), ) is called the

projective cover of M.

It is important to recognise that every projective module in & can be written as a direct
sum of projective covers. Let P be a projective module. Then there exists a epimorphism
P — L with L being simple. As has been discussed, there exists a projective cover of L,
so we arrive at the following diagram.

o7 .
".’%“'”%
P(L) =L

Since both P and P(L) are projective there exist homomorphisms ¢; : P — P(L) and
¢2 : P(L) — P such that

™o (Z)l = ”L/} s (A22)
Yopy=r1. (A.23)

Since 7 is essential, we conclude that ¢; is surjective, because otherwise ¢;(P) gives a
proper submodule mapped by 7 onto L. Furthermore, inserting (A.23) in (A.22) tells us
that 7o (¢1 0 ¢2) = m. In particular,

m((¢10¢2)P(L)) =7(P(L)) = L. (A.24)

Since 7 is essential, we conclude that ¢1 o ¢o(P(L)) = P(L) and thus ¢1 o ¢ = idp(z).
Therefore we recover the universal property of the direct sum. So P(L) is a direct summand
of P. Note that this proof only requires the existence of a projective covers for the module
L and is independent of the special structures of &. Furthermore, it tells us that if the

projective cover of L exists, it is unique.

A.4 Duality

Given a finite-dimensional U(g)-module M, we can define a standard action of U(g)

on the dual vector space M™* by

(g-Nw)=—flg-v) VYveM, (A.25)

3In more general terms, for every artinian module category the fact that enough projective modules
exists implies the existence of a projective cover for every module.
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where g € g and f € M*. This definition still lifts M* to a U(g)-module if M is infinite-
dimensional but it in general it will not be an object in &. Furthermore, the action as
defined in (A.25) is inconvenient in several aspects, e.g. it maps simple highest weight

modules of weight A to lowest weight modules with weight —A.

The latter inconvenience is best dealt with by introducing a different action of g on
M*. In order to do this, we have to introduce the so-called transpose map 7 : g — g. Given
a root decomposition of g, g = h P, ca+ (8o D g—a), T acts on the Cartan subalgebra b as
the identity and interchanges the root spaces, i.e. g, gets mapped to g_, and vice versa.
Clearly, 7 is an involution. It lifts to an involutory automorphism on U(g) by defining

T(zy) = 7(x)7(y), ,y € g. An action of g on M* is then defined by

(g-Nw) = f(r(g)-v) VYveM. (A.26)

We will call to this action as the dual action while the action in (A.25) will be referred
to as the conjugated action. It can easily be checked that the dual action lifts M™* to a
U(g)-module (a representation of g).

Before analysing the dual action let us attack the other problem that M* might not be
an object in ¢ anymore. In the case of infinite-dimensional modules, M* might not satisfy
the defining axioms of ¢. This can be healed by taking the weight space decomposition
of M, M =& rehs M, and taking the dual vector space of each M) individually. These
are by the BGG-axioms finite-dimensional, so (My)* has the same dimension. Given an
element f in (M) )* it can naturally be identified with an element in M* by setting f(v) =0
for all v € M, whenever u # X. Therefore (My)* C M* as vector spaces. On the other
hand, given a element f of weight A in M* with respect to the dual action (A.26), it

vanishes on M, whenever p # X\ because

(h- f)(ou) = A(h) (o) = f(7(h) -vu) = f(h-vu) = p(h) fvu),  Yheb  (A27)

So we conclude that (A*), consists of forms vanishing on all M, p # A, as well. Thus
we have (M*)y\ = (My)* =: M. We define the dual module MY C M* as

MY = ®yep- M5 . (A.28)

It is closed under the dual action of g and thus it indeed defines a module. The submodule
MY of M* can be checked to be an object in ¢ [117] and in —" defines a contravariant

functor: Given a short exact sequence of U(g)-modules

N 0 (A.29)

the sequence
,¢\/

0—=NY v 2 (A.30)

is exact as well. The dual homomorphism ¢ is given by the standard action (¢V(f))(v) =
f(¢(v)) for all v € L. Note that if M" is simple, so is M, because if M is not simple, there
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exist a exact sequence like (A.29) with L being a proper submodule. Hence, NV = (M /L)Y
is a proper submodule of MY and MV is not simple. Furthermore, (M")Y is naturally
isomorphic to M as it consists of reflexive vector spaces. Thus M is simple if and only if
MY is simple. Furthermore, by construction of MV, we have that M and M" have the
same set of weights counting multiplicities. In other the words, the formal character of M
and MV is the same char M = char M. So if M is simple, they have the same highest
weight and thus M = MV. All simple modules are self-dual.*

An Example

To illustrate how duality acts, let us consider as an example g = s[(2). The simple root
is simply a = 2 and the weight lattice is Z. Verma modules of highest weight A < 1 are
simple. According to the above argument it follows that V(\) = V() in those cases. But
what if A > 0?7 Then V() is reducible but not indecomposable. In particular, it contains
V(—A—2) as a simple submodule. Let v, denote the element in V() of weight ;. Clearly,
€ A —2N. As we have argued, to each v, we may associate a form f, € V(\);, C V(A)¥
such that f,,(v,) = 0. The question is what is the structure of the module whose elements

are f,7 Let us look for highest weight vectors:
(JT - fu)w) = fu(JTv) =0,  Yvey. (A.31)

By the definition of the Verma module every element of V) can be represented in the form
J~w for some w € Vy except for the generating vector vy. So in order that J* - f,, vanishes
on every vector we must have u = A. f) is the unique highest weight vector in V(\)V.
Similarly, we can look for lowest weight vectors J~ - f, = 0. Analysing this the same
way as before yields that there is only one such element f_). So we identified a simple
submodule L()\) in V(X\)Y. Furthermore, note that

(JT - forma)(vp) = forma(J ) = for—o(vu—2) =0, (A.32)
and therefore J - f_\_o = f_). So we have the following structure
VY L) ~—2" Y(-a—2), (A.33)
while the original structure was given by
V) : L) ——L - y(-x—2). (A.34)

The simple components are unchanged but the maps are inverted.

In order to emphasize the difference of duality, —V, to conjugation, —*, let us have a
short look how V(\)* looks like. Firstly, it is easily checked that V(A)* is a simple lowest

weight module of lowest weight —\ whenever A < —1. For A > 0, an analogous analysis

4Note that this is not the case if we would have taken the conjugated action instead of the dual one,
even though it lifts the vector space M to a U(g) module as well.
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as before can be performed to obtain the modular structure of V(\)*:
VO L\ ~ LA <Z— V(=X —2)*. (A.35)

In the case of g = sl(2), the irreducible representations L(\) are self-conjugated, which

was used above. However, for other Lie algebras this is generically not the case.

Before concluding this section let us also emphasize that for the definition of —" only
a root decomposition g = h @ ca (o ® g-a) Was necessary. Such a decomposition exists
for Lie superalgebras of type I, which are the subject of chapter 2, as well. So —" is also
well-defined for these Lie superalgebras and the above results apply. In particular, simple

modules are self-dual.

A.5 BGG Reciprocity

Several aspects of representation theory of Lie algebras from the point of view of
module theory have been covered so far and illustrated in the case of s[(2). An important
point was the introduction of projective covers that in a loose sense may be thought of
as the “maximal completion” of a module. But how to find the projective cover in the

general case? This is indeed a tricky business.

But let us postpone the question of how to find the projective cover a little, and first
think about what kind of module is the most accessible for explicit calculations. The Verma
module V() seems to be quite a good choice as it is an induced module, which means that
we can start with some vector of weight A and obtain any other element of the module
by applying Lie algebra generators associated to negative roots. By the PBW theorem,
after choosing an ordering of the negative roots, we even get a unique presentation of
each element. However, a drawback is that the Verma module by construction is infinite-

dimensional and in many cases contains nontrivial submodules.

The simplest way to get rid of these submodules is to identify the maximal proper
submodule in V(A), say M (A), that contains any other submodule of V() as a submod-
ule. In other words, it is the union of all proper submodules of V()). By construction,
the quotient L(A\) = V(A\)/M () is simple (or, in terms of usual representation theory,
irreducible). The simple modules L(\) are of particular importance in the context of the
BGG category ¢ as they have some kind of universal character in the following sense.

Any module M in & possesses a filtration in submodules,
O=MyCcMyCMyC...CMp,1CM,=M, (A.36)

such that the quotients M;11/M; are isomorphic to L(u) for some weight u. Although
the filtration above is not unique, its length n is and so is the set of simple modules that
result as quotients of form M;1/M; [117]. Hence, the multiplicity of the simple module
L(p) in M is well-defined without specifying the filtration. Commonly the multiplicity
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of L(u) in M is denoted by [M: L(u)]. Clearly, by construction, [V(A): L(A)] = 1. For
completeness, let us add that the natural number n is called the Jordan-Holder length or

simply the length of the composition.

In principle, a Jordan-Holder composition, as we will call the filtration of the form
(A.36), is quite easily constructed for Verma modules V() since every element is in general
known explicitly in a unique presentation, assumed an ordering for ¢(n~) has been fixed.
One just has to look for highest weight states in V(A) and identify the submodules this

way.

But what about modules that are not Verma modules, in particular those that are
“bigger” than Verma modules like e.g. projective covers? Of course, they also possess
a Jordan-Holder composition but this is usually not found that easily. In order to gain
better access to these kinds of modules, we have to introduce yet another kind of filtration
to the game, the so called standard filtration. A standard filtration is a filtration of the
form (A.36) but such that the quotients are Verma modules V() of some weight p rather
than simple modules. Therefore the standard filtration is also sometimes referred to as
Verma flag. In contrast to the Jordan-Holder composition, not every module in the BGG
category € does possess a standard filtration; an obvious counterexample is the simple
module L(\) if the associated Verma module V() is not simple. However, as for Jordan-
Holder compositions, the length of the standard filtration and the multiplicity with which
the Verma module V(u) appears is unique, if the standard filtration exists. In order to
distinguish this multiplicity from the Jordan-Hélder multiplicity, it is commonly denoted
by round brackets rather than square brackets, i.e. the multiplicity of V(u) in the standard
filtration of some module M is denoted by (M : V(\)).

After these remarks, the path to gain an impression what the projective cover P(\) of
a Verma module V()), and thus of the simple modules £(\), looks like follows two steps.
First, it can be shown [117] that even though not every module possesses a standard
filtration, every projective modules does. Hence in particular the projective cover P(\)
has a standard filtration. The second step is the impressive result of [32], which is nowadays
referred to as BGG reciprocity or sometimes BGG duality. 1t states that the two kinds of

multiplicities are connected by

(PA): V() = (w) : L] - (A.37)

As we have argued, the right hand side of this equation is in principle quite accessible.
Hence, we can determine the multiplicities of the Verma modules appearing in the standard

filtration of P(A) and gain a handle on its structure.

Let us again consider our favorite example of s[(2). There are three nontrivial multi-

plicities in the Jordan-Holder composition,
V) : L] =VA): L(=A=2)]=V(=A—=2): L(-A—-2)] =1, (A.38)

where A > 0. Applying the BGG reciprocity (A.37), the standard filtration of P(\) only



A.5. BGG Reciprocity 167

has one non-vanishing multiplicity,
(P(N):V(N) =1, (A.39)

which implies that the projective cover of P(\) of V()A), and hence L(\), is exactly the
Verma module, P(A) = V() if the weight A is positive. For the linked weight —\ — 2, the
Verma module is itself simple, V(=X —2) = L(—\ —2). The BGG reciprocity with (A.38)

gives us two non-vanishing multiplicities in the standard filtration of P(—\ — 2),
(P(=A=2): V(N\) = (P(-A—=2): V(-A—-2))=1. (A.40)

It follows that we must have P(—A — 2)/V(X) = V(=X — 2). The standard filtration is
therefore
0C V) CP(-A—2). (A.41)

This allows us to construct the projective cover which is schematically illustrated in figure

A.1. Note that the projective cover is not a highest weight module.

J-
V(-A—2): o---®---0--0--0 -0
// +
Jt Jt /]
VA): @e---@---- Y T
J- J-J
A oA—1 =2 JO

Figure A.1: Illustration of the projective cover P(—\ — 2) for positive weights \ of the
simple module L(—\ — 2) = V(=X — 2) for g = sl(2). Each dot corresponds to an element
of the module. They are arranged according to their weights. Note that the weight spaces
P(—X\ —2), for p < —X\ — 2 are two-dimensional.

It is instructive to write down the Jordan-Holder composition of P(—A—2) and compare
it to the standard filtration (A.41). It is given by
0=L(-A=2)=V(-A—-2)CV\) CP(-1—-2). (A.42)

Note that the Jordan-Holder length is three while the length of the standard filtration is

two. The multiplicities in the Jordan-Holder composition of the projective cover are
[P(=A—2): L(-A—2)] =2, [P(=A—2): L(A\)]=1. (A.43)

This concludes our discussion of Lie algebras and their representations in the terms of

module theory. We hope that the reader could gain a good impression of important
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concepts in the well-known setting of Lie algebras. They will repeatingly appear later in
the context of Lie superalgebra. Let us close by saying that we just scratched the surface
of the broad subject of the BGG category. The reader interested in more details is referred
to [117].



APPENDIX B

A Construction of Projective Lie

Superalgebra Representations

Unfortunately, at the time of writing, the literature on Lie superalgebra representations
is mainly concerned with finite-dimensional representations since even in that case, the
representation theory of Lie superalgebras is quite involved. Since our main focus will
be on infinite-dimensional representations, we will later adopt a working definition of a
sensible subcategory of U(g)-modules in section 2.2.2. However, in the present section,
a construction of projective U(g)-modules from projective U (g(®))-modules is presented
which is independent of the dimension of the modules involved [195]. This is the most
common construction of projective U(g)-modules and a central element in the analysis
of finite-dimensional Lie superalgebra representations. Note that this construction does
not imply that there are enough projectives in the sense that any U(g)-modules has a
projective cover. Furthermore, the projective modules obtained this way are typically not
indecomposable. Let us state that this construction of projective modules will actually not
be important in the remainder of this work, however, it serves as an instructive example
to study the property of being projective and the construction of U(g)-modules by using

the functor of induction.

First, let us start by noticing an important fact on induced Lie superalgebra repre-
sentation. Let M be a U(g)-module and A a U(g{®)-module. Then each element in
Hom o) (A, M) is associated to an element in Homg(Indi(O)A, M) and vice versa. We will
denote the induced homomorphism by —#. Depending on which kind of homomorphism ¢

we have, the induced homomorphism ¢ is given by

¢ € Hom, o) (A, M) = ¢* € Hom, (Indﬁm)/l,/\/l) D¢ (2 @v) = 2¢(v),

(B.1)
¢ € Homg <Ind§(O)A,M> = ¢ € Hom o (A, M) : ¢H(v) = 6(1 @ ).

It is not difficult to see that —* is an involution, i.e. it squares to the identify. If ¢ €
Hom, ) (A, M), we have

(6" (v) = (1@ v) = 16(v) = ¢(v). (B.2)
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Similarly, if we have ¢ € Hom, (IndEm)A, /\/l), we obtain

(D (@ v) = 2¢*(v) = 26(1 ® V) = (z D V), (B.3)

where in the last step we used that ¢ is a homomorphism of #/(g)-modules. Therefore —*

is an isomorphism and we find [195]

Homg (Ind%,, A, M) = Homj) (A M). (B.4)

This essential fact on induced Lie superalgebra representations will turn out to be
important to prove that Indg(O)A is projective whenever A is. So let A be a projective
g

U(g?)-module and suppose one is given two U(g)-modules M and A such that the
following diagram holds:

g

Indg<0)A
if

M N 0

g

In other words, we are given an epimorphism M — N. We need to show that there exists
an homomorphism Indﬁ(mA — M such that the above diagram is commutative. In order
to do this, we use the isomorphism —*!. Using that A is projective, we obtain the following

commutative diagram of ¢ (g(*))-modules:

L
M—=N—0

Thus this implies the existence of a homomorphism hf : IndE(O)A — M of U(g)-modules:

Indﬁm) A

B
a

M N 0

g

All that is left to prove is the commutativity of the above diagram. Let x @ v € Indﬁ(mA.
It is not difficult to see that

gohf(z®@v) =gz h(v) =z (goh)(v) =z ff(v) = flz®), (B.5)

where we used that A is projective and —# is an involution. Thus we see that IndEm)A is

projective as an U(g)-module.



APPENDIX C

Bases and Commutator Relations

The Lie superalgebra g = psl((2|2) can be decomposed as
g=gn®g¥ oy, (C.1)

where g(© is the bosonic subalgebra and g(!) = g1 @ g_; gives the fermionic generators.
The bosonic generators are denoted by K with so(4)-indices a, b and the fermionic gen-
erators are denoted by S? € g, where @« = £. Hence the index a corresponds to the

Z-grading o as explained in sect. 2.2.1. For later use, we also define .3 as
€ =—€_4 =1, ey =e__ =0. (C.2)
In the basis used in [62,178], the commutation relations of the affine version 13/5\[(2\2)k read
[l Kt} = i (00K h,, — SRt — 6UK L+ SIS )+ nkgme

_ 5cha

(Kt 5 ,) = i (988 @)

¥,m+n

[Sa

a,m>

Skl = % eape™ K + nkeasd ™ man |

where indices are raised and lowered with the invariant so(4)-metric 6*°, so upper and
lower indices do not need to be distinguished. We will mainly just write upper indices
for readability and impose the summation convention if the same index appears twice as

upper (lower) index as well. An appropriate basis change can be made by defining [105]

n

5=} (K2 R K= (12 - K2

Ji=3 (KM + KP iKY FiK)})  Kf=3(-K)'+ K2 FiK? FiK)?)

n n

Saw=S8h, +iS2, San =S85, +iS,

a,n a,n
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for which the commutation relations are explicitly given by

E ST A KO K2 = K 6,
IO, JE =+ JE, ., KO, KX =+ K=,
[t T ] = 23 s — MK O [Kops K] = 2K 4y + 10k O
T8 S = 41 S I8 2] = 41 55
(K0, 52 = %5 St (K, SEE) = T3 Sthuin.
[T Sd i) = £Sahoin [T SEa] = FSamin
[Kiu SofjnF] = :i:So:E’rin—&-n’ [Kf:tm Sojijrﬂ = :Fsii-m;

++ ot +
[Smm? Sﬁ;] = ;2601,3 Jn+m ’

[Sam S35.,] = £2€05 Ky

a,m? n+m

_ K9

n+m

[SHE. 851 = 2€ap( Ty

a,m’ B n n+m

) —2mk €ap 5m+n N
[Sot;w Sﬂ_;] = 2¢€ap (JT(L)+m + K2+m) —2mk €ap Omtn -

Of course, the commutation relations of ps((2|2) can be extracted from the affine commu-
tation relations by looking at the zero modes only, i.e. the horizontal subalgebra. The

quadratic Casimir operator of psl(2]2) is

Cy = C3™ + C5" (C.3)
with
Chs = 22 — (JTT +J I+ 2K + (K"K~ + K K) (C.4)
Cler — éaf 3 (Sgas,;ﬁ + S,;msjw) - 22: (St _Sm +Sm St . (C.5)
m=1 m=1

The operator Cger is the only bilinear in the fermionic generators that commutes with

the bosonic subalgebra g(®). Evaluated on a irreducible representation of highest weight
A = (j1,72), e.g. the Kac module KC()), it takes the value

CoN) = —251(j1 + 1) +252(j2 + 1). (C.6)



APPENDIX D

Various OPE Calculations

In this appendix, we give some additional technical details to the calculations performed

in this thesis.

D.1 The N = 2 Superconformal Structure
of the Gauge-fixed Superstring

We argued in section 5.1 that the fields of the N/ = 1 RNS string after gauge-fixing
superdiffeomorphism invariance give rise to a topologically twisted N' = 2 superconformal
algebra. More concretely, it was claimed that the fields in (5.1) generate this algebra.
This has first been noticed in [16] and it is of major importance in the deduction of the
hybrid string [30]. For most OPEs between the fields given in (5.1) it is fairly clear that
they fulfill the OPEs in (4.20) with x = %, e.g. since jgrst and b are Virasoro primary
fields of conformal weight 1 and 2, respectively, it follows that

(3 F3) G*(w) , 0G*(w)

2 z—w

T(2)G*(w) ~ (D.1)

(z —w)
where T' = Th—1, Gt = jgrsT and G~ = b, in agreement with (4.20). Here we wrote T'(2)
instead of T%(z) in order not to clutter the notation. It should be understood that we
are considering the topologically twisted algebra. It is also not difficult to see that jgrsT

and b have ghost number +1, hence

+GF (w)
z2—w

J(2)G*(w) (D.2)

The OPE of Th—1 with Jgnest can be determined using the energy momentum tensors in

(3.93), where we have to keep in mind that b and ¢ give rise to a A = 2 bc system while 7
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and £ define a bc system with A = 1. We find

Trr=1(2)Jghost(w) = (=8bc — 2bdc — 1dE)(2)(cb + &) (w)

341 —2(b(E)e(w)) — (e(2)b(w)) + (()Ew))
(- w)? (= — w)?
n (0bc) + 2(0cb) — (0&n)

zZ—w

~

-2 Jghost (w) anhost (’LU)
(z —w)3 * (z —w)? e

(D.3)

where we ignored the term Tiatter and the energy momentum tensor associated with the
boson ¢ in Ty—; since they have nonsingular OPEs with the fields appearing in Jgpost-
The OPE in (D.3) fits with the corresponding N' = 2 OPE in (4.20) for x = 3 if the

central charge is taken to be ¢ = 2.

The most important OPE completing the N' = 2 structure is the one between G and
G~. Since G is a complicated normal ordered product of fields while G~ is simply the
b-ghost, it is actually more convenient to check the G~GT-OPE rather than the GTG -
OPE. Using (4.20) with x = % it is straightforward to see that

G (2)G" (w) ~ (2 —éw)?’ N (ZJ—(ZJJ)2 " ZTEZ‘)U
e Jw) | Tw) - dJ(w)
TG0 G-w? | a—w o

Recall that the supercurrents possess fermionic statistics despite their conformal weights

being integers. Imposing (5.1), this OPE reads in RNS variables

2 Z(eb)(w) + (En)(w)
(z —w)? (z —w)?
o Dmatter(w) — 5(807)(w) — 5(798)(w) — (bdc)(w) + A(§n) (w)

b(z)jBRsT(W) ~

=Thn—1 =—J(w)
_ 2 Tw) | Tawserw) + T (w) + T(w) +0 (be + 18 (w)
(z—w)?  (z2—w)? Z—w
_ 2  J(w) N T(w) — 0J(w) ’ (D.5)

(z—w)?  (z2—w)? z—w

where we made use of (3.93), in particular that —(bdc) = T + d(bc). This result agrees
with the OPE in (D.4). Hence, we showed that the fields in (5.1) indeed generate a

topologically twisted N’ = 2, ¢ = 2 superconformal algebra as claimed.



D.2. Residues in the Hybrid Formulation 175

D.2 Residues in the Hybrid Formulation

Although the determination of the first order poles in section 7.1.1 is mostly straight-
forward, in some cases the analysis is somewhat more involved. In this appendix, we
explain the calculation of the residue for one representative case, namely (7.11), in order
to present the technical tools used to extract the residue and to give an impression of the

basic philosophy of our calculation.

Recall that the OPE in (7.11) is
(ewT) (2) (z’amg’le?ﬁ“ﬁm) (w). (D.6)

Since the po-deformed energy momentum tensor 7 (z) is a sum of vertex operators, we

can consider each summand individually. First, let us check the OPE
(eiUTWZW) (Z) (iaa¢g71€2p+ia+iH) (w) ' (D7)
Using the elementary OPEs

TWZW( Z{L 21951}z — ) (D.8)

leZ

as well as

(eia) (Z) (,L-ao_€2p+io+iH)(w) _ Z(z w)d—l—l ;' (Zao_(ad w) 2p+la+2H)

S wtk (@), (o)

d>0

we deduce the following OPE
(eiaTWZW) (Z) (i60¢g7162p+ia+iH) (w)

— 5 (e (Lt ooty

1€Z,d>0

~ - (e @) ) (Do)

In this argument it is important to realise that the po-ghosts are free and thus have non-
singular OPEs with vertex operators of the PSL(2|2)-WZW-model. The first order pole
can be determined by extracting the summand with [+ d+1 = —1 and | +d = —1,
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respectively. This yields

Res (ewTWZW) (2) (i@aqbg,l e2p+w+iH) (w)

— Z % ({quf)gl}i80(3d6i0)629+i0+i1{)

d>0

_ ;({Ld1¢g,1}(adei0)62p+w+m)> ) (D-11)

We can now use the properties of the vertex operator ¢3; to truncate the summation.
Note that by construction of the ansatz VT, the vertex operator ¢3, is an affine ground

state and hence is annihilated by all positive modes. Thus the residue simplifies to

Res (eiUTWZW) (Z) (iaa¢g7162p+ia+iH) (w)

— ({L_1¢g71}62p+2ia+iH) ) (D.12)

Next, we look at the deformation term. Useful elementary OPEs are

(eia (8p)2) (Z) (iao_e2p+ia+iH) (’LU) ~ (2:3;)2 (62p+2ia+iH) (w)

+ A (9peP o) () | (D.13)

(e"0pida)(z)(idoe® T ) (w) ~ 0, (D.14)
(€7 (i00)?) (2) (100> T+ ) (w) ~ i (2FH7HH) (w)

+ 2 (i0oe* T2 () . (D.15)

(€70%p) (2) (100 e 17 HH) () ~v =25 (2 FHHH) () (D.16)

(eia iaQO') (Z) (,L-ao_e2p+ia+iH) (’LU) ~ —1 (€2p+2ia+iH) (w)

(z—w)?
T (i8062p+2w+iH) (w). (D.17)
Taking the appropriate sum, we obtain

(€ (=500 +i00)? + 36%(p + i0) ) ) (=) (i0e® H7 4 ()
~ =2 (9(p + ic)e*r Tt (D.18)

zZ—w

The residue is now apparent. Combining eq. (D.12) and eq. (D.18), we obtain the full
residue of the OPE of interest,

Res(e"7T)(2) (i@aqbg,le%‘*'w“H) (w)
— _ ({L71¢g,1}62p+2i0+iH) -9 (¢g’1a(p + io.)62p+2i0'+iH) . (Dlg)

This is the residue given in (7.11). The remaining residues can be determined in a similar

way.
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D.3 OPEs of the po System

In this section we list some OPEs that play an important role when evaluating the
physical state constraints in section 7.1.1. We use the fields defined in table D.1 in order
to avoid a convoluted notation. Whenever we write the field Y™™ the OPE holds for
both cases Y™™ =y (mm) and Yymn) = y(mn) (cf, table D.1). It is also helpful to keep

in mind the Laurent expansions of the normal ordered products

(YD D)) = 3 - w) (Yot D pe) w),

320

(VDT D () = 3z = w)f (Ve poD) ).

J20

They can be used to bring the OPEs below in the general form (3.23). With this prelim-
inary remarks in mind, we now give the list of helpful OPEs. They have been partially

confirmed using [75].

Y(a,b) (Z)y(c,d) (’U}) — (Z o w)bdfac (Y(a,b) (Z)y(c,d) (w))

f/(a,b)(z)i/(c,d) (w) _ (z _ w)bd—ac+2 (f/(a,b)(z)f/(c,d) (w))

(Y(“’b)>(z)<8py(cvd)>(w):% dx [—GY(“’b)(z)y(c,d)(w)

+ Opla)(z = ) (YD (Y1 )
= a(z — w)?¥ a1 (Y(a,b)(z)y(c,d) (w)>

+ (2 =) =0 (YO () 9p(w) YD (w))

(ve9) o) (003 ) = f [Ty

+ido(x)(z — w)bb/_‘m/ (Y(a’b)(z)y(c’d) (U’))]
— _b(z — w01 (Y(a,b)(z)y(c,d) (w))

+ (2= w7 (YD ()00 (1) YD (w))
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(Yw’b’ﬂ)(z)(apyw)( ) = (2= )32 4 ale = e~ ) (YD (VD (w))
w)¥=2=2(_2(1 4 a(c — d <J(z)Y(“’b)(z)y(c’d)(w))

+ (e d)? (ap< YD) YD (w)) )
bd ac— 1[ y(c,d)(w)>
~2(e—d) (J(z)amw)wvb) @)

+ (2= w) e (P(2)ap(w)y D (YD (w))

(YW’“J?)()(WY(”))() (2 = w)Meed (2 - b<c—d>><c—d>( v () YD (w))
w)bd—ac= 2[2 (1+b(c—d (Z)Y(a,b)(z)y(c,d)(w)>
—ap (u%( YDV W)
bd ac— 1[ b (ab) )y( )(w))
(e d)(J( Jia(w)Y D (Y w)

+(z— w)bd_ac(JQ(z)iaa(w)Y(“’b)(z)y(c’d)(w))

(YW)&J) (2) (8pY(C’d)> (w) = (2 — w)*3(2 4 a(c — d)) (Y(“’b)(z)Y(C’d) (w))
+ ¢ = @) (9p(w)y D (2)Y D (w)
+(z— w)bd_ac_la(&] )Y (@d)(z)y(ed) (w))

+(

(
2 — w)bl-ae (8J(z)8p(w)Y(a’b)(z)Y(C’d) (w))

5 — w)bdfacfQ(

These elementary OPEs are the building blocks for the OPEs in section 7.1.1. In
particular, let us define X = —fJ 2 16J , so that the deformed energy momentum tensor
reads 7 = TW2W + X. Then we can deduce the following OPEs necessary for evaluating

the G = 0 constraint in the hybrid formulation.
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Y mm) () PN (2)
y (m,n) (Z) emerinaJriH(z)
J(2) Ap+io)(z2)
pmm 1(d(mp + inc) + 0) 0 (mp + ino)
P L (0(mp + ino + iH) + ) d(mp + ino + iH)

Table D.1: Short hand notations for the OPEs listed in appendix D.3. Here j > 1 and
Pém’n) and ]E’ém’n) are defined to be 1.

(YODX) @YD w) = (2~ )2 |4 —d = e~ )| (YOI D w))
+ (2= w) e = D) (JEHY OV VD w))

+ -0 [H(PEYO Y W)

)2 [He—d =)@+ c— )| (YOI (2D (w))

+ (2 = )2 [~ 3(e = d=1)(e — )] (19 (w)y "D ()Y D (w))
+ (2= w) 2 (d— e = 1) (J()Y OV ()Y (w))

(2 =) (XY OV YD (w))
+ (2~ w)
+ (2= w)

VS
h<
>
=
p
N—
O
/N
~.
Q
g
<
S
&
N—
&
Il
o
[
S

e = d) ((2)(i00) (w)Y D ()9 (w) )
2w d(X(z)(if)a)(w)Y(O’l)(z)y(c’d) (w))

Note that for ¢ =2 and d = 1 the singular part of the last OPE becomes
(Y(O’l)/l’> (2) (i@aff@’l)) (w) ~ =2 (z —w)™? (J(z)Y(O’l)(z)f/(c’d)(w)) (D.20)

reproducing our result in (D.18).
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APPENDIX E

Some Coefficient Functions Aj,(z,y)

In this appendix we write the g-expansion of Z"P(z, y|q) as
7P (2, ylq) = > An(@,9)q" = Aoz, y) + D> Kz, y)R(z,y)q". (E.1)
neN neN#0
The functions R(z,y) are polynomial functions of the form

4n
R(z,y) = > (Ap)psz? "y2 ", (E2)

r,s=0

where the A, are (4n+ 1) x (4n + 1) matrices. These matrices tell us the multiplicities of

the various Kac-modules at the different mass levels. The first matrices are given by

000O01O0O0GO0OGO
000 0O0OO0OO0OO OO
00100 002020200
0 00O0GO 000202000
Air=1 10101}, A=]1020402°01],
0 00O0O 000202000
00100 0020202200
000 0O0OO0OO0OO 0O
000 01O0O0O0OQO
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