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Resumen

Los campos de spin superior, y en particular los de spin 3/2, han desafiado a los
fisicos tedricos por décadas. Si bien se han construido ecuaciones de movimiento y densi-
dades Lagrangianas que tienen pleno sentido para teorias libres y que pueden cuantizarse
consistentemente, las interacciones presentan dificultades formidables como propagacion
superluminica a nivel clasico, dependencia de los anticommutadores en la interaccion y
aparicién de estados fisicos de norma negativa. Pero en los ultimos 15 anos se ha po-
pularizado en la comunidad de fenomenologia hadrénica una interaccién del campo de
Rarita-Schwinger con un campo pseudoescalar y uno de Dirac (propuesto para tratar el
acoplamiento de la A(1232) con piones y nucleones), que se ha supuesto libre de esas
inconsistencias. De hecho se le suele llamar “la interaccién consistente”. Se suele relacio-
nar esta presunta consistencia con el hecho de que en la amplitud de dispersién elastica
esta interaccion desacopla el llamado “fondo de spin 1/27, esto es, la contribucién de la
propagacion de estados virtuales de spin 1/2 del campo de Rarita-Schwinger.

En esta tesis hacemos un recorrido por los distintos formalismos propuestos para spin
3/2 y mostramos que la relacion entre la propagacién acausal y la aparicién de estados
de norma negativa es una peculiaridad de los campos de Rarita-Schwinger y no una pro-
piedad general de los campos de spin 3/2. Repasamos las confusiones que han surgido
alrededor del propagador de Rarita-Schwinger y mostramos que la propagacion de esta-
dos de spin 1/2 no constituye en si mismo una inconsistencia. Respecto de la llamada
“interaccién consistente”, mostramos que no es tal: le aplicamos el algoritmo de Dirac
para tratar restricciones de segunda clase, y mostramos que esta interaccién presenta los
mismos inconvenientes (apariciéon de estados de norma negativa) que la interaccién usada
historicamente entre los mismos campos. También mostramos que al considerar el acopla-
miento minimal a campos electromagnéticos aparecen dificultades en la implementacion
de la invariancia de medida que la interaccién convencional no presenta, que en el caso
de la amplitud radiativa aparece un fondo de spin 1/2; y que al considerar las interaccio-
nes a un loop la interaccién convencional debe ser reintroducida. A nivel fenomenolégico
mostramos que los ajustes a datos experimentales de dispersion elastica en la zona de la
A(1232) son més pobres que para el acoplamiento mas convencional. Finalmente propone-
mos una posible solucién al problema del spin 3/2 mediante un formalismo invariante de
contacto al nivel de la accion, damos las condiciones que deben cumplir las interacciones
para que la cuantizacion resulte en un espacio de Fock definido positivo y exponemos una
interaccién consistente para particulas realmente neutras.
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Capitulo 1

Introducciéon General e Historia de
la Problematica

El descubridor de una nueva particula elemental solia ser premiado con el Nobel, pero
tal hallazgo ahora deberia castigarse con una multa de diez mil dolares.
Willis Lamb, 1951

Durante la ultima década del siglo XIX y la primera del XX el atomo pasé de ser un
ente abstracto de la quimica, incorporado a la fisica en especulaciones osadas y controver-
siales por figuras como Maxwell y Boltzman, a ser un objeto fisico que ya nadie cuestiona,
dindmico, medible y con una estructura eléctrica. El sueno era que la electrodinamica
serfa la teorfa tltima, y el electrén su clave. POINCARE (1904) hablaba de los “electrones
negativos” (los constituyentes de los rayos catddicos) y “los electrones positivos que por lo
poco que sabemos de ellos, serian mucho més grandes”. Las dos soluciones de la ecuacion
de Dirac y la deteccion del positrén dieron aire al suefio (WEINBERG 1996 capitulo 1).
Pero la llegada llamativamente tardia del neutréon al mundo de la fisica, al tiempo que
hizo posible la era atomica, alejo el suefio de la teoria final. Tras él, empezaron a aparecer
mas particulas, de a una al principio, por decenas pronto. La sensacion de zozobra de los
fisicos tedricos ante esta proliferacién resultan bien sintetizadas por los dichos de Lamb
en 1951 que usamos de epigrafe.

Debe decirse que, en contrapartida, el mundo abierto con la llegada del neutrén ha sido
y sigue siendo una fuente prédiga de problemas formidables y desarrollos fascinantes. En
las entranas de la fisica nuclear surgieron por ejemplo la teoria de cuerdas, las excitaciones
topoldgicas que tantos frutos rindieron en el campo de la materia condensada y la teoria
de campos a temperatura finita con sus increiblemente ricos diagramas de fases. Hoy en
dia las cuerdas han vuelto a las fuentes con la conjetura de Maldacena. En la fisica nuclear
moderna coexisten una multiplicidad de marcos tedricos en una interrelacion compleja;
a pesar de que el éxito de la Cromodindmica Cuéntica (QCD) la haya instalado como
la teoria fundamental del mundo hadrénico, entendiéndose los diversos modelos fenome-
nolégicos de las interacciones fuertes como limites de esta en determinados regimenes,
para energias intermedias (esto es, demasiado altas para trabajar con un nimero fijo de
nucleones, pero por debajo de la escala de QCD) resulta imprescindible el uso de modelos
efectivos de campos pues a estas energias no puede hacerse un desarrollo perturbativo de
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QCD. Por lo tanto, muchos problemas abiertos por las teorias previas a la QCD siguen
siendo relevantes.

1.1. El ‘Misterio del spin Alto’

Hacia fines de los anos 50 estaba claro que el espectro hadrénico es infinito: que a
mayores energias se excitan mas y mas particulas de spin cada vez mayor. Si se deseaba
continuar el paradigma de la teoria cuantica de campos, la teoria de las interacciones nu-
cleares fuertes debia ser una teoria con infinitas especies y con spin arbitrario. Pero pronto
estuvo claro que la construccion de teorias de campos interactuantes con spin arbitrario
era, si no imposible, cuanto menos extremadamente dificil. Estas dificultades, que HAGEN
(1971) llamo “el misterio del spin alto”, capturaron la atencion de los teéricos durante
dos décadas. El problema fue perdiendo atractivo al instalarse la QCD, una teoria renor-
malizable y de spin 1/2 y 1. Pero el reconocimiento de que las teorias no-renormalizables
en el sentido de que todos los infinitos puedan absorberse sistematicamente en un niimero
finito de parametros son de hecho renormalizables en un sentido méas amplio si se consi-
deran los infinitos términos compatibles con todas las simetrias de la teoria (WEINBERG
1996, p 499, segundo parrafo), y de que en teorias presuntamente mas fundamentales
como la teoria de cuerdas no hay distincién entre particulas “fundamentales” de bajo
spin y “compuestas” de alto spin fueron reviviendo el problema. Podemos ver ejemplos de
inspiracion en teoria de cuerdas para resolver problemas de campos de spin superior en
cuatro dimensiones, por ejemplo, en NAPPI Y WITTEN (1989) para el caso del campo
masivo de spin 2, y en PORRATTI Y RAHMAN (2009) para el caso del campo RS.

La saga comenz6 con el trabajo de JOHNSON Y SUDARSHAN (1961) en el que se clasi-
fican todos los campos que dan lugar a cuantos de spin 3/2 y se muestra que cualquiera de
ellos es equivalente al formalismo de Rarita-Scwinger (RS). Luego muestra que al acoplar
ese campo minimalmente al campo electromagnético los anticommutadores del campo RS
dependen de las interacciones. Peor atn, en presencia de campos magnéticos no nulos
siempre hay un marco de referencia en que algunos estados fisicos tienen norma negativa.
Ocho anos después VELO Y SWANZIGER (1969) encontraron que el campo clasico RS
acoplado minimalmente al campo electromagnético da lugar a propagacién superlumini-
ca cuando el campo magnético toma cierto valor critico. HAGEN (1971) mostr6 que los
anticommutadores del campo RS dependen también de las interacciones en el caso mas
simple de acoplamiento a un escalar y un campo de Dirac, observando que para ciertos
valores del gradiente del escalar aparecen estados de norma negativa. Para este mismo
acoplamiento se mostrd propagacién acausal en el caso clasico (SINGH 1973). En varios
trabajos, y con metodologias diversas, se ha senalado que la causa de estas anomalias es
la estructura de restricciones del campo RS, que hace que los estados de norma negativa
que en el caso libre resultan proyectados reaparezcan en el sector fisico a través de las
interacciones. Obsérvese que todos estos fenémenos peculiares se dan en presencia de un
fondo clasico. En ausencia de tales fondos los anticommutadores son idénticos a los de la
teoria libre y por lo tanto el espectro es definido positivo.

Finalizando el siglo XX e inspirado en ciertos argumentos de supergavedad (el gravitino
es descripto por un campo de spin 3/2 no masivo), PASCALUTSA (1998) introdujo una
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interaccion entre el campo RS con escalares y espinores de Dirac derivativa también
en el campo RS, es decir de segundo orden derivativo. Dicha interacciéon inspirada en
una transformacion de tipo “medida” sobre el campo RS no masivo, ademas de tener
la propiedad de permitir el desacople a los estados espurios de spin 1/2 del espacio de
representacion en ciertos casos, era supuesta  libre de los problemas de signatura antes
mencionados. Ese resultado ha sido aceptado por gran parte de la comunidad cientifica
del campo de la fenomenologia hadrénica, al punto de evaluar negativamente trabajos
que no emplean dicha interaccién por ser “inconsistentes”, en el sentido de las signaturas
mencionadas, dar lugar a amplitudes “no fisicas”; etc. Lo confuso es que con una simple
integracién por partes esa interaccién puede ser expresada como lineal en el campo RS,
por lo que deberia estar alcanzada por los resultados generales mencionados en el parrafo
anterior. En el discurso habitual de quienes sostienen que esta interaccion es consistente
se vincula dicha consistencia a que esta interacciéon desacopla los estados virtuales de spin
1/2 en amplitudes eldsticas, lo cual es pensado como una condicién de consistencia por ser
estos estados “no fisicos”, pese a que no hay una relacion clara entre este desacople y el
problema de Johnson-Sudarshan-Hagen. La existencia (y popularidad) de esta interaccién
y la no existencia de una argumentacion solida que demuestre su consistencia, es lo que
ha inspirado el presente trabajo de tesis.

1.2. Teorias de campo efectivas

Las teorias de campo efectivas son una herramienta muy usada en contextos en los que
nuestra mejor teoria resulta demasiado dificil de aplicar. La filosofia es sencilla: se toman
todos los grados de libertad (hadrones, en este caso) fenomenologicamente relevantes a la
escala que usaremos, y se escribe el Lagrangiano méas general que respete las simetrias del
sistema completo. Se retienen los términos relevantes a la escala de energia estudiada, y
los parametros se obtienen o bien de datos experimentales o bien de “primeros principios”
como QCD de reticulo. A bajas energias deberian obtenerse exactamente los mismos
resultados que si usaramos la teoria completa (primeros principios sin suposiciones ad-
hoc), pero tal corroboracién es habitualmente imposible o impracticable.

Histéricamente estos procedimientos eran llamados “teoremas de baja energia” y se los
trabajaba con las dlgebras de las corrientes de Noether correspondientes a las simetrias
del sistema. Luego los investigadores se fueron dando cuenta que, justamente, el teorema
de Noether garantiza que un Lagrangiano genérico con esas simetrias debe dar los mismos
resultados, con lo que se evitaban los calculos engorrosos de las algebras de corrientes.

Notemos aqui que la teoria de campos resultante no necesita ser una teoria consistente
por si misma, basta con que reproduzca los observables en su rango de validez. Un ejemplo
ilustrativo es el decaimiento beta, que puede ser tratado a nivel efectivo como el inter-
cambio de un bosén vectorial masivo, y a energias menores que la masa del vector como el
Lagrangiano de contacto de Fermi. La teoria electrodébil es unitaria, pero la teoria efecti-
va con el vector masivo rompe la unitariedad a altas energias, y el Lagrangiano de Fermi
lo hace de un modo atin mas severo. Sin embargo en este caso puede verse explicitamente
(pues la teoria electrodébil puede emplearse perfectamente en el mismo rango que las dos

* s sz .z . .
Esta suposicién se sustentaba con una argumentacién sofisticada aunque incompleta
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teorfas efectivas) que las amplitudes a baja energia son reproducidas perfectamente por
las teorias efectivas. Hacemos esta aclaracion porque en este trabajo de tesis se trabaja
sobre la inconsistencia de las interacciones del campo RS que se usa como teoria efectiva
para describir las resonancias de spin 3/2. jSon relevantes las inconsistencias discutidas
por Johnson y Sudarshan o Hagen en el uso fenomenoldgico de las teorias? Probablemente
no. Sin embargo un importante sector de la comunidad de fenomenologia de particulas
le dan a este punto una gran relevancia y condicionan los Lagrangianos validos a usar
a que estén libres de las inconsistencias mencionadas independientemente de si ellas son
cruciales o no en los calculos perturbativos.

Si bien la simetria fundamental en QCD es SU(3) de color, al escribirse teorias efec-
tivas en términos del espectro fisico esa simetria es invisible o se manifiesta en forma
indirecta, dado que los hadrones son todos “incoloros” (los quarks y gluones estan confi-
nados y desde el punto de vista efectivo no son dindmicos). La simetria (aproximada) que
realmente se manifiesta a nivel hadrénico es la quiral, que introduciremos someramente en
el capitulo 9. En este contexto, dependiendo de los estados que se incluyan en el espectro,
las expansiones perturbativas deberan hacerse respecto de la o las escalas de ruptura de
la simetria quiral. A nivel de los mesones esa escala es la masa del pion, pero las expan-
siones quirales se vuelven mas complejas y menos confiables a medida que se incorporan
bariones. Aun asi, este esquema ha permitido avances importantes. De todos modos esto
solo constituye el marco: la invariancia que debe cumplir todo vértice que se introduzca.
La tarea en principio es directa: todos los vértices compatibles con la simetria quiral y
con la covariancia de Lorentz deberian ser considerados, jerarquizandolos de acuerdo a
la preponderancia que cada vértice tenga a la escala de energias a la que se desee traba-
jar. A las energias més bajas, la interaccién convencional Lygx a ser introducida en el
capitulo 3 es la dominante (derivativa en el campo piénico), y la llamada “consistente”
(inapropiadamente, como veremos en el capitulo 6) es el término que sigue (derivativa en
el campo del pién y el nucledn).

1.3. Los comentarios de Weinberg

En el influyente libro de texto ‘The Quantum Theory of Fields’ (WEINBERG 1996,
capitulo 5, en el parrafo luego de la ecuaciéon 5.7.60) se dedican unos comentarios muy
relevantes al ‘misterio del spin alto’. En ellos se afirma que no hay verdaderas dificultades
de spin alto, simplemente se trata de dificultades técnicas con las que uno se topa al
intentar ir mas alla de las perturbaciones. Se trata de los comentarios al final de la seccién
5.7. Los comentarios son los siguientes (traduccién propia):

Deberia mencionarse que de tanto en tanto varias dificultades han sido re-
portadas [En este punto cita varias referencias que, llamativamente, excluyen
JOHNSON Y SUDARSHAN (1961)] en la teoria de campos de particulas con
spin j > 3/2. En general, estas son encontradas en el estudio de la propagacién
de un campo de spin superior en presencia de un campo externo tipo c-ntimero.
Dependiendo de los detalles de la teoria, las dificultades encontradas incluyen
no causalidad, inconsistencia, estados de masa no fisica, y violacién de uni-
tariedad. No entraré aqui en los detalles de tales dificultades pues me parece
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que no son relevantes para el esquema de calculo descripto en este capitulo,
por las siguientes razones:

(1) Los campos 9g(x) [en la notacién introducida por WEINBERG (1996)
capitulo 5] han sido construidos aqui directamente a partir de los operado-
res de creacién y aniquilacién para particulas fisicas, de modo que no puede
surgir ninguna duda de inconsistencias o masas no fisicas. Estos son campos
libres, pero incorporandolos en una densidad Hamiltoniana de interaccion en
la representacion de interaccién, podemos usar teoria de perturbaciones para
calcular los elementos de la matriz S que satisfacen autométicamente el prin-
cipio de descomposicién en clusters. En tanto el Hamiltoniano de interaccion
sea hermitico, no puede haber dificultades con la unitariedad. La invarian-
cia de Lorentz esta garantizada en teoria de perturbaciones en la medida que
agreguemos términos locales pero no covariantes en la densidad Hamiltoniana;
aunque no hay una demostracion rigurosa, no hay razén para dudar de que
esto es siempre posible. Por lo tanto cualquier dificultad con spin supe-
rior puede solo surgir cuando tratamos de ir mas alla de la teoria de
perturbaciones. [las negritas son nuestras].

(2) Como se discute en la seccién 13.6, la solucion de ecuaciones de campo en
la presencia de un campo de fondo c-numérico (el contexto en el que todos los
problemas con spin superior fueron encontrados) va mas alld de la teorfa de
perturbaciones, en que los resultados corresponden a sumar un subconjunto
infinito de términos en la serie perturbativa. Esta suma parcial esta justificada,
incluso para campos externos débiles, si los campos varian lo suficientemente
suave, la pequenez de los denominadores de energia compensando la debili-
dad de los campos. Pero los resultados obtenidos de este modo dependen de
todos los detalles de la interaccion de la particula de spin superior con los
campos externos: no solo los momentos multipolares de la particula sino tam-
bién posibles términos en la interaccién que sean no lineales en los campos
externos. Los problemas reportados [Aqui vuelve a citar las mismas referen-
cias que en la llamada anterior] con spin superior han sido encontrados solo
para particulas de spin superior para las que se ha supuesto arbitrariamente
que tienen unicamente interacciones muy simples con los campos externos.
Nadie ha mostrado que los problemas persistan para interacciones arbitrarias,
y como veremos en el capitulo 12, se espera que las particulas de spin superior
tengan interacciones de todos los tipos posibles permitidos por los principios
de simetria.

(3) De hecho, hay buenas razones para creer que los problemas con spin supe-
rior desaparecen si la interaccion con los campos externos es lo bastante com-
plicada. Por un lado, no hay dudas acerca de la existencia de particulas de spin
superior, incluyendo varios niicleos estables y resonancias hadrénicas. Si hay
algin problema con spin superior, solo puede ser para particulas ‘puntuales’,
eso es, aquellas cuyas interacciones con campos externos son particularmente
simples. Deberia tenerse presente que el requerimiento de simplicidad depende



CAPITULO 1. INTRODUCCION GENERAL E HISTORIA DE LA
16 PROBLEMATICA

de la eleccion de qué campo elegimos para representar la particula de spin su-
perior. Recuérdese que cualquier tipo de campo libre puede expresarse como
un operador derivativo actuando sobre cualquier otro tipo de campo, de modo
que en la representacion de interaccion cualquier interaccion con campos ex-
ternos puede escribirse en términos del tipo de campo que deseemos, pero las
interacciones que son simples cuando son expresadas en términos de campos
de un tipo pueden lucir complicadas cuando se las expresa en términos de
campos de otro tipo. De modo que el requerimiento de simplicidad no parece
tener ningin contenido objetivo.

(4) Ademas, tanto las teorias en dimensién superior tipo ‘Kaluza-Klein’ co-
mo la teoria de cuerdas proveen ejemplos de teorias consistentes de particulas
cargadas masivas de spin 2 interactuando con un campo electromagnético de
fondo [Aqui cita a NAPPI Y WITTEN (1989), ARGYRES Y NAPPI (1989)] (se
encontré que la consistencia de la teoria depende de la suposicion de campos
externos realistas que satisfagan las ecuaciones de campo, un punto en general
descuidado en trabajos previos.) Reformulando este trabajo en la representa-
cion de interaccién, la particula de spin 2 es representada por un campo libre
(1,1), pero como se menciona arriba las interacciones pueden ser reexpresadas
en la representacion de interaccion en términos de cualquier tipo de campo
(A,B) que contenga la representacion j = 2 del grupo de rotaciones.

Weinberg ha estado involucrado personalmente con el tema: su tesis doctoral es sobre
propagaciéon y cuantizaciéon de campos de spin superior, y en las conclusiones de JOHNSON
Y SUDARSHAN (1961) que inicia la saga puede leerse una refutacion a una de las conclu-
siones de esa tesis. El hecho de que Weinberg no cite en estos comentarios ese paper resulta
muy significativo. Debemos remarcar que Sudarshan, Hagen y Weinberg son verdaderos
“pesos pesados” de la fisica tedrica del siglo XX y que han protagonizado rivalidades mas
alla de la disputa sobre el spin alto: Sudarshan, por ejemplo, se ha quejado por no ser
incluido en el Premio Nobel de Fisica de 1979 que incluyd, entre otros, a Weinberg " .

Es probable que estas disputas hayan sido decisivas en que Weinberg le dedicara un
comentario tan extenso al tema en un libro de texto. Mas alla de eso, es interesante
tenerlo en cuenta para calibrar adecuadamente el problema. El punto mas dudoso en la
argumentacion de Weinberg es el que vincula la necesidad de que haya campos consistentes
con el hecho de que las particulas de spin superior “existan”, hecho que podriamos refrasear
como “existen fenémenos compatibles con la interpretacion de que se trata de particulas
de spin superior” y que de ninguna manera garantiza que esa interpretacion deba ocurrir
necesariamente en el marco de una teoria consistente. Observemos que Weinberg basa su
modo de pensar los campos cuanticos en “el hecho de que existen particulas”, haciendo
que la existencia de los campos cuanticos relativistas sea “inevitable”. O sea, lo que en los
trabajos de Sudarshan y Hagen se piensa como un caso particular (el vacio perturbativo) es
elevado por Weinberg al grado de fundamento epistemolégico. De lo que no pueden quedar
muchas dudas es que realmente en ausencia de campos de fondo el problema se vuelve
inexistente y la expansion perturbativa necesaria para interpretar datos de acelerador
tiene perfecto sentido.

“Entrevista a EGC Sudarshan por GK Rajesh, Science Reporter, enero 2014
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En nuestra opinién, los comentarios de Weinberg no invalidan al problema del spin alto
como un problema abierto de la fisica tedrica, pero si limitan sumamente sus consecuencias
practicas en aplicaciones fenomenolégicas.

1.4. Resumen y organizaciéon de la tesis

1.4.1. Los problemas

Separemos los problemas en dos categorias: por un lado los problemas formales rela-
cionados con la construcciéon de una teorfa interactuante consistente de spin 3/2, y por
otro los problemas practicos de generar términos de interacciéon para célculos en fenome-
nologia hadroénica. Es importante clarificar esta diferencia crucial, como hemos sefialado
en la seccion 1.2.

Estos son los problemas que abordaremos en esta tesis. En cuanto a la categoria formal,
identificamos los siguientes problemas:

= ;Como es posible que, partiendo de un Lagrangiano invariante de Lorentz, se llegue
a ecuaciones de movimiento con soluciones que violan el principio de relatividad?
Resaltemos que este es un problema sumamente basico pues ocurre incluso a nivel
clasico (anomalfa de Velo-Zwanziger).

s ;Como se compatibilizan las multiples demostraciones de que los acoplamientos li-
neales al campo RS conducen a estados de norma negativa con la suposiciéon amplia-
mente difundida de que la popular interaccion introducida en PASCALUTSA (1998)
estd libre de esa inconsistencia?

» ;Es posible construir teorias cuénticas de campo involucrando campos de spin 3/2
en interaccion con campos electromagnéticos y con escalares y espinores? En este
sentido hay respuestas parciales que parecen indicar una respuesta positiva, como
senala el inciso (4) de los comentarios de Weinberg de la seccién 1.3.

En la categoria practica, los problemas que urge investigar son:

= ;Qué forma de interaccion es favorecida por los datos experimentales?

= ;Cuales son las consecuencias practicas de las restricciones formales a las posibles
interacciones de campos RS?

1.4.2. Los resultados

Sintetizamos a continuacion los resultados alcanzados, publicados en BADAGNANI Y
OTROS (2015), BADAGNANI Y OTROS (2016), MARIANO Y OTROS (20124, 2012B).

= Covariancia: Dedicamos el capitulo 2 a repasar la construccién covariante de es-
tados de spin arbitrario que, a pesar de ser un tema bien establecido desde la tercer
década del siglo XX, sigue generando confusién en la bibliografia. Esas confusiones
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se senalan en los capitulos 4 y 7. Finalmente, en el capitulo 8 mostramos que el
formalismo RS no es completamente covariante al nivel de la accion, lo que se re-
fleja en la llamada “invariancia de contacto”. Dicha invariancia es de las ecuaciones
de movimiento pero no de la accion; recuérdese que es necesario introducirla para
que la accién RS seleccione la representacién correcta de spin 3/2. Veremos que en
el limite en que la invariancia es también una invariancia de la accién (fisicamente
inadmisible pues introduce estados de norma negativa y spin 1/2) la propagacién se
vuelve causal, es decir, desaparece el problema de Velo-Swanziger.

Consistencia: En el capitulo 6 se analizan las restricciones para las interacciones
lineales del campo RS. Se muestra que la interaccion introducida hace dos décadas
(PascaLuTsA 1998), y que ha sido considerada desde entonces por muchos autores
como una interaccion libre de las inconsistencias reportadas por Johnson y Sudars-
han y por Hagen, presenta en realidad el mismo tipo de inconsistencias: en presencia
de campos de fondo aparecen estados de norma negativa. Esto, para el caso RS, esta
conectado con el problema de la covariancia, y confirma resultados previos de que
cualquier interaccién lineal en el campo RS mostrara este tipo de comportamiento.
Se muestra en el capitulo 8 que un candidato promisorio para resolver los proble-
mas de consistencia con campos de fondo es el campo de Bhabha-Gupta en el limite
“singular” en que la invariancia de contacto se implementa al nivel de la accion.

Relevancia fenomenolégica: Una vez establecido que a nivel formal todas las
interacciones tienen el mismo tipo de inconsistencias, el inico criterio valido para
elegir una interaccion particular es la precision con la que puede reproducir resulta-
dos experimentales. En el capitulo 9 comparamos la interaccion “consistente” con la
usada tradicionalmente NATH Y OTROS (1971) para la interaccion de la A(1232)
(modelizada como campo RS) con piones y nucleones en la zona de la resonancia,
y mostramos que la ultima es superior desde el punto de vista fenomenolégico, lo
que era de esperarse dado que la primera es un orden superior en derivadas. Otro
resultado interesante es que la interaccion “consistente” esta en conflicto con la inva-
riancia de medida electromagnética, y que las amplitudes que involucran absorcién
o emision de fotones por parte de la A virtual involucran el “fondo de spin 1/2”
cuyo desacople era la motivacion para introducir esa interaccion. Ademas, y en linea
con el folcklore de los campos efectivos, las correcciones a un lazo en el campo elec-
tromagnético fuerzan a que haya que considerar interacciones convencionales ain
cuando se haya comenzado solo con la interaccion “consistente”. Queda abierto el
problema de usar el limite singular del campo de Bhaba-Gupta para modelizar la

A.



Capitulo 2

Particula de spin 3/2

En este capitulo repasamos los aspectos ligados a las simetrias relativistas, difiriendo
para el proximo los aspectos dinamicos y la cuantizacion. Si bien este es un tema que
puede considerarse como bien establecido, lo incluimos porque en la literatura persisten
confusiones.

En el apéndice discutimos las simetrias espacio-temporales en 34+1 dimensiones: trasla-
ciones, rotaciones, boosts, y paridad, asi como aspectos técnicos ligados a la construccion de
representaciones del grupo de Lorentz (el de rotaciones y boosts) y discutimos la construc-
ciéon de Wigner de estados de masa y spin definidos, en general, para lo que nos basamos
en el capitulo 2 de WEINBERG (1996) y en las notas de MACIEJIKO (2013), y en el caso
de vectorespinores. Mostramos aqui que lo que llamamos spin como nimero cuantico en
el caso relativista es en realidad un autoestado del operador de Pauli-Lubanski, ya que
el spin no es un buen nimero cuantico en ese contexto. Mas adelante, en el capitulo 7,
mostraremos algunas confusiones al respecto en la literatura sobre spin 3/2.

2.1. ;De qué hablamos cuando hablamos de spin?

En mecanica cuantica no relativista el spin es momento angular intrinseco, o sea
un objeto independiente de las coordenadas que transforma como alguna representacion
irreducible de SO(3). En la teoria relativista, en la que el grupo relevante es SO(3,1),
las rotaciones siguen siendo una simetria que conmuta con P°, de modo que el momento
angular total sigue siendo una cantidad conservada, pero cuando se habla del spin de una
particula se hace referencia a una etiqueta que caracteriza clases de particulas, por lo que
hace falta que los boosts no lo afecten. Como el momento angular no conmuta con los
boosts el spin en relatividad no puede tener el mismo sentido que en fisica no relativista.

La confusién se agrava porque muchas veces se habla de spin como el rango de la
representacion del grupo de Lorentz bajo la que transforma el campo del que la particula
es cuanto. Como veremos, si bien hay una relacion, esta es compleja: pueden, por ejemplo,
hacerse campos cuyos cuantos son de spin cero con tensores de rango tan grande como se
desee.

Existen dos niveles de analisis de los que se origina la confusion. Por un lado, el
grupo de Lorentz tiene una familia de representaciones no unitarias de dimension fini-
ta, caracterizadas por dos ntimeros cuanticos semienteros correspondientes a quiralidades
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opuestas, y que son facilmente asimilables a objetos con indices de Lorentz (cuadrivecto-
riales o espinoriales). Asi, un cuadrivector transforma como (%, %) y un tensor de rango
dos transforma como (1,1) & [(1,0) @& (0,1)] & (0,0) (més detalles en el apéndice). Ob-
sérvese que estos son objetos constantes (sin dependencia en las coordenadas; un campo
transforma de modo més complejo y constituye representaciones de dimension infinita).
Aqui no hay dinamica, y menos cuantica: el spin corresponde a clases de particulas y no
se corresponde de un modo directo con indices de Lorentz. Por otro lado, el grupo de
Poincaré tiene una coleccién de representaciones unitarias irreducibles de dimensién in-
finita correspondientes a transformaciones de estados de una particula (cudnticos). Estas
representaciones estan caracterizadas por la masa de la particula y la helicidad maxima,
que es lo que llamamos spin. Los estados de helicidad y de 3-momento son los “indices”
de la representacion (debido al 3-momento, que es continuo, estas representaciones son de
dimension infinita). Veremos que una amplitud que transforme como (p, q) en el sentido
de Lorentz puede usarse para describir particulas de todos los spins contenidos en p @ ¢,
en el sentido habitual de adicion de momentos angulares. Esto no significa que un campo
que transforme segin (p, q) describa todas esas particulas, como veremos en el capitulo
siguiente.

2.2. Representaciones del grupo de Poincaré

Las representaciones irreducibles de dimensién finita del grupo de Lorentz tienen una
aplicacion muy limitada en fisica. Los objetos que transforman bajo ella son objetos cons-
tantes (independientes de las coordenadas o, lo que es lo mismo, invariantes por trasla-
ciones). En fisica estamos interesados en objetos como campos o amplitudes de probabi-
lidad, que en general dependeran de la posicién. Supongamos que V' es un espacio en el
que acttia una representacién irreducible del grupo de Lorentz; un “campo” (en el sentido
matemaético) serd un mapa que a cada punto del espacio-tiempo z le hace corresponder
un v(z) € V. El grupo de Lorentz actia entonces tanto sobre las coordenadas como sobre
cada v: se trata de un espacio funcional y las representaciones son necesariamente de
dimensién infinita.

Para implementar la simetria de Lorentz en una teoria cuantica, de hecho, lo que
necesitamos son las representaciones unitarias, porque estas son las que preservan am-
plitudes. Pero la construcciéon de representaciones unitarias de grupos de Lie no compactos
no es sencilla ni inmediata. Wigner se adelant6 algunas décadas a los matematicos en el
tratamiento del problema para el caso concreto del grupo de Poincaré. Su construccion
es mas heuristica que formal, pero hoy existen tratamientos formales que confirman esos
trabajos pioneros (MACKEY 1951).

La razén para considerar el grupo de Poincaré en lugar del de Lorentz es que per-
mite considerar la dependencia en las coordenadas de modo sisteméatico y sencillo. Los
autoestados de P, son de la forma e”+*" siendo p,, el autovalor. Esto permite expresar
amplitudes mediante transformadas de Fourier, con lo que obtenemos una expansion en
la base de autoestados de P,. Por otra parte, particulas fisicas cumplen con p,p* = m?,
y ademds P° es el Hamiltoniano, y por lo tanto determina la dindmica del sistema.

Pero la base de la construcciéon de representaciones irreducibles del grupo de Lorentz
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presentada en la seccidon anterior era la existencia de los operadores mutuamente conmu-
tantes A y [57’ y P* no conmuta con ninguno de ellos. Necesitamos un nuevo operador
que conmute con P para construir nuestras representaciones. El momento angular J g
conmuta solo con PP, lo cual es suficiente para que sea una cantidad conservada, pero no
alcanza para etiquetar estados cuanticos. El que si resulta conmutar con P* es el llamado
Pseudovector de Pauli-Lubanski:

W,u = e,ul/apjygpp (21)

el cual, en el sistema en que P; = 0 es igual que mJ%¥. Esta es la razén por la que,
abusando del lenguaje, se habla de spin en el contexto relativista. La interpretacion de este
operador esta en el corazén de la construccion de Wigner de representaciones irreducibles:
las llamadas “representaciones inducidas” (Apéndice, subseccién A3.1).

2.2.1. Relacion con las representaciones del grupo de Lorentz

Enfaticemos una vez mas las notables diferencias entre las representaciones del grupo
de Lorentz halladas en la seccién A2 y las halladas en A3: mientras que las primeras son de
dimensién finita, no unitarias, y actiian sobre objetos sin dependencia en las coordenadas,
las segundas actian sobre espacios funcionales, son de dimensién infinita y son las rele-
vantes para introducir la simetria de Lorentz a nivel cuantico. Dicho esto, es importante
establecer los puentes entre ambos tipos de representaciones ya que en fisica de particulas
aparecen los dos niveles de representacion. Como veremos en la seccion 4.6, hay trabajos
recientes en los que aparece confusién entre esos niveles.

Observemos que en el sistema en que p = 0 los autoestados de P* son invariantes
por traslaciones. Por lo tanto ese es el medio de comparacién de ambos tipos de repre-
sentaciones. En ese sistema los estados estan caracterizados por las representaciones de
SO(3) (el operador de Pauli-Lubanski es W, = P,0;;J%, que corresponden a Wy =0y
Wi = —me;1. T, es decir W = —mJ. Recordemos ademds que J = A + B.

Supongamos que queremos describir las funciones de estado de una particula con
amplitudes que, aparte de la dependencia en x, transforman de acuerdo con una repre-
sentacién (jr, jr) del grupo de Lorentz. ;Qué spins podremos describir con ese tipo de
amplitudes? Si p = 0 los spins posibles van a corresponder a T =A+ g, cuya descom-
posicién en representaciones irreducibles corresponde a la suma de spin habitual (se trata
de la suma de dos representaciones independientes de SU(2)). Los spins posibles seran
entonces:

Func(M — (jr,jr)) = (jr +Jjr) © (jo +Jjr — 1) © (ljz — jrl) (2.2)

donde M es el espacio de Minkowski D = 3 + 1 y en el miembro izquierdo estamos
representando la coleccién de funciones de M en vectores de la representacion (jr, jr). El
lado derecho corresponde a representaciones irreducibles en el sentido de Wigner. Podemos
pensar en estos términos pues las representaciones del lado derecho no resultan mezcladas
por boosts, ya que una vez que se trata de estados con p # 0 ya no los pensamos como
autoestados de momento angular sino como autoestados del operador de Pauli-Lubanski.

A modo de ejemplo, pensemos los casos (3,3) v (3, 5)®|(3,0)®(5, 0)]. El primer caso es
irreducible como representaciéon de Lorentz, pero el espacio de funciones cuadrivectoriales
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es reducible en el sentido de Wigner, dando lugar a representaciones de spin cero y de
spin uno. El segundo es el caso de los vectorespinores, que como vimos es reducible como
representacion de Lorentz en (1,3) @ (3,1) ¥ (3,0) @ (0, 5). En cambio, las funciones de
M en vectorespinores pueden ponerse como suma directa de funciones en elementos de
(1,2)® (3,0) y de elementos de (3,0) @ (0, ). Las segundas son irreducibles en el sentido
de Wigner y dan lugar a objetos de spin 1/2, mientras que las primeras pueden reducirse
a particulas de spin 3/2 y spin 1/2. Asi, las funciones en vectorespinores contienen dos
campos de Dirac cuyos origenes son bastante diversos desde el punto de vista del grupo
de Lorentz.

La forma concreta de producir esa separacion puede pensarse en abstracto o bien
construirse explicitamente construyendo el operador J para el sistema en que p' = 0
para luego expresar la base en p arbitrario mediante boosts. En abstracto la construccion
es muy simple: para el caso cuadrivectorial, el tnico escalar que puede construirse con
elementos del algebra de Poincaré es p,v*, por lo que las particulas de spin 1 deberan
cumplir la condicién p,v* = 0. Para el caso de vectorespinores, con elementos del algebra
de Poincaré pueden construirse dos objetos de spin 1/2: v,¥* y p,U*. Por lo tanto, la
particula de spin 3/2 corresponderd a cuadriespinores que cumplan con las condiciones
Y ¥* =0y p,¥* = 0. La primer condicién separa el sector (%, 0) @ (0, %), mientras que
la segunda separa, si nos restringimos al subespacio que cumple con la primera, los spins
1/2y3/2en (1,3) & (3,1).

2.3. Grados de libertad de la particula de spin 3/2

Debe distinguirse la dimensién (finita) de la representacién del grupo de Lorentz bajo
la que transforma un estado de una particula (que para una representacion (jr,jg) serd
(2j.+1)(2jr+1)) de lo que suele llamarse el “nimero de grados de libertad”, que también
es una cantidad finita. Obsérvese que una vez dados los valores de p el valor de p° queda
determinado por la relacién de dispersiéon. Del mismo modo, hay grados de libertad en
las representaciones del grupo de Lorentz que quedan determinadas por el valor de los
demas.

En el caso de particulas fisicas, se suele llamar “nimero de grados de libertad” a la
dimensionalidad de la representacion del grupo pequeno, duplicado si las antiparticulas
son diferentes de las particulas. Este ntimero difiere del conteo de componentes de la
correspondiente dimension del grupo de Lorentz. Asi, por ejemplo, un vectorespinor tiene
en principio 4 X 4 = 16 componentes (32 para vectorespinores complejos), pero los grados
de libertad fisicos son los cuatro estados de helicidad de las particulas y los cuatro de las
antiparticulas.



Capitulo 3

Campo de Rarita-Scwinger clasico

Uno de los aspectos mas intrigantes de los campos de spin superior, de los cuales el de
Rarita-Schwinger (RS) es el mas sencillo, es que aparecen dificultades muy severas inclu-
so a nivel clasico cuando el campo esta en interaccion. Es habitual que una interaccién
implementada en forma covariante en el Lagrangiano dé lugar a soluciones que violan la
simetria de Lorentz. Por ejemplo, ocurre propagacién superluminica (VELO Y SCHWAN-
ZIGER 1969) y existen marcos de referencia donde cambia el niimero de grados de libertad
(Cox 1976). Esto no hace sino agravarse al pasar a la teorfa cudntica. Lo que deja a uno
particularmente perplejo es que la motivacion detras de implementar teorias de campos
en el formalismo Lagrangiano (oscureciendo los aspectos dindmicos y la unitariedad) es
la facilidad para implementar las simetrias de la teoria.

En este capitulo haremos un analisis de la formulacion clasica, tanto para RS libre como
interactuante, y mostraremos que el origen de las dificultades, aparte de la estructura de
restricciones de la teoria que estudiaremos mas adelante, radica en que la invariancia de
Lorentz no esta realmente implementada en forma completa en la acciéon. La invariancia
de contacto, que es una invariancia de las ecuaciones de movimiento pero no de la accion,
solo garantiza que las soluciones formen un multiplete de la representacion correcta para el
caso libre. Las interacciones haran que las soluciones clasicas, aunque tengan en principio
el mismo nimero de grados de libertad que la teoria libre, no se organicen en multipletes
de spin 3/2 sino que mezclaran a los sectores v#W¥, y p,¥*. Veremos mas adelante que
este ultimo sector es, a nivel cuantico, el responsable de las fallas més severas de la teoria.
como la aparicién de estados de norma negativa.

3.1. Ecuacion “de onda” vs campo de Grassmann

Al confrontar articulos escritos en épocas muy diferentes, debe tenerse en cuenta que
los conceptos de “funcion de onda” de estados de una particula y de “campo”, hoy arti-
culados coherentemente en el marco tedrico de la Teoria Cuantica de Campos, han ido
evolucionando desde comienzos mas bien confusos. En los afios 20 y "30 se hablaba habi-
tualmente de “ecuaciones de onda” para particulas relativistas, cuando lo que se intentaba
hacer era generalizar la ecuacién de Schrodinger. Anos después, ain cuando el concepto
de campo cuantico estaba ya firmemente establecido y estaba claro que en un contexto
relativista es inconsistente trabajar con un nimero finito de grados de libertad, se puede
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apreciar en la literatura que la terminologia “ecuacion de onda” siguié usandose para
referirse, en realidad, a las ecuaciones clasicas del movimiento.

El limite clasico de los campos fermiénicos es otro ejemplo en que la confrontacién
de literatura de épocas diferentes puede ser fuente de confusiones, dada la apariciéon en
décadas recientes de los campos pseudoclasicos de Grassmann. El campo RS o el de Dirac,
pensado como un campo c-numérico, por ser fermiénico no tienen un limite clasico en el
sentido habitual: h — 0 y estados coherentes con niimero de ocupacién grande en cada
nivel (esta segunda condicién no puede ser satisfecha por un campo fermiénico debido al
principio de exclusién). Por eso el Lagrangiano de Dirac no se supone que sea el limite
clasico del campo de Dirac, y no puede hablarse propiamente de una “cuantizacion”. Mas
bien, el Lagrangiano clasico se usa como punto de partida heuristico para armar la teoria
cuantica, llevando el paralelo con el caso bosonico todo lo que sea posible. El paralelo se
termina al intentar poner condiciones de commutacion para los operadores de creacion y
aniquilacion, porque si se usan los correspondientes a la cuantizacién candnica se obtiene
un Hamiltoniano con espectro no acotado por debajo. Una excepcion a este tratamiento
del caso fermiénico es WEINBERG (1996) en el capitulo 5, que no parte de un Lagrangiano
sino de particulas en una dada representacion del grupo de Lorentz, pero una vez obtenidos
los coeficientes que acompanan a los operadores de creacién y aniquilacion en el campo la
construccion es totalmente analoga: para que el propagador sea causal deben imponerse
reglas de anticommutacion si el spin de las particulas es semientero. Esta construccion es
suficiente para dar lugar a una teoria cuantica de campos totalmente satisfactoria, pero
se pierde toda la potencia analitica del formalismo canénico. Una situaciéon en que eso
es patente es el tratamiento de las restricciones, que es engorroso y muy cenido a los
casos particulares. Véase el tratamiento de las restricciones del campo RS en JOHNSON
Y SUDARSHAN (1961) y en HAGEN (1971). Hacia los anos 70, con la aparicion de las
teorias supersimétricas y las cuerdas, este inconveniente en el tratamiento de los campos
fermiodnicos se hizo evidente, y se desarrollaron formalismos canénicos “pseudoclasicos” en
los que solo se exige A — 0. Ese limite resulta ser uno en el que los campos bosénicos son
nimeros ordinarios, y los fermiénicos son variables anticommutativas (también llamadas
“de Grassman”. Més adelante (ver 5.8) damos un repaso de ese formalismo. En lo que sigue,
y hasta analizar las restricciones para el campo RS, nos mantendremos en el formalismo
con c-numeros.

3.2. Lagrangiano libre e invariancia de contacto

Como hemos visto en el capitulo anterior, la representacién de Wigner de spin 3/2 se
obtiene del vectorespinor imponiendo las condiciones:

7, U =0 (3.1)

puU* =0 (3.2)

y por lo tanto los estados en capa de masa deben cumplir ecuaciones de movimiento
equivalentes a las siguientes:

(p = m)w* — 0 (3.3)
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7, U =0 (3.4)

dado que 3.3 implica p?> = m?, y 3.3 més 3.4 implican 3.2, como mostramos a continuacion.
En primer lugar, usando el algebra de Clifford podemos establecer la siguiente identidad:

1 v
PV = Spu(r"” + )Y (3:5)

El primer término del miembro derecho se anula debido a 3.4, mientras que el segundo,
que puede escribirse %’y”p‘ll,,, puede transformarse usando p¥, = mV¥, (que se deduce de
la ecuacién de Dirac 3.3) en 57"V, el cual se anula, otra vez en virtud de 3.4.

Para escribir Lagrangianos que den lugar a esas ecuaciones de movimiento, lo que
haremos es ajustar los parametros que aparecen al escribir el Lagrangiano covariante de
primer orden mas general para vectorespinores:

L=0"((p—m)gu + ACupy + Wwbu) + B + mCyyy, ) ¥ (3.6)
que dan lugar a estas ecuaciones de movimiento:
((p = M) g + ACyupr + wpp) + Byuprs + mCyy,) ¥ =0 (3.7)

y su conjugada. Llamémosle A, al operador cinético, y contraigamos estas ecuaciones
con p* y v*. Obtenemos, respectivamente:

VALY = (4B — 1+ A)py, WH + (2 + 4A)p, ¥ + m(4C — 1)y, 0" = 0 (3.8)
PP = (1+ A)pp,¥" + (A + B)p? (v*V,) — mp, ¥ + mCpy" ¥, =0 (3.9)

SiA# —% el término p, ¥* puede ser eliminado entre 3.8 y 3.9, y los términos de segundo
orden podran ser eliminados (quedando la condicién ~,¥* = 0) si

3 1
B=_-A*+A+= 1

5 +A+ 5 (3.10)
C=34"+3A+1 (3.11)

Por lo tanto, hay infinitos Lagrangianos que dan lugar a las mismas ecuaciones de movi-
miento, parametrizados por A con la condicién de que A # —%. Esta libertad se relaciona
con una simetria de las ecuaciones de movimiento (pero no del Lagrangiano): las llamadas
“transformaciones de contacto” U* — (g + ay*~,) U”. Introduzcamos el operador (muy
util):

Rw/(a) = G + ayuYv (312)

en términos del cual la transformacion de contacto se escribe U# — R(a)* W”. R tiene las
siguientes propiedades:

R(a)R(b) = R(a+ b+ 4ab) (3.13)
R Ya) = R(—lf o) (3.14)
R(-{)R@) = R(-}) (315)

R(0) = 1 (3.16)
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De 3.15 se sigue que R(—i) es un proyector, y en particular que no es invertible. Es
importante notar que el niicleo del proyector es uno de los sectores de spin 1/2: 4/ U,,.
Por otra parte, de 3.14 se ve que R(a) es invertible para cualquier a # —i. Escribiendo
el Lagrangiano RS como

£ = U"R(a) 7 R(a) T A(A), R(a)s R ()}, 0"

y teniendo en cuenta que R(a) es invertible si a # —1, el espacio de los vectorespinores de
la forma R~V es la totalidad de los vectorespinores, y por lo tanto, si a # —i, el operador
RM(a)Ay-(A)R™ (a) también es un operador cinético vélido para RS, que correspondera
a algun valor A’. Veamos que podemos con razonamientos sencillos hallar A’ como funcién
de a (lo cual, obviamente, puede hacerse por célculo directo pero tedioso).

En primer lugar escribiremos A(A) a partir de aplicar matrices R sobre A(0), para
en el parrafo siguiente usar la propiedad 3.14 de composicién de matrices R para ver
cémo depende A’ de A y a en una transformacién de contacto genérica. Veamos que
A(A) es cuadrética en A. Existird un a tal que A(A) = R(a)A(0)R(a), y R(a)A(0)R(a) es
cuadrética en a, por lo que la relacion entre A y a es lineal. Como R(0) es la identidad,
R(0)A(0)R(0) = A(0), por lo que A = 0 si a = 0. El tnico valor no permitido para a
(—i) solo puede corresponder al tinico valor no permitido de A (—%), aunque esto puede
verse en forma més directa observando que A(—1/2) anula idénticamente los estados de
la forma v#4*W,. Por lo tanto, la relacién buscada es A = 2a:

=) o (3

Finalmente, veamos entonces que
A(A) = R(a)A(A)R(a) = R(a)R(A/2)A(0)R(A/2)R(a),

y como a su vez A(A") = R(A"/2)A(0)R(A’/2), comparando ambas expresiones vemos que
R(A'/2) = R(a)R(A/2). Usando 3.13 obtenemos

A= A(1+44a) +2a (3.17)

lo que demuestra que las transformaciones de contacto son el vinculo entre los diferentes
(pero equivalentes) Lagrangianos para el campo RS. En el paper original de RARITA Y
SCHWINGER (1941) el Lagrangiano corresponde a A = %, pero la mayoria de la literatura
emplea A = —1, por lo que expresaremos A(A) en términos de A(—1) (esto resultard muy
util para demostrar la independencia entre las amplitudes y A cuando se introduzcan
interacciones). Usando las propiedades multiplicativas de las matrices R obtenemos:

A(A) = R(— (A + D)AC-DR(~5(A +1)) (3.18)

1
2
El propagador del campo RS G(p, A)s, es la inversa del operador cinético:

Alp, A)SG(p, Ay = Gy (3.19)
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para cualquier valor de A. Usando las propiedades de las matrices R y la ecuacion (3.18)
puede escribirse convenientemente como

1 ® 1
Glp, A = [Rl (—2(1 4 A)> } G (p,—1) lRl (—2(1 4 A))
donde G(p,—1),, es el propagador bien conocido para A = —1:

p+m P32 _
P—m2 " " 3m

v

1 . (3.20)

B

Gp-1), = —[ 2 e m)(B),

1
V3m

donde se han introducido los proyectores Pk que proyectan sobre los sectores k = 3/2, 1/2
del espacio de representaciones, con 7,7 = 1,2 indicando los subsectores del subespacio
1/2. Los proyectores, de uso muy extendido en la literatura sobre campos RS, estan
definidos como (VAN NIEUWENHUIZEN 1981)

N 1 1
(P3/2>IW = Gw o Vv — 37132 []é7upu +p,u7u]’5] )

+ (P42 + Py*), 1 (3.21)

-3
H1/2 Pulv
(P22/ )HV = ;2 )
(P = P2 — (Pyf?)
. p,upa PpDbv
= (g = 25)1/392 ) g — 2255,
~1/2 1
(PIQ/ )HV - \/g 2(p,upl/ %’Yy,pz/%
AL/2 1
(Bo1 D = \/—TPQ(—pume Pou)- (3.22)

Como puede verse de (3.21), el sector de spin 1/2 no desarrolla polo y solo se manifiesta
en estados virtuales.

3.3. El problema de las interacciones

En principio es muy sencillo introducir interacciones para el campo RS, pero inme-
diatamente nos toparemos con dificultades formidables. Para hacer que las amplitudes de
interaccion no dependan de A basta con escribir un factor R acompanando cada aparicién
del campo RS en los términos de interacciéon, como veremos en la subseccién 3.3.1. La
interaccion electromagnética méas sencilla se introduce como de costumbre por sustitucién
minimal, dando lugar a una interaccién de la forma A*j, siendo la corriente j, un bilineal
en el campo RS. Facilmente se observa que la corriente j, se independiza de A al cance-
larse R y R™! en la corriente. Esta interaccién, en la que no profundizaremos hasta los
capitulos 7 y 8, fue la que llevo a los primeros inconvenientes severos en la cuantizacion del
campo RS (JOHNSON Y SUDARSHAN 1961). El tipo de interacciones que estudiaremos
aqui es el mas sencillo posible, lineal en el campo RS

Lint = V"R, S” + h.c. (3.23)
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donde S” es una funciéon de campos diferentes al RS. En particular, es de interés feno-
menolégico (ver capitulo 9) la interaccién con un pseudoescalar y un campo de Dirac,
el primero apareciendo siempre como una cuadriderivada. El término dominante a bajas
energias

_ 1
Lxpi = gU" (g,w n {2(1 +AZ)A + Z] my> V0,6 + hc. (3.24)

con Z = 1/2 fue el estudiado por NATH Y OTROS (1971): es la interaccion que hemos
llamado “convencional” en la introduccion y a la que se le encontré problemas andlogos
a los hallados para la interaccién electromagnética (HAGEN 1971). El siguiente orden en
derivadas,

Lp=g¥" (guU + Eﬂ +42)A + } mo> €M (0,1)(0,0) + hc. (3.25)

con z = —1/2 apareci6 mucho més recientemente. Es la propuesta por PASCALUTSA
(1998) y que ha alcanzado una gran popularidad por la creencia extendida , como hemos
contado en la introduccion, de que esta interaccién no presenta las inconsistencias de
Lner. Mucho del trabajo de esta tesis girard en torno a Lygx v Lp. En la subseccion
3.3.1 se muestran las consecuencias de la invariancia por transformaciones de contacto en
las interacciones del campo RS usando las propiedades de las matrices R. En la subseccion
3.3.2 se expone nuestro método para determinar el valor consistente de Z para no violar el
conteo de grados de libertad, mucho mas elemental que los que aparecen en la literatura.
En la subseccién 3.3.3 exponemos los problemas de no-covariancia y acausalidad que
afectan a nivel clasico los acoplamientos del campo RS, y finalmente en la seccion 3.4
expondremos nuestra hipétesis acerca del origen de estos inconvenientes, que retomaremos

en el capitulo 8 al intentar dar una resolucién a ellos que nos llevara mas alla del formalismo
RS.

3.3.1. Invariancia por transformaciones de contacto

Veamos primero que el propagador adoptara la forma

G = (B, (—5(a+ 1) G (R, (~5(4+1) (3.26)

por lo que, para obtener amplitudes independientes de A, serd suficiente con escribir
interacciones en las que las inserciones de campos RS estén acompanadas por un factor
R (—%(A + 1)) R(n), donde 7 es un “parametro off-shell” arbitrario (la denominacion “off-
shell” se debe a que es un acoplamiento al sector v, U*, que se anula en capa de masa).
Para compatibilizar con el uso estandar, escribimos n = —Z — % que, haciendo uso de la
propiedad 3.13, da lugar al factor bien conocido R((1 + 4Z)A + Z) (NATH Y OTROS
1971). El acoplamiento minimal al campo electromagnético obedece automaticamente
esta relacion con cualquier Z, mientras que para cada término no minimal (como los de
fotoproduccién) ciertos “Z” deben especificarse (como X e Y en los términos de fotopro-
duccién mostrados en BERMERROUCHE Y OTROS (1989)). El nombre Z suele reservarse
para el acoplamiento con un nucleén y un pién como en NATH Y OTROS (1971).



3.3. EL PROBLEMA DE LAS INTERACCIONES 29

Es importante destacar que, a diferencia de A, Z es fisicamente observable (las am-
plitudes dependen de Z). Desde el punto de vista de las invariancias, que es el tnico
relevante en teoria efectiva de campos, Z es un parametro libre, pero como se vera en la
seccién 3.3.2, no cualquier valor de Z da lugar a una interaccion consistente. Otra cosa
que deberiamos tener claro es que el valor de Z esta correlacionado con la convencién que
decidamos adoptar para escribir el vértice, es decir que antes de especificar el valor de Z
debe estar claro como vamos a escribir la interaccién.

3.3.2. Grados de libertad y parametros off-shell

En la literatura el parametro off shell suele fijarse por procedimientos sofisticados,
invocando principios de la teoria cuantica de campos. Aqui veremos que es muy sencillo
hacerlo a nivel clasico pidiendo que se preserve el nimero de grados de libertad de la
teoria libre. De todos modos no debe olvidarse que una condicién “de consistencia” no
necesariamente fija las interacciones a nivel fenomenoldgico, y que en BERMERROUCHE Y
OTROS (1989) se cita evidencia convincente de que los datos experimentales favorecerian
valores incompatibles con el de “consistencia’.

Noétese que en la ecuacién (3.24) la interaccion puede expresarse como Lyggp =
\TJMS" + h.c. y discutamos acerca de la estructura de S*. Obsérvese que en el Lagrangiano
RS libre, si A = —1 no hay término conteniendo ¥°. Por lo tanto, la ecuacién de mo-
vimiento para WY es una verdadera restriccién, y Y no es dindmica. Es necesario que
las interacciones no cambien eso, o no habra proyeccién de grados de libertad, y por lo
tanto ninguna esperanza de quitarse de encima los estados indeseados de norma negati-
va que ya estan presentes en la teoria libre. La contribucién de las interacciones a tales
ecuaciones de movimiento vendran de S°. La condicién de que no ocurra ningtin término
conteniendo U° es que S° no contenga derivadas temporales de ninguno de los campos en
interaccién con el campo RS, o de lo contrario si S°(y), la ecuaciéon de movimiento para

x serd (L =Lrs+ Ly + L, +\IJ“S +S W UH):

0L 0L _ 0L _d (DLs+Ly+Lr) _d (08'., 05,
ox dtoxy 0Oy dt X ox X
oL OLN + Ly 9S° -, 95 -,
= = (= =T g0 - 2 2
i) t<a>-< %) e

para algin campo x = ¢, ¢, dado que BERS = 0 para todos los campos. Se ve claramente

que si % 2 0, ocurrird una contrlbucmn proporcional a U, Esta condicién fija el para-
metro fuera de capa de masa para Lygx en Z = 1/2, compatible con el valor reportado
en la literatura, asi como para Lp en Z = —1/2, que corresponde con la interaccién con-
siderada en la literatura, aunque nunca se hable de un parametro fuera de capa de masa
pues el sector 1/2 supuestamente no juega rol alguno para esta interacciéon (en el capitulo
7 veremos que esto no es cierto). De hecho, para Lyprx (A = —1):

Lypx = ug(g" — (Z +1/2)y"v")(0.0) + 99(0.0) (9" — (Z + 1/2)7"7")¥,
y por lo tanto:

1 . 1 ‘
Skex = 9(5 — Z)¢np — 9(5 + 2"y Qi (3.28)
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lo que lleva a Z = %, y por lo tanto
SIOVE‘K = _971701?(8@) (3.29)
SNex = 9(0i8 )y (3.30)
Lp puede escribirse para A = —1 como
Lp = g™ [0 (gup — (1/24 Z)370)757(D,0) (91))]

+ (8,5&) (au(bT)”YS”Ya(gup —(1/2+ Z)’Y;pr)\Iju} ) (3.31)
por lo que debera tenerse Z = —% para evitar derivadas temporales de los campos aco-
plados a ¥y, asi que

L= g™ (0,757a(0,8) (950) + (0,0) (9563570, (3.32)
y tendremos

Sy = 9(0:) (k)™ 5 (3.33)

SE = 9(0u0)e " Y 157 (019) (3.34)

Como Z no es nulo, vemos que de hecho el vértice Lp da lugar a un acoplamiento
al sector de spin 1/2 (el que no anula v,¥*). Como veremos en el capitulo 7, cuando
este vértice opera en ambos extremos del propagador RS el sector 1/2 no contribuye a la
amplitud, pero esto es una propiedad de la amplitud elastica y no del vértice. Veremos
en ese capitulo que el acoplamiento al sector 1/2 se manifiesta en amplitudes radiativas
y también en correcciones radiativas a un loop (BADAGNANI Y OTROS 2015).

3.3.3. Condiciones subsidiarias (problematicas)

Para ver el origen de los problemas con las interacciones, estudiemos las ecuaciones de
movimiento cuando se aiiade un término de interaccion genérico

Lins = V'S, + S, U+ (3.35)

donde se incluye en S, el factor R (—%(A + 1)) R(n) que hace invariante ante transforma-
ciones de contacto la interaccion al nivel de las amplitudes. Si se trata de un acoplamiento
al campo electromagnético A, tendremos S, = A”% siendo j* la corriente electromag-
nética. S, podria ser funcién sélo de otros campos, como ocurre con las interacciones con
espinores y escalares propuestas en NATH Y OTROS (1971) y PAscAaLuTsa (1998). Las

ecuaciones de movimiento seran entonces:
AW,(A)\I/” +5,=0 (3.36)

y su conjugada. Cuando se contrae esas ecuaciones con y* y p* para calcular ~,¥*
y puP#, como se hizo mas arriba con el campo libre, surgen expresiones intrincadas.
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x
ﬁ:+%=.+é=+
x

Figura 3.1: En presencia de un gradiente escalar, el campo RS se mezcla con el campo de spin
1/2 del nucleén.

De 7, (A (A)WY 4+ S,) = 0 se despeja p,¥U* y se reemplaza en las dos ocurrencias en
Ou(A (A)TY +S,) =0, de lo que resulta:

2 1+2A 1
w_ _ = Y . _ "
Wl m21—4c( PO = Tga AP mmS) (3.37)

Dado que una condicién necesaria para obtener spin 3/2 “puro” es v, ¥* = 0, vemos que
surgen problemas severos de covariancia incluso a nivel clasico, atin cuando 3.37 garantice
un conteo apropiado del nimero de grados de libertad. Esta falta de covariancia (algo
intrigante dado que partimos de un Lagrangiano covariante) da lugar, como veremos a
continuacion, a situaciones catastroficas como la propagacion superluminica del campo
RS en presencia de campos de fondo.

3.3.4. Propagaciéon acausal

Describiremos aqui brevemente el resultado de VELO Y SWAZINGER (1969) para
facilitar la discusion. Por detalles puede consultarse 8.1.2 y la bibliografia original. El
acoplamiento minimal del campo RS al campo electromagnético da lugar a propagacion
de ciertos modos a velocidades mayores a la de la luz, y en general a no-covariancias
manifiestas en la deformacién de los conos de luz, cuando el campo se propaga sobre un
fondo de campo magnético no nulo. Algo analogo ocurre cuando se acopla el campo RS
del modo mas sencillo un campo de Dirac y un escalar, si hay un gradiente de ese escalar
de fondo SINGH (1973).

VELO Y SWANZIGER (1969) hablan de una “leccién a aprender”: no basta con partir
de una accién invariante de Lorentz para obtener una teoria invariante. HAGEN (1971)
alude a esta y otras dificultades como “el misterio del spin alto”. Uno diria, mas que una
leccién, que se trata de una anomalia seria. En palabras de WEINBERG (1996, p 292), “el
punto del formalismo Lagrangiano es que hace facil satisfacer la invariancia de Lorentz
y otras simetrias: una teoria clasica con una densidad Lagrangiana invariante de Lorentz
conducira, al cuantizarla canénicamente, a una teoria cuantica invariante de Lorentz”.
A nivel clasico, las invariancias implementadas en el Lagrangiano son las que permiten
establecer la conexién con magnitudes conservadas. En el caso del fenémeno de Velo y
Zwanziger hay campos magnéticos de fondo. En este caso, que la teoria sea invariante de
Lorentz debe entenderse como que la descripcion debe ser la misma en cualquier marco
inercial, para lo cual debe tenerse en cuenta la transformacién del campo magnético (esto
es analogo al caso de las llamadas “rupturas espontaneas” de simetria, en las que la teoria
es invariante teniendo en cuenta céomo transforma el vacio). Aqui la no-invariancia es
severa: si en algiin marco de referencia hay un campo magnético, por pequeno que sea,
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siempre habra otro marco en el que el campo magnético alcance la magnitud critica. En ese
marco habra propagacién superluminica, y no en el primero, pero una senal superluminica
lo es en todos los marcos.

Entonces, o bien cabe dudar de la capacidad del formalismo Lagrangiano para imple-
mentar simetrias, o bien debemos revisar si la invariancia de Lorentz esta correctamente
implementada en el caso del campo RS.

3.4. jPor qué son problematicas las interacciones de
los campos RS?

Retomemos el dilema planteado en el parrafo anterior. ;Estamos seguros de que la
invariancia de Lorentz estd implementada en la acciéon? Pareciese que si: escribimos el
Lagrangiano invariante de Lorentz més general posible de primer orden en W* y U#.
Pero vimos que la condicién de que esa accion de lugar a las ecuaciones de movimiento
(i@ — m)¥* = 0 y v,¥* = 0 deja libre el pardametro A con la condicién A # —%. Vimos
también que esa libertad esta ligada a una invariancia de las ecuaciones de movimiento
pero no de la accién: la invariancia de contacto. Entonces, como esta es la condicion para
obtener soluciones que transformen como objetos de spin 3/2, la invariancia de Lorentz
no esta plenamente implementada en el Lagrangiano. La invariancia de contacto es una
especie de residuo no implementado.

La condiciéon de que la accién sea invariante ante transformaciones de contacto es
A = —1. En este caso (que tratamos en detalle en el capitulo 8) las soluciones clasicas
incluyen spin 1/2 espurio. Veremos de hecho que aparece una restriccién de primera clase,
es decir una invariancia de medida. Veremos que en efecto en este caso la propagacion
es causal. Lamentablemente no es una solucién a los problemas del spin 3/2 porque a
nivel cuantico aparece un sector de estados de norma negativa, pero en principio eso
puede subsanarse de un modo similar a como se trata el caso de spin 1 en el formalismo
de Stiickelberg: agregando un campo adicional de spin 1/2 acoplado con sintonia fina al
campo RS. Este es nuestro candidato a solucién del “misterio de spin 3/2”. Hasta entonces
trabajaremos las propuestas que ya estan en circulaciéon mostrando que estos problemas
estan presentes en todas.



Capitulo 4

Alternativas al formalismo RS

El propodsito de este capitulo es doble: por un lado dar un pantallazo del desarrollo
histérico de las distintas propuestas para describir particulas de spin 3/2, sus motivacio-
nes y dificultades, lo que permite apreciar la naturaleza y dificultad del problema que
enfrentamos. A la luz de la historia, teniendo en cuenta las formidables dificultades del
formalismo RS y de la cantidad de propuestas alternativas, resulta sorprendente que el
formalismo RS haya mantenido una hegemonia de tantas décadas. Veremos que estos
“olvidos” han redundado en que propuestas similares sean redescubiertas cada quince o
veinte anos. También resulta llamativa la cantidad de soluciones que han aparecido al pro-
blema de Velo-Zwanziger, sabiéndose de algunas de ellas que dan lugar a cuantizaciones
inconsistentes, de lo que surge que pese a las conexiones entre ambos problemas, resolver
el primero no implica tener solucionado el segundo.

Para el desarrollo histérico nos limitaremos a resenar la bibliografia, sin hacer aportes
propios mas alla de la historizacién y organizacién del material. Por otro analizaremos
dos propuestas relativamente recientes, que si bien han tenido un impacto modesto son
propuestas atin en circulacion, relevantes para nuestro trabajo y que no han recibido un
cierre en la literatura. Una de ellas (la propuesta de Haberzettl) encuentra su continuidad
en esta tesis, pues el propagador que obtienen es en esencia idéntico al que obtenemos
aqui al cuantizar covariantemente la teoria invariante de contacto antes de agregar un
espinor de Stueckelberg (véase capitulo 8).

4.1. Fierz-Pauli (ainios 30)

El formalismo de Fierz-Pauli (F1ERZ Y PAULI 1939) es de hecho un poco anterior al
de RS. Se trata de la primer descripcién sistematica de particulas de spin arbitrario, pen-
sadas como generalizaciones de la ecuacién de Dirac (es decir, ecuaciones “de onda”, que
hoy llamariamos ecuaciones de movimiento de un campo clésico). Mientras estas ideas se
desarrollaban (a lo largo de los anos 30) recién se hallaba al neutrén y al muén, y la espe-
ranza seguia siendo poder construir una teoria unificada a partir de unas pocas particulas
elementales. Sin embargo, a pesar de lo rotundo de los primeros éxitos de la ecuacion de
Dirac, pronto surgieron dificultades aparentemente insalvables ligadas a los infinitos de
la teoria perturbativa aplicada a los procesos electrodinamicos. Esas dificultades recién
se subsanarian en la posguerra con el desarrollo de la teoria perturbativa covariante y la
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renormalizacion, pero en esa década se pensaba que se trataba de dificultades intrinsecas
de la electrodinamica y se buscaban teorias alternativas con la esperanza de que los infi-
nitos no se manifestaran en ellas. El desarrollo de teorias de spin superior se inscribe en
estos esfuerzos.

El formalismo de Fierz-Pauli aplicado a spin 3/2 puede pensarse como una manera
alternativa de escribir la ecuacién de Rarita-Schwinger. Consiste en describir el campo en
términos de tensores de espinores (en lugar de un vector de biespinores, como es el caso
en RS). Al igual que en el caso RS, hay una “ecuaciéon de Dirac” (que en este caso es
un sistema de dos ecuaciones) suplementada por “condiciones subsidiarias” que son las
equivalentes a 7, ¥* mas la condicién de simetria del tensor.

En este contexto se observé la primer dificultad desconcertante de las teorias de spin
superior: si se hace sustitucion minimal en las ecuaciones de Fierz-Pauli para introducir
las interacciones electromagnéticas se llega a inconsistencias algebraicas. Lo mismo ocurre,
de hecho, con las ecuaciones de movimiento del campo RS. La resolucién que encontraron
Fierz y Pauli fue desarrollar un Lagrangiano de manera que las ecuaciones de Fierz y Pauli
resultaran de un principio variacional. Al hacerse sustituciéon minimal en el Lagrangiano se
llega a ecuaciones de movimiento consistentes. Pero los Lagrangianos en este formalismo
son considerablemente complicados, por lo que finalmente se impuso el formalismo de RS,
que es fisicamente equivalente pero mucho mas facil de manipular en cédlculos.

4.2. Formalismo multispin de Bhabha y Harish-Chandra
(anos 40)

A lo largo de la década del 40 las investigaciones en fisica experimentaron cambios
profundos en sus practicas y organizacién, sobre todo debido a la guerra: el proyecto Man-
hattan transformo los principales laboratorios de gabinetes controlados por un profesor
titular a instalaciones de gran costo. La fisica de particulas se desplazo de la investigacion
de rayos cosmicos a la operacién de aceleradores cada vez mayores. Desde el fin de la
guerra, cuando se pudo quitar atenciéon del Uranio 235 y el Plutonio, la electrodinamica
experimenté avances fundamentales: se logré eliminar sistematicamente los infinitos de
la expansién perturbativa y se pudieron hacer predicciones espectaculares. Asi surgia lo
que hoy conocemos como Teoria Cudntica de Campos. Hasta que eso ocurriera (basica-
mente hacia 1947) se continuaron explorando alternativas al formalismo de Dirac con la
esperanza de que otras “ecuaciones de onda” no presentaran los infinitos de la electrodi-
namica de spin 1/2. Lo notable es que en cuanto desaparecié la motivacién inicial para
explorar teorias de spin superior, los nuevos aceleradores pronto proveerian una multitud
de particulas de spin solo acotado por las energias disponibles, por lo que el interés en
campos de spin superior no decayd entonces, y no lo haria hasta el advenimiento de la
cromodindmica a mediados de los 70.

Como los campos escalar y vectorial todavia cargaban con la fama de ser teorias pro-
blematicas, apareciendo la teoria de Dirac como prototipo de éxito, los espinores aparecian
como una gran promesa. Pronto se encontraron ecuaciones espinoriales para spin cero y
uno, hoy poco recordadas aunque en tiempos recientes ha renacido algtin interés en ellas:
el formalismo de Duffin-Kemmer-Petiau (NEDJADI Y BARRETT 1993, LUNADI Y OTROS
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2000, CORSON 1953). Las ecuaciones de Fierz-Pauli podian pensarse como generaliza-
ciones a spin arbitrario, pero debian suplementarse con condiciones subsidiarias que eran
percibidas como problematicas (eran el origen, por ejemplo, de que no se pudiera hacer
sustitucion minimal directamente en las ecuaciones de movimiento).

El problema que se propuso Bhabha fue generalizar la ecuacion de Dirac a spin ar-
bitrario, de modo que no se necesitasen condiciones subsidiarias. Para esto, escribi6 la
ecuacion de primer orden

(@¥pu + xB)p =0 (4.1)
donde v es una funcién multicomponente que transforma segtin alguna representacién (no
necesariamente irreducible) del grupo de Lorentz completo, por lo que a y § son matrices
sobre ese espacio. La generalizacion se lleva adelante suponiendo que las matrices « son
generalizaciones de las matrices de Dirac, en el sentido de que su commutador es propor-
cional al generador infinitesimal correspondiente del grupo de Lorentz en la representacion
bajo la que transforma 1. Este formalismo esta tratado con gran detalle en un libro de
texto de la época (CORSON 1953). Los trabajos originales (BHABHA 1945, 1949) han
sido revisados y puestos en términos mas modernos (KRAJCIK Y NIETO, 1977A) y se ha
hecho una revision histérica (KRAJCIK Y NIETO, 1977B). Lo que resulta de este proce-
dimiento son multipletes de diferentes masas y spins, pero en general estas teorias dan
lugar a espacios de Hilbert con métrica no definida positiva (lo cual es incompatible con
la cuantizacién) excepto para spins 1/2, 0 y 1 para los que el formalismo coincide con los
de Dirac y Duffin-Kemmer-Petiau respectivamente. Obsérvese que, por razones histoéricas,
incluso en la bibliografia de los anos 70 los autores se refieren a positividad de la “carga”
para referirse a la de la norma del espacio de estados.

Otra linea de trabajo fue la desarrollada por Harish-Chandra, también tratada en gran
detalle por CORSON (1953), en la que, en lugar de buscar que el algebra de las matrices
a de lugar a los generadores infinitesimales, se clasificaban las algebras irreducibles que
daban lugar a multipletes de masa tnica (aunque en general los spins continuaban siendo
multiples). HARISH-CHANDRA (1947) hallé las condiciones generales que debian cumplir
las matrices « (/3 debe ser proporcional a la identidad) para lograr masa tnica y espectro
definido positivo, en la forma de polinomios minimos:

(O‘upu)n - p2 (O‘upu)ni2 (4.2)

donde n es algiin nimero natural y p* es el cuadrimomento. Esta condicién es equivalente
a:

Yiperm (O‘maun - gmm) Qg 0y, = 0 (4.3)

Estas dlgebras (que en un sentido diferente, pero al igual que las de Bhabha, generalizan
las de Dirac y Duffin-Kemmer-Petiau) se vuelven prohibitivamente complejas a medida
que n aumenta. Esta es probablemente la tinica razén por la que esta linea de trabajo se
encuentra abandonada (aparte de que los pocos ejemplos que se han construido explicita-
mente presentan fallos severos al considerarse interacciones, como veremos mas adelante
al revisar la ecuacion de Glass). Se conjeturé que n debia ser como minimo 25 + 1, siendo
S el spin maximo en el multiplete, pero mas adelante se han encontrado contraejemplos
(GrAss 1971). Que a lo largo de tres décadas solo se haya avanzado a fuerza de conjeturas
y contraejemplos da cuenta del enorme nivel de complejidad de este enfoque.
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4.3. Formalismo de Bhabha-Gupta (anos 50)

En los anos cincuenta la profusion de nuevas particulas desmoroné la esperanza de
hacer una descripcién de la fisica bésica a partir de unas pocas particulas elementales (esa
perspectiva no reemergeria hasta la década de los ‘70 con el triunfo de la cromodindmica).
El interés en campos de spin superior se mantuvo firme. El modelo de “particula exitosa”
seguia siendo la ecuacién de Dirac.

Convencido el propio Bhabha de que su formalismo daba lugar a teorias imposibles de
cuantizar, se concentro en la tarea de clasificar las algebras que diesen lugar a espectros
definidos positivos.

4.3.1. Algebras sobre un campo vectorespinorial

El primer resultado en este sentido (BHABHA 1951) tuvo muy escasa repercusion. En-
tre las pocas citas se encuentran trabajos del propio Bhabha y un trabajo sobre autocitas
en ciencias. Sin embargo, es en este trabajo donde sienta las bases metodologicas para
desarrollar el formalismo hoy conocido como Bhabha-Gupta, pero sobre todo halla un al-
gebra muy sugerente con una especie de “invariancia de gauge” con la que nos toparemos
mas adelante.

El propésito del trabajo es clasificar todas las algebras de matrices a sobre la repre-
sentacion vectorespinorial (spin 3/2 mas spin 1/2) que de lugar a un espectro de norma
no negativa. Concluye que no existe ningin algebra razonable que describa particulas de
spin 3/2 dnicamente y masa nula, porque habria un grado de libertad de spin 1/2 asi
como un grupo de medida. Muestra también que el tinico campo con espectro definido
positivo corresponde a la particula de Fierz-Pauli-Dirac.

Finalmente sefiala un caso que merece mayor atencién (que nunca recibid): un doblete
dado por un campo de spin 3/2, masivo y espectro definido positivo y otro de spin 1/2,
masa y norma nulas. También ve indicios de algo andlogo a una invariancia de gauge.

4.3.2. Algebras sobre un vectorespinor mas un espinor de Dirac

Meses mas tarde, Bhabha construyé una familia de campos con espectro definido
positivo conteniendo una particula de spin 3/2 y otra de spin 1/2 y diferente masa,
contradiciendo la expectativa dominante entonces (BHABHA 1952). Poco después, GUPTA
(1954) reescribié esta familia de teorfas en términos de un campo de Rarita-Schwinger
acoplado a un espinor de Dirac, lo cual permitié hacer sencillos los calculos précticos (el
algebra de las matrices « es prohibitivamente complicada comparada con las matrices
usadas en el formalismo RS). Esta es la formulacién habitualmente empleada, por lo que
la llamamos “Bhabha-Gupta” para distinguirla de la formulada en la década anterior. Esa
distincion suele no hacerse, lo cual ha llevado a equivocos. Obsérvese que la serie de papers
revisados por KRAJCIK Y NIETO (1977A), asi como el recorrido histérico relevado por
los mismos autores (KRAJCIK Y NIETO 1977B) no abarcan este periodo.

Escribiremos la accion de Bhabha-Gupta incorporando la invariancia de contacto,
siguiendo la terminologia introducida en el capitulo anterior

Lo = V'A(m, A), W, —a(p—Am)p—d (VpR(A, Z)"™ W, + W, R(A, Z)"p,ib) (4.4)
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donde Z = 1/2, A\ y d son ntmeros reales arbitrarios. En principio a también lo es, pero
como su valor absoluto puede absorberse en un escaleo de v, consideraremos que puede
adoptar los valores 1 y —1. Este lagrangiano tiene propiedades muy interesantes, que se
estudiaron en décadas posteriores. Tiene un espectro definido positivo si y sélo si a = —1.
Por otra parte, si se introduce un acoplamiento electromagnético minimal, se observa que
puede hacerse que la propagacion sea causal (resolviendo el problema de Velo-Zwanziger)
siy solosia =1y d> = 2/3. Es imposible, en este formalismo, tener simultaneamen-
te propagacién causal y espectro definido positivo (PRABHAKARAN Y OTROS 1974).
Resultados analogos se han encontrado para acoplamientos a un campo escalar y uno
espinorial (PRABHAKARAN Y OTROS 1975) y al campo gravitatorio (PRABHAKARAN Y
OTROS 1977). Obsérvese que el primero es el tipo de acoplamientos que nos interesa para
modelar el acoplamiento de una resonancia A con un pién y un nucleén.

Sobre el punto de la causalidad versus la “cuantizabilidad” de la teoria de Bhabha-
Gupta ha habido cierta confusién en décadas posteriores. JOHNSON Y SUDARSHAN (1961)
tratan la cuantizacion del campo de Bhabha-Gupta acoplado minimalmente al campo elec-
tromagnético, encontrando el mismo tipo de inconvenientes que para el caso RS (existencia
de estados de norma negativa). Sin embargo, NAGPAL (1973) afirma que el campo de
Bhabha-Gupta se propaga causalmente y su cuantizacién da lugar a anticommutadores
idénticos a los de la teoria libre, puesto que segiuin ellos no hay restricciones secundarias, y
por lo tanto se puede cuantizar la teoria por el procedimiento de Takahashi y Umezawa.
Sin embargo, y que pese a que empieza hablando de la teoria de Bhabha-Gupta, sobre la
teoria que realmente termina trabajando es con la de Bhabha anterior, que ya se sabe que
es de espectro indefinido. Por lo tanto, ya los anticommutadores libres son inconsistentes.
La teoria de Bhabha-Gupta tiene, por lo tanto, problemas analogos a los de RS, pero
con el agregado atractivo de que se “desacoplan” el problema de la causalidad y el de la
cuantizacion.

4.4. Las ecuaciones de Glass, Hurley y Fisk-Tait (aiios
70)

Durante los anos '60, cuando la necesidad de construir teorias de spin arbitrario era
acuciante por la proliferacion de particulas hadrénicas en aceleradores, parecia claro que
construir una teoria cuantica consistente era una tarea poco menos que imposible. A los
problemas ya tratados de acausalidad y probabilidades negativas se agregaba el hecho
de que todas las teorias de spin superior parecian inevitablemente no-renormalizables. El
resultado de la propagacion acausal reportado al final de la década (y tratado ya en 3.3.4)
por VELO Y ZWANZIGER (1969) provocé un fuerte impacto. Resultaba sorprendente que
de un formalismo covariante surgiera ya a nivel clasico una violacion tan flagrante de la
covariancia.

A nivel del formalismo RS, pronto empezd a quedar claro que las dificultades ligadas
a la apariciéon de normas negativas en el nivel cuantico y la violacién de la invariancia
relativista a nivel clasico estaban intimamente conectadas. Una falla a un nivel tan basico
resultaba (y atn resulta) sorprendente, porque se partia de Lagrangianos explicitamente
covariantes. Se pensd entonces que un campo clasico que resultara en una propagacion
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covariante daria lugar a una cuantizacion consistente, y proliferaron propuestas de ecua-
ciones de movimiento alternativas. En un caso se tratdé de una continuacion del trabajo
de Harish-Chandra, mientras que en otros fueron “redescubrimientos” de los desarrollos
previos.

GLASS (1971) propuso unas ecuaciones de movimiento dentro del mismo "espacio'
que Bhabha-Gupta (5 cuadriespinores, o sea 20 componentes) pero de modo que el campo
libre describe solamente un campo de spin 3/2 puro. La intencién original era construir un
algebra en el formalismo de Harish-Chandra que describiera spin 3/2 pero cuyo polinomio
minimo fuera menor que 4, constituyéndose como contraejemplo a la conjetura de que
dicho polinomio era como minimo 2S + 1 siendo S el spin maximo del multiplete (la
ecuacion de Glass tiene polinomio minimo de orden 3). Por un tiempo se consideré este
formalismo como una alternativa promisoria, pero los inconvenientes con esta propuesta
resultaron atn més severos que con el campo RS (MATHEUS Y OTROS 1979), ya que
cuando se introducen interacciones electromagnéticas minimalmente los grados de libertad
propagados cuando los campos no son nulos es mayor que en el caso libre.

Un caso interesante es el de la llamada Ecuacion de HURLEY (1971), quien elaboré una
ecuacion de primer orden sin noticias de los trabajos de Bhabha y Harish-Chandra. En un
articulo posterior HURLEY (1972) habl6 de “redescubrimiento”. Hurley buscé ecuaciones
que describieran masa tnica, spin Unico y que fueran invariantes ante el grupo de Lorentz
restringido (esta limitacién de la paridad es lo que lo distingue de Harish-Chandra, y lo
que provoco las mayores dificultades a la teoria). Partia de generalizar las expresiones
galileanas para spin arbitrario a cualquier marco de Lorentz. Asi se hall6 una familia de
ecuaciones relativamente simples de spin arbitrario (dos para cada spin) y que se propagan
causalmente al acoplarlas minimalmente a un campo electromagnético. Pero apareciéo un
inconveniente: al pedir que la ecuacion fuese su propio conjugado, solo sobrevivieron las
ecuaciones para spin 1/2, 0, y 1, correspondientes como es de esperarse a los formalismos
de Dirac y de Duffin-Kemmer y Petiau (HURLEY Y SUDARSHAN 1994). Més atn, para
spin mayor no existia matriz n tal que nagy = 04877, lo cual hace imposible definir paridad y
construir Lagrangianos del modo usual (HURLEY 1972). Una primer solucién es duplicar
los grados de libertad y tomar las dos familias de soluciones, pero entonces la teoria da
lugar a particulas sin paridad definida y espectro no definido positivo (HURLEY 1972).
Pero lo més curioso de esta teorfa es que HURLEY (1972, 1974) provey6 una solucién
a todos esos problemas, que en apariencia nadie ha usado para construir acoplamientos
consistentes pero tampoco rebatido. Segun el autor, basta con construir una forma bilineal
distinta a la usual para definir un producto escalar definido positivo, lo que permite
definir paridad como un operador antilineal y lagrangiano libre, y todo de modo que
la teoria clasica se propague causalmente cuando se acopla minimalmente a un campo
electromagnético. El propio autor reconoce como una tarea pendiente la construccion de
interacciones a nivel cuantico. La existencia de esta teoria sugiere que, efectivamente, una
teoria de campos de spin 3/2 consistente puede construirse, y que la conexién entre los
problemas de causalidad y de cuantizacion son en realidad peculiaridades del formalismo
RS.

Dos anos después del primer paper de Hurley, FIsk Y TAIT (1973), aparentemente
sin conocerlo, propusieron otra funcién de onda para describir las particulas de spin 3/2,
reconociendo que no se trataba de una alternativa viable al formalismo RS (la densidad
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Lagrangiana no es hermitica, a menos que se consideren grados de libertad duplicados,
similarmente a lo que ocurria con la ecuacién de Hurley) pero que resultaba atractiva
porque, una vez mas, se trataba de un modelo que se propagaba causalmente. KHALIL Y
SEETHARAMAN (1978) demostraron que la ecuacién de Fisk y Tait es equivalente a la
duplicada de Hurley, con idénticas desventajas e inconvenientes.

4.5. Mas alla de la teoria de campos

A pesar de los éxitos rotundos de la teoria de campos, a lo largo de toda su historia
han cobrado fuerza propuestas de que la superacion de las dificultades que iban surgiendo
(muchas de las cuales terminaron resolviéndose en su seno) se resolverian yendo maés alla
de ella. Como ejemplos de estas posturas a lo largo del siglo XX puede verse, por ejemplo,
el prélogo y el capitulo 1 de WEINBERG (1996), el trabajo histérico sobre Schwinger de
MiLTON (1995) o el capitulo 1 de la introduccién a la Teorfa de Cuerdas por GREEN
Y OTROS (1987). También hoy existe una expectativa en muchos fisicos teéricos de que
las teorfas cudnticas de campo correspondan a aproximaciones de (relativamente) baja
energia de una teoria que abarque grados de libertad més fundamentales (WEINBERG
1996, p 499, tltimo parrafo).

Mas alla de estas especulaciones, lo cierto es que algunas de las teorias que trascienden
la de campos nos han provisto de modelizaciones de estados masivos de spin superior con
acoplamientos consistentes. En las teorias de cuerdas, por ejemplo, existe una torre sin
cota de spin. En estas teorias nada distingue particularmente los estados de spin menor
o igual a 1, excepto la existencia de algunas simetrias que les permiten, a veces, ser
no masivos. Esto apoya la idea de que deberian poder construirse teorias de campo de
spin superior, y que mas que un problema de principios se trata de un problema técnico
complejo.

Algunos autores han buscado construir explicitamente tales teorias a partir de lo que
se sabe de la teoria de cuerdas. Por ejemplo, para campos cargados de spin 2 existe
una acciéon que da lugar a propagacion causal proponiendo un acoplamiento no minimal,
construida como una teorfa efectiva a partir del espectro de la cuerda bosénica (NAPPI Y
WITTEN (1989)). En cuanto a spin 3/2, PORRATTI Y RAHMAN (2009) usaron esta misma
estrategia, hallando un acoplamiento no minimal que al menos en campos magnéticos
constantes se propaga causalmente.

4.6. Las propuestas de Kirchbach, Napsuciale y Ah-
luwalia

Una serie de articulos relativamente recientes refleja una serie de esfuerzos por resolver
el problema de los acoplamientos de spin 3/2 mediante alternativas al formalismo RS. En
una primera lectura es dificil descubrir que se trata de dos propuestas bastante diferentes.
El punto de partida es un supuesto error en la construccién de las representaciones de
spin 3/2 que ocurre al malinterpretar el espiritu de las representaciones inducidas.

En la primer serie de papers (KIRCHBACH Y AHLUWALIA 2001, 2002; AHLUWALIA
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Y KIRCHBACH 2001) se argumenta que el problema de VELO Y SWANZIGER (1969)
ocurre ya a nivel cldsico porque las condiciones subsidiarias p,U* = 0 y «,¥* = 0 no se-
rian covariantes, cosa que demuestran imponiéndolas como identidades sobre el espacio de
soluciones a (37) —m)W¥H =0, de lo que resultan “relaciones de dispersién anémalas”. Esta
argumentacion es incorrecta precisamente porque se trata de condiciones, no de identida-
des. Precisamente las componentes que dan lugar a las relaciones que violan causalidad
son las que resultan eliminadas por las condiciones subsidiarias. La propuesta es por lo
tanto no imponer las condiciones y dar lugar a una teoria multispin. Por supuesto, como
ya hemos visto a propédsito del formalismo de Bhabha, aparece entonces un problema con
el signo de las normas de los estados al cuantizar la teoria.

La segunda serie de papers (NAPSUCIALE Y KIRCHBACH 2003, NAPSUCIALE Y
OTROS 2006) plantea corregir los problemas en la construccion de las representaciones
recurriendo al método de Wigner para, partiendo de los estados de spin 3/2 en el sistema
en reposo y mediante boosts, construir todos los estados en funcién del cuadrimomento. Al
hacerlo llega a una ecuacion de segundo orden, reminiscente a la de particulas vectoriales.
Cuando uno resuelve esas ecuaciones para p'= 0 lo que uno encuentra es una duplicaciéon
de grados de libertad respecto del formalismo RS: las correspondientes a (p —m)¥H* =0
y a (p+m)¥* = 0. Si se quiere mantener ambas soluciones en una teorfa causal con ener-
gla positiva, estas dos soluciones deberan corresponder a estados con paridades diferentes
(WEINBERG 1996, seccién 5.5). La teorfa propuesta corresponde a la suma directa de
dos RS con paridades opuestas, dando lugar a problemas andlogos a los de la teoria de
Fisk-Tait o la de Hurley con duplicacion de grados de libertad. En particular se trata de
un formalismo inadecuado para describir hadrones, porque la interaccion fuerte conserva
paridad.

4.7. Interacciones “dinamicas”

Hay una propuesta bastante reciente (SAAR Y OTROS, 2011A, 2011B) que se basa
fuertemente en la construccion de Wigner para construir interacciones electromagnéti-
cas consistentes a nivel clasico. La idea de la propuesta es poner en términos modernos
la vieja propuesta de Weyl de geometrizar la simetria de gauge, poniéndola en pie de
igualdad con la invariancia de Poincare. Para eso propone generadores de rotaciones y
boosts dependientes del campo electromagnético (clasico), que cumplan con el dlgebra de
Lorentz-Poincare y que sean invariantes de gauge. Para campo nulo esos generadores se
reducen a los habituales, y se recupera el caso RS libre.

La propuesta es innovadora y osada. Al igual que la propuesta de Hurley para solucio-
nar los problemas de su ecuacion sin duplicaciéon de grados de libertad, es dificil decidir
si se trata de una solucién al problema de fondo. Hay dos dificultades evidentes si lo que
deseamos es emplear el formalismo en fisica hadronica. El primero es que este formalismo
tan elegante no es transportable a otras interacciones como el acoplamiento a un escalar
y un espinor, al no contar con una simetria como la de gauge. La otra, tal vez mas seria
y reconocida por los propios autores, es que se trata de un formalismo sin correlato con
una cuantizacion en el sentido usual. Uno se pregunta si se necesita tanta sofisticacion
para resolver el problema, teniendo en cuenta alternativas mucho mas simples como la de
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Porratti y Rahman (2009), y que la causalidad se logra en otros modelos alternativos a
RS de un modo incluso mas simple.

4.8. La propuesta de Haberzettl

Queremos rescatar una propuesta que ha tenido escasa repercusion. HABERZETTL
(1998) propuso trabajar en el formalismo RS, pero en el limite A = —%. El tratamiento
es estrictamente clasico. Como resultado se llega a unas conclusiones bastante inusuales:
aparte de describir una particula de spin 3/2 y masa m, este campo describe una particula
de spin 1/2 y masa 2m. Veremos mas adelante que esta descripcién es en esencia correcta,
pero el modelo tiene severos problemas al cuantizarlo, como es habitual en los casos
multispin.

Uno puede esgrimir varias razones para explorar esta posibilidad. HABERZETTL (1998)
explicita dos: por un lado, el proyector que elimina el spin 1/2 involucrado en las trans-
formaciones de contacto es local (no tiene inversas en espacio de cuadrimomentos). Por
otro, para ese valor de A no hay libertad “off-shell”: si expresamos R como RM
g +n(A, z)y"~¥, donde z es el pardmetro “off-shell” con contenido fisico, para A =
1 se independiza de z. Esto se ilustra en la figura 4.1, cuya inspeccion hace sospechar
que algo interesante y por fuera del formalismo RS ocurre para el valor singular de A.
Adelantando el contenido del capitulo 8 diremos que otra excelente razén para considerar
A= —% es que entonces la invariancia de contacto resulta implementada al nivel de la
accién, lo cual (dado que la invariancia de contacto es fundamental en RS para obtener la
representacion de spin 3/2, y por lo tanto deberia considerarse parte de la implementacién
de la covariancia) permite garantizar interacciones que respeten la simetria de Lorentz.
De hecho, veremos que este campo se propaga causalmente en presencia de campos de
fondo.

_1
2

Senalemos dos inexactitudes del articulo de HABERZETL (1998). No es cierto que,
como afirma el autor, uno pueda decidir que el sector (%, 0) @ (0, %) sea eliminado o bien
por la condicién «,¥#* = 0 o bien por p,V* = 0. La primer condicién es la que elimina
(3,0)® (0, 3), mientras que la segunda elimina el spin 1/2 (en el sentido de Wigner) en la
representacion (3,1)@ (1, 3). El otro error es que en el caso A = —1 la condicién p, U* = 0
se pueda derivar de 7, ¥* = 0 como en el caso A # —%. Por el contrario, mostraremos
en el capitulo 8 que la presencia de spin 1/2 con masa 2m puede verse ya al nivel de las
ecuaciones de movimiento. Por otro lado, el propagador que reporta HABERZETTL (1998)

es correcto; en el capitulo 8 lo reobtendremos a partir de una cuantizacién covariante.

El inconveniente de esta teoria, como mostraremos en el capitulo 8, es que aparecen
estados de norma negativa en la cuantizacion, esencialmente debido a los estados de spin
1/2 que HABERZETTL (1998) propone tratar como fisicos. La situacién es analoga a lo
que ocurre en el formalismo de Stueckelberg antes de acoplar el escalar auxiliar. Lo que
analizaremos en el capitulo 8 es la posibilidad de resolver el problema de un modo similar,
acoplando un espinor de manera adecuada. Eso resultara equivalente a considerar el caso
A #£ —% para el formalismo de Bhabha-Gupta.
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Figura 4.1: Clases de equivalencia de parametros off-shell para RS.

4.9. En sintesis

Hemos visto en este capitulo que existe un gran nimero de alternativas para describir
spin superior, y en particular spin 3/2. Se han explorado algunas posibilidades, pero exis-
ten en principio infinitas, y la bisqueda “por fuerza bruta” al estilo de Harish-Chandra
de teorias consistentes parece destinado al fracaso. Mas atin, transcurridos més de sesenta
anos no existe un catalogo completo de algebras sino una colecciéon de conjeturas, condi-
ciones suficientes y contraejemplos. En un articulo tan tardio como el de Cox (1976) se
afirma, tras obtener propiedades de las algebras o que garantizan propagacién causal, que
es dificil saber si una representacion no trivial de esas algebras para spin superior existe
0 no.

Por lo pronto se ve que, asi como en el formalismo RS parece que los problemas de
causalidad, positividad y modos de frecuencia compleja estan intimamente ligados por
ocurrir todos para el mismo umbral de campo magnético y como consecuencia de las res-
tricciones, en teorias alternativas esa correlacion se rompe. Por ejemplo, en el formalismo
multispin de Bhabha las teorias siempre se propagan causalmente y siempre tienen pro-
blemas de positividad, para la teoria de Bhabha-Gupta existe todo un rango de valores
para los parametros en que la teoria es definida positiva y ciertos valores para los que
la teoria se propaga causalmente, pero en la zona donde estos dan lugar a indefinicion
del signo de la norma, mientras que en la teoria de Huxley hay tanto propagacion causal
como positividad de norma, pero aparecen otros problemas (o se duplican los grados de
libertad dando lugar a una teoria sin paridad definida o se modifica el producto escalar
de un modo en que no es clara la teorfa cudntica con interacciones). Con estos ejem-
plos a la mano y la “confesiéon” de Cox citada arriba es facil conjeturar que el hallazgo
de una teoria consistente es cuestion de tiempo, paciencia, suerte o el hallazgo de algtiin
principio complementario que guie la biisqueda, pero no una imposibilidad intrinseca del
tratamiento de campos de spin superior en el contexto de las teorias cuanticas de campo.

El “misterio del spin alto” acaso resida en lo abruptamente que escala la dificultad de
tratamiento a medida que aumenta el spin, comenzando por una teoria escalar aburrida
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de tan trivial, pasando primero por un formalismo de spin 1/2 que es algebraicamente
interesante y luego por el spin 1, que ya requiere tratamientos sofisticados para sacarse
de encima los “fantasmas”, como la invariancia BRST o el acoplamiento a un escalar
planteado por Stiickelberg, para desembocar finalmente en la aguja en un pajar que es la
busqueda de teorias consistentes para spins a partir de 3/2.
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Capitulo 5

Teorias Cuanticas de Campos con
restricciones

Virtualmente todas las teorias de campos con interés fenomenolégico presentan grados
de libertad superfluos debido a la necesidad técnica de implementar las diversas simetrias
de los sistemas. Esto obliga a formular la teoria con restricciones. Aqui nos referimos a lo
que en la literatura en inglés aparece como “constraints”, término que con frecuencia es
traducido como “vinculos”, sobre todo en textos de mecanica, dado que alli las restriccio-
nes en los grados de libertad se debe principalmente a vinculos mecéanicos entre particulas.
En teoria de campos no hay “vinculos”, las restricciones aparecen debido a la necesidad
de eliminar la redundancia de variables introducida por la formulacién Lagrangiana, ne-
cesaria para implementar las simetrias, y quedarnos con los grados de libertad realmente
dindmicos que necesitamos en la formulaciéon Hamiltoniana.

Las teorias de campos de spin alto presentan aspectos problematicos aun a nivel cla-
sico: acoplados con campos electromagnéticos presentan, tipicamente, espectros no fisicos
y soluciones acausales. El origen de esos problemas ha sido historicamente identificado
con la existencia de restricciones. En este capitulo expondremos los rudimentos de los
formalismos necesarios para dar tratamiento a las restricciones que ocurren en los campos
relativistas de spin 3/2.

5.1. Restricciones

La forma tipica de imponer una restriccion es requerir que N funciones €2; de los cam-
pos y sus momentos canénicos conjugados se anulen. En el caso de una teoria de campos
especificada mediante una densidad Lagrangiana, un subconjunto de tales funciones se
obtiene directamente de las ecuaciones de movimiento como un subconjunto de ellas en
las que no aparezcan derivadas temporales. Estas son las llamadas “restricciones prima-
rias”. Las demas restricciones (llamadas “secundarias”) se obtienen de la condicién de que
cada restriccion obtenida se preserve en el tiempo. Una vez obtenida la coleccién completa
de restricciones, su origen como “primaria” o “secundaria” es irrelevante. En cambio, si
es crucial la clasificacién de las restricciones en “primera clase” o “segunda clase” (como
veremos a continuacién), que determina si los grados de libertad superfluos se expresan



CAPITULO 5. TEORIAS CUANTICAS DE CAMPOS CON
46 RESTRICCIONES

univocamente en funcion de los grados de libertad independientes o si, por el contrario,
hay un grado de arbitrariedad en los primeros. Esto tltimo es tipico en las invariancias de
medida, que al igual que en el caso de spin 1, ocurre cuando la masa del campo es nula.
Veremos mas adelante que este tipo de restricciones aparece también cuando A = —%.
Para la teoria RS masiva las restricciones son de segunda clase.

Se dice que una coleccién de restricciones €2y, ... .2y es de segunda clase si la matriz
dada por los corchetes de Poisson entre todas las restricciones, M;; = {€;,Q;}p |00,
es invertible. Para entender por qué este caso es especial, consideremos el Hamiltoniano
“total” Hr = Hy + \;§);, donde Hy es el Hamiltoniano canénico obtenido a partir del
Lagrangiano y A; son multiplicadores de Lagrange. La condicion de que las restricciones
se preserven en el tiempo serd entonces:

Por lo tanto, si la matriz M;; es invertible, la condicién de que los constraints se preserven
en el tiempo determinan completamente los A;. Por lo tanto, las ecuaciones de movimiento
de todos los campos (fisicos y superfluos) que respetan las restricciones (que se obtienen
usando el Lagrangiano “total”) resultan univocas.

Cuando la matriz M;; es singular, se dice que el sistema contiene restricciones de
primera clase. Mediante una transformacion lineal puede separarse un conjunto méaximo
de restricciones €2y, £25; con corchetes nulos, de modo que 2,41, 2y son de segunda clase.
El tratamiento de las restricciones de primera clase implica “fijar la medida”, es decir,
eliminar la ambigiiedad en los grados de libertad redundantes, tipicamente agregando un
término de “fijacion de medida” en el Lagrangiano que haga que todas las restricciones
sean de segunda clase sin afectar el sector fisico.

5.2. Origen de las restricciones: Lagrange vs Hamil-
ton

Uno podria preguntarse cual es la necesidad de lidiar con las restricciones. jPor qué
no partir directamente de un Hamiltoniano en términos de los grados de libertad fisicos
unicamente? Después de todo, esta es la manera de garantizar que la teoria cuantica co-
rrespondiente es unitaria (nunca apareceran los estados de norma negativa que plagan las
teorias de spin superior y otras). La respuesta es que, asi como el formalismo Hamilto-
niano es nuestra unica garantia de que la teoria que obtendremos es unitaria, el formalismo
Lagrangiano es la tnica forma que conocemos de implementar consistentemente las sime-
trias. Entre ellas, la covariancia. Por ejemplo, en el capitulo 5 de WEINBERG (1996) se
muestra que para campos de spin mayor o igual a 1 los Hamiltonianos de interacciéon no
pueden ser invariantes porque la parte off-shell de los propagadores de esos campos no es
covariante fuera de capa de masa, y en el capitulo 7 de la misma obra esto es citado como
motivacion para partir del formalismo Lagrangiano.

Notemos de nuevo que, como senalamos en el capitulo 3, la teoria RS no implementa
la invariancia de Lorentz al nivel de la accién. Sin embargo esto no parece haber sido
notado con anterioridad. Aun mas, veremos que al intentar resolver esta cuestion nos
enfrentaremos con maés restricciones (de primera clase en este caso), de modo que si
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queremos formular teorias de spin superior que sean covariantes no podemos rehuir el
tratamiento matemaético de las restricciones.

5.3. Restricciones y cuantizacion

Si se parte de un Lagrangiano, entonces se especifica una teoria clasica (o pseudoclasica
en el caso fermidnico, como veremos). Se necesita entonces una regla para obtener a
partir de esta una teoria cudntica. En el formalismo candnico esto se hace asignando al
(anti)commutador entre dos operadores el corchete de Poisson entre las correspondientes
variables (pseudo)cldsicas multiplicado por ih.

Pero, como sefialara DIRAC (1964), las restricciones suelen ser incompatibles con el
algebra de Poisson de la teoria clasica. Por lo tanto, un esquema de cuantizacién razona-
ble requiere redefinir los corchetes clasicos antes de aplicar la receta antedicha. El propio
DIRAC (1964) ofrece un algoritmo para hacerlo, que expondremos brevemente més ade-
lante. Se han propuesto otros esquemas equivalentes, notablemente el simpléctico, que
también repasaremos por su particular simplicidad para el caso fermiénico.

Repasando la literatura sobre spin alto, resulta llamativo que se hable de cuantizacién
de una determinada interaccién, porque habitualmente se cuantiza la teoria libre (hallan-
do, por ejemplo, el propagador) y luego cada interaccién representa procesos de creaciéon
y aniquilaciéon de los estados libres. Es una particularidad del spin superior que en pre-
sencia de campos de fondo (valores de expectacién no nulos), situacién que no admite
una perturbacion alrededor del vacio, los corchetes de Dirac dependen de la interaccion.
Esto esta en la raiz de los problemas para hallar teorias interactuantes consistentes, como
notaron por primera vez JOHNSON Y SUDARSHAN (1961) y confirmaron luego numerosas
investigaciones, que resenaremos en el proximo capitulo.

5.4. Corchetes de Poisson

Todo tratamiento de restricciones parte de una teoria canoénica clasica. Esto es, a partir
de un Lagrangiano £ en funcién de coordenadas ¢; y sus derivadas temporales, se definen
los momentos candénicos conjugados como:

O
y entonces obtener el Hamiltoniano
N .
H = ZW@Z —L (5.3)
i=1

entendido este como una funcién de ¢; y m;. Para esto, debe ser posible poner los ¢;
en términos de m; y ¢;, en cuyo caso diremos que el Lagrangiano es “regular”. Si fuese
irregular, entonces estamos ante la presencia de restricciones.



CAPITULO 5. TEORIAS CUANTICAS DE CAMPOS CON
48 RESTRICCIONES

Sea el Lagrangiano regular o irregular, siempre puede definirse un “corchete de Pois-
son” (DIRAC 1964) de esta manera:

A 0B B 0A
0A 0 88) (5.4)

N
{A’B}P - Z <8¢z’ om; a 0¢; Om;

=1

Obsérvese que este corchete obedece un algebra idéntica a la de los commutadores de ope-
radores: es antisimétrica y cumple con la identidad de Jacobi. También es una derivacion:
{A,BC}p ={A,B}pC + B{A,C}p. Por eso tiene pleno sentido la regla de cuantizaciéon
(si es que el Lagrangiano es regular)

Los corchetes de Poisson siempre tienen la propiedad:
{00, }p = dij (5.6)

lo que suele usarse como definicién alternativa del corchete, en lugar de 5.4. También
permiten expresar las ecuaciones de movimiento en forma algebraica:

A={A H}p (5.7)

(para esto, basta con expresar A = >N, (37’:@ + %ﬁﬁi) y usar las ecuaciones canoénicas
de movimiento).

Pero si el Lagrangiano es irregular 5.7 es incompatible con las restricciones, como
puede verse con un ejemplo: supongamos que una restricciéon es p = 0. Eso es incom-
patible con {p,q} = 1. Se necesita entonces redefinir el corchete canénico de modo de
hacerlo compatible con las restricciones. Supongamos que {, }, es tal corchete; la regla de
cuantizacion sera entonces

[A, B] = ih{A, B}, (5.8)

5.5. Restricciones de primera clase: fijaciéon de la me-
dida

Como hemos visto, si las restricciones €2; son de primera clase, los multiplicadores de
Lagrange con que estas restricciones entran en el Hamiltoniano no pueden fijarse. Por
lo tanto nada se pierde fijandolas en cero. De hecho, las restricciones de primera clase
generan simetrias del Hamiltoniano, porque por ser restriccion tiene corchete cero con el
Hamiltoniano (luego de impuestas las restricciones) y porque, al commutar entre si las
Q;, si A satisface las restricciones entonces A + d A, con

=1

también las satisface. En particular, los campos ¢ tendréan una “libertad” d¢ = 3=, {%, ¢}.
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En principio, el tratamiento de las restricciones de primera clase es muy sencillo. Basta
con elegir una “medida” (es decir, poner sobre los grados de libertad una condicién que
elimine toda arbitrariedad en los grados de libertad) y cuantizar canénicamente usando los
grados de libertad sobrevivientes. Esto es lo que se hace, por ejemplo, en la cuantizacion
“de Coulomb” del campo electromagnético: se fija la condicion VA = 0, y entonces los
grados de libertad son los campos eléctrico y magnético. El problema con este tipo de
aproximacién es que con frecuencia se pierde la invariancia manifiesta de Lorentz (la
condicién VA = 0 es invariante ante rotaciones espaciales, pero no ante boosts).

Existe un modo elemental (aunque algo trabajoso) de cuantizar una teoria con inva-
riancias de primera clase de modo que sea manifiestamente covariante, conocida como
formalismo de Gupta-Bleuler (ITZYKSON Y ZUBER 1980, pagina 127). Este es el proce-
dimiento que usaremos en esta tesis cuando enfrentemos invariancias de primera clase en
el capitulo 8. El método consiste en agregar al Lagrangiano un “término de fijacién de
medida” que sea covariante pero no invariante de medida, de modo que la restriccion deja
de existir (o sea, el o los grados de libertad redundantes pasan a ser grados de libertad
fisicos). Tipicamente, la teoria asi obtenida es inconsistente por la aparicién de estados
de norma negativa. La teoria original se obtiene imponiendo la condiciéon de medida sobre
los estados. En el caso electromagnético, una medida covariante es por ejemplo 9, A" = 0.
El término de fijacién de medida es £(9,4")% si € # 0 la teorfa no tiene restricciones y
todos los A" son dindmicos. Finalmente, los estados fisicos |fis) son los que cumplen la
condicion (fis|0,A"|fis) = 0, que es la implementacién al nivel del espacio de estados de
la condicién de medida 9,A* = 0.

5.6. Restricciones de segunda clase

Una vez tratadas las restricciones de primera clase, de haberlas, debe darse tratamiento
a las restricciones de segunda clase, que son en principio mas complejas. La forma mas
directa de atacar estas restricciones es hallar explicitamente la dependencia funcional de
los grados de libertad dependientes en términos de variables candnicas independientes.
En este caso lo que se hace es hacer una cuantizacién candnica sobre estas. Pero, al
igual que lo que ocurre con las restricciones de primera clase, esto puede conducir a
una ruptura de la covariancia manifiesta. O, simplemente, puede ser prohibitivamente
complejo algebraicamente. O ambas. Los métodos que describimos a continuaciéon tratan
la dependencia en forma implicita, introduciendo las restricciones como multiplicadores
de Lagrange.

5.6.1. Algoritmo de Dirac

DIRAC (1964) establecié un algoritmo que permite hallar un corchete { , }. consisten-
te con las restricciones de segunda clase de modo sistematico. Puede aplicarse a cualquier
subconjunto de restricciones (se obtendra entonces un corchete “intermedio” que podréa
usarse como corchete base con otro conjunto de restricciones), lo cual a veces simplifica
notoriamente los calculos. Asi se ha hecho historicamente para el campo RS. El precio
que se paga por tener un método de aplicaciéon universal es que con frecuencia no es el
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mas eficaz, y lleva a sistemas algebraicos artificialmente complejos.
En primer término deben organizarse los corchetes de las restricciones en forma de
matriz, como se hizo en la seccion 5.1

y se halla la matriz inversa M1, en el sentido de que (M_l)ik;Mkj = 0;;. La matriz M
siempre tiene inversa si el sistema de restricciones es de segunda clase, como se demuestra
en DIRAC (1964). Entonces podemos definir

{A, B}, ={A,B}p — > {A Q}p(M~");;{Q, B}p (5.11)

1]

que se reduce a { , }p si todas las §2; tienen corchete nulo con A o con B. Obsérvese que
{2, 9Q,}, = 0, de modo que respecto del nuevo corchete las restricciones son de primera
clase, y para implementarlas basta con restringir los grados de libertad a la subvariedad

El corchete { , }. tiene las mismas propiedades que el de Poisson que lo hacen compa-
tible con los anticommutadores cuanticos: es antisimétrico, es una derivacion y satisface
la identidad de Jacobi. Para comprender por qué este corchete (mds alld de las motiva-
ciones heuristicas que da DIRAC 1964) funciona como una restriccién del corchete de
Poisson a los grados de libertad independientes, observemos que existe un teorema (véase
WEINBERG 1996, seccién 7.6) que establece que existe una transformacién canénica que

conduce a las variables @1, .. , Qs, ¢s+1, -- qn, P1, .. , Ps, ps+1, .- , py tales que las
restricciones se reducen a ¢; = p; = 0, y entonces se verifica que
{P,Qj}tp =0 (5.12)

y todos los corchetes restantes nulos.

5.7. Formalismo simpléctico

Como mencionamos, el algoritmo de Dirac conduce a una gran cantidad de cédlculos
que no siempre son necesarios. Un método particularmente econémico puede aplicarse
cuando el Lagrangiano es lineal en las derivadas de las coordenadas respecto del tiempo,
y es el llamado “formalismo simpléctico”. Nos concentraremos en el modo de tratar las
restricciones, sin profundizar en las interpretaciones formales que este enfoque permite. El
lector interesado puede consultar, por ejemplo, FADDEEV Y JACKIW (1988), BARCELOS-
NETO Y WOTZASEK 1992. Todos los sistemas Lagrangianos admiten una reformulacion
en la que el Lagrangiano es lineal en las derivadas temporales de las coordenadas, pero en
el caso de los campos espinoriales ni siquiera se necesita una reformulacion (el Lagrangiano
RS es lineal en todas las derivadas), de modo que este enfoque resulta particularmente
apropiado a nuestros fines.

Un ejemplo de por qué los Lagrangianos lineales pueden llevar a restricciones redun-
dantes es el Lagrangiano de Dirac: en principio el momento canénico conjugado de v es
nulo, por lo que deberia introducirse un corchete de Dirac. El procedimiento habitual es
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identificar 1) como el momento canénico conjugado de 1, de modo que en algin sentido
este no es realmente una restriccion. Parece razonable entonces imaginar que se puede
desarrollar un formalismo para las restricciones en que esta aparente restriccién no lo sea
en absoluto.

Ciertamente, los casos que nos ocuparan en esta tesis, por ser fermionicos, no son
sistemas canoénicos clasicos, de modo que la aplicacién de este formalismo no resulta tan
directa como puede aparentar. Esto es cierto también respecto del algoritmo de Dirac.
Diferimos para el final de este capitulo el tratamiento del caso fermiénico, y continuaremos
aqui tratando con sistemas de c-ntimeros.

5.7.1. Lagrangiano en espacio de fases

Para comprender como un sistema Lagrangiano puede aparentar tener mas restriccio-
nes que las que realmente tiene, consideremos el siguiente Lagrangiano:

1 k

L = q2q1 — %(QQV — 5((11)2 (5.13)

Veremos que este Lagrangiano corresponde a un oscilador arménico. Si pensamos en
q1 Y g2 como dos coordenadas, llegaremos enseguida a dos restricciones primarias:

M = - (5.14)
QD = py (5.15)
pero si en vez de trabajar en términos de restricciones decidimos hacer directamente la

identificacion ¢; = ¢, g2 = p (es decir, pensamos que se trata de coordenadas en el espacio
de fases) vemos de inmediato que 5.13 es simplemente

L(p,q) = pg — H(p,q) (5.16)
donde
1 k
H =—p'+—¢* 1
(pq) = 50"+ 54 (5.17)

es el Hamiltoniano del oscilador armoénico. De hecho, las ecuaciones Lagrangianas de
movimiento resultan ser las ecuaciones canénicas.
Supongamos entonces que tenemos un Lagrangiano de la forma

n

L(qi, oy @) = > fil@r, o an)di — H(q1,s ., qn) (5.18)

i=1

Podriamos atacar este Lagrangiano con el método de Dirac, lo que nos llevara a plan-
tear una enorme cantidad de restricciones, muchas de las cuales probablemente sean irre-
levantes. Parece razonable preguntarse qué ocurre si pensamos en las ¢; como coordenadas
generalizadas en espacio de fases. Pero ponerse a “adivinar” artesanalmente como es ese
espacio puede resultar sumamente tedioso. Nosotros hemos escrito 5.13 de modo que la
identificacién sea inmediata, pero hay una infinidad de Lagrangianos lineales en ¢; y ¢o
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equivalentes a 5.13. Se impone un modo sistematico de estudiar sistemas Lagrangianos en
espacios de fase.

Veamos la condicién para que las ecuaciones Lagrangianas de movimiento sean con-
sistentes. Diferimos para la préxima subseccién la constatacion de que estas ecuaciones
corresponden a ecuaciones canénicas, interpretando H(qi, ..., q,) como el Hamiltoniano
del sistema (aunque en la bibliografia especifica se le llama “potencial simpléctico”). Re-
cordemos las ecuaciones de movimiento en el formalismo de Lagrange:

oL  d oL

_ = — 5.19
dg¢;  dt 0g; (5.19)
y apliquémosla al Lagrangiano genérico 5.18.
oL Of . 0OH
Ly (5.20)
9q; k dq; 9q;
d OL d ofi .
el =—f = 5.21
dt 94; ik Zk: E (5.21)
por lo que las ecuaciones de movimiento resultan:
0 af; 0OH
Z(fk— f)q’k— =0 (5.22)
~\0¢;i  Oqx Iq;
Definamos la llamada “forma simpléctica” w
0 af;
_ Ok _9f (5.23)

Wik =
dq; gy,

cuya significacion respecto al formalismo canénico se explorara en la subseccién siguiente.
Su nombre se debe a la caracterizacion del espacio dado por las coordenadas ¢y, .. , g, como
un espacio de fases, que desde la perspectiva matematica es una variedad simpléctica. La
ecuacion de movimiento queda entonces:

OH
E:(,.'._ - .24

por lo que la condicién para tener un sistema con solucién univoca es que w sea inverti-
ble. En la subseccién que sigue veremos que en ese caso estas ecuaciones son, en efecto,
canoénicas. Este es el caso regular, en el que consideraremos que no hay restricciones en
absoluto. El caso singular lo dejamos para la subseccién 5.7.3.

5.7.2. Corchetes y cuantizacion

Veremos a continuaciéon que w tiene basicamente informacién sobre los corchetes de
la teoria. Existe un camino muy elegante de hacerlo usando el lenguaje de las formas
diferenciales en variedades, pero eso nos obligaria a introducir una gran cantidad de
herramientas abstractas que no se usaran en esta tesis. Preferimos nuestro propio camino,
decididamente menos elegante pero muy sencillo y echando mano al algoritmo de Dirac.
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Olvidemos por un segundo que pretendemos interpretar g, .. , g, como variables de un
espacio de fases, y pensémoslas como un espacio de configuraciones altamente restringido.
Obtendremos de inmediato las variables candnicas conjugadas p; = f;, y por lo tanto el
conjunto de restricciones €2; = p; — f;. El algebra de restricciones serd entonces

{9, = {pi— fi,p; — filpr (5.25)
= —{pi, f;} +1{pj, fitp
o of
B dq; Jq;
— wij

Los corchetes en nuestro espacio simpléctico, que notaremos simplemente como { , },
estardn dados entonces (de acuerdo con el algoritmo de Dirac) como

{A,B} = _%{Aaﬂk}P(w_l)kk’{Qk’;B}P (5.26)
7814 0B

= > (W)

k& an

k!
Ogr
En particular:

{gi g5} = (W )y (5.27)
reafirmando la necesidad de que w sea invertible. En lo que sigue podemos olvidar cémo
llegamos a nuestro corchete y consideraremos 5.27 como la definiciéon del corchete en este
formalismo.

Veamos ahora por qué podemos considerar nuestro espacio como un espacio de fases.
El corchete de H con una coordenada sera

ﬁqi 1 OH
L HY = w ' 5.28
{q } ]%; 8qk( )kk 3qk ( )

OH

-1
= Wik o
> (Wi oL

k,/

que de acuerdo con las ecuaciones de movimiento 5.24 se puede reescribir como

{ai, H} = g; (5.29)
Esto puede generalizarse a cualquier funcion:

dA 0A
— = —q 5.30
dt ; Dy (5.30)

0A . OH

= e w / 5.31
i (7 ) an)

= {AH}

de modo que H realmente funciona como en el generador de traslaciones en el tiempo. La
interpretacion del espacio como de fase es coherente.

Légicamente entonces, si estamos ante una forma simpléctica w no singular, la cuan-
tizacion puede hacerse como de costumbre

[A, B] = i{A, B} (5.32)
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5.7.3. Restricciones en el formalismo simpléctico.

Si w es singular existen restricciones genuinas, como veremos a continuacion. Entonces,
de acuerdo con 5.27, no se pueden definir corchetes. Lo que se hara sera introducir defor-
maciones en w (ampliando en el proceso el espacio de fases) de modo que el w deformado
sea invertible. Obsérvese que no hay unos corchetes fundamentales que se deformen, como
era el caso con el algoritmo de Dirac.

Si w no es invertible, entonces existen vy, .. , v, (siendo n el nimero de variables) tales
que v;w;; = 0. Entonces, contrayendo con los v; en ambos miembros de las ecuaciones de
movimiento obtendremos

Q = vwyd (5.33)
OH

= ’Uii

dq;

Consideraremos que ) = v; gf_ estd implementado en el sentido fuerte en H, pero

modificaremos la parte cinética f;¢; de modo de lograr que €2 no cambie en el tiempo.
Incorporaremos tantos {2 como sea la dimensién del nicleo de w. Observemos que

. 012
O=—4q 34

podemos incorporar el término anQ al Lagrangiano, ahora entendido como funcion de
41, -- » Qny1. Podriamos haber incorporado ¢,1§) ya que es equivalente a anQ por in-
tegracion por partes. En cualquier caso, el término contribuye a la parte cinética pues
todos sus términos son lineales en la derivada temporal de una coordenada. Con el nuevo
Lagrangiano obtendremos una forma w, deformada, que incluye contribuciones del Ha-
miltoniano (o sea, que cuando obtengamos un w, invertible podremos definir el corchete,
el cual dependera de la dinamica y en particular de las interacciones.

Puede ocurrir que existan v; tales que U,‘% se anule idénticamente. Entonces no hay
condicién que agregar, el caracter singular de w es irresoluble, y las ecuaciones de movi-
miento dejan un margen de arbitrariedad. Se trata entonces de una restriccién de primera
clase, que puede tratarse eligiendo una medida o introduciendo un término de fijado de
medida en H, como ya hemos expuesto en la seccion 5.5. También puede ocurrir que w, sea
singular incluso luego de fijada la medida (si es que hiciera falta), en cuyo caso se debera
iterar el procedimiento hasta que w, sea invertible o hasta que todas las restricciones sean
de primera clase. Una vez que esto ha ocurrido, puede definirse el corchete en el espacio

de fases ampliado.

5.8. Restricciones para campos fermioénicos

Todo lo discutido hasta aqui se ha dado en términos de variables clasicas commutativas.
La regla de cuantizacién [A, B] = ih{A, B}p solo tiene sentido para variables bosénicas,
que obviamente no es el caso para el campo RS. La cuantizacién de campos fermionicos,
inicialmente, se ha hecho por fuera del formalismo canénico por esta misma razén. En
los textos tradicionales de teoria cudntica de campos (ver por ejemplo ITZYKNSON Y
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ZUBER 1980, pagina 143) se afirma que los campos fermiénicos no tienen limite clasico
(como vimos brevemente en 3.1): se parte de un Lagrangiano c-numérico que permite
hallar una expansién en modos normales, y luego se muestra que la cuantizacién candnica
da lugar a una teoria inconsistente. Finalmente se muestra que imponiendo reglas de
anticommutacion esos problemas se solucionan. Esta implicito en el procedimiento que
basta con la teoria libre para cuantizar.

Este camino no es posible en presencia de restricciones no triviales como la que ocurre
en el formalismo RS. La cuantizacién de la teoria libre puede hacerse con las técnicas
estandar de segunda cuantizacién incorporando proyectores adecuados, pero como las in-
teracciones modifican los proyectores esto es de poco interés para las teorias realmente
interesantes. Por otro lado, el tratamiento de las restricciones como hemos venido traba-
jandolo requiere de una teoria clasica canodnica a ser cuantizada con una regla al estilo de
[A, B] = ih{A, B}p. Como durante los '70 empezaron a surgir campos fermiénicos con
restricciones de interés para los tedricos, como los companeros supersimétricos de boso-
nes de medida o sectores fermionicos en cuerdas, aparecié la necesidad de construir el
limite pseudoclésico (candnico) de las teorias con variables fermiénicas. Ese limite resultd
ser el de variables anticommutativas o de Grassman. La via para mostrarlo ha sido par-
tir de un Lagrangiano dependiente tanto de c-niimeros como de variables de Grassman,
construir la teoria candnica de tal sistema, y cuantizarlo siguiendo la regla de igualar los
(anti)commutadores al correspondiente corchete clasico por ¢h. Se muestra que la teoria
resultante es bosoénica para los grados de libertad procedentes de c-niimeros, y fermiénica
para los procedentes de variables de Grassman, de lo que se deduce que el limite A — 0
es la teoria pseudoclasica de partida (CASALBUONI 1976).

Resenaremos aqui lo imprescindible para seguir los calculos expuestos en esta tesis.
Para empezar, las variables de Grassman anticommutan (6105 = —6056;). Definimos una
derivada respecto de las variables de Grassman en forma algebraica (no tiene sentido
entender tales derivadas como limites de cocientes incrementales como sus contrapartes
c-numéricas) como un operador lineal que da 1 si acttia sobre la variable y 0 sobre una
funcion independiente de la variable. La derivada asi definida resulta también ser una
variable de Grassman. Definamos el operador (i)d como la derivada por derecha respecto

001
de 91:

0, <aa€1>d =1 (5.35)

. ) 2\ _ 9\ _
Para ver que la derivada anticommuta, veamos que 66, (a—el)d = —0y0, (3791>d = —0,,
por lo que la derivada respecto de #; anticommuta respecto de 5. Necesitamos esta
derivada para definir el momento canénico conjugado de una variable de Grassman. Asi,
entenderemos que

6, 06; ),

Uy

(5.36)

Si expresamos L de modo que 6#; quede siempre a la derecha los calculos de momentos
candnicos conjugados seran idénticos a los correspondientes a c-ntimeros. Obsérvese que
si hubiéramos definido la derivada de Grassman por izquierda eso invertiria los signos de
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los momentos canénicos conjugados, por lo que el signo de L que lleva a teorias cuanticas
definidas positivas depende de una serie de convenciones.

Con estas definiciones basta para obtener las ecuaciones de movimiento. Para el caso
del formalismo de Dirac debemos definir los corchetes fundamentales de Poisson de modo
que A = {A, H} p para cualquier funcién A, hallaindose para A y B variables de Grassman
(CASALBUONI 1976)

{Av B}P = Z

k

(2100 210y o

N + -
0q, Opx; Opr, Oqy;

con el corchete habitual si A, B o ambos fuesen c-ntimeros. Para el caso simpléctico (que
en el caso fermiénico no resulta simpléctico en absoluto) se define una forma w (GOVAERTS
1990)

g i (5.38)

Wi 4
! qi QJ

en caso de que f; sean funciones de Grassman. Obsérvese que en ambos casos los corchetes
que se obtienen son simétricos, lo que es compatible con una regla de cuantizacién para
fermiones.



Capitulo 6

Analisis de restricciones del campo
RS con interacciones

En este capitulo se trata la inconsistencia de las interacciones de los campos RS con
campos de Dirac y pseudoescalares, que en general resultan en la aparicién de estados
de norma negativa en presencia de campos de fondo. Este resultado ya era conocido
para la interaccién minimal con campos electromagnéticos (JOHNSON Y SUDARSHAN
1961) y para el acoplamiento mas sencillo con un campo de Dirac y un pseudoescalar
(HAGEN 1971). Aplicando el formalismo de restricciones de Dirac reproduciremos esos
resultados y los extenderemos al caso de la interaccién al siguiente orden propuesta por
PAscALUTSA (1998), mostrando que como cabe esperar de consideraciones generales,
es tan inconsistente como la interaccién a primer orden. Estos resultados, junto con los
expuestos en el capitulo siguiente, demuestran que no hay ninguna razén para preferir esta
interaccién a la usual, derivativa solo en el campo escalar, sino més bien al revés. Por lo
tanto, no hay fundamento para hablar de interacciones consistentes versus inconsistentes
como suele ocurrir en la literatura.

6.1. ;Es consistente la interacciéon “consistente”?

Como se senald en el capitulo introductorio, se ha popularizado la visién de que una
interaccion particular entre un campo RS, un campo de Dirac y un pseudoescalar es “con-
sistente”: una inspirada en ciertos argumentos de supergavedad (el gravitino es descripto
por un campo de spin 3/2 no masivo), derivativa también en el campo RS ademds del
campo pidnico, es decir de segundo orden derivativo, propuesta en PASCALUTSA (1998).
En el capitulo préximo discutiremos la trama de malentendidos en torno de esta cuestion.
En este capitulo nos concentraremos en la demostracion concreta de que esta interaccion
estd afectada por las mismas inconsistencias que las bien conocidas desde JOHNSON Y SU-
DARSHAN (1961) y HAGEN (1971). En esta primera seccién revisaremos los argumentos
que se han dado en favor de tal inconsistencia y mostraremos sus fallas. En la seccién
siguiente aplicaremos el formalismo de Dirac para resolver las restricciones de la teoria y
analizaremos la signatura del espacio de Fock resultante de la cuantizaciéon en presencia
de fondos cléasicos del campo pseudoescalar, de donde resultara la inconsistencia.
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La interaccién en cuestion ha sido planteada inspirandose en la invariancia de medida
Ut — UH + 9y (siendo x un espinor arbitrario) del campo RS en el limite de masa
cero, y por lo tanto es derivativa en el campo RS. Pero por una simple integraciéon por
partes la interaccion se puede escribir lineal en el campo RS y por lo tanto tiene la forma
general planteada por NATH Y OTROS (1971): se trata simplemente de un término de
orden superior. Mas aun, siendo la restriccion lineal en el campo RS, cae dentro de las
consideraciones generales analizadas en AURILIA Y OTROS (1980), por lo que deberia
tener los mismos problemas de signatura.

La otra fuente de sospecha acerca de la consistencia de la interaccion es que se usa
pesadamente la invariancia de medida que, como se dijo, solo es valida en el limite de
masa cero. Si bien es cierto que se puede definir una invariancia de medida analoga para
el caso masivo mediante una légica andloga a la del campo de Stueckelberg (RUEGG
Y Ruiz-ArLTABA 2004), hay diferencias cruciales que invalidan la estrategia seguida en
PascALUTSA (1998). Por empezar, el campo de Stueckelberg no es de ningin modo un
“parametro” como se dice en esa publicacion, sino un campo dinamico. Y la traslacién
al caso de spin 3/2 no es en modo alguno obvia ni automadtica: varias aproximaciones
se han intentado, cada una con sus propias dificultades (MOHAN 1968, WATANABE Y
OTROS 1967). Pero sobre todo el campo de spin 1/2 que actiia como pardmetro en la
transformacién (cuyo cuadrigradiente se suma al campo RS) ya no puede ser arbitrario
sino que debe obedecer una ecuacién de movimiento no trivial. Esto hace que el paso
crucial entre las expresiones (45) y (46) en PASCALUTSA (1998), que consiste en integrar
funcionalmente sobre el campo de Stueckelberg, sea incorrecto. Se invoca la invariancia
de Gauge para absorber el campo de Stueckelberg en una transformacién de medida, lo
cual no siempre es posible porque estas transformaciones ya no son arbitrarias.

Puede verse que seria extremadamente paradojal que este paso se pudiera dar. Una
vez introducido el campo de Stueckelberg &, PASCALUTSA (1998) plantea una integral
funcional de la forma

Z = / D%qu;wpww)pgpyeif Lst

donde, si bien en esa referencia no se aclara, Lgr debe incluir un término cinético para &.
Pero si no hubiera introducido ese campo y hubiera procedido igual que para la interaccion
convencional, hubiera obtenido una expresién aniloga a la ecuacion (30) de esa referencia:

2= [ DU, DU DYDY Do det ({x(2), x(y) oz — y)) ! [ 55

donde y es la restriccién no trivial. Se ve entonces, comparando ambas formas de Z, que
el campo £ resulta de exponenciar el determinante de las restricciones, analogamente al
mecanismo de Faddeev y Popov. Si el campo £ se integrara correctamente, deberia reob-
tenerse el determinante en la medida, lo que es lo mismo que reobtener las restricciones.
Pero si € se desacoplara como se pretende en PASCALUTSA (1998) obtendriamos una
teoria sin restricciones incluso en el caso libre, lo que contradice el propio desarrollo
previo en esa misma referencia. Se sabe desde hace décadas que esas restricciones son fun-
damentales para obtener una métrica definida positiva en el espacio de Fock de la teoria
libre.
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Si desedramos cuantizar el campo de RS con integrales de camino como lo propone
PAascALUTSA (1998) se deberia hacer como en el caso de Faddeev y Popov: se deberian
obtener reglas de Feynman también para los campos de Stueckelberg, y la invariancia
de medida se deberia imponer directamente sobre el espacio de Fock. Y el resultado
deberia ser el mismo que si decidiéramos hacer una cuantizacién mas ortodoxa, como la
cuantizacion canonica luego de aplicar el formalismo de Dirac para las restricciones. Nada
garantiza que un método resulte mas sencillo que otro. Cualquiera que sea el camino que
elijamos, es deseable que podamos tratar en pie de igualdad la interaccion “consistente”
y la convencional, para poder hacer comparaciones significativas.

6.2. Cuantizacién de Dirac del campo RS

Vamos a emplear el algoritmo de Dirac adaptado al caso fermiénico. Para evitar la
complejidad de invertir un sistema que involucra muchas restricciones triviales se seguira
el método empleado en BAAKLINI Y TUITE (1978) para el caso libre y en HASUMI Y
OTROS (1979) para el acoplamiento EM: se definirdn corchetes intermedios mediante el
algoritmo de Dirac aplicado solo a las restricciones triviales, y luego se emplearan esos
corchetes en vez de los de Poisson ante los constraints relevantes.

En primer término expondremos la estructura canoénica de las teorias correspondientes
a los acoplamientos Lygx v Lp. Luego emplearemos el algoritmo de Dirac al caso Lygk,
reproduciendo los resultados de HAGEN (1971) (que se obtuvieron por el Principio de
Accién). Finalmente aplicaremos el algoritmo de Dirac al caso Lp, que es el resultado
central de esta tesis.

6.2.1. Lagrangianos, momentos y corchetes de Poisson

Recordemos que el Lagrangiano general para el acoplamiento del campo RS con espi-
nores y pseudoescalares puede escribirse como:

L = Lrs+Ly+Ly+ Ly (6.1)
donde L; es o bien Lygx 0 Lp,

Lrs = VALY, Ly=00d—my)p, Ly=1/28,00"¢ —m39), (6.2)

AMV = _(15 - m)guu - ZA(a,U’YV + auf}/ﬂ) - ZB(A)/yﬂa/yV - mC(A)’Y“/yV’ <63)

siendo A # —3, B(A) = 34+ A+ 1, C(A) = 342+ 3A+ 1. La estructura de restricciones
se simplifica enormemente si A = —1: en este caso Agg = 0, por lo que Lrg se hace
independiente de U° . La condicién de que la interaccién no reintroduce una dindmica
para W0 restringe los posibles valores para Z: % en Lygpk ¥ —% para Lp (ver subseccién
3.3.2). Tendremos entonces (teniendo en cuenta la relacién e#* sy, = i/2{—ic"*,7"})



CAPITULO 6. ANALISIS DE RESTRICCIONES DEL CAMPO RS CON

60 INTERACCIONES
A = —e“”)‘p'ygy,\@p +imo™”
Lp = —gU,[A"(m =0)Y]0,6 + h.c.,
ENEK = g@,ﬂ'a‘“’?ﬂ@,,(b + h.c. (64)
A continuaciéon hallamos los momentos canénicos conjugados Ily p+ = % como en el
capitulo anterior y, usando que €*@*y5y;, = €ijkY5Yk = 0ijYo Obtenemos
Iy, = 0, H\pg =0 (6.5)
My, = —Vlop, M ;=0 (6.6)
0 0
I, = Iy = 6.7
v i) + (qu,j(ajcﬁ) ) ;o My (qu,;[(anb) ) (6.7)
M, = —qUl 4 ) + ¢, 6.8
¢ g <_0ij(ajw) ¢ (6.8)

donde las expresiones superiores dentro de los paréntesis corresponden a la interaccion
Ly ek, mientras que los inferiores corresponden al caso Lp.

Cuando un grado de libertad f es tal que f no puede ponerse en términos de f y II f
aparecen restricciones. Por lo tanto

xo(x) = Iy, (x) =0, xpi(x)= H‘l,g(x) =0, (6.9)
xi(z) = Iy, + \I/LO'M =0, x;il(z)= H\Dj =0, (6.10)
_ : 0 _
Xy = Iy —iph— <gH\1;j (0;0) ) =0 (6.11)
0
X,w = H,w — (gH\I,;”(a]QS) ) = 0 (612)

son restricciones primarias. Para el campo RS ¥ en la ec. (6.10) se puede eliminar en
forma directa W' en términos de II, andlogamente a como ocurre con el campo de Dirac,
y usando la identidad oy (%’ykfyj) = 0, obtenemos

i
Ul =~ Ty, 7% (6.13)
Usando entonces la definicion de los corchetes de Poisson del capitulo anterior tendremos
nuestro primer nivel de corchetes intermedios (los deméas son todos nulos)

{U(2), Uhy)} = ;ijé(‘?”(x—y)
{Wo(2), My, ()} = 6¥(x —y)
{6(2),s(x)}; = ¥z —y), (6.14)

donde Vg, Ily, no resultan afectados por las restricciones eliminadas ara el campo
05 0 )
pseudoescalar los corchetes intermedios coinciden con los fundamentales, ya que no hay
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restricciones en ese campo. Notese que esta algebra pudo haberse obtenido a través del
algoritmo de Dirac, como se hace en HASUMI Y OTROS (1979) y PASCALUTSA (1998).

Como puede verse en la ec (6.11) para la interacciéon Lygk, puede obtenerse ¢ = —ill,,
en analogia con (6.13) y, usando los corchetes de Poisson, tendremos
@), ')l = 6% (@ —y), (6.15)

pero este procedimiento no puede usarse para Lp, porque esta interaccién conecta 1,11,
y Iy (o ¥'). Introduzcamos entonces los corchetes de segundo nivel eliminando los mo-
mentos conjugados del campo espinorial usando el formalismo de Dirac. Los resultados
obtenidos en el limite g = 0 corresponderan al caso Lygg, dado que en ese limite obtene-
mos las restricciones correspondientes en las expresiones (6.11) y (6.12). Para hallar los
corchetes de segundo nivel necesitamos

{(xo(@). XL = =i (x —y),  {xe(@), xL@) =6 (@ —y) (6.16)

y los corchetes de Dirac para los campos escalar, espinorial y RS seran

(@, Wl = (5 - 9200 @50() ) 89 —y)
{Ui(2), o' W)} = —ig(0ip(y))6P(x — y)
(@), W) = ig(0:9(2))8(x —y)
{W@), ¢ )}t = —id® (@ —y)
{Uo(2), Muy()}ir = 0¥ (a )
{6(2), W)}y = 6@z —vy), (6.17)
para la interaccién Lp, y si se hiciera ¢ = 0 se obtendrian los corchetes correspon-

dientes al caso Lygg. Las restricciones restantes yo, xot no pueden ser eliminadas de
este modo. Imponemos entonces la condiciéon de que se conserven en el tiempo, o sea
Oo(x) = {p(x), H};r = 0, obteniéndose restricciones secundarias no triviales. La densi-
dad Hamiltoniana serd entonces

H(z) = I0,(2)0"(x) + My(2)d(x) + My(x)(x) + hc. — L(x)
= Va0, + 0! < 1907010 ) + h.c. — imU;0,50;

—9€ijiV5(059) (Or )
+ WV v+ Pmy +1/2V ¢ - Vo + 1/2mi ¢
— g7 0;¢

y por lo tanto

90 = {H\I/m H}II = (ajquaji + m\I/j’}/l) * ( _g(gﬁﬂ%(a’i)aﬂ )

_ _ —g7iY0;
001” - {H\I/:g’ H}H - (Ujiaj - m%‘)\lli + ( _gaji<ajw>(ai¢) > . (619>
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Obsérvese que 0y v Oy son los coeficientes en (6.18) de Wy y Wyt respectivamente,
por lo tanto estos tltimos son de hecho multiplicadores de Lagrange. Obsérvese también
que {Io, 0o} rr = {Hot, 00} = {Ho, 01 } 11 = {Upt, 00t }r1 = 0 pero para m # 0 (como
mostraremos) {6y, Oy } 17 # 0. Imponiendo {6y, H};; = 0y {0y, H};r = 0 para preservar
B, Oyt en el tiempo, obtenemos restricciones terciarias proporcionales a Wq y ‘IJ(T) resultando
en corchetes nonulosconIly =0y HB = (. Sin embargo el nico efecto de esas restricciones
terciarias es fijar Wy y \I/;r] en términos de los grados de libertad dinamicos. Entonces, el
algebra de corchetes de Dirac relevante se reduce a 6y y 6y:. En consequencia, el tinico
corchete no trivial a ser considerado en el algoritmo de Dirac es {0(z)o, 0yt (v)} 11, que
puede obtenerse de la ecuacion (6.19) y es diferente para Lypr v Lp.

6.2.2. El caso Lygx

A continuacion desarrollaremos la cuantizacion de Dirac para el acoplamiento conven-
cional y reproduciremos los problemas bien conocidos de la signatura del espacio de Fock
reportados en HAGEN (1971). Para el caso Lygk los corchetes intermedios de segundo
nivel se obtienen de (6.17) haciendo g = 0 y son

?

Vi), Vi) = 5970% (@ —y)
{Uo(), My ()}ir = 0¥ (z—vy)
(@), (W) = —id®(z —y)
{¢(2), L) }ir = 6¥(z—y), (6.20)

de los que podemos obtener, usando ec (6.19)

(0o )b = 50 =) (2 = 22 w0, (621

Obsérvese que la cantidad entre paréntesis del miembro derecho, que se reporta en HA-
GEN (1971) y PAscALUTSA (1998), puede anularse a nivel clasico para ciertos valores del
gradiente del campo pseudoescalar. En la ecuacién (30) de PASCALUTSA (1998) aparece
en la integral de camino donde se pretende cuantizar la teoria. En ese punto, simplemente
se menciona que suele ocurrir algin tipo de no-covariancia de la medida que puede can-
celarse mediante un término fuera de capa de masa en el Hamiltoniano, y se pregunta
(y no responde) si esa cancelacién se producird o no en este caso. Por cierto, la formu-
la tiene numerosos errores. La tnica condicién que pone para cuantizar la teoria es que
R(z) = 3/2i(m®—2 g*(Vo(x))?) # 0, para evitar una “violacion en el conteo de grados de
libertad”. No parece ser consciente de que la verdadera amenaza es la aparicion de estados
de norma negativa. PASCALUTSA (1998) no cuantiza la teorfa. Pese a la sofisticacion de
recursos desplegada el célculo va mucho menos lejos que el efectuado por HAGEN (1971).
De hecho, las integrales de camino planteadas, més alla de su elegancia, no conducen a
ningin resultado en absoluto. Para reproducir aqui los problemas de signatura reportados
por HAGEN (1971) analizaremos el anticommutador més sencillo, el correspondiente al
campo de Dirac, y lo evaluaremos entre estados que tengan un fondo clasico del campo
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pseudoescalar. Los corchetes de Dirac entre los campos @ que son modificados por las
restricciones secundarias son, usando las ecuaciones (6.19) y (6.20),

{v(@), 0" W)}p = (W), ¢} — (6.22)
/d3z &2 {p(),0(2) i1 ({00(2), 00t () }r) {07 ('), T (v) }ar
— _Z’M, (6.23)
1- 37?12 (vd))Z

mientras que el anticommutador cudntico correspondiente sera

6z —y) |
— 22.(V¢)>

Veamos que el estudio de la definicion del signo en el espacio de estados, requerido por
consistencia, se reduce a la posibilidad de que R(x) cambie de signo al ser evaluado entre
estados cudnticos: Sea |f) un estado coherente para el campo ¢, tal que (Vo(z))|f) =
(Vf(z))|f), siendo f(z) una funcién c-numérica. El calculo de las normas de estados de
una particula del campo espinorial en un fondo tal nos lleva a considerar la cantidad

(@), 0" ()] =k (6.24)

- 0*(x —y)
(), v W)l f) = h— ;,r;(vﬂx))gf\lﬁ (6.25)

la cual no es definida positiva. Obsérvese que si el gradiente es no nulo siempre hay un
marco de referencia en el cual la norma cambiard de signo. Este resultado es idéntico al
obtenido en HAGEN (1971) por otros métodos. Esta es la verdadera preocupacién a nivel
cudntico, mas alla de cualquier consideracién acerca de la pérdida de grados de libertad
al nivel clasico en una region de medida cero del espacio de configuracion.

6.2.3. El caso Lp

Mostraremos ahora, con un argumento absolutamente paralelo al seguido para Lygx,
que la teoria no es cuantizable cuando la interaccion es de la forma Lp, por lo que no
tiene sentido derivar reglas de Feynman validas para fondos genéricos (en PASCALUTSA
(1998) se concluye que no dependen del fondo). Por supuesto, en ausencia de fondos la
cuantizacion es la misma que para el campo RS libre, y las expansiones perturbativas
tanto de Lygx como de Lp no presentan inconveniente.

Usando los corchetes de segundo nivel (6.17) en (6.19) obtenemos

{90(1‘)7 Ot (y>}11 _ 3im? ( 292

™ (1- 3<v¢>2) F(z—y) (6.26)

los cuales, muy similarmente al caso Lygk, pueden anularse al nivel clasico para ciertos
valores del gradiente del campo pseudoescalar si m # 0. Es interesante analizar el limite
de masa cero, dado que corresponde a una teoria con una invariancia de medida bajo
la transformacién ¥, — ¥, + J,¢, donde € es un espinor arbitrario. Ingenuamente uno
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podria esperar que (6.26) se anule como consecuencia de dicha invariancia, por lo que 6y
y By serian restricciones de primera clase, pero no hay ninguna demostracion general de
que cada invariancia de medida dé lugar a restricciones de primera clase (HENNEAUX Y
TEITELBOIM 1992). Por el contrario, existen algunos contraejemplos cuando la simetria
de medida actia trivialmente (HENNEAUX Y OTROS 2011). En el caso bajo andlisis la
invariancia de medida es no trivial respecto del campo RS, pero es trivial respecto del
campo de Dirac y del pseudoescalar, por lo que a primera vista esos campos serian “neu-
tros” y deberian desacoplarse si la teoria es consistente. Para probar eso rigurosamente,
obsérvese que ( ver (6.4) yS° = gAY (m = 0)vd,¢ )

Q = [d28°@) = — [ drgr00,i(00)(010) ),
(6.27)

y QT deberfan ser los generadores de la simetria de medida debidos al término de interac-
cién, pero su corchete con todos los campos se anula idénticamente (usando (6.17))

{Q. V() = 0 (6.28)
{Q.¢' (W)} = 0 (6.29)
{Q. ¢ ()} = 0.

Por lo que, pese a que el primer término de 6y en la ecuacion (6.19) A% (m = 0) =
—60’”‘“757)\8“ = —v0;0; en el limite no masivo actia como un generador de ¥, —
U, + dy€, el ultimo término pese a ser no nulo, no genera ninguna transformacioén. Por lo
mismo, los campos escalar y de Dirac son, como dijimos arriba, “neutros” bajo esta trans-
formacion de medida, lo que sugiere que deberian desacoplarse del campo RS. Obsérvese
que {Q,Q} = 0 pese a que {S°, ST} #£ 0.

Para chequear la signatura del espacio de Hilbert procedamos analogamente a como hi-
cimos en la subseccién previa para Lygk. El anticommutador més simple {¢(x), ¥ (y)}p
no tiene problemas de signatura: usando la ecuacion (6.26) y los commutadores (6.17)
obtenemos

{Y(@), 0" (y)}p = —id*(z—y), (6.30)

de modo que debemos explorar los anticommutadores del campo RS

{Ui(2), Th)}p = {Wilz), Ty}
B /dgdeZ/{‘I’i(x)a90(2)}11{90(2)7GOT(ZI)}fll{QOT(Z/)7\Ij;(y)}ff'
(6.31)

Ahora, usando los datos correspondientes al caso Lp en la ecuacion (6.19), los anticom-
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mutadores correspondientes (6.17) y la ecuacién (6.26) tendremos
l .
(@) W)k = |59 - i @) @00)| 6w )

b [ @407 — im0 Ged (D + g}~ 2)

(1-2%(ve(:)7)
{0} = img?(916(2)m(D;0(y)) + 5m2; 10 (2 = y).

X

(6.32)

donde la integral sobre 2z’ fue absorbida por la §(z — 2’) en la ecuacién (6.26) y donde

se us6 la propiedad 970%(z — z) = —9¥63(z — x). Podemos expresar el corchete de Dirac
como

(W), Wko =[50 — i@0()@0())] 69 — )

b {07 — img(@0(0) () + s
e

(1-2(Vg())?)
X {=07 — img®(Q(x))n(0;¢(x)) +

?
5””%’}5(3) (z —y).

(6.33)

Noétese que en el caso de los campos RS libres (g = 0) este resultado coincide con el de
HASuMI Y OTROS (1979) si e = 0. La dificultad en analizar la signatura para los estados
RS es que debe imponerse la restriccién 6, para el caso Lp (recordemos que incluso la teoria
libre incluye estados de norma negativa que son eliminados inicamente luego de imponer
las restricciones). Creemos un estado de una tunica particula del campo RS en reposo
(¢ = 0) en presencia de un fondo pseudoescalar de gradiente constante: por simplicidad
impongamos f(x) = Axy, siendo |(A,0,0)) un estado coherente tal que V¢|(A,0,0)) =
(A,0,0)|(A,0,0)), y en ausencia de cuantos del campo de Dirac. Construimos entonces el
estado o ®,1(A,0,0)) donde «; es un coeficiente vectorespinorial como los que aparecen
en la expansiéon del campo ¥;(z) en la segunda cuantizacion, siendo ®; = [ d®ze*0,;(x)
operadores de creacion de estados RS en reposo donde, para normalizar, introducimos
un volumen regulador V. Cuando p' = 0 en ausencia de cuantos del campo de Dirac la
restricciéon g implica v;c;; = 0. Un estado asi es @ = (72, 71X, 0) para algin espinor no
nulo y donde & = (—xy2, —x™1,0). Calculemos la norma

((4,0,0)[(®la;)(al®;)|(A,0,0)) = al((A,0,0)i{D;, 2]} p|(4,0,0))0 (6.34)

((4,0,0)|(@]a;)(a]®)|(4,0,0)) = af((4,0,0)[i{®;, ]} p|(A4,0,0))a; (6.35)

donde {®;, @}}D = [dBaxdy{¥;(z), \I/; (y)}p. Como una vez que todos los operadores
actuan sobre los estados no resultan dependencias en x e y del miembro derecho de (6.33)
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excepto en la delta de Dirac del corchete, la integracion sobre x e y de la delta resulta
en un factor V' (el volumen regulado) que absorbemos en la normalizacién de y. Tenemos
entonces

1.2 42
(0.0l al)I(4,0.0) =2 (14 127 ) ((4,0.011(4,0.0) (636)
3
que claramente se vuelve negativa para A lo bastante grande.

Recalquemos que la cuantizacion en PASCALUTSA (1998) es incorrecta: el paso vital
para la argumentacién es el desacople del campo de Stueckelberg, que no ocurre (no
podria ocurrir porque el acople es el que garantiza la imposicion de la simetria de medida
invocada). Por lo tanto la integracién de caminos llega a un punto muerto analogo al
descripto ya para el caso Lygk en esa referencia.



Capitulo 7

Malentendidos y Confusiones acerca
del campo RS

A lo largo de su extensa historia, el campo RS ha estado sujeto a un gran niimero de
controversias y malentendidos, la mayoria al ser empleados en un contexto fenomenoldgico
en fisica hadrénica. BENMERROUCHE Y OTROS (1989) escribieron un articulo minucioso
y en apariencia inapelable al respecto. Sin embargo, las confusiones persisten. En buena
medida el origen de las confusiones ha sido la incomodidad que genera la propagacion
virtual de los sectores de spin 1/2. En la primera seccién de este capitulo resenamos el
estado de cosas en torno a estas confusiones. En las siguientes secciones exponemos nuestra
contribucion al problema, ligadas al uso fenomenolégico de la interacciéon propuesta por
PAscALUTSA (1998), tal como aparecen en BADAGNANI Y OTROS (2015).

7.1. Fondo de spin 1/2 y estados “no-fisicos”

El estudio de las particulas cargadas de spin 3/2 y sus interacciones tiene un gran
interés fenomenologico dada la necesidad de modelizar resonancias hadrénicas en experi-
mentos de fisica nuclear o que la involucren como “fondo”. Sin embargo, el desarrollo de la
teoria ha estado plagado de dificultades y controversias. Una de ellas es el precio a pagar
cuando deseamos hacer una descripcion explicitamente covariante de las particulas de spin
3/2. En el formalismo RS, como vimos, el campo de spin 3/2 estd dado por un vectoespi-
nor U, que transforma de acuerdo con la representacién [(1/2,0) & (0,1/2)] ® (1/2,1/2)
del grupo de Lorentz, la cual contiene tanto spin 3/2 como 1/2. A pesar de que en capa
de masa se puede filtrar el sector de spin 3/2 en la ecuacién de movimiento usando condi-
ciones subsidiarias, al invertir el operador cinético para obtener el propagador (que toma
valores fuera de capa de masa) el spin 1/2 reaparece como estados virtuales (AURILIA Y
UMEZAWA 1969). Esto no ocurre solo para spin 3/2: en general, los campos multispin
que requieren condiciones subsidiarias en las ecuaciones de movimiento los estados de spin
inferior que no aparecen en el espectro fisico si lo hacen virtualmente en las interacciones,
dando contribuciones a las amplitudes (AURILIA Y UMEZAWA 1969).

El intercambio de particulas virtuales y su contribucion a amplitudes observables no
es en si mismo un problema, siempre que las interacciones no lleven a la propagacion de
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fantasmas reales, es decir, contribucién de polos del propagador exacto de estados de spin
inferior, que por construccion resultan estados de norma negativa. Esto es bien conocido
en teoria cuantica de campos, donde los estados fantasma no solo son tolerados sino a veces
bienvenidos, como es el caso de los fantasmas de Faddeev y Popov resultantes de la no
invariancia de la medida en integrales de camino en teorias de medida no abelianas. Alli,
las contribuciones de los fantasmas a las amplitudes son necesarias para que se cumplan
las identidades de Ward asociadas a la invariancia de medida (WEINBERG 2000). Para
un campo vectorial masivo ocurren fantasmas en el contexto de la cuantizaciéon de Gupta-
Bleuler en el Lagrangiano de Stiickelberg (ITZYKNSON Y ZUBER 1980). Esto es facil de
ver al nivel de los commutadores, donde la covariancia de Lorentz se logra introduciendo
un grado de libertad redundante de spin 0, con lo que todos los grados de libertad del
campo vectorial son dindmicos. Luego, por covariancia, los commutadores [a™,a”] son
proporcionales a g"”, v puede verse que los estados de una particula de spin cero en capa
de masa tienen norma negativa. En la teoria libre esos estados son proyectados por la
restriccion p,V*# = 0. Cuando hay interacciones presentes, lo que debe garantizarse es que
los fantasmas no se vuelvan fisicos. En el propagador de Stiickelberg usado para describir
al fotén en el limite no masivo esto se logra para el fantasma escalar dado que hay una
invariancia de medida electromagnética y por lo tanto el acoplamiento del fotén ocurre con
una corriente conservada. Pero para el vector masivo en la descripcién de Proca atn hay
una contribucion del sector de spin cero a las amplitudes. Esta contribucion es importante
por ejemplo para entender el decaimiento de piones cargados en leptones mediados por
bosones W (AURILIA Y UMEZAWA 1969, BENMERROUCHE Y OTROS 1989): obsérvese
que el elemento de matriz entre el pién (escalar) y cualquier estado de spin 1 (helicidad no
nula) debe anularse por conservacién del momento angular, de modo que la inica manera
de que un vector masivo de lugar a este decaimiento conservando el momento angular es
mediante el intercambio del fantasma escalar.

En el caso del campo RS aparece un fantasma de spin 1/2, y al menos en ausencia de
campos de fondo las interacciones no hacen aparecer polos de spin 1/2 en el propagador.
Esos estados contribuyen como estados intermedios en las amplitudes, conocidos como
“fondo de spin 1/2”. A pesar del solido argumento presentado en el parrafo anterior, la
presencia de ese fondo le resulta molesta a muchos investigadores, y aparecen menciones de
estas contribuciones como “inconsistencias” atiin mucho después de publicado el trabajo de
BENMERROUCHE Y OTROS (1989). En particular, la motivacion citada en los trabajos de
Pascalutsa para postular la interaccion Lp analizada en el capitulo 6 es que esa interaccion
cancela la contribucion del fondo de spin 1/2 sin necesidad de introducir propagadores
artificialmente truncados como los que se critican en BENMERROUCHE(1989). Notemos
sin embargo que la propiedad de desacoplar los sectores de spin 1/2 no es una propiedad
del vértice, sino de la amplitud eldstica (recordemos que al vértice Lp le corresponde un
valor no trivial de Z, que controla el acoplamiento a v#W,,, como vimos en la seccién 3.3).
En efecto, la amplitud elastica es (omitiendo variables de los demés campos)

- (f ”NA) D (0)G* (5, ~1)Tor (D)

mym

— (o) (waA> PR b (7.1)

My m?2 p2 —m2 KT
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donde

e (p) = elwpu%/%ppv (72)

A1 a1 .1
y recordando que G(p, —1) puede escribirse en términos de los proyectores Ps, P3, P

explicitados en las ecuaciones (3.22), encontramos que gracias a la “propiedad de trans-
versalidad” del vértice Lp

™ (p)p, = T (p)p,. = 0, (7.3)

y las restricciones X 0‘1565%/ 2 (p) = po(j;/ 2 (p)XP =0 (X =+,p) se verifica

p2§2“grau(p) =
Fau(p) A2§2u0 =
Ao
5 I u(p) =
~loy
FMO' (p)p221 =

Esto muestra que, en efecto, la amplitud elastica no tiene contribucion del sector de
spin 1/2. Como dijimos, se trata de una propiedad de la amplitud y no del vértice. En
particular, como la propiedad 7.3 depende de que p' no se modifique entre vértices, es facil
sospechar que si hay emisién de fotones por la particula RS virtual la correspondiente
amplitud ya no desacoplard el sector de spin 1/2. Veremos més adelante en este capitulo
que ese es el caso.

Hay, desde luego, inconsistencias ligadas al spin 1/2. Como hemos trabajado en el
capitulo 6, las interacciones cambian drasticamente las restricciones, llevando a que los
estados de norma negativa aparezcan en el sector fisico. Pero eso ocurre solo en presencia
de campos de fondo y resulta de un estudio cuidadoso de las restricciones, y de ningtin
modo es tan trivial e inmediato como senalar un sector en el propagador libre. De hecho,
es argumentable que el acoplamiento al campo RS puede hacerse consistente si se aniaden
términos de orden superior al acoplamiento minimal electromagnético o al de orden mas
bajo Lygrk. En esta linea, podemos citar el trabajo de PORRATI Y RAHMAN (2009) para
el caso electromagnético. La confusién que aparece en PASCALUTSA (1998) y trabajos
posteriores es la identificacién de las genuinas inconsistencias reveladas en el estudio de las
restricciones con la incomodidad que provoca la contribucién del spin 1/2 en amplitudes
aun en situaciones donde las inconsistencias no son en absoluto relevantes (puesto que se
trata de calculos perturbativos en ausencia de campos de fondo).

Ya vimos en el capitulo 6 que Lp es al menos tan inconsistente como Lygg. En este
capitulo veremos que Lp tiene incluso mas problemas: mientras que Lygx es automatica-
mente compatible con la invariancia de medida electromagnética, Lp presenta problemas
severos debido a la aparicion de derivadas adicionales. Veremos que la ilusiéon de que Lp
trunque el fondo de spin 1/2 desaparece en cuanto incluimos procesos radiativos, lo cual ha
llevado a los proponentes de esta interaccion a reintroducir propagadores artificialmen-
te truncados, tan probleméticos (BERMERROUCHE Y OTROS 1989). Veremos también
que consideraciones de renormalizaciéon obligan a incluir Lygx en cualquier teoria RS
acoplada tanto por Lp como al campo electromagnético.

Y

, (7.4)

o o O O
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7.2. Consistencia y teorias de campo efectivas

BERMERROUCHE Y OTROS (1989) han puesto en duda la relevancia del valor “consis-
tente” del pardmetro off shell Z (tal como se ha calculado en el capitulo 3) por dos vias.
Por un lado, ha mostrado que los datos empiricos parecen incompatibles con ese valor
para el caso Lygg, v por otro exhibié un ejemplo concreto de interaccion consistente
con un Z efectivo diferente. En el capitulo introductorio hemos puesto en duda el criterio
de preferir los vértices de interacciéon a partir de su presunta coherencia, y pusimos el
ejemplo del vértice de Fermi para el decaimiento beta. En esta secciéon fundamentaremos
este escepticismo y mostraremos que el tinico criterio que puede imponerse a los vértices
es que la densidad Lagrangiana de la que provengan tenga todas las invariancias del sis-
tema, pero por lo demas debe ser el mas general posible. Esto es la raiz de los llamados
“teoremas de baja energia”.

Las teorias de campo efectivas se usan toda vez que la teoria completa resulte imprac-
ticable o incluso nunca haya sido formulada (en ese dltimo caso habra algunas invariancias
u otros elementos conjeturales). En el caso de la fisica nuclear se supone que esa teoria
es QCD, que esta formulada en términos de unos grados de libertad que no corresponden
al espectro observable, y este es en principio infinito. En los primeros tiempos de la fisica
nuclear (en que la QCD atn no estaba formulada) se partia de la invariancia quiral, la
invariancia de Lorentz y los pocos grados de libertad de baja energia que uno desease
considerar, y se determinaban las propiedades de las amplitudes a partir de teoria de gru-
pos y algunos procedimientos ad-hoc. El procedimiento era muy engorroso (RHO 2007).
Eventualmente se fue alcanzando la conviccién de que si se escribia el Lagrangiano mas
general involucrando esos grados de libertad y respetando todas las invariancias se lograba
exactamente lo mismo. Si bien no existe una demostracion general, existe cierto grado de
consenso alrededor de esta conjetura a la que se ha llamado “teorema folcklorico (RHO
2007, WEINBERG 1997).

Vemos aqui, entonces, cudl es el criterio para seleccionar interacciones admisibles: de-
ben respetar las simetrias del sistema, deben involucrar los grados de libertad con que
trabajamos, y nada mas. Las queremos para hacer calculos a orden arbol a baja energia,
para construir las amplitudes mas generales compatibles con las simetrias admitidas para
el sistema, y por lo tanto no tiene sentido exigirle a estos términos de interaccién los
estandares de cuantizabilidad y unitariedad que, obviamente, pretendemos de la teoria
completa. Obsérvese, por ejemplo, que por el solo hecho de truncar los calculos a orden
arbol resultan amplitudes no unitarias. En particular, las propuestas para fijar teérica-
mente el valor de Z mas alla de consideraciones de invariancia consisten en demandar que
en la teoria dada tnicamente por el campo RS, un pseudoescalar y un campo de Dirac
interactuando tnicamente a través de Lygx 0 Lp no aparezca una dinamica para el sec-
tor que en la teoria libre es un multiplicador de Lagrange. Observemos que ya sabemos
de antemano que en las situaciones en las que los fallos ocurren aparecen nuevos grados
de libertad y nuevas interacciones, de modo que no tiene sentido pretender que una teo-
ria de interacciones hadrénicas conteniendo tinicamente un campo RS, un espinor y un
pseudoescalar tenga pleno sentido en forma aislada. BENMERROUCHE Y OTROS (1989)
argumentan desde otras perspectivas que este parametro no deberia quedar sujeto por
tales requisitos extra-invariancia, que son los propuestos en primer término en NATH Y
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OTROS (1971).

Obsérvese que las dificultades del tipo observado por Johnson y Sudarshan, Hagen y
esta tesis solo ocurren cuando existen campos clasicos de fondo: como senala Weinberg
en la cita reproducida en la seccién 1.4 la expansion perturbativa en ausencia de tales
campos (que es el uso fenomenoldgico habitual) tiene pleno sentido. Recordando que el
objeto de las interacciones efectivas es reproducir las amplitudes de la teoria completa
a bajas energias, sabiendo de antemano que ese es su rango de aplicabilidad, descartar
Lyer como aproximacién de baja energia a las interacciones de las resonancias de spin
3/2 en base a esas inconsistencias seria como rechazar el vértice de cuatro fermiones como
aproximacion a bajas energias del acoplamiento electrodebil basandose en el quiebre de
unitariedad de aquel a altas energias.

7.3. Coexistencia entre las medidas electromagnética
y de spin 3/2

Tanto en L. como en Lp hay derivadas, por lo que para lograr la invariancia de
medida electromagnética en el acoplamiento con el campo electromagnético A, se debe
hacer el reemplazo 9, — 9, —iqA,,. No consideraremos acoplamientos no minimos porque
de haberlos atin deberia cumplirse esta regla de sustitucién de todas las derivadas, o sea
se trata de una condicion necesaria y nos bastara para comprender las dificultades en la
coexistencia de la invariancia de medida electromagnética con la de spin 3/2. El estudio
de esta incompatibilidad correspondera al andlisis de la invariancia del Lagrangiano ante
U, =V, 4+ 0,P en el caso radiativo. Haciendo sustitucién minimal en L. + Lp obte-
nemos los Lagrangianos de interaccion electromagnética (ga = 2e,e, —e para ATHT~ y
qr =e,—e para )

£A7A = z'qA\II”F(A)W\If”
£0 = L5 BT X T)ST (A0 9) + hec

MmzMmAa
foxa - )
L, = zﬁmww%fmr(mﬁyqf +he. (7.5)

La~a proviene de la sustitucion minimal en Ly, mientras que E(Al;\,w y Eng provienen
de la sustitucion en derivadas de los campos del pién y la A | respectivamente, en Lp.
Hemos descartado las matrices R porque, por invariancia de contacto, estas se cancelan
en amplitudes.

Es claro que Laya ¥ Eg\,w definidos en la ecuacién (7.5) ya no son invariantes de
medida spin-3/2 dado que la derivada de la A fue sustituida. Podriamos tratar de hacer
una transformacion lineal

T = By = T2 055 (0%61 - T (A

en Efree+£p—i—£g?ww+£(§3wﬂ para obtener Lfpee+Lp+Laya —i-,C(Al}\,w—i—ﬁ(z}Vw—i—EC—i—EAz,

donde ahora /j@\,w es invariante de medida spin-3/2. Sin embargo, el Lagrangiano total
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no sera entonces invariante de medida electromagnética, pues el término proveniente de
sustitucion minimal en 9,9" en Lp ya no estd presente luego de efectuada la transfor-
macién. Por otra parte La,a atn viola invariancia de medida spin-3/2, y tnicamente
una transformacién nolineal conteniendo el campo A podria eliminarlo, pero al precio de
generar un numero infinito de términos adicionales (PASCALUTSA 2001). Llegamos en-
tonces a la conclusion de que no es posible satisfacer simultaneamente ambas invariancias
de medida en forma cerrada; solo podemos aspirar a invariancias aproximadas en rangos
acotados a la zona de la resonancia y que no pueden hacerse tan pequenos como se desee.

Un posible marco para hacer esto es teoria quiral perturbativa (xPT') que incluya ,
N y A como grados de libertad. Esta alternativa luce atractiva dado que se trata de una
expansion de la QCD a bajas energias. En este marco es posible computar la dependencia
de cantidades estéticas (como la masa de los nucleones, momentos magnéticos y depen-
dencias en el momento de procesos de dispersion de 77 y m/N) con la masa del pién. Aqui
hay dos escalas livianas y un parametro 6" tal que 6 = A = (ma—mn)/(Aypr = 1GeV)y
Mx/Aypr ~ 62, en términos del cual podemos definir un orden en una expansién perturba-
tiva para la que existe una receta sistematica (PASCALUTSA Y OTROS 2007) (Necesitamos
reemplazar frya/my; >~ 0.014MeV ™" — ha/2(fr = 92MeV) ~ 0.016MeV ). Un mo-
mento ¢ intercambiado (a través de m o v) cuenta como & o 2 si estd cerca de la region
de la A o de m, respectivamente; n depende del orden del Lagrangiano de interaccion,
definido como la suma del nimero de derivadas del campo 7 mas el nimero de derivadas
del campo A,, més el orden en la carga electromagnética e. Ademés tenemos un conteo
para los propagadores de la A cuando g ~ A que diferencia el caso cuando G(p, —1) par-
ticipa en la amplitud a través de un subgrafico de canal s-polar (grafico uno-A-reducible)
o0, dicho de otra manera, o si lo hace de otro modo. Sin entrar en detalles acerca de es-
te conteo, es claro que la invariancia de medida spin-3/2 E(Al;VW da una contribucion de

orden §, mientras que Lﬁg])\,w aporta 62, dado que cuando tenemos 9,¢”/Ma en Lp no
contribuye al conteo. *, pero luego del reemplazo Oy — 0y — 1qA,, debe adquirir un orden

. También es claro que en una dada amplitud a orden 6" donde E(Alsz tiene en cuenta

el vértice AwrN~, Eg\,w deberia contribuir a orden 6" y uno podria descartarlo (al
precio de perder la invariancia de medida electromagnética) para imponer la invariancia
de medida spin-3/2.

Otra cuestién a analizar es la identidad de Ward necesaria para implementar la inva-
riancia de medida electromagnética al nivel de las amplitudes en presencia de un vértice

AvA. Esta identidad toma la forma
iG(p/7 _]-)Haraﬂ(p - p,)G(p7 _1)BV = G(p7 _1)HV - G<p/a _1)1“17 (76)

y puede demostrarse que el propagador completo (3.21) la satisface. En el caso de la
dispersiéon radiativa 7N la contribucion del vértice AvA a la amplitud sera

2
MA'\/A = Z(%) q;NF#U(p’)G(p”_1)0041"&&(6*)67*(1)’_1)50pr(p)ql’, (77)

donde e, es el vector de polarizaciéon del fotéon. Nétese que ahora la propiedad (7.1) no
se verifica ni para el primer par de vértices en (7.7) ni para el segundo par, dado que

“Si pa = pn + ¢ entonces pa/Avpr = pn/Aypr + q/Aypr ~ 1+ 62 ~ 1 en el umbral
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el vértice intermedio esta evaluado en e* y perdemos la condicion de transversalidad, es
decir

D (ex)p, = D (ex)p, £ 0, (7.8)

por lo que (7.4) no es més vélida, por lo que no puede simplemente usarse un propagador
“podado” (sin su sector 1/2) en el caso radiativo. Por supuesto, todo eso es consecuencia
del hecho de que La,a no es invariante de medida spin-3/2. Entonces concluimos que
en cualquier amplitud radiativa involucrando radiaciéon de un fotén por una A virtual el
acoplamiento a estados virtuales de spin 1/2 es inevitable. Algunos tratamientos basados
en YPT (PASCALUTSA Y OTROS 2007), pese a la observacién anterior, supone G (p, —1)W

como propagador en la amplitud radiativa (7.7), adoptando I' ~ . Al hacerse este re-
emplazo el vértice electromagnético queda reducido a I'yg(e*) =~ go5¢* dado que opera la
restriccion VNP%Q = p“ij = 0. Pero no es posible pensar que (7.6) se satisface como
identidad por G'y gag(¢#* — p — P); esta es vélida tinicamente cuando (7.6) aparece con-
traida entre vértices T, lo cual como vimos es incorrecto en el caso radiativo. Finalmente,
es importante mencionar que en la misma referencia la identidad equivalente (para el
vértice y el propagador vestidos)

irgfessed(p _p/> - Gczl(plv _1)MV - G(;l(p7 _1)HV
Gil(plv _1)wj - Gil(p7 _1)/“/ + E(plv _1)#1/ - E(p, _1)MV7(7'9)

donde ¥ (la autoenergia a un loop pién-nucleén de la A) es usada para fijar F'(0) =
1—-%'(ma) en Taup(q) = F(¢*)T,5(q) = F(q*)gapd con G ~ G, pero G no es invertible y la
suposicién G = p—ma (necesaria para obtener el resultado) es incorrecta. Nuevamente
interpretamos que se estd suponiendo la identidad proyectada P3/2(p/) — --- <= P3/?(p) en
lugar de (7.9), dado que P3?(p')T,5(e*) = T,5P3?(e) # 0 . Podemos ver cémo funciona
la expansion en potencias de ¢ para arribar a una amplitud con invariancia de medida
aproximada en el caso de la apmplitud de dispersién 7% radiativa (el caso més simple)
mostrada en la figura 7.1. Nétese que si queremos mantener invariancia de medida spin-
3/2 al orden dominante en la expansién en ¢ deberia considerarse el Lagrangiano L =
Lree +Lp 4 Laya + E(Al;\,w dado que E@Vw (que viola invariancia spin-3/2) es un orden
méas alto que L(Al}\,,m. Dado que el operador de isospin en este ultimo Lagrangiano es
(¢°T x T)3 = 0, no tenemos contribuciones de las figuras 7.1(c) y 7.1(d), que deberian
contribuir si consideramos £(j}w, dado que el operador de isospin es ¢°f - T = T, el cual
contribuye en la dispersion entre A" y p. Puede mostrarse, usando las reglas de Feynman
obtenidas a partir de L, la identidad de Ward (7.6), y mediante el reemplazo e* — k
(para corroborar la invariancia de medida electromagnética) que

Mr(e* = k)= —M2, (" = k), (7.10)
donde en el lado derecho tenemos la amplitud correspondiente a los gréaficos 7.1(c)+7.1(d)
calculados con el Lagrangiano excluido Eng. Entonces la invariancia de medida elec-
tromagnética (Mrz(e* — k) = 0) no se verifica, tendremos tinicamente una aproximacién
si descartamos M? Lq(e* = k) por ser de mayor orden en la expansién §. Por otro lado,

si usamos Lp = Lfree + Lyerx + Laya + Lyer (0, — ¢-A,), la invariancia de medida
electromagnética se cumple exactamente.
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Figura 7.1: Diagramas de Feynman correspondientes a la dispersién radiativa m%p.

7.4. Correcciones radiativas a un loop

Una vez establecido que las invariancias de medida electromagnética y spin-3/2 solo
pueden coexistir aproximadamente y en un rango acotado del cuadrimomentum de la A,
dado que la propiedad (7.3) deja de cumplirse, es légico sospechar que las correcciones
radiativas a un loop de la dispersién pién-nucleén por resonancias A (globos en la figura
7.2) pueden también dejar de cumplir con aquella propiedad. Para chequearlo, estudiemos
las correcciones al vértice TNA que se muestran explicitamente en la figura 7.3. Como
se trata de una teoria no-renormalizable, es de esperar que la inclusién de correcciones a
un loop requerira la inclusion de contratérminos de orden superior. Recordemos que de
acuerdo a la concepcién moderna de renormalizabilidad todas las teorias son renormali-
zables en el sentido de que los infinitos pueden absorberse por contratérminos apropiados,
pero una expansion sistematica en loops para las llamadas “teorias no-renormalizables”
es inttil (no tiene poder predictivo) porque en cada paso se necesitan introducir nuevos
coeficientes independientes (WEINBERG 2000). Por lo tanto, no tiene sentido calcular
correcciones en loops en detalle. Sin embargo, es relevante saber la forma de los términos
cuyas constantes de acoplamiento de menor dimensiéon inversa de masa, pues son los tér-
minos dominantes a bajas energias. En teoria efectiva de campos se deben incluir todos
los términos de interaccién compatibles con las simetrias de la teorfa. (WEINBERG 2000).
Sin embargo, para Lp el término de menor orden en derivadas esta ausente, siendo dicho
término el tenido en cuenta en Lygr. Como veremos, este término surge en el vértice
corregido a un loop. Trataremos las integrales divergentes con regularizacién dimensional.
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Figura 7.2: Contribucién del polo en el propagador de la A-a la dispersion mN con vértices
corregidos radiativamente.

Figura 7.3: Correcciones radiativas a un loop al vértice mNA.

No haremos el proceso completo de regularizacién, pues nos basta con identificar entre
los términos divergentes la forma funcional que corresponda al contratérmino dominante
a bajas energias.

Debido a la circulacion de momento en el loop, no todos los términos exhiben una con-
tribucion ¢'p° en su expansiéon de Taylor. Tomemos por ejemplo el vértice en el diagrama
7.3(a), que toma la forma

frna / d*s 9uv 1 (# + mA) P 5
i gt — gh)ZEY TPT S~
el N T AP [prpu e | o ey LAY
1 1
X (ps — $6)(¢r — $7) (gpn = 3~ 37m7”(p’7 — Sn)) PPy, (7.11)

donde se usaron las ecuaciones (3.21), (3.22) y (7.3). El diagrama 7.3(b) contribuye como

fﬂNA /(d45 @ m (p_g_?é+mN> (}g—i_mA) SopT 5

qgng € o X
N s ) ot (g s —md] (-2 —ma]"
1 1 o
(p5 - 56)(]7 (gpn - §'7p777 - 3m7p(p77 - 377)> € 57570“ (7'12)

donde por simplicidad se omitié la contribuciéon del momento magnético anémalo. El
diagrama 7.3(c) no es considerado pues no es posible obtener de él un término de orden
q'p°. Haciendo una expansiéon de Taylor de los vértices anteriores alrededor de p = 0,
q = 0 produce una serie de términos de interaccién a todos los 6rdenes en ¢ y p (es decir,
derivadas de m y A), que visten los vértices desnudos. La contribucién ¢°p! en (7.11) (el
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correspondiente en (7.12) se anula) toma la forma

” d! by 1 1
InA fNA p&/ S gL (¢+mA) 660’p’r 5 ( )

Mama (27_‘_)4SVST 32 [82 _ mgr] [82 N m2A] Y Vo gﬂ"] - 579777

X €MPaby (7.13)

el cual diverge y no es derivativo en el campo 7. Rompe invariancia quiral, por lo que
se requiere un contratérmino que haga lo propio, lo cual no es una inconsistencia da-
do que esta es solo aproximada. Luego de la renormalizacion, esta contribucién deberia
mantenerse pequefia a bajas energfas. Tenemos una contribucién ¢'p° de (7.11):

A" = quAM
MzMmAa
d48 Guv (mN — #) 1 Sopt 5 1 vnaB 5
X qT/ ) 2 s — A T —ml] Ve (gpn - 3%%) € Yo
(7.14)
y una de (7.12):
¢-B™" = qnaa fana
mLzma
d's g _u(my —$) (F+ma) 1
JpV opT 5 = vnaf .5
QT/ (27‘(‘)4 SuvS8s 52 Y [52 _ m?\/] [82 _ mQA]E Y Vo (gpn 37/)’777) € Y Ya-
(7.15)
Encaramos, por lo tanto (descartando términos en potencias impares de s)
d*s 1 mn ma
G (q) = / &8 s 7.16
A= ] i 2 2 = ] [ — i) 710
d*s 1 1
o) = [ , 7.7
D= | ™ ] [ i T
d*s 1 1
a3 (q) = / , , 7.18
1/5(Q) (271')48 Ss [82 _ m%] [82 — mQA] ( )

las cuales, luego de efectuar la integracion angular, pueden escribirse como g,s xintegral divergente.
Tenemos, por lo tanto

¢ A, BT = q,C*0(g™" + 710474, (7.19)

donde C*? y Z10 son constantes infinitas. Los indices sefialan que se trata de constantes de
acoplamiento efectivas correspondientes a las potencias ¢'p® ™. Para cancelar los infinitos
de orden ¢'p" debemos agregar al Lagrangiano una interacciéon de la forma Lypx con
constantes desnudas infinitas.

““En este lenguaje, por ejemplo, C1! corresponderia a la constante de acoplamiento del vértice Lp, y
Ll = _1
2
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7.5. Conclusiones del capitulo

Una teoria cuantica de campos que involucre Lagrangianos efectivos correspondientes
al campo RS no puede ser renormalizable, y por lo tanto debe incluir todos los términos
de interaccion compatibles con las simetrias presentes. En este sentido, no hay ninguna
razéon fundamental para suprimir la interaccion al orden mas bajo Lygk, v considerar
en cambio la interacciéon de segundo orden Lp como la dominante a momentos peque-
nos. La motivacién para usar ese Lagrangiano fue una simetria de Ly...(ma = 0) bajo
una invariancia de medida del campo RS, donde el vértice fuerte correspondiente 7N A
satisface la relacion (7.3) que es la responsable de la propiedad (7.1), y por lo tanto del
desacople de los estados intermedios de spin 1/2 en la amplitud de dispersién elastica. La
invariancia de medida spin-3/2 no esté realmente presente en la teoria debido al término
masivo, pero el término masivo no arruina la propiedad (7.3). Pero cuando se introduce
una interaccién electromagnética por sustitucién minimal la propiedad (7.3) si deja de
cumplirse en la amplitud radiativa, por lo que reaparece el fondo de spin 1/2. Para forzar
la invariancia de medida spin-3/2 en Lagrangianos que inicialmente no lo son, en PAs-
CALUTSA Y OTROS (2007) se propuso hacer transformaciones lineales en el campo RS
de modo que el Lagrangiano original se transforme en uno invariante mas términos “de
contacto” entre los demas campos, los cuales presuntamente darian cuenta de la contri-
bucion a la amplitud que suele atribuirse al fondo de spin 1/2 (profundizaremos esto en
el capitulo préximo, mostrando que esto no se verifica). El Lagrangiano asi obtenido no
es mas invariante de medida electromagnética, pues contiene nuevos términos derivativos
en la A, y si se hace sustituciéon minimal se vuelve a romper la invariancia spin-3/2. Para
salir del circulo vicioso, en esa referencia se propuso una expansion en potencias de un
parametro ¢ en el marco de la x pr, que supuestamente permite hablar de coexistencia de
ambas invariancias de medida a un dado orden pero no en forma cerrada. EI problema de
esa propuesta particular es que al cambiar el Lagrangiano para tener invariancia spin-3/2
ya no estamos haciendo una expansion perturbativa alrededor de la teoria original dado
que el Lagrangiano no es ni el original ni uno equivalente. Ademas los términos descarta-
dos para obtener esa coexistencia no son en general pequenos. Este procedimiento tendria
sentido inicamente para tratar reacciones especificas en la regién de baja energia para fo-
tones , pero no es 1til en general, y especificamente para la corriente vectorial en procesos
inducidos por neutrinos, donde las energias transportadas por los bosones débiles no son
pequenas comparadas con la escala de la §.

Mostramos que la identidad de Ward para el vértice AyA, que no puede transformarse
en uno invariante spin-3/2 a través de una transformacion lineal, no puede cumplirse con
un propagador truncado no invertible, como es el propagador que proponen, ni es cierto
que ese propagador truncado sea el resultado de evaluar el propagador completo entre
vértices con invariancia spin-3/2 (la razon es que el sector 1/2 tiene dependencia en p).

Obsérvese que la ocurrencia del fondo de spin 1/2 no es en si mismo un problema,
dado que, como se expuso en la introducciéon, el intercambio de particulas no fisicas
virtuales contribuye usualmente a las amplitudes observables, y en no pocas ocasiones
esas contribuciones son vitales para la consistencia de la teoria. Obsérvese también que
no hay conexién alguna entre la existencia de estos fondos con los problemas de signatura
del estilo de los reportados por Johnson y Sudarshan y por Hagen. El verdadero chequeo
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de consistencia seria la ausencia de anticommutadores negativos, que como vimos en el
capitulo anterior no es el caso. Incluso sin ese célculo, observemos que aqui vimos que la
interaccion Lp da lugar a la interaccién Lygg, por lo que la teoria perderia consistencia
meramente por consideraciones de renormalizacion.



Capitulo 8

Spin 3/2 mediante un Lagrangiano
invariante de contacto

Ya hemos mencionado al final del capitulo 3 que la invariancia de contacto, funda-
mental para que el campo RS libre represente spin 3/2 puro, lo es de las ecuaciones de
movimiento pero no de la accién. Creemos que esta es la razén por la que la teoria presen-
ta violaciones de la invariancia de Lorentz. Lo logico es entonces explorar la posibilidad
de formular acciones invariantes de contacto, lo que nos lleva fuera del formalismo RS al
valor “prohibido” A = —1/2. Veremos aqui que en efecto este campo se propaga causal-
mente, pero no admite una cuantizacién aceptable pues sobrevive un sector de spin 1/2
y norma negativa. Mostraremos que esto tultimo puede solucionarse de un modo similar
al propuesto por Stiickelberg (por una aproximacién contempordnea a este formalismo
véase RUEGG Y Ru1z-ALTABA 2004), acoplando al RS un cierto campo auxiliar de Di-
rac, lo cual conduce al limite A = —1/2 del campo de Bhabha-Gupta que describimos en
el capitulo 4. Mostramos que las condiciones para lograr acoplamientos consistentes son
sencillas, y mostramos explicitamente un acoplamiento entre un vectorespinor realmente
neutro, un campo de Dirac y un pseudoescalar.

8.1. ;Y si A= —%, qué?

Hemos visto que los requisitos para tener un campo libre de spin 3/2 lleva a problemas
aparentemente insolubles al introducir interacciones. Deberiamos preguntarnos entonces
si el requisito A # —% es realmente imprescindible. Si eligiéramos A = —% de hecho nos
saldriamos del formalismo RS. Hasta donde sabemos, el tinico trabajo donde esta posibi-
lidad ha sido tomada seriamente es HABERZETTL (1998), donde se escribi6 la densidad
Lagrangiana correspondiente y se reconocié la ocurrencia de una proyeccién en un subes-
pacio, y se obtuvo un propagador igual al que hemos obtenido nosotros (ver més abajo).
Nosotros mostraremos que esa proyeccion se corresponde con una simetria de medida y
cuantizaremos la teoria empleando restricciones de primera clase rigurosamente, y demos-
traremos que la teoria se propaga causalmente pero que el sector de spin 1/2 corresponde
a estados de norma negativa, por lo que se requiere ain proyectar también esos estados.
Veremos que eso puede hacerse ampliando la invariancia de medida ya mencionada.
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8.1.1. El nivel clasico
Consideremos la densidad Lagrangiana

L=y [R (—i) A(A)R (—MW T (8.1)

donde las matrices R son las introducidas en la seccién 3.2. Como A(A) = R(A/2)A(0)R(A/2)
vy R(—1/4)R(a) = R(—1/4) para cualquier a, se sigue que este Lagrangiano es L_1,yque
es independiente de A. Usando esta misma propiedad de R(—1/4), si hacemos una trans-
formacion de contacto cualquiera ¥ — R()¥ vemos que este Lagrangiano es invariante
ante dichas transformaciones. Otra propiedad de esta accién es que, dado que R7(—1/4)
anula idénticamente los campos de la forma 7,7, ¥*, estos quedan completamente indeter-
minados, de modo que la teoria tiene una restriccion de primera clase. Podemos entonces
simplemente imponer «, V* como una “fijacién de medida”.

Se pueden introducir interacciones igual de facil que en el formalismo RS, con el
agregado interesante de que ahora no queda un parametro off-shell indeterminado, dado
que R(—1)R(n) es igual a R(—1). Las ecuaciones de movimiento serdn

1 3 m ,
(P =m0 = 5 Opw + Puv) + 0V + | U+ S =0 (8.2)
Obsérvese que si escribimos S, = S, R, (de modo que cada aparicién del campo ¥

esté acompanado de una matriz R, como hicimos para que las interacciones del campo
RS den lugar a amplitudes invariantes de contacto) la interaccién \TJMS“ + S’“\I/M respeta
automaticamente la invariancia de contacto, también al nivel de la densidad Lagrangiana.
Por lo tanto podemos imponer el “fijado de medida” ~,¥#* = 0, incluso en presencia de
interacciones de la forma 3.35. Las ecuaciones de movimiento resultan entonces (con la
condicion extra vy, ¥* = 0)

1
(p—m)W* — S, W + SR = 0 (8.3)
por lo que
1
pvt = mut + 57“]9”\1/” —S'R™" =0 (8.4)

Calculemos p,¥* como hicimos en el capitulo 3 con el campo RS:

1 v 17 1 v
PV = Py (7 )Y = 5y Pl (8.5)
y reemplazando 8.4 en 8.5 y usando v,R*" = 0 tenemos p,¥* = p,¥”. Por lo tanto

pu¥* = 0 no se deduce de v,¥* = 0. Contrayendo 8.2 con p e imponiendo 7,¥* = 0
tenemos en cambio

1
i(p —2m)p, V" +p,S* =0 (8.6)
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lo que sugiere que este campo es multispin, donde el sector de spin 1/2 p,¥* seria fisico
y con una masa del doble de la de los estados de spin 3/2. Confirmaremos esto cuando
cuanticemos la teoria en forma covariante.

Es interesante notar que la corriente de Noether implicada por la invariancia de contac-
to es idénticamente nula. Para verlo, escribamos una densidad Lagrangiana para el campo
RS antes (£) y luego (£’) de una transformacién de contacto local U# — R¥(a(x))U” con
a infinitesimal. Como deseamos colectar la parte de 0L = £’ — £ de la forma 0,aj”,
conviene expresar £ y L' en términos de 0,

L = U [i7,9,0" + iA(4,0y + 10,) + iBY,7,70” + m(Cyuvy — Guw)] U7

L = @”R;‘(a(x)) 99,0 0” + 1A(7,00 + 1,0,) + 1BY,7,70° + m(Cyy — gu)] RY (a(x)) U7
Encontramos entonces:
§ = 0, 2+ 44" + (1 + A+ 4B}y T, (8.7)

el cual se anula idénticamente para A = —% incluso antes de hacer ,¥* = 0. Esto es
razonable, ya que las interacciones pueden hacerse invariantes de contacto sin recurrir a
una “derivada covariante”. Otra propiedad muy interesante de la invariancia de contacto
es que el “fijado de medida” covariante fija completamente los estados fisicos, por lo que no
hay estados fisicos espurios. Esto hace a la cuantizaciéon muy sencilla y sin complicaciones,
al precio de dejar estados de norma negativa en el espectro fisico.

8.1.2. Causalidad de propagacion

A nivel clasico, como hemos visto en el capitulo 3, aparece el serio problema de la pro-
pagacion acausal en presencia de campos de fondo. De estos fendémenos, el més conocido
es el de VELO Y ZWANZIGER (1969), donde la ruptura de la invariancia de Lorentz se
verifica hallando las normales a las superficies caracteristicas, que en una teoria relati-
vista deberian estar sobre el cono de luz. Para un sistema de ecuaciones diferenciales en
derivadas parciales lineal

(C'"?0,)¥, 4 términos no derivativos = 0 (8.8)
la normal a la superficie caracteristica n, obedece
det (I'n,) =0 (8.9)

Para el campo RS, que es un sistema con restricciones, necesitamos primero obtener
un sistema regular (sin restricciones) de ecuaciones diferenciales el cual, suplementado
con condiciones iniciales adecuadas, sea equivalente al sistema con restricciones. Esto se
logra reemplazando las restricciones dentro de la ecuacién de movimiento. Para el campo
RS libre esas condiciones son v, U* = 0y 9,U* = 0, de modo que las ecuaciones de
movimiento resultan

(if) — m) g, ¥ =0 (8.10)
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asi que la condicién 8.9 queda
det (ithg,) = —(n*)® =0 (8.11)

cuyas Unicas soluciones estan en el cono de luz. Cuando se consideran las interacciones
resulta v, U* # 0, por lo que las ecuaciones para n se vuelven complicadas, conteniendo
en particular soluciones tipo espacio.

Para el caso A = —1, una vez que se impone la eleccién Y. = 0, las ecuaciones de

27
movimiento resultan
id —m) — 2,8, ) U+ S* =0 8.12
2 14

La matriz I'** es por lo tanto la misma en presencia o ausencia de interacciones (con lo
cual es facil sospechar que la propagacion es causal), valiendo:

phve o g ;,ng/ (8.13)
Dado que det I'™“7n, es una expresion covariante, podemos calcularla para estados re-
presentativos de clases conectadas por transformaciones de Lorentz: n = (v,0,0,0) para
n tipo espacio y n = (v,v,0,0) para n tipo luz. Para los primeros dos casos tenemos
det T"*n, = v'%/16, por lo que la condicién de que el determinante se anule lleva a
v = 0, mientras que det ['"?n, se anula idénticamente para n en el cono de luz. Por
lo tanto, los inicos vectores normales a superficies caracteristicas son tipo luz, lo cual
confirma que el campo se propaga causalmente incluso en presencia de interacciones.

8.1.3. Cuantizacion
Cuantizacién unitaria

Para mostrar del modo mas directo la signatura de la teoria y la independencia de
los anticommutadores en las interacciones haremos un cambio de variables en el campo
de modo de expresar los grados de libertad del vectorespinor en términos de los grados
fisicos y de los espurios. Sea Y, &1, & v &3 espinores independientes, y expresemos

U0 = qo(x — W) (8.14)
Tro= pex €

que tiene la propiedade 7, U* = 4x (por lo que x es un campo espurio), y R(—1/4)§'¥, =
Ylg, R(—1/4)1V, = &. Expresando el Lagrangiano como

L

= U, R(—1/4)7"A(~1/2),, R(—1/4)"" ¥, + S, UH + ¥, 5"

1
2

y expresando W en términos de y y & el campo x es eliminado por el proyector R, y
resulta (separando la parte espacial y temporal en £)

L

= 5/170 [YivoAooYoy; — Yivolos — Mooy + Aig] &§ + (8.15)
(SEve + Skv0)&k + EL(Sove + 70Sk) +
= & [=iv + 05)00 — 1077 - V7 + mdig| & + (St + Skv0)e + EL(Sorm +205k)

NI
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con lo cual se expresa £ en términos de los campos no espurios &. Es interesante notar
que el término libre es igual al mostrado en 8.16 para cualquier valor de A, la depen-
dencia en A quedando completamente circunscrita al acoplamiento entre 5 vy X, en el que
este 1ltimo, como se recordara, cumple el rol de un multiplicador de Lagrange salvo para
A = —1/2. Como v,x es el sector (3,0) @ (0,1), los tres espinores & generan todo el
sector (1,3) @ (3,1). Esta teorfa no tiene restricciones no triviales (en el mismo sentido
en que no los tiene la teorfa de Dirac). El modo més sencillo para verlo es cuantizando la
teoria en el formalismo de FADDEEV v JACKIW (1988) (expuesta en el capitulo 5), ya
que el Lagrangiano es de primer orden. Aplicamos la extensién a fermiones del formalis-
mo (GOVAERTS (1990), también expuesta en el capitulo 5. La matriz simpléctica es el
coeficiente que acompana d, en el corchete de 8.16:

wij = —i(dij + v5vi) (8.16)

la que es invertible, dando lugar a los siguientes anticommutadores:

~ 1

€, 5]+ = 0ij + 5% (8.17)
de donde se sigue que la teoria no es definida positiva ni siquiera en el caso libre. El sector
responsable de ello es el spin 1/2 sobreviviente.

Cuantizaciéon covariante

Cuantizaremos ahora la teoria en forma covariante, nuevamente usando el formalismo
simpléctico pero manteniendo ahora los grados de libertad redundantes y agregando un
término de fijacion de medida. El formalismo simpléctico se usa tinicamente para mani-
pular la estructura de restricciones, por las mismas razones invocadas en la subseccion
anterior; la estrategia usada para dar cuenta de las restricciones de primera clase sera la
cuantizacion de Gupta-Bleuler, andlogamente al tratamiento del campo electromagnético
(ver por ejemplo ITZYKSON Y ZUBER 1980). Para ello analizaremos primero la estructura
de restricciones y mostraremos que la tinica restriccion no trivial es realmente de primera
clase. Observemos que el operador A(—1/2),, puede escribirse como W, 0y + V,,,,, donde
(comparando con 5.18 y 5.23) W, es la forma simpléctica y H = —\TJ“VW\I/V la densidad
Hamiltoniana. W y V no son cuadritensores legitimos debido a la separacion de los tér-
minos lineales en la derivada temporal, que son dependientes del sistema de coordenadas,
pero aun asi la estructura de indices de Lorentz tiene sentido. Debido a la idempotencia
de R(—1/4) puede escribirse A(—1/2),, = RJA(—1/2),,R7,, con lo que L_1 queda

1

£ 1

_1
2

1 1
=y R(—Z);iWWGOR(——)"U + R(—

1 _ _
; ) Vi R(= )" | W 45,09+ 0,5 (8.18)

Los proyectores en ambos términos entre corchetes hacen que v, sean modos cero tanto de
W, como de OH/O¥H, por lo que confirmamos una vez mas (siguiendo la seccién 5.7.3)
que se trata de restricciones de primera clase.

Realicemos entonces la cuantizacién de Gupta-Bleuler de este campo. Para hacerlo,

agregamos al Lagrangiano £_1 un término de “fijacion de medida” cuyo rol es volver
2
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dindmicas todas las componentes del campo. Queremos un Lagrangiano tal que el pro-
pagador depende de parametros arbitrarios tinicamente en términos que se cancelen con
vértices invariantes de contacto, de modo que las amplitudes no dependan de esos para-
metros, y tal que los anticommutadores a tiempos iguales tampoco dependan de ellos. El
unico Lagrangiano de esta forma tal que los parametros arbitrarios no afectan la forma
simpléctica (o los momentos canoénicos conjugados en el formalismo de Dirac) es

. i 3 1 .
»CG’F = uH (Za - m)g;w - 5(8;171/ + 8V’7u) + g%ﬁ% + m(/\ + 1)’7}171/ W (819)
+UHS, + SM,

donde el pardametro A ha sido introducido de modo tal que para A = 0 recuperamos
la teoria invariante de contacto. El término contribuira al potencial. Las restricciones,
siguiendo lo desarrollado en la seccion 5.7.3, son ahora de segunda clase. Observemos que
H = H,% + )xmkff“fyu’yl,\lf”, de modo que

0
—_ a2 _ u
Q=x ((")\Iﬁ‘>iH = Amy,V¥ (8.20)
Q=H B I . (8.21)
T \owk ), Tn '

donde (0/0V); y (0/0V)4 son derivadas de Grassman a izquierda y derecha, respectiva-
mente, como se definieron en la seccion 5.8. Como dijimos, A estd en términos anulados
por vértices invariantes de contacto, de modo que ningtin observable dependera de él,
por lo que el tnico efecto del agregado de ese término es la imposicion de la“eleccion de
medida” v*¥, = 0, lo cual lleva a la teoria de la subseccién anterior. Por esto confiamos
en el propagador resultante.

El propagador se obtiene de invertir el operador cinético de la densidad Lagrangiana
con fijacion de medida, y resulta ser:

G = p2—1mQ l(p +m)gu + p2_24mQ(2mpup,, + pupp,,)] + (8.22)
1 p2(p? — 5m?) + 4m*(4\ + 1)
T
p? — 3m?

5 Wubo + (p* = 2m®) (Vupw + Puw) — m(Vuppy + p,,mu)]

Obsérvese que el segundo término es fisicamente irrelevante, pues el propagador apa-
recerda siempre entre vértices invariantes de contacto que los anulara. Quitando estos
términos nuestro propagador es idéntico al obtenido en un contexto clasico por HABER-
ZETTL (1998). Comparese la aparicion del parametro A con la dependencia andloga del
propagador del fotén en el parametro de fijacion de medida. Este propagador tiene dos
propiedades interesantes. Una: su comportamiento asintotico a p grande es el mismo que
para un campo de Dirac. Esto es muy interesante, pues la tnica dificultad para construir
teorias renormalizables con campos de spin superior es el mal comportamiento del propa-
gador a p grandes. Esa dificultad parece aqui allanada. La otra propiedad interesante es
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la aparicién del segundo polo de spin 1/2 y masa 2m correspondiente a 9, ¥*. Este es el
grado de libertad con el que nos hemos topado al nivel de las ecuaciones de movimiento y
que resulté en estados de norma negativa. Si deseamos hacer funcionar este esquema de
trabajo deberiamos encontrar la forma de que este sector esté ausente.

8.2. Resolviendo el problema de la signatura

En este punto estamos en una situacion similar a la del formalismo vectorial cuando
se plantea el Lagrangiano 9, Af,0" A” + m2 AT, A*: las ecuaciones de movimiento no selec-
cionan spin 1 exclusivamente, y el sector de spin 0 contribuye estados de norma negativa
a la teoria.La solucién que encontré Stueckelberg al problema (RUEGG Y RuUIZ-ALTABA
2004) fue acoplar un campo escalar auxiliar, ajustando el acople de modo que el sector
de spin 0 resultase de norma cero, dando lugar a una invariancia de medida atin con masa
no nula. Esto permite hacer una teoria de campos vectoriales masivos renormalizable, de
espectro definido positivo y con acoplamientos consistentes. Ensayaremos aqui esa misma
estrategia.

Consideremos el Lagrangiano

m

= () i 3i )
L = v ((Z@ - m)g/“, - 5(7#81/ + ”Yz/au) + gwé’% + 1 ’YMVu) v
+XPx + (9, XR"™ T, + T, R"D,X) (8.23)

siendo x un campo de Dirac y R* = g"” — 1/44"~". Las ecuaciones de movimiento son,
para x

aX + O[ija,ulpu =0 (824)
y para ¥ (escribiendo A para denotar el operador cinético de ¥ en el Lagrangiano 8.23)
AV +aR,,0"x =0 (8.25)

Imponiendo la condicién de medida v, U* = 0 las ecuaciones anteriores seran, respectiva-
mente

I+ ad"¥, =0 (8.26)

(i) = m) W = 57,0, 9" + a(Gx +7x) = 0 (8.27)

La ecuacion de movimiento para 0"V, la obtenemos de contraer la ecuacién 8.27 con 0*.
Se obtiene:

((2—43042)2'@ - m) ", =0 (8.28)

de donde vemos que la masa del sector 0, U* depende de o (para o = 0 recuperamos la
masa 2m que ya habiamos visto). Pero si o = 1/2/3 el sector 9, ¥* deja de ser dinamico,
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y la ecuacién 8.28 se convierte en 9,¥* = 0. Observemos que en ese caso el Lagrangiano
8.23 corresponde al limite A = —1/2 de la teoria de Bhabha-Gupta (ver capitulo 4). Las
ecuaciones de movimiento serdan entonces

dx = 0 (8.29)
2
(u}) -—m)¥, + \/;@LX = 0 (8.30)
Observemos que la teoria es invariante ante

X — x+¢ (8.31)

1 /2
T, — U, + /20
12 #+m 3 .“fg

siempre que @¢ = 0. Esta invariancia de medida es analoga a la que se ve en el formalismo
de Stueckelberg. Gracias a ella vemos que puede hacerse y = 0 como fijacion de medida,
con lo cual el campo ¥, cumple con las condiciones de spin 3/2, pero de un modo invariante
de contacto al nivel de la accién. Observemos por tltimo que esto parece corresponder al
caso catalogado por Bhabha (ver capitulo 4): un campo de spin 3/2 de norma definida
positiva y otro de spin 1/2 de masa y norma nulas.

8.3. Interacciones

Lo interesante de la propuesta anterior es que la inclusiéon de interacciones tiene una
prescripcion clara para no alterar los anticommutadores: la interacciéon tiene que incorpo-
rar tanto la invariancia de contacto (devenida de medida para A = —1/2) y la invariancia
de medida introducida en la seccién anterior. Si ¥, no es de Majorana (la particula es
realmente neutra), deberd aparte anadirse la invariancia de medida electromagnética. Es-
ta es la tarea que queda pendiente, que no es inmediata, pero existen casos analogos como
el de los bosones W que nos permite conjeturar que esa interaccién electromagnética es
posible.

Si W# es un vectorespinor de Majorana podemos exhibir un ejemplo de interaccion que
generaliza Lypr pero que presenta tanto la invariancia de contacto como la de medida
8.31:

Lint = 90" Ry (076)0 ;@ (0" X) Ry (9 0)u + he (8.32)

Obsérvese que para la fijacion de medida y = 0 esta interaccion se reduce a Lygg. Siendo
esta interaccion invariante, su cuantizacion no deberia alterar los corchetes libres por lo
que estariamos ante una interaccion, al fin, consistente, lo cual es un muy interesante
avance tedrico. Desde la perspectiva fenomenolégica, sin embargo, esto no es mas que un
“modelo de juguete” porque los campos de interés fenomenologico no son Majorana. En
ese caso aparecen dificultades ligadas a la invariancia de medida electromagnética por las
derivadas en L;,;.



Capitulo 9

La resonancia A(1232)

Dedicamos este capitulo a trabajar la aplicacién fenomenologica del tipo de interaccio-
nes estudiadas para el campo RS: las resonancias hadrénicas. En particular, la A(1232)
es la més “liviana”, por lo que es la mas sencilla de tratar con teoria de campos (a medida
que se consideren regiones de energia mayor, el espectro ird creciendo exponencialmente,
y con él la complejidad computacional de los procesos).

Repasaremos someramente la fisica hadrénica relevante y como se puede aplicar lo
desarrollado hasta aqui. Luego exponemos nuestra contribucion al campo, que fue en
realidad por donde se inici6 esta tesis: mostraremos que a nivel fenomenoldgico la inte-
racciéon Lygg es superior a la Lp, en el sentido de que ajusta mejor los datos experimen-
tales referidos a dispersion elastica de nucleones y piones mediados por las resonancias
A, independientemente de cualquier consideracién formal de consistencia. Los resulta-
dos desmienten que ambas interacciones puedan ser consideradas como equivalentes salvo
por términos de contacto “absorbibles” por los términos de fondo no resonantes en la
amplitud, como se propuso en PASCALUTSA (2001).

9.1. El espectro hadrénico

Hoy en dia se acepta que los grados de libertad més fundamentales de los campos que
interaccionan por fuerzas nucleares fuertes son los quarks y los gluones, correspondientes
a la teoria “fundamental” conocida como Cromodindmica Cuantica (QCD). Si nos basa-
mos en esto, la descripcion de las particulas hadrénicas como especies asociadas a campos
propios es “meramente fenomenologica”. Lo contradictorio es que si bien la QCD es una
teoria elegante, renormalizable, invariante de medida, en pie de igualdad con la interaccion
electrodébil, pocas veces es ttil para calculos practicos. Solo en experimentos donde todo
se arregla para estudiar procesos con gran transferencia de momento transverso puede
usarse una expansion perturbativa razonable en QCD. Pero también debemos entender
los procesos hadronicos en dominio de energias intermedias, por ejemplo en lluvias de
rayos cosmicos y en detectores de neutrinos con energias del orden del GeV, los cuales
contribuyen usualmente a los mayores errores sistematicos por el alto grado de incerti-
dumbre de los modelos. Estos pueden tener mayor o menor grado de ‘inspiraciéon” en la
QCD pero se basan en una heuristica compleja que incluye siempre los grados de libertad
hadrénicos, y con frecuencia elementos de las teorias previas a QCD como el intercambio
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Figura 9.1: Los hadrones més livianos clasificados por sus nimeros cuanticos. Los resaltados en
negritas son los estados de extraneza cero.

de pomerones, polos de Regee, etc, y a veces con insuficiente rigurosidad (GRIBOv 2009).
Creemos por lo tanto que el estudio tedrico de los grados de libertad hadrénicos es de
gran interés practico, aparte de ser un gran desafio intelectual.

Hasta donde sabemos hoy, el espectro hadronico no solo no tiene cota, sino que el
nimero de resonancias crece exponencialmente con la masa de estas. Las particulas ha-
drénicas catalogadas por el PDG ronda las mil, lo cual explica el alivio de poder contar
con unos pocos quarks que den cuenta de todas. Para calibrar el animo de zozobra que
generaba hacia los ’50 la proliferaciéon de hadrones recordemos el epigrafe del capitulo
introductorio.

9.2. La simetria quiral

Si bien la simetria “fundamental” de la cromodindmica es SU(3). (el subindice “c”
significa “color”), la simetria méas usada en fisica nuclear es una simetria aproximada lla-
mada “simetria quiral”. Esta simetria fue postulada antes del desarrollo de la QCD, pero
hoy estd incorporada a la cromodinamica como una simetria emergente en el limite en
el que un niimero de sabores es no masivo. Para visualizar més facilmente las corrientes
usaremos a los quarks como los grados de libertad relevantes. Observemos que ¢y"1) es
una corriente conservada; si consideramos dos sabores de quarks (u y d) tendremos una si-
metria SU(2)y (el subindice “V” es por “vectorial” por provenir de corrientes vectoriales);
si consideramos también al quark s tendremos una simetria SU(3)y. Pero si los quarks
tienen una masa muy pequefia se conservaran aproximadamente las corrientes de la forma
"5, lo que se conoce como PCAC (Partially Conserved Axial Currents) lo que da
lugar a un grupo SU(2)4 (“A” por “Axial”) para dos quarks livianos, y SU(3) 4 para tres.
La invariancia (aproximada) completa serd SU(Ny)y x SU(Ns)a (N5 es el “nimero de
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sabores”; es decir, la cantidad de clases de quarks que estamos considerando livianos).
La simetria quiral funciona muy bien a nivel de las interacciones pero muy mal al
nivel del espectro: los hadrones parecen agruparse en multipletes de SU(Ny)y en lugar de
SU(N;s)y x SU(Ng) 4. Por esta razén se especuld con que, aparte de la pequena ruptura
electrodébil de la invariancia quiral, existiria una ruptura espontanea de escala mucho
mayor y de naturaleza estrictamente hadrénica (RHO 2007). Esto darfa lugar a un pseudo-
Goldstone (pseudo por la pequena ruptura explicita, por lo que el escalar tendra una
pequena masa), que se identificé con el pién. La interpretacion en QCD es que aparece un
condensado (conjeturado) de quarks y antiquarks que provocan la ruptura. Igualmente,
como hemos dicho, no es necesario el lenguaje de QCD para formular la invariancia quiral.

9.3. Teoria Quiral de Perturbaciones (ChPT)

La teoria de campos efectiva que implementa la invariancia quiral es el llamado “mo-
delo sigma”. Una introducciéon elemental y facil de seguir puede encontrarse en KOCH
(1995). En ese trabajo y en muchos de la literatura se da una gran importancia al 1la-
mado “modelo sigma no lineal”, que fue un intento de hacer un modelo sigma sin un
meson escalar o observable, pues su existencia y naturaleza eran sumamente dudosa. Sin
embargo se ha alcanzado un consenso respecto de que el mesoén sigma corresponde a la
resonancia fo(500), que puede entenderse como el nombre moderno del . Por lo tanto se
usa sin reservas el modelo sigma lineal.

En el modelo sigma, los tres campos pseudoescalares 77, 7°, 7~ estdn acoplados a los
generadores de isospin, y el campo ¢ esta sujeto a un potencial por lo que tiene un valor
de expectacién. Tanto 72 como o2 son invariantes ante transformaciones vectoriales de
isospin, y la combinaciéon 72 4 o2 resulta invariante ante transformaciones axiales. Pero
si o tiene un valor de expectacion el vacio no es invariante ante transformaciones axiales,
de modo que resulta una ruptura espontanea de la invariancia axial. Para introducir la
ruptura explicita de la invariancia axial (a una escala mucho menor que la esponténea)
que de cuenta de la pequena masa de los piones, se introduce en el potencial de la o un pe-
queno término lineal, cuyo coeficiente queda en términos de la masa del pién. Finalmente,
dado que esta escala de ruptura es pequena, se puede introducir la correccion debida a
esta ruptura explicita como una expansion perturbativa alrededor de esta escala. De este
modo se encuentra que a bajas energias los procesos resultan dominados por la dinamica
de los piones. Esta expansién perturbativa es la que se conoce como Teoria Quiral de
Perturbaciones (ChPT).

A escalas algo mayores, cuando empiezan a aparecer bariones en estados intermedios
que no pueden ignorarse, ain se proponen esquemas de perturbaciones quirales, aunque
aparecen nuevas escalas y las incertezas aumentan. Cuando en los estados intermedios
se proponen piones y As aparecen dos escalas, la masa del piéon m, y el umbral de
excitaciéon de la A ma — my. Ambas escalas deberian ser consideradas independientes,
pero es habitual englobarlos (para el conteo del orden, es decir, para decidir qué diagramas
se incluyen a un dado orden perturbativo) como si fueran la misma escala. Debemos
recalcar que se trata de un criterio puramente pragmatico y ad-hoc. En PASCALUTSA
(2007) se defiende contabilizar ambas escalas como 6rdenes diferentes: m,/Agep = 0% y

0
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(ma —mn)/Agep = 0 a partir de consideraciones cualitativas. Se trata de un criterio tan
ad-hoc como el anterior, una estrategia para llevar la contabilidad de los términos que
se calculan a cada orden. El problema es que PASCALUTSA (2007) usa este conteo para
decidir que determinados diagramas son despreciables respecto de otros, para argumentar
la posibilidad de coexistencia de las invariancias de medida electromagnética y de spin
3/2, que en el capitulo 7 mostramos insostenible.

En lo que sigue se comparan los 6rdenes més bajos en la dispersion elastica pion -
nucleén en el contexto del modelo sigma maés sencillo para los vértices Lygx v Lp.

9.4. Teoria de campos efectiva para la A

En fenomenologia hadrénica las interacciones entre nucleones, piones y la resonancia
de spin 3/2 A(1232 MeV) se modelizan usualmente como vértices entre campos de Dirac,
pseudoescalar y RS, respectivamente. Las condiciones subsidiarias y la invariancia de
contacto garantizan que no ocurran transiciones 3/2 — 1/2, pero (como hemos visto ya)
si puede haber intercambio virtual de spin 1/2 debido a la A.

Para implementar las interacciones Lygx y Lp se recurre a la produccién de reglas
de Feynman reducidas como en EL-AMIRI Y OTROS (1992). Escribamos el Lagrangiano
libre como

Lire = ¥,(x){i0.1'G,(A) = mB,(A)} ¥ (x), (9.1)

donde I" y B se eligen, como hemos mostrado en el capitulo 3, de modo que las ecuaciones
de movimiento seleccionen solo spin 3/2. Implementamos la invariancia de contacto como
mostramos en el capitulo 2: G*(p, A) = R(—A — §);"G**(p, —1)R(—=A — 1)5"", donde

G,uu(pa _1) =
PAm a2

A 1 N A
b = g P o (P74 B (9.2)

V3m

en términos de los proyectores introducidos en 3.22. Los vértices reducidos para las inter-
acciones LNEK y Lp seran, respectivamente:

o f7r A o
TNA — al pw(T : QT% (93)
/g' fTK'NA o o

VTrNA = Zm m7573pap7r,u6 wh (T : (I)T>7 (94)

T

donde hemos introducido la dependencia en el isospin a través del operador T de transicion
A — 7N y la amplitud de estado de isospin del pién ®. Obsérvese que, ademas de haber
sido escritos en espacio de momentos, ambos vértices quedan en términos de la constante
adimensional f,ya, que se obtiene a partir de g dividiéndola por las escalas de masa
relevantes. La cantidad f;ya es uno de los parametros a ajustar.
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9.5. Lygrx vs Lp como modelos para la resonancia
A(1232)

Nuestra intencién aqui es comparar numéricamente las interacciones Lygx y Lp con
datos experimentales, en el contexto de un modelo simple de teoria de campos efectiva
para la dispersion eldstica entre protones y piones. La comparaciéon entre Lygr v datos
experimentales ya se ha hecho en LOPEZ CASTRO Y MARIANO (2002), y los pardmetros
de la A (masa, ancho y constantes de acoplamiento) se obtuvieron consistentemente con
el modelo. Aqui repetiremos esa tarea bajo los mismos estandares pero usando ahora el
vértice Lp,

~ \ \ 1 1
~ \ \ 1 1
~ \ \ 1 1
\ \ 1 1
\ \ ’ 1 |
\ // \ ’ [ 1
e N N o i N o}
MnN — A \/\ N =+ A A 4 ! p |
[N 2N T~ Y + oo
4 \ ’ \ [ 1
4 \ ’ \ | !
4 \ ’ \ | !
7/
’ 1 |
- 4 ’ | |
- 4 ’ | |
- 4 ’ | |
4+ '
7T P

Figura 9.2: Diagramas de Feynman correspondientes a las diferentes contribuciones a la
amplitud de dispersion eldstica 7 p.

Suponemos un modelo dindmico minimalista para calcular la amplitud involucrando
como grados de libertad los nucleones, las resonancias AT+ . la resonancia vectorial p
y la resonancia escalar . *; La amplitud de dispersién elastica tiene contribuciones de
varias partes:

M(rtp — 7ntp) = > M;(rtp—7tp). (9.5)

i=At+ 7A0 )18,0,0

Las contribuciones a las amplitudes que involucran el intercambio de nucleones, los me-
sones py o (en el canal t) se muestran en el segundo, cuarto y quinto grafico de la figura
9.2 respectivamente. Seran incluidos a nivel drbol dado que proveen un fondo suave en
la amplitud en la regiéon de la resonancia; las varias densidades Lagrangianas necesarias
para generarlos pueden encontrarse en LOPEZ CASTRO Y MARIANO (2002) y referencias
incluidas. No usaremos factores de forma ad-hoc para los vértices involucrando hadrones,
habitualmente invocados para lograr un mejor ajuste a los datos experimentales relevan-
tes, y que suelen dar lugar a dependencias en los modelos. De acuerdo con la filosofia
de los modelos Lagrangianos efectivos, en la descripcion de las interacciones hadrénicas

*A lo largo del capitulo supondremos que hay simetria de isospin en las masas y constantes de aco-
plamiento de los hadrones
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a baja energia (como es el caso para la dispersion elastica de protones en la region de la
resonancia de la A), debemos incorporar inicamente los grados de libertad relevantes a
esa energia. En concordancia, esperamos que los factores de forma jueguen un rol impor-
tante tnicamente a energias mayores. Nos concentraremos ahora en la forma explicita de
la contribuciéon dominante (resonancia en el canal s y primer diagrama en la figura 9.2)
para comparar la amplitud obtenidas mediante las reglas de Feynman reducidas a partir
del acoplamiento Lygg

f2

7'('

VP u(py, ma), (9.6)

MG (nFp = 7'p) = 3

a(py, m,)PhG o (p,

(siendo p = p, + px), con la obtenida a partir de Lp, que luego de algunos calculos puede
escribirse como

f7T Ap ﬂ—i_ mo 52,
My (mp — 7'p) = W (P ;)pﬁ(—)mPiypﬂu(pp, ms), (9.7)
donde vemos que, dado que V,%Ap, = 0, que a su vez lleva a VWNA(PUQ)W = 7rNA(Pl/z)

(Pl/ 2) JVi% A = 0, la contribucién del sector de spin 1/2 en la propagacién de la A (ver
(9.2)) es eliminado. Los superindices ¢ y g en los miembros izquierdos de 9.6 y 9.7 signifi-
can “convencional” y “gauge” respectivamente, y lo usamos en lugar de NEK y P pues
es la notacién que se us6 en MARIANO Y OTROS (20124,2012B).

La amplitud elastica de las ecuaciones (9.6) y (9.7) divergen cuando la energia total
V/p? se aproxima a m. Como es bien sabido, este mal comportamiento puede ser curado
ingenuamente mediante el reemplazo m3 — m3A — imal'a en el denominador del propa-
gador de la AT+ (T'a es el ancho del decaimiento de la A). Sin embargo, la solucién
més simple que mantiene la invariancia de medida electromagnética en la amplitud de
dispersién radiativa 7Fp cuando se incorporan efectos de ancho finito es hacer el reem-
plazo m3 — m% — imala en todas las reglas de Feynman que involucren la resonancia
ATt (EL-AMIRI Y OTROS 1992). Este es el llamado “esquema de masa compleja”.

Algunos de los acoplamientos considerados en los Lagrangianos usados para construir
los términos del fondo no resonante son tomados de otros procesos de baja energia. Por
ejemplo, las constantes de acoplamiento (g7, g2y y)/4m = (2.9,14) se tomaron de los de-
caimientos prm y del andlisis de los datos de la dispersion NN (SCHULTZ Y OTROS 1995,
PEARCE Y OTROS 1991), mientras que el acoplamiento magnético pNN k, = 3.7 se
extrajo de los valores de los momentos magnéticos nucleares. Las masas del mesén p y del
nucleén fueron tomadas de NAKAMURA Y OTROS (2010), y la masa del hipotético meson
o, que estd en el rango 400-1000 MeV de acuerdo con NAKAMURA Y OTROS (2010) se
fij6 en 450 MeV o 650 MeV (SCHULTZ Y OTROS 1995, PEARCE Y OTROS 1991) depen-
diendo del modelo para Ma++, tal como se analizé y us6 previamente en LOPEZ CASTRO
Y MARIANO (2002). Entonces, la masa y ancho de la A y las constantes de acoplamiento
Jo = GorndoNN Y fan= son los tnicos parametros libres a ser ajustados a partir de datos
experimentales de la seccién eficaz total de la dispersién 7 p. En la figura (9.3) compara-
mos los resultados para la seccion eficaz total calculada con la amplitud (9.5) a partir de

Los anchos finitos de la A y de los mesones p, ¢ no juegan rol alguno dado que esas resonancias no
aparecen en el canal s.
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Figura 9.3: Seccién eficaz eldstica total 77 p calculada con la amplitud (9.5) con M% ., en la
ecuacion (9.6) (Lnpk) y M4+ de la ecuacién (9.7) (Lp). Los datos se tomaron de PEDRONI
Y OTROS (1978).

MG+ (acoplamiento Ly gk, ecuacion (9.6)) y a partir de M, (acoplamiento Lp, ecua-
cién Eq.(9.7)). Para el acoplamiento convencional, donde se usé m, = 650M eV, tenemos
un ajuste de f3 . /47 = 0.317 £+ 0.003, ma = 1211.2 + 0.4MeV, Th = 88.2 + 0.4MeV,
go/4m = 1.50 £ 0.12, y x?/dof = 4.5, mientras que para el acoplamiento “de gauge”
(donde los mejores ajustes se obtuvieron con m, = 650MeV’) tenemos 0.278 + 0.002,
1211.6 +£0.3MeV, 76.62+0.25MeV, g, /47 = 1.4£0.05, y x*/dof = 13.5 respectivamente.

Para esos valores ajustados para los parametros mostramos también la seccion eficaz
diferencial predicha para dos valores fijos de energia, comparandolos con datos disponibles,

y mostramos los resultados para ambos acoplamientos Lygrx v Lp en las figuras (9.4) y
(9.5).

9.6. Conclusiones del capitulo

En el contexto de este modelo minimalista, en el que tenemos un buen control de los
pardmetros y no tenemos férmulas ad hoc para “mejorar los ajustes” (por lo que, creemos,
la justificacion tedrica para todas las expresiones empleadas es éptima) el ajuste de los
datos a la interaccion Lygx es claramente superior a la lograda con Lp. Los valores de
los parametros del mesén o no pueden acomodarse de modo realista de modo que ambos
acoplamientos resulten equivalentes como se propuso en PASCALUTSA (2001). De hecho,
el ajuste 6ptimo es muy similar para ambos acoplamientos. El fondo de spin 1/2 sigue
pareciedo, por lo tanto, una necesidad fenomenolégica.

Esto, sumado a las conclusiones de los capitulos 6 y 7, permite concluir que no existe
absolutamente ninguna razén para preferir Lp por sobre Lygk: ni evita la inconsistencia
en la signatura del espacio de Fock en presencia de campos de fondo, ni elimina en todos

KoKk 2L . . .
Los 1ltimos tres puntos en la cola superior de la seccién eficaz total fueron excluidos.
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Figura 9.4: Idem a la Figura (9.3) pero para la seccion eficaz diferencial de la dispersion
eldstica mp. Los circulos y tridngulos denotan, respectivamente, datos experimentales de
BUSSEY Y OTROS (1973), SADLER Y OTROS (1987). Las curvas denotan predicciones
para Tj,, = 263.7 MeV.
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Figura 9.5: Idem a la figura (9.4) con predicciones a T}, = 291.4 MeV.
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los casos el fondo de spin 1/2 (que aparece en amplitudes de dispersion radiativa y, de
todos modos, no representa una inconsistencia desde el punto de vista teérico) ni permite
un mejor comportamiento de la amplitud elastica a energias por encima de la masa de la
A (por el factor p? introducido por las derivadas adicionales), tiene inconvenientes para
implementar la invariancia de medida electromagnética que Lygx no presenta, y desde
una perspectiva fenomenolédgica es claramente inferior. El hecho de que agregando mas
términos, factores de forma, etc el ajuste pueda mejorar no es en absoluto significativo:
siempre pueden agregarse parametros hasta que se ajuste cualquier conjunto de datos
experimentales. Pero un ajuste fenomenolégico solo es interesante si resulta predictivo: si
son muchos los conjuntos de datos de los que se da cuenta con unos pocos parametros que
tienen pleno asidero desde consideraciones teoricas.
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Capitulo 10

Conclusiones

En este capitulo resumiremos las principales conclusiones a las que arribamos en este
trabajo de tesis.

En cuanto a la interaccién Lp (PASCALUTSA 1998) como superadora de Lypx (NATH
Y OTROS 1971), podemos concluir que no existe ninguna justificacién formal ni ventaja
desde el punto de vista fenomenolégico para preferirla, mas bien nuestro trabajo apunta a
lo contrario. A nivel fenomenoldgico (al ser usado el campo RS para describir la resonancia
A(1232)) la interaccion Lygx ajusta mejor los datos experimentales disponibles de sec-
ciones eficaces de dispersioén de piones por nucleones en procesos elasticos. En particular,
se ve la necesidad de la contribucién de estados virtuales de spin 1/2 (el “fondo de spin
1/2”) que no puede enmascararse satisfactoriamente modificando los pardmetros de las
amplitudes no resonantes de intercambio de mesones, como se propone en PASCALUTSA
(2001). Al introducir la interaccién electromagnética la situacién empeora: por un lado
las amplitudes en que la resonancia emite o absorbe fotones presentan fondo de spin 1/2,
dando por tierra con la propiedad mas apreciada de Lp de anular este fondo para la dis-
persion elastica mn. Se ve también que es imposible subsanar la incompatibilidad entre la
pseudoinvariancia de medida de spin 3/2 con la invariancia de medida electromagnética,
dificultad que Lygx no presenta. Finalmente, puede verse que las correcciones a un lazo
en el campo electromagnético del vértice Lp reintroduce Lygx al renormalizar, lo cual es
de esperar: Lypk es la interaccion de orden méas bajo (la méas relevante a bajas energias)
que satisface todas las invariancias, y por lo tanto deberia ser la interacciéon dominante
en dichas energias. Deberia sefialarse que la apariencia de mejor comportamiento de la
amplitud eldstica obtenida a partir de Lp debido a la ausencia del fondo de spin 1/2 no
es tal a altas energfas por la presencia de un factor p? debido a la derivada extra sobre el
campo RS.

A nivel formal se puede ver que Lp presenta la misma inconsistencia senalada por
HAGEN (1971) para Lygx (ocurrencia de estados de norma negativa en el espectro),
como cabia esperar para una interaccion lineal en el campo RS. Se han sefialado los errores
cometidos en la argumentacion de consistencia en PASCALUTSA (1998) y se ha mostrado
que el tratamiento riguroso de las restricciones conduce a la inconsistencia senalada, en
completo paralelismo con el caso Lygxk.

Lo expuesto en el parrafo anterior nos deja el antiguo problema de hallar interacciones
consistentes para campos de spin 3/2. Una posible solucién, argumentada por WEINBERG
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(1996) y explorada por PORRATI Y RAHMAN (2009) es introducir interacciones suma-
mente complejas. No hemos explorado ese camino. De todos modos, el hecho de que aun
a nivel clasico una acciéon covariante conduzca a soluciones no covariantes constituye un
problema a un nivel extraordinariamente basico: el punto de desarrollar el formalismo La-
grangiano pagando el precio de introducir grados de libertad redundantes es que permite
implementar las simetrias. Hemos mostrado que la paradoja se resuelve observando que
en realidad la accién RS libre no es genuinamente covariante: para que las soluciones de
las ecuaciones de movimiento correspondan a campos de spin 3/2 puros se debe intro-
ducir un parametro A inobservable en la accién, del que resulta una invariancia de las
ecuaciones de movimiento pero no de la accién. Por lo tanto la covariancia no esta com-
pletamente implementada al nivel de la accién. Hemos visto que el limite A — —1/2 (que
no corresponde al formalismo RS ya que aparece un sector de spin 1/2 que al cuantizar
resulta de norma negativa) es efectivamente covariante al nivel de la accién y la anomalia
de Velo-Zwanziger no aparece (la propagacién es causal). Para subsanar el problema de
la existencia de estados de norma negativa proponemos proceder como en el formalismo
de Stuckelberg para el caso vectorial, agregando un estado de spin 1/2 ajustado de mo-
do que los sectores adicionales sean grados espurios por la aparicion de restricciones de
primera clase. Vimos que ese acoplamiento deberia producirse igual que en el campo de
Bhabha-Gupta en el limite A — —1/2, el que seria por lo tanto un candidato promisorio
para proporcionar campos de spin 3/2 con interacciones consistentes.

Queda para trabajos posteriores cuantizar el campo de Bhabha-Gupta en el limite A —
—1/2, construir interacciones adecuadas para la descripcion de las resonancias hadrénicas
y la comparacion de las predicciones de esas interacciones con datos experimentales.



Apéndice A

Representaciones de los grupos de
Lorentz y de Poincaré

A.1. Simetrias en 3+1 dimensiones

El espacio-tiempo relativista comparte las simetrias basicas del galileano, pero con
algunas sutilezas. La homogeneidad del espacio se traduce en invariancia frente a trasla-
ciones. La isotropia se corresponde con invariancia frente a rotaciones (tridimensionales),
mientras que la relatividad del movimiento entre marcos inerciales (que en la fisica clésica
se refleja en invariancia frente a transformaciones galileanas) corresponde a invariancia
respecto a boosts (transformaciones que “rotan” entre coordenadas espaciales y tiempo).
Aqui hay una diferencia importante con el caso clasico: mientras que el moédulo del mo-
mento angular es invariante por transformaciones galileanas, no ocurre lo mismo ante
boosts. Por lo tanto, el momento angular intrinseco no es un buen nimero cuantico en
relatividad.

Introduzcamos lenguaje y notaciéon. El grupo de transformaciones que deja invariante
la cuadrinorma z,2* es el llamado grupo de Lorentz, e incluye rotaciones, boosts, paridad
(inversion de las coordenadas espaciales) y reversa de tiempo (inversion de la coorde-
nada z). Si se anade al grupo de Lorentz el grupo commutativo de traslaciones en el
espacio-tiempo obtenemos el grupo de Poincaré (también llamado “de Lorentz no homo-
geneo”). Los generadores de las traslaciones son los operadores de cuadrimomento P*.
Una transformacion de Lorentz actiia sobre las coordenadas espacio-temporales de modo
que z,z* = x,z". Supongamos que el cambio es infinitesimal: 2, =z, + (dx),,, la condi-
ciéon de invariancia serd x,(0z)* = 0. Si tenemos (dx)* = w"’x, con w*” infinitesimales la
condicion de invariancia sera

wz,x, = 0; (A.1)

como z,x” es simétrico en sus indices pero por lo demds arbitrario, la condicién A.1
implica que w" es antisimétrico. Obsérvese que w"” se contrae con un vector covariante
dando lugar a uno contravariante; el generador de transformaciones de Lorentz sera pues
Wl = gurw™, que satisface w} = —wl, W =wiyw)=0.

El interés de las transformaciones infinitesimales proviene del hecho de que el dlgebra
de Lie codifica por completo la informaciéon de la componente del grupo conectada con
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la identidad. Conocida esta algebra es directa la construccion de representaciones a tra-
vés del mapa exponencial *. Supongamos que queremos construir una representacién del
grupo de Poincaré sobre un espacio vectorial cualquiera V: entonces una transformacion
infinitesimal de Lorentz arbitraria actuard sobre este espacio mediante una combinacion
lineal de generadores de Lie:

1
ov = iiw’“’Jwv (A.2)

donde v € V. Si v es el espacio de vectores columna de las coordenadas del espacio-tiempo,
entonces el operador J" es simplemente una matriz de 4 x 4 de la forma

(T )po = =S5 — Opodip) (A.3)

(obsérvese que si bien estas matrices son idénticas a las de los generadores de SO(4), su
algebra de Lie no serd la de SO(4) porque al calcular los conmutadores el producto de
matrices debe involucrar la métrica g"” para contraer pares de indices). Por otro lado,
ante una traslacion infinitesimal e el vector v se transforma segin

ov=€e"P,v (A.4)
de modo que un elemento genérico de transformacion infinitesimal en V' sera
Uing = 14+ wu JI" + €, P! (A.5)

Para estudiar como transforman los objetos P* y J#” puede someterse U;,¢ (dado en A.5)
a una transformacion de similaridad con U(A, a), siendo (A, a) la transformacion tal que
(A, a)r = Ar + a. Se obtiene:
UNa)T"U (N a) = AFAJ(T” —a’P’ +a’ P
U a)P'U (N a) = AMP?

—~
> >
~N O
~— ~—

de donde vemos que:

= J" es un cuadritensor de rango dos
» P* es un cuadrivector

» JY es el momento angular

Para hallar el algebra que obedecen los operadores J* y P podria simplemente
estudiarse U(A, a)U;,sU (A, a) con (A,a) a su vez infinitesimal, o puede hallarse en
forma directa en el grupo usando P, = id, y las matrices J** dadas en A.3. Para lo que
sigue conviene dar el dlgebra en términos de generadores dados como 3-vectores:

Jl=g®B  groghn  gi_ g (A.8)
KL= g0 j2— g2 38— g% (A.9)

“Esto ser4 asi en tanto no nos preocupe que las representaciones no sean unitarias. Si los generadores
son hermiticos el mapa exponencial lleva directamente a representaciones unitarias; en otros casos la
generacién de representaciones unitarias es una tarea notablemente delicada, que tendremos que enfrentar
para pensar en los estados cudnticos fisicos en la seccién 2.2
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Entonces j es un pseudovector, y K es un vector (hecho muy importante para comprender
los efectos del operador de paridad sobre representaciones). En términos de los operadores
dados en A.9 el algebra de Poincaré resulta:

[

[

[._71, ICJ] = ieijlek

[ji, P]} = iei ksz

X!, P] = @P%(Sij (A-10)
[K?, P°] = iP'6;

[jiv PO] =0

[P*, P'] =0

Para referencia futura: P° es el generador de traslaciones temporales, por lo que si
la representacion es un espacio de Hilbert describiendo un sistema fisico ese operador es
el Hamiltoniano. Todas los operadores que commutan respecto de P° corresponden por
lo tanto a cantidades conservadas. En el caso del algebra A.10 estas cantidades son el
cuadrimomento y el momento angular.

A.2. Representaciones del grupo de Lorentz

Un grupo de Lie no compacto no tiene representaciones irreducibles unitarias de di-
mensién finita. Los grupos de Lorentz y de Poincaré son no compactos (debido a los
boosts) y por lo tanto sus representaciones de dimensién finita no son unitarias. Su interés
radica en que estas representaciones son las que corresponden a los cuadrivectores, los
cuadriespinores y cualquier producto tensorial entre ellos.

Para construir las representaciones de dimensién finita del grupo de Lorentz ortocrono
propio” conviene reorganizar un poco el algebra de Poincaré A.10. Definamos:

A =T +iK'
en términos de esos operadores el algebra para los J* queda:
CNI = e AR
(A", A = iejjn A (A.12)

[Bi, B]] = iEijkBk.

Esto significa que el dlgebra de Lorentz puede escribirse como un producto SU(2) x
SU(2). Si tuviéramos en cuenta los generadores de traslaciones, esa descomposicion ya no
es posible. Esta descomposicion corresponde al morfismo SO(4) = [SU(2) x SU(2)]/Z,.
Esta correspondencia es posible gracias a la ¢ en A.11, mediante la cual A y B son
hermiticos mientras que K no lo es. Al reemplazar los parametros reales que acompanan
a IC en el mapa exponencial por imaginarios se logra hacer SO(4) — SO(3,1). El precio

““Esto es, nos quedamos con la parte conectada con continuidad a la identidad. El grupo completo
incluye las transformaciones discretas de paridad y reversién temporal.
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que pagamos es que las representaciones asi obtenidas no son unitarias, y por lo tanto no
pueden usarse para implementar la simetria de Lorentz al nivel del espacio de estados.

Entonces las representaciones irreducibles de dimension finita del grupo de Lorentz
quedan caracterizadas por dos semienteros, cada uno de ellos correspondiente a una re-
presentaciéon irreducible de SU(2). La representacién escalar corresponderd a la repre-
sentacién (0,0). Los productos tensoriales entre representaciones pueden descomponerse
facilmente en representaciones irreducibles usando la correspondiente descomposicion en
SU(2); por ejemplo:

(1, 1) ® (1, 1) —(1,1) @ (1,0) & (0,1) & (0,0). (A.13)
272 22

Cada numero del par que caracteriza una representaciéon puede interpretarse como
una representacién quiral. La razén de esto es que las acciones de A y B constituyen
simultdneamente rotaciones y boosts (véase fig A.1), pero de quiralidades opuestas. Para
mostrarlo formalmente, veamos la accién del operador de paridad P sobre Ay B:

PAP = PJP +iPKP = J — ik = B

PBP =PJP —iPKP=J +iKk = A (A.14)

Por lo tanto, el efecto de P en representaciones es invertir los niimeros caracteristicos:

P(q1,q2) = (q2,q1)- (A.15)

Por esta razén distinguiremos los factores en la descomposicion de SO(3,1) en modos
“izquierdos” y “derechos”:

SO(3,1) = SU(2);, x SU(2)r (A.16)

(los subindices son por “left” y “right”. Usamos esa notacién para no desviarnos del uso en
la literatura anglosajona). Notemos que cualquier particula a la que se le pueda atribuir
una paridad definida (esto es, todas salvo los neutrinos) deberdn tener representaciones
simétricas en ntmeros izquierdo y derecho. Las representaciones irreducibles del grupo de
Lorentz con paridad serdn (0,0), (3,0) @ (0,1), (3,1), etc.

Para terminar de darles significado a estas representaciones asi construidas, vamos a
conectarlas con las formas més habituales de dar estas representaciones: espinores (de

Weil y de Dirac), cuadrivectores y tensores.

A.2.1. Representaciones espinoriales

Si hallamos una coleccion de matrices v* que cumplan con el algebra de Clifford:

{0, 7"} = 29" (A.17)
donde g" = diag(1,—1,—1,—1), podemos construir una representacién en la que

l

w
J 4

v (A.18)
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T A

A 3 H3

Figura A.1: Accién de los generadores A3 y Bs. Ambos generan simultdaneamente una
rotacion en el plano xy y un boost en el eje z, pero el boost en Bz es opuesto al generado
por As.

En rigor, estas representaciones no son representaciones de SO(3,1) sino de su algebra
“envolvente” SU(2) x SU(2): al hacer un giro completo el vector v € V' cambia de signo.
Que tales representaciones sean relevantes en fisica es una de las sorpresas que hacen
apasionante la historia de la fisica cuantica relativista.

Una coleccién de matrices de 4 X 4 que cumple con A.17 es la siguiente:

0 1 0 ¢
0__. -z
7_Z<1 0)’7_ Z(—& 0) (A.19)

donde & son las matrices de Pauli. Esta es la llamada base de Weil, que es la més adecuada
para nuestros propositos. En esta base:

0 00 000 O
10 =300 1000 0

A=l 0 oo BT 01 0 (4.20)
0 0 00 000 —3

Acé se ve claramente que V' (el espacio de espinores de Dirac) es la representacion
(3,0)®(0, ). Los vectores (1,0,0,0)” y (0,1,0,0)” generan la representacion de Weil (1, 0)
de espinores “izquierdos”, mientras que (0,0,1,0)% y (0,0,0,1)” generan la representacién
de Weil (0,1) de espinores “derechos”.

A2.2. Representacion cuadrivectorial

Es facil sospechar que la representacion cuadrivectorial debe ser la (%, %) pues am-

bas son de dimension 4. Para comprobarlo explicitamente construyamos, a partir de J*”
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(expresion A.3), las matrices Az, Bs, A~y B™:

0 0 0 -1 00 0 1
1l 0 0 —i o0 1100 —i 0
A3_§ 0 i 0 0 Bs=510 . 0 o (A.21)
10 0 0 10 0 0
0 —1 i 0 0 1 —i 0
1 =1 0 0 1 111 o0 o0 1
A "ol i 0 0 —i B =31 ., 0 0 —i (A.22)
0 —1 4 0 0 -1 i 0

Claramente, los autoestados de A3 y Bs son 1/2 y —1/2. El estado “de peso maximo”
(con autovalores +1 para ambos operadores) es (0,1,4,0)7; por aplicaciones sucesivas
de A~ y B~ se van obteniendo los otros tres vectores de la representacion irreduci-
ble: A=(0,1,7,0)7 = (=1,0,0,—1)", B7(0,1,7,0)T = (1,0,0,—1)", A=B~(0,1,7,0)T =
(0,—1,4,0)T.

A.2.2. Tensores

Si conocemos los generadores para un par de representaciones Gy, y Gy, sobre espacios
Vi v Vs, la representacion sobre el producto tensorial Vi ® V5 puede construirse en forma
muy directa. Siu=v; ® vy € V] ® V5:

u+du=(vy+0vy) ® (va +0vy) = [(1 + 0Gy,) ® (1 + 0Gy,)|u (A.23)
por lo que
GV1®V2 =GIR1+1Q G, (A24)

Para construir una representacion basta con encontrar los estados de peso maximo y
aplicar sobre estos los operadores de bajada (en este caso: A~ y B~) de todos los modos
posibles. Por ejemplo:

(Aon)’ = (AL @1+ 10 A,) = (A5, © 1+ 1® (Ay,)” + 24, ® Ay, (A.25)

A‘_/1®V2‘8‘71®V2 = A‘_GB\Z ®W1+1® A\_/QB;Q + "41_/1 ® 8‘72 + 6\71 ® A\_/z (AQG)

Procediendo asi, y teniendo en cuenta que las potencias de A~ y B~ eventualmente
se anulan, habremos completado la base de autoestados de la representacion.

Veamos como ejemplo un tensor de rango 2. Este puede pensarse como perteneciente
al producto tensorial de dos espacios cuadrivectoriales, de modo que tendremos la repre-
sentacion

(33)@(53) =LVelL0e 000 (A.27)
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La descomposicion del tensor en esas representaciones irreducibles puede hallarse por
argumentos de simetria y conteo: como el inico escalar que puede construirse alrededor
del tensor T es la traza T7,, la representacion unidimensional (0,0) corresponde a la
parte diagonal de T""; la parte antisimétrica de T tiene seis grados de libertad, y la
parte simétrica de traza nula, nueve, por lo que deben corresponder a (1,0)®(0,1) y (1,1)
respectivamente.

Esta correspondencia puede mostrarse de modo explicito construyendo A*, Bt A3y
Bs usando A.24. Por ejemplo, si llamamos .A;())l’o)@(o’l) al generador A3 sobre cuadrivectores
(construido en la subseccion anterior) tendremos

11 11
Agm)@(m) —1 ®A§1’0)@(0’1) 4 A:(SLO)@(O,I) @1 (A.28)

El estado de peso maximo sera

00 0 O
T .| 01T 2 0
(0717170) ® (0717270) - 0 i —1 0 (A29)
00 0 O
(que es simétrico de traza nula). Si le aplicamos A~ obtendremos
0 0 -1 0 0 —1
1 1 0 1 1 0
A" @1+10A47]] . |® = ® +1 | ®
? { 0 { i 0
0 0 -1 0 0 -1
0 -1 —i 0
-1 0 0 -1
=i 0 0 —i (4.30)
0 -1 — 0

Continuando con este proceso (aplicando de todos los modos posibles potencias de A~
y B~ al estado de peso maximo) se obtiene una base de las matrices simétricas de traza
nula, que ademas son autoestados simultaneos de As y Bs. Las otras dos representaciones
pueden obtenerse de modo andlogo: el estado de peso maximo en (1,0) ® (0,1) sera el
estado con autovalor de Az + Bs igual a 1 y anulado simultdneamente por A™ y BY, y
(0,0) es el espacio con autovalor As 4 Bs igual a cero, y anulado simultdneamente por A"

y B*.

A.2.3. Vectorespinores

Usando las ideas de la subseccion anterior puede expandirse explicitamente cualquier
representacion tensorial en suma de representaciones irreducibles. En esta subseccion lo
vamos a aplicar al tensor entre la representacion cuadrivectorial y la espinorial, que es la
representacion empleada en el formalismo de Rarita-Scwinger (RS).

Desde argumentos estrictos de simetria, lo que tenemos es

G2)elGo)e(3)]-[03)eGle[Go)=03)] @
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La representacion (1,0) @ (0,1) debe corresponder al tinico objeto construible con indices

de Dirac solamente: 7,¥#. La representacion (1, %) &) (%, 1) debe corresponder por lo
tanto a los W* que satisfagan la condicién ~,¥* = 0.

Puede construirse la representacion (1, %) & (%, 1) en forma explicita usando la repre-
sentacién tensorial entre la cuadrivectorial y la espinorial (en base de Weil) ya construidas.
Pongamos en el factor izquierdo de los productos tensoriales la representacion cuadrivec-

torial, y en el derecho la de Dirac. El estado de peso méaximo de (1, %) es:

0 1
1 1 1 0

(1,2,1,2> -2, (A.32)
0 0

donde usamos la notacién (jr, jr; jar, j3r)- El estado de peso maximo de la representacién
(%, 1) es

0 0

1.1 1 0
(2,1,2,1)_ el | (A.33)

0 0

Puede verse en forma directa que ambos satisfacen ~, U* = 0 (ver dltimo pérrafo de esta
subseccion). Para obtener los otros estados de la representacién debemos actuar con A~
y B~ sobre esos estados de todas las maneras posibles:

0 1 -1 1 0 0
1 1 _ L1 0 0 0 1 1
(1,2,0,2):[A o1+10A7 | el o (=] o 121 o |F]; |®] o
0 0 —1 0 0 0
(A.34)
0 1 1 1
1 1 _ | 0 0 0
(1,2,1,—2>—[B 1+10B7 ] 1ol 1= o [®] ¢ (A.35)
0 0 —1 0
0 1
1 1 o N I | 0
(1,2;07—2>:[A B"o@l+10A B +A 0B +B 0A]| . |© 0
0 0
0 1 1 0
1 0 0 1
=1 L1®loltl o 2] (A.36)
0 0 —1 0
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y asl siguiendo.

Para pasar de la notacion por productos tensoriales a componentes debe tenerse en
cuenta que si ¥ = v ® Y, siendo ¥ un vectorespinor, v un cuadrivector y y un espinor de
Dirac, entonces W* = v*x. Asi, por ejemplo, v - ¥ = (y,0")x.

A.3. Representaciones del grupo de Poincaré

A.3.1. Representaciones inducidas

En primer lugar, es importante recalcar que deseamos describir estados de particulas
fisicas. La cantidad P, P* tiene, para cada tipo de particula, un inico autovalor invariante
que es m?. En esta subseccién nos vamos a concentrar en el caso de particulas de masa
no nula.

Observemos que el grupo de Lorentz tiene un subgrupo compacto para el que es sencillo
construir representaciones unitarias de dimension finita: el grupo de rotaciones. Por otro
lado, el “culpable” de la no compacidad es el grupo de boosts, para el que sin embargo
pueden construirse representaciones no unitarias usando el mapa exponencial. La idea es
explotar ambos grupos en la construccion de representaciones irreducibles unitarias del
grupo de Poincaré.

Supongamos que tenemos un “campo” (en el sentido matematico) de objetos trans-
formando bajo cierta representacion del grupo de Lorentz R que actia sobre V. Esto es:
tenemos una funcién v : M — V siendo M el espacio de Minkowski 3 4+ 1 dimensional.
Notaremos tal funcién como v(x) con x € M. Es razonable definir la accién de una
transformacion de Lorentz activa A a través de:

V(%) = R(A{v(x)} = R(A)[v(Ax)] (A.37)

Notemos que en este punto no tiene sentido preguntarse por la unitariedad de esta accion,
hasta que no definamos una métrica en el espacio funcional al que pertenece v(x). Si
expresamos v(x) en base de momentos podemos deducir cémo actia esta representacién
sobre autoestados de PH: =A%) = ¢=iAP)x hor 1o que si ¢p(z) es un autoestado de P*

R(A{¢p(x)} = R(A)[dap(7)] (A.38)

Ahora estamos en condiciones de introducir la idea de representacién inducida. Tomemos
un cuadrimomentum “estandar” k* desde el que podamos llegar a cualquier otro a través
de boosts “estandar”

p = Lyk. (A.39)

Habra entonces un subgrupo del grupo de Lorentz que dejard invariante k*. Ese subgrupo
suele denominarse “grupo pequeno” ", y a partir de sus representaciones queremos “in-
ducir” representaciones del grupo completo. Introducimos ahora una métrica en el espacio
funcional (si se trata, por ejemplo, de estados cudnticos de una particula, las funciones

“*little group en la literatura anglosajona
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pueden normalizarse para que representen una particula por unidad de volumen); a partir
de ahora supondremos que los autoestados ¢,(x) estan normalizados respecto de esa mé-
trica. Entonces, para lograr que la accién de R(A) sea unitaria redefiniremos ligeramente
A.38 para el caso de boosts puros:

R(Lp){ox(2)} = N(p)R(A)[¢ap(2)] (A.40)

La normalizacion N (p) se elige de modo que el estado imagen esté normalizado, de modo
que tendremos

R(Lp){ox(r)} = dp(). (A.41)

Veamos ahora la accién de una transformacién de Lorentz cualquiera A sobre un autoes-
tado de P*:

R(A{¢p(2)} = R(Lap) - R(LipALp) - R(L™(P)){¢p(2)} (A.42)

donde la denominada “Rotacién de Wigner” W (A, p) = LXIl)ALp pertenece al grupo pe-

queno (deja invariante k). De este modo, la accién bajo el grupo pequeno y la accién

de boosts definen la accién de todo el grupo de Lorentz. Puede demostrarse (WEINBERG

1996, seccién 2.5), y es importante tenerlo en cuenta, que la rotacion de Wigner correspon-

diente a un elemento del grupo pequenio Ayeque €8 €l propio Apegue: Wi(Apeques P) = Apeque-
Para el caso de particulas masivas puede elegirse:

k = (m,0,0,0) (A.43)

de modo que el grupo pequeiio es el grupo de rotaciones SO(3). Consideremos la repre-
sentacion R del grupo de Lorentz sobre V' dada por el mapa exponencial, y definamos
para R las acciones dadas por rotaciones puras A,.:

R(Arot){¢p(x)} = R(ATOt)[¢Arotp(x)] (A.44)

Obsérvese que por construccion esta accién es unitaria. Esta definicion, junto con A.40 y
A .41, definen una representacion unitaria para el grupo de Lorentz que parte de las repre-
sentaciones unitarias del grupo pequeno. De ahi el nombre de “inducidas”. Observemos
que el operador de Pauli-Lubanski expresado en el subgrupo pequeiio es mJ%, o sea que
el empleo de autoestados de ese operador equivale al uso de representaciones del grupo
de rotaciones, pero pensado como grupo pequeno. Esta es la razén por la que, abusando
del lenguaje, hablamos de spin en fisica relativista.
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