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E-mail: darch@fizyka.umk.pl; kossak@fizyka.umk.pl

Abstract.

One of the main problem in Quantum Information Theory is to test whether a given state
of a composite quantum system is entangled or separable. It turns out that within a class of
states invariant under the action of the symmetry group this problem considerably simplifies.
We analyze multipartite invariant states and the corresponding symmetric quantum channels.

1. Introduction
Quantum Entanglement is one of the key features which distinguish quantum mechanics from
the classical one. Recent development of Quantum Information Theory [1] shows that quantum
entanglement does have important practical applications and it serves as a basic resource for
quantum cryptography, quantum teleportation, dense coding and quantum computing.

A fundamental problem in Quantum Information Theory is to test whether a given state of
a composite quantum system is entangled or separable. Surprisingly this so called separability
problem has no simple solution. Several operational criteria have been proposed to identify
entangled states. Each of these criterion is only necessary and in general one needs to perform
infinite number of tests to be sure that a given state is separable. It is therefore desirable to
possess a class of states for which one may easily check separability and test various concepts of
Quantum Information Theory.

The basic idea of this paper is to construct such classes using symmetry arguments. Symmetry
plays a prominent role in modern physics. In many cases it enables one to simplify the analysis
of the corresponding problems and very often it leads to much deeper understanding and
the most elegant mathematical formulation of the corresponding physical theory. As is well
known bipartite symmetric states turned out to be very useful for the investigation of quantum
entanglement. Symmetry considerably simplifies computation of various important quantities
like e.g. entanglement of formation and other important entanglement measures. Moreover,
they play crucial role in entanglement distillation.

We propose a natural generalization of symmetric states to multipartite case with even
number of parties. It turns out that within a class of multipartite symmetric states the
separability problem is easy to solve. Finally, using duality between states of composite systems
and quantum channels we discuss basic properties of symmetric channels corresponding to
multipartite case. It is hoped that multipartite invariant state discussed in this paper may
serve as a useful laboratory for testing various concepts from quantum information theory.
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2. Entanglement and separability problem
In this section we recall basic features of entangled states.

2.1. Pure states
Consider a bipartite quantum system living in Htotal = HA ⊗HB. We call ψ ∈ Htotal separable
(or classically correlated) iff ψ = ψa ⊗ψB with ψA ∈ HA and ψB ∈ HB. Otherwise ψ is entangled
(or nonseparable). Suppose now, that we are given a state ψ from Htotal. How to check whether
ψ is separable or entangled? This so called separability problem is easy to solve do the following

Theorem 1 (Schmidt) For any normalized ψ ∈ Htotal there exist two orthonormal basis
(depending on ψ!) {eα} in HA and {fβ} in HB such that

ψ =
∑

α

λα eα ⊗ fα , (1)

where λα ≥ 0 and
∑

α λ
2
α = 1.

Denote by SR(ψ) the Schmidt rank of ψ, that is, a number of non-vanishing Schmidt coefficients
in (1). Hence, ψ is separable if and only if SR(ψ) = 1.

2.2. Mixed states
For mixed states the problem is much more complicated. Following Werner [2] we call a state
represented by a density matrix ρ separable iff it can be represented as the following convex
combination

ρ =
∑

k

pk ρ
(A)
k ⊗ ρ

(B)
k , (2)

where ρ
(A)
k (ρ

(B)
k ) are mixed state in HA (HB) and {pk} is a probability distribution (i.e. pk ≥ 0

and
∑

k pk = 1).
Surprisingly the separability problem has in this case no simple solution. Peres [3] was first

who derived very simple necessary separability criterion, namely if ρ is separable, then its partial
transposition

(1lA ⊗ τB) ρ ≥ 0 , (3)

where τB denotes transposition on B(HB). States with the above property are called PPT
(Positive Partial Transpose). Actually, it turns out that if dimHA · dimHB = 6, then this
criterion is also sufficient, i.e. all PPT states in 2⊗ 2, 2⊗ 3 and 3⊗ 2 systems are separable.

It turns out that the separability problem may be reformulated in terms of mathematical
theory of positive maps: let Mn(C) denote an algebra of n× n complex matrices. A linear map
Λ : Mn(C) −→ Mm(C) is positive iff Λ(X) ≥ 0 for any semi-positive X ∈ Mn(C). Moreover, if
1lk ⊗Λ is positive, where 1lk is an identity map on Mk(C), then Λ is k-positive. Finally, if Λ is
k-positive for all k, then it is completely positive (CP). The structure of CP maps is well know.
Any such map may be represented as follows

ΛCP(X) =
∑

α

SαXS
∗
α , (4)

where Sα are so called Sudarshan-Kraus operators [4]. The importance of positive maps follows
from the following

Theorem 2 ([5]) A mixed state ρ in Htotal is separable iff

(1lA ⊗Λ) ρ ≥ 0 , (5)

for all positive maps Λ : B(HB) −→ B(HA).
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Note, that when Λ is CP, then (5) is trivially satisfied. Therefore, only positive maps which
are not CP may be used to detect entanglement. The above theorem shows that in general one
needs infinitely many test (each defined by a positive map) to be sure that a state is separable.
The main problem, however, is that the structure of positive maps which are not CP is still
unknown. Moreover, we know only few examples of such maps (see [6] for a recent review).

2.3. Multipartite states
The above discussion may be easily generalized to multipartite case. A state ρ in Htotal =
H1 ⊗ . . . ⊗HN is fully separable (or N -separable) iff it can be represented as the convex
combination of product N -partite states:

ρ =
∑

k

pk ρ
(1)
k ⊗ . . . ⊗ ρ

(N)
k , (6)

where ρ
(l)
k is a mixed state in Hl and {pk} is a probability distribution. In analogy to Theorem 2

one has the following result:

Theorem 3 ([7]) An N -partite mixed state ρ in Htotal is separable iff

(1l1 ⊗Λ) ρ ≥ 0 , (7)

for all linear maps Λ : B(H2 ⊗ . . . ⊗HN ) −→ B(H1) such that

Λ(ρ(2) ⊗ . . . ⊗ ρ(N)) ≥ 0 , (8)

for all states ρ(k) in Hk.

Note that there is a crucial difference between bipartite and N -partite case with N > 2.
For N = 2 one needs only positive maps whereas for N > 2 a larger class of maps has to be
considered, that is, maps which are not necessarily positive but which are positive on separable
states.

3. Bipartite symmetric states
Consider a bipartite quantum system living in Htotal = HA ⊗HB. Let G be a compact Lie
group together with two irreducible unitary representations D

(A) and D
(B):

D
(A)(g) : HA −→ HA , D

(B)(g) : HB −→ HB , (1)

for any element g ∈ G. We call a state ρ of the composite system D
(A) ⊗D

(A)–invariant iff

[ ρ , D
(A)(g)⊗D

(A)(g) ] = 0 , (2)

for each g ∈ G. The most prominent example of a symmetric state was constructed by Werner
[2]: take HA = HB = C

d, G = U(d) and let D
(A) = D

(B) be a defining representation
of U(d) in C

d (i.e. we represent elements from U(d) by d × d unitary matrices). Now, the
commutant of U(d)×U(d) is spanned by identity I ⊗ 2 = Id ⊗ Id and the flip operator F defined
by F(ϕ⊗ψ) = ψ⊗ϕ. Note that in the standard basis {e1, . . . , ed} in C

d the flip operator may
be represented as follows

F =
d∑

i,j=1

eij ⊗ eji , (3)
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where eij = |ei〉〈ej |. Now, building two orthogonal projectors:

Q0 =
1

2
(I ⊗ 2 + F) , (4)

Q1 =
1

2
(I ⊗ 2 − F) , (5)

one obtains the following general form of U ⊗U–invariant Werner states:

ρ = q0 Q̃
0 + q1 Q̃

1 , (6)

where qα ≥ 0, q0 + q1 = 1 and we use the following notation: Ã = A/Tr(A). It is well know
[2] that a Werner state (6) is separable iff it is PPT. This may be easily translated into the
following condition upon coefficients qα: q1 ≤ 1/2.

4. Multipartite symmetric states
Now, generalization to multipartite system is simple: consider an N–partite system living in

Htotal = H1 ⊗ . . . ⊗HN ,

together with a compact Lie group G and N irreducible unitary representations

D
(k) : Hk −→ Hk , k = 1, . . . ,N .

N–partite state ρ is D
(1) ⊗ . . . ⊗D

(N)–invariant iff

[ ρ , D
(1)(g)⊗ . . . ⊗D

(N)(g) ] = 0 , (1)

for each g ∈ G. This problem was considered in [8, 9] for N = 3 in the case of Hk = C
d and

G = U(d). The complete list of separability conditions for U ⊗U ⊗U–invariant states were
found. However, the detailed analysis of separability for U ⊗N–invariant states for N > 3 is not
straightforward.

Recently, in a series of papers [10, 11, 12] we proposed another class of symmetric multipartite
states constructed as follows: let N = 2K and consider

Htotal = H1 ⊗ . . . ⊗HK ⊗H1 ⊗ . . . ⊗HK .

Now, a 2K–partite state ρ is D
(1) ⊗ . . . ⊗D

(K) ⊗D
(1) ⊗ . . . ⊗D

(K)–invariant iff

[ ρ , D
(1)(g1)⊗ . . . ⊗D

(K)(gK)⊗D
(1)(g1)⊗ . . . ⊗D

(K)(gK) ] = 0 , (2)

for each gk ∈ G (k = 1, . . . ,K). Note that definition (2) is much more restrictive than (1)
and hence a class of states invariant under (2) is smaller than a class of states (with N = 2K)
invariant under (1).

As an example consider the simplest case: H1 = . . . = HK = C
d and let G = U(d) be

represented in a natural way on C
d. Defining the K-vector U = (U1, . . . , UK) together with

U⊗U = U1 ⊗ . . . ⊗UK ⊗U1 ⊗ . . . ⊗UK we may rewrite the definition of U⊗U–invariant state
as follows

[ ρ , U⊗U ] = 0 , (3)

for each U ∈ U(d) × . . . × U(d). Now, to parameterize the space of U⊗U–invariant states let
us denote by σ a binary K-vector and introduce a set of 2K-partite operators

Qσ = Qσ1

1|K+1 ⊗ . . . ⊗QσK

K|2K
, (4)

where each Q
σj

j|j+K
is a bipartite operator acting on Hj ⊗Hj+K. One easily shows that
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(i) Qσ are U⊗U–invariant,

(ii) Qα ·Qβ = δαβ ,

(iii)
∑

σ Qσ = 1l⊗ 2K ,

that is, Qσ define orthogonal resolution of identity in Htotal. Therefore, any U⊗U–invariant
state ρ may be uniquely represented as follows

ρ =
∑

σ

qσ Q̃σ , (5)

with qσ ≥ 0 and
∑

σ qσ = 1. To investigate multi-separability of (5) let us define a family of
generalized partial transpositions parameterized by a binary K-vector σ = (σ1, . . . , σK):

τσ = τσ1 ⊗ . . . ⊗ τσK . (6)

We call a 2K–partite state σ–PPT iff (1l⊗K ⊗ τσ)ρ ≥ 0. It is not difficult to show that states
which are σ–PPT for all binary K-vectors σ define (2K − 1)–dimensional simplex [10]. Its
vertices (extremal states) are characterized as follows:

• 1 extremal state corresponding to qσ = (1, 0, 0, . . . , 0),

• K extremal states with qσ = 1/2 for each σ with |σ| = 1,

•

(
K
2

)
extremal states with qσ = 1/4 for each σ with |σ| = 2,

• . . .

• 1 extremal state corresponding to qσ = 2−K(1, 1, . . . , 1),

where |σ| = σ1+. . .+σK . Hence, a necessary condition for multi–PPT property reads as follows

qσ ≤
1

2|σ|
. (7)

It is clear that for K = 1, i.e. in a bipartite case, (7) reproduces condition q1 ≤ 1/2. Now, it
may be proved [10] that all extremal multi-PPT states are 2K-separable. Hence a 2K–partite
U⊗U–invariant state ρ is separable iff it is σ–PPT for all binary K-vectors σ.

5. Duality and symmetric quantum channels
It is well known that the space of density operators in Htotal = H⊗H is isomorphic with the
space of trace-preserving CP maps Φ : B(H) −→ B(H). Such maps are called quantum channels.
An example of such isomorphism is given by [13]

Φ −→ ρΦ = (1l⊗Φ)P+ , (1)

where P+ = (1/d)
∑d

i,j=1 eij ⊗ eij denotes the projector onto the maximally entangled state in
Htotal. Consider now an irreducible unitary representation D of G acting on H. A quantum
channel Φ is D–invariant iff

Φ (D(g)X D(g)∗) = D(g)Φ(X)D(g)∗ , (2)

for each g ∈ G and X ∈ B(H). Clearly, Φ is D–invariant iff ρΦ is D⊗D–invariant.

Let Φσ : Md(C) −→Md(C) be a quantum channel corresponding to Q̃σ (σ = 0, 1). Therefore,
a channel corresponding to the Werner state (6) is given by Φ = q0Φ

0 + q1Φ
1. Let

ΦK : Md(C)⊗K −→ Md(C)⊗K , (3)
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be a quantum channel invariant under U(d) × . . .× U(d), i.e.

ΦK

(
(U1 ⊗ . . . ⊗UK)X (U1 ⊗ . . . ⊗UK)∗

)
= (U1 ⊗ . . . ⊗UK)ΦK(X) (U1 ⊗ . . . ⊗UK)∗ , (4)

with U1, . . . , UK ∈ U(d). It is clear that a 2K–partite state

ρ = (1l⊗K ⊗ ΦK) (P+
1|K+1 ⊗ . . . ⊗P+

K|2K
) , (5)

is U⊗U–invariant. Observe that any U(d) × . . . × U(d)–invariant channel may be uniquely
represented as follows

ΦK =
∑

σ

qσ Φσ1 ⊗ . . . ⊗ΦσK , (6)

and hence it corresponds to U⊗U–invariant state (5). In terms of ΦK the N–separability of
ρ is equivalent to the following set of conditions:

τσ ◦ ΦK =
∑

σ

qσ (τσ1 ◦ Φσ1)⊗ . . . ⊗ (τσK ◦ ΦσK ) , (7)

is CP for all σ. Finally, note that reduction with respect to (i|i+K) pair leads to a 2(K − 1)–
partite invariant state or equivalently U(d)× . . .×U(d)–invariant channel ΦK−1. For example
reduction with respect to the last pair (K|2K) gives ΦK−1 : Md(C)⊗K−1 −→ Md(C)⊗K−1

defined by
ΦK−1 ◦ TrK = TrK ◦ ΦK , (8)

where TrK denotes the trace with respect to the Kth factor. It is clear that

ΦK−1 =
∑

σ

q′σ Φσ1 ⊗ . . . ⊗ΦσK−1 , (9)

where q′(σ1,...,σK−1) =
∑

σK
q(σ1,...,σK).

6. Conclusions
Construction of 2K–partite symmetric states may be easily generalized for other groups, e.g.
orthogonal group O(d) [11] and SU(2) [12]. Moreover, we may define states with other symmetry

properties: for example in a bipartite case one may consider states invariant under D
(A) ⊗D(B).

If G = U(d) such states are called isotropic [14] and they do play important role in applications
of Quantum Information Theory. In a similar way one may introduce isotropic–like states in a
multipartite setting. It is hoped that the multipartite state discussed in this paper may serve
as a very useful laboratory for testing various concepts from quantum information theory and
they may shed new light on the more general investigation of multipartite entanglement.
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